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Abstract

With the recent rise of deep learning approaches for artificial intelligence, we came to
realize that developing computer systems that are reliably capable of understanding
visual scenes and recognizing speech is finally possible. Unfortunately, little attention
has been given to the idea of developing computer systems that can emulate the way
we use our sense of hearing to make sense of what’s around us. Making intelligent
systems that can reliably recognize environmental sounds will cause a paradigm shift
in technological areas such as audio surveillance, noise pollution analysis, audio-based
search engines, and hearing aids. This work digs into the use of convolutional neural
networks (CNN) for robust environmental sounds recognition, while also proposing a
method for dealing with small datasets called stochastic continuous data augmentation.
Obtained results have been compared with some previous related works.



Acknowledgements

I would first like to thank my project supervisor Prof Abdelmalik Bachir for guiding
me to the right direction throughout the project and for giving me the sort of feedback
that helped shaping this work.

I would also like to thank Justin Salamon of New York University for delivering further
details on his previous work.

And finally, tremendous thanks the friends and family for their continuous support
and belief throughout my entire academic career.



Contents

1 Introduction 4

2 Audio Signal Processing Basics 6
2.1 Digital audio signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Periodic signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Spectral decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.2 Time domain vs frequency domain . . . . . . . . . . . . . . . . . 7
2.3.3 Spectrogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Sound perception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.1 Pitch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.2 Mel scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.3 Brain-inspired audio features . . . . . . . . . . . . . . . . . . . . 11

3 Neural Networks and Deep Learning 12
3.1 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 Artificial Neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.2 Activation Functions . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.3 Capacity of a Single Neuron . . . . . . . . . . . . . . . . . . . . . 18
3.1.4 Feed-forward Neural Network . . . . . . . . . . . . . . . . . . . . 20

3.2 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.1 Training a Neural Network as an Optimization Problem . . . . . 23
3.2.2 Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.3 Feed-forward neural networks for classification . . . . . . . . . . 25
3.2.4 Convolutional Neural Network . . . . . . . . . . . . . . . . . . . 27

4 Convolutional Neural Network for Environmental Sounds Recogni-
tion 32
4.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Our proposals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.1 Convolutional Neural Network Architecture . . . . . . . . . . . . 33
4.2.2 Data augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.3 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Experiments and Results 39
5.1 Datasets used and pre-processing . . . . . . . . . . . . . . . . . . . . . . 39

5.1.1 ESC-50 dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.2 UrbanSounds8K dataset . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.3 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1



5.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2.1 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2.2 Data augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2.3 Neural network implementation . . . . . . . . . . . . . . . . . . . 41
5.2.4 Technical details . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3.1 On the ESC-50 dataset . . . . . . . . . . . . . . . . . . . . . . . 41
5.3.2 On the UrbanSound8K dataset . . . . . . . . . . . . . . . . . . . 44

6 Conclusion 45

2



List of Figures

2.1 Example of a periodic signal . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Example of a spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Time domain vs Frequency domain . . . . . . . . . . . . . . . . . . . . . 8
2.4 Frequency-domain data limitions . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Example of a spectrogram . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6 Windowing example using Hamming window function . . . . . . . . . . 10

3.1 Computational model of a neuron . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Step activation function . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 AND gate neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Sigmoid activation function . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5 Hyperbolic tangent activation function . . . . . . . . . . . . . . . . . . . 17
3.6 Hyperbolic tangent activation function . . . . . . . . . . . . . . . . . . . 18
3.7 Linear separability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.8 Linear separability (examples) . . . . . . . . . . . . . . . . . . . . . . . . 19
3.9 XOR neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.10 Feed-forward neural network . . . . . . . . . . . . . . . . . . . . . . . . 21
3.11 Feed-forward neural network (matrix-based) . . . . . . . . . . . . . . . . 22
3.12 Gradient descent illustration . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.13 Full connectivity vs. local connectivity . . . . . . . . . . . . . . . . . . . 28
3.14 2-dimensional convolution . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.15 Convolutional layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.16 Max-pooling (single channel) . . . . . . . . . . . . . . . . . . . . . . . . 30
3.17 Max-pooling (multi-channel) . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 Proposed CNN architecture . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Data augmentation (visual illustration) . . . . . . . . . . . . . . . . . . 36
4.3 Transfer learning exmperiment . . . . . . . . . . . . . . . . . . . . . . . 38

5.1 Accuracy during training (ESC-50) . . . . . . . . . . . . . . . . . . . . . 42
5.2 Accuracy during training (ESC-50) with data augmentation . . . . . . . 42
5.3 Results summary on the ESC-50 dataset . . . . . . . . . . . . . . . . . . 43
5.4 Accuracy during training (UrbanSound8K) . . . . . . . . . . . . . . . . 44

3



Chapter 1

Introduction

Everyday, the average human receives a considerable amount of cues about their en-
vironment through sounds. While the information carried through speech sounds
serves the purpose of explicit human-to-human communication, the information carried
through environmental sounds serves the purpose of implicit environment-to-human
communication. Environmental sounds can carry various kinds of information: sounds
like a police siren approaching or a dog bark getting louder may carry information
about a potentially dangerous situation, a child’s cry in the next room may carry
valuable time-critical information about the child’s health or safety, rain and thunder
sounds carry weather-related information, . . . etc.

The problem of Environmental Sounds Recognition (ESR) is defined as the au-
tomatic identification of environmental sounds. Developing the future’s intelligent
machines involves emulating human perceptions such as vision and hearing, such ca-
pabilities are necessary for machines with direct contact with the real world. Compared
to other areas such as object recognition and speech recognition, environmental sounds
recognition is relatively under-developed and under-investigated [1].

Developing computer systems that can make sense of environmental sounds has the
potential to improve existing technologies as well as making way to newer ones. Time
will reveal potential applications that are yet to be imagined. Recent Android-powered
smartphones can perform speech recognition without using remote computational re-
sources, this shows how powerful mobile processing units are getting. Having the
possibility to embed such computational power on a small device convinces us to think
about the potential of developing intelligent hearing aids, that are able to make sense
of the environmental sounds surrounding the hearing-impaired user, and informing
them in the cleanest possible way. Audio surveillance systems may also make use of
environmental sounds recognition. Video surveillance systems fail to detect potentially
dangerous events that aren’t visible through the lenses of a camera, for e.g., a gunshot
in the neighbor’s house. Another potential application of ESR systems is urban noise
analytics. Noise pollution is negatively affecting our physical and mental health [2].
While current studies rely solely on noise levels measured in decibels, ESR will cause a
huge leap in the field of urban noise analytics. With ESR-capable urban noise analytics
systems, we will be able to answer questions like: what kinds of noise have the most
negative impact on students? and the keyword here is “kinds”.

Part of the reason why it is not currently straightforward to tackle such problem
is the relative lack of adequate data, again, compared to other kinds of data such
as speech and images. Compiling a dataset of environmental sounds is tougher than
compiling a dataset of speech or visual data. For speech data, we’d exploit the fact
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that there are millions of professionally transcribed audio records and videos, that
makes it relatively easy to get label speech data. Now consider this scenario to have
an idea on why collecting environmental sounds data is tougher than image data: do
a web search for pictures of dogs, then do a web search for audio clips of dog barks,
of course you will find more images than audio clips, given images are more relevant
on the web (Google, despite being the most widely used search engine, doesn’t even
offer a “sounds” category as it does with images), also, it will take a simple scrolling
through a folder of hundreds of images to check for pictures without dogs and to clean
up the data you collected, while it may require hours of listening to the dog barks you
collected in order to be able to spot unwanted data. Along with the relative lack of
adequate data, the dimensionality and variety of raw audio data make it even harder.

In the last decade, the field of machine learning has witnessed a paradigm shift
with problems involving large amounts of high-dimensional data thanks to the idea
of deep learning. Deep learning came to revolutionize the way we go about problems
such as speech recognition [3], image classification [4], and object recognition [5].

While this work is not the first deep learning approach to the problem, it aims to
tackle the problem using a deep learning model called the convolutional neural net-
work along with two other techniques in order to improve the performance. The first
technique, that was proposed to compensate for the lack of data, is named stochastic
continuous data augmentation. Also, we employed an existing machine learning tech-
nique called transfer learning that allows us to keep the knowledge learned from one
dataset, and use it with another one.
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Chapter 2

Audio Signal Processing Basics

This chapter is heavily inspired by the first chapter “Sounds and signals” from the book
“Think DSP: Digital Signal Processing in Python” by Allen B. Downey [6].

A signal represents a quantity that varies in time or space. It’s a function that
carries information about the behavior or the attributes of a particular phenomenon
[7]. E.g, an image signal represents variations of brightness in space. An audio signal
(or sound signal) represents variations of air pressure over time [6].

A digital signal is a sequence of discrete values that represents the variations of
a quantity over time. In contrast to analog signal, which is a continuous stream of
values. Let’s have a concrete look at these two in the case of audio signals:

– In the physical world, air pressure changes continuously, thus, carried by an
analog signal.

– A microphone converts the analog audio signal to an analog electrical signal,
representing a change in voltage instead of air pressure.

– A digital recording device measures and stores the values of the analog electrical
signal at a constant time rate. The result of this operation is a sequence of
discrete values that we call a digital audio signal.

2.1 Digital audio signals

A digital audio signal is defined by three elements:

1. A sequence of discrete values that represent the variations in voltage that
themselves represent the variations in air pressure carrying sounds. These values
are picked from the analog electrical signal at a constant amount of time. Also
note that these values can be stored as decimal or floating-point numbers. A
single value among them is called a sample.

2. A sample rate which is the number of measurement in a second . Sample rates
are expressed in Hertz where (1Hz = 1s−1). Having a sample rate of X Hertz
means:

– every second, the recording device measured and stored X samples from the
analog signal,
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– and every X samples from the sequence correspond to 1 second of sound.

3. A bit-depth which is the number of bits used to store each sample. More bits
means a higher number of possible values, thus a higher fidelity to the digitized
signal. Less bits means a lower number of possible values causing higher noise
levels.

This representation of audio signals is called the waveform representation.

2.2 Periodic signals

A periodic signal is a signal that repeat itself after a constant amount of time. See
Figure 2.1.

0 2 4 6 8 10
−1.0

−0.5

0.0

0.5

1.0

Figure 2.1: Example of a periodic signal

Notice that this periodic signal has the same shape as a trigonometric sine function.
We call this type of curves sinusoids. As you can see, the signal illustrated in Figure
2.1 is repeated 5 times, also known as cycles. The duration of each cycle, called the
period, and is equal to 2 time units in this example.

The frequency of a signal is the number of cycles per second . This number is
expressed in Hertz. If we consider the time unit in the example to be milliseconds
(ms = 10−3s), the signal would have a frequency of 500 Hertz (= 1

2×10−3s
).

The amplitude of a sinusoid periodic signal is a measure of its strength. The
stronger the signal, the higher the amplitude.

2.3 Spectral decomposition

Spectral decomposition is the idea that any signal can be expressed as the sum of
sinusoids periodic signals with different frequencies and different amplitudes.

2.3.1 Spectrum

The spectrum of a signal is the set of sinusoids (defined by their respective frequencies
and amplitudes) that add up to produce the signal. To compute the spectrum of a
particular signal, we use the Fast Fourier Transform (FFT). The way FFT works
is beyond the scope of this work. See Figure 2.2.

2.3.2 Time domain vs frequency domain

A time domain representation describes how a signal behaves over time. Whereas
a frequency domain representation describes the signal with respect to frequency
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Figure 2.2: We consider two sinusoid signals for a segment of 0.01 seconds: A (blue)
with a frequency of 500Hz and an amplitude of 1, and B (orange) with a frequency of
800Hz and an amplitude of 0.5. In the second subfigure, you can see the signal C as
the result of adding up A and B. Using the Fast Fourier Transform, we computed the
spectrum of the signal C. You can clearly see in the third subfigure that, according to
the computed spectrum, C is the result of adding up two sinusoids signal of frequencies
500Hz and 800Hz with the first one having twice the amplitude of the second one.

rather than time, it shows how much of the signal lies within each frequency. The
spectrum is a frequency domain representation.

Time
Domain

Frequency
Domain

C

B

A

Figure 2.3: Time domain vs Frequency domain. Signals from Figure 2.2 were used.

The obvious disadvantage of spectrums is that they obscure out the relationship
between frequency and time. For example, we cannot tell by looking at a spectrum
whether some frequencies were changing strength over time. We lose track of time!
See the example shown in Figure 2.4.
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Figure 2.4: The spectrum fails to show the relationship between frequencies and time.
It fails to show that one frequency (blue) kept getting stronger over time and the other
(orange) kept getting weaker over time.

2.3.3 Spectrogram

A spectrogram is a representation that shows the relationship between frequency
and time, in other words, it shows how frequencies behave over time. In order to make
a spectrogram for a given signal, we break the signal into a number of short equally-
sized segments, then we compute the spectrum for each segment. Mapping every time
segment to its corresponding spectrum gives a 2 dimensional representation of the orig-
inal signal, the 2 dimensions being: time and frequency. In Figure 2.5 we show how
the spectrogram representation solves the problem faced in the example illustrated in
Figure 2.4.

Windowing and overlapping

Discontinuities at the ends of the each segment can cause noise in the resulting spec-
trogram. In order to eliminate such noise, we can use a window function that gradually
tapers the signal at both ends of each segment, see Figure 2.6. When building spectro-
grams out of windowed segments, it is preferred to use overlap in order to compensate
for the tapered parts [8].
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Figure 2.5: Spectrogram of the signal C from Figure 2.4. This representation can show
us how frequencies, that makes our signal, behave over time. Notice the higher one (∼
1000Hz) getting stronger over time, whilst the lower one (∼ 200Hz) getting weaker.

Figure 2.6: Using the Hamming window function to gradually taper the signal at both
ends.
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2.4 Sound perception

For most tasks (such as editing, generating, mixing, . . . ), computers use the wave-
form representation of audio signals. On the other side, human brains get access to
information about the frequencies over time only.

2.4.1 Pitch

Pitch is a frequency-related perceptual property of sounds. The higher the frequency,
the higher the pitch. Since it’s not possible to include sounds on a paper format, few
familiar sounds can you help understand the concept of high and low pitch:

Remarkably low pitch Remarkably high pitch
Thunder Siren
Lion Baby cat
Boat horn Whistle

If you’re unfamiliar with this concept, we strongly recommend checking videos1

regarding this concept given it’s not possible to illustrate it on paper.

2.4.2 Mel scale

Experiments led on human subjects [9] revealed that: if a human hears 3 frequencies
(on the Hertz scale) with equal distances from one another in order one after the
other (say: 300hz, 500hz, then 800hz), he won’t perceive the distances in pitch as
equal. This means that evenly spaced frequencies along the Hertz scale aren’t evenly
spaced perceptually. The Mel scale is a perceptual scale of pitches where evenly spaced
frequencies within it are also evenly spaced perceptually. The following equation shows
the conversion between the frequency f in Hertz to m in mels:

m = 2595 · log10(1 +
f

700
)

2.4.3 Brain-inspired audio features

If we are willing to make computers that understand sounds the way humans do, a
first step may be representing sounds loosely based on how the brains perceives them:
changes of mel-scaled frequencies over time. As we’ve seen earlier, spectrograms ex-
press changes of frequencies (in Hertz) over time. The natural next step would be scal-
ing the frequencies in these spectrograms to the mel scale obtaining mel-spectrograms
(or mel-sclaed spectrograms) that will make the inputs to our learning model in this
work.

1Video “Sound Waves: High Pitch and Low Pitch” : youtu.be/yMLTF 0PAQw
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Chapter 3

Neural Networks and Deep
Learning

Before diving into neural networks and deep learning, we will pass quickly through the
definitions of some relevant concepts.

Artificial Intelligence

Artificial intelligence (AI) is a rapidly growing field of engineering and science that
targets the development of computer systems that are capable of automating routine
labor, understanding sounds, images or natural language, discovering valuable infor-
mation in raw data, . . . etc. The biggest challenge of modern AI is solving problems
that are easy for humans to perform but hard to describe formally - problems that
we solve intuitively, like recognizing sounds and images, and understanding natural
language [10].

Machine Learning

Machine Learning (ML) is a field of AI that studies the design of computer programs
that can solve problems by learning from data rather than being explicitly programmed
how to solve them step-by-step.

Classification

A type of problems where machine learning has been absolutely useful are classification
problems. Classification is identifying the class (or the category) of an observation (or
an object). Examples:

– Classifying an email as spam or not spam

– Classifying an image into one of several classes: car, house, human, dog, . . .

– Classifying an audio clip into one of the words: “okay”, “google”, “set”, “alarm”,

– etc . . .

The reason why we use machine learning for classification is that we can’t describe
formally the way we classify things, thus, we can’t come up with a programmable
solution for such problems. The type of machine learning used for classification is
supervised learning.
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Supervised learning consists of automatically building a decision model (it can be
a tree, a function, a set of rules, ...) that can classify observations (such emails) into
one of many classes (spam or not spam) using a labeled dataset. A labeled dataset is
a set of correctly classified examples. This decision model is called a classifier.

Mathematically, given a labeled datasetD = {(x1, y1), (x2, y2), . . . , (xn, yn)} where:
xi is an example, and yi is its correct class (label). Supervised learning is finding a
function h that approximates the function expressed by the data pairs in the dataset,
and that generalizes well to examples from outside the dataset.

In supervised learning and classification, generalization is the ability of a classifier
to perform at a good accuracy on examples outside the dataset.

Features

In classification, features are values that usefully characterize the things we wish to
classify. These values are usually aligned in a vector called the feature vector. Exam-
ples:

Things to classify Possible features
Faces Distance between the eyes, eyes width, eyebrows

width, eyebrows thickness, . . .
Birds Mass, wingspan, color, beak length, . . .

Images Histograms, edges, shapes, . . .

To extract features from raw data we use programs called feature extractor. A
feature extractor reduces raw data into a less complex form that may be easier for a
machine learning algorithm to learn from.

An RGB 32x32 image has 3072 values that represent it (3072 = 32 × 32 × 3, 3
for RGB values). These 3072 values are also called low-level features. Dealing with
such high dimensional data requires powerful hardware. For decades, machine learning
practitioners relied on hard-coded feature extractors to extract higher-level features.
However, the consequent dimensionality reduction of feature extraction process may
lead to the loss of some information that can eventually help our learning algorithms
perform better. The field of deep learning is based on the idea of learning feature
extraction instead of hard-coding it.

Machine learning model evaluation

To evaluate the performance of a machine learning model on a given dataset we rely
on some metrics such as accuracy, precision, recall, and others. Usually, the dataset is
split into two subsets:

– the training set: used to train our model

– the test set: used to evaluate the performance of our model on examples that
are not part of the training set

A validation set can be used to track the performance of the model during the
learning process. Test and validation sets aren’t meant to be as big as the training set.

However, there are two problems with splitting the dataset into two subsets:

– Sometimes we don’t even have enough data, thus, selecting only a random subset
of the available data may be counter-productive.
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– What if the test data is biased? Therefore, the estimated performance can’t be
as reliable.

To deal with such kinds of problem, there is an evaluation strategy called k-fold
cross validation. It works as follows:

– Pick an integer k, usually between 5 and 10.

– Split the dataset D into k equally-sized subsets. These subsets should be repre-
sentative of the whole dataset, it means they contain samples from all classes.

– For each subset Di, train the model (from scratch) on the other k − 1 subsets,
and evaluate it on Di.

The average performance estimated over the k training is more reliable given we
used all the data we have for both training and testing in the k setups.

Overfitting and generalization

Generalization describes the quality of a learning model that’s capable of performing
well enough on unseen data after training.

Overfitting is a term used to describe a machine learning model that successfully
perform on the training set that was used for learning, but fails to perform on new
examples (validation or test set). In such case, the learning model learned to memorize
the training set and failed to generalize on unseen data. Usually this is caused by one
of the following factors:

– There isn’t much training data to generalize from.

– The model has too many parameters to learn, this leads to the model memorizing
the training set rather than learning a generalized solution to the problem.

3.1 Artificial Neural Networks

Artificial neural networks (ANNs, neural networks or neural nets) are computational
models that were initially inspired by the way our brains process information. The
average human has about 100 billion neurons, each of these neurons is connected to a
bunch of other neurons. A single neuron may receive an electrical signal from other
neurons as an input, the strength of the signal coming from a particular neuron de-
pends on how strong is the connection with that neuron, and depending on that signal,
the neuron may fire or not. In this section we will explore the basics of artificial neural
networks models and how they apply to machine learning.

3.1.1 Artificial Neuron

Let’s jump now into the computational model of a neuron. We can see the artificial
neuron as a function f that:

1. takes as inputs a set of values x1, x2, . . . xn,

2. each input value xi is multiplied by a weight wi that reflects how strong that
connection is, giving us a weighted input wi × xi

14
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Figure 3.1: Computational model of a neuron

3. the weighted inputs now run through a sum
∑

iwi × xi

4. then we get to decide whether the cumulative influence of inputs is sufficient to
make the neuron fire (output = 1) or not (output = 0). We use a threshold value
t for this, if the weighted sum of inputs is greater than t, the neuron should fire,
otherwise it doesn’t. This last step is called the activation.

We end up having this function that’s parameterized by a vector of weights W =
[w1, w2, . . . , wn] ∈ Rn, a threshold t ∈ R and takes as inputs a vector x = [x1, x2, . . . , xn]:

fW,t(x) = a(
n∑

i=1

wi × xi − t)

a(x) =

{
1 if x > 0

0 otherwise
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Figure 3.2: Step activation function

The function a is called the activation function, and in this basic case the activa-
tion function is a step function (see figure 3.2). Other models use other functions as
activation functions.

The sum of the weighted inputs can be computed as a dot product of the vector x
and W .

n∑
i=1

wi × xi − t = W · x− t
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To follow the conventions, we replace the term −t with +b (b ∈ R) and we will call
it the neuron’s bias (please note that b can be negative and act the same as a threshold
−t). We end up having the following equation that represents the pre-activation of a
neuron:

n∑
i=1

wi × xi + b = W · x+ b

Thus, a neuron with an activation function a can be seen as a function f parame-
terized by a vector of weights W = [w1, w2, . . . , wn] ∈ Rn and a bias b ∈ R that takes
as inputs a vector x = [x1, x2, . . . , xn] ∈ Rn:

fW,b(x) = a(W · x+ b)

Example: an AND gate neuron

Let’s walk through a quick example of an artificial neuron implementing a logical AND
gate. An AND gate takes 2 inputs in {0, 1} and outputs 1 if, and only if, both inputs
are 1.

Activation

∑
0.6x1

0.6x2

−11

inputs weights

Figure 3.3: A neuron implementing a logical AND gate

So we have an artificial neuron with a threshold t = 1, and weights w1 = w2 = 0.6.
Let’s see how it computes the output for the inputs (1, 0), (0, 0), (0, 1), and (1, 1):

– f(1, 0) = a((0.6× 1 + 0.6× 0) + (−1)) = a(−0.4) = 0

– f(0, 0) = a((0.6× 0 + 0.6× 0) + (−1)) = a(−1.2) = 0

– f(0, 1) = a((0.6× 0 + 0.6× 1) + (−1)) = a(−0.4) = 0

– f(1, 1) = a((0.6× 1 + 0.6× 1) + (−1)) = a(0.2) = 1

Note: a(x) =

{
1 if x > 0

0 otherwise

3.1.2 Activation Functions

An activation function a is a function that takes as inputs the pre-activation of a
neurone and decides how the neuron should fire.
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Several activations functions were proposed as alternatives to the step function
already seen in the basic artificial neuron. As you will notice, that unlike the step
function, proposed alternatives are differentiable functions. We will see in a while we
tend to use differentiable functions as activation functions.

Notation: z is the pre-activation.

Sigmoid activation function

σ(z) =
1

1 + e−z
(3.1)
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Figure 3.4: Sigmoid activation function

The first successful alternative to the step function and it was around for decades.
The sigmoid function σ squashes the neuron’s pre-activation between 0 and 1. It
outputs a number closer to 1 when its inputs is so large, and a number closer to 0
when the input is so small (negative). See figure 3.4.

The sigmoid function has an interesting derivative, given as:

σ′(x) = σ(x)(1− σ(x)) (3.2)

Hyperbolic tangent activation function

tanh(z) =
ez − e−z

ez + e−z
(3.3)
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Figure 3.5: Hyperbolic tangent activation function

Another successful alternative is the hyperbolic tangent (tanh) function. It is very
similar to sigmoid as it also performs a squashing to the pre-activation between -1 and
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1. Notice that the inactivity of a neuron is represented by a -1 rather than 0 when
using this function.

Rectified linear activation function

ReLU(z) = max(z, 0) (3.4)

ReLU ′(x) =

{
1 x > 0

0 otherwise
(3.5)
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Figure 3.6: Hyperbolic tangent activation function

Also called ReLU (Rectified Linear Unit), the ReLU activation function is regarded
by experts as the most popular activation function for deep learning [11]. It has strong
biological motivations and mathematical justifications [12]. As well as some interesting
properties:

– Computational cost: computing max(z, 0) is certainly less power-intensive than
its counterparts. The derivative is also easy to compute (see equation 3.5).

– Sparsity: suppose we have a large matrix of neurons, wouldn’t be good if the
inactive neuron have exactly 0 valued outputs so we have a sparse matrix? Of
course it would be good, since operations on large sparse matrices are more
efficient. Compared to the previous differentiable activations functions, ReLU is
the only one that offers sparsity.

3.1.3 Capacity of a Single Neuron

An artificial neuron with the sigmoid σ activation function can be trained (by finding
the right weights W and bias b) to perform binary classification. The output of the
sigmoid function in [0, 1] can be interpreted as estimating the probability of class
y = 1 given a feature vector x, noted P (y = 1|x). This classifier is also known under
the name “logistic regression classifier” [10]. Note that the same can be applied to
other activation functions with a slight change on how we interpret the output of the
activation function.

Unfortunately, this simple classifier can only perform linear classification since it
only uses a linear combination of its inputs. Linear classification is possible when the
data can be separated by a hyperplan, or a line in the case of 2-dimensional data. See
figure 3.7.

18



−1 0 1 2
−1

0

1

2

x1

x
2

Decision boundary
y=1
y=0

−1 0 1 2
−1

0

1

2

x1

x
2

Decision boundary
y=1
y=0

Figure 3.7: Logical OR data: linearly separable (left), Logical XOR data: non linearly
separable (right)

Using multiple neurons to implement the logical XOR gate

As you can see in figure 3.7, we can’t implement a logical XOR gate, which can be seen
as a non linear classification problem, using a single neuron. But what if we change
the representation of the the inputs using other neurons? Consider this:
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Figure 3.8: Linear separability of h1 and h2

– Instead of dealing with inputs (x1, x2) as they are we transform them into another
representation (h1, h2) such that:

– h1 = 1 if (x1, x2) = (1, 0), and equals 0 otherwise (linearly separable, see
figure 3.8).

– h2 = 1 if (x1, x2) = (0, 1), and equals 0 otherwise (linearly separable, see
figure 3.8).

both h1 and h2 are modeled using a single neuron each.
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Figure 3.9: Neural network implementing logical XOR gate using an intermediate
representation (h1, h2) of its inputs (x1, x2) to deal with non linear separability

– XOR(x1, x2) = 1 if one of h1 or h2 equals to 1 (of course they can’t be both
equal to 1 by definition), in other words we end up having

XOR(x1, x2) = OR(h1, h2)

and we’ve already seen in figure 3.7 that a logical OR gate satisfies linear sepa-
rability, thus, it can be modeled using a neuron.

We end up having what we call a multi-layer neural network (See figure 3.9):

– The first layer consists of two neurons h1 and h2, and it performs representation
transformation of the inputs.

– The second and final layer consists of just one neuron o (for output) that takes
as inputs the outputs of h1 and h2, and it performs a linear classification on the
new representation of the input

And this setup (when given the right parameters W and b for each neuron) is able
to perform non linear classification.

3.1.4 Feed-forward Neural Network

Other names: Multi-layer Perceptron (MLP), Vanilla Neural Network

A feed-forward neural network (FFNN) is a multi-layer neural network that takes
a vector of real values x and computes a forward computation through its layers [10].
It consists of:

– hidden layers (at least 1), usually used to perform representation transformation,

– a single output layer, that represents the output of the network, usually used to
perform classification on the representation given by the last hidden layer.
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Figure 3.10: A simplified graphical visualization of the feed-forward neural network
model. This FFNN takes 4 inputs, has 2 hidden layers h(1) and h(2) of sizes 3 and
4 respectively, and has an output layer of size 2. Biases were omitted only from this
visualization. We can see how each two adjacent layers are fully connected to each
other

A layer is a set of neurons that have the same activation function, the same number
of inputs (thus, the same number of weights), but may have different values for their
parameters (weights and bias).

– The first hidden layer, noted h(1),is the input layer, it takes as inputs the inputs

of the network x: each neuron, noted h
(1)
k , of this layer takes as input all the

inputs of the network x.

– Each hidden layer h(i) is fully connected to the next layer h(i+1):

– the output (activation) of a neuron in the hidden layer h(i) is fed to all the
neurons of the next layer h(i+1)

– the inputs of a neuron in a hidden layer h(i>1)(except the first) are the
outputs of the neurons in the previous layer h(i−1).

– the inputs of a neuron in the output layer are the outputs of the final hidden
layer, noted h(L).

Finally, the output of the network is the output of the final layer of neurons. It
can be seen as a vector y = [o1, o2, . . . , om], with m being the size of the output layer.
Note that each layer can have a number of neurons (or a size) that doesn’t necessarily
match the number of neurons in other layers.

Matrix-based approach to compute the output of a FFNN

The output of a single neuron u given an input vector x, a weight vector W , a bias b,
and an activation function a can be computed this way:

u(x) = a(W · x+ b)
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Now let’s consider the output vector of a layer h of m neurons where:

– x is the input vector of this layer h

– hi is the i-th neuron of this layer h

– Wi is the weight vector of the neuron hi

– bi is the bias of the neuron hi

– a is the activation function of this layer h and thus for each neuron in this layer

h(x) = [h1(x), h2(x), . . . , hm(x)]

= [a(W1 · x+ b1), a(W2 · x+ b2), . . . , a(Wm · x+ bm)]

= a([W1 · x+ b1,W2 · x+ b2, . . . ,Wm · x+ bm])

We consider a to apply an element-wise activation to the element of its input vector:

a([x, y]) = [a(x), a(y)]

It turned out that this vector can be computed using a matrix-vector multiplication:

h(x) = a(Wh · x+ bh)

Where:

– x is the input vector of the layer h

– Wh is an m× dim(x) matrix that represents the weights of this layer such that:

– the i-th row represents the weights of the i-th neuron,

– thus, Whij
represents the j-th weight of the i-th neuron.

– bh is a vector of size m that represents the biases of this layer’s neurons

– a applies an element-wise activation to the elements of the resulting m-sized
vector.

Now we can consider a layer h of size m in the neural network a function, param-
eterized by a matrix of weights Wh and a vector of bh, that takes in a vector of inputs
and outputs a vector of size m which is the result of the activation of its neurons.

W,b1    1 W,b2    2 W,b3    3x1 h(1) h(2) o

Figure 3.11: An even simpler way of looking at the neural network from Figure 3.10
after considering that each layer is a function that takes as input the output vector
of the previous layer, applies a matrix-vector multiplication with weights, adds up the
bias, and finally applies the activation function to the result yielding its output vector.
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FFNN as a universal function approximator

A feed-forward neural network of L hidden layers is a composed function f that takes
in a vector of inputs x, and returns a vector of outputs y:

y = fθ(x) = o(h(L)(h(L−1)(. . . (h(1)(x)) . . .)))

Where:

– θ = {Wh1 ,Wh2 , . . . ,Wo} ∪ {bh1 , bh2 , . . . , bo} the set of network parameters.

– o the output layer function, uses an activation function ao

– hi the i-th layer function, uses an activation function ai.

It is proven that multi-layer feed-forward neural networks can approximate any
function when given the right parameters θ.

3.2 Deep Learning

In the previous section, we discovered the power of the feed-forward neural network
model: its multi-layer architecture allows it to perform several representation transfor-
mation of its input data, and the fact that, given the right architecture and parameters,
it is theoretically capable of approximating any function. The question is: since we
have large amounts of data, can we do machine learning and train these computa-
tional models to approximate complex functions such as classification? And that’s the
question deep learning answer: training deep neural network architectures to perform
complex tasks such as recognizing faces, colorizing black and white images, classifying
sounds, ...

Deep learning is a branche of machine learning that studies neural network archi-
tectures and learning algorithms. It is called deep because multi-layer neural networks
(deep, more layers ⇒ deeper) are able to learn more adequate representations of their
input data in order to improve their performance, as opposed to other machine learn-
ing models that either operate on the input data directly or use hand-crafted feature
extractor.

The word “deep” comes from the use of multi-layer neural networks. Each layer
learns to transform its inputs to a representation that improves the performance of
the next layer. As an emerging result, the first layers of a neural network tend to
learn feature extraction, as opposed to traditional machine learning models that rely
on hand-crafted feature extractors. There are empirical evidences that deep learning
models outperform traditional machine learning ones in tasks involving complex or
high-dimensional data such as images and sounds [13][14][15].

3.2.1 Training a Neural Network as an Optimization Problem

There exist several neural network models used in deep learning. Understanding the
training process for these models comes down to understanding the training process
for the most basic one of them, the feed-forward model. Also note that this applies to
supervised learning, but later applications of neural networks to unsupervised learning
problems use the same approach [16][17].

As we’ve seen before, a feed-forward neural network is a function f parameterized
by the θ (the set of all weights and biases). The goal of training a neural network
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is to find the right parameters θ for the function fθ to approximate a function g.
The function g is defined by a dataset D = {(x1, y1), . . . , (xn, yn)} that represents the
mapping this function applies to some inputs y = g(x). In classification for example,
g maps an input x to its category y.

Finding the right parameters θ for fθ to approximate g can be done by minimizing
the difference between fθ and g. We can use a function that somehow reflects the
difference between fθ and g, and it will be our cost function, noted C. We end up
having this minimization problem of C over θ:

argmin
θ

C(θ) =
1

n

n∑
i=1

C(i)(θ)

Where:

– θ = {W1,W2, . . . ,Wn} ∪ {b1, b2, . . . , bn} : parameters of the neural network.

– n : size of our dataset.

– C(i)(θ) : the cost value for a given data point (x(i), y(i)). This value should be
equal to 0 when f(x(i)) = y(i), and should get bigger as f(x(i)) gets further from
y(i) = g(x(i)).

3.2.2 Gradient Descent

To minimize the cost function C we will use an algorithm called gradient descent.
Gradient descent is an iterative optimization algorithm that finds a local minimum of
a differentiable function. This algorithms uses the information that the gradient gives
us about the function at a given input: the direction of the steepest increase, but since
we are looking to decrease the function’s output, we follow the negative gradient at
each step. See figure 3.12 for an intuition behind how the gradient descent work.

Here’s how gradient descent works in our case:

– Randomly initializing the set of parameters

θ = {W1,W2, . . . ,Wn} ∪ {b1, b2, . . . , bn}

– Computing the gradient of the cost function ∇C with respect to every element
in θ (remember θ consists of the weight matrices and bias vectors of the neural
network) by:

averaging over the gradient of the cost function ∇C(i) for every datapoint
(xi, yi) in our dataset D.

Note: to compute the gradient of the cost function ∇C(i) with respect to
every element in θ we use an algorithm called back-propagation.

– Updating parameters by taking a step proportional to the negative gradient of
the cost function −η∇C

η is called the learning rate, by increasing it we take bigger steps towards to
local minimum, but we may miss the local minimum by taking huge steps.

– Repeating until a chosen stopping criteria is satisfied.
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Figure 3.12: An intuitive example of gradient descent for minimizing a differentiable
function with just one real input w. Gradient descent starts from a random input,
computes the gradient at that input (in this case, we compute the derivative), we take
a step in the input space proportional to the negative gradient: as you you can see
for w = 5 the gradient is negative (the function is decreasing), thus taking a step
proportional to the negative gradient will take us rightward on the input line and
downward on the function landscape, for w = 6 we have a positive derivative, thus
we take a negative step leftward on the input line and downward on the function
landscape. This idea is generalized for multi-variable functions.

In batch gradient descent, we pass over the whole dataset to compute the gradient
in order to take a step towards the local minimum of our cost function. Passing over
the entire dataset can be time-consuming, and for large datasets, we can’t even load
the entire dataset all at once on the memory. Other variants of gradient descent were
proposed to deal with this problem:

– Stochastic gradient descent: instead of passing over the whole dataset to compute
the gradient, we pick a random example from the dataset to compute a stochastic
approximation of the true gradient.

– Mini-batch gradient descent: we pass over a random mini-batch of data to com-
pute a stochastic approximation of the true gradient. Mini-batch gradient descent
can make use of highly optimized matrix operations libraries that can compute
the gradient for mini-batches of data efficiently. Mini-batch gradient descent is
sometimes called stochastic gradient descent.

3.2.3 Feed-forward neural networks for classification

Classification is probably the most popular problem that has been successfully tackled
using machine learning, and later on deep learning. Of course, we can train feed-
forward neural networks for classification.

A classification problem consists in finding a mapping from an input data x to its
class y, where y is a distinct category. There are 2 usual scenarios to this problem:

Binary classification

Where y can only be 1 of 2 possibilities. For example, if x is an image and y can either
be 1 = CAR or 0 = NOT-A-CAR. Since feed-forward neural networks take real vectors as
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inputs, we can reshape the image matrix x to a 1-dimensional vector in order to be
used as inputs to the neural network. y in this case is a single value 1 or 0, our network
then should have a single neuron in its output layer that uses the sigmoid function σ
which outputs a value between 0 and 1. We interpret the output of the network as the
probability of the input x being a CAR.

Multi-class classification

Where y can a value among a finite set of k > 2 possible values. For example, if x is a
audio spectrogram and y can be one among {RAIN, WIND, RIVER}. Since feed-forward
neural networks take real vectors as inputs, we can reshape the spectrogram matrix x
to a 1-dimensional vector in order to be used as inputs to the neural network. y in this
case should be represented by a vector that encodes the category. The most popular,
and useful, encoding is the One-Hot encoding: if we have k possible categories, we
associate to each category ci a vector of size k that contains 1 in its i-th component
and 0 everywhere else. For example:

RAIN = 1 7−→

10
0


WIND = 2 7−→

01
0


RIVER = 3 7−→

00
1


Thus, the output layer will contain three sigmoid neurons. We interpret the output

of the network as the respective probability for each class, we then take the one with
the highest probability. For example:0.80.6

0.1

 7−→ 1 = RAIN

Although this worked for years, a popular alternative came to replace it. First,
notice that the sum of the output values can exceed 1, but for mutually exclusive
classes that doesn’t make sense as the sum of their probabilities should be equal to
1. For this matter, another activation function should be used instead to take into
account such information. It is called the softmax activation function [18], and it is
only used for the output layer. For k output neurons o1, o2, . . . , ok:

oi =
epi∑k
j=1 e

pj

Where pi is the pre-activation (defined in 3.1.1) of the i-th output neuron. Notice
the use of exponentials instead of summing over pre-activations as they are, that’s
because pre-activations can be negative. Therefore, softmax activation function guar-
antees that the sum is equal to one, and it delivers extra information to our neural
network.
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3.2.4 Convolutional Neural Network

Also called: ConvNet, CNN

The convolutional neural network [19] is a deep learning model that revolution-
ized the field of computer vision [3]. After getting much attention from the research
community, CNN was applied to other problems such as natural language processing
[20, 21]. The neural connectivity patterns in CNNs is biologically inspired from the
animal visual cortex [22].

Multi-Dimensional layers

As opposed to the feed forward neural network, which operates only on vectors as
input data, the convolutional neural network may operate on 2-dimensional input
data (matrices) such as grayscale images or audio spectrograms. For other kinds of
data, like RGB images, that have multiple channels, we can consider either having
3-dimensional input or multiple channels of 2-dimensional input.

Local connectivity

In the traditional feed forward neural network, every neuron is fully connected to the
previous layer. In other words, every neuron in the layer L receives inputs from all the
neurons in the previous layer L−1. In CNNs, we meet the concept of local connectivity,
where a neuron receives inputs from a sub-region of neurons from the previous layers.
This may also applies to neurons in the first hidden layer, thus, each neuron takes as
input a sub-region of the input data. See Figure 3.13.

If a locally connected neuron receives multi-channeled inputs (such as an RGB
image, with 3 channels), it will be connected to all the channels of the subregion. So
if we take the subregion size as r × r and the input data has c channels, the neuron
will therefore take inputs of size r × r × c. Taking inputs of size r × r × c implies
having r × r × c weights. The output of such neuron is computed the same way as
the traditional neuron: dot product between the weights and the inputs, adding the
results to a bias parameter b, passing the result through an activation function.

Convolutional layer

Now let’s talk about the convolution operation. A locally connected neuron gets input
from a sub-region of the input tensor1. For the sake of clarity, we will use the term
input matrix, even though it may be multi-channeled. The convolution operation
consists in computing the activation of a single locally connected neuron for all the
sub-regions that makes out the input matrix (sub-regions are usually overlapped). We,
therefore, obtain a matrix of activation with each one corresponding to a sub-region in
the input matrix. Remember: we slide the same neuron over all sub-regions to get
this matrix. See Figure 3.14.

During a successful training process, a single locally connected neuron learns to
detect a certain feature (intuitive example: horizontal dark edge, diagonal bright edge,
...). Convolving such kind of neuron over the input matrix gives as output a matrix

1In mathematics, a vector is an ordered 1-dimensional set of numbers, a matrix is 2-dimensional, a
tensor is the generalization of these structured set of numbers to higher dimensions.
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(a) fully connected neuron (b) locally connected neuron

Figure 3.13: Full connectivity vs. local connectivity of a neuron over 2-dimensional
inputs

Figure 3.14: 2-dimensional convolution

that indicates the presence and the absence of the feature in the different sub-regions
on the input matrix, this matrix is called the feature map.

A convolutional layer, which is one of the main building blocks of a CNN, consists of
multiple neurons, where each one of these neurons convolves over the inputs yielding
a feature map. The final output of a convolutional layer is multi-channeled matrix
where each channel represents a feature map.

More formally, a convolutional layer is a function convW,b(x) parameterized by
weights W and biases b:

– x is the input tensor, of size N ×M if the the inputs aren’t multi-channeled, of
size N ×M × c with c being the number of channels.

– r × r′ is the sub-regions size (r × r′ × c in the case multiple channels)

– The number of neurons n, which is also the number of output channels (feature
maps).
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– Weight parameters tensor W is of size n× r × r′ × c.

– Bias parameters vector b of size n.

– Usually, we keep sliding the regions one step at a time, resulting in highly over-
lapped sub-regions. In such case, the output tensor of this function (or the the
multi-channeled matrix) is of size (N − r + 1)× (M − r′ + 1)× n

N

M

c

r

r’

N-r+1

M-r’+1

n

Input tensor

(multi-channeled matrix)

Convolutional layer output tensor

(multi-channeled matrix)

Convolution operation

parameterized by W, b

Figure 3.15: Convolutional layer

Convolutional layers are capable of learning feature detection, and it was em-
pirically proven to be more successful than classical hand-crafted feature extraction
[4][10][11]. The features detected at a given convolutional layer are of higher ab-
straction than these present at its input layer. For e.g, if we have pixel as inputs, a
convolutional layer may learn how to detect edges, or if we have edges as inputs, a
convolutional layer may learn how to detect objects or shapes.

Pooling layer

Pooling consists in aggregating values of non-overlapping subregions resulting in re-
ducing the size of the representation (and consequently the number of parameters in
the following layers). Pooling is applied to a multi-channeled matrix, like the ones
convolutional layers take as inputs and give as outputs.

The most used aggregation function for pooling is the maximum function, and we
call this max-pooling.

Given a multi-channeled matrix of size N ×M × c as input, r × r max-pooling is
computed as the following:

– For each channel:

· Compute the max value for each r × r sub-region (no overlap)

· The result would be a matrix of size N
r ×

M
r

· See Figure 3.16
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– The final result is a multi-channeled matrix of size N
r ×

M
r × c. See figure 3.17.

0 0

0 0

9 1

0 0

1 1

4 0

12 5

4 5

0 9

12 4

2×2 Max-pooling

Figure 3.16: 2× 2 Max-pooling on a single channel
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Figure 3.17: 2× 2 Max-pooling on a multi-channeled input

Architecture of a CNN

Let’s recap what we know so far about the new kinds of layer we saw:

– Convolutional layer:

· Capable of learning features detection.

· Uses the rectified linear function (ReLU) as activation function.

· Outputs a multi-channeled output, where each channel represents a feature
map that indicates the presence and the absence of a certain feature spatially.

– Pooling layer:

· Reduces the size of its multi-channeled input.
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· Introduces invariance to local translation. In other words, if a feature is
slightly translated to a neighboring position, this slight change won’t matter in
the next layers.

A typical CNN architecture is better explained using the following regular expres-
sion:

Input⇒ (Conv⇒MaxPooling)+⇒ FC+⇒ Output

Where:

– Input represents the input to our network, usually a matrix (or a multi-channeled
matrix).

– Conv represents a convolutional layer.

– MaxPooling represents a pooling operation.

– (Conv ⇒ MaxPooling)+ means a sequence of convolutional layers with each
one being followed by a pooling operation.

– FC stands for “fully connected”, represents a fully connected layer of neurons.
The + sign again means a sequence of fully connected layers. Generally, it’s just
one fully connected layer that learns classification over the highest level features
learned by the previous convolutional layers.

Why CNN?

For the problem we are tackling, environmental sounds recognition, we decided to use a
convolutional neural network model because of its robust feature learning and its recent
success in classification tasks [3, 20, 21, 22]. Please note that convolutional neural
network was picked instead of a temporal model (like RNN, LSTM) due to the fact
that we are mainly focusing on correctly classifying audio segments, while temporal
models would be potentially a better option if we were to tackle a sound event detection
problem (temporally localizing, predicting, and recognizing sound events).
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Chapter 4

Convolutional Neural Network
for Environmental Sounds
Recognition

4.1 Related work

Early environmental sounds recognition research focused primarily on engineering fea-
tures [1]. Most pattern recognition fields went through the same paradigm before deep
learning took over. Researchers and engineers had to come up with signal processing
algorithms to extract features from audio signals . Popular hand-crafted features, some
of them being borrowed from the more mature field of speech recognition, include:

– Zero-Crossing Rate (ZCR)

– Mel-Frequency Cepstral Coefficients (MFCC)

– Discrete Wavelet Transform (DWT)

– Continuous Wavelet Transform (CWT)

These hand-crafted features serve therefore as inputs to machine learning models
such as:

– k-Nearest Neihbors (kNN) + Dynamic Time Warping (DWT)

– Support Vector Machines (SVM)

– Hidden Markov Models (HMM)

– Gaussian Mixture Models (CWT)

– Artificial Neural Networks (ANN)

Sigtia et al. [23] suggest that there is a trade-off between performance and cost in
solving environmental sounds recognition. In other words, classification models that
requires more computational resources tend to achieve higher accuracies. This raises
concerns over the embeddability of accurate classifications models in small devices for
time/energy-critical applications.

As the interest is growing in this relatively new field, datasets started to show
up for benchmarking and experimentation purposes [24][25]. Also, it is worth noting
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that the field is gaining giant corporates interest after Google Inc. released a dataset,
called Audio Set, of over 600 category of indoor and outdoor sounds containing over 2
millions labeled example [26].

In recent years, people started taking the deep learning approach to tackle this
problem. While some of the early deep learning approaches to the problem didn’t
go as far as getting rid of the hand-crafted feature extraction mechanisms [23][27][28]
(which is what deep learning is all about), there has been other pieces of work that
explored the possibility of feeding audio spectrograms as inputs to the neural network
[29][30], and some others went even further by proposing neural network architectures
that operate directly on the raw wave-form of audio signals [31][32].

4.2 Our proposals

In this work we propose two techniques to improve the performance of the convolutional
neural network for environmental sounds classification. The first is a new method
we propose to compensate for the lack of training data called stochastic continuous
data augmentation, and the second is the use of transfer learning [33] to transfer the
knowledge learned from a dataset to use it with another one.

4.2.1 Convolutional Neural Network Architecture

To tackle this classification problem, we propose a deep neural network model, pre-
cisely, a convolutional neural network. The architecture of this model is better ex-
plained through Figure 4.1:

– (a) represents the inputs to the network, for each 2 seconds audio signal we have,
we take the mel-spectrogram of this audio signal (window size = 128ms = 2048
sample, overlap of 3 quarters). This is a mono-channeled matrix of size 59×128.

– (b) is a convolutional layer of region size = 4× 4 and it learns to extract 32 low
level features. It outputs a multi-channeled matrix of size 56× 125× 32.

– (c) is a 2D-MaxPooling layer that down-samples the output of the previous con-
volutional layer by 3×2. It outputs a multi-channeled matrix of size 18×62×32.

– (d) and (e) are another convolutional layer followed by a 2D-MaxPooling layer.
The former learns to extract 48 higher level features. They share the same
regions size with (b) and (c). The output of (e) is a multi-channeled matrix of
size 5× 28× 48.

– (f) is a convolutional layer that operates over considerably high level features to
learn the extraction of even higher level features to be used for classification. It
uses a region size = 2×2. It outputs a multi-channeled matrix of size 4×28×64.
This matrix is later flattened to a vector of size 7168 to be used with standard
fully connected layers.

– (g) and (h) are fully connected layers. (g) learns a compressed representation of
the 7168 features delivered by the last convolutional layer, while (h) learns clas-
sification and it uses a softmax activation function. For the ESC-50 dataset, (h)
outputs the 50 respective probability for each class, and for the UrbanSounds8K
data, the 10 respective probability for each class.
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Figure 4.1: Convolutional neural network (CNN) architecture for environmental sounds
classification

The model has about 700,000 learnable parameters.

As we mentioned earlier in this report, training a neural network is an optimization
problem: we find the parameters (weights and biases) that minimize a certain cost
function C.

Cost function

The cost function used in this work is the cross-entropy function and is defined as
follows:

argmin
θ

C(θ) =
1

n

n∑
i=1

C(i)(θ)

C(i)(θ) = −
∑
j

[y
(i)
j log(N(x(i))j)) + (1− y

(i)
j ) log(1−N(x(i))j)]

Where:

– n is the number of examples to compute the cost function over.

– θ is the set of all parameters.

– C(i)(θ) : the cost value for a given example (x(i), y(i)).
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– N(x(i)) is the output of the neural network for the input example x(i).

– j subscript expresses the j-th element of a vector.

This cost function is used when training neural network for to perform classification.

Gradient descent algorithm

The optimization algorithm used to minimize the cross-entropy cost function is a vari-
ant of the stochastic gradient descent algorithm called Adam[34]. While the details
of how Adam algorithms work are beyond the scope of this work, but it’s worth noting
that when compared to traditional stochastic gradient descent, Adam uses an adap-
tive learning rate (noted η in 3.2.2) for each trainable parameter. Adam is empirically
proven to perform better than other variants of stochastic gradient descent[34].

Drop-out regularization

Drop-out is a regularization technique used with neural networks to fight overfitting
[35]. During training, drop-out consists in shutting off a random proportion of the
neurons. For example, in this work, we applied a drop-out with a probability of 0.5
(in the last 2 layers of the neural network), in other words, at each training iteration,
we shut off half of the neurons (by setting their activation to 0).

Randomly shutting off half of the neurons at each training iteration helps preventing
the neural network from memorizing the training data (and thus, overfit to the data),
and forces the network to learn more general ways to deal with the data. It can be
also seen as training simultaneously a set of smaller neural networks.

4.2.2 Data augmentation

To improve the performance of the convolutional neural network, we propose a method
called stochastic continuous data augmentation, but before diving into that, we first
must take a look at what data augmentation is.

Data augmentation is the task of increasing the size of a dataset without actually
collecting new data but instead by introducing slight modification to the data we
already have. Data augmentation has been shown to improve the performance of
learning models. The concept of data augmentation is better explained visually, see
Figure 4.3.

The two kinds of modification to be used on audio signals in this work are time-
stretch and pitch shift.

Time-stretch

Time-stretching an audio signal is slowing down or speeding up the audio signal while
keeping pitch unchanged. Time-stretching an audio signal of t seconds by a factor f
results in:

– the same audio signal if t = 1,

– a slower version of the audio signal if t > 1 of length f × t seconds,

– a faster version of the audio signal if t < 1 of length f × t seconds.
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(a) original picture (b) horizontal flip applied

(c) clock-wise rotation applied (d) zoom-in applied

Figure 4.2: slight modifications (respectively: horizontal flip, rotation, and zoom)
helped us synthesize new pictures based on the original one. Applying the modifications
shown in this example for every image in a dataset would result in quadrupling the
size of the dataset. Given they don’t change the nature of the picture, in this case a
dog, they can only help the learning algorithm generalize better.

Pitch-shift

Pitch-shifting an audio signal is increasing or decreasing the pitch while keeping the
time unchanged. An intuitive example would be: if we have a 1 second audio signal
that contains only the musical note A4 (fr: La4, frequency: 440Hz) played on a piano,
pitch-shifting it by +2 semitones would result in a 1 second audio signal that contains
the musical note B4 (fr: Si4, frequency: 493Hz), pitch-shifting it by −2 semitones
would result in a 1 second audio signal that contains the musical note G4 (fr: Sol4,
frequency: 392Hz), without affecting the duration of the note.

Note: although time and frequency (thus, pitch too) are directly related to each
other, both time-stretching and pitch-shifting effects use specialized algorithms so they
only affect time or pitch respectively.

Stochastic continuous data augmentation

In this work, we propose a data augmentation strategy where we continuously modify,
using random parameters, examples from the dataset. Given that training a neural
network is an iterative process, instead of reusing the same dataset for all iterations, we
introduce random modifications to the dataset for every iteration. This way our neural
networks gets the chance to explore continuously slight variations to every example we
have on our dataset.

To get a better intuition for how this strategy work, we will take a look at the
following 2 training algorithms:

– D is the dataset
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– tf (x) is x time-stretched by the factor f .

– ps(x) is x pitch-shifted by s semitones.

On the following algorithms, “train and validate N on D” means applying gradient
descent on neural network N by passing once over the whole dataset D then estimating
the performance on a validation set to track the training progress.

Algorithm 1: training without data augmentation

initialize model N
for a number of iterations do

train and validate N on D
end

Note that on Algorithm 2, for each iteration of training, we apply random changes
to every example on the dataset, so the neural network barely sees the exact same
example twice.

Algorithm 2: training with stochastic continuous augmentation

initialize model N
for a number of iterations do

D′ ← ∅
for each example x in D do

f ← sample from U(0.8, 1.2)
s← sample from U(−2,+2)
x′ ← ps(tf (x))
D′ ← D′ ∪ {x′}

end
train and validate N on D′

end

4.2.3 Transfer Learning

Convolutional neural network learn features extraction in their first layers (convolu-
tional + pooling), and it turned out that these first layers tend not to extract features
that are specific only to the dataset they learned from[33]. For e.g, in images, they
learn features such as edges and color blobs[33]. Transfer learning consists in transfer-
ring the knowledge learned by a neural network from a particular dataset to train it
on a different dataset. But how does this exactly work? This is better explained by
how transfer learning was used in this work:

– We trained a neural network to classify data into 50 environmental sounds classes
using the ESC-50 dataset (stochastic continuous data augmentation was used).

– Then, instead of re-training from scratch another neural network that classifies
data into 10 classes using the UrbanSounds8K (no augmentation used), we kept
the knowledge (feature extraction) learned from the previous experiment and we
only reset the final layer of the neural network to classify into 10 classes. So, we
kept the whole previous network and only substituted the classification output
layer with a new, randomly initialized, one. The knowledge learned from the
ESC-50 dataset is transferred to perform on another dataset.
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(a) CNN trained on the ESC-50 dataset. P (Ei) is the probability
of the i-th class in the ESC-50 dataset.

P(E1)

(b) The layers from the trained ESC-50 CNN to be used with
UrbanSound8K dataset.
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(c) CNN trained on the UrbanSound8K dataset using layers trained
on ESC-50. P (Ui) is the probability of the i-th class in the Urban-
Sound8K dataset. Notice after introducing a new (randomly initial-
ized) final layer for classiciation, training the network then would
barely influence early layers as they’re already capable of detect-
ing environmental sounds features, meanwhile, later layers would
be fine-tuned to the new dataset.

Figure 4.3: Transferring the knowledge (feature detection) learned from the ESC-50
dataset to use it with the UrbanSound8K dataset
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Chapter 5

Experiments and Results

5.1 Datasets used and pre-processing

5.1.1 ESC-50 dataset

The ESC-50 (ESC = Environmental Sounds Classification) dataset [24] is a dataset
of 2000 5-seconds audio recordings. Audio recordings are organized into 50 classes
of environmental sounds (meaning 40 example for each class). The 50 classes can be
loosely separated into 5 superclasses as illustrated in Table 5.1 as illustrated on its
Github repository1.

Given its limited size, this dataset is only suitable for benchmarking purposes.

Animals
Natural soundscapes
& water sounds

Human, non-speech
sounds

Interior/domestic
sounds 2.5cm

Exterior/urban noises

Dog Rain Crying baby Door knock Helicopter
Rooster Sea waves Sneezing Mouse click Chainsaw
Pig Crackling fire Clapping Keyboard typing Siren
Cow Crickets Breathing Door, wood creaks Car horn
Frog Chirping birds Coughing Can opening Engine
Cat Water drops Footsteps Washing machine Train
Hen Wind Laughing Vacuum cleaner Church bells
Insects (flying) Pouring water Brushing teeth Clock alarm Airplane
Sheep Toilet flush Snoring Clock tick Fireworks
Crow Thunderstorm Drinking, sipping Glass breaking Hand saw

Table 5.1: ESC-50 dataset classes arranged into 5 superclasses

5.1.2 UrbanSounds8K dataset

The UrbanSound8K dataset [25] is a dataset 8732 audio recordings (≤ 4 seconds) of
urban sounds (outdoor). Audio recordings are drawn from the following 10 classes:

– Air conditioner

– Car horn

– Children playing

– Dog bark

– Drilling

– Engine idling

– Gunshot

– Jackhammer

– Siren

– Street music

1ESC-50 on Github : github.com/karoldvl/ESC-50
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5.1.3 Pre-processing

For both dataset, we applied the same pre-processing:

– Resample the audio signals to 16000Hz.

– Cut them into overlapping segments of 2 seconds while discarding silent segments.

So we end up having two datasets of uniform audio signals (2 seconds sampled at
16000Hz), this increased considerably the sizes of our dataset:

– the ESC-50 dataset from 2000 to 5134 examples,

– the UrbanSounds8K dataset from 8732 to 14838 examples.

An example of why was it useful to do this segmentation: we have audio clips
that contain more than one dog bark sound, let’s say 3 dog barks, by considering 2s
segments and discarding silent segments we end up isolating each one of these barks
as a single example on its own. Note that we must keep segments originating from the
same audio clip together either in the training set or the test set, because if we don’t
we may have the overlapped parts in both sets which makes it easy for our classifier.

5.2 Experimental setup

5.2.1 Pre-processing

Pre-processing data from datasets consists in two operations: resampling to 16KHz
and segmenting the audio recordings into 2-seconds-long segments while discarding
silent segments. Libraries used to perform such tasks are:

– Librosa [36] was used for audio files I/O and for the resampling as well.

– NumPy [37] (numerical Python), offering a set of mathematical and numeri-
cal features in a MATLAB-like fashion, was used to cut the audio signals into
segments of 2s as well as detecting the silence using a thresholding strategy.

As mentioned before, we use mel-spectrograms representations as inputs to our
neural network. Generating mel-spectrogram representations for the audio signals was
also achieved through the use of the previous libraries, given NumPy offers a FFT
implementation, and Librosa offers a Hertz-to-Mels function.

5.2.2 Data augmentation

The two effects applied on audio signals for data augmentation were time-stretch and
pitch-shifting. We used the PySndFx2 (Python Sounds Effects) library which is a
wrapper of the command line utility SOX3 (SOund eXchange) that offers a wide
range of audio conversion features as well the effects used in this work.

The stochastic continuous data augmentation strategy applied consists in running
every audio signal through the both effects (with random parameters within a safe
interval) before feeding it into the neural network.

2PySndFx on Github: github.com/carlthome/python-audio-effects
3SOX official website : sox.sourceforge.net
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5.2.3 Neural network implementation

Writing a neural network implementation from scratch is time-consuming, given you
have to account for computational efficiency. Designing a deep learning solution re-
quires a lot of experimentation and prototyping. Given the nature of this work, we
chose to use the deep learning framework Keras [38] for the following reasons:

– Modularity: it offers a wide range of layers types, activation functions, perfor-
mance metrics, . . . through a modular Python API.

– Efficiency and support: Keras is optimized and continuously maintained to work
on both CPUs and GPUs.

Having such features makes the perfect environment for experimenting with the
different possibilities and parameters. It also helped with saving the models into files,
and re-using trained layers easily into a new model.

5.2.4 Technical details

CPU Intel Core i5 2.4GHz

Memory 8Gb 1600MHz DDR3

Operating system Mac OS X, version = 10.12.2

Programming language Python, version = 3.6.4

Libraries and frameworks NumPy, version = 1.14
Librosa, version = 0.5.1
PySndFx, version = 0.2.0
Keras, version = 2.1.3 with Tensorflow 1.4 backend

5.3 Results

Since we are working with class-balanced datasets (in other words, there isn’t a class
that has remarkably more examples than the other class) to solve a classification
problem, the metric we’re gonna use to compare models is the classification accuracy
(or simple accuracy for short), it is defined as follows:

accuracy =
number of correctly classified examples

number of all classified examples

So if we want to compute the accuracy of a model on a dataset of 100 examples that
we already know their respective classes, and the model classifies 60 of them correctly,
we divide 60 by 100 to get 60% as our model’s accuracy on this particular dataset.

To estimate accuracy using k-fold cross validation we take the average over the
accuracies we get from the k experiments.

5.3.1 On the ESC-50 dataset

As mentioned earlier, this dataset contains only 2000 examples (40 example for each
class) which makes it a small dataset. Small datasets are known to be prone to overfit-
ting, since there won’t be much data for the learning algorithm to generalize to unseen
example.

We will call the first setup without stochastic continuous augmentation ESCNN.
Figure 5.1 shows how accuracy on the validation set fails to catch up with that on
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the training set, which is a mild form of overfitting since. In this particular fold, the
model managed to reach ∼ 65% accuracy. Upon evaluating the model using 5-fold
cross validation, we get an estimated average accuracy of 64.1%.
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Figure 5.1: Accuracy history during training on ESC-50 without stochastic continuous
augmentation

The other setup, ESCNN+, was the one where we employed stochastic continuous
augmentation, where instead of reusing each example during the whole training, we
continuously introduce random slight modifications to help our neural network gain
invariance towards small changes that may exist outside. While this approach increases
the training time due to the processing required at each step, it also requires more
training iterations to bring value with regard to the accuracy of the model on unseen
data.

In Figure 5.2, we can see how slow the ESCNN+ was to reach the 65% region,
but later managed to escape that region, as opposed to ESCNN, and reach up to 70%
accuracy on unseen data.
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Figure 5.2: Validation accuracy history during training with (ESCNN+) vs. without
(ESCNN) stochastic continuous augmentation

The author of the ESC-50 dataset [24] contributed, along with dataset, with 3
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simple baseline models (kNN: k-Nearest Neighbor, SVM: Support Vector Machines,
and RF: Random Forest) that, unlike deep neural networks, use hand-crafted features
as inputs (zero-crossing rate and MFCC) and conducted a crowdsourced experiment on
human subjects to estimate the human accuracy on this dataset. Piczak also proposed
a CNN model (with simple data augmentation) that outperformed baseline models
(with manually engineered features) [30], it is referred to as PCNN in Figure 5.3.
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Model Human kNN SVM RF PCNN ESCNN ESCNN+

Accuracy 81.3% 32.2% 39.6% 44.3% 64.6% 64.1% 70.02%

Figure 5.3: Results summary on the ESC-50 dataset
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5.3.2 On the UrbanSound8K dataset

With this dataset, we experimented with 2 different setups:

– U8K-CNN: the previously described CNN model without transfer learning. In
other words, trained from a random initialization.

– U8KT-CNN: the same model with transfer learning. Within this setup, the CNN
is trained after being already trained on the ESC-50 data (with data augmenta-
tion).
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Figure 5.4: Validation-set accuracy during training under both setups.

In Figure 5.4, we can see the impact of transferring previously-learned knowledge
from the ESC-50 dataset. Over the entire training process, the U8KT-CNN outper-
forms U8K-CNN, in this particular experiment, U8KT-CNN surpasses the peak ac-
curacy (see the green dot) of U8K-CNN as early as the 3rd iteration thanks to the
knowledge learned previously. Thus, transfer learning did not only improve the ac-
curacy of the model, but also the time required to reach the maximum accuracy the
model would reach when trained from scratch.

Evaluating both models using 10-fold cross validation yielded the following esti-
mated average accuracies: 72.5% for U8K-CNN, and 77.3% for U8KT-CNN. The au-
thors of the UrbanSound8K dataset [25] also proposed a convolutional neural network
model (with data augmentation) for this dataset [29].

Model
Salamon et al.

CNN
Salamon et al.
CNN+aug

Ours
U8K-CNN

Ours
U8KT-CNN

Accuracy 73% 79% 72.5% 77.3%

Table 5.2: Results summary on the UrbanSound8K dataset
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Chapter 6

Conclusion

In this work, we investigated the use of deep neural networks, specifically convolutional
neural networks, for the problem of environmental sounds recognition. In addition to
the neural network architecture we proposed for this problem, we also proposed a data
augmentation technique called stochastic continuous data augmentation that has been
experimentally proven to be beneficial for the learning model to generalize better by
randomly exploring potential slight variations in data, but experimental results also
show how it negatively affects the training time. Along with that, we have shown that
transferring knowledge learned from one environmental sounds dataset to use it with
another not only offers a slight improvement to the accuracy of the model, but also
reduces training time since the model is already familiar with environmental sounds.
Results on the datasets we used were compared against initial deep learning attempts
by the respective author of each dataset.

Unfortunately, the initially intended data gathering did not take place, but it will
be a priority for the future of this project. Since the datasets used in this work
were collected from the web [24][25], the future materialization of this work relies on
gathering data from a particular environment and conducting real-world experiments
to further investigate the performance of the models and the approaches explored in
this work in real-world conditions with potential hardware limitations.

Another possible future direction would be a further examination of the proposed
stochastic continuous data augmentation on other kinds of data and problems. In-
tuitively, this method explores slight variations in data to help the learning model
become less vulnerable and more resistant to some of the novelty faced on unseen
data, but we suggest conducting deeper, both mathematical and empirical, analysis
on this approach in the future.
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