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Abstract

The objective of this work is using reconfigurable Petri nets
to draw important conclusions about the system without
going for time and cost ineffective trial and error prototyp-
ing. To do so, the first step is to model the system. Once
a model is ready, the next task is to analyze the model
to draw conclusions about the properties of the model and
hence about the actual system. Then only one can an-
swer questions like what the system behavior is supposed
to be under specific operational conditions, what proper-
ties are inherent to the structure of the net, what to expect
from the system during operation and whether there is any
pitfall in the system design which must be avoided in op-
erational phase.
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General Introduction

In the last decades, formal verification has been suggested as an effective way

of improving reliability. Unlike testing, formal verification examines all behaviours

of the system and compares them to a formal specification, which distinguishes the

good behaviours from the faulty ones. If the system is declared correct, formal verifi-

cation has established a mathematically accurate proof that the system is free from

all faults described by the specification. Otherwise, depending on the particular

technique used. formal verification cannot guarantee absolute correctness, it only

ensures the system to be as correct as the specification is. Two well known methods

for proving correctness model checking and theorem proving. Model checking is a

fully automatic technique. Here, a computer exhaustively explores all possible exe-

cution paths that the system could follow. Even very small systems contain a huge

number of execution paths,which makes it very difficult to analyze. In our project

we are interested in verifying reconfigurable systems that are modelled with recon-

figurable Petri nets,this last are class of high level Petri nets that can dynamically

change their own structures based on reconfiguration rules.

This rapport is organized as follows:

• chapter I: in this chapter we will see a general view of the Petri nets with some

informal definitions, furthermore, we will see some of PN’s formal definitions,

some of its properties and methods of analyzing it. Finally, we will introduce

Petri net as a modeling tool for the dynamic systems.

• chapter II: this chapter contains two important parts. In the first part we will

have an overview of the reconfigurable systems and see some real examples.

For the second part we will have an abstract view of the reconfigurable PN.

• chapter III: this chapter consists of two parts. First part, which is analysis

stage, where we go deeper in reconfigurable Petri nets and see formal definition,

marking graph algorithm and finally an example to make things clear. Second

part, which is conception stage, where we explain how our tool is developed

• chapter IV: the final chapter, which contains some definitions of the tools used

during this project, the programming language used and the implementation

of our tool with some guide of use.

8



Chapter 1

Petri nets

1.1 Introduction

In the engineering discipline, system evolution has invariably been facing three

major needs [2]:

• The need to develop increasingly complex systems.

• The need to assess the system’s operational risks.

• The need to have a cost competitive solution to attain these requirements.

Due to time and money constraints, it is no longer feasible to follow the design

cycle of trial and error prototyping. Instead, the industry is leaning more towards

simulation, so that the design flaws can be worked out even before the prototype is

built. It’s here Petri Net comes in. Petri net is a net-based abstraction, which can be

used as a modeling tool (graphical and mathematical), as a simulation tool and as

an analysis tool. As a modeling tool, it helps in system design. The graphical nature

aids system visualization, the mathematical nature captures system behaviour As

a simulation tool, it enables one to identify design errors. Extensive simulations

may detect errors, which are rare and elusive. As an analysis tool it reveals various

properties of the model and hence of the actual physical system. Thus, one can

draw important conclusions about the system without going for experimentation or

performing lengthy calculation of conventional system modeling.

Petri nets are a formalism for modelling concurrent systems, first defined by Carl

Adam Petri in 1962. They allow correctness of concurrent systems to be verified

using well-defined, provable mathematical techniques and allow the behaviour of

a system to be expressed both graphically and algebraically. They support the

natural expression of such concepts as synchronisation and communication between

processes. The ability they provide to visualise the structure of a system promotes

greater intuitive understanding of what is being modelled. Petri nets have since been

extended and augmented with additional behaviours. The building blocks of a Petri

9



1.2. INFORMAL DEFINITION CHAPTER 1. PETRI NETS

net are places, transitions, arcs and tokens. Places model conditions or objects.

Places may contain tokens, which represent the value of the condition or object.

Transitions model activities, which change the value of conditions or objects. For

example, firing a transition may destroy a token at one place and create a token at

another place. The interconnectedness of places and transitions is represented using

arcs. Each arc has one and only one source, and one and only one target. If the

source is a place, the target must be a transition, and vice versa.

1.2 Informal definition

Any system consists of a number of activities and the system can be modeled by

listing the states of the system, before and after those activities. An activity brings

the system from one state to another i.e. activity causes state-transition. All such

state-transitions, when graphically represented, are called state-transition diagram

[2].

Figure 1.1: State-transition diagram for OFF-ON transition

The above state-transition diagram shows that the system undergoes a transi-

tion from OFF state to ON state. The activity, in this case, can be pressing of a

switch. A closer look at Fig. 1.1 reveals that a state-transition diagram is a directed

graph composed of two elements: nodes (representing state of the system) and arcs

(representing the direction of state-transition). Pictorially nodes are represented

by circles. Arcs are of two types: input arcs and output arcs. In Fig. 1.1, there

are two nodes, representing OFF and ON state. The only arc in Fig. 1.1 is the

output arc with respect to OFF node and input arc with respect to ON node. The

state-transition representation, as shown above, has some serious limitations. As

one can see in Fig. 1.1, there is no representation of the activity itself. Also, there is

little or no scope to represent the condition (if any) for which the transition occurs

(say, if the temperature is less than 40oC then the switch is pressed to make the

system move from OFF to ON state). In addition to that, one has to define first the

system’s global state and then enumerate all the states and feasible events at each

state. A possible consequence is the state-explosion problem for complex systems.

A formalism that can overcome some of these limitations is Petri nets. It gives more

10



1.2. INFORMAL DEFINITION CHAPTER 1. PETRI NETS

modeling flexibility by introducing two kinds of nodes; one (called places) to repre-

sent the states and/or conditions and the other (called transitions) to represent the

activities. It uses local states rather than global states, thereby avoiding the state

enumeration problems in the modeling stage. It can explicitly represent precedence

relations, conflicting situations, synchronization concepts, concurrent operations and

mutually exclusive events.

Figure 1.2: Petri net graph for OFF-ON transition
[2]

The Petri net graph of Fig. 1.2 shows that when the system is in OFF state and

when temperature is less than 40oC and when the switch is pressed then the system

makes a transition from OFF state to ON state. A comparison of Fig. 1.1 and Fig.

1.2 shows that how Petri net graph provides more modeling power and flexibility

over state-transition diagram. A closer look at Fig. 1.2 reveals that a Petri net is a

directed graph composed of two elements: nodes (places and transitions) and arcs

(input and output). Pictorially places are represented by circles and transitions by

bars. Arcs are labeled with their weights (positive integers) – labels for unity weight

are usually omitted. The nodes and arcs constitute the static structure of Petri

net. The dynamic behavior of the net is given by ‘token game’, representing various

states of the system. A particular state is a snapshot of the system’s behavior.

The state of a place is called its marking, represented by the presence (condition

holds) or absence (condition does not hold) of black dots, called tokens, in the

circle representing the place. Current state of the modeled system (marking of the

system) is given by the number and type (if tokens are distinguishable) of tokens

in each place. While places and arcs are passive components of the net, transitions

are active components. When all input places and no output places of a transition

11



1.3. FORMAL DEFINETION CHAPTER 1. PETRI NETS

contain tokens, then a transition fires. Firing of a transition removes tokens from

all of its input places and puts tokens in its output places. Thus, token-flow occurs

via the firing of transitions. The system achieves a new marking via the firing of

a transition. Introduction of tokens into places and their flow through transitions

enable one to describe the discrete-event dynamics of the PN and thereby of the

modeled system [2].

1.2.1 Definition of ordinary Petri net

An Ordinary Petri net is one where all arcs are unity-weighted (and hence unla-

beled),where ω:A → N∗ is the weight function on the arcs, which associates with

each arc an integer 1. It can be mentioned that ordinary and non-ordinary Petri nets

have same modeling power since one can always represent an arc of higher weight

as a set of arcs, each of unit multiplicity, the cardinality of the set being the weight

of the arc of non-ordinary Petri net. Therefore, it is always possible to convert a

non-ordinary Petri net into an ordinary Petri net without sacrificing generality but

sometimes non-ordinary Petri nets are preferred due to ease of modeling [2].

1.3 Formal definetion

Definition 1. A PN is a quadruplet Q = (P , T , A, ω) where [3]:

• P = {p1,p2,. . ., pn} a finite set of places.

• T = {t1,t2,. . .,tm} a finite set of transitions where:

P ∩ T = ∅ and P ∪ T = ∅.

• A⊆(P × T ) ∪ (T × P ) a set of arcs that connect a place pi to a transition tj

or a transition tj to a place pi.

• ω:A → N∗ is the weight function on the arcs, which associates with each arc

an integer differs from zero and greater then 1.

Definition 2. The matrices Pre, Post and C are defined as follows [3]:

• Pre(pi, tj) is a matrix that represents the weight of the arc connecting

pi to tj.

• Post(pi, tj)is a matrix that represents the weight of the arc connecting

tj to pi .

• C is matrix of incidences and it is defined by:

C = Post(pi, tj) − Pre(pi, tj).

12



1.4. DYNAMICS CHAPTER 1. PETRI NETS

1.4 Dynamics

1.4.1 Fireable transition

A transition t is fireable if each place of entry of transition t contains at least a

number of tokens equal to the weight of the directed pi connection arc.

Definition 3. Formally, a transition t is fireable for M marking if:

• ∀pi∈
•t: M(pi)≥Pre(pi, t).

• •t is the set of places of entry of transition t.

• We note by M
t

→ ’t’ should be fireable for M .

1.4.2 firing a transition

Firing a fireable transition t leads us from a current marking M to a new marking

M
′

, by updating the marking of the input /output places of t defined in M .

Definition 4. Firing a transition t from a marking M to M
′

is formalized by:

• M ′(p) = M(p) − Pre(p, t) + Post(p, t).

• we write M
t

→ M ′.

• where M
′

is accessible from M .

Figure 1.3 represents the firing of a transition in PN.

Figure 1.3: Firing a transition

13



1.5. ANALYSIS CHAPTER 1. PETRI NETS

1.5 Analysis

The analysis of a PN consists in verifying certain properties on the model. The

behavioral analysis of many systems can be described in terms of system states

and their modifications. In order to simulate the dynamic behavior of a system, a

marking in the Petri net is changed, and a new state of the systems would have been

created. This is called analysis with the dynamic method. However, the analysis

can use a set of algebraic tools that do not give us the marking graph of a Petri

net, but is based on the analysis of the equations of state. This is called the static

method, it is independent of the initial marking.

1.5.1 PN properties

Two types of properties are generally distinguished: the behavioral properties, re-

late to an initially marked PN, and the structural properties relate to a PN structure

independently of any initial marking [3].

1. Accessibility: The answer to the question is that there is a state M
′

accessible

from another state M (possibly M0)?

2. Boundedness: A place is called bounded if its marking never exceeds a bound

k for all states. A PN is k-bounded if all places are bounded and the maximum

number of tokens is k.

3. Reversibility: A PN is said to be reversible or reset for an initial marking

M0, if for any marking M accessible from M0, there exists a transitions firing

sequence S which leads to M0.

4. Liveness: A Petri net is live if and only if all its transitions are live. A transition

t of a Petri net having M0 as initial marking is said live if for any marking M

of the Petri net that is reachable from M0 we can always find a sequence of

fireable transitions. The vivacity of a Petri net depends on its initial marking

M0. this property makes it possible to deduce if a system does not involve

blocking.

5. Deadlock: A state M is called a dead-end if it contains no fireable transition:

∄t ∈ T : M
t

→.

1.5.2 Dynamic analysis method

1.5.2.1 Reachability

The reachability problem is stated as follows. Given a Petri net, given an initial

marking m0, given another marking mr. The question is whether there exists a

sequential firing of transitions which will bring the net from m0 to mr. If the answer

14



1.5. ANALYSIS CHAPTER 1. PETRI NETS

is ’yes’, then mr is said to be Reachable from m0. The set of all possible markings

reachable from m0, is called the ReachabilitySet, denoted by the symbol R(m0) for

a given PN. Note that reachability set is defined for a given PN, for a given initial

marking m0. This dependency on initial marking clearly reveals that reachability is

a behavioral property. It may happen that mr is reached from m0 by the firing of a

single transition, in that case mr is said to be immediately reachable from m0. In

the general case, mr is reached via the sequential firing of r transitions, called the

firing sequence, denoted by σr = t1, t2, . . . , tr [4].

Figure 1.4: (a) Petri net graph, (b) reachability tree for (a)

Example. It is, however, very much possible that the Reachability Tree could grow

indefinitely. To circumvent this problem, the concept of ’pseudo-infinity’ is intro-

duced, so that the tree size can be kept finite. ’Pseudo-infinity’, as the name suggests,

can be thought of as a finite representation of infinity. ’Pseudo-infinity’ is denoted

by the symbol ω which is subject to the following properties: ω > a where a is any

integer. With the above concept of ’pseudo-infinity’ (ω) one can always keep the

tree finite. When the (ω) symbol is absent, then the term Reachability Tree is used.

If, the (ω) symbol is present (truly infinite size tree, represented as finite size tree

by introducing (ω) then the term Coverability tree is used. This means the term

Coverability Tree is more general. When there is no (ω) symbol present then the

terms Reachability Tree and Coverability Tree are synonymous. Otherwise the term

Coverability Tree should be used. Now the question is, given a PN, how to construct

the coverability tree. The following algorithm [3] is used for this purpose.

15



1.5. ANALYSIS CHAPTER 1. PETRI NETS

Algorithm 1.1 algorithm of the coverability tree

1: Label the initial marking m0 as the ’root’ and tag it ’new’;
2: while’new’ markings exist, do the following:
3: Select a new marking m;
4: If no transitions are enabled at m:
5: tag m as’dead − end’;
6: If m is identical to a marking on the path from the ’root to m:
7: tag m as ’old’ and go to another new marking;
8: While there exist enabled transitions at m:
9: for each enabled transition t at m:
10: Obtain the marking m

′

by firing t at m;
11: On the path from root to m, If there exists a marking
11.1: m

′′

such that: m
′

(pi) > m
′′

∀i = 1, 2, . . . , n and
11.2: m

′

6= m
′′

i.e. m
′

covers m
′′

:
12: replace m

′

(pi) byω wherever m
′

(pi) ≥ m
′′

(pi):
13.1: Introduce m

′

as a node in the tree, draw an arc with
13.2 label t from m to m

′

, and tag m
′

as ’new’.

Figure 1.5: (a) Petri net graph, (b) coverability tree construction for (a)
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1.5.3 Static analysis method

In systems and control theory, system description is given in terms of a set of

differential or algebraic equations. Is it possible to give the Petri net system (static

and dynamic) description in terms of some equations? That was the spirit that

enabled the development of matrix equations for PN analysis.

Linear algebra analysis makes it possible to study the properties of a network

(boundedness, liveness) independently of an initial marking, by calculating a set of

vectors (invariant) that make it possible to deduce certain properties. As a result,

we will talk about the structural properties of the network. For example, we can

say that a network is structurally bounded if it is bounded for any initial marking.

In the same way, if for any initial marking, the network is live, it will be said that

the network is structurally live [3].

Definition 5. P-invariant: is a victor of places
→

Zn that satisfies the equation:

→

Zt
n . Cn,m =

→

0m.

• If
→

Zn is a solution to positive values =⇒the PN is conservative =⇒ The PN is

structurally bounded.

• If ∀i = 1, . . . , n : Zi = 1 =⇒The number of tokens is always fixed in all

markings.

Definition 6. T-invariant : is a vector of transitions
→

Wm that satisfies the equation:

Cn,m .
→

Wm =
→

0n.

.

•
→

Wm is a T-invariant, if σ is a sequence of firing transitions that corresponds

to it: M
σ

→ M if M allows to fire σ. It is said that this sequence is repeated.

• if ∃ i = 1, . . . , m : W (i) = 0 if we fire ti from M , we will not get back to M

again.

• if ∄
→

Wm =⇒PN has a dead lock.

17



1.5. ANALYSIS CHAPTER 1. PETRI NETS

1.5.4 Example static analysis

Figure 1.6: Example of Petri net.

The matrix of incidence corresponding to the network on Figure 1.4 is given as

follows:

C :



















−1 0 +1 0

+1 −1 0 −1

0 +1 −1 0



















Calculating the 2 victors
→

Zn and
→

Wm.

→

Zt
n . Cn,m =

→

0m =⇒







































−x1 + x2 = 0

−x2 + x3 = 0

x1 − x3 = 0

−x2 = 0

=⇒
{

x1 = x2 = x3 = 0 =⇒ noP−invariant
→

Zt
n

Cn,m .
→

Wm =
→

0n =⇒























−x1 + x3 = 0

x1 − x2 − x4 = 0

x2 − x3 = 0

=⇒







































x1 = x2 = x3

x4 = 0
=⇒

→

Wm =





















1

1

1

0





















no P-invariant ⇒ the Petri net is non-conservative.
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there exists a T-invariant
→

Wm =

















1

1

1

0

















and σ = t0, t1, t2 is a sequence of firing

transitions that corresponds to it.

1.6 Petri nets as modeling formalism

Petri net is an efficient modeling tool for modeling hybrid system since it can

capture properties like concurrency, asynchronous behavior, non-determinism are

intrinsic to Petri nets. So here we will introduce Petri net as a modeling tool. In

this section, some basic situations are taken which are encountered often during

modeling a physical system. This section describes how Petri net handles these real

life modeling situations, thus revealing the modeling power and ease of representa-

tion of Petri nets.

1.6.1 Sequential execution

Sequential execution poses a precedence constraint among the activities (transi-

tions). In Fig 1.7 transition t2 can fire only after the firing of t1.

Figure 1.7: Transition t1 occurs first and then transition t2 occurs.

1.6.2 Synchronization

Petri nets can successfully capture the synchronization mechanism in the modeling

phase. In Fig 1.8 transition t1 will fire only when the empty input place gets a token.

Thus, the three input places of t1 are synchronized for the firing of transition t1.
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Figure 1.8: Transition t1 fires when the place P2 gets a token so that all the input
places of transition t1 have tokens.

1.6.3 Concurrency

In Fig. 1.9 transitions t1, t2 and t3 are concurrent. Concurrency is characterized

by the existence of a forking transition that deposits tokens simultaneously in two

or more output places. In Fig 1.9 t0 is the forking transition.

Figure 1.9: Transitions t1, t2 and t3 are concurrent.

1.6.4 Conflict

In Fig 1.10 transitions t1, t2 and t3 are in conflict. All three transitions are enabled

but only one can fire at a time. Hence, choice has to be made regarding which

transition will be fired. Firing one will lead to the disabling of other transitions.
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Figure 1.10: Transitions t1, t2 and t3 are in conflict.

1.6.5 Confusion

Confusion occurs when conflict and concurrency co-exist. In such a situation, it is

not clear that whether a conflict is needed to be resolved or not, in going to the new

state (marking). In Fig 1.11 transitions t1 and t3 are concurrent whereas transitions

t1 and t2 are in conflict. Also t2 and t3 are in conflict.

Figure 1.11: Transitions t1, t2 and t2, t3 are in conflict but t1, t3 are concurrent.

1.7 Primitives for Programming

This section describes basic programming constructs in Petri net formalism. This,

in turn, will express the modeling power of Petri nets.

21



1.7. PRIMITIVES FOR PROGRAMMING CHAPTER 1. PETRI NETS

1.7.1 Selection (if ? else)

(a) If condition A then do activity X, else do activity Y.

Figure 1.12: If - else condition.

(b) If condition A and condition B hold, then do activity X.

Figure 1.13: If - else with and operator.

1.7.2 Case (Switch) statement

If Case A do activity P, if Case B do activity Q, if Case C do activity R, if Case D

do activity S. Switch statement
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Figure 1.14: Switch statement.

1.7.3 While loop

While condition A holds, do activity X.

Figure 1.15: While loop.

1.7.4 Repeat (for) loop

For condition A, do activity X.

Figure 1.16: For loop.
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1.7.5 Precedence

Activity X should precede activity Y.

Figure 1.17: Precedence relation.

1.7.6 Timed occurrence

After k seconds do activity X.

Figure 1.18: Timed transition.

1.8 Conclusion

in this chapter we have seen a general view of Petri net with some informal

definitions, we also introduced some of PN’s formal definitions, its properties and

methods of analyzing it. Then, we have seen Petri net as a modeling tool for the

dynamic systems. Finally we have presented some Primitives for Programming

Constructs that can be modeled by Petri nets.
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Chapter 2

Reconfigurability

2.1 Introduction

Global economic competition and rapid social and technological changes have

forced manufacturing to face a new economic objective: manufacturing responsive-

ness, i.e. the ability of a production system to respond to disturbances which impact

upon production goals, and consequently, its ability to adapt to changing market

conditions. In the early 1990s the idea of agile production systems was pursued,

enabling short changeover times between manufacturing different products. Since

the end of the 1990s the trend is towards reconfigurable manufacturing systems

(RMSs). i.e. systems that are capable of being quickly adapted to changing mar-

ket requirements by providing the needed functionality and capacity at any time.

Taking industry as a vantage point, industry 4.0 domain presents an example of the

reconfigurable systems.

Despite the power of PN and the variety types of systems that can be modeled by

the PNs (low or high level), but the PNs have a rigid structure and can not capture

notions of reconfiguration, for example a PN model does not admit adding, removing

and modifying nodes and arcs to model system with dynamic structures. Recon-

figurable Petri nets have been applied in various application areas where complex

coordination and structural adaptation at run-time are required (e.g. mobile ad-hoc

networks [5], communication spaces [6], concurrent systems [7], flexible manufactur-

ing systems [8], reconfigurable manufacturing systems [9], etc). They improve the

expressiveness of Petri nets as they increase flexibility and change while allowing

the transitions to fire. This greater expressiveness yields rich models with very large

state spaces. The state space of the model is even more complex because states are

not capturing only the change of the markings but also structure and connectivity

changes [10].
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2.2 Reconfigurable systems

Reconfigurable systems are those architectures that have the capability to adapt

themselves to a given application, providing some kind of hardware specialization

to it. Through this adaptation, they are expected to achieve great improvements,

in terms of performance acceleration and energy savings, when compared to general

purpose, fixed instruction set processors.

The fourth industrial revolution requires higher capabilities of changeability and

reconfigurability, that’s why we have chosen industry 4.0 as an example for our stud-

ies. We will also see another example in domain of simulation called Collaborative

Virtual Environment (CVE).

2.2.1 Industry 4.0

The three past industrial revolutions were driven by technical innovations: the

steam-powered machine for the first one, the division of labor at the beginning of

the 20th century, and the beginning of automation in manufacturing in the latter

20th century. Experts see the upcoming industrial revolution triggered by the Inter-

net, which permits to create communication between human but also with machines

in Cyber Physical System (CPS). The demand for customized product is growing,

forced companies to transform their organizational structure then also the produc-

tion. This will be the Industry 4.0, in reference to a fourth industrial revolution,

where the numeric or digital will be present everywhere as oxygen in our world.

The industry 4.0 focuses on the installation of intelligent product and production

processes. In the future, manufacturing needs to be flexible and rapid as possible

to answer to the needs of customers and here where reconfigurability takes a place.

Some examples for Industry 4.0 are machines, which can predict failures and trigger

maintenance processes autonomously, which react to unexpected changes in produc-

tion.

The main features of industry 4.0 that concerns our studies are:

• Service Orientation.

• Modularity: flexible adaptation of smart factories to changing requirements

by replacing or expanding individual modules.
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Figure 2.1: Industry 4.0

Figure 2.2: Industry 4.0

2.2.2 Example: DJINN

The DJINN multimedia-programming framework (Mitchell, et al, 1998) from the

Distributed Systems Laboratory at the University of London is an example of re-

configurable system in the domain of multimedia communications. The aim is to

guaranty quality of service (QoS) in communications through a distributed network

of computers or mobile devices. In this network, nodes may be added or deleted

dynamically triggering a reconfiguration. A configuration is expressed with paths

between components. Reconfiguration of this system is done in two phases. A setup

phase where the new components are created and an integration phase where they

are started and connected to the system. Depending on the resources offered, the

transition between the two configurations is more or less smooth (it depends on if

the two configurations can live together in the system or not). The reconfigura-

tion consists in the adding or removing of components and the modification of the

connection between them. The decision of the reconfiguration and its control are

centralized.
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2.2.3 Collaborative Virtual Environment (CVE)

An example of a computer system using reconfiguration was given in [11]. This is

a simulation environment battlefields for the US military using a computer system

distributed on several computers. The simulation environment called CVE (Collab-

orative Virtual Environment) is built in a modular way, some of the modules are

called VE (Virtual Environment), the others are utilities related to the simulation

[11].

The reconfigurable system is the CVE, whose different modules can be loaded,

unloaded or moved during system operation. The Bullpen module managing the

reconfiguration is also part of the reconfigurable system.

Two scenarios requiring reconfiguration are proposed in [11]. The first occurs

when a machine breaks down. It is then necessary that this failure has the least

effect on the continuation of the simulation. A second use of the reconfiguration to

ensure the balance of the load of the different machines during the evolution of the

simulation.

2.2.4 Case of study

In order to illustrate the application of the proposed extension, we use a simple

RMS example inspired from the one presented in [12]. This RMS is composed of a

single reconfigurable machine M which has two possible configurations. In its first

configuration C1, it produces two types of products A and B. In its second config-

uration C2, the machine produces a third product C besides the two former ones.

The RMS uses a transport device TL to bring raw materials RawM to the machine,

and to pick up the products. Figure 2.4.a (respectively Fig. 2.4.b) shows the RMS

in its first configuration (respectively its second configuration). The interpretation

of the nodes in the two graphs is illustrated in Table bellow.[1]
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Figure 2.3: Meaning of places and transitions[1].

Figure 2.4: Change in Configuration [1].
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2.3 R-systems common points

2.3.1 Objectives

• Adaptation to demand: the system must be able to meet the needs for which

it has been put in place. If these needs are not satisfied, we must find a new

configuration to continue to meet the demand or to respond to a new request.

• Quality: It is not always enough to answer at the request, it is still necessary

to answer it by following a set constraints.

• Optimize the use of system resources: This need is reflected in the project

for reconfigurable robots. The goal is to make functions, so powerful with a

minimum of resources. Reconfiguration makes it possible.

• Mass Customization: Like 3-D printing and advanced modularity concepts,

where every user can intimately and radically personalize a system to meet a

unique need or whim.

• Reduction of non-recurring engineering expenses: Sometimes it is easier to

personalize a reconfigurable component than to build one from scratch.

• Economy through inventory collapse: Flexibility can dramatically reduce in-

ventories, since a small number of reconfigurable components can be used to

replace many customized components [13].

2.3.2 Architecture of R-systems

The architecture of a reconfigurable system is defined as the set of components of

the system as well as the potential interactions between them.

2.3.3 Configuration of R-systems

The configuration of a reconfigurable system describes the use of architectural

elements in order to meet the needs set in the system in the form of quality of

service.

2.3.4 Reconfiguration of R-systems

The reconfiguration of a reconfigurable system consists in modifying the structure

or the functionality of the system. The reconfiguration can be carried out in several

steps if the current state of the system (product position and resource mode for a

production system) is not acceptable by the new configuration.
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2.3.5 Reconfiguration process

The process of reconfiguring a reconfigurable system starts when the target set

for the current configuration is reached or when the current system configuration no

longer meets these same goals. When the decision to launch the process of recon-

figuration is taken, this process takes place in several phases, a new configuration

is produced that meets the objectives set is sought. A path must be determined

to achieve this configuration, it is necessary to place the system in an acceptable

state for the new configuration. Then the reconfiguration is set to achieve the new

operation that meets the objectives set in terms of of quality of service.

2.4 Reconfigurable PN

Reconfigurable Petri nets are class of high level Petri nets that can dynamically

change their own structures by rewriting some of their components thus supporting

dynamic changes within workflow systems. A reconfigurable net is a very natural

extension of a Petri net.

The characteristic feature of reconfigurable Petri nets, consisting of a Petri net

and a set of rules that can modify it, is the possibility to discriminate between

different levels of change. They provide powerful and intuitive formalisms to model

dynamic software that is executed in dynamic infrastructures.

dynamic changes in reconfigurable Petri nets:

• Topology changing.

• Appearance of new components.

• Disappearance of components.

2.5 conclusion

In this chapter, we have introduced a class of high level Petri nets called reconfig-

urable Petri nets, which they have the ability to change their structure dynamically

based on reconfiguration rules. in the next chapter we will try to make a tool that

can analyze this kind of Petri net’s behavior.
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Chapter 3

Analysis and conception

3.1 Introduction

We have seen the details that suits the needs for modeling a dynamic systems

with changeable structures. Our goal is the realization of a tool for modeling and

analyzing reconfigurable Petri nets. It will be necessary to follow a process of de-

velopment consisting of several stages in order to obtain a reliable software, which

corresponds to our needs in a limited duration. This chapter consists of three sec-

tions: (i) first, section of analysis needs, (ii) second, global design where we show an

abstract architecture view and functionality of our tool that meets our needs, (iii)

finally, third one that represents the details of our tool using the class diagram to

show how this tool works.

3.2 RPN Formal definition

Definition 7. A reconfigurable Petri net is a structure N=< G ,g0,R >:

• R = { G1,..., Gn} is a finite set of reconfigurations which each one of them is

represented as a PN.

• g0 is the initial configuration.

• R = {r1,...,rh} is a finite set of rewriting rules.

A rewriting rule r ǫ R is a structure r = (Gs,Gt,M) where:

• Gs is the current configuration.

• Gt is the target configuration.

• M is the required minimum marking so that the rule can be enabled.
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The firing policy of transitions is identical to the Petri net obtained by discard-

ing the non existing places .This Petri net is called a configuration of reconfigurable

net. As long as no structure modifying rule take place, the reconfigurable net behaves

exactly identical to this Petri net. Structure modifying rules produce a structure

change in the net by removing existing places,transitions,and/or arcs, and creating

new ones thus moving the system from one configuration to another one. Roughly

speaking a reconfigurable net can be seen as bunch of Petri nets (its configurations)

which correspond to the various modes of operation of the system. The structure

modifying rules allow to switch from one mode of operation to another one. Thus

a system modelled by a reconfigurable net has the ability of dynamically change its

own structure when certain conditions are met. For instance if the content of some

places becomes too large (there is large amount of work cases waiting for being pro-

cessed) one can duplicate the output transitions of this place, technically we replace

this place by a new one having twice as many output transitions playing the same

role as the output transitions of the original place [14].

3.3 Analysis of a RPN

We can imagine a reconfigurable Petri net with configurations C0 fig.3.1, C1 fig.3.2

and a reconfiguration rule r = (C0, C1, Mr) Mr(P1, P2, P3, P4, P5) =< 1, 0, 0, 0, 1 >.

Figure 3.1: Initial configuration C0.
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Figure 3.2: configuration C1.

the coverability graph of this reconfigurable Petri net is shown bellow

Figure 3.3: Coverability graph.
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3.3.1 Marking graph

as inputs we need:

• finite set of configurations.

• initial configuration.

• finite set of rules.

Algorithm 3.1 algorithm marking graph for RPN

1:initial configuration and initial marking are set as:
1.1 a root of the graph.
2: do:
3: based on the current configuration and its marking:
4: get all the fireable transitions.
5: fire each one of the fireable transitions to get a new making.
6: for each obtained state:
7: if the state obtained does not already exist on the graph:
8: add the state to the graph.
9: a test is applied to see whether there is an applicable
10.1: rule for the current marking and configuration.
11: if a rule is enabled:
12: change in configuration to the target of the rule.
13:while there is non-visited state.

Remark 1. In this algorithm, we do not consider unbounded RPNs.

3.4 Conception

Inputs and outputs

In which we give an abstract solution that meets our needs and specifies the

functionality of the tool that we seek to realize.

35



3.4. CONCEPTION CHAPTER 3. ANALYSIS AND CONCEPTION

Figure 3.4: Inputs and outputs of the tool.
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Figure 3.5: Global view of the conception.

• User needs to create Petri net models (configurations) using PIPE, which can

be called from the the graphical user interface of the tool or loading configu-

rations, that are saved as ’xml’ files.

• User should define reconfiguration rules.

when the inputs are set, the tool is ready to start analyzing the reconfigurable

Petri net and this happens after generating a data structure. The result will be

shown to the user in the graphical user interface.
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Figure 3.6: Class diagram model.

3.5 Conclusion

In this chapter, we have presented an analysis and conception that determine

the technical solutions that satisfies our needs. We move on to the next chapter in

which we will implement this project. The next chapter, we will explain the part of

realization of our tool and finally represent the tool after the implementation.
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Chapter 4

Realization

4.1 Introduction

After the analysis and design stages, we start the realization of our tool. This step

allowed us to develop everything we studied in the previous chapter. This chapter

consists of two parts: (i) first part which represents the various computer tools and

development languages that we have chosen to begin this work, (ii) second part that

explicitly represents the tool realized by showing its interface.

4.2 Used tools

During the implementation phase of this project, it was necessary to resort to

certain areas of programming and we had the opportunity to familiarize ourselves

with various technical and software development tools that will be presented below.

4.2.1 PIPE

Is an open source project implemented in Java initially launched in 2002 / 2003 as

a project of the MSc team Project Group at the Department of Computer Science

at the Imperial College London turns on UNIX-like platforms, Windows, MacOS

X, it is in its evolved version 4.3.0. PIPE offers a full suite of analytical tools for

verification of structural properties and dynamics of these nets and produces the

statistics of performance and classification.

4.2.2 XML

Extensible Markup Language (XML) is a markup language that has been designed

to store and transport data. The most important thing about this language is that

it has designed to be both human readable and machine readable. We used this

language to store and load our files from PIPE for our tool.
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4.2.3 NetBeans IDE 8.1

NetBeans is an Open Source IDE by Sun in June 2000 under CDDL (Common

Development and Distribution License) and GPLv2. In addition to Java, NetBeans

provides native support for various languages such as C, C ++, JavaScript, XML,

Groovy, PHP and HTML, or others (including Python and Ruby) by adding plugins.

It offers all the facilities of a Modern IDE (color editor, multi-language projects,

refactoring, graphic editor interfaces and web pages). Compiled in Java, NetBeans

is available under Windows, Linux, Solaris (on x86 and SPARC), Mac OS X or an

independent version of operating systems (requiring a Java virtual machine). A Java

environment JDK is required for Java developments. NetBeans is a platform that

allows the development of specific applications (Swing library (Java)).

4.2.4 JDOM

Is an open source library for manipulating XML files in Java. It integrates DOM

and SAX, and supports XPath and XSLT. It uses analyses external syntax for

building documents.

4.2.5 Java FX

With the appearance of Java 8 in March 2014, Java FX becomes the creation

tool of the GUI toolkit for the Java language, the development of its predecessor

Swing being abandoned (except for bug fixes). Java FX is an evolution of Java, it

allows to create RIA (Rich Internet Applications), that is, applications containing

videos, music, very interesting graphic effects, etc. Java FX allows you to create

web applications, applications for your desktop and for your mobile phone.

Java FX is now a pure Java API (the scripting language specific that has been a

time associated with Java FX is now abandoned). Java FX contains a variety of

tools, including audio and video media, graphics 2D and 3D, Web programming,

multi-threaded programming etc. The Java FX SDK now is integrated into the

standard JDK Java SE, there is no need to realize specific installation for Java FX.

4.2.6 LyX

LyX is an open source document publisher based on the latex system. In contrary

to most word processing tools that follow the paradigm WYSIWYG (what you see is

what you get), LyX has an approach WYSIWYM (what you see is what you mean)

or what appears on the screen is only an approximation of what will appear on the

page. We chose LyX for the report and presentation of our project. The power and

flexibility of LaTeX that it offers and facility for writing and document processing
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quickly. It should also be noted that knowledge of LaTeX tag language is not needed

for basic use.

4.3 Implementation

After following several stages of development, we implement a tool with a graphi-

cal user interface that allows us to model and analyze the reconfigurable Petri nets.

4.3.1 The graphical user interface of the tool

The figure 4.1 represents the interface of our tool. The user can utilize PIPE

(external program to create and simulate configurations), import source and target

configurations, add reconfigurable rules, choose which properties to verify and finally

verify them.

Figure 4.1: The main interface of the tool.

4.3.1.1 The initial components:

• Enabled components.

• Disabled components.

• Invisible components.
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4.3.1.2 Enabled components:

• Source configuration button.

• Target configuration button.

• Add rule button

• Pipe button.

• Rule text field.

• property checkBox.

4.3.1.3 Disabled components:

Disabled components are set to control the use of this tool.

• Verify button

• State text field.
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• Check properties button.

4.3.1.4 Unvisible components:

Figure 4.2: to indicate that the input is set right.

Figure 4.3: to indicate that the input is set wrong.

Figure 4.4: to indicate that the state is reachable .
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4.3.2 Functionality

Figure 4.5: functionalities of the tool.

Here we will explain some of our GUI components functionality:

1. Source configuration button: to import source configuration file ’.xml’. It will

open a file chooser window as depicted in the figure below.

Figure 4.6: Xml file chooser.
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When the file is chosen a new graphical component will appear to confirm

whether the operations works properly.

2. Target configuration button : same thing as Source configuration button.

Figure 4.7: xml file of PN.

3. Add rule button: it will add the reconfiguration rule to the data structure

under controlled conditions, which are: source and target configuration must

be imported (it can be viewed by the confirmation components), rule condition

must be set in the text field once all this done right a confirmation icon will

will be shown.

4. Rule text field: where user writes the enabling marking for the reconfiguration

rule(it should be set under this syntax starts with ′ <′, and ends with ′ >′ and

the marking is in between). The verify button will be enabled when a rule is

added.

5. In order to verify properties user should choose the properties that he wants

to verify by checking them in the properties check box.
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6. Verify button: it will generate a data structure model based on the inputs and

then, it will create a file that contains all the markings. When this process

ends, the check properties button will be enabled and the state text field will

also be enabled in order to check the reachability of a set state. Finally the

verify button will be set disabled.

7. State text field: in order to check whether a state is reachable, user should

enter the state as it is indicated (configuration’s name < marking >).

8. Check properties button: it will show the result of the verified properties by

showing new components to indicate their presence.
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9. Pipe button: it makes a call to an external program called PIPE.

Figure 4.8: Pipe.

4.4 Conclusion

We have seen in this chapter two parts, the first part is tools and languages of

the development, the tools and the programming language that we chose to start

this work, and the second part is the implementation phase, the step of producing

a tool for modeling and verifying reconfigurable Petri nets.
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4.5 General conclusion

During this project, we explored the field of formal verification of reconfigurable

systems and more specifically reconfigurable Petri nets. These provide powerful

mechanisms for modeling reconfigurable systems. Nevertheless, the complexity of

the verification is increased considerably (the modeling power decreases the decision

power). Reconfigurable Petri nets provides a framework for modeling the structural

changes in reconfigurable systems, and for checking the properties of reconfigurable

Petri nets we have came with a solution that consists of developing a tool for mod-

eling and verifying RPNs. Our study was carried out mainly in two stages:

• A theoretical study on Petri nets, reconfigurable system and reconfigurable

Petri nets.

• The implementation of a modeling and verification tool for the reconfigurable

Petri nets that provides the solution for the structural changes in reconfig-

urable systems, which has been the main goal of our work. We have been able

to achieve the objectives outlined in this project, but there is still some work

to do to enrich it, for example:

– Analyze the unbounded RPN.

– Define new techniques for structural analysis.

– Study the reconfiguration in other class of Petri nets.
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