
University of Mohamed Khider, Biskra
Faculty of Exact, Natural and Life Sciences

Computer Science Departement

Anomaly-Based Network
Intrusion Detection System:

A Machine Learning Approach

Ahmed Ramzi Bahlali

June 29, 2019

Abstract

At the present time, anomaly detection has attracted the attention of many re-
searchers to overcome the weakness of signature-based IDSs in detecting novel
attacks, and NSL-KDD benchmark data set is the most used in the literature
which it was generated a decade ago, therefore, it does not reflect modern
network traffic and low footprint attacks. A new data set has been devel-
oped named UNSW-NB15 network data set that came to solve the issues of
NSL-KDD in which it has been used in this project to evaluate Anomaly-based
NIDs by using different machine learning methods such as Logistic Regression,
Decision Tree, Random Forest and particularly an Artificial Neural Network
with both binary and multi-class classification that we have discussed their re-
sults in details and they have been compared with some previous related works.

keywords- Network Securtiy; NIDS; UNSW-NB15 data set; Machine learn-
ing; Multi Layer Perceptron.

Acknowledgements

I would like to express my special thanks of gratitude to my supervisor Profes-
sor Abdelmalik Bachir for his guidance and support during the project as well
for giving me the golden opportunity to work on such a wonderful project,
which also helped me doing a lot of research and learn about so many new
things.
Secondly I would also like to thank my family members and friends who en-
couraged me a lot in finalizing this project within the limited time frame.

List of Abbreviations

NIDS Network-based Intrusion Detection System

HIDS Host-based Intrusion Detection System

ML Machine Learning

DL Deep Learning

ANN Artificial Neural Network

GD Gradient Descent

SGD Stochastic Gradient Descent

MLP Multi Layer Perceptron

LR Logistic Regression

DT Decision Tree

RF Random forest

DMZ DeMiliterized Zone

DPI Deep Packet Inspection

1

Contents

1 Introduction 6

2 Intrusion Detection Systems: An Overview 8
2.1 Network Security . 8
2.2 Firewalls . 10

2.2.1 Firewall Placement . 10
2.2.2 Firewall Categories . 10
2.2.3 Firewall Drawbacks . 12

2.3 Intrusion Detection Systems . 12
2.3.1 IDS types by Monitored Platform 13
2.3.2 IDS types by detection technique 15
2.3.3 Network traffic anomalies 17

2.4 Anomaly Detection using Machine Learning Approach 18

3 Statistical Modeling (Machine Learning and Deep Learning) 20
3.1 Machine Learning . 20

3.1.1 Regression vs Classification 21
3.1.2 Supervised Learning . 22
3.1.3 Features . 22
3.1.4 Machine Learning Model Evaluation 22
3.1.5 Evaluation Metrics . 23

3.2 Artificial Neural Networks . 25
3.2.1 Artificial neural network architecture 25
3.2.2 Artificial Neuron . 26
3.2.3 Activation functions . 27
3.2.4 Feed-forward Neural Network 30
3.2.5 Feed-froward neural network Training 32
3.2.6 Optimization algorithms 33
3.2.7 ANN Hyper-Parameters Tuning 35

4 UNSW-NB15 Network Data Set 39
4.1 Dataset description and details 40

4.1.1 Dataset generation . 40
4.1.2 Dataset Features . 40
4.1.3 Dataset Attack Categories 44
4.1.4 Dataset Packets distribution 45

2

4.2 Dataset Pre-processing . 49

5 Experiments and Results 52
5.1 Dataset used and pre-processing 52
5.2 Experimental setup . 52

5.2.1 Pre-processing . 52
5.2.2 Machine learning algorithms implementation 52
5.2.3 Neural network implementation 53
5.2.4 Technical details . 53

5.3 Model evaluation . 53
5.3.1 Confusion matrix components 53
5.3.2 Evaluation metrics . 53

5.4 Results and Discussions . 55
5.4.1 Machine learning based approach 55
5.4.2 Deep learning based approach 56

6 Conclusion 60

3

List of Figures

2.1 Organization network topology 9
2.2 Different Firewall Location . 10
2.3 IDS Categorization . 13
2.4 NIDS sensor placement . 14
2.5 HIDS sensor placement . 15
2.6 Anomaly detection techniques and methods 16
2.7 Network traffic anomalies categorization 17
2.8 Clustering and classification techniques used in the literature . . 19

3.1 Traditional Programming vs Machine Learning Approach 21
3.2 Confusion Matrix of a binary classification 25
3.3 Example of a neural net architecture 26
3.4 Computational model of a neuron 27
3.5 Sigmoid activation function . 28
3.6 Hyperbolic tangent activation function 29
3.7 Rectified Linear activation function 29
3.8 Feed-forward neural network . 31
3.9 learning rate affect . 34
3.10 Cost function minimization example 35
3.11 Grid vs Random search . 38

4.1 Framework Architecture for Generating UNSW-NB15 dataset . 40
4.2 Normal and malicious packets distribution in training set 45
4.3 Attack categories distribution in training set 46
4.4 Normal and malicious packets distribution in testing set 47
4.5 Attack categories distribution in testing set 47

5.1 Results summary for binary classification 58
5.2 Results summary for multi-class classification 59

4

List of Tables

4.1 Flow features . 41
4.2 Basic Features . 41
4.3 Content Features . 41
4.4 Time Features . 42
4.5 Additional Generated Features 43
4.6 Labelled Features . 44
4.7 Distribution of packets in the training set 46
4.8 Distribution of packets in the testing set 48
4.9 Before Encoding . 49
4.10 After Encoding . 50

5.1 ML based approach results using binary classification 55
5.2 ML based approach results using multi-class classification 55
5.3 ML based algorithm results comparison 56
5.4 Network configuration in binary classification 56
5.5 Binary classification DL based approach results 56
5.6 Network configuration in multi-class classification 57
5.7 Multi-class classification DL based approach results 57
5.8 Multi-class Confusion Matrix of ANN 57
5.9 DL based algorithm results comparison 57

5

Chapter 1

Introduction

Nowadays, due to the utilities and services that the Internet provides such as
social media, E-learning, online purchasing, VoIP, cloud services and so on,
and the affordability of electronic devices and Internet access, the number of
connected devices has increased exponentially. However, it is a nightmare for
organizations and corporations security managers to prevent their networks
from being attacked and compromised and preserve their secrets and the sen-
sitive information of their customers from leaking out. Hence, cybersecurity
has become more challenging than ever.
The firewall with its variants has been shown that it could be easily bypassed
by intruders, for instance, by using false source address. Also, it has failed to
detect so many attacks such as DoS and DDoS [1]. A new security mecha-
nism has come to existence called Intrusion Detection System to overcome the
drawbacks of the conventional security schemes. IDS monitors the inbound
and outbound traffic for the purpose of detecting malicious ones. IDS can be
categorized regarding its placement or the technique it uses to detect abnormal
activities [2]. With respects to its placement, IDS could be located at termi-
nals to protect them from being attacked is called Host-based IDS (HIDS) or
at network’s entry to monitor incoming and outgoing packets to detect mali-
cious ones in order to protect the whole network is called Network-based IDS
(NIDS). IDS is classified into signature-based (misuse-based) and anomaly-
based [3] depending on the detection technique used. Signature-based IDS
uses a database of well-known attack patterns (signatures) and any incoming
packet matches one of those patterns is considered as malicious. This class of
IDS cannot detect new attacks and its database should be updated continu-
ously [4]. Anomaly-based IDS creates a profile that represents normal behavior
and any deviation from this profile is considered as attack. According to [2],
anomalies could be categorized either as non-malicious (without any intention
to cause harm just appeared because of software bugs or network load for in-
stances) or as malicious (created with intention to harm and destroy network
systems). The latter is the type of anomalies security researchers would deal
with. The main advantage of anomaly-based IDS is its potential to detect
previously unseen attacks [5]. Given the promising capabilities of anomaly-
based IDS, it became a principal focus of research and the most investigated

6

topic among researchers in the literature [2] [5]. Hence, so many techniques
have been used in order to build a profile or a model that can perform well in
detecting anomalies such as evolutionary, information theory, statistical, and
machine learning techniques. Machine learning approach has proved to do
good job in problem solving from image classification [6] to machine transla-
tion [7]. Therefore, a lot of researchers have adopted this approach with the
purpose to address the anomaly detection problem. Both classification and
clustering techniques have been used, nevertheless, classification is the com-
monly used in anomaly detection approach [8]. Classifications techniques have
performed well compared to the other existing techniques such as clustering
[2]. Classification problem consists of training a model with labeled data and
testing it with previously unseen data to check its performance.
Because machine learning is a data driven approach (i.e. it relies heavily on
data to a build classifier that generalizes well), a comprehensive dataset that
represents network traffic is needed. An older dataset called NSL-KDD has
been developed and it was the most used as benchmark in the literature which
it was generated a decade ago [9]. However, it has some drawbacks such as: it
does not reflect modern network traffic and low footprint attacks[10]. Due to
the mentioned reasons, Mustafa et al. [10] have provided an effort in creating
a recent dataset named UNSW-NB15 that tackles the issues of NSL-KDD.
Even though is not the first work that tackles the problem of anomaly-detection
using machine learning approach, it focuses to address the problem by using
different machine learning methods on UNSW-NB15 dataset such as Logisitic
Regression, Decision Tree, Random Forest and particularly, a deep learning
approach called Artificial Neural Network in both cases binary and multi-
classification in which their performance results have been discussed in details
and they have been compared to previous related work such as the one that
has been done by the author of UNSW-NB15 dataset [11].

7

Chapter 2

Intrusion Detection Systems:
An Overview

Intrusion Detection Systems (IDS) are security tools that, like other measures
such as antivirus software, firewalls and access control schemes, are intended to
strengthen the security of information and communication systems. IDS have
arisen due to the weakness of the conventional security mechanisms. But before
to dive into the IDS details, let’s take a look at network security concepts.

2.1 Network Security

According to [12], network security is any activity designed to protect the us-
ability and integrity of your network and data. It includes both hardware and
software technologies. Effective network security manages access to the net-
work. It targets a variety of threats and stops them from entering or spreading
on your network. Most security threats are intentionally caused by malicious
people trying to gain some benefit, get attention, or harm someone.
Network security problems can be divided roughly into 5 closely intertwined
areas such as [4]:

1. Confidentiality: only the sender and intended receiver should be able
to understand the contents of the transmitted message. Because eaves-
droppers may intercept the message. It is achieved using encryption.

2. Message integrity: ensures that the content of the sent message is
not altered, either maliciously or by accident. This is achieved through
checksum and hash functions techniques.

3. Authentication: Both the sender and receiver should offered a mech-
anism to be able to confirm the identity of the other party involved in
the communication.

4. Nonrepudiation: deals with the issue that someone could deny send-
ing a message or performing an activity. It is achieved through digital
signature.

8

5. Operational security: Almost all organizations (companies, univer-
sities, and so on) today have networks that are attached to the public
Internet. These networks therefore can potentially be compromised. At-
tackers can attempt to deposit worms into the hosts in the network,
obtain corporate secrets, map the internal network configuration, and
launch DoS attacks. Firewalls and IDSs are used to counter attacks
against an organization’s network.

Typically, organization networks are structured into two parts such as internal
network and DeMilitarized zone(see Figure 2.1).

Web server Email server DNS server

Router

Internet

Internal Network

Demilitarized Zone

Figure 2.1: Organization network topology

The internal network of the organization is usually accessed only by the
network administrators or the employees whereas the demilitarized zone is
the part of network’s company that is accessed by anyone from the outside
such as the Internet, it exposes the organization’s services. The purpose of
DMZ is to add an additional layer of security to an organization’s internal
network because the most vulnerable hosts to attack are those that provide
services to users outside the internal network such as e-mail, web, and DNS
servers. Because of the increased potential of these hosts suffering an attack,
they are placed into this specific subnetwork in order to protect the rest of the
network from being attacked or compromised. An external network host can
only access what is exposed in the DMZ, while the rest of the organization’s
network is forbidden. However, separating the company’s network without
adding a mechanism for traffic control does not make a sense. Consequently a
conventional mechanism security is added called Firewall.

9

2.2 Firewalls

A firewall is a combination of hardware and software that isolates an organiza-
tion’s network from the Internet, allowing some packets to pass and blocking
others. It acts as a packet filter and inspects each and every incoming and
outgoing packet. Packets meeting some criterion described in rules formulated
by the network administrator are forwarded normally. Those that fail the test
are dropped.

2.2.1 Firewall Placement

Within the organization’s network, the firewall could take 2 common possible
placement; at the router (gateway) that connects the organization’s network
with the public Internet, or between the router and the internal network (see
Figure 2.2). Large organizations may use multiple levels of firewalls or dis-
tributed firewalls.

Web server Email server DNS server

Router

Internet

Internal Network

Demilitarized Zone

Firewall

(a)

Web server Email server DNS server

Router

Internet

Internal Network

Demilitarized Zone

Firewall

(b)

Figure 2.2: Different Firewall Location

Placing the firewall within the company router could restrict access to
authorized traffic (i.e. the traffic going to the DMZ) whereas placing it in
between the gateway and the internal network make the DMZ without any
defense measure. Each placement has its own drawbacks.

2.2.2 Firewall Categories

Firewalls can be classified into three categories [4]:

Traditional Packet Filters

In this category of firewalls, it examines each datagram in isolation, determin-
ing whether the datagram should be allowed to pass or should be dropped

10

based on a administrator-specific rules. Filtering decisions are typically based
on :

– IP source or destination address.

– Protocol type in IP datagram field: TCP, UDP, ICMP, OSPF . . . etc.

– TCP or UDP source and destination port.

– TCP flag bits: SYN, ACK, and so on

– ICMP message type

– Different rules for datagrams leaving and entering the network..

A network administrator configures the firewall based on the policy of the
organization. For example, if the organization does not want any incoming
TCP SYN segments except those for its public Web server. It can block all in-
coming TCP SYN segments except TCP SYN segments with destination port
80 and the destination IP address corresponding to the Web Server. If the
organization doesnt want its internal network to be mapped (tracerouted) by
an outsider, it can block all ICMP TTL expired messages leaving the organi-
zations network. A filtering policy can be based on a combination of addresses
and port numbers. The major drawback of this firewall category is: basing the
policy on addresses provides no protection against datagrams that have their
source addresses spoofed. Also it proved difficult to write rules that allowed
useful functionality but blocked all unwanted traffic [1].

Stateful Packet Filters

Stateful firewalls map packets to connections and use TCP/IP header fields to
keep track of connections by using a connection or session table. This allows
for rules that, for example, allow an external Web server to send packets to an
internal host, but only if the internal host first establishes a connection with
the external Web server. Such a rule is not possible with stateless designs that
must either pass or drop all packets from the external Web server. The major
disadvantage is that sometimes can go into situations where it cannot forward
traffic because it has exceeded the capacity of the firewall’s connection table.

Application Gateway

This processing involves the firewall looking inside packets, beyond the TCP
header, to see what the application is doing. With this capability, it is pos-
sible to distinguish HTTP traffic used for Web browsing from HTTP traffic
used for peer-to-peer file sharing. Administrators can write rules to spare the
company from peer-to-peer file sharing but allow Web browsing that is vital
for business. For all of these methods, outgoing traffic can be inspected as well
as incoming traffic, for example, to prevent sensitive documents from being
emailed outside of the company. Application gateways do not come without

11

their disadvantages. First, a different application gateway is needed for each
application. Second, there is a performance penalty to be paid, since all data
will be relayed via the gateway. This becomes a concern particularly when
multiple users or applications are using the same gateway machine.

2.2.3 Firewall Drawbacks

Even if the Firewall is perfectly configured, plenty of security problems still
exist. For example, if a firewall is configured to allow in packets from only
specific networks (e.g., the companys other plants), an intruder outside the
firewall can put in false source addresses to bypass this check. If an insider
wants to leave out secret documents, he can encrypt them or even photograph
them and leave the photos as JPEG files, which bypasses any email filters.
Three-quarters of all attacks come from outside the firewall, the attacks that
come from inside the firewall, for example, from disgruntled employees, are
typically the most damaging [1].

In addition, there is a whole other class of attacks that firewalls cannot
deal with. The basic idea of a firewall is to prevent intruders from getting in
and secret data from getting out. Unfortunately, there are people who have
nothing better to do than try to bring certain sites down. They do this by
sending legitimate packets at the target in great numbers until it collapses
under the load. Such attack called DoS (Denial of Service). Usually, the
sent packets have false source addresses so the intruder cannot be traced easily.
An other variant of DoS attack in which the intruder compromises hundreds
of computers elsewhere in the world, and then commands all of them to attack
the same target at the same time. Such an attack is calle DDoS (Distributed
Denial of Service) attack. This attack is difficult to defend against.

It still exist a lot of attacks that the firewall with its variant cannot cope
with. Especially for companies and organizations that store sensitive data of
their clients. Therefore, a new security mechanism is heavily needed to deal
with the attacks that firewall cannot cope with.

2.3 Intrusion Detection Systems

In the previous section, we have seen that a packet filter (firewall) inspects IP,
TCP, UDP and ICMP header fields when deciding which packets to let pass
through the firewall. However, to detect many attack types especially those
the packet filter cannot detect, we need to perfrom Deep Packet Inspection.
Obviously, there is a place for another device that not only examines the head-
ers of all packets passing through it (unlike a packet filter) but also performs a
deep packet inspections. When such a device observes a suspicious packet, or a
suspicious series of packets and prevent those packets from entering the organi-
zation’s network by dropping them is called Intrusion Prevention System.
Wheres, when the device could let the packets pass through it towards the
organizational network, but send an alert to the network administrator or logs

12

the packet is called Intrusion Detection System. In this section we will
study intrusion detection in details.

Intrusion Detection Systems (IDS) are automated defense and security sys-
tems for monitoring, detecting and analyzing malicious activities within a net-
work or a host. The goal of IDS is to guarantee the security of a network or
computer system with regard to Confidentiality, Integrity and Availability. A
firewall is commonly the first defensive line in a network and an IDS is used
when there is evidence of an intrusion/attack, which the firewall was unable
to stop or mitigate [2]. IDSs could be categorized in many ways [13], whether
depending on the monitored platform or regarding the technique they use to
detect unusual activities (see Figure 2.3).

Intrusion Detection
Systems

Based on Monitored Platform Based on Detection Technique

Network-based IDS Host-based IDS Hybrid IDS Siganture-based Anomaly-based Hybrid IDS

Figure 2.3: IDS Categorization

2.3.1 IDS types by Monitored Platform

Network-based IDS (NIDS)

This class of IDS is usually deployed at the entry of the network in order to
protect all hosts such as organization’s border router or at the entry of internal
network or DMZ. It has different placement. Also an organization may deploy
one or more IDS monitors in its organizational network with the purpose to
balance the load, particularly it the organization receives gigabits/sec of traffic
from the Internet. By placing the IDS monitors at different points within the
network, each IDS monitor sees only a fraction of the organization’s traffic. It
is usually simple to add this type of IDS to a network and they are considered

13

well secured against attacks [2]. Nevertheless, they have some disadvantages
such as the difficulty in analyzing all packets from a large and overloaded
network especially when a few number of IDS is deployed. Moreover, they
cannot inspect the payload of inbound and outbound packets because they are
encrypted, since the decryption takes place on the terminals.

Host 1

Host 2

Host 4

Switch

Web server Email server DNS server

Switch

Border Router

Internet

Internal Network

Demilitarized Zone

Firewall

Network-based IDS

Host 3

Network-based IDS

Network-based IDS

Figure 2.4: NIDS sensor placement

As shown in Figure 2.4, NIDS can be deployed at the 3 different places at
the same time, or at one place at least.

Host-based IDS (HIDS)

HIDS is typically deployed at single hosts such as terminals. They are de-
ployed as a software on the host. This class of IDS guarantee the safety of
the host by monitoring the the inbound and outbound packets from the host
only and will alert the user or administrator if abnormal activity is detected.
It provides security against the types of attack that the firewall and NIDS do
not detect, such as those based on encrypted protocols. Another benefit of
HIDS over NIDS is that the success or failure of an attack can be immediately
determined [14]. An illustration of HIDS placement in Figure 2.5

14

Host 1

Host 2

Host 4

Switch

Web server Email server DNS server

Switch

Border Router

Internet

Internal Network

Demilitarized Zone

Firewall

Host 3

Host-based
IDS

Host-based
IDS

Host-based
IDS

Figure 2.5: HIDS sensor placement

Hybrid IDS

It’s a combination of both HIDS and NIDS. These class of systems aggregate
the benefits of both approaches while overcoming many of the drawbacks.

2.3.2 IDS types by detection technique

Signature-based IDS

Also denoted as misuse-based IDS. A signature-based IDS maintains a huge
and extensive database of attack signatures(rules). Fore this purpose, a signa-
ture database that defines the shape of known attack is specified a priori. A
signature is simply a list of characteristics about a single packet(e.g., source
and destination port numbers, protocol type...etc). Whenever an attempt
matches a signature, the IDS triggers an alarm or logging the packet that has
been involved for future inspection. This kind of IDS guarantees an efficient
detection with low false alarms and good level of accuracy [14]. Despite its
advantages, wide deployment and usage, it has a number of drawbacks. Most
significantly, it requires previous knowledge of the attack to generate an ac-
curate signature [4]. Moreover, any other packet pattern that does not match
the IDS knowledge database is considered normal even it is a new attack or
unknown anomalies ,or a little variations of known attacks(i.e. it cannot detect
new attacks such as those are not defined in the IDS’ dataset). Also, the IDS’
dataset should be updated all times especially whenever a new attack pattern

15

is discovered.

Anomaly-based IDS

An anomaly-based IDS creates a traffic profile from observing usual or normal
traffic that reflects normal usage, and any observed deviation of current traffic
activity compared to the profile that reflects normal behavior is considered
as an anomaly such as malicious. This profile is generated mostly through
statistical and historical network traffic data. Although from being able to
detect previously unseen attack in which is the main benefit and it does not
rely on previous knowledge about existing attacks, the rate of false positives
(or FP, events mistakenly classified as attacks) is anomaly-based IDS is usually
higher than a signature based ones [5]. Hence, the challenge resides in building
a traffic model that distinguishes between normal traffic and statistically un-
usual traffic [4] with low or maybe now false alarm rate . Anomaly detection
technique are the most commonly used IDS detection type and is the most
investigated topic in the literature among researchers [2].

Anomaly Detection
Techniques and Methods

Statistical-based A-NIDS
Methods

Machine Learning-based A-NIDS
Methods

Wavelet Analysis
Principal

Components
Analysis

Covariance Matrix Clustering
Artificial Neural

Network Random Forest

Evolutionary A-NIDS
Methods

Artifical Immune
systems

Generic Algorithms
Differential
Evolution

Information theory A-NIDS
Methods

Entropy
Kullback-leibler

Distance

Figure 2.6: Anomaly detection techniques and methods

The subject is a bit far from mature and key issues remain to be solved
before wide scale deployment of A-NIDS platforms can be practical [5]. There
are many different techniques and algorithms in the literature used to build a
network model that is capable to perform a good detection such as statistical
procedures, machine learning based schemes, information theory procedures,
and heuristics in which they are illustrated in the Figure 2.6.

16

Hybrid IDS

Hybrid IDSs are a combination of both signature and anomaly based IDS by
deploying the functionalities of both.

2.3.3 Network traffic anomalies

There are several types of network traffic anomalies. to put simple, network
anomalies can be categorized giving two relevant properties: according to their
nature and according to their causal aspect. Figure 2.7 recapitulates the ex-
isted network traffic anomalies.

Traffic anomalies types

Point

Collective

Contextual

Operational

Flash crowd

Measurement

Network attack

Based on Nature

Based on causal
aspect

Figure 2.7: Network traffic anomalies categorization

Traffic anomaly based on its nature

– Point anomaly: is the alternation or deviation of an single (individual)
data instance such as packet from the usual patter/ behavior. These
anomalies are considered the simplest ones.

– Collective anomaly: happens when a collection of similar data in-
stances(packet flow) behaves anomalously with respects to the whole set
of instances. However, in this type of anomalies, individual packets them
selfs are not anomalies in fact but the collective behavior is perceived as
an anomaly.

– Contextual anomaly: are events considered as anomalous depending
on the context in which they are found.

17

Traffic anomaly based on its causal aspect

Actually, network traffic anomalies are not always related to attacks with the
intention to harm computer systems or steal information. According to Bar-
ford et al. [15] and Marnerides et al. [16], anomalies are grouped into four
categories:

– Misconfiguration events: also known as Operational events or Fail-
ures, they are non-malicious anomalies in which can occur because of
hardware failures, software bugs or human mistakes. Server crashes,
power outages, misconfiguration, traffic congestion, non malicious large
file transfers.

– Flash crowds: are large floods in the traffic, which occur when rapid
growth of users attempts to access a specific network resource causing a
dramatic surge in server load. This category of anomalies is considered
as a legitimate (i.e. non-malicious). A cases where flash crowds could
occur such as a contest result is published in a website (baccalaureate
results), or when an e-commerce website announces a big sale.

– Measurement: are not network infrastructure problems, abnormal us-
age or malicious attacks. These anomalies are related to collection in-
frastructure problems and problems during data collections. Examples
are the loss of flow data caused by router overload.

– Network attack: is the kind of anomalies that are created with the
intention to disrupt, harm, degrade, deny or destroy information and
services from computer network systems compromising their integrity,
confidentiality or availability. This category is the most dangerous among
the network traffic anomaly categories and to consider when designing
anomaly detection systems.

2.4 Anomaly Detection using Machine Learn-

ing Approach

Machine learning has been proven theoretically and empirically to be an ef-
fective approach in solving so many problems such as image classification [6],
speech recognition [17], natural language processing [18], object detection [19],
and machine translation [7] . . . etc. Applying machine learning to solve those
problem has given good results in which we could see them in our daily life for
example, Youtube videos recommendation, Google assistant, language trans-
lation, face recognition, and Facebook image tags . . . etc. Hence, so many re-
searchers have adopted this approach to address the anomaly detection prob-
lem. Both classification (supervised learning) and clustering(unsupervised)
have been applied in the literature, some of them are shown in Figure 2.8.

18

Machine Learning-based
A-NIDS Methods

Clustering

Classification

K-neatest neighbors

K-Means

Principal Coordiantes analysis

Ant Colony Optimization for clustering

Naïve Bayseian

Support Vector Machine

Random Forest

Artificial Neural Network

Figure 2.8: Clustering and classification techniques used in the literature

Clustering is the task of grouping a set of objects in such way that ob-
jects in the same group (called cluster) are more similar in some sense to each
other than to those in other groups (clusters). The main advantage of clus-
tering algorithms is that their implementation do not require a labeled data
(i.e. the ground truth of the gathered data) and they provide a stable perfor-
mance in terms of detection rate and complexity, however, they showed to be
time-consuming and highly reliant on proximity measures [2]. Classification is
widely used in the anomaly-detection field [8]. The main idea of a such tech-
niques is training(learning) a classifier with labeled data and then testing the
performance (i.e evaluating) of the trained classifier in previously unseen data
called testing data. Classification based anomaly detection techniques can be
either a binary classification (i.e. building a model to be able to distinguish
between two classes) or a multi-class classification(i.e. building a classifier
that is capable of predicting the class of a given instance among more than
two classes). Classifications techniques have the highest detection accuracy
amongt all used methods in the literature[2]. Nevertheless, they need labeled
data to work and they are demanding in resource consumption.

19

Chapter 3

Statistical Modeling (Machine
Learning and Deep Learning)

3.1 Machine Learning

Machine Learning is an application of Artificial Intelligence (AI) that provides
systems the ability to automatically learn and improve from experience without
being explicitly programmed. It means with experience that we have to give
the learning algorithm examples or instances and tell it to make inferences
from that examples to design a hypothesis and uses it to do the required task.
The task differ from application to another for instances Image Classification,
House Price Prediction, Speech Recognition, Email Classification (Spam or
not), Packet Classification (Normal or Malicious), . . . etc.
When it comes to Email Classification For example, suppose that we would like
to build an email filter that can distinguish spam (junk) email from non-spam.
The machine-learning approach to this problem would be the following: Start
by gathering as many examples as posible of both spam and non-spam emails.
Next, feed these examples, together with labels indicating if they are spam
or not, to your favorite machine-learning algorithm which will automatically
produce a classification or prediction rule. Given a new, unlabeled email, such
a rule attempts to predict if it is spam or not. The goal, of course, is to
generate a rule that makes the most accurate predictions possible on new test
examples [20].
In traditional programming, the programmer gives the inputs and tells to the
algorithm what to do with these inputs (i.e. the algorithm is designed explicitly
to solve a such problem), whereas with ML approach, the programmer must
give the input and the output (results) and the ML algorithm will try to find
a relationship between them (programe) as shown in the Figure 3.1

20

Figure 3.1: Traditional Programming vs Machine Learning Approach

3.1.1 Regression vs Classification

In ML Approach, we could classify the existing problems into two main cate-
gories as the following :

1. Regression in this category the model predict a continuous value giv-
ing an input variable. These are often quantities such as amounts and
sizes. For example predicting house price giving its size and number of
bedrooms.

2. Classification unlike regression, the model gives a discrete value (label
or category) that determines in which class or category belong the input
variables. For example giving a tumor size and the model try to classify
if the tumor either is malignant or benign.

In this project, our aim is to solve a classification problem of network traffic
if a packet is normal or malicious. Packet Classification is not a handy task
at all, thus, we could not use the traditional approach to build a classifier
manually that gives good results (e.g. accuracy or precision . . . etc.) Instead
of investing effort into writing that complex packet classification function f(x).
Its more common and practical to use a Machine Learning approach to tackle
that kind of problems. Using labeled data to learn a classification function is
called supervised learning.

21

3.1.2 Supervised Learning

Given a set of instances {x1, x2, x3, ..., xn} in which each instances xi may
have one or more feature followed by the answers or labels of each instance
{y1, y2, y3, ..., yn}, the learning algorithm try to find a relationship between the
inputs(instances) and the outputs (labels) that is represented by a function
h(x) = y called the hypothesis and it will be used in predicting the output
(label) of a given new instance h(x′) = y′.
This is what we call Supervised Learning, We train a model with data (in-
stances) given the ground truth (labels) and the model compute a function
that map the input with the labels to use it in order to classify new instances.
Some popular examples of supervised machine learning algorithms are:

1. Decision Tree.

2. Random Forest.

3. Logistic Regression.

4. Artificial Neural Network . . . etc.

In this master-thesis, the above mentioned algorithms have been used to eval-
uate the performance of anomaly-based IDS.

3.1.3 Features

Features are the set of values that usefully characterize the things we wish to
classify. These values are usually aligned in a vector called the feature vector.
Examples:
Things to classify possible features

Packet duration, ttl, service, protocol used, . . .
Tumor tumor size, age, . . .
Email source IP address, sent time, content title,. . .

There is several tool intended to feature extraction, however, the problem is
not how to extract features but which features to use in order to construct
the dataset to be used to train and evaluate the model. Features extraction
usually requires domain knowledge.It is called Feature Engineering.

3.1.4 Machine Learning Model Evaluation

To evaluate the performance of a machine learning model on a given dataset we
rely on some metrics such as accuracy, precision, recall, and others. Usually,
the dataset is split into two subsets:

– the training set: used to train our model

– the test set: used to evaluate the performance of our model on examples
that are not part of the training set

22

A validation set can be used to track the performance of the model during
the learning process. Test and validation sets aren’t meant to be as big as the
training set.

However, there are two problems with splitting the dataset into two subsets:

– Sometimes we don’t even have enough data, thus, selecting only a random
subset of the available data may be counter-productive.

– What if the test data is biased? Therefore, the estimated performance
can’t be as reliable.

To deal with such kinds of problem, there is an evaluation strategy called
k-fold cross validation. It works as follows:

– Pick an integer k, usually between 5 and 10.

– Split the dataset D into k equally-sized subsets. These subsets should be
representative of the whole dataset, it means they contain samples from
all classes.

– For each subset Di, train the model (from scratch) on the other k − 1
subsets, and evaluate it on Di.

The average performance estimated over the k training is more reliable
given we used all the data we have for both training and testing in the k
setups.

3.1.5 Evaluation Metrics

Evaluation of a ML model is an essential part of any project. It is reached
by using different evaluation metrics. In this section we will cover different
types of evaluation metrics available. Before we dive into those metrics, it is
necessary to understand some common terms such as :

– True Positives (TP) the number of positive instances classified as
positive.

– True Negatives (TN) the number of negative instances classified as
negative.

– False Positives (FP) the number of negative instances classified as
positive.

– False Negatives (FN) the number of positive instances classified as
negative.

Here are some of the most used evaluation metrics:

23

1. Classification Accuracy: the most commonly used metric to judge
a model and is actually not a clear indicator of the performance. It is
the ration of correctly classified samples to the total number of input
samples. It is calculated by the following formula:

Accuracy =
TP + TN

TP + TN + FP + FN

2. Precision: It is the number of correctly classified positive samples di-
vided by the number of sample predicted as positive by the classifier (i.e.
the proportion of positive samples correctly classified to the all predicted
as positive). It’s formula is:

Precision =
TP

TP + FP

Also known as positive predictive value (PPV).

3. Recall: It is the number of correctly classified positive samples divided
by the number of all passed positive samples .

recall =
TP

TP + FN

Also known as sensitivity or true positive rate (TPR).

4. Specificity: It is the number of correctly classified negative samples
divided by the number of all passed negative samples .

Specificity =
TN

TN + FP

Also known as Selectivity or True negative rate (TNR).

5. False Positive Rate (FPR): It is the ratio of misclassified negative
samples to all negative samples .

FPR =
FP

FP + TN

6. False Negative Rate (FNR): It is the ratio of misclassified postiive
samples to all positive samples .

FNR =
FN

FN + TP

7. F1-Score: It is the harmonic mean of precision and recall. This takes
the contribution of boch, so higher the F1 score, the better.

F1Score =
2 ∗ precision ∗ recall
precision+ recall

24

8. Confusion Matrix: It is a simple matrix that contains the four semi-
metrics described above (TP, TN, FP and FN). It is structured as shown
in Figure 3.2

Figure 3.2: Confusion Matrix of a binary classification

3.2 Artificial Neural Networks

Artificial neural networks (ANNs, neural networks or neural nets) are learning
models inspired by a simplification of neurons in a brain. Average human
has about 100 billion neurons, each of these neurons is connected to a bunch
of other neurons. A single neuron may receive an electrical signal from other
neurons as an input, the strength of the signal coming from a particular neuron
de-pends on how strong is the connection with that neuron, and depending on
that signal, the neuron may fire or not. In this section we will explore the
basics of artificial neural networks models and how they apply to machine
learning.

3.2.1 Artificial neural network architecture

An ANN is based on a collection of connected units or nodes called artificial
neurons, which loosely model the neurons in a biological brain. Each connec-
tion, like the synapses in a biological brain, can transmit a signal from one
artificial neuron to another in which is a real number, and the output(the real

25

number) of each artificial neuron is computed by some non-linear function (we
explained how it works in details later in this section). The connections be-
tween artificial neurons are called ’weights’. Artificial neurons are structured
into layers conventionally Input layer, Hidden layer and ultimately the Output
layer. The input layer consists of the features of the data set that you aim to
train your neural net on where n features corresponds to n input.

Input
layer

Hidden
layer

Output
layer

x1

x2

x3

x4

x5

Ouput

Figure 3.3: Example of a neural net architecture

3.2.2 Artificial Neuron

The artificial neuron also called perceptron is the elementary unit of ANNs
exactly where the computation happens. We can perceive the artificial neuron
as a function f that:

1. takes as inputs a set of values x0, x1, . . . xn,

2. each input value xi is multiplied by a weight wi that reflects how strong
that connection is, giving us a weighted input wi × xi

3. the weighted inputs now run through a sum

n∑
i=0

wi × xi

4. to follow the convention, they added a term to the weighted sum called
the bias b. The bias is like the intercept added in linear equation. It is

26

Activation
function

∑
w2x2

...
...

wnxn

w1x1

w0x0

inputs weights

Figure 3.4: Computational model of a neuron

an additional parameter in the neural network which is used to adjust
the output along with the weighted sum of the inputs to the neuron.
Therefore is a constant which helps the model in a way that it can fit
best for the given data.

n∑
i=0

wi × xi + b

The sum of the weighted inputs can be computed as a dot product of
the vector x and W .

n∑
i=0

wi × xi + b = W · x+ b

5. then the sum is passed through a non-linear function known as an acti-
vation function noted a(x).

In a nutshell, a neuron with an activation function a(x) can be seen as a
function f parameterized by a vector of weights W = [w1, w2, . . . , wn] ∈ Rn

and a bias b ∈ R that takes as inputs a vector x = [x1, x2, . . . , xn] ∈ Rn:

fW,b(x) = a(W · x+ b)

The output of the activation function used as an input in the next layer’s
neurons.

3.2.3 Activation functions

The artificial neuron calculates a weighted sum of its input and adds a bias.

hW,b(x) = W · x+ b

27

The value of hW,b(x) can be anything ranging from −∞ to +∞, the neuron
really doesn’t know the bounds of the value. So how do we decide whether
the neuron should fire or not ? Researchers decided to add a function called
Activation Function a(hW,b(x)) to check whether to fire it or not.
In Addition, the activation function introduce non-linear properties to the
neural network because the weighted sum is a simple linear function and it is
limited in their complexity and have less power to learn complex functional
mapping from data. Hence the activation function does the non-linear trans-
formation to the input making it capable to learn and perform more complex
tasks. An important feature of the Activation Function is that is should be
differentiable. Here are the mostly used activation function in the literature :

– Sigmoid activiation function
It is an activation function of from (see Figure 3.1). Its range is between
0 and 1 and a S-Shaped curve (see Figure 3.5).

σ(z) =
1

1 + e−z
(3.1)

The Sigmoid function is typically used on the output layer especially

−5 −4 −3 −2 −1 0 1 2 3 4 5

0.2

0.4

0.6

0.8

1

z

σ
(z

)

Figure 3.5: Sigmoid activation function

when it comes to a binary classification problem.

– Hyperbolic tangent activation function
Mathematically, it is a shifted version of the sigmoid function in which
performs a squashing between -1 and 1,thus, the inactivity of a neuron
is represented by a -1 rather than 0. It is abbreviated to tanh and it is
used on both hidden and output layers.

tanh(z) =
ez − e−z

ez + e−z
(3.2)

28

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1

−0.5

0

0.5

1

z

ta
n
h

(z
)

Figure 3.6: Hyperbolic tangent activation function

– Rectified Linear activation function
Also called ReLU (Rectified Linear Unit), the ReLU activation is consid-
ered by experts as the most popular activation function for deep learn-
ing [21]. It has strong biological motivations and mathematical justifica-
tions [22].

ReLU(z) = max(z, 0) (3.3)

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

2

4

z

R
eL
U

(z
)

Figure 3.7: Rectified Linear activation function

– Softmax activation function
Also known as softargmax. It is a function that takes as input a vector of
k real numbers and normalizes it into a probability distribution consisting
of k probabilities. The softmax function of the ith neuron is defined by
the formula see Figure 3.4

Softmax(z)i =
ezi∑k
j=1 e

zj

and z = (z1, . . . , zk) ∈ Rk

(3.4)

That is, prior to applying softmax, some vector components could be neg-
ative, or greater than one; and might not sum to 1; but after applying
softmax, each component will be in the interval (0, 1), and the compo-
nents will add up to 1, so that they can be interpreted as probabilities.

29

It is used mostly on the output layer when it comes to a multi-class clas-
sification to calculate the probability in which class a given input belong
to.(the output that has the highest probability).

3.2.4 Feed-forward Neural Network

Also know as multi-layer perceptrons(MLP) or Deep Feed-forward. Multi-layer
perceptrons are the foundation of most deep learning models. Networks like
Convolutional neural networks CNNs and Recurrent neural networks RNNs
are some special cases of feed-forward neural networks (FFNNs). FFNN was
the first and simplest type of artificial neural network devised [23]. In this
network, the information moves in only one direction, forward, from the input
nodes, through the hidden layer nodes and to the output nodes. There are no
cycles of loops in the network. MLP consists of:

– first layer(input layer) consists of the input units, a vector x = [x1, . . . , xn].
Also called features that we aim to train our model on.

– hidden layers (at least 1), usually used to perform representation trans-
formation, it is exactly where the computation happens.

– a single output layer, that represents the output of the network, usually
used to perform classification on the representation given by the last
hidden layer.

A layer is a set of neurons that have the same activation function, the same
number of inputs (thus, the same number of weights), but may have different
values for their parameters (weights and bias)

– The first hidden layer, noted h(1), each neuron in this layer is noted h
(1)
k

where k represents the kth neuron neuron in this layer. Each neuron
h
(1)
k takes as input a vector x = [x1, x2, . . . , xn] that the represents the

features of the data and a vector of weights associated to that neuron
Wk = [w1, w2, . . . , wn] and a bias bk . We end up having the following
formula:

h
(1)
k (x) = a(Wk · x+ bk)

note: a(.) is the activation functions.
The same to the other neurons at this layer.

– The second hidden layer noted h(2), each neuron h
(2)
k takes as input a

vector of weights Wk and a bias bk but rather than taking a vector x(the
input features), it takes a vector that represents the output h of each

neuron of the previous layer noted x = [h
(1)
1 , h

(1)
2 , . . . , h

(1)
i]. We end up

having the following formula:

h
(2)
k (x) = a(Wk · x+ bk)

30

x1

x1

x2

x3

h1

(1)

h2

(1)

h3

(1)

h1

h2

h3

h4

(2)

(2)

(2)

(2)

o1

o1

Figure 3.8: A simplified graphical visualization of the feed-forward neural net-
work model. This FFNN takes 4 inputs, has 2 hidden layers h(1) and h(2) of
sizes 3 and 4 respectively, and has an output layer of size 2. Biases were omit-
ted only from this visualization. We can see how each two adjacent layers are
fully connected to each other

The same with the other neurons at this layer, also the next layer until
we reach the output layer. This is why it is called Feed-Forward (It
keeps feeding the next layers with the result of the previous layers until
it reaches the output layer).

In a nutshell, let’s consider the following:

– h
(i)
k is the kth neuron of the ith layer.

– h(n) is the neuron of the output layer.

– W i is an n × m matrix (W k ∈ Rn×m) that represents the weights of
ith layer where n is the number of neurons in this layer and m in the
dimension of inputs (or the number of neurons at the previous layer).

W i =

w1,1 w1,2, w1,3, . . . , w1,m

w2,1 w2,2, w2,3, . . . , w2,m
...

wn,1 wn,2, wn,3, . . . , wn,m

 (3.5)

wik row represents the set of weights of the kth neuron and wik,j represents

the jth weight of kth neuron at the ith layer (see Figure 3.5).

– bi = [b1, b2, . . . , bn] is the vector of bias at the ith layer where bk is the kth

neuron’s bias at this layer.

– xi = [x1, x2, . . . , xn] represents the input vector of the ith layer.

31

We can write the hypothesis h of a given neuron(kth neuron at the ith layer)
as the following:

h
(i)
k (x) = a(W i

k · xi + bik)

h
(i)
k (x) = a(W i

k,1 · xi1 +W i
k,2 · xi2 + . . .+W i

k,m · xin + bik)
(3.6)

Note: x = h(i−1) = [hi−11 , hi−12 , . . . , hi−1n] is the output vector of the previous layer.

Each layer i output a vector of values noted h(i) = [hi1, h
i
2, . . . , h

i
n] in which

it will be used as input at the next layer, hence, we can say that a feed-
forward neural network of L hidden layers is a composed function f that takes
as input a vector x (features), and returns a vector of output y ∈ R1 (one
dimension) or y ∈ Rn, n > 1 in case of multi-class classification:

y = fθ(x) = a(h(L)(h(L−1)(. . . (h(1)(x)) . . .)))

where:
θ = {W 1,W 2, . . . ,W n} ∪ {b1, b2, . . . , bn} the set of network parameters.

3.2.5 Feed-froward neural network Training

In a classification problem, given a dataset D = {(x1, y1), . . . , (xn, yn)} where
xi is a set of features and yi is the class or category where the given features
belong to (y ∈ [1, 0] 1 for malicious and 0 for normal packet when it comes
to packet classification for example). We can see the dataset D as function g
that maps some input xi to an output yi , y = g(x) in which is not defined
mathematically. As we have seen before, a feed-forward neural network is a
function f parameterized by the θ (the set of all weights and biases). The goal
of training a neural net is to find the right parameters θ for the function fθ
to approximate the function g. This is why FFNN is called universal function
approximator.
The approximated function f can be interpreted as fθ(x) = P (y = 1|x; θ) the
probability that y = 1 (by convention 1 represents the positive class) given the
input vector of features x and paramatrized by θ. This is because the neurons
of the output layer use function that outputs a probability distribution (a value
between 0 and 1 as we have seen in the activation functions section).
Training a neural network it is all about choosing the set of model parameters
θ so that fθ(x) to be close to y (the actual class) for our training examples
(x, y). In fact training a neural network mathematically is an optimization
problem more precisely a minimization problem in which we need to choose
the right parameters θ that minimize the difference between the predicted class
and actual class | fθ(x)− y | but it is not evident to choose θ with respect to
one training example, hence, rather than using one example we will use the
whole dataset by summing up over the dataset of size m. Also it is important
to square the difference because mathematically it is more convenient. We end
up having a function J called the cost function that is paramatrized by θ and

32

has the following formula :

argmin
θ

J(θ) =
1

m

m∑
i=1

(fθ(x
i)− yi)2

More precisely, the previous form of cost function called the Mean Squared
Error (MSE) . It is the simplest and the most used among cost functions.
Briefly, training a neural network model is to find the set of parameters θ such
that cost function J(θ) is minimum by changing the values of θ. Of course
we can not keep changing them randomly because it takes a lot of time and
often we can not fall at the optimum. Thus, It is required to use an algorithm
to guide the training and guarantee to fall at the right parameters as fast as
possible.

3.2.6 Optimization algorithms

Optimization algorithms helps us to minimize (or maximize) an objective func-
tion (cost function) J(θ) which is simply a mathematical function dependent
of the Model’s internal learnable parameters θ which are used in computing
the predicted class y

′
= fθ(x). Optimization algorithms play an important role

in model training. So, choosing the convenient one will make our model fit
better to the data and consume much less time to converge (find the optimum
parameters). It exists several optimization algorithms in the literature but in
this section we will use most widely used and the foundation of how we train
and optimize intelligent systems called Gradient Descent.
Gradient descent is an iterative optimization algorithm that finds a local mini-
mum of a function.This algorithms uses the information that the gradient gives
us about the function at a given input: the direction of the steepest increase,
but since we are looking to decrease the functions output, we follow the nega-
tive gradient at each step. To update the parameters of the function J(θ) that
we aim to minimize, we use the following formula:

θ = θ − α · ∇J(θ) (3.7)

where:

– θ is the set of parameters of the network that they were initialized ran-
domly.

θ = {W1,W2, . . . ,Wn} ∪ {b1, b2, . . . , bn} = {θ1, θ2, . . . , θn}

– α is the learning rate. It determines the size of the step towards the opti-
mal parameters. It is required to set the learning rate to an appropriate
value, which is neither too low nor too high this is because if the steps
it takes are too big, it maybe misses the local minimum and if the steps
are too small it will take a lot of time to converge (time consuming). See
Figure 3.9.

33

Figure 3.9: a simplified visualization of learning rate influence α in finding the
local minimal of a the cost function

– ∇J(θ) is the gradient(partial derivative) of the cost function with respect
to its input because it is a multi-variable function that takes multiple
variables as input(the set of parameters). For each θi ∈ θ:

θi = θi − α · ∇J(θi) (3.8)

where :

∇J(θi) =
∂J(θ)

∂θi

An example (see Figure 3.10) where we need to find the local minimal of a
function that has one parameter J(θ) (just to simplify). At the point A, the
gradient is negative ∇J(θi) < 0, so the value of the next θ is going to increase
in order to minimize a bit J(θ) accroding to the formula 3.10. in contrast to
the point B where the gradient is positive ∇J(θi) > 0, hence, the next θ value
according to the same formula is going to decrease to minimize J(θ).
It exists another sophisticated alternative to gradient descent such as:

– Stochastic gradient descent (SGD) in contrary, does this for each training
example within the dataset. This means that it updates the parameters
for each training example, one by one. It is called stochastic because
the method uses randomly selected (or shuffled) samples to evaluate the
gradients. This can make SGD faster than Gradient Descent, depending
on the problem. One advantage is that the frequent updates allow us to
have a pretty detailed rate of improvement.

θi = θi − α · ∇J(θi) (3.9)

where:
J(θ) = (fθ(x

i)− yi)

– Mini-batch Gradient Descent is the go-to method since its a combina-
tion of the concepts of SGD and Gradient Descent. It simply splits the
training dataset into small batches and performs an update for each of

34

22 44 66 88 1010 1212 1414 1616 1818 2020 2222 2424 2626 2828 3030 3232 3434 3636 3838 4040 4242

-8-8

-6-6

-4-4

-2-2

22

44

66

88

1010

1212

1414

1616

1818

2020

00

JJ AA

BB

CC

Figure 3.10: A simple example of a cost function
that has one parameter θ. From two point initialized randomly A and B, it

visualizes which direction we should take to reach the local minimal of J(θ).

these batches. Therefore it creates a balance between the robustness of
stochastic gradient descent and the efficiency of batch gradient descent.

θi = θi − α · ∇J(θi) (3.10)

where:

J(θ) =
1

m

m∑
i=1

(fθ(x
i)− yi)2 and 1 < m < dataset size

3.2.7 ANN Hyper-Parameters Tuning

Hyper-parameter is a configurable value which is set before the learning process
begins. These hyper-parameter values dictate the behavior of the training
algorithm and how it learns the set of parameters θ from the data. Choosing a
set of optimal hyper-parameters for a learning algorithm requires expertise and
extensive trial and error. However, it exist two common used methods called
Grid search and Random search that can ease the process. Before to dive into
those two method, we have to take a look to the ANNs’ hyper-parameters that
affect its training process and performance such as:

1. Number of Layers: It must be chosen wisely as a very high number
may introduce problems like over-fitting and vanishing and exploding

35

gradient problems and a lower number may cause a model to have high
bias and low potential model. Depends a lot on the size of data used for
training.

2. Number of hidden units per layer: These too must be chosen rea-
sonably to find a sweet spot between high bias and variance. Again
depends on the data size used for training.

3. Activation Function: The popular choices in this are ReLU, Sig-
moid and Tanh(only for shallow networks 1 or 2 hidden layers), and
LeakyReLU. Generally choosing a ReLU/LeakyReLU do equally well.
Sigmoid/Tanh may do well for shallow networks. Identity helps during
regression problems.

4. Optimizer: It is the optimization algorithm used by the model to up-
date weights of every layer after every iteration. Popular choices are
SGD, RMSProp and Adam. SGD works well for shallow networks but
cannot escape saddle points and local minima in such cases RMSProp
could be a better choice, AdaDelta/AdaGrad for sparse data whereas
Adam is a general favorite and could be used to achieve faster conver-
gence.

5. Learning Rate:It is responsible for the core learning characteristic and
must be chosen in such a way that it is not too high wherein we are
unable to converge to minima and not too low such that we are unable
to speed up the learning process. Recommended to try in powers of 10,
specifically 0.001,0.01, 0.1,1. The value of the learning rate is dependent
a lot on the optimizer used. For SGD - 0.1 generally works well whereas
for Adam - 0.001/0.01 but it is recommended to always try all values from
the range above. You can also use the decay parameter,to reduce your
learning with number of iterations, to achieve convergence.Generally it
is better to use adaptive learning rate algorithms like Adam than using
a decaying learning rate.

6. Initialization: Doesn not play a very big role as defaults work well but
still it is preferred to use He-normal/uniform initialization while using
ReLUs and Glorot-normal/uniform (the default is Glorot-uniform) for
Sigmoid for better results. One must avoid using zero or any constant
value(same across all units) weight initialization.

7. Batch Size: It is indicative of number of patterns shown to the network
before the weight matrix is updated. If batch size is less, patterns would
be less repeating and hence the weights would be all over the place and
convergence would become difficult. If batch size is high learning would
become slow as only after many iterations will the batch size change. It
is recommend to try out batch sizes in powers of 2 (for better memory
optimization) based on the data-size.

36

8. Number of Epochs: The number of epochs is the number of times the
entire training data is shown to the model. It plays an important role in
how well does the model fit on the train data. High number of epochs
may over-fit to the data and may have generalization problems on the
test and validation set, also they could cause vanishing and exploding
gradient problems. Lower number of epochs may limit the potential of
the model. Try different values based on the time and computational
resources you have.

There is not a deterministic rule or a pre-defined set of hyper-parameters
that guarantee a good performance. For popular problems, like image classi-
fication, one can use hyper-parameters published in known paper and make
small adjustments. However, for relatively under- developed problems like
the one we are tackling for instance, one should experiment with different
hyper-parameters until they get the best set, this might require time and/or
computational resources. Evaluating the performance of a given set of hyper-
parameters is done in the validation processes (by using a set of data that
the model has never seen them before: validation set). As we mentioned be-
fore, there are two common approaches that ease the processes of choosing the
optimal hyper-parameters:

– Grid Search:The traditional way of performing hyper-parameter opti-
mization has been grid search, or a parameter sweep, which is simply an
exhaustive searching through a manually specified subset of the hyper-
parameter space of a learning algorithm. A grid search algorithm must
be guided by some performance metric, typically measured by cross-
validation on the training set [24] or evaluation on a held-out validation
set [25].

– Random Search: is a technique where random combinations of the
hyper-parameters are used to find the best solution for the built model.
It tries random combinations of a range of values. The chances of finding
the optimal parameter are comparatively higher in random search. Re-
searchers have shown empirically and theoretically that random search
is more efficient for parameter optimization than grid search [26].

37

Figure 3.11: As shown in the figure, random search has found the optimal
hyper-parameters less number of iterations. In grid search, however, the opti-
mal hyper-parameter is not found since we do not have it in our grid.

38

Chapter 4

UNSW-NB15 Network Data Set

In the field of machine learning, the dataset used to train and test the model
plays an important part in model’s performance. ML depends heavily on data.
Its the most crucial aspect that makes algorithm training possible and explains
why machine learning became so popular in recent years. But regardless of
your actual terabytes of information and data science expertise, if you cant
make sense of data records, a machine will be nearly useless or perhaps even
harmful. An expertise in the domain have to be part of the work team that
they are constructing the dataset (a medicine in cancer detection for instance)
to select the more convenient features (proprieties). This process called feature
engineering, it means using domain knowledge of the data to create features
that make machine learning algorithms work.
The effectiveness of a ML model is evaluated based on their performance on a
given dataset in which must be reliable and reflects real data points.
In network security, evaluating the performance of NIDS has been done by us-
ing older benchmark dara sets are KDDCUP 99 and NSLKDD. It is percevied
through several studies [27] [28] [29] [30]. Evaluating a NIDS using these data
sets does not reflect realistic output performance due to several reasons [10].
First reason is the KDDCUP 99 data set contains a tremendous number of
redundant records in the training set. The Redundant records affect the re-
sult of detection biases toward the frequent records [29]. Second, there are
also multiple missing records that are a factor in changing the nature of the
data [28]. Third, The NSLKDD data set is the improved version of the KD-
DCUP 99, it tackles the several issues such as data unbalancing among the
normal/abnormal records and the missing values [9]. However, this data set is
not a comprehensive representation of a modern low foot print attack environ-
ment [10]. the reasons mentioned above have pushed me to use UNSW-NB 15
dataset in this project.

39

4.1 Dataset description and details

4.1.1 Dataset generation

UNSW-NB15 data set is a hybrid of the real moder normal behaviors and the
synthetical attack activities. Abnormal traffic has been generated using IXIA
PerfectStorm traffic generator tool that simulates nine families of attacks from
a CVE site (this site is a dictionary of publicly known information security vul-
nerabilities and exposures). Both normal and malicious traffic have captured
using the TCPdump tool and saved in a form of pcap files as row packets.
Extracting useful features from the raw packet has been done by using Ar-
gus and Bro-IDS. Additionally, twelve algorithms are developed using a C #
language to analyze in depth the flows of the connection packets. The data
set is labelled from a ground truth table that contains all simulated attack
types. Ultimately, saving them into a CVP files. The Figure 4.1 recapitulate
the process of UNSW-NB15 data set generation.

Figure 4.1: Framework Architecture for Generating UNSW-NB15 dataset

4.1.2 Dataset Features

the UNSW-NB15 dataset consists of 49 feature in each record in the form of 5
data types: nominal, integer, float, timestamp and binary [10]. The extracted
features have been categorized into 6 groups: flow features, basic features,
content features, time features, additional generated features and labelled fea-
tures [10]. There are 4 features in the flow features (Source and destination
IP, source and destination port number) that we can not use them in machine
learning approach because they will cause the model to be biased towards those
addresses, hence, it is more convenient to remove them from the feature set.
Here are the 49 features and their description:

40

No Name Type Description
1 srcip Nominal Source IP Address
2 sport Integer Source port number
3 dstip Nominal Destination IP address
4 dsport Integer Destination port number
5 proto Nominal Transaction protocol

Table 4.1: Flow features

No Name Type Description
6 state Nominal The state and its dependent protocol,

e.g. ACC, CLO, else(-)
7 dur Float Record total duration
8 sbytes Integer Source to destination bytes
9 dbytes Integer Destination to source bytes
10 sttl Integer Source to destination time to live
11 dttl Integer Destination to source time to live
12 sloss Integer Source packets retransmitted or dropped
13 dloss Integer Destination packets retransmitted or

dropped
14 service Nominal http, ftp, ssh, dns,. . . , else (-)
15 sload Float Source bits per second
16 dload Float Destination bits per second
17 spkts Integer Source to destination packet count
18 dpkts Integer Destination to source packet count

Table 4.2: Basic Features

No Name Type Description
19 swin Integer Source TCP window advertisement
20 dwin Integer Destination TCP window advertisement
21 stcpb Integer Source TCP sequence number
22 dtcpb Integer Destination TCP sequence number
23 smeansz Integer Mean of the flow packet size transmitted

by the src
24 trans-

depth
Integer The depth into the connection of http

request/response transaction
25 res-bdy-len Integer The content size of the data transferred

from the servers http service.

Table 4.3: Content Features

41

No Name Type Description
26 sjit Float Source jitter (msec)
27 djit Float Destination jitter (msec)
28 stim Timestamp Record start time
29 ltime Timestamp Record last time
30 sintpkt Float Source inter-packet arrival time (msec)
31 dintpkt Float Destination inter-packet arrival time

(msec)
32 tcprtt Float The sum of synack and ackdat of the

TCP.
33 synack Float The time between the SYN and the

SYN-ACK packets of the TCP.
34 ackdat Float The time between the SYN-ACK and

the ACK packets of the TCP.

Table 4.4: Time Features

Features are categorized into six groups:

1. Flow features: Includes the protocol used between hosts, as reflected
in the table 4.1

2. Basic features: involves the attributes that represent protocols con-
nections (i.e. session characteristics), as shown in the table 4.2

3. Content features: encapsulates the attributes of TCP protocol, also
they contain some attributes of http services, as reflected in 4.3

4. Time features: contains the attributes time, for example, arrival time
between packets(jitter), start/end packet time, and round trip time of
TCP prtocol, as shown in the table 4.4

5. Additional features: in the table 4.5, this category can be further
divided into two groups: general purpose features (i.e., 3640), whereby
each feature has its own purpose, according to protect the service of
protocols, and (2) connection features (i.e., 4147) that are built from the
flow of 100 record connections based on the sequential order of the last
time feature.

6. Labelled features: used to identify the class (i.e. label) the data set.
Two attributes were provided: attack-category represents the nine cat-
egories of the attack and the normal, and label is 0 for normal and 1
otherwise, as shown in the table 4.6

42

No Name Type Description
35 is-sm-ips-

ports
Binary If source (1) equals to destination (3)IP

addresses and port numbers (2)(4) are
equal, this variable takes value 1 else 0

36 ct-state-ttl Integer No. for each state (6) accord-
ing to specific range of values for
source/destination time to live (10) (11).

37 ct-flw-http-
mthd

Integer No. of flows that has methods such as
Get and Post in http service.

38 is-ftp-login Binary If the ftp session is accessed by user and
password then 1 else 0

39 ct-ftp-cmd Integer No of flows that has a command in ftp
session.

40 ct-srv-src Integer No. of connections that contain the
same service (14) and source address (1)
in 100 connections according to the last
time (26).

41 ct-srv-dst Integer No. of connections that contain the
same service (14) and destination ad-
dress (3) in 100 connections according
to the last time (26).

42 ct-dst-ltm Integer No. of connections of the same destina-
tion address (3) in 100 connections ac-
cording to the last time (26).

43 ct-src-ltm Integer No. of connections of the same source
address (1) in 100 connections according
to the last time (26).

44 ct-src-
dport-ltm

Integer No of connections of the same source ad-
dress (1) and the destination port (4)
in 100 connections according to the last
time (26).

45 ct-dst-
sport-ltm

Integer No of connections of the same destina-
tion address (3) and the source port (2)
in 100 connections according to the last
time (26).

46 ct-dst-src-
ltm

Integer No of connections of the same source (1)
and the destination (3) address in in 100
connections according to the last time
(26).

47 Label Binary 0 for normal and 1 for attack records.

Table 4.5: Additional Generated Features

43

No Name Type Description
48 attack-cat Nominal The name of each attack category. In

this data set, nine categories (e.g.,
Fuzzers, Analysis, Backdoors, DoS, Ex-
ploits, Generic, Reconnaissance, Shell-
code and Worms)

49 Label Binary 0 for normal and 1 for attack records.

Table 4.6: Labelled Features

4.1.3 Dataset Attack Categories

Multi-class classification is the problem of classifying instances into one of
three or more classes. For this purpose, the feature Attack-category has been
introduced among UNSW-NB15 dataset features to categorize the records into
specific classes are the following:

1. Normal: The class of the natural traffic that can not harm the target
host or network (normal usage).

2. fuzzers: Ejecting invalid, unexpected or random data as an input to
discover coding errors and security vulnerabilities in a software, operating
systems or networks.

3. Analysis: It contains different attacks of port scan, spam and html files
penetrations.

4. Backdoors: Allow attackers to establish a connection and gain com-
mand and control [C&C] with their target network while evading de-
tection. In fact, research reveals that many of the backdoors used in
targeted attacks have been especially designed with the ability to bypass
and kind of intrusion detection system(IDS).

5. DoS: The denial of service attack is an attack meant to shut down a
machine or network, making it inaccessible to its intended users. DoS
attacks accomplish this by flooding the target with traffic, or sending
it information that triggers a crash. In both instances, the DoS attack
deprive legitimate users (i.e. employees, members, or account holders)
of the service or resource they expected.

6. Exploits: Include any type of attacks that take advantages of the exist-
ing vulnerabilities at your operating system or your piece of software to
cause harms such as unauthorized access, stealing information . . . etc.

7. Generic: A technique works against all block- ciphers (with a given
block and key size), without consideration about the structure of the
block-cipher.

44

8. Reconnaissance: A type of attack in which an intruder engages with
your system to gather information about vulnerabilities

9. Shellcode: Is a small piece of code used as the payload in the exploita-
tion of a software vulnerability. It is called shellcode because it typically
starts a command shell from which the attacker can control the compro-
mised machine.

10. Worms: A computer worm is a type of malware that spreads copies of
itself from computer to computer. A worm can replicate itself without
any human interaction, and it does not need to attach itself to a software
program in order to cause damage.

4.1.4 Dataset Packets distribution

The total number of records(packets) is two million and 540,044. A partition
from this dataset is configured as a training-set and testing-set to utilize them
as a benchmark in anomaly-based NIDS evaluation. The number of records is
175,341 and 82,332 records in the train and test set respectively. The distri-
bution of normal and malicious packets or of attack categories in both train
and test set can be illustrated in the following:

– Training Set:

Figure 4.2: Normal and malicious packets distribution in training set

45

Figure 4.3: Attack categories distribution in training set

Category Nbr of records Percentage
binary classes distribution

Normal 56000 31.93 %
Malicious 119341 68.07 %

multi classes distribution
Normal 56000 31.93 %
Generic 40000 22.8 %
Exploits 33393 19 %
Fuzzers 18184 10.3 %
DoS 12264 7 %
Reconnaissance 10491 6 %
Analysis 2000 1.14 %
Backdoor 1746 1 %
Shellcode 1133 0.6 %
Worms 130 0.07 %

Table 4.7: Packet distribution in training set. The first two rows represent
the number of instances in Normal and Malicious categories. The malicious
category itself has 9 sub-categories that they are described in the remaining
rows

– Testing Set:

46

Figure 4.4: Normal and malicious packets distribution in testing set

Figure 4.5: Attack categories distribution in testing set

47

Category Nbr of records Percentage
binary classes distribution

Normal 37000 44.93%
Malicious 45332 55.07 %

multi classes distribution
Normal 37000 44.93%
Generic 18871 22.92 %
Exploits 11132 13.52 %
Fuzzers 6062 7.36 %
DoS 4089 4.96 %
Reconnaissance 3496 4.26 %
Analysis 677 0.85 %
Backdoor 583 0.70 %
Shellcode 378 0.45 %
Worms 44 0.05 %

Table 4.8: Packet distribution in testing set. The first two rows represent
the number of instances in Normal and Malicious categories. The malicious
category itself has 9 sub-categories that they are described in the remaining
rows

48

4.2 Dataset Pre-processing

Among the crucial steps in the data-driven approach(machine learning) is data
pre-processing. Usually, the gathered data is not suitable or prepared to be
used for a machine learning task . Hence, data pre-processing (also called data
preparation) is preferable or sometimes is necessary to achieve better result.
When the following proprieties are present in our data, we have to consider
data pre-processing before doing a machine learning task such as:

– Missing values: occurs when no data value is stored for the feature in
a record.

– Redundant Records: means when a given records are duplicated in
the dataset.

– Nominal features: also know as categorical features. Typically, it
means any feature which is categorical in nature represents discrete val-
ues which belong to a specific finite set of categories or classes(i.e. a no
numerical data).

– Non similar scale features: which means that we have to make sure
that all features take the same ranges of values. For instance the values’
range of the feature x1 is [0 − 1000] and the feature x2 takes on values
between [0− 5]. In this case we consider to normalize the data to make
the features scale at the same range.

There are other proprieties to consider in data pre-processing phase. USNW-
NB15 network dataset does not suffer from either missing values or redundant
records. However, it has some nominal feature and furthermore its features
are not at the same values range. To solve the past two problems we have used
two techniques called One-Hot Encoding and Feature scaling (also called data
normalization) respectively.

1. One-Hot Encoding: is a technique used to convert a categorical data
into a numerical. The problem with categorical data is that some ma-
chine learning algorithms cannot work with them such as logistic regres-
sion, support vector machine and artificial neural network. . . etc. They
only understand numerical or continuous data. One-hot encoding trans-
forms each category into a feature where the all new created features can
be perceived as a vector of binary values. The record that has a such
category, a 1 value is placed into the feature that represents the such
category and the rest are 0.
Example: Let’s assume a dataset that has a categorical feature color.

year color nbr of seats
2014 red 5
2000 green 5
2012 black 7

Table 4.9: Before Encoding

49

After applying one-hot encoding transformation:

year nbr of seats red green black
2014 5 1 0 0
2000 5 0 1 0
2012 7 0 0 1

Table 4.10: After Encoding

As mentioned above, USNW-NB15 has 4 categorical features (protocol,
service, state and attack-category) that they have been encoded using
One-Hot Encoding.

2. Feature Scaling: also knows as data normalization or Standardization.
It helps to normalize the data features within a particular range often
between 0 and 1 or -1 and 1. In gradient descent and its alternatives such
as stochastic and mini-bath gradient descent, feature scaling improve
the convergence speed of the algorithm [31]. For instance in support
vector machine (SVM) algorithm, it can reduce the time to find support
vectors [32]. Here is a brief overview of feature scaling techniques:
Note: let xi and x̂i denote the original and normalized feature value
respectively.

– Standard scaler: it assumes that your data is normally distributed
within each feature, and it’ll scale them as the following :

x̂i =
xi −mean(xi)

stdev(xi)

– Min-max scaler: this technique performs a linear transformation
on the original data. the normalized feature is given by:

x̂i =
xi −min(xi)

max(xi)−min(xi)

The advantage of Min-Max normalization is that it preserves the
relationships among the original data values [33].

– Robust scaler: it used a similar method to min-max scaler but it
instead used the interquartile range, rather than the min-max, so
that it is robust to outliers.

x̂i =
xi −Q1(xi)

Q3(xi)−Q1(xi)

– Z-score normalization: a very common technique to normalize
the features to zero mean and unit variance is Z- score normaliza-
tion [34]. It is a linear technique in which, initially, mean x̄ and

50

standard deviation σ of the specific feature values are computed
using:

x̄ =
1

n

n∑
i=1

xi

σ2 =
1

n− 1

n∑
i=1

(xi − x̄)2

The normalized feature is then given by:

x̂i =
xi − x̄
σ

The issue is which one to choose to normalize our data. The best practice
is to pick it empirically (i.e. the technique that gives better result it is
the suitable to the nature of our data). Since that Min-Max technique
preserves the relationships among the original data values [33], it has
been used to normalize USNW-NB15 dataset features.

51

Chapter 5

Experiments and Results

5.1 Dataset used and pre-processing

USWN-NB15 is the dataset used to evaluate the performance of machine learn-
ing approaches in which it has been discussed in details in the previous chapter
(chapter 4). At the pre-processing phase, the dataset features have been en-
coded using One-Hot-Encoding to transform categorical features into numeri-
cal. As well the dataset features have been scaled using Min-Max technique.

5.2 Experimental setup

5.2.1 Pre-processing

Data pre-processing has been done using the following libraries:

– Pandas [35] offers a better data manipulation and visualization as well
used to perform some analysis.

– NumPy [36] (numerical python), offering a set of mathematical and
numerical features , was used a long side pandas for data manipulation.

– Scikit-learn [37] also known as Sklearn. It provides the sklearn.preprocessing
package that offers common utility functions, it has been used fo feature
scaling and data encoding.

5.2.2 Machine learning algorithms implementation

The machine learning algorithms used to evaluate the performance of anomaly-
based NIDS over the UNSW-NB15 dataset in this thesis such as Decision Tree,
Random Forest and Logisitic Regression have been implemented using the
framework Scikit-learn 0.21.2 [37].

52

5.2.3 Neural network implementation

There is two ways to implement a neural network, either by programming it
from scratch or using a pre-implemented libraries like Keras or TensorFlow.
Writing a neural network from scratch is time-consuming and requires a lot of
expertise in the domain. Hence, we chose to use the deep learning framework
Keras [38]. Compared to TensorFlow, Keras is a high level API and it is
more user-friendly. Keras is an open-source neural network library written in
Python. It is capable of running on top of TensorFlow, Microsoft Cognitive,
Toolkit, Theano, or PlaiML.

5.2.4 Technical details

CPU Intel Core i5 2.6GHz
Memory 8Gb 1600MHz DDR3
Operating system Mac OS X, version = 10.14.4
Programming language Python, version = 3.7.0
Libraries and frameworks NumPy, version = 1.15.3

pandas, version = 0.23.4
sklearn, version = 0.20.3
Keras, version = 2.2.4 with TensorFlow 1.13.1

5.3 Model evaluation

The process of evaluating a ML model or classifier has been discussed previ-
ously in details. In this section, we are going to pass from the general meaning
of the evaluation metrics into our specific case such as packet classification
(either a normal or a malicious packet). Malicious packets are considered the
positive class, in the other hand, negative class represents the normal traf-
fic. Before to explain the evaluation metrics, it is necessary to explain the
components of the confusion matrix.

5.3.1 Confusion matrix components

– True Positives (TP) the number of correctly classified malicious packets.

– True Negatives (TN) the number of correctly classified normal packets.

– False Positives (FP) the number of normal packets incorrectly classified
as malicious.

– False Negatives (FN) the number of malicious packets incorrectly classi-
fied as normal.

5.3.2 Evaluation metrics

Here are the used evaluation metrics :

53

– Accuracy: is the percentage of correctly classified packet either is a mali-
cious or a normal packet. In other words, it’s the ration of the number of
correctly classified packets to the total classified packets.

Accuracy =
TP + TN

TP + TN + FP + FN

– Precision: defines how many malicious packet is correctly classified among
the all classified as malicious. For instance, our model has classified 50
packets as malicious and 35 are actually malicious, so, the precision is 35
divided by 50 in which is 70%.

Precision =
TP

TP + FP

– Recall: means how many malicious packets have been classified correctly
among the all malicious classified packets. For example, 60 malicious packets
have been passed to the classifier, then it classified 40 packets as malicious.
the recall is 40 divided by 60 in which is 66%.

recall =
TP

TP + FN

– False Positive Rate: is the percentage of misclassified normal packets
among all that they are actually normal packets.

FPR =
FP

FP + TN

– False Negative Rate: is the percentage of misclassified malicious packets
among all that they are actually malicious packets.

FNR =
FN

FN + TP

The importance of evaluation metrics vary from problem to another. In critical
systems like network intrusion detection, the effect or danger of misclassifying
normal packets is not the same as misclassifying malicious packet (i.e. do not
detecting a malicious packet is going to cause harm to the network’s computers,
in contrary, classifying as normal packet as malicious is going only to trigger
a false alarm). Hence, the first metrics to look are recall and precision.
Because of that the accuracy is commonly used in the classification problems,
it is used as metric even it’s not a good criterion of model’s performance. Also,
FPR and FNR have been used to determine the percentage of erroneously
classified packets in that class.

54

5.4 Results and Discussions

This section shows the results obtained from training ML models on USNW-
NB15 train set and evaluating them using USNW-NB15 test set in both cases
binary and multi-class classification. The evaluation results are structured into
two groups: machine learning based approach such as Decision Tree, Random
Forest and Logisitic Regression and deep learning based approach Artificial
Neural Network.

5.4.1 Machine learning based approach

Binary classification

classifier
metric

accuracy precision recall FPR FNR

LR 80.60 % 74.94% 97.20 % 39.80% 2.67 %
decision tree 86.20% 82.43% 95.23% 24.87% 4.76%
random forest 87.73% 84.09% 96.84% 22.71% 3.84%

Table 5.1: ML based approach results using binary classification

Multi-class classification

classifier
metric

accuracy

LR 69.15%
decision tree 73.30%
random forest 74.40%

Table 5.2: ML based approach results using multi-class classification

The three classifiers have been implemented with the default input hyper-
parameters expect for random forest in which the hyper-parameter n-estimators
is set to 4 and 12 in binary and multi-class classification respectively. The ta-
bles 5.1 and 5.2 illustrate the obtained results of the three used techniques by
using different evaluation metrics in binary classification whereas using only
the classification accuracy in multi-class because of that the other metrics
such as precision, recall, FPR and FNR cannot be calculated when there is
more than two classes. In other words, the concepts of TP,TN, FP and FN
break down when there are multiple possibilities. The Random Forest clas-
sifier accomplish the highest score in both binary and multi class classification.

55

classifier
metric

accuracy FAR accuracy FAR

Moustafa et al. [11] result our result
LR 83.15% 18.48% 80.60% 21.23%
decision tree 85.56 % 15.78% 86.20% 14.81 %

Table 5.3: ML based algorithm results comparison

The author of the USNW-NB15 dataset contributed along with the dataset,
with 2 ML based techniques among the techniques that we have used such as
Decision Tree and Logisitic Regression with only binary classification. As
shown in the table 5.3, Moustafa et al. [11] logisitic regression classifier has
performed better whereas our decision tree classifier shows better result. Note:
False Alarm Rate (FAR) = FPR+FNR

2

5.4.2 Deep learning based approach

After using grid search technique in order to find the best network’s setting
such as the hyper-parameters, we end up with hyper-parameter set as shown
in the tables 5.4 and 5.6 for binary and multi-class classification respectively.

Binary classification

Hyper-parameters Setting
Hidden layers 1

Neurons 64
Activation function in the hidden layer ReLU
Activation function in the output layer Sigmoid

Optimizer RMSprop
Learning rate 0.001

Batch size 140
Epochs 100

Lost Function binary-CrossEntropy
Regularizer activity-regularizer l2=0.00001

kernel-initializer Variance scaling

Table 5.4: Network configuration in binary classification

classifier
metric

accuracy precision recall FPR FNR

ANN 88.80 % 85% 96.75% 20.92% 3.24 %

Table 5.5: Binary classification DL based approach results

56

Multi-class classification

Hyper-parameters Setting
Hidden layers 1

Neurons 64
Activation function in the hidden layer ReLU
Activation function in the output layer Softmax

Optimizer RMSprop
Learning rate 0.001

Batch size 100
Epochs 90

Lost Function sparse-categorical-crossentropy
Regularizer None

kernel-initializer Variance scaling

Table 5.6: Network configuration in multi-class classification

classifier
metric

accuracy

ANN 77.48%

Table 5.7: Multi-class classification DL based approach results

Analysis Backdoor DoS Exploits Fuzzers Generic Normal Reconnaissance Shellcode Worms
Analysis 2 0 9 658 4 0 4 0 0 0
Backdoor 2 5 12 536 9 1 3 14 1 0
DoS 3 32 148 3640 104 25 39 76 22 0
Exploits 20 48 251 10152 340 8 144 138 28 3
Fuzzers 4 3 18 1675 2616 0 1363 303 80 0
Generic 0 20 41 477 180 18107 11 27 8 0
Normal 219 0 15 807 5185 6 30096 629 42 1
Reconnaissance 0 2 9 803 40 5 67 2570 0 0
Shellcode 0 0 0 90 21 0 22 145 100 0
Worms 0 0 0 35 3 0 2 1 2 1

Table 5.8: Multi-class Confusion Matrix of ANN

The performance of the artificial neural network (i.e. multi layer perceptron)
surpasses all ML based approaches with the selected hyper-parameters in both
cases binary and multi-class classification as shown in the table 5.5 and 5.7
respectively. The performance results of ANN are provided with the confusion-
matrix (see Figure 5.8) to the lack of other evaluation metrics in multi-class
apart from classification accuracy.

classifier
metric

accuracy FAR accuracy FAR

Moustafa et al .[11] result our result
ANN 81.34% 21.13% 88.80% 12.08%

Table 5.9: DL based algorithm results comparison

57

Nour et al. [11] have also evaluated the anomaly-based NIDS’ performance
using ANN with 81.34% accuracy and 21.13% false alarm rate. As demon-
strated in the table 5.9, our ANN model outperforms Nour et al. model with
88.80 % accuracy and 12.08% false alarm rate in binary classification.

A
c
c
u
ra
c
y
	p
e
rc
e
n
ta
g
e

80.6
86.2 87.73 88.8

Classifiers

LR D
T RF

AN
N

0

50

100

meta-chart.com

Figure 5.1: Results summary for binary classification

58

A
c
c
u
ra
c
y
	p
e
rc
e
n
ta
g
e

69.15
73.3 74.4

77.48

Classifiers

LR D
T RF

AN
N

0

25

50

75

100

meta-chart.com

Figure 5.2: Results summary for multi-class classification

59

Chapter 6

Conclusion

In this thesis, we have evaluated the performance of anomaly-based NIDS by
using multiple machine learning algorithms on the UNSW-NB15 dataset. The
results shows that ANN performed well compared to the other methods in
predicting the class of unseen packets especially in terms of accuracy, recall
and false negative rate. Moreover, Our ANN classifier has shown better results
than the one of Moustafa et al.[11]. Even if the USNW-NB15 dataset suffers
from several issues such as imbalanced classes and the recorded malicious traffic
are synthetic does not reflect real world attacks, the classifiers have given good
results and they can be improved in future works.
In the literature review survey of G. Fernandes Jr. et al. [2] shows that
the absence of reliable standard dataset is the most discussed issue among
researchers in the literature. Hence, as long as we are concerned, building a
reliable labeled dataset that does not suffer from the issues as the existing
datasets is the first matter to look when addressing the anomlay-detection
problem in future works.
Apart from the dataset issue, more sophisticated deep learning based methods
such as Recurrent neural network and Convolutional neural network could be
used to improve the performance of anomlay-based NIDS in detecting unseen
abnormal behavior.

60

Bibliography

[1] A. S. Tanenbaum and D. J. Wetherall, Computer Networks. Upper Saddle
River, NJ, USA: Prentice Hall Press, 5th ed., 2010.

[2] G. Fernandes, J. J. P. C. Rodrigues, L. F. Carvalho, J. F. Al-Muhtadi, and
M. L. Proença, “A comprehensive survey on network anomaly detection,”
Telecommunication Systems, vol. 70, pp. 447–489, Mar 2019.

[3] C. Dartigue, H. I. Jang, and W. Zeng, “A new data-mining based approach
for network intrusion detection,” in Proceedings of the 2009 Seventh An-
nual Communication Networks and Services Research Conference, CNSR
’09, (Washington, DC, USA), pp. 372–377, IEEE Computer Society, 2009.

[4] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down Ap-
proach (6th Edition). Pearson, 6th ed., 2012.

[5] P. Garćıa-Teodoro, J. Dı́az-Verdejo, G. Maciá-Fernández, and E. Vázquez,
“Anomaly-based network intrusion detection: Techniques, systems and
challenges,” Comput. Secur., vol. 28, pp. 18–28, Feb. 2009.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Infor-
mation Processing Systems 25 (F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, eds.), pp. 1097–1105, Curran Associates, Inc., 2012.

[7] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey,
M. Krikun, Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah, M. John-
son, X. Liu, L. Kaiser, S. Gouws, Y. Kato, T. Kudo, H. Kazawa,
K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young, J. Smith, J. Riesa,
A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, and J. Dean, “Google’s
neural machine translation system: Bridging the gap between human and
machine translation,” CoRR, vol. abs/1609.08144, 2016.

[8] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification (2Nd
Edition). New York, NY, USA: Wiley-Interscience, 2000.

[9] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed analysis
of the kdd cup 99 data set,” in Proceedings of the Second IEEE Interna-
tional Conference on Computational Intelligence for Security and Defense
Applications, CISDA’09, (Piscataway, NJ, USA), pp. 53–58, IEEE Press,
2009.

61

[10] N. Moustafa and J. Slay, “Unsw-nb15: a comprehensive data set for net-
work intrusion detection systems (unsw-nb15 network data set),” in 2015
Military Communications and Information Systems Conference (MilCIS),
pp. 1–6, Nov 2015.

[11] N. Moustafa and J. Slay, “The evaluation of network anomaly detection
systems: Statistical analysis of the unsw-nb15 data set and the comparison
with the kdd99 data set,” pp. 1–14, 01 2016.

[12] Cisco, “What is network security?,” 2019. Accessed: 2019-05-15.

[13] H. Bostani and M. Sheikhan, “Hybrid of anomaly-based and specification-
based ids for internet of things using unsupervised opf based on mapreduce
approach,” Computer Communications, vol. 98, pp. 52–71, 12 2016.

[14] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, “Network anomaly
detection: Methods, systems and tools.,” IEEE Communications Surveys
and Tutorials, vol. 16, no. 1, pp. 303–336, 2014.

[15] P. Barford, J. Kline, D. Plonka, and A. Ron, “A signal analysis of network
traffic anomalies,” in Proceedings of the 2Nd ACM SIGCOMM Workshop
on Internet Measurment, IMW ’02, (New York, NY, USA), pp. 71–82,
ACM, 2002.

[16] A. Marnerides, A. Schaeffer-Filho, and A. Mauthe, “Traffic anomaly di-
agnosis in internet backbone networks,” Comput. Netw., vol. 73, pp. 224–
243, Nov. 2014.

[17] W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stolcke, D. Yu,
and G. Zweig, “Achieving human parity in conversational speech recog-
nition,” CoRR, vol. abs/1610.05256, 2016.

[18] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of tricks for
efficient text classification,” CoRR, vol. abs/1607.01759, 2016.

[19] J. Dai, Y. Li, K. He, and J. Sun, “R-FCN: object detection via region-
based fully convolutional networks,” CoRR, vol. abs/1605.06409, 2016.

[20] R. E. Schapire, The Boosting Approach to Machine Learning: An
Overview, pp. 149–171. New York, NY: Springer New York, 2003.

[21] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
p. 436, may 2015.

[22] R. H. R. Hahnloser, H. S. Seung, and J.-J. Slotine, “Permitted and Forbid-
den Sets in Symmetric Threshold-Linear Networks,” Neural Computation,
vol. 15, no. 3, pp. 621–638, 2003.

[23] J. Schmidhuber, “Deep learning in neural networks: An overview,” CoRR,
vol. abs/1404.7828, 2014.

62

[24] C. wei Hsu, C. chung Chang, and C. jen Lin, “A practical guide to support
vector classification,” 2010.

[25] D. Chicco, “Ten quick tips for machine learning in computational biology,”
BioData Mining, vol. 10, p. 35, Dec 2017.

[26] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization,” J. Mach. Learn. Res., vol. 13, pp. 281–305, Feb. 2012.

[27] P. Gogoi, M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, “Packet
and flow based network intrusion dataset,” in Contemporary Comput-
ing (M. Parashar, D. Kaushik, O. F. Rana, R. Samtaney, Y. Yang, and
A. Zomaya, eds.), (Berlin, Heidelberg), pp. 322–334, Springer Berlin Hei-
delberg, 2012.

[28] J. McHugh, “Testing intrusion detection systems: A critique of the 1998
and 1999 darpa intrusion detection system evaluations as performed by
lincoln laboratory,” ACM Trans. Inf. Syst. Secur., vol. 3, pp. 262–294,
Nov. 2000.

[29] M. V. Mahoney and P. K. Chan, “An analysis of the 1999 darpa/lincoln
laboratory evaluation data for network anomaly detection,” in Recent Ad-
vances in Intrusion Detection (G. Vigna, C. Kruegel, and E. Jonsson,
eds.), (Berlin, Heidelberg), pp. 220–237, Springer Berlin Heidelberg, 2003.

[30] A. R. Vasudevan, E. Harshini, and S. Selvakumar, “Ssenet-2011: A net-
work intrusion detection system dataset and its comparison with kdd cup
99 dataset,” in 2011 Second Asian Himalayas International Conference
on Internet (AH-ICI), pp. 1–5, Nov 2011.

[31] S. Tsakalidis, V. Doumpiotis, and W. Byrne, “Discriminative linear trans-
forms for feature normalization and speaker adaptation in hmm esti-
mation,” IEEE Transactions on Speech and Audio Processing, vol. 13,
pp. 367–376, May 2005.

[32] L. Bo, L. Wang, and L. Jiao, “Feature scaling for kernel fisher discrimi-
nant analysis using leave-one-out cross validation,” Neural Computation,
vol. 18, pp. 961–978, April 2006.

[33] G. Manikandan, N. Sairam, S. Sharmili, and S. Venkatakrishnan, “Achiev-
ing privacy in data mining using normalization,” vol. 6, pp. 4268–4272,
04 2013.

[34] T. Jayalakshmi and S. A, “Statistical normalization and back propagation
for classification,” International Journal Computer Theory Engineering
(IJCTE), vol. 3, pp. 89–93, 01 2011.

[35] W. McKinney, “pandas : powerful python data analysis toolkit,” 2011.

[36] T. E. Oliphant, “Guide to NumPy,” Methods, vol. 1, p. 378, 2010.

63

[37] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in python,” J. Mach. Learn. Res.,
vol. 12, pp. 2825–2830, Nov. 2011.

[38] F. Chollet et al., “Keras,” 2015.

64

