
Democratic and Popular Republic of Algeria
Ministry of Higher Education and Scientific Research

University of Mohamed Khider - BISKRA
Faculty of Exact Sciences, Natural Sciences and Life

Computer Science Department

Order Number: GLSD5/M2/2019

Thesis
Presented to obtain the diploma of academic Master in

Computer Science
Option: Software Engineering and Distributed Systems

Parallelization of Spider Monkey
Optimization (SMO) algorithm

By:
Said Bousnane

Defended the 07/06/2019, in front of the jury composed of:

Dr. Sahli Sihem MAA President

Dr. Kahloul Laid MCA Supervisor

Dr. Chami Djazia MAA Examiner

University Year: 2018/2019

Acknowledgements

Praise to ALLAH, the Compassionate, the Merciful. Peace and blessing on the Messenger
of Allah, Muhammad the prophet (Peace Be Upon Him). I would like to express my gratitude
to ALLAH for His blessing and inspiration leading me to finish this work.

My special thanks and appreciation to my supervisor Dr. Kahloul Laid for his con-
tinuous encouragement, guidance and for his endless patience and precious advice, although
the surgery that he made; We ask ALLAH to heal him soon. Without forgetting to thank
a lot the PhD student Leila Belaiche for her support, following-up my work and advice
all the time, especially during the time when my supervisor was recovering from the surgery
that he made.

I would like to express my deepest thanks to the members of the jury: Mrs. Sahli Sihem
and Mrs. Chami Djazia for reading and evaluating my dissertation.

I never forget to thank all my teachers at the Computer Science Department who taught
me the basic principles of computer science, with a special mention of the head of the
department Prof. Mohamed Chaouki Babahenini.

Finally, my gratitude is deeply paid to my mother and my father, and to all members of
my family in Ghardaia, which were patient on me during the five years of my studying here
in Biskra away from them. Without forgetting the family “Bousnane” herein Biskra which
I was staying with during my study period.

Abstract

The parallelization is the adopted programming approach to reduce the execution time and

increase the performance of programs in many fields. This approach makes the processors

treat many processes/tasks in one moment of time, in contrast to the classical method,

which is “the sequential approach” that treats a single problem at a moment of time. For

this reason, we have implemented an application called ParSMO and it contains the im-

plementation of a swarm intelligence based algorithm (SI), which is called: Spider Monkey

Optimization (SMO) algorithm for numerical optimization. This thesis is composed of two

main parts, the first part is the implementation of the SMO algorithm sequentially, whereas

the second part is the implementation of the first proposed parallel SMO algorithm in the lit-

erature, using the Multiprocessing package in Python 3.7. The aim of this work is comparing

the sequential SMO with the parallel one, in terms of the execution time, the near-optimum

solution and the objective space density of the last generation. The experimental study that

was realized on ParSMO application using the two test problems “Dekkers and Aarts” (DA)

and “Six-hump Camelback” (ShC) illustrates that the parallel SMO algorithm outperforms

the sequential SMO in terms of gaining a shorter execution time and a better objective space

density in the last generation.

Résumé

Le parallélisme est l’approche de programmation adoptée pour réduire le temps d’exécution

et augmenter la performance des programmes dans plusieur domaines. Cette approche per-

met à un ensemble de processeurs de traiter de nombreux processus/tâches en même temps,

contrairement à la méthode classique “l’approche séquentielle”, qui traite un problème unique

en un instant donné. Pour cette raison, nous avons implémenté une application appelée

ParSMO, et qui est l’implémentation d’un algorithme basé sur l’intelligence essaim, cette

algorithme est appelé : “L’algorithme de Spider Monkey Optimization (SMO) pour l’op-

timisation numérique”. Ce mémoire est composé de deux parties principales, la première

partie est l’implémentation séquentielle de l’algorithme SMO, tandis que la seconde partie

est l’implémentation du premier algorithme parallèle SMO, en utilisant le package Multi-

processing dans Python 3.7. Le but de ce travail est de comparer le SMO séquentiel avec

celui parallèle, en termes de temps d’exécution, de solution quasi-optimale et de densité de

l’espace objectif de la dernière génération. L’étude expérimentale appliquée à l’application

ParSMO utilisant les deux problèmes de test “Dekkers and Aarts” (DA) et “Six-hump Ca-

melback” (ShC) montre que l’algorithme parallèle SMO surpasse celui séquentielle en termes

de gagner un temps d’exécution plus court et une meilleure densité de l’espace objectif de la

dernière génération.

Contents

Contents iii

list of tables iv

list of figures vii

list of algorithms viii

Introduction ix

I State of the art 1

1 Spider Monkey Optimization (SMO) Algorithm 2

Introduction . 2

1.1 Optimization Problems . 2

1.2 Swarm Intelligence (SI) . 3

1.2.1 The conditions of swarm intelligence 3

1.2.2 Representation and fitness evaluation 4

1.2.3 Swarm intelligence algorithms . 4

1.3 Spider Monkey Optimization (SMO) algorithm 5

1.3.1 Motivation . 5

1.3.2 SMO algorithm process . 6

1.3.3 Control parameters in SMO algorithm 11

1.3.4 Performance Analysis of SMO . 11

1.3.5 The main loop . 12

1.3.6 Analyzing SMO . 12

Conclusion . 15

2 Parallel computing: basic concepts 17

Introduction . 17

2.1 Motivating Parallelism . 17

2.1.1 The Computational Power Argument 18

2.1.2 The Memory/Disk Speed Argument 18

2.1.3 The Data Communication Argument 18

i

2.1.4 Time Argument . 18

2.2 Scope of Parallel Computing . 18

2.2.1 Applications in Engineering and Design 19

2.2.2 Scientific Applications . 19

2.2.3 Commercial Applications . 19

2.2.4 Applications in Computer Systems 20

2.3 Von Neumann Architecture . 20

2.4 General Parallel Terminology . 21

2.4.1 CPU/Processor/Core . 21

2.4.2 Task . 21

2.4.3 Pipelining . 21

2.4.4 Communications . 21

2.4.5 Synchronization . 21

2.4.6 Granularity . 22

2.4.7 Scalability . 22

2.5 Implicit and Explicit Parallelism . 22

2.5.1 Implicit parallelism . 22

2.5.2 Explicit Parallelism . 22

2.6 Classification of Parallel Architectures . 22

2.6.1 SISD (Single Instruction stream, Single Data stream) 23

2.6.2 SIMD (Single Instruction stream, Multiple Data stream) 23

2.6.3 MISD (Multiple Instruction stream, Single Data stream) 24

2.6.4 MIMD (Multiple Instruction stream, Multiple Data stream) 24

2.7 Parallel Programming Models . 26

2.7.1 Shared Memory (without threads) . 26

2.7.2 Threads . 27

2.7.3 Distributed Memory/Message Passing 28

2.7.4 Data Parallel . 28

2.7.5 SPMD and MPMD . 28

Conclusion . 29

II Contributions 30

3 Analysis & Design 32

Introduction . 32

3.1 Analysis . 32

3.1.1 Description of the Application . 32

3.1.2 Project Development Cycle . 34

3.2 Design . 35

3.2.1 Global Design . 35

3.2.1.1 Use Case diagram . 35

3.2.1.2 Class diagram . 37

3.2.1.3 Sequence diagram . 40

3.2.2 Detailed Design . 44

Conclusion . 52

4 Implementation & Test 54

Introduction . 54

4.1 Development Tools and Languages . 54

4.1.1 Python programming language . 54

4.1.2 PyCharm Programming Editor . 54

4.1.3 Tool Kit Interface “Tkinter” Package 55

4.1.4 Plotting Library “matplotlib” . 55

4.1.5 Multiprocessing . 55

4.1.6 Document Preparation System LATEX 55

4.1.7 Online LATEX editor (OVERLEAF) 56

4.1.8 Online UML diagrams editor (VP Online) 56

4.2 Implementation & test . 56

4.3 Test & Experimental Study . 65

4.3.1 Sequential SMO algorithm . 65

4.3.2 Parallel SMO algorithm . 67

4.3.3 Comparison Sequential vs Parallel . 70

4.3.4 Discussion . 77

Conclusion . 80

Conclusion x

Bibliography xiii

List of Tables

2.1 Flynn classification of computer architectures 23

4.1 Software/Hardware versions . 56

4.2 The effect of “Swarm Size” on the near-optimum solution (function DA) . . 65

4.3 The effect of “Swarm Size” on the near-optimum solution (function ShC) . . 65

4.4 The effect of “Number of processes” on the execution time (function 1) . . . 67

4.5 The effect of “Number of processes” on the execution time (function 2) . . . 67

4.6 The execution time comparison (function 1) 77

4.7 The execution time comparison (function 2) 77

4.8 The near-optimum solution comparison (function 1) 77

4.9 The near-optimum solution comparison (function 2) 78

iv

List of Figures

1.1 Conditions for intelligent swarming . 3

1.2 Hierarchy of swarm intelligence-based algorithms 4

1.3 Foraging behavior of Spider Monkeys . 6

1.4 Illustration of global optimum and local optima 12

1.5 The process of Spider Monkey Optimization (SMO) algorithm 14

2.1 Von Neumann Architecture . 21

2.2 Single Instruction stream, Single Data stream Architecture 23

2.3 Single Instruction stream, Multiple Data stream Architecture 24

2.4 Multiple Instruction stream, Single Data stream Architecture 24

2.5 Multiple Instruction stream, Multiple Data stream Architecture 25

2.6 Shared-memory MIMD . 26

2.7 Shared-memory MIMD . 26

2.8 “Shared Memory” Parallel Programming Model 27

2.9 “Threads” Parallel Programming Model . 27

2.10 “Distributed Memory/Message Passing” Parallel Programming Model 28

3.1 The Sequential version of SMO algorithm in “ParSMO” 33

3.2 The Parallel version of SMO algorithm in “ParSMO” 33

3.3 Use Case diagram of “ParSMO” application 36

3.4 Class diagram of “ParSMO” application . 38

3.5 Sequence diagram of sequential SMO . 41

3.6 Sequence diagram of parallel SMO . 43

4.1 “ParSMO” Home page . 57

4.2 “ParSMO” Menu . 57

4.3 SMO inputs GUI . 58

4.4 Warning 1: Input error . 58

4.5 Warning 1: Input error . 58

4.6 Warning 2: Input error . 59

4.7 Warning 3: Input error . 60

4.8 Function Parameters window . 60

4.9 SMO Parameters window . 61

4.10 Results window of Sequential SMO . 61

v

4.11 Number of processes . 62

4.12 Warning 4: Input error . 62

4.13 Warning 5: Input error . 62

4.14 Warning 6: Input error . 62

4.15 Warning : Input error . 63

4.16 Results window of Parallel SMO . 63

4.17 Results window of Parallel SMO . 64

4.18 Objective space, size = 40 . 66

4.19 Objective space, size = 60 . 66

4.20 Objective space, size =80 . 66

4.21 Objective space, size = 120 . 66

4.22 Objective space, size = 140 . 66

4.23 Objective space, size =160 . 66

4.24 Objective space, size = 40 . 66

4.25 Objective space, size = 60 . 66

4.26 Objective space, size =80 . 66

4.27 Objective space, size = 120 . 67

4.28 Objective space, size = 140 . 67

4.29 Objective space, size =160 . 67

4.30 Objective space, using 2 processes . 68

4.31 Objective space, using 3 processes . 68

4.32 Objective space, using 2 processes . 68

4.33 Objective space, using 3 processes . 68

4.34 Objective space, using 2 processes . 69

4.35 Objective space, using 3 processes . 69

4.36 Objective space, using 2 processes . 69

4.37 Objective space, using 3 processes . 69

4.38 Objective space, using 2 processes . 70

4.39 Objective space, using 3 processes . 70

4.40 Objective space, using 4 processes . 70

4.41 Objective space, using 2 processes . 70

4.42 Objective space, using 3 processes . 70

4.43 Objective space, using 4 processes . 70

4.44 Results of comparison Parallel SMO vs Sequential SMO (DA function) . . . 71

4.45 Results of comparison Parallel SMO vs Sequential SMO (DA function) . . . 72

4.46 Results of comparison Parallel SMO vs Sequential SMO (DA function) . . . 73

4.47 Results of comparison Parallel SMO vs Sequential SMO (ShC function) . . . 74

4.48 Results of comparison Parallel SMO vs Sequential SMO (ShC function) . . . 75

4.49 Results of comparison Parallel SMO vs Sequential SMO (ShC function) . . . 76

4.50 The last generation, sequential vs parallel . 78

4.51 The last generation, sequential vs parallel . 78

4.52 The last generation, sequential vs parallel . 79

4.53 The last generation, sequential vs parallel . 79

4.54 The last generation, sequential vs parallel . 79

4.55 The last generation, sequential vs parallel . 79

List of Algorithms

1 Initialization of the population . 7

2 Position update process in Local Leader Phase (LLP) 7

3 Position update process in Global Leader Phase (GLP) 8

4 Global Leader Learning (GLL) phase . 9

5 Local Leader Learning (LLL) phase . 9

6 Local Leader Decision (LLD) phase . 10

7 Global Leader Decision (GLD) phase . 10

8 Main Loop . 12

9 Spider Monkey Optimization SMO algorithm 13

10 The method that calculate the function value 44

11 The method that calculate fitness . 45

12 The method of updating the parameter “pr” 45

13 The method of initialization of the population 46

14 The method of selecting the global leader . 46

15 The method of selecting the local leader of a local group 47

16 The method of getting the max fitness of a group 47

17 The method of dividing the population . 48

18 SMO method . 49

19 The method of generating processes . 51

20 Call SMO method for a population . 51

viii

Introduction

T
aking inspiration from nature to develop computationally efficient algorithms is one of

the ways to deal with real-world optimization problems. This approach is called swarm

intelligence and it is defined as the emergent collective intelligence of groups of simple agents.

The fields of application of this approach are many and various, including robotics, artificial

intelligence (IA), process optimization, telecommunication...etc.

Researchers have developed many algorithms by simulating the swarming behavior of

various creatures like ants, honey bees, monkeys, birds ... etc. This kind of algorithms which

are based on Swarm Intelligence has great potential to find a near-optimum solution of a real-

world optimization problem. Hence, a recent algorithm for numerical optimization based on

swarm intelligence is proposed by modeling the foraging behavior of spider monkeys (SMs)

and it is called: Spider Monkey Optimization (SMO) algorithm for numerical optimization

(Jagdish Chand Bansal 2014).

SMO algorithm was the selected one among other swarm intelligence based algorithms for

several reasons, including being the spider monkeys society an organized one in foraging,

where they live in groups of specified numbers and be led by female leaders, and has a

stable behavior in foraging represented in following the fission-fusion system, further to the

communication between the group members in various ways. Thus, the SMO algorithm is

based on changing the number of groups in the swarm (from larger to smaller and vice-

versa) through the algorithm steps, in order to have a good balance between exploration and

exploitation to achieve a better optimization performance.

In the light of the high complexity of this kind of algorithms, and in pursuit of better

performance of the SMO algorithm in terms of execution time, the near-optimum solution,

and better objective space, we propose the first parallel SMO in the literature. Using Python

programming language and Multiprocessing package, we implemented the sequential version

of SMO, as well as the proposed parallel version of SMO in an application, we called it

ParSMO. As expected, and after several Experiments of the SMO algorithm with its two

versions, the sequential version, and the parallel one, the results illustrate that the parallel

SMO outperforms the sequential SMO in terms of gaining the computational time and

improving the objective space.

ix

This thesis is organized in two parts:

Part I is a theoretical part (State of the art) of two chapters. chapter 1 defines swarm

intelligence and some related terms and gives a detailed view and explanation of the SMO

algorithm. chapter 2 presents the basic concepts of parallel computing, further the parallel

architectures and the parallel programming models.

Part II is designed for explaining our contributions, and it is composed of two chapters.

chapter 3 illustrates the analysis of our application in general, and the global design of it,

further to detailed design which contains explaining diagrams. chapter 4 introduces all the

tools that we worked with and the implementation of our application, moreover, the results

that we got from different experiments, finishing the thesis by a discussion of these results

and giving the conclusions.

Part I

State of the art

1

Chapter 1

Spider Monkey Optimization

(SMO) algorithm

Chapter 1

Spider Monkey Optimization (SMO)

Algorithm

Introduction

Optimization is common in almost all spheres of human activities such as Industry, agricul-

ture...etc. Earlier, optimization problems are mainly based on personal experiences to solve.

After that, some classical or traditional optimization techniques and methods are founded,

represented in some primary algorithms, but it wasn’t useful for solving the complex real-

world optimization problems. Since the end of the twentieth century, the fast development of

computer and artificial intelligence technologies has provided new efficient methods to solve

the complex optimization problems. From those methods, a nature-inspired approach, which

is called “Swarm Intelligence”. Researchers have developed many algorithms by simulating

the swarming behavior of various creatures like ants, honey bees, fish, spiders... etc, and the

findings are very motivating.

In this chapter, we will provide definitions for some terms in the optimization field such

as optimization problems (see 1.1), swarm intelligence (see 1.2). After that, we will mention

the algorithms which belong to the swarm intelligence (SI) approach (see 1.2.3). Then,

we will take the chance to explain more specifically spider monkey optimization (SMO)

algorithm, which we implemented it, and the motivation to use it (see 1.3.1), its process and

its performance among the other algorithms in the same field (see 1.3.2)...etc.

1.1 Optimization Problems

Definition (Yujun Zheng n.d., Rothlauf 2011) : An optimization problem is to find

an optimal or a near-optimal solution among large set of feasible candidates. The objective

function of the problem determines the best solution among the others.

Formally, in a domain P, and subject to an objective function f, there is an optimal solution

(x∗ ∈ P), where:

2

CHAPTER 1. SPIDER MONKEY OPTIMIZATION (SMO) ALGORITHM 3

• max f(x) : f(x) ≤ f(x∗) , ∀ x ∈ P

=⇒ Or

• min f(x) : f(x) ≥ f(x∗) , ∀ x ∈ P

There are two very useful approaches that are primary used to solve optimization problems,

which are: Swarm Intelligence and Evolutionary Computation.

1.2 Swarm Intelligence (SI)

Definition: (Jagdish Chand Bansal 2019, Amrita Chakraborty n.d.)

The word “Swarm” can be considered as a set of interacting homogeneous individuals.

Whereas the term “Swarm Intelligence” represents a discipline that deals with natural and

artificial systems composed of many individuals that coordinate based on the collective and

self-organized cooperative behavior of social entities such as flock of birds, school of fishes

or ant colonies...etc.

The SI also is a meta-heuristic approach inspired by the collective behavior of social insect

colonies and other animal societies, which is used to solve optimization problems.

1.2.1 The conditions of swarm intelligence

As shown in Figure 1.1, self-organization and Division of labor are two necessary and

sufficient conditions for obtaining intelligent swarming behaviors (KARABOGA 2005).

Figure 1.1: Conditions for intelligent swarming

a) Self-organization:

The property self-organization based on four characteristics, which are (Bonabeau E n.d.):

1) Positive feedback: Information extracted from the output system and revealed to

the input to promote formation of appropriate structures. Positive feedback provides

diversity in swarm intelligent.

CHAPTER 1. SPIDER MONKEY OPTIMIZATION (SMO) ALGORITHM 4

2) Negative feedback: Compensates the effect of positive feedback. It helps the

stability of the collective pattern.

3) Fluctuation: The rate of the randomness in the system. It helps to get rid of

stagnation.

4) Multiple interactions: Provides the method of learning from the individuals within

a society, and also improves the overall intelligence of the swarm.

b) Division of labor:

This helps different tasks to be performed simultaneously by different specialized individuals.

1.2.2 Representation and fitness evaluation

a) Representation of individuals: (Jagdish Chand Bansal 2014, Leila 2017)

The individual is represented by a vector of real values, where the size of the vector is the

dimension of the objective function.

- Example:

For the objective function: f(x) = x2
1 + x2

2, the individuals will be a couple (a value for x1

and an other for x2).

b) Fitness evaluation: (Leila 2017)

The evaluation should provide a value that determines an ordering between different

individuals.

Adaptation function (fitness): this function evaluates the quality of each individual in a

population.

1.2.3 Swarm intelligence algorithms

(Jagdish Chand Bansal 2014) Figure 1.2 Represents the hierarchy of swarm intelligence-

based algorithms. Those algorithms are divided into two categories: “insect based” and

“animal based”.

Figure 1.2: Hierarchy of swarm intelligence-based algorithms

CHAPTER 1. SPIDER MONKEY OPTIMIZATION (SMO) ALGORITHM 5

1.3 Spider Monkey Optimization (SMO) algorithm

1.3.1 Motivation

(Jagdish Chand Bansal 2019)

a) Emergence of Fission-Fusion society structure:

The concept of fission-fusion society is introduced by the biologist “Hans Kummer” In a

“fission-fusion” society and in case of shortage of food, the competition for food among the

parent group members leads to divide themselves into sub-groups (fission) in order to forage,

and at night they return to join the primary group (fusion) to share the food and to take

part in other activities.

b) Foraging behavior of Spider Monkeys:

Spider monkeys live in the tropical rain forests of Central and South America and exist as

far north as Mexico. They are called spider monkeys because they look like spiders when they

are suspended by their tails. Spider monkeys live in a unit group called “parent group”, and

based on the food scarcity or availability they split themselves or combine. Communication

between them depends on their gestures, positions and whooping.

c) Social organization and behavior:

The social organization and behavior of spider monkeys can be understood through the

following steps:

• Spider monkeys live in groups of 40 - 50 individuals.

• Generally, a female leads the group (global Leader) and decides the forage route.

• If the leader does not find sufficient food then she divides the group into smaller groups

(size varies from 3 to 8 members) and these groups forage independently. In the night

and at their habitat everybody share the foraging experience.

• Sub-groups are also supposed to be led by a female (local leader).

d) Communication:

• Spider monkeys share their intentions and observations using positions and postures.

• During traveling, they interact with each other over long-distances using particular

sounds such as whooping or chattering.

• This long-distance communication permits spider monkeys to get-together, stay away

from enemies, share food and gossip.

• Each individual has its own discernible sound so that other members can easily identify

who is calling.

CHAPTER 1. SPIDER MONKEY OPTIMIZATION (SMO) ALGORITHM 6

• In order to interact to other group members, they generally use visual and vocal com-

munication.

The above discussed about foraging behavior of spider monkeys is shown in Figure 1.3.

Figure 1.3: Foraging behavior of Spider Monkeys

1.3.2 SMO algorithm process

(Jagdish Chand Bansal 2014) SMO algorithm consists of six phases: Local Leader Phase,

Global Leader Phase, Global Leader Learning Phase, Local Leader Learning Phase, Local

Leader Decision and Global Leader Decision Phase. These phases are explained next:

a) Initialization of the population:

At the beginning, SMO generates a uniformly distributed initial swarm of N spider mon-

keys (Algorithm 1), where SMi (the ith monkey in the swarm) is a D-dimensional vector,

and D is the number of variables in the optimization problem. Each spider monkey SM

represents the potential solution of the optimization problem. Each SMi is initialized using

the equation 1.1 below:

SMij = SMminj + U(0, 1)× (SMmaxj − SMminj) (1.1)

CHAPTER 1. SPIDER MONKEY OPTIMIZATION (SMO) ALGORITHM 7

Where, SMminj and SMmaxj are the bounds of SMi in jth dimension, and U(0, 1) is a uni-

formly distributed random number in the range [0, 1].

Algorithm 1 Initialization of the population

1: procedure Initialization-Of-Population(size)

2: for i = 1 to size do

3: for each j ∈
{

1...D
}

do

4: SMij = SMminj + U(0, 1)× (SMmaxj − SMminj)

5: end for

6: end for

7: end procedure

b) Local Leader Phase (LLP):

In this phase, the local leader experience and the local group experience are the information

that each spider monkey SM based on to modifies its position. The position update equation

for jth dimension of the ith SM in the kth local group is:

SMnewij = SMij + U(0, 1)× (LLkj − SMij) + U(−1, 1)× (SMrj − SMij) (1.2)

Where LLkj is the jth dimension of the local leader of the group k, and SMrj is the jth

dimension of a SMr chosen randomly from the group k such that (r 6= i).

The Equation 1.2 clears that the members of a group which are going to update their position

are attracted towards their local leader.

Algorithm 2 shows position update process in LLP.

Algorithm 2 Position update process in Local Leader Phase (LLP)

1: procedure Local-Leader-Phase

2: for each k ∈
{

1...NumGp
}

do

3: // NumGp is the number of groups in the iteration

4: for each member SMi ∈ kth group do

5: for each j ∈
{

1...D
}

do

6: if U(0, 1) ≥ pr then

7: SMnewij = SMij +U(0, 1)× (LLkj−SMij)+U(−1, 1)× (SMrj−SMij)

8: else

9: SMnewij = SMij

10: end if

11: end for

12: end for

13: end for

14: end procedure

CHAPTER 1. SPIDER MONKEY OPTIMIZATION (SMO) ALGORITHM 8

c) Global Leader Phase (GLP):

In GLP phase, all the SMs update their position using experience of the global leader also

the experience of the local group members. The position update equation 1.3 is as follows:

SMnewij = SMij + U(0, 1)× (GLj − SMij) + U(−1, 1)× (SMrj − SMij) (1.3)

Where, GLj is the jth dimension of the global leader. Here, the positions of spider monkeys

SMi are updated based on a probabilities probi which are calculated using their fitness,

according to equation 1.4:

probi = 0.9× fiti
maxfit

+ 0.1 (1.4)

Where, fiti is the fitness value of the ith SM and maxfit is the maximum fitness in the

group. In this way a better candidate (which has the maximum fitness) will have a higher

chance to make itself better (exploitation).

Algorithm 3 shows position update process in GLP.

Algorithm 3 Position update process in Global Leader Phase (GLP)

1: procedure Global-Leader-Phase

2: for each k ∈
{

1...NumGp
}

do

3: count = 1

4: GS = kth group size

5: while count < GS do

6: for each member SMi ∈ kth group do

7: if U(0, 1) < probi then

8: count = count + 1

9: Randomly select j ∈
{

1...D
}

10: Randomly select SMr from kth group s.t. r 6= i.

11: SMnewij = SMij +U(0, 1)× (GLj−SMij) +U(−1, 1)× (SMrj−SMij)

12: end if

13: end for

14: end while

15: end for

16: end procedure

d) Global Leader Learning (GLL) phase:

In this phase, the position of the global leader is updated by applying the greedy selection

in the population i.e., the position of the SM having best fitness in the population is selected

as the updated position of the global leader. After that, if the global leader is not updated

(stagnated) then the GlobalLimitCount is incremented by 1.

The Algorithm 4 explains the process of this phase.

CHAPTER 1. SPIDER MONKEY OPTIMIZATION (SMO) ALGORITHM 9

Algorithm 4 Global Leader Learning (GLL) phase

1: procedure Global-Leader-Learning

2: global leader position = position of SM which has best fitness.

3: if global leader did not change its position then

4: GlobalLimitCount = GlobalLimitCount + 1

5: end if

6: end procedure

e) Local Leader Learning (LLL) phase:

In this phase, the position of the local leader is updated by applying the greedy selection

in that group i.e., the position of the SM having best fitness in that group is selected as the

updated position of the local leader. Next, if the local leader is not updated (stagnated)

then the LocalLimitCount is incremented by 1.

The Algorithm 5 gives the process of this phase.

Algorithm 5 Local Leader Learning (LLL) phase

1: procedure Local-Leader-Learning

2: for each k ∈
{

1...NumGp
}

do

3: kth group leader position = position of member group which has best fitness.

4: if kth group leader did not change its position then

5: LocalLimitCount = LocalLimitCount + 1

6: end if

7: end for

8: end procedure

f) Local Leader Decision (LLD) phase:

If any local leader position is not updated up to a predetermined sill called LocalLeaderLimit,

then based on pr all the members of that group update their positions either by random

initialization or through Equation 1.5:

SMnewij = SMij + U(0, 1)× (GLj − SMij) + U(0, 1)× (SMij − LLkj) (1.5)

The process of Local Leader Decision (LLD) phase is described in Algorithm 6.

CHAPTER 1. SPIDER MONKEY OPTIMIZATION (SMO) ALGORITHM 10

Algorithm 6 Local Leader Decision (LLD) phase

1: procedure Local-Leader-Decision

2: for each k ∈
{

1...NumGp
}

do

3: if LocalLimitCountk > LocalLeaderLimit then

4: LocalLimitCountk = 0

5: for each member SMi ∈ kth group do

6: for each j ∈
{

1...D
}

do

7: if U(0, 1) ≥ pr then

8: SMij = SMminj + U(0, 1)× (SMmaxj − SMminj)

9: else

10: SMnewij = SMij +U(0, 1)×(GLj−SMij)+U(0, 1)×(SMij−LLkj)

11: end if

12: end for

13: end for

14: end if

15: end for

16: end procedure

g) Global Leader Decision (GLD) phase:

In this phase, the position of global leader is monitored and if it is not updated up to a

predetermined sill called GlobalLeaderLimit, then the global leader divides the population

into smaller groups. Firstly, the population is divided into two groups and then three groups

and so on till the maximum number of groups (MG), then the next time the global leader

combine all the groups to form a single group. Thus the proposed algorithm is inspired from

fusion–fission structure of SMs.

Algorithm 7 Global Leader Decision (GLD) phase

1: procedure Global-Leader-Decision

2: if GlobalLimitCountk > GlobalLeaderLimit then

3: GlobalLimitCountk = 0

4: if NumGp < MG then

5: Divide the swarm into smaller groups.

6: else

7: Combine all the groups to make a single group.

8: end if

9: Update Local Leaders position.

10: end if

11: end procedure

CHAPTER 1. SPIDER MONKEY OPTIMIZATION (SMO) ALGORITHM 11

1.3.3 Control parameters in SMO algorithm

(Jagdish Chand Bansal 2014) SMO algorithm has four control parameters: LocalLeaderLimit,

GlobalLeaderLimit, the maximum number of groups (MG) and the perturbation rate (pr).

The suggested parameter settings are given as follows:

• MG = N/10, it is chosen such that minimum number of SMs in a group should be 10.

• GlobalLeaderLimit ∈ [N/2, N ∗ 2]

• LocalLeaderLimit = D ∗N

• pr ∈ [0.1, 0.4], it will increment through iterations by: 0.3/NbrOfIteration

N is the swarm size (which is between 40 and 160), and D is the number of dimensions in

the objective function.

1.3.4 Performance Analysis of SMO

(Jagdish Chand Bansal 2019) Performance of SMO has been analyzed against three

well-known meta-heuristics, Artificial Bee Colony (ABC), Differential Evolution (DE), and

Particle Swarm Optimization (PSO) in (Jagdish Chand Bansal 2014). After testing on 25

benchmark problems and performing various statistical tests, it is concluded that the SMO

is a competitive meta-heuristic for optimization. It has been shown that the SMO performed

well for unimodal, multimodal, separable and non-separable optimization problems in (Jag-

dish Chand Bansal 2014). It was found that for continuous optimization problems SMO

should be preferred over PSO, ABC or DE for better reliability.

Explaining terms:

• Continuous optimization problems: continuous optimization problems have con-

tinuous solution spaces.

• Unimodal function: is the function f(x) who has a single extremum (minimum or

maximum) in the range specified for x.

• Multimodal function: is the function who has more than one peaks in the search

space (as shown in Figure 1.4).

CHAPTER 1. SPIDER MONKEY OPTIMIZATION (SMO) ALGORITHM 12

Figure 1.4: Illustration of global optimum and local optima

1.3.5 The main loop

Here, the precedent functions are exploited to construct the main loop of SMO algorithm.

Algorithm 8 Main Loop

1: procedure Main-loop(Iteration)

2: Iteration = 0

3: while Iteration < NbrOfIteration do

4: Local-Leader-Phase()

5: Global-Leader-Phase()

6: Global-Leader-Learning()

7: Local-Leader-Learning()

8: Global-Leader-Decision()

9: Local-Leader-Learning()

10: Update pr

11: Iteration = Iteration + 1

12: end while

13: end procedure

1.3.6 Analyzing SMO

(Jagdish Chand Bansal 2014, 2019) SMO better balances between exploitation and ex-

ploration while search for the optima. So, let’s explain that and see more details about the

six steps of SMO algorithm as a general analyzing:

Firstly, Local Leader phase (LLP) is used to explore the search region as in this phase all

the members of the groups update their positions with high perturbation in the dimensions.

While the global leader phase (GLP) promotes the exploitation as in this phase, better

candidates get more chance for updating their positions. This property makes SMO a better

candidate among the search based optimization algorithms.

CHAPTER 1. SPIDER MONKEY OPTIMIZATION (SMO) ALGORITHM 13

SMO algorithm also possesses an inbuilt mechanism for stagnation check. Local Leader

Learning (LLL) phase and Global Leader Learning (GLL) phase, are used to check if the

search process is stagnated or not. In case of stagnation (at local or global level) Local

Leader and Global Leader Decision phases work.

The Local Leader Decision (LLD) phase creates an additional exploration, while in the

Global Leader Decision (GLD) phase a decision about fission or fusion is taken depending

on the number of groups in the population. Therefore, in SMO exploration and exploitation

are better balanced while maintaining the convergence speed.

The algorithm 9 and the Figure 1.5 below represent the whole process of SMO algorithm.

Algorithm 9 Spider Monkey Optimization SMO algorithm

1: Initialize GlobalLeaderLimit, LocalLeaderLimits , pr

2: GlobalLimitCount = 0 , LocalLeaderLimits = 0

3: Initialize size // The swarm size

4: Initialize NbrOfIteration

5: MG = size/10 // Maximum Number of groups

6: NumGp = 1 // Number of groups initial is one group

7: Initialization-Of-Population(size)

8: Calculate fitness of each individual

9: Select global leader and local leaders applying greedy selection (see GLL phase and LLL

phase in section 1.3.2).

10: Main-loop(Iteration)

CHAPTER 1. SPIDER MONKEY OPTIMIZATION (SMO) ALGORITHM 14

Start

Initialization of the population

Local Leader Phase (LLP)

Global Leader Phase (GLP)

Global Leader Learning (GLL) Phase

Local Leader Learning (LLL) Phase

Local Leader Decision (LLD) Phase

Global Leader Decision (GLD) Phase

Meet stopping criteria?

End

YES

NO

Figure 1.5: The process of Spider Monkey Optimization (SMO) algorithm

CHAPTER 1. SPIDER MONKEY OPTIMIZATION (SMO) ALGORITHM 15

Conclusion

In this chapter, we have presented a recently created swarm intelligence based algorithm,

which is the spider monkey optimization SMO algorithm for numerical optimization (). The

inspiration of SMO process is from the social behavior of spider monkeys in foraging. Spider

monkeys was the chosen, that is because they have been categorized as “fission-fusion” social

structure based animals. This kind of animals split themselves from large to smaller groups

and vice-versa based on the scarcity and the availability of food, and this is the important

thing in SMO algorithm.

In order to explain this new approach, we divided this chapter into three parts. In the

first part, we have given a definition of an optimization problem (OP). Then in the second

part, we touched on the swarm intelligence (SI), a definition and the conditions that achieve

obtaining intelligent swarming. Further, we presented a classification of all the algorithms

that belong to the SI approach. Thus, the last part contained the reasons for the inspiration

from spider monkeys and a detailed explaining of the SMO algorithm process, its parameters,

its performance, and general analysis of it.

For better performance of the SMO algorithm, we proposed the first parallel version of

the SMO algorithm in the literature. Therefore, the next chapter contains basic concepts

of parallel computing and an overview of parallel computing architectures and parallel pro-

gramming models.

Chapter 2

Parallel computing: basic concepts

Chapter 2

Parallel computing: basic concepts

Introduction

The serial computing means that the problem statement is broken into discrete instruc-

tions, those instructions are executed by a CPU one by one. Thus, at any moment only

one instruction is executed. The last point was causing a huge problem in the computing

industry, as only one instruction was getting executed at any moment of time. Further, this

was a huge waste of hardware resources as only one part of the hardware will be running for

particular instruction and of time. As problem statements (programs) were getting heavier

and bulkier, so does the amount of execution time of those statements.

As a real-life example of this, would be people standing in a queue waiting for a movie

ticket and there is only one cashier giving ticket one by one to the persons. The complexity of

this situation increases when there are two queues and only one cashier. We could definitely

say that complexity will decrease when there are two queues and two cashiers giving tickets

to two persons simultaneously. This is the aim of using parallel computing, is to make the

CPU treats and executes more than one instruction at any moment of time.

This chapter presents an overview on parallel computing. Firstly, we touch on the reasons

for forwarding into parallel computing. Then, we present the scope of using parallel com-

puting, also the general architecture of the computer (Von Neumann architecture). Finally,

we identify the classification of parallel architectures and the different parallel programming

models.

2.1 Motivating Parallelism

(Ananth Grama 2003, CHOUDHARY 1989)

17

CHAPTER 2. PARALLEL COMPUTING: BASIC CONCEPTS 18

2.1.1 The Computational Power Argument

It is possible to fabricate devices with very large transistor counts. How we use these

transistors to achieve increasing rates of computation is the key architectural challenge. A

logical recourse to this is to rely on parallelism.

On all, Parallel processing is the consensus approach to providing the necessary compu-

tational power for most computational intensive problems such as scientific, vision or any

other.

2.1.2 The Memory/Disk Speed Argument

The overall speed of computation is determined not just by the speed of the processor,

but also by the performance of the memory system which is determined by the fraction of

the total memory requests that can be satisfied from the cache.

Parallel platforms typically yield better memory system performance because they provide

a larger aggregate caches, and a higher aggregate bandwidth to the memory system. Further-

more, the principles that are at the heart of parallel algorithms (locality of data reference)

lend themselves to cache-friendly serial algorithms.

2.1.3 The Data Communication Argument

As the networking infrastructure evolves, the vision of using the Internet as one large

heterogeneous parallel/distributed computing environment has begun to take shape. In

many applications there are constraints on the location of data and/or resources across the

Internet. In such applications, even if the computing power is available to accomplish the

required task without resorting to parallel computing, it is infeasible to collect the data at

a central location.

In these cases, the motivation for parallelism comes not just from the need for computing

resources but also from the infeasibility of alternate (centralized) approaches.

2.1.4 Time Argument

As discussed in the introduction of the chapter, the more important reason of heading

towards parallel computing is that the last one provides time, and that is because of executing

more than one instruction at one time. On the reverse of serial computing which will be

impractical in case of complex programs.

2.2 Scope of Parallel Computing

(Ananth Grama 2003, CHOUDHARY 1989)

CHAPTER 2. PARALLEL COMPUTING: BASIC CONCEPTS 19

2.2.1 Applications in Engineering and Design

Parallel computing has traditionally been employed with great success in the design of

airfoils (optimizing lift, drag, stability), internal combustion engines (optimizing charge dis-

tribution, burn), high-speed circuits (layouts for delays and capacitive and inductive effects),

and structures (optimizing structural integrity, design parameters, cost, etc.), among others.

Parallel computers have been used to solve a variety of discrete and continuous optimiza-

tion problems. Algorithms such as Simplex, Interior Point Method for linear optimization

and Branch-and-bound, and Genetic programming for discrete optimization have been effi-

ciently paralleled and are frequently used.

2.2.2 Scientific Applications

The past few years have seen a revolution in high performance scientific computing applica-

tions. The sequencing of the human genome by the International Human Genome Sequencing

Consortium and Celera, Inc. has opened exciting new frontiers in bioinformatics.

Thus, analyzing biological sequences with a view to developing new drugs and cures for

diseases and medical conditions requires innovative algorithms as well as large-scale com-

putational power. Indeed, some of the newest parallel computing technologies are targeted

specifically towards applications in bioinformatics.

Also, applications in astrophysics have explored the evolution of galaxies, thermonuclear

processes, and the analysis of extremely large databases from telescopes. Weather modeling,

mineral prospecting, flood prediction, etc., rely heavily on parallel computers and have very

significant impact on day-to-day life.

2.2.3 Commercial Applications

Parallel platforms ranging from multiprocessors to Linux clusters are frequently used as

web and database servers. For instance, large brokerage houses on Wall Street handle hun-

dreds of thousands of simultaneous user sessions and millions of orders.

The availability of large-scale transaction data has also sparked considerable interest in

data mining and analysis for optimizing business and marketing decisions. The sheer volume

and geographically distributed nature of this data require the use of effective parallel al-

gorithms for such problems as association rule mining, clustering, classification, and time-

series analysis ...etc.

CHAPTER 2. PARALLEL COMPUTING: BASIC CONCEPTS 20

2.2.4 Applications in Computer Systems

As computer systems become more pervasive and computation spreads over the network,

parallel processing issues become ingrained into a variety of applications.

In computer security, intrusion detection is an outstanding challenge. In this case, data

is collected at distributed sites and must be analyzed rapidly for signaling intrusion, and

this requires effective parallel and distributed algorithms. In the area of cryptography, some

of the most spectacular applications of Internet-based parallel computing have focused on

factoring extremely large integers.

Embedded systems such as in a modern automobile consists of tens of processors com-

municating to perform complex tasks for optimizing handling and performance. In such

systems also, traditional parallel and distributed algorithms for leader selection, maximal

independent set, etc., are frequently used.

2.3 Von Neumann Architecture

(Barney n.d.) Named after the Hungarian mathematician/genius John von Neumann.

Also known as “stored-program computer”. Since then, virtually all computers have followed

this basic design (Figure 2.1), which is comprised of four main components:

• Memory:

Read/write, random access memory is used to store both program instructions and

data.

• Control Unit:

Control unit fetches instructions/data from memory, decodes the instructions and then

sequentially coordinates operations to accomplish the programmed task.

• Arithmetic Logic Unit:

Arithmetic Unit performs basic arithmetic operations.

• Input/Output:

Input/Output is the interface to the human operator.

CHAPTER 2. PARALLEL COMPUTING: BASIC CONCEPTS 21

Figure 2.1: Von Neumann Architecture

Parallel computers still follow this basic design, just multiplied in units. The basic,

fundamental architecture remains the same.

2.4 General Parallel Terminology

2.4.1 CPU/Processor/Core

CPU (Central Processing Unit) is a processor that carries out instructions sequentially.

Higher frequency means faster calculations(Barney n.d.).

2.4.2 Task

A task is typically a program or program-like set of instructions that is executed by a

processor(Barney n.d.).

2.4.3 Pipelining

Breaking a task into steps performed by different processor units, with inputs streaming

through, much like an assembly line(Barney n.d.).

Pipelining is a type of parallel computing.

2.4.4 Communications

Parallel tasks typically need to exchange data. There are several ways to achieve this, such

as through a shared memory bus or over a network...etc(Barney n.d.).

2.4.5 Synchronization

The coordination of parallel tasks in real time. Often implemented by establishing a syn-

chronization point within an application where a task may not proceed further until another

task(s) reaches the same or logically equivalent point(Barney n.d.).

CHAPTER 2. PARALLEL COMPUTING: BASIC CONCEPTS 22

2.4.6 Granularity

In parallel computing, granularity is a qualitative measure of the ratio of computation to

communication(Barney n.d.).

2.4.7 Scalability

Refers to a parallel system’s (hardware and/or software) ability to demonstrate a propor-

tionate increase in parallel speedup with the addition of more resources(Barney n.d.).

2.5 Implicit and Explicit Parallelism

2.5.1 Implicit parallelism

(Joseph Awange 2018) Some of the programming languages (e.g. Matlab) are able to ex-

ploit multicore and multi-threading ability, automatically, partly or fully, without any special

directives of the programming language. This characteristic of a programming language is

called implicit parallelism.

The implicit parallelism may support only certain statements and may be efficient in case

of large computational load. Mathematica also supports automatically the parallelization of

some operations.

2.5.2 Explicit Parallelism

(Joseph Awange 2018) Parallelism provided by the code extension and controlled by the

user, namely using or not using parallel execution is called explicit parallelism.

A feature of a programming language for a parallel processing system which allows or

forces the programmer to annotate his program to indicate which parts should be executed

as independent parallel tasks. This is obviously more work for the programmer than a

system with implicit parallelism (where the system decides automatically which parts to run

in parallel) but may allow higher performance.

2.6 Classification of Parallel Architectures

(Ruokamo 2018, Samir 2015) Among many proposed classifications of computer archi-

tectures and their data processing structure, “Flynn’s taxonomy” classification which is

presented by Michael Flynn in 1966 was the commonly used one, and it is still in use today

in industry and many other fields. This classification is according to numbers of instruction

streams and the number of data stream.

CHAPTER 2. PARALLEL COMPUTING: BASIC CONCEPTS 23

A stream is an ordered set of elements of the same nature (data or instructions). Each

stream is independent of the others, and each element of a stream can consist of one (or

more) objects or actions (ref: un algorithm génétic parallel sur....).

Single Data stream Multiple Data stream

Single Instruction stream SISD SIMD

Multiple Instruction stream MISD MIMD

Table 2.1: Flynn classification of computer architectures

The table 2.1 explains Flynn’s classification as follow:

2.6.1 SISD (Single Instruction stream, Single Data stream)

As shown in Figure 2.2, SISD processor is a serial processor and it is capable of executing

a single program instruction and a single data element at a time. Typically, SISD approach

employs no parallelism at all and is not a choice for parallel computing platform.

*PE = Processing Element

Figure 2.2: Single Instruction stream, Single Data stream Architecture

2.6.2 SIMD (Single Instruction stream, Multiple Data stream)

As shown in Figure 2.3, SIMD processor architecture promotes data processing parallelism.

During the execution of one program instruction multiple data elements can be processed at

a time.

*PE = Processing Element

CHAPTER 2. PARALLEL COMPUTING: BASIC CONCEPTS 24

Figure 2.3: Single Instruction stream, Multiple Data stream Architecture

2.6.3 MISD (Multiple Instruction stream, Single Data stream)

Over one single data point, multiple instructions can be performed at one time. This is

the work principle of MISD processor as shown in Figure 2.4.

*PE = Processing Element

Figure 2.4: Multiple Instruction stream, Single Data stream Architecture

2.6.4 MIMD (Multiple Instruction stream, Multiple Data stream)

The most popular parallel computer architecture is MIMD architecture.

CHAPTER 2. PARALLEL COMPUTING: BASIC CONCEPTS 25

In MIMD architecture (Figure 2.5) multiple instructions can be processed over multiple

data items at one time. In practice, this means that the processing involves multiple pro-

cessing units i.e. processors are working in parallel.

*PE = Processing Element

Figure 2.5: Multiple Instruction stream, Multiple Data stream Architecture

Further, in this architecture we distinguish two types of MIMD according to memory ac-

cess:

a) Shared-memory MIMD:

In shared-memory MIMD machines (Figure 2.6), multiple processors can operate inde-

pendently, but share the same memory resources (a global address space). While each

change in a memory location made by one processor is visible to all other processors.

Synchronization between processors to get access to the memory can be done through:

• Semaphores: two operations P and V.

• Lock (mutex lock): binary semaphore used to protect a critical section.

• Monitors: high-level construction, implicit lock.

CHAPTER 2. PARALLEL COMPUTING: BASIC CONCEPTS 26

Figure 2.6: Shared-memory MIMD

b) Distributed-memory MIMD (Message-passing):

In Distributed-memory MIMD (Figure 2.7), each processor has its own private memory,

and to connect processors memory a communication network is built, also the data exchange

is through message passing.

Figure 2.7: Shared-memory MIMD

2.7 Parallel Programming Models

(Barney n.d.) There are several parallel programming models in common use, let’s explain

some of them in brief:

2.7.1 Shared Memory (without threads)

In this programming model (Figure 2.8), processes/tasks share a common address space,

which they read and write to asynchronously. Various mechanisms such as locks/semaphores

are used to control access to the shared memory and to prevent deadlocks.

- An advantage of this model from the programmer’s point of view is that the notion of

data “ownership” is lacking, so there is no need to specify explicitly the communication of

data between tasks. All processes see and have equal access to shared memory.

CHAPTER 2. PARALLEL COMPUTING: BASIC CONCEPTS 27

- An important disadvantage in terms of performance is that it becomes more difficult to

understand and manage data locality.

Figure 2.8: “Shared Memory” Parallel Programming Model

2.7.2 Threads

This programming model (Figure 2.9) is a type of shared memory programming. In the

threads model of parallel programming, a single “heavy weight” process can have multiple

“light weight”, concurrent execution paths.

For example:

- The main program a.out is scheduled to run by the native operating system. a.out loads

and acquires all of the necessary system and user resources to run. This is the “heavy weight”

process.

- a.out performs some serial work, and then creates a number of tasks (threads) that can

be scheduled and run by the operating system concurrently.

- Threads can come and go, but a.out remains present to provide the necessary shared

resources until the application has completed.

Figure 2.9: “Threads” Parallel Programming Model

CHAPTER 2. PARALLEL COMPUTING: BASIC CONCEPTS 28

2.7.3 Distributed Memory/Message Passing

In this model (Figure 2.10), a set of tasks that use their own local memory during com-

putation. Multiple tasks can reside on the same physical machine and/or across number

of machines. Exchanging data between tasks is through communications by sending and

receiving messages.

Data transfer usually requires cooperative operations to be performed by each process.

For example, a send operation must have a matching receive operation.

Figure 2.10: “Distributed Memory/Message Passing” Parallel Programming Model

2.7.4 Data Parallel

(Barney n.d.) In Data Parallel model the most of the parallel work focuses on performing

operations on a data set. The data set is typically organized into a common structure, such

as an array or cube.

A set of tasks work collectively on the same data structure, however, each task works on

a different partition of the same data structure. Those tasks perform the same operation on

their partition of work, for example, add 4 to every array element.

2.7.5 SPMD and MPMD

a) Single Program Multiple Data (SPMD)

SPMD is actually a “high level” programming model that can be built upon any combin-

ation of the previously mentioned parallel programming models.

• SINGLE PROGRAM: All tasks execute their copy of the same program simultan-

eously. This program can be threads, message passing or data parallel.

• MULTIPLE DATA: All tasks may use different data.

CHAPTER 2. PARALLEL COMPUTING: BASIC CONCEPTS 29

b) Multiple Program Multiple Data (MPMD)

Like SPMD, MPMD is actually a “high level” programming model that can be built upon

any combination of the previously mentioned parallel programming models.

• SINGLE PROGRAM: Tasks may execute different programs simultaneously. The

programs can be threads, message passing or data parallel.

• MULTIPLE DATA: All tasks may use different data.

Conclusion

This chapter introduced a general look of parallel computing. Whereas, at the end of this

chapter the reader will be aware of the motivation of parallel computing and the scope of

using it. Furthermore, the classification of computer architectures (SISD, SIMD, MISD, and

MIMD). Finally, the different models of parallel programming.

Thus, we have completed the theoretical part of this report, which is totally represented in

two chapters, the first one talks about the SMO algorithm and its process in detail, whereas

the second one presents the concepts and architectures of parallel computing as discussed

above. The next part of the report will discuss the practical results of the experiments made

on the SMO algorithm with its two versions: the sequential and the proposed parallel one,

and a comparison between them.

Part II

Contributions

30

Chapter 3

Analysis & Design

Chapter 3

Analysis & Design

Introduction

3.1 Analysis

Nowadays, every software developer or software company or computer science researchers

seek to produce a very performed version of his product, and from the ways used to achieve

that is Parallelism.

The application that we built we called it “ParSMO”. This application aim is showing

the difference between the SMO sequential version and the proposed parallel SMO (as the

first in the literature), by applying it on two test problems in terms of execution time, the

near-optimum solution and the objective space density.

3.1.1 Description of the Application

“ParSMO” is an application implemented by Python with a view of applying the SMO

algorithm on a single objective function; That’s because this algorithm destined to work on

the single optimization problems. This application provides the user with two versions of

the SMO algorithm.

The first is the sequential version, which needs the objective function, the swarm size and the

number of iterations. This version applies the algorithm on step by step sequentially (Figure

3.1). The second one divides the SMO work between 2, 3 or 4 processes according to the

user demand. Thus, this version will need 4 inputs, which are: the objective function, the

number of processes, the swarm size and the number of iterations (Figure 3.2). Hence, the

results which will appear to the user represented in a curve contains the initial population

and the last one, also the execution time and the near-optimum solution.

32

CHAPTER 3. ANALYSIS & DESIGN 33

Figure 3.1: The Sequential version of SMO algorithm in “ParSMO”

Figure 3.2: The Parallel version of SMO algorithm in “ParSMO”

The last part in “ParSMO” allows the user to make a comparison between the two ways

in once (by a single click). The results here represented in three curves. The first for the

sequential version, the second for the parallel one and the last contains the last population

of sequential version and the last population of parallel one. Further, the execution time

and the near-optimum solution of the two versions will be shown to the user. Thus, the user

will be able to see the difference between the two versions in the application (Sequential &

Parallel), in terms of time, objective space density and the near-optimum solution.

CHAPTER 3. ANALYSIS & DESIGN 34

3.1.2 Project Development Cycle

To obtain the latest version of ParSMO application, we passed through several steps,

explaining them below:

1. First, we have implemented SMO algorithm in a simple version using Python 3.7.

2. The second version of SMO algorithm is implemented using OOP paradigm.

3. And because that the aim of this project is making a parallel version of SMO algorithm

as a contribution, we have chosen Multiprocessing package in Python to achieve that.

Our choice is based on the lack of need for communication between processes.

4. Hence, we have implemented the first parallel SMO algorithm in the literature using

Multiprocessing package.

5. As a step of experimentation, we have chosen from the problems presented on SMO

paper (Jagdish Chand Bansal 2014) two test problems, which are:

• Dekkers and Aarts (DA):

- Formula:

f(x) = 105x2
1 + x2

2 − (x2
1 + x2

2)
2 + 10−5(x2

1 + x2
2)

4 (3.1)

- Search range: [-20 , 20]

- The number of inputs: 2

- Optimum value: -24777

• Six-hump Camelback (ShC):

- Formula:

f(x) = (4− 2.1x2
1 + x4

1/3)x2
1 + x1x2 + (−4 + 4x2

2)x
2
2 (3.2)

- Search range: [-5 , 5]

- The number of inputs: 2

- Optimum value: -1.0316

Thus, the individuals will be presented as a two-dimensional vector (according to the

number of inputs of the function, here 2).

6. The final step is creating ParSMO application which aims to test SMO algorithm on

the previous test problems, by a sequential version of SMO or the parallel one, further

the comparison between them in once.

The comparison that the user can see will be in terms of execution time and near-

optimum solution and the objective space density.

CHAPTER 3. ANALYSIS & DESIGN 35

3.2 Design

After presenting the project aims, we have to identify the global architecture of ParSMO

application using “Use Case”, “Class” and “Sequence” Diagrams.

3.2.1 Global Design

3.2.1.1 Use Case diagram

a) Definition:

Use case diagrams are used to gather a usage requirement of a system. They are used

to identify functions and how roles interact with them (the primary purpose of use case

diagrams), also for a high-level view of the system.

b) ParSMO use case diagram & description:

CHAPTER 3. ANALYSIS & DESIGN 36

Figure 3.3: Use Case diagram of “ParSMO” application

The use case diagram of ParSMO (Figure 3.3) shows to us that the user of this application

can do five acts, which are:

• Seeing “Menu”, which is a menu bar in the home of ParSMO app, and it contains

“Help”, “About ParSMO” and “Quit”.

• Choosing an objective function to test SMO algorithm on it.

• After choosing the function, the user can see the parameters of this function.

CHAPTER 3. ANALYSIS & DESIGN 37

• Seeing SMO parameters, which are related to the swarm size and the number of iter-

ations that the user entered.

• Running SMO algorithm, as a general use case. Whereas, the following use cases:

sequential SMO, parallel SMO and both of them in once (comparison) are specialized

use cases that the user can do each of them.

Two relationships between use cases are:

• <include>: is a relationship means that every time the base use case is executed, the

use case included is executed as well.

• <extend>: is a relationship means that when the base use case is executed, the extend

use case will be executed sometime but not every time.

All over, the relationships of this kind on our application are:

• The use cases “Help”, “About ParSMO” and “Quit” are extended from the main use

case “Menu”, which means that when the user clicks on the menu bar “Menu”, it does

not require a going to “Help”, “About ParSMO” or “Quit” necessarily, but they still

a choices.

• The included use case “verify size & iteration” will be executed necessarily in each

access of the user in the use cases “See SMO parameters” or “Run SMO” (with its

three branches).

• Further, the use case “Display an input error” will not be done in each access on

“See SMO parameters” or “Run SMO”, but just in case if the user made a mistake in

the input process. Therefore, we put the relationship between them as an <extend>

relationship.

• The same thing for the use cases “verify the number of processes” and “Display an

input error”.

• Finally, when the user runs any of three specialized use cases of the general use case

“Run SMO”, then “Display results” will be executed as well, as shown in (Figure 3.3).

3.2.1.2 Class diagram

a) Definition:

A class diagram is a UML diagram type that describes a system by visualizing the different

types of objects within a system and the kinds of static relationships that exist among them.

It also illustrates the operations and attributes of the classes. They are usually used to

explore domain concepts, understand software requirements and describe detailed designs.

CHAPTER 3. ANALYSIS & DESIGN 38

b) ParSMO class diagram & description:

Figure 3.4: Class diagram of “ParSMO” application

As shown in the previous class diagram (Figure 3.4), ParSMO application which is imple-

mented using Object-Oriented Programming (OOP) paradigm, contains four classes: SM,

Population, ProcessesGenerator and ParSMO.

• “ParSMO” class:

CHAPTER 3. ANALYSIS & DESIGN 39

It is the main class which contains the user interfaces, and also can create a popula-

tion then run the sequential SMO, or launch “Processes Generator” to create processes

in order to run SMO in parallel. Hence, it contains the methods that cover all the ap-

plication work (running sequential SMO, parallel one, show results...etc), which are:

- MainWindow(): It represents the main user interface.

- RunSMO(): The operation that runs SMO sequentially after creating a population.

- LaunchMultiprocessing(): Launched when the user chooses to use the parallel version

of SMO, after specifying the number of processes uses in implementation.

- PlotResults(): Is the operation that shows the result window after finishing the im-

plementation of sequential or parallel SMO.

- PlotResultsComparision(): This operation like the previous one (showing results),

but it’s destined for the case of comparison between the sequential SMO and the par-

allel one, whereas the results window contains the results of the two versions and the

comparison between them.

- DrawGraph(): An operation used to plot the objective space of a function.

• “ProcessesGenerator” class:

“ProcessesGenerator” is the responsible of generating processes when the user chooses

to work by the parallel SMO algorithm. “ProcessesGenerator” class has two attributes:

the size of the population and the number of processes. Further, it has two operations:

“StartProcesses” and “CallSMO”.

- StartProcesses(): This operation divides the population size into sub-sizes according

to the number of processes given by the user, then it creates a population for each

process. Finally, creating the processes and launch them to apply SMO severally.

- CallSMO(): Is the operation that is taken by each process to run SMO and get the

results after finishing.

• “Population” class:

It is the class which contains the SMO algorithm as an operation to be applied on

the population created. “Population” class has two attributes which are the size of the

population and the population (swarm) itself. All the following operations are used

by the main operation SMO(): update pr, init Population, global leader, local leader,

max fitness, and DevidePopulation.

- update pr(): The operation that updates pr1.

- init Population(): This operation defines the first values of the population (the first

generation) as SMs (individuals).

- global leader(): Determines the global leader of the swarm.

- local leader(): Determines the local leader of a group in the swarm.

1pr is an SMO algorithm parameter, see 1.3.3

CHAPTER 3. ANALYSIS & DESIGN 40

- max fitness(): Selects the number of the individual that has the best fitness.

- DevidePopulation(): This operation is responsible for dividing the population into

smaller groups or combining them in a single group (explained in 1.3.2).

Furthermore, the main operation in the class and in the application at all is called

SMO(), which contains the whole process of SMO algorithm, also it returns the result

(the first and the last generation) after finishing the process.

• “SM” class:

It is the class that represents an individual (a spider monkey) in the population. Each

SM has a group, a number, inputs (which are his value), a function value, a fitness

and probability (explained in section 1.3.2). This class has two operations, the first

one is FunctionValue() which is the operation that calculate the function value of each

individual, and the second one is CalculFitness() and it returns the fitness value of

each individual according to his function value.

c) Relations between the classes:

• The population is a group of SMs (individuals), so a composition relation between the

“Population” class and “SM” class. The population can contain 40 to 160 SMs, but

each SM should be in a single population.

• A directed association relation between “ParSMO” and “ProcessesGenerator” classes,

so “ParSMO” can launch the “ProcessesGenerator”.

• “ParSMO” can create a population, so a directed association relation between “ParSMO”

and “Population”.

• “ProcessesGenerator” can create two, three or four populations, so also a directed

association relation between “ProcessesGenerator” and “Population”.

3.2.1.3 Sequence diagram

a) Definition:

A sequence diagram is a model of the interactions between objects in a single use case.

It illustrates how the different parts of a system interact with each other to carry out a

function, and the order in which the interactions occur when a particular use case is executed.

In simpler words, a sequence diagram shows the different parts of system behavior in a

‘sequence’ to get something done.

b) ParSMO sequence diagram & description:

CHAPTER 3. ANALYSIS & DESIGN 41

The sequence diagrams (Figures 3.5, 3.6) show that the user of ParSMO application can

do the following:

• Selecting a function (test problem) to run SMO algorithm on it.

• Seeing the parameters of the selected function.

• Seeing the SMO parameters, after ParSMO system receiving a “valid input” message

from the verification system if the inputs are correct, and if it is not, the application

system will show to the user an input error window as a warning and the user will not

be able to see the SMO parameters until he enters a correct inputs (size number of

iteration) as the conditions said.

However, the user can choose to test sequential SMO or parallel one or make a comparison

between them.

The following part explains these three choices.

1. Sequence diagram of sequential SMO:

Figure 3.5: Sequence diagram of sequential SMO

CHAPTER 3. ANALYSIS & DESIGN 42

The sequence diagram of the sequential object of the SMO algorithm as shown in

(figure 3.5) above allows the user to run the sequential version of SMO on the function

selected. The process followed by the sequential SMO object is:

• The ParSMO system verifies the size and the number of iteration entered by the

user by sending a verification message to the verification system of ParSMO. If the

inputs are wrong according to the conditions mentioned, the verification system

returns an “invalid inputs” message to ParSMO, which in turn displays a warning

(input error) to the user. When the user enters the valid both size and number

of iterations, the ParSMO system sends a command: “Create Population”, with

the parameters: size and iterations, to the class Population.

• The last message makes a population created, in the size that sent with the

message.

• To population be created, a loop of creating SMs are executed with the specified

size.

• Each individual created by returning a message to the Population class.

• After finishing the creating of the population, the Population class runs the SMO

algorithm on itself.

• Return the results to the ParSMO system after completing the implementation

of the SMO algorithm, which in turn displays them to the user in a window.

2. Sequence diagram of parallel SMO:

CHAPTER 3. ANALYSIS & DESIGN 43

Figure 3.6: Sequence diagram of parallel SMO

The sequence diagram of the parallel object of the SMO algorithm as shown in

(figure 3.6) above allows the user to run the parallel version of SMO on the function

selected. The process followed by the parallel SMO object is:

• The ParSMO system verifies the size and the number of iteration entered by the

user by sending a verification message to the verification system of ParSMO. If the

inputs are wrong according to the conditions mentioned, the verification system

returns an “invalid inputs” message to ParSMO, which in turn displays a warning

(input error) to the user. When the user enters the valid both size and number

of iterations, the ParSMO system sends a command: “Launch Multiprocessing”,

with the parameters: size, iterations, and the number of processes to the class

“ProcessesGenerator”.

• In a loop of the number of the processes, populations are created by the command

CHAPTER 3. ANALYSIS & DESIGN 44

“Start Processes” for each one of them, with the sub-size 2 and the number of

iterations as parameters. Thus, for each processes, a population with sub-size is

created.

• Each process creates its own population by the loop that explained before (in the

sequential object) and runs the SMO algorithm on its population.

• After a process completes the implementation of the SMO algorithm, it returns

the results to the “Processes Generator”, which in turn adds it to the queue of

the results.

• “Processes Generator” ensures that all the processes finished their implementation

of SMO and sent the results, then it sends the whole results to the ParSMO

system, which in turn displays them to the user in a window.

3.2.2 Detailed Design

In order to illustrate ParSMO application deeply, let’s explain the Python code of it and

how we implemented all its methods.

• SM class:

The name of this class means Spider Monkey, which represent an individual in optim-

ization algorithms. The class SM has two methods:

- FunctionValue()

As shown in the next algorithm (Algorithm 11), the method FunctionValue() takes as

inputs two parameters: Num which is the function number 3, and the second one is

the inputs of the function specified, which are the value of the individual.

Algorithm 10 The method that calculate the function value

1: function FunctionValue(Num, inputs[])

2: if Num == 1 then

3: results = 105 ∗ inputs[0]2 + inputs[1]2 − (inputs[0]2 + inputs[1]2)2 + 10−5 ∗
(inputs[0]2 + inputs[1]2)4

4: //Here, result will contain the value of “Dekkers and Aarts” function using the inputs

5: of the method as inputs of it.

6: else

7: //Num == 2

8: result = (4− 2.1 ∗ inputs[0]2 + inputs[0]4/3) ∗ inputs[0]2 + inputs[0] ∗ inputs[1] +

(−4 + 4 ∗ inputs[1]2) ∗ inputs[1]2

9: //Here, result will contain the value of “Six-hump camel back” function using the inputs

10: of the method as inputs of it.

11: return result

2sub-size is the size of the population of each process, where: sub-size = size / number of processes
3The function number is just an identification of the function, I put 1 for “Dekkers And Aarts” function,
and 2 for the other “Six-hump camel back”.

CHAPTER 3. ANALYSIS & DESIGN 45

- CalculateFitness()

It is the method that calculates and returns the fitness value of each individual based

on his function value (See explanation of fitness evaluation in section 1.2.2).

Algorithm 11 The method that calculate fitness

1: function CalculateFitness(funcVal)

2: if funcV al ≥ 0 then

3: return (1/(1 + funcV al))

4: else

5: //Num == 2

6: return (1 + abs(funcV al))

7: // “fabs”, it returns the absolute value of the passed parameter

Note: these methods are used by the other objects of other classes too.

• Population class:

This is the class that contains the main method in this application, which is SMO

algorithm. We had put it in Population class because the SMO algorithm is applied

to objects of this class (a created populations).

In Population class we defined the following methods:

- update pr()

It is a method that updates the parameter “pr” through iterations by the equation

presented in the pseudo-code of this method below (12).

Algorithm 12 The method of updating the parameter “pr”

1: function update pr(pr, NbrOfIteration)

2: pr = pr + (0.4− 0.1)/NbrOfIteration

3: // 0.4 and 0.1 are the bounds of “pr”.

4: return pr

- init Population()

The first step in SMO algorithm process is initiating SMs (individuals) and this is the

method which is responsible of creating individuals and giving them their first values

(inputs, group, number, function value, and fitness).

The pseudo-code below (Algorithm 13) shows this process, where the group of all the

individuals is 0 (one group), and the probability value of all of them are initiated by 0

(because we can not calculate it now), and their numbers are sequential. Finally, their

inputs are initiated by the equation specified in the algorithm below (Algorithm 13).

CHAPTER 3. ANALYSIS & DESIGN 46

Algorithm 13 The method of initialization of the population

1: function init Population(funcNum, NbrOfInputs, min, max)

2: group = 0

3: // All the population are in a single group 0 initially.

4: prob = 0

5: // All the individuals has an initial value in their probability 0.

6: for i = 0..size do

7: inputs = []

8: for j = 0..NbrOfInputs do

9: // NbrOfInputs is the number of inputs of the function which we will apply SMO on it.

10: a = min + U(0, 1)× (max−min)

11: inputs.add(a)

12: swarm[i] = SM(funcNum, group, i, inputs, prob)

13: // i is the number of each SM.

14: // “swarm” is the list of individuals (objects of SM class).

15: a = swarm[i].f itness

16: // This instruction added to calculate the function value, then the fitness of each individual.

- global leader()

It is the method responsible for setting the global leader of the swarm in steps of SMO

algorithm based on the fitness of the individuals, where the SM who has the best fitness

will be the global leader.

Algorithm 14 The method of selecting the global leader

1: function global leader()

2: GL = 0

3: // set the SM number 0 in the swarm a global leader initially.

4: for i = 0..size do

5: if swarm[i].f itness > swarm[GL].f itness then

6: GL = i

7: return GL

- local leader()

In the same way in the previous method, the local leader of a local group is selec-

ted when he has the best fitness value among his group. The following pseudo-code

(Algorithm 15) represents this process.

CHAPTER 3. ANALYSIS & DESIGN 47

Algorithm 15 The method of selecting the local leader of a local group

1: function local leader(group)

2: groupMembers = members(groups)

3: // “members” is a method takes the number of a group as input and returns the members numbers

of this group in a list.

4: LL = groupMembers[0]

5: // set the first member of this local group a local leader initially.

6: for i in groupMembers do

7: if swarm[i].f itness > swarm[LL].f itness then

8: LL = i

9: return LL

- max fitness()

This method (Algorithm 16) returns the best fitness of a group in the population.

Algorithm 16 The method of getting the max fitness of a group

1: function max fitness(group)

2: groupMembers = members(groups)

3: maxfitness = swarm[groupMembers[0]].f itness

4: // set the fitness of the first member of this local group a max fitness initially.

5: for i in groupMembers do

6: if swarm[i].f itness > maxfitness then

7: maxfitness = swarm[i].f itness

8: return maxfitness

- DividePopulation()

In the last phase of SMO algorithm and under some necessary conditions, SMO divides

the population into smaller groups and if the maximum number of groups in the swarm

is reached, the groups are combined into a single group. This is the aim of this method,

as explained below (Algorithm 17).

CHAPTER 3. ANALYSIS & DESIGN 48

Algorithm 17 The method of dividing the population

1: function DividePopulation(NumOfGroups)

2: div,mod =divmod(size,NumOfGroups + 1)

3: // “divmod” is a method integrated into the Python language, which takes two integer numbers

and returns their “div” and “mod”.

4: start = 0

5: end = div

6: for i = 0...NumOfGroups + 1 do

7: if i < mod then

8: for j = start...end + 1 do

9: swarm[j].group = i

10: start = end + 1

11: end = (end + 1) + div

12: else

13: for j = start...end do

14: swarm[j].group = i

15: start = end

16: end = end + div

- SMO()

As we mentioned before, this is the main method in ParSMO application. SMO()

method will use all the previous methods to complete the whole process of SMO al-

gorithm. Firstly, and as a necessary act, creating a population by creating an object

of the class Population, where that requires a specified size for this population created

(between 40 and 160). Secondly, two parameters of the SMO method should be identi-

fied, which are the function number (function identifier) and the number of iterations.

Thirdly, SMO method starts by initiating SMO parameters, similar to the different

counters (iteration, number of groups, local limit count, global limit count) which all

initiated by 0, then the maximum number of groups (MG), pr, local leader limit, and

global leader limit. Furthermore, initiating the function parameters min, max and the

number of function inputs, which are selected by a method return them according to

the function identifier.

After initiating all the needs of SMO algorithm. The next step is initialization the

values of all the individuals (SMs) in the population by the method init population

(Algorithm 13). Then, selecting the global leader (Algorithm 14), the local leader

(Algorithm 15) and saving the initial generation of the population by a method called

it getInputs() in order to plot it with the last one to see the progress of the objective

space density.

In this method (Algorithm 18), the main loop of SMO algorithm contains the six steps

of SMO algorithm, further updating “pr” and iteration number.

CHAPTER 3. ANALYSIS & DESIGN 49

Algorithm 18 SMO method

1: function SMO(funcNum, NbrOfIteration)

2: iteration = 0

3: MG = size//10

4: // MG: the maximum number of groups, the integer result of dividing size of the population on 10.

5: min,max,NumOfInputs = parameters(funcNum)

6: // Getting the function parameters

7: pr = 0.1

8: // pr: an SMO parameter which increases through iterations

9: LocalLimitCount[MG] = 0

10: GlobalLimitCount = 0

11: // LocalLimitCount and GlobalLimitCount are SMO parameters (counters)

12: NumOfGroups = 1

13: // NumOfGroups: is the number of local groups in the population

14: GlobalLeaderLimit = size

15: // GlobalLeaderLimit: an SMO parameter identified in [size/2 , size*2], and had set equal to size.

16: LocalLeaderLimit = size ∗NumOfInputs

17: // LocalLeaderLimit: an SMO parameter identified as written

18: init Population(funcNum,NumOfInputs,min,max)

19: // Initialization of the population

20: GLeader = global leader()

21: // Selecting the global leader of the population

22: LLeaders[MG] = 0

23: // LLeaders: a list (of MG size) of local leader numbers

24: LLeaders[0] = local leader(0)

25: // Selecting the local leader of the group 0, where the population is in a single group (0) initially

26: init input1, init input2 = getInputs()

27: // Getting the first generation

28: while iteration < NbrOfIteration do

29: // The six phases of SMO algorithm, then updating pr and number of iterations

30: LLP()

31: GLP()

32: GLL()

33: LLL()

34: LLD()

35: GLD()

36: update pr(pr,NbrOfIteration)

37: iteration = iteration + 1

CHAPTER 3. ANALYSIS & DESIGN 50

38: input1, input2 = getInputs()

39: // Getting the last generation

40: results = []

41: // The list that we will store the results in

42: for i = 0...size do

43: individual = []

44: // A list to save individual results in.

45: individual.add(init input1)

46: individual.add(init input2)

47: individual.add(input1)

48: individual.add(input2)

49: individual.add(FunctionValue(funcNum, [input1, input2]))

50: results.add(individual)
return results

As we see in the previous pseudo-code of SMO method (Algorithm 18), and after

finishing the main loop, the first generation and the last one are gathered to store in

a list (called it results) in order to plot them as results that appear to the user at the

end.

• ProcessesGenerator class:

“ProcessesGenerator” is a class launched when the user wants to take the parallel way

in applying SMO, where the this class has two methods:

- StartProcesses()

This is the method that be called by “LaunchMultiprocessing” method in the main

class when the user wants to run parallel SMO. “StartProcesses” method has three

parameters, which are the function number and number of iteration and a queue in

order to store results in it.

Firstly, the method creates a list to store objects and other for processes. Then, it

divides the population size on the processes number, creates a population with this sub-

size for each process, and these population objects will be stored in their list. Finally,

two loops are implemented, the first one creates the processes, launches CallSMO

method for each one of them, starts them and stores them in their list. The second

one launches the “join” function for each process in order to wait for each other to

finish.

CHAPTER 3. ANALYSIS & DESIGN 51

Algorithm 19 The method of generating processes

1: function ProcessesGenerator(funcNum, nbr itr, queue)

2: processes = []

3: objects = []

4: div,mod =divmod(SizePop,NumOfProc)

5: // “divmod” returns the “div” and “mod” of population size and number of processes.

6: for i = 0...NumOfproc do

7: if mod = 0 then

8: SizePop = div

9: else

10: SizePop = div + 1

11: mod = mod− 1

12: pop = Population(SizePop)

13: objects.add(pop)

14: for i = 0...NumOfproc do

15: proc = Process(target = CallSMO, args = (objects[i], funcNum, nbr itr, queue))

16: // Launch CallSMO method for each process.

17: processes.add(proc)

18: proc.start()

19: // Start the process.

20: for process in processes do

21: process.join()

- CallSMO()

A small method launches SMO method on the population (of a process) given as a

parameter and stores the results in the queue.

Algorithm 20 Call SMO method for a population

1: function CallSMO(Pop, funcNum, nbr itr, queue)

2: result = Pop.SMO(funcNum, nbr it)

3: // Pop is a population object, and above we launch SMO method on Pop

4: queue.put(results)

5: // The results saved in the queue

• ParSMO class (The main):

It is the main class that contains the GUIs and calling of objects and methods of other

classes, and all of that is explained above.

CHAPTER 3. ANALYSIS & DESIGN 52

Conclusion

In this chapter, we have presented our application ParSMO in three main sections. Firstly,

we have illustrated the global architecture of ParSMO application in terms of the way SMO

work, where we presented the inputs and the output of sequential SMO and parallel one.

Then, in the second section, we have given three UML diagrams of ParSMO application. Use

case diagram, which shows the main actions of the user on the ParSMO system, including the

necessary actions and the optional ones. Class diagram, which illustrates the four ParSMO

classes with the relationships between them, and then a presentation of these classes with

an explanation of their relationships. The last diagram is the sequence diagram, which is

presented in two parts, the first one represents the object sequence when applying sequential

SMO, and the other when applying the parallel one. Finally, the last part contains a detailed

explanation of ParSMO body, where we have illustrated each method in each class of our

project in order to the reader takes a general idea about the implementation of ParSMO.

In the next chapter, we will touch on the ParSMO graphical interface that the user can

handle and will illustrate the usage of ParSMO by presenting all the GUIs with an explan-

ation of them.

Chapter 4

Implementation & Test

Chapter 4

Implementation & Test

Introduction

After we had presented ParSMO application design, by UML diagrams with an explanation

and a detailed presentation of the methods used in the code. This chapter aims to explain

how we had implemented our application and a discussion of the results that we got after a

test of all that ParSMO can do.

This chapter includes three sections. The first section introduces briefly the development

tools and languages that we have learned and exploited them in the realization of our project.

The second one presents the main implementation results of our final application. In the

last section, we present and discuss some experimental results.

4.1 Development Tools and Languages

4.1.1 Python programming language

Python is an intelligent programming language that we have used in the im-

plementation of our application. It is easy to learn, because it is flexible,

and its syntax doesn’t hard to learn. A Python program is short than other

languages’ programs, because of the availability of many implemented func-

tions. Python is an open source and untyped programming language. It is

available for all the operating systems (Windows, Linux, Mac OS).

4.1.2 PyCharm Programming Editor

PyCharm is an open-source Integrated Development Environment (IDE),

used for Python programming. It is a powerful coding assistant, it can

highlight errors and introduces quick fixes based on an integrated Python

debugger. It is a suitable editor for writing and testing many lines of code

and classes since it offers a structural project view and quick file navigation.

54

CHAPTER 4. IMPLEMENTATION & TEST 55

4.1.3 Tool Kit Interface “Tkinter” Package

Tool Kit Interface, in short “Tkinter” (An Introduction to Tkinter 2005), it

is an open source Graphical User Interface (GUI) package. It is intended for

Python programming language. We have preferred the Tkinter toolkit for

developing GUIs of our application, because it is simple to learn it, and it is a

powerful toolkit. It is available on both operating systems (Windows, Linux,

and Mac OS).

4.1.4 Plotting Library “matplotlib”

matplotlib (matplotlib 2017) is an open source Python library. It

is used for 2D and 3D plotting. With a short-code, one can gen-

erate plots, histograms, power spectra, bar charts, error charts,

scatter plots, etc, and can produce quality figures for the gener-

ated plots in a variety of hard-copy formats. Line styles, font properties, and axes properties

are controlled by simple lines of code. Since in our project we have 3D results that must be

plotted, thus we have chosen matplotlib to plot them.

4.1.5 Multiprocessing

Multiprocessing (TechoPedia 2019) is an open source Python library,

which refers to the ability of a system to support more than one pro-

cessor at the same time. Applications in a multi-processing system

are broken into smaller routines that run independently. The op-

erating system allocates these threads to the processors improving the performance of the

system. In our application, we decided to use this paradigm in order to parallelize the SMO

algorithm.

4.1.6 Document Preparation System LATEX

LATEX (Lamport 2019) is a powerful and flexible typesetting system for pro-

ducing high quality technical and scientific papers. It based on the tags lan-

guage. It follows the design philosophy of separating presentation from con-

tent, thus authors focus on what they are writing, not on what is displayed,

because the appearance is handled by LATEX. The appearance includes many

aspects, document structure (part, chapter, section, ..etc), figures, cross-references and bib-

liographies. It is more familiar to a computer programmer, because it follows the code-

compile-execute cycle.

CHAPTER 4. IMPLEMENTATION & TEST 56

4.1.7 Online LATEX editor (OVERLEAF)

Oerleaf (Overleaf 2019) is a free online editor for drafting papers, based on

LATEX system. It supports a powerful spell-checker, code auto-completion,

and a pdf displayer. In addition, “Overleaf ” gives us the ability to edit and

work on our Latex project from anywhere and any computer. We have used

“Overleaf ” website to draft our report and make our presentation because

it produces high-quality papers and talks.

4.1.8 Online UML diagrams editor (VP Online)

Visual-Paradigm Online (VP Online 2018) in short “VP Online”, is

an online diagrams editor that makes the user draw various types

of diagrams, including the ArchiMate diagram, Flowchart, UML dia-

grams...etc, and it has more than 1300 templates and many tutorials

of different kinds of diagrams for the user. “VP Online” has a free cloud repository that

keeps the designs of the user in a work-space that can be accessed by a team added and

manipulated by the user itself. During the conception of our application ParSMO, we have

used “VP Online” editor to draw and plan all the UML diagrams that we have needed,

which are: use case diagram, class diagram, and sequence diagrams.

4.2 Implementation & test

The studied algorithm in the previous chapter 3 are implemented using oriented object

programming (OOP) paradigm and using a set of software and hardware which are summar-

ized in the following table 4.1.

Software/Hardware Version

OS Microsoft Windows 8.1 Professional, 64bits

CPU Intel(R) Core(TM) i5-4300M CPU @2.50GHz

RAM 8.00Go

Python Interpreter 3.7.3

PyCharm 2016.3.1

matplotlib 3.0.3

Tkinter 8.6

Table 4.1: Software/Hardware versions

Application Home

Figure (4.1) illustrates the basic GUI (Graphical User Interface) that allows the user to

choose the problem (function) which will test SMO algorithm on it. This GUI contains a

menu bar with three options (Help, About ParSMO and Quit for exit the application).

CHAPTER 4. IMPLEMENTATION & TEST 57

Figure 4.1: “ParSMO” Home page
Figure 4.2: “ParSMO” Menu

In the menu bar “Menu” (Figure 4.2), we have three commands (“Help”, “About ParSMO”

and “Quit”). “Help” command gives to the user some instructions about using ParSMO

application, as well as the formulas of the two test problems used in the application. “About

ParSMO” command prints a list of the tools used for the implementation of the application

and some information about the author of the dissertation and the programmer of the

application. Finally, “Quit” command allows the user to exit the application.

After the selection of the function on the Home page, the button “Go” forwards to the

main GUI in “ParSMO”, where from this page the user can do all the actions that we have

in our application. As shown in Figure 4.3, SMO inputs GUI contains two input boxes, the

first is for the size of the swarm (population), and the second for the number of iterations,

as well as it contains six buttons that the user can use.

CHAPTER 4. IMPLEMENTATION & TEST 58

Figure 4.3: SMO inputs GUI

If the user makes a mistake (among the following errors) in the input box of size or

number of iterations, an input error window will be shown when trying to press a button:

1. Case 1: (Figure 4.4/4.5) If the user enters something other than a strictly positive

number (e.g. a symbol or a character... etc):

Figure 4.4: Warning 1: Input error Figure 4.5: Warning 1: Input error

CHAPTER 4. IMPLEMENTATION & TEST 59

2. Case 2: (Figure 4.6) In SMO algorithm, the swarm size (population size) should be

between 40 and 160. Thus, if the user breaks this rule then the following window will

be shown:

Figure 4.6: Warning 2: Input error

3. Case 3: (Figure 4.7) SMO algorithm requires a size greater than 80 to the user can

run parallel SMO1:

1the size of a population should be greater than 40, so a size less than 80 could not be divided into two or
more processes with a size equal or greater than 40 for each one.

CHAPTER 4. IMPLEMENTATION & TEST 60

Figure 4.7: Warning 3: Input error

Let’s illustrate what the user see if he clicks on one of these buttons:

• Function Parameters

This window (Figure 4.8) allows the user to know the parameters of the selected

function as follow:

Figure 4.8: Function Parameters window

• SMO Parameters

The following window (Figure 4.9) illustrates the parameters of SMO algorithm,

which are identified according to the size and the number of iteration entered by the

user:

CHAPTER 4. IMPLEMENTATION & TEST 61

Figure 4.9: SMO Parameters window

• Run Sequential SMO

The results of running the sequential SMO are printed in a window, as it is shown

in Figure 4.10:

Figure 4.10: Results window of Sequential SMO

CHAPTER 4. IMPLEMENTATION & TEST 62

• Run Parallel SMO

If the user would like to work on the parallel SMO, an input window pops-up for

entering the number of processes which will be used for running the parallel SMO

(Figure 4.11):

Figure 4.11: Number of processes

In the case where the user makes a mistake in the input box of the number of

processes, one of the following warning message boxes (Figure 4.12, 4.14 or 4.15) are

shown for the user (according to the error type):

Figure 4.12: Warning 4: In-

put error Figure 4.13: Warning 5: In-

put error
Figure 4.14: Warning 6: In-

put error

CHAPTER 4. IMPLEMENTATION & TEST 63

Figure 4.15: Warning : Input error

Once the user entered the correct number of processes and pressed on “Ok”, the parallel

SMO runs. After that, a results window is shown (Figure 4.16):

Figure 4.16: Results window of Parallel SMO

CHAPTER 4. IMPLEMENTATION & TEST 64

• Comparison: Sequential SMO vs Parallel SMO

As the parallel SMO, when the user press on comparison button an input window

asks for the number of processes is shown, and after pressing “Ok” and finishing the

run of sequential SMO and parallel SMO, the results window shows as follow (Figure

4.17):

Figure 4.17: Results window of Parallel SMO

• Cancel button Is a button for exiting this window.

CHAPTER 4. IMPLEMENTATION & TEST 65

4.3 Test & Experimental Study

In this part, we will test SMO algorithm using two state-of-the-art test problems which

are: “Dekker and Aarts” and “Six-hump Camelback” (See 3.1.2). Our test will be in terms

of execution time, objective space density and the near-optimum solution. Three sections

are considered in our test, the first is for testing the sequential SMO algorithm, the second

is for the parallel SMO, and the last is for comparing between them and discussion.

4.3.1 Sequential SMO algorithm

- The effect of “Swarm Size”:

In this part, we discuss the effect of population size on obtaining the near-optimum solution

and the objective space density in the last generation.

Note: the number of iterations used in this test is 5000 iterations.

• The effect of “Swarm Size” on the near-optimum solution (NOS):

The optimum value of the function “Dekkers and Aarts” (DA) is -24777, and the table

below (Tabel 4.2) shows that the larger the size, the better near-optimum solution.

The same for the second function “Six-hump Camelback” (ShC) in table 4.3.

Size 40 60 80 100

NOS -23879.6155756556 -3803.7105749113 -24767.1785288615 -24776.5183423176

Size 100 120 140 160

NOS -24776.5183423176 -24776.5183423176 -24776.5183423176 -24776.5183423176

Table 4.2: The effect of “Swarm Size” on the near-optimum solution (function DA)

Size 40 60 80 100

NOS -1.03147562721598 -1.03162845172622 -1.03162735830379 -1.03162845348987

Size 100 120 140 160

NOS -1.03162845348987 -1.03162845348987 -1.03162845348987 -1.03162845348987

Table 4.3: The effect of “Swarm Size” on the near-optimum solution (function ShC)

• The effect of “Swarm Size” on “The objective space density”:

In contrast, for the two functions the objective space (OS) density of the last generation

is better in the smaller sizes: 40, 60 and 80 as follow.

CHAPTER 4. IMPLEMENTATION & TEST 66

Figure 4.18: Objective space,

size = 40

Figure 4.19: Objective space,

size = 60

Figure 4.20: Objective space,

size =80

Figure 4.21: Objective space,

size = 120
Figure 4.22: Objective space,

size = 140

Figure 4.23: Objective space,

size =160

The same thing for the second function:

Figure 4.24: Objective space,

size = 40

Figure 4.25: Objective space,

size = 60

Figure 4.26: Objective space,

size =80

CHAPTER 4. IMPLEMENTATION & TEST 67

Figure 4.27: Objective space,

size = 120

Figure 4.28: Objective space,

size = 140

Figure 4.29: Objective space,

size =160

4.3.2 Parallel SMO algorithm

- The effect of “Number of processes”:

Over our test of the Parallel SMO, we noticed that the most important factor that affects

on the results (execution time and objective space density) is the number of processes used.

Note: the number of iteration used in this test is 5000 iterations.

• The effect of “Number of processes” on “Execution time”:

The tables below (4.4 and 4.5) show that for the two functions: the greater the number

of processes, the shorter the time. Thus, SMO algorithm is faster in case of number of

processes is greater.

Size 120 140 160

Number of Processes 2 3 2 3 2 3 4

Execution Time (Sec) 48 37 78 46 90 61 50

Table 4.4: The effect of “Number of processes” on the execution time (function 1)

Size 120 140 160

Number of Processes 2 3 2 3 2 3 4

Execution Time (Sec) 58 38 76 50 90 62 53

Table 4.5: The effect of “Number of processes” on the execution time (function 2)

• The effect of “Number of processes” on “The objective space density”:

Like the previous part, these test results illustrate that the greater the number of

processes, the more objective space density of the last generation. We divided this

part into three sub-parts according to the population size taken in the experimental

study: 120, 140 and 160.

CHAPTER 4. IMPLEMENTATION & TEST 68

1. Populations with a size equal to 120:

- For the first function:

Figure 4.30: Objective space, using 2 pro-

cesses

Figure 4.31: Objective space, using 3 pro-

cesses

- And for the second function:

Figure 4.32: Objective space, using 2 pro-

cesses

Figure 4.33: Objective space, using 3 pro-

cesses

2. Populations with a size equal to 140:

- For the first function:

CHAPTER 4. IMPLEMENTATION & TEST 69

Figure 4.34: Objective space, using 2 pro-

cesses

Figure 4.35: Objective space, using 3 pro-

cesses

- And for the second function:

Figure 4.36: Objective space, using 2 pro-

cesses
Figure 4.37: Objective space, using 3 pro-

cesses

3. Populations with size equal to 160:

- For the first function:

CHAPTER 4. IMPLEMENTATION & TEST 70

Figure 4.38: Objective space,

using 2 processes

Figure 4.39: Objective space,

using 3 processes

Figure 4.40: Objective space,

using 4 processes

- And for the second function:

Figure 4.41: Objective space,

using 2 processes

Figure 4.42: Objective space,

using 3 processes

Figure 4.43: Objective space,

using 4 processes

4.3.3 Comparison Sequential vs Parallel

After presenting the effect of the population size on the execution time and the near-

optimum solution for the sequential SMO, as well the effect of the number of processes on

the execution time and the objective space density in the parallel SMO, this part will be a

comparison between the sequential SMO and the parallel SMO in terms of execution time,

the near-optimum solution and the objective space density of the last generation. Hence,

we test and display the results of the two functions separately. Then, a discussion of these

results will be in a special part.

For each function, the number of iteration adopted is 5000 iterations, and the size and the

number of processes in parallel SMO will be the variables.

1. “Dekkers and Aarts” function:

CHAPTER 4. IMPLEMENTATION & TEST 71

Figure 4.44: Results of comparison Parallel SMO vs Sequential SMO (DA function)

CHAPTER 4. IMPLEMENTATION & TEST 72

Figure 4.45: Results of comparison Parallel SMO vs Sequential SMO (DA function)

CHAPTER 4. IMPLEMENTATION & TEST 73

Figure 4.46: Results of comparison Parallel SMO vs Sequential SMO (DA function)

CHAPTER 4. IMPLEMENTATION & TEST 74

2. “Six-hump Camelback” function:

Figure 4.47: Results of comparison Parallel SMO vs Sequential SMO (ShC function)

CHAPTER 4. IMPLEMENTATION & TEST 75

Figure 4.48: Results of comparison Parallel SMO vs Sequential SMO (ShC function)

CHAPTER 4. IMPLEMENTATION & TEST 76

Figure 4.49: Results of comparison Parallel SMO vs Sequential SMO (ShC function)

CHAPTER 4. IMPLEMENTATION & TEST 77

4.3.4 Discussion

In the previous part of the test, we displayed what we got from the comparison between

sequential SMO and parallel SMO algorithm for both of the functions: “DA” and “ShC”.

These results, in general, illustrate that the parallel SMO is better than the sequential one.

However, let’s discuss each of the execution time and the near-optimum solution and the

objective space density independently.

• The execution time:

Size 90 130 160

Number of processes in parallel 2 3 4

Execution Time (Seq) (second) 53 175 246

Execution Time (Par) (second) 26 45 59

Table 4.6: The execution time comparison (function 1)

Size 90 130 160

Number of processes in parallel 2 3 4

Execution Time (Seq) (second) 94 101 227

Execution Time (Par) (second) 34 32 46

Table 4.7: The execution time comparison (function 2)

The tables (4.6, 4.7) show that the execution time when we use the parallel version of

SMO algorithm is shorter than the case when we use the sequential one. Thus, and as

a result, the parallel version of SMO algorithm is better than the sequential

one in term of the execution time.

• The near-optimum solution:

Size 90 130 160

Number of processes in parallel 2 3 4

The near-optimum (Seq) -24776.518 -24776.518 -24776.518

The near-optimum (Par) -24776.518 -24776.518 -24096.129

Table 4.8: The near-optimum solution comparison (function 1)

CHAPTER 4. IMPLEMENTATION & TEST 78

Size 90 130 160

Number of processes in parallel 2 3 4

The near-optimum (Seq) -1.031628 -1.031628 -1.031628

The near-optimum (Par) -1.031628 -1.031628 -1.031628

Table 4.9: The near-optimum solution comparison (function 2)

About the near-optimum solution, we noted from the results in the tables above

(4.8, 4.9) that approximately both of the versions of SMO (sequential and parallel)

have the same near-optimum solution in the last generation, even in changing the size

of the swarm or the number of processes. Thus, for the near-optimum solution,

there is no version better than the other.

• The objective space density:

For the objective space, it’s so clear without any doubt that the parallel version

of SMO is better than the sequential one in term of the objective space of

the last generation, and the figures below 4.50, 4.51, 4.52, 4.53, 4.54, 4.55 illustrate

that.

- For a population size = 90:

Figure 4.50: The last generation, sequential

vs parallel

Figure 4.51: The last generation, sequential

vs parallel

- For a population size = 130:

CHAPTER 4. IMPLEMENTATION & TEST 79

Figure 4.52: The last generation, sequential

vs parallel
Figure 4.53: The last generation, sequential

vs parallel

- For a population size = 160:

Figure 4.54: The last generation, sequential

vs parallel

Figure 4.55: The last generation, sequential

vs parallel

CHAPTER 4. IMPLEMENTATION & TEST 80

Conclusion

In this chapter, we have presented the tools that we have used in the implementation of

ParSMO application. Then, we touched on presenting the GUIs of our application and how

the user can use them. Finally, a global test of the sequential SMO version and the parallel

one in the application, with a comparison between them and a discussion of the results we

got, which take us to conclude that the parallel version of SMO is better than the

sequential one, especially in the objective space and the execution time.

Conclusion

Almost all computations done during the early years of the history of computers could

be called sequential (employs a single processor to solve a problem or task). In order to

reduce time and cost and for better performance, parallel computing has received a rapidly

increasing amount of attention by the researchers, being it a solution to that. The ParSMO

application has been implemented to prove these aims of parallelism by applying it to an

optimization algorithm.

In the first part of this thesis, we have taken a look at some basic terms which are related

to our project theme:

• Optimization problem definition.

• Swarm intelligence definition and the conditions that achieve it (we touched on this

term because of the algorithm that we implemented is based on this approach).

• The whole process (all the steps) of the SMO algorithm with a detailed explanation.

• Parallel computing: basic concepts and terminology, with an overview of the parallel

architectures and the parallel programming models.

The second part of the thesis contains an analysis of our application ParSMO with a

detailed design that explains all the application acts, which are represented in running the

sequential version of the SMO algorithm, the parallel one, and the comparison between them.

ParSMO application was implemented by the programming language Python 3.7, using

some specific packages like Multiprocessing (to achieve parallelism), Tkinter (to draw the

GUIs), Matplotlib (for plotting) ... etc.

All the experiments that we have done during the ParSMO test and using both of the two

functions “Dekker and Aarts” (Da) and “Six-hump camelback” (ShC) say that the parallel

SMO outperforms the sequential SMO in terms of the execution time and the objective space

density.

From the related work and the questions of our work that should be solved and carried

out in future research:

x

• Implementing a parallel SMO algorithm using other parallel programming models, such

as multi-core architecture, MPI, or OpenMP. In order to identify and discover the best

parallel programming model for this kind of optimization problems.

• Implementing other swarm intelligence based algorithms, such as DE, PSO, ABC ...etc

and implementing a parallel version of them, in order to compare the two versions and

circulate or customize the results that we got.

Bibliography

Amrita Chakraborty, A. K. K. (n.d.), ‘Nature-inspired computing and optimization’.

Ananth Grama, Anshul Gupta, G. K. V. K. (2003), Introduction to Parallel Computing,

Second Edition, Addison Wesley.

An Introduction to Tkinter (2005), http://effbot.org/tkinterbook/. accessed on May

18, 2017.

Barney, B. (n.d.), ‘Introduction to parallel computing’.

URL: https://computing.llnl.gov/tutorials/parallelcomp/

Bonabeau E, Dorigo M, T. G. (n.d.).

CHOUDHARY, A. N. (1989), ‘Parallel architectures and parallel algorithms for integrated

vision systems’.

Jagdish Chand Bansal, Harish Sharma, S. S. J. M. C. (2014), ‘Spider monkey optimization

algorithm for numerical optimization’, Springer .

Jagdish Chand Bansal, Pramod Kumar Singh, N. R. P. (2019), Evolutionary and Swarm

Intelligence Algorithms, Springer International Publishing AG.

Joseph Awange, Bela Palancz, R. H. L. L. V. (2018), Mathematical Geosciences: Hybrid

Symbolic-Numeric Methods, Springer International Publishing.

KARABOGA, D. (2005), ‘An idea based on honey bee swarm for numerical optimization’.

Lamport, L. (2019), ‘LaTeX’, https://en.wikipedia.org/wiki/LaTeX. accessed on May

04, 2019.

Leila, B. (2017), Reconfiguration optimization in reconfigurable manufacturing systems,

Master’s thesis, University of Mohamed Khider Biskra.

matplotlib (2017), http://matplotlib.org/. accessed on May 18, 2017.

Overleaf (2019), https://www.overleaf.com/. accessed on June 01, 2019.

Rothlauf, F. (2011), Design of Modern Heuristics Principles and Application, Springer-

Verlag Berlin Heidelberg.

xii

http://effbot.org/tkinterbook/
https://en.wikipedia.org/wiki/LaTeX
http://matplotlib.org/
https://www.overleaf.com/

Ruokamo, A. (2018), ‘Parallel computing and parallel programming models: application in

digital image processing on mobile systems and personal mobile devices’, pp. 14–15.

Samir, H. (2015), Un algorithme génétique parallèle sur gpu pour le problème du flow shop

de permutation, Master’s thesis, University of A-MIRA-BEJAIA.

TechoPedia (2019), ‘multiprocessing’, https://www.techopedia.com/definition/3393/

multi-processing. accessed on June 1, 2019.

VP Online (2018), https://online.visual-paradigm.com/. accessed on June 20, 2019.

Yujun Zheng, Xueqin Lu, M. Z. S. C. (n.d.), Biogeography-Based Optimization: Algorithms

and Applications, Springer Nature.

https://www.techopedia.com/definition/3393/multi-processing
https://www.techopedia.com/definition/3393/multi-processing
https://online.visual-paradigm.com/

	Contents
	list of tables
	list of figures
	list of algorithms
	Introduction
	I State of the art
	Spider Monkey Optimization (SMO) Algorithm
	Introduction
	Optimization Problems
	Swarm Intelligence (SI)
	The conditions of swarm intelligence
	Representation and fitness evaluation
	Swarm intelligence algorithms

	Spider Monkey Optimization (SMO) algorithm
	Motivation
	SMO algorithm process
	Control parameters in SMO algorithm
	Performance Analysis of SMO
	The main loop
	Analyzing SMO

	Conclusion

	Parallel computing: basic concepts
	Introduction
	Motivating Parallelism
	The Computational Power Argument
	The Memory/Disk Speed Argument
	The Data Communication Argument
	Time Argument

	Scope of Parallel Computing
	Applications in Engineering and Design
	Scientific Applications
	Commercial Applications
	Applications in Computer Systems

	Von Neumann Architecture
	General Parallel Terminology
	CPU/Processor/Core
	Task
	Pipelining
	Communications
	Synchronization
	Granularity
	Scalability

	Implicit and Explicit Parallelism
	Implicit parallelism
	Explicit Parallelism

	Classification of Parallel Architectures
	SISD (Single Instruction stream, Single Data stream)
	SIMD (Single Instruction stream, Multiple Data stream)
	MISD (Multiple Instruction stream, Single Data stream)
	MIMD (Multiple Instruction stream, Multiple Data stream)

	Parallel Programming Models
	Shared Memory (without threads)
	Threads
	Distributed Memory/Message Passing
	Data Parallel
	SPMD and MPMD

	Conclusion

	II Contributions
	Analysis & Design
	Introduction
	Analysis
	Description of the Application
	Project Development Cycle

	Design
	Global Design
	Use Case diagram
	Class diagram
	Sequence diagram

	Detailed Design

	Conclusion

	Implementation & Test
	Introduction
	Development Tools and Languages
	Python programming language
	PyCharm Programming Editor
	Tool Kit Interface ``Tkinter'' Package
	Plotting Library ``matplotlib''
	Multiprocessing
	Document Preparation System LATEX
	Online LATEX editor (OVERLEAF)
	Online UML diagrams editor (VP Online)

	Implementation & test
	Test & Experimental Study
	Sequential SMO algorithm
	Parallel SMO algorithm
	Comparison Sequential vs Parallel
	Discussion

	Conclusion

	Conclusion
	Bibliography

