

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE
Ministère de l’Enseignement Supérieur et de la Recherche Scientifique

Université Mohamed Khider – BISKRA

Faculté des Sciences Exactes, des Sciences de la Nature et de la Vie

Département d’informatique

N° d’ordre :…… /M2/2017

Mémoire

présenté pour obtenir le diplôme de master académique en

Informatique

Parcours : Génie Logiciel et Systèmes Distribués

Transforming IoT Applications to

RESTful Services:Toward a Cloud-
Based Exploitation of Cyber

Physical Systems.

Par :

TAHRI HAROUNE

 Soutenu le …\…\…... , devant le jury composé de :

 Président

TIBERMACINE Okba MCA Rapporteur

 Examinateur

Acknowledgements

In the Name of Allah, the Most Beneficent, the Most Merciful.

All the praises and thanks be to Allah for giving me the strength to complete this

project.

I would like to express my gratitude to my supervisor Dr.Tibermacine Okba for his im-

mense knowledge, motivation, understanding and support that contributed to the success

of this project.

My deepest gratitude to my parents for their love, kindness and support. Special thanks

to my brothers for their love and moral support during my studies.

Last but not least, I’d like to thank my professors and colleagues for the great learning

experience we had through the past few years.

ii

Abstract

the world is witnessing an explosion in the computing and communication technology,

such Internet of Things (IoT) which is a world of interconnected Things which are capable

of sensing, actuating and communicating among themselves and with the environment.

Internet of Things devices are prevalent in all aspects of our lives, e.g., thermostat and

smart lights.., those devices can be remotely controlled by the end user. their application

must be a service which is RESTful (for its lightweight when sending data, ..) , so our

approach it’s a migration tool which migrate the Internet of Things systems to RESTful-

based web service in the cloud, and that’s allows to the end-user the remotely controlling

and accessing to the service data.

iii

Résumé

Le monde assiste à une explosion des technologies de l’informatique et de la commu-

nication, comme l’Internet des objets (IoT) qui est un monde de choses interconnectées

capables de détecter, d’actionner et de communiquer entre elles et avec l’environnement.

Les appareils de l’Internet des objets sont répandus dans tous les aspects de nos

vies, par exemple, le thermostat et les lumières intelligentes.., ces appareils peuvent être

contrôlés à distance par l’utilisateur final. leur application doit être un service qui est

RESTful (pour sa légèreté lors de l’envoi de données, ..), donc notre approche est un outil

de migration qui migre les systèmes de l’Internet des objets vers un service Web basé

sur RESTful dans le cloud, et cela permet end-user le contrôle à distance et l’accès aux

données de service.

iv

Contents

Introduction 1

1 Web Services and Cloud Computing 2

1.1 Web Services . 3

1.1.1 Introduction . 3

1.1.2 Definition . 3

1.1.3 Service Oriented Architecture . 3

1.1.3.1 SOA Definition . 4

1.1.3.2 SOA Characteristics . 4

1.1.3.3 SOA Collaborations . 6

1.1.3.4 Advantages of SOA . 7

1.1.4 Simple Object Access Protocol (SOAP) 7

1.1.4.1 Definition . 7

1.1.4.2 Essential Parts of SOAP 8

1.1.4.3 SOAP Messages Blocks 8

1.1.4.4 Advantages of SOAP . 9

1.1.5 Representational State Transfer (REST) 9

1.1.5.1 Definition . 9

1.1.5.2 Resources in Vision of REST 9

1.1.5.3 Principles of REST Architecture 10

1.1.5.4 Advantages of REST . 11

1.1.6 Difference between SOAP and REST 11

1.2 The Cloud Computing . 12

1.2.1 Definition . 12

1.2.2 Essential Characteristics of the Cloud Computing 13

1.2.2.1 On-Demand Self-Service 13

1.2.2.2 Broad Network Access . 13

1.2.2.3 Resource Pooling . 13

v

Contents

1.2.2.4 Rapid Elasticity . 13

1.2.2.5 Measured Service . 13

1.2.3 Cloud Services Models . 14

1.2.3.1 Infrastructure as a Service (Iaas) 14

1.2.3.2 Platform as a Service (Paas) 14

1.2.3.3 Software as a Service (Saas) 15

1.2.4 Types of the Cloud . 15

1.2.4.1 Public Cloud . 15

1.2.4.2 Private Cloud . 15

1.2.4.3 Hybrid Cloud . 16

1.2.4.4 Community Cloud . 16

1.3 Web Services in the Cloud . 16

1.4 Conclusion . 16

2 Internet of Things (IoT) and cyber Physical systems(CPS) 17

2.1 Internet of Things (IoT) : . 18

2.1.1 Introduction . 18

2.1.2 Definition . 18

2.1.3 IoT Architecture . 19

2.1.3.1 Perception Layer . 19

2.1.3.2 Network Layer . 19

2.1.3.3 Middleware Layer . 20

2.1.3.4 Application Layer . 20

2.1.3.5 Business Layer . 20

2.1.4 Essential IoT Technologies . 20

2.1.4.1 Radio Frequency Identification 20

2.1.4.2 Wireless Sensor Networks (WSN) 21

2.1.4.3 Middleware . 21

2.1.4.4 Cloud Computing . 21

2.1.4.5 IoT Application Software 21

2.1.5 Application Area of Internet of Things (IoT) : 21

2.1.6 The Advantages and Disadvantages of IoT : 22

2.1.6.1 Advantages : . 22

2.1.6.2 Disadvantages : . 22

2.2 Cyber Physical Systems (CPS) : . 23

2.2.1 Introduction . 23

2.2.2 Definition . 23

2.2.3 Architectural of Cyber-Physical Systems : 24

2.2.4 Cyber Physical Systems Devices : 24

vi

Contents

2.2.4.1 Arduino . 25

2.2.4.2 Raspberry Pi . 25

2.2.4.3 Sensors . 26

2.2.5 Application Area of Cyber Physical Systems (CPS): 27

2.3 Difference between Cyber-Physical Systems and Internet of Things 27

2.4 Conclusion . 27

3 Conception 28

3.1 Introduction : . 29

3.2 Motivation . 29

3.3 General Structure of IoT-Application Source-Code 29

3.4 Approach for Migrating IoT Application to REST-Based API 31

3.4.1 General Architecture . 31

3.4.2 Collection of IoT Applications . 32

3.4.3 IoT Source Code Analysis . 33

3.4.4 Processing Method Names . 33

3.4.5 Extract Internal Methods . 34

3.4.6 Extract External Methods . 34

3.4.7 Extract Service Features . 34

3.4.8 Generating Web Form based HTML 35

3.5 Generating the Corresponding RESTful API 36

3.6 Conclusion . 38

4 Implementation 39

4.1 Introduction . 40

4.2 Software Tools Used . 40

4.2.1 Development Environment . 40

4.2.2 Programming Languages Used . 41

4.2.3 Used Frameworks and APIs . 42

4.3 About the Migration Tool . 42

4.4 Presentation of the Migration Tool . 42

4.4.1 Main Interface . 42

4.4.2 Results Interface . 45

4.4.3 Test of the Obtained Results . 47

4.5 Conclusion . 51

Conclusion 52

Bibliography 53

vii

List of Figures

1 Collaborations in service-oriented architecture 6

2 various building blocks of a SOAP Message 8

3 The use of HTTP verbs. 11

4 Cloud Computing. 12

5 Cloud models . 14

1 Things and Internet of Things.[17] . 18

2 IoT’s five layers.[7] . 19

3 Application Area of IoT.[14] . 22

4 the standard architectural model of cyber-physical systems. 24

5 Labelled Arduino board. 25

6 labelled raspberry pi board. 26

7 CPS’s sensors. 26

1 Example of internal method. 30

2 Example of external method (1). 30

3 Example of external method (2). 31

4 Input and Output of our approach. 31

5 General Schema . 32

6 AST example . 33

7 URL schema of the service. 35

8 Generated HTML code(1) . 35

9 Generated HTML code(2) . 36

10 RESTful API generator(1). 37

11 RESTful API generator(2). 37

1 PyCharm IDE . 40

2 Main Interface . 43

3 Error window. 43

viii

List of Figures

4 choosing “file.py” from machine.. 44

5 Progressing bar. 44

6 Result window. 45

7 ”get current solar”considered as ”GET” service. 46

8 ”star” considered as ”POST” service. 46

9 “GET” service code. 47

10 EndUser code for “GET” service. 47

11 Run the REST service(1). 48

12 ”GET” End-user form. 48

13 REST Result of “GET” request. 48

14 “POST” service code. 49

15 EndUser code for “POST” service. 49

16 Run the REST service(2). 50

17 ”POST” End-user form. 50

18 REST Result of “POST” request. 50

ix

List of Abbreviations

IoT: Internet of Things.

CPS: Cyber Physical Systems.

REST: Representational State transfer.

SOAP: Simple Object Access Protocol.

SOA: Service Oriented Architecture.

QoS: Quality of Service.

XML: Extensible Markup Language.

HTTP: Hypertext Transfer Protocol.

URI: Uniform Resource Identifier.

URL: Uniform Resource Locator.

JSON: JavaScript Object Notation.

API: Application Programming Interface.

HTML: Hyper Text Markup Language.

IT: Information Technology.

ICT: Information and Communications Technology

VPN: Virtual Private Network.

LED: light-Emitting Diode.

IDE : Integrated Development Environment.

GUI: Graphical User Interface.

x

Introduction

In view of the widespread to the Internet of Things which works on the connection

of anything with the Internet , and Cyber Physical Systems that’s considered as systems

of collaborating computational entities which are in connection and interaction with the

the environment, they ideally use networks and services (web services).

Web services is any piece of software that can be available over the internet and

perform a certain set of services, uses a standardized XML messaging system. REST is

set of constraints to be used for creating Web services, REST based on lightweight HTTP

methods.

This work aims to present a solution to reuse stand-alone Cyber physical systems

on the cloud through migration to REST-based web services. This solution promotes

reusability and scalability of such application by using cloud resources for storage, pro-

cessing and scheduling. Hence, this manuscript is structured as follows:

• Web Services and The Cloud Computing :

The first chapter is devoted to define the web service and cloud computing, de-

scribing general operations in these contexts as their principles, advantages and

disadvantages.

• Internet Of Things (IoT) and Cyber Physical Systems(CPS) :

The second chapter discusses the Internet Of Things and Cyber Physical Systems,

their features, architecture, challenges and compare between them.

• Conception :

The third chapter presents the architecture and the design our Approach and

prototype.

• Implementation :

This forth chapter outlines the implementation of the proposed solution and dis-

cusses the obtained result after testing it.

At the end of this thesis, a general conclusion is presented as a recapitulation of

the released work.

1

Chapter 1
Web Services and Cloud Computing

2

Web Services

1.1 Web Services

1.1.1 Introduction

With the widespread use of the web, researchers have developed software libraries to

ensure and simplify communication between machines and applications connected via the

network, this software is called ”web services in the next.

1.1.2 Definition

“A service is a program unit which can be called by standardized procedures, and

which can independently execute assigned function. Each service is executed on hetero-

environment, namely different hardware, OS, programming language. Therefore, the ser-

vice can be easily added or replaced or re-used. The granularity of the service size varies

from function to function. Some services include a business process”.[11]

So the web service is an electronic service, offered by universal technologies developed

according to global networking protocols (mainly the Internet) which acts as a communi-

cation infrastructure.

• The business process : Is a chain of activities carried out by an actor, triggered

by an event and which results in a precise deliverable.

• characteristics of web services

– Service contract is exposed in an independent interface to all platforms. it

contains the information necessary to describe the service and how to use it

by the client by mention : the target and function of its operations, a set of

conditions under which the operations are provided, the messages that need to

be exchanged in order to engage the operation, the structure of the messages

and it’s provided data types ..

– A service can be dynamically located and invoked by processing the description

file of the service (service contract) which contains where is the service and how

to invoke it.

– The service is autonomous, it means that the service has the ability to carry

out its logic independently of outside influences.

1.1.3 Service Oriented Architecture

The objective of a service-oriented Architecture (SOA) is to decompose functionality

in a set of basic services , provided by components and to describe in detail the diagram of

interaction between these services. In a few years, SOA has become a major theme for the

3

Web Services

business information system. It represents a new approach to the design of applications

that increase flexibility, agility and responsiveness at the information system level based

on the principle of weak coupling and while guaranteeing interoperability between these

applications.

1.1.3.1 SOA Definition

“Service Oriented Architecture (SOA) is defined as “an enabling framework for inte-

grating business processes and supporting information technology infrastructure as loosely

coupled and secure, standardized components services that can be reused and combined

to address changing business priorities.”[12]

SOA provides a vision where applications (internal and external) are exposed as ser-

vices and can communicate with each other in a simple way. In this vision, each application

provides some (or all) of its functionality in the form of invokable services by other appli-

cations. This concept of architecture therefore uses services as components principles for

building distributed applications in an easy and inexpensive way.

1.1.3.2 SOA Characteristics

Each system’s software architecture reects the different principles and set of trade offs

used by the designers. Service oriented software architecture has the following character-

istics :

1. Discoverable and Dynamically Bound

SOA supports the concept of service discovery, which means that the services

is easy to find and its name has a meaning of the service that it offers. A service

consumer that needs a service can discovers service to use based on a set of cri-

teria at runtime. The service consumer asks a registry for a service that fullls its

need. services are bound to service requests at runtime and the choice of service is

determined with minimal user intervention.

2. Services are reusable

They are designed so that they can be reused later, and it’s the goal of the SOA

to make from the development easy task.

3. Self-Contained

The tasks performed by a service have limits. The service has control over this

limit and does not depend on other services to accomplish its task. This is true in

the case of atomic services, composed services are in need to its atomic services.

However, in general, we can say that elementary web service are self-contained and

they do not need other parties to finish their execution.

4

Web Services

4. Modular

One of the most important aspects of SOA is the concept of modularity. A ser-

vice supports a set of interfaces. These interfaces should be cohesive, meaning that

they should all relate to each other in the context of a module. so that services

can easily be aggregated into an application with a few well-known dependencies.

The modularity has many types : Modular Decomposability , Modular Composabil-

ity, Modular Understandability, Modular Continuity, Modular Continuity, Modular

Protection.

5. Interoperability

Service-oriented architecture is capable of coordinating number of services in dif-

ferent environments and operates them in a reliable and understandable manner,

Each service provides an interface that can be invoked through a connector type,

such that information from the various environments transmits the data between

those organization mutually understood by both even though there are differences

in nature of language, programming interface and in any other entities.

6. Loose Coupling

The services are designed to interact with the minimum of interdependencies.

Service-oriented architecture promotes loose coupling between service consumers

and service providers and the idea of a few well-known dependencies between con-

sumers and providers. And this is what qualifies services as self contained.

7. Location Transparency

Location transparency is an important characteristic of SOA. when Consumers

locate the service that they need, they will know a service’s location. The lookup

and dynamic binding to a service at runtime allows the service implementation to

move from location to location without the client’s knowledge. The ability to move

services improves service availability and performance.

8. Composability

Composability is Collections of services that can be coordinated and assembled to

form a composition of services. One of the benefits of SOA is the ability to build

new systems from existing services. the composition allows the reuse of web services,

after discovery, you must be able to compose them by exploiting the technologies

offered by the Internet and using a set of standards for composition. Composition

has three types : An application, Service federations and Service orchestration, this

classification depends on the business process.

5

Web Services

1.1.3.3 SOA Collaborations

Figure 1 shows the collaborations in a service-oriented architecture. The collaborations

between the parts of SOA (service provider, service registry and service consumer) by

following the “publish, find, bind and invoke” paradigm.[5]

Figure 1: Collaborations in service-oriented architecture

• Service description :

A service description specifies the format of the request and response from the

service. This description may specify a set of preconditions, post conditions and/or

quality of services.

The roles in a service-oriented architecture:

• Service consumer Service consumer or requesting client is who requests a specific

web service to meet their needs. It initiates the enquiry of the service in the registry,

binds to the service over a transport, and executes the service function. The service

consumer executes the service according to the interface contract.

• Service provider The service provider implements the web service and makes

it available to everyone on the internet. It accepts and executes requests from

consumers.

• Service registry A service registry provides a place where the service consumer

can find a web services and the service provider can publish a description of the new

web services.

The operations in a service-oriented architecture :

6

Web Services

• Find Service consumer can search for a service by querying the service registry for

a service that it needs with a set of keywords and QoS values.

• Publish A service provider must publish its service description in a Registry to

be discovered and invoked by service consumer.

• Bind and Invoke After finding the service on the service registry by the service

consumer, it must retrieve the service description, the service consumer proceeds to

invoke the service according to the information in the service description.

1.1.3.4 Advantages of SOA

• Service reusability In SOA, applications are made from existing services. Thus,

services can be reused to make many applications.

• Easy maintenance As services are independent of each other So they can be

updated and modified easily without affecting other services.

• Platform independent This platform independence allows the integration of

different requested services from different sources to run harmoniously, independent

of the platform.

• Availability SOA facilities are easily available to anyone on request.

• Reliability SOA services are complete and self-contained programs. This makes

it easy for testing, debugging or any form of maintenance.

• Scalability Different organizations have different levels of complexity in their archi-

tecture. So, the ability of services to be successfully run on different servers within

an environment increases the scalability of the service.

1.1.4 Simple Object Access Protocol (SOAP)

1.1.4.1 Definition

“ Simple Object Access Protocol is a standard for an XML-based exchange of infor-

mation between distributed applications, transferring data over such standard transport

protocols as HTTP. SOAP is a lightweight, platform-independent protocol ”.[29]

- Standardized by the W3C which is the proprietary of it (W3C is an international

community where Member organizations, a full-time staff, and the public work together

to develop Web standards).

- SOAP allows the remotely call to methods thanks to the use of HTTP protocols.

7

Web Services

1.1.4.2 Essential Parts of SOAP

SOAP consisting of the following parts :

• An envelope that defines a framework for describing what is in the message and how

to process it.

• A set of encoding rules for expressing instances of application-defined data types.

• A convention for representing remote procedure call and responses.

• A binding convention for exchanging messages using an underlying protocol.

1.1.4.3 SOAP Messages Blocks

The ”SOAP message” [26] which is what is exchanging between to the web service

and the client application has several blocks as in Figure 2 :

• An envelope that defines the structure of the message.

• A header (optional) which contains the header information (authorizations and

transactions for example).

• A body containing the information on the call and the answer an error management

which identifies the error condition of attachments or attachments (optional).

Figure 2: various building blocks of a SOAP Message .

8

Web Services

1.1.4.4 Advantages of SOAP

SOAP is the protocol used for data interchange between applications. Below are some

of the reasons as to why SOAP is used [26] .

• In the web there is lot of services are developed with different programing languages,

so it must find a web standards. SOAP is the perfect medium which was developed

in order to achieve this purpose.

• Since SOAP is based on the XML language is a light-weight protocol that is used for

data interchange between applications. which itself is a light weight data interchange

language.

• SOAP is designed to be independent from the both platform and operating system.

So the SOAP protocol can work any programming language based applications on

both Windows and Linux platform.

• It works on the HTTP protocol –SOAP works on the HTTP protocol, which is the

default protocol used by all web applications. So , there is no sort of requirements or

specifications which is required to run the web services built on the SOAP protocol

to work on the World Wide Web.

1.1.5 Representational State Transfer (REST)

REST was proposed by Roy Thomas Fielding in his thesis Architectural Styles and

the Design of Network-based Software Architectures [16].

1.1.5.1 Definition

“REST is a style of software architecture defining a set of constraints to be used to cre-

ate web services. REST architecture style web services, also called RESTful web services,

establish interoperability between computers on the Internet. REST web services allow

requesting systems to manipulate web resources via their text representations through a

set of stateless, predefined uniform operations”.[24]

REST focuses on defining resources identified by URIs Uniform Resource Identifier, and

uses HTTP protocol messages to define the semantics of client / server communication.

1.1.5.2 Resources in Vision of REST

The key abstraction of information in REST is ”Resource”. Any information that can

be named can be a resource: a document or image, a temporal service, a collection of

other resources ... , and it is through :

9

Web Services

• Resource identifier A resource is identified by a resource identifier. It allows the

components of the architecture to identify the resources they are handling. On the

web these identifiers are the URI (Uniform Resource Identifier).

Example of URI :

”http://api.example.com/REST/”

• Resource representation The components of the architecture manipulate these

resources by transferring representations of these resources. On the web, we most

often find representations in HTML, JSON or XML format.

• Operation on the resource Resources are manipulated by the transfer of repre-

sentations through a uniform interface addressed by the resource identifier.

1.1.5.3 Principles of REST Architecture

The design principles and constraints of the REST architectural style and introduce

the notion of composite RESTful Web service.[18]

• Resource addressing through URI : Resources should be uniquely identifiable

through a single URL.

• Uniform interface : Once a resource has been identified, the set of operations

that can be applied to it is fixed by design to the same four HTTP methods like as

shown in Figure 3 (PUT, GET, POST, and DELETE) :

– GET : It instructs the server to transmit the data identified by the URL to

the client. Data should never be modified on the server side as a result of a

GET request.

– PUT : A request is used when you wish to create or update the resource

identified by the URL.

– Delete : It should be used when you want to delete the resource identified

by the URL of the request.

– Post : Is used when the processing you wish to happen on the server should

be repeated.

10

Web Services

Figure 3: The use of HTTP verbs.

• Client-server based : The client-server environment defines a connection mode

between several Programs:

• Stateless request : This means that the server does not process a request

by referencing elements from a previous request. At the client level, everything

necessary to process the request must be included in it.

1.1.5.4 Advantages of REST

• Scalability

This protocol stands out due to its scalability. Thanks to the separation between

client and server, the product may be scaled by a development team without much

difficulty.

• Flexibility and Portability With the indispensable requirement for data from

one of the requests to be properly sent, it is possible to perform a migration from

one server to another or carry out changes on the database at any time. Front and

back can therefore be hosted on different servers, which is a significant management

advantage.

• Independence Due to the separation between client and server, the protocol

makes it easy for developments across the various areas of a project to take place

independently. In addition, the REST API adapts at all times to the working

syntax and platform. This offers the Opportunity to try several environments while

developing

1.1.6 Difference between SOAP and REST

The most important difference points are :

11

The Cloud Computing

• SOAP

– SOAP is a protocol.

– SOAP permits XML data format only.

– SOAP defines standards to be strictly followed.

• REST

– REST is an architectural style.

– REST permits different data format such as Plain text, HTML, XML, JSON

etc.

– REST does not define too much standards.

1.2 The Cloud Computing

1.2.1 Definition

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand network

access to a shared pool of configurable computing resources (e.g., networks, servers, stor-

age, applications, and services) that can be rapidly provisioned and released with minimal

management effort or service provider interaction”.[13]

Many people use the Cloud daily without knowing it. We find it by example in all ver-

sions of mails, Web mail, Hotmail, or Gmail, in offices like Word and Microsoft. it means

that the users of these IT access, through the Internet, to resources that they cannot

physically locate.

Figure 4: Cloud Computing.

12

The Cloud Computing

Figure 4 presents the environment, infrastructures, platforms and applications avail-

able in the Cloud Computing .

1.2.2 Essential Characteristics of the Cloud Computing

There are five characteristics of the cloud computing :

1.2.2.1 On-Demand Self-Service

The concept of on-demand self-service is paramount for cloud service users. On-

demand self-service allows the user to be able to provision, but also free up remote re-

sources in real time as needed, and without requiring human intervention.

1.2.2.2 Broad Network Access

All resources must be accessible and available to the user universally and simply across

the network, regardless of the clients used (server, PC, mobile client, etc.).

1.2.2.3 Resource Pooling

The provider’s computing resources are pooled to serve multiple consumers using a

multi-tenant model, with different physical and virtual resources dynamically assigned

and reassigned according to consumer demand.

1.2.2.4 Rapid Elasticity

Cloud computing offers a way to provide the IT resources necessary for evolution

through the rapid elasticity. This feature allows users to quickly provision new resources

so that they are able to respond to a sudden rise or fall in load. It is never easy to predict

the resources that will be necessary to set up any IT service, especially when this need is

constantly changing.

1.2.2.5 Measured Service

Cloud systems must be able to self-control and manage themselves to allow internal

optimization of the system. To do this, they rely on baseline measurements obtained

through various monitoring mechanisms. These precise measures allow fair billing of

users; they will only pay for the resources they have used and only for the time they have

used them.

13

The Cloud Computing

1.2.3 Cloud Services Models

Conceptually, users acquire computing platforms or IT infrastructures from computing

Clouds and then run their applications inside. Therefore, computing Clouds render users

with services to access hardware, software and data resources, thereafter an integrated

computing platform as a service, in a transparent way :

Figure 5: Cloud models .

Figure 5 shows the three existing models of the Cloud Computing .

1.2.3.1 Infrastructure as a Service (Iaas)

Infrastructure as a Service is a main service in the cloud, this service provides the

company with different IT components such as storage spaces, network equipment,.. Users

can access these services on demand via the Internet without restriction, as if they are

working on local hardware.

• Advantage: great flexibility, total system control (remote administration by SSH or

Remote Desktop, RDP), which allows you to install any type of business software.

• Disadvantage: need for system administrators as for conventional on-site server

solutions.

1.2.3.2 Platform as a Service (Paas)

Platform as a Service is a model composed of all the elements and services necessary

to facilitate the development of applications where Paas prepares specialized environment

to help users in the construction, delivery and extension of their projects. the user hires a

platform on which he can develop, test and execute his applications. because Paas avoids

buying and installing software, it does not manage or control the underlying infrastructure,

14

The Cloud Computing

but controls the applications deployed, also is an execution platform hosted by an operator

connected to the internet.

• Advantage: the deployment is automated, no additional software to buy or install.

• Disadvantage: limitation to one or two technologies (eg Python or Java). No control

over the underlying virtual machines. Only suitable for web applications.

1.2.3.3 Software as a Service (Saas)

Software as a Service is a cloud computing offering that gives users access to a

provider’s cloud software. Users do not install applications on their devices. They re-

side on a remote cloud network which they access via the web or via an API. With apps,

users can store and analyze data and collaborate on projects.

• Advantage : more installation, more updating (they are continuous at the supplier),

more data migration etc. Test new software with ease.

• Disadvantage: limitation by definition to the proposed software. No control over

data storage and security associated with the software. Responsiveness of web

applications not always ideal.

1.2.4 Types of the Cloud

Clouds can be classified in terms of who owns and manages the cloud infrastructure;

a common distinction is Public Clouds, Private Clouds, Hybrid Clouds and Community

Clouds.[6]

1.2.4.1 Public Cloud

A public cloud, or external cloud, is the most common form of cloud computing the

company’s IT resources are stored on a shared server, in other words shared between

several clients, and accessible via the Internet. These servers are partitioned to prevent

data leakage.

1.2.4.2 Private Cloud

As its name suggests, it is dedicated to a single user. The advantage of the private

cloud is its high level of security, serves customers within the business fire-wall, reinforced

by a VPN connection. The private cloud is administered by the company itself or a service

provider. Most of the private clouds are large company or government departments who

prefer to keep their data in a more controlled and secure environment.

15

Web Services in the Cloud

1.2.4.3 Hybrid Cloud

A composition of the two types (private and public) is called a Hybrid Cloud ,the goal

of implementing certain activities. For example, the public cloud is used by employees

for operational tasks, while the private cloud is used to host the company’s e-commerce

website or its financial data, to reduce the risk of hacking.

1.2.4.4 Community Cloud

The idea of a Community Cloud is derived from the Grid Computing and Volunteer

Computing paradigms, it is more rarely used, it consists of sharing a given space between

several companies with the same security and confidentiality requirements with sharing

the cost. So it’s like a shared private cloud.

1.3 Web Services in the Cloud

Web Services and the Cloud are complementary activities, both play important roles

in IT. Web Services encapsulates Cloud Computing because Cloud Computing uses Web

Services for connections.

And because web service is a software designing model and method so it can be

integrate well-defined services to a new solution in the cloud.

1.4 Conclusion

In this chapter, we presented the main concepts and definitions related to the fields

of web services and cloud computing. The next chapter is devoted to the presentation of

the Internet of Things (IoT) and Cyber Physical Systems (CPS), and their principles and

characteristics.

16

Chapter 2
Internet of Things (IoT) and cyber Physical

systems(CPS)

17

Internet of Things (IoT) :

2.1 Internet of Things (IoT) :

2.1.1 Introduction

In this Chapter we talk about two Important concepts We’ll discuss their features,

principals and architecture, and a comparison between them.

2.1.2 Definition

“IoT is a world of interconnected Things which are capable of sensing, actuating and

communicating among themselves and with the environment (i.e., smart things or smart

objects) while providing the ability to share information and act in parts autonomously

to real/physical world events and by triggering processes and creating services with or

without direct human intervention.”[8]

The objects around us (such as lamps, machines, clothing, etc.), whether physical or

virtual, now have the ability to communicate with each other in real time. Connected

objects offer the possibility of defining the precise needs of an individual, so it has to offer

him a services.

Figure 1: Things and Internet of Things.[17]

Internet of Things is refer to the general idea of things, so every things from our

environment can be a part of the IoT technology as shown in Figure 1.

18

Internet of Things (IoT) :

2.1.3 IoT Architecture

A layered architecture of an IoT is depicted in Figure 2

Figure 2: IoT’s five layers.[7]

2.1.3.1 Perception Layer

It is also known as a sensor layer, which gives a physical meaning to each object. It

works like people’s eyes, ears and nose. It has the responsibility to identify things and

collect the information from them. There are many types of sensors attached to objects

to collect information such as RFID, 2-D barcode and sensors.. The information that is

collected by these sensors can be about location, changes in the air, environment, motion,

vibration, etc.

2.1.3.2 Network Layer

Network layer is also known as transmission layer. It transmits the information col-

lected from the physical objects through sensors to the processing systems in the Mid-

dleware Layer through the transmission mediums who’s can be wireless or wire based,

with protocols like IPv4, IPv6,.. , It also takes the responsibility for connecting the smart

things, network devices and networks to each other. Therefore, it is highly sensitive to

attacks from the side of attackers.

19

Internet of Things (IoT) :

2.1.3.3 Middleware Layer

middleware layer is also known as a The processing layer. It collects the information

that is sent from a Network layer. It performs processing onto the collected information.

It includes the technologies like Cloud computing, Ubiquitous computing which ensures

a direct access to the database to store all the necessary information unit ,It has the

responsibility to eliminate extra information that has no meaning and extracts the useful

information.

2.1.3.4 Application Layer

Application layer denes all applications that use the IoT technology or in which IoT

has deployed. It has the responsibility to provide the services to the applications. The

services may be varying for each application because services depend on the information

that is collected by sensors. So this layer is very helpful in the large scale development of

IoT network.

2.1.3.5 Business Layer

The business layer refers to an intended behavior of an application and acts like a

manager of the applications and services of IoT. It has responsibilities to manage and

control applications, business and prots models of IoT. The user’s privacy is also managed

by this layer. It also has the ability to determine how information can be created, stored

and changed.

2.1.4 Essential IoT Technologies

Five IoT technologies are widely for the deployment of successful IoT-based products

and services [30] :

• Radio frequency identification (RFID).

• Wireless sensor networks (WSN).

• Middleware.

• Cloud computing.

• IoT application software.

2.1.4.1 Radio Frequency Identification

The term RFID includes all technologies that use radio waves to automatically identify

objects or people. It’s a technology that remembers and retrieves information remotely

20

Internet of Things (IoT) :

thanks to a label that emits waves radio. This is a method used to transfer data from

labels to objects, or to identify objects remotely.

2.1.4.2 Wireless Sensor Networks (WSN)

It is a set of nodes that communicate wirelessly and that are organized in a cooperative

network. Each node has a processing capacity and can contain different types of memories,

an RF transceiver and a power source, as it can also accommodate various sensors and

actuators. As its name suggests, the WSN then constitutes a wireless sensor network that

may be a technology necessary for the operation of the IoT.

2.1.4.3 Middleware

Middleware is software that serves as an interface between components of the IoT,

making communication possible among elements that would not otherwise be capable.

Often described as “software glue,” middleware makes it easier for software developers

to implement communication and input/output so that they can shift their focus to the

specific purpose of their application.

2.1.4.4 Cloud Computing

Cloud computing is the delivery of different services through the Internet. These

resources include tools and applications like data storage, servers, databases, networking,

and software. Rather than keeping files on a proprietary hard drive or local storage

device, cloud-based storage makes it possible to save them to a remote database. As long

as an electronic device has access to the web, it has access to the data and the software

programs to run it. Cloud computing is a popular option for people and businesses for

a number of reasons including cost savings, increased productivity, speed and efficiency,

performance, and security.

2.1.4.5 IoT Application Software

The IoT software is the applications that manages the system , addresses its key

areas of networking and action via platforms, embedded systems, partner systems and

middleware. Its tasks are data collection, device integration, real-time analysis, and the

extension of applications and processes within the IoT network.

2.1.5 Application Area of Internet of Things (IoT) :

We see that the concept of the Internet of Things (IoT) is exploding as there is an

increasing need in everyday life for smart objects which are able to make it easier to reach

peoples’ goals.

21

Internet of Things (IoT) :

Figure 3: Application Area of IoT.[14]

IoT has multiple fields of application, as examples, industry, health, education and

research like what’s in Figure 3.

2.1.6 The Advantages and Disadvantages of IoT :

2.1.6.1 Advantages :

• Communication : Communication : Since IoT has communication between

devices, in which physical devices are able to stay connected and hence the total

transparency is available with lesser inefficiencies and greater quality.

• Automation and Control : Without human involvement, machines are au-

tomating and controlling vast amount of information, which leads faster and timely

output.

• Monitoring saves money and time : Since IoT uses smart sensors to monitor

various aspects in our daily life for various applications which saves money and time.

• Better Quality of Life : IoT based applications increases comfort and better

management in our daily life; thereby improving the quality of life.

2.1.6.2 Disadvantages :

• Compatibly : As devices from different manufacturers will be interconnected in

IoT, presently , there is no international standard of compatibility for the tagging

and monitoring equipment.

22

Cyber Physical Systems (CPS) :

• Privacy/Security : IoT has involvement of multiple devices and technologies

and multiple companies will be monitoring it. Since lot of data related to the context

will be transmitted by the smart sensors, there is a high risk of losing private data.

• Lesser employment of menial staff: With the advent of technology, daily

activities are getting automated by using IoT with less human intervention, which

in turn causes fewer requirements of human resources. This causes unemployment

issue in the society.

• Technology Takes Control of Life : Our lives will be increasingly controlled by

technology, and will be dependent on it. The younger generation is already addicted

to technology for every little thing. With IoT, this dependency will spread amongst

generations and in daily routines of users. We have to decide how much of our daily

lives are we willing to mechanize and be controlled by technology.

2.2 Cyber Physical Systems (CPS) :

2.2.1 Introduction

In our time the world is witnessing an explosion in the computing and communication

technology. Computing power and facilities are becoming more and more integrated into

every aspect of our private and public lives. Computing devices can be found everywhere

such workstations, laptops, smart phones and, smart home, etc.

2.2.2 Definition

Horizon 2020 (H2020) refers to CPS as “the next generation embedded ICT systems

that are interconnected and collaborating providing citizens and businesses with a wide

range of innovative applications and services.[15]”

The Commission’s own Advisory Group - ISTAG1- considered CPS as “the evolution

of embedded systems into smart objects that will be joined together to create highly

distributed systems, bringing a wealth of opportunities and innovations in technology,

applications and business models.[15]”

Finally, the ECSEL Joint Undertaking defines CPS as “embedded intelligent ICT sys-

tems that are interconnected, interdependent, collaborative, and autonomous. They pro-

vide computing and communication, monitoring/control of physical components/processes

in various applications.[15]”

So Cyber-physical systems (CPS) are smart systems that include engineered inter-

acting networks of physical and computational components.

23

Cyber Physical Systems (CPS) :

2.2.3 Architectural of Cyber-Physical Systems :

This Figure 4 shows the architectural of a typical cyber-physical systems [9]:

Figure 4: the standard architectural model of cyber-physical systems.

• Physical technologies : the physical technologies refers to all aspects of the

hardware and its components, they operate in a continues time , and they are

responsible for changing materials and energy flows.

• Cyber technologies : the Cyber technologies refers to all aspects of the soft-

ware and its technologies of developments. They are responsible for computation ,

communication and control .

• Socio-techno-economic environment : Socio, techno and economic are the

environments where the cyber physical systems in interaction with.

• Human Domain : the aim of the development of the cyber physical systems is

the responding to the human needs in any domain.Socio, techno and economic are

the environments where the cyber physical systems in interaction with.

2.2.4 Cyber Physical Systems Devices :

Cyber Physical Systems devices are the nonstandard computing devices that connect

wirelessly to a network and have the ability to transmit data.

Cyber physical systems can be built by the Arduino , raspberry pi and the different

sensors.

24

Cyber Physical Systems (CPS) :

2.2.4.1 Arduino

Arduino is an electronics platform open-source, based on light-to-use hardware and

software. Arduino boards are able to read inputs - light on a sensor, a finger on a button,

etc. And turn it into an output - activating a motor, turning on an LED, etc. You can

control from the outputs by sending a set of instructions to the microcontroller on the

board. To do so you use the Arduino programming language.[1]

Figure 5: Labelled Arduino board.

The ATMega328 (Arduino’s brain) who’s in red in Figure 5 is an Integrated Circuit

(IC) microcontroller. The flash memory of the chip contains the program necessary for

the operation of the card.

2.2.4.2 Raspberry Pi

The Raspberry pi is more developed than Arduino , it is considered as a small computer

that can be connected to a screen and used as a standard computer and uses a keyboard

and mouse. Its cost is low and It is a capable little device that enables people of all ages

to explore computing. It’s capable of doing everything you’d expect a desktop computer

to do.[23]

25

Cyber Physical Systems (CPS) :

Figure 6: labelled raspberry pi board.

Raspberry Pi connects to a network via its Ethernet port or via Wi-Fi or USB adapters.

The card is powered by a micro USB port as what is present in Figure 6. There is no hard

drive: a microSD card is used as the storage medium. It contains the operating system,

as well as all of your documents and programs.

2.2.4.3 Sensors

Sensor is a subsystem , module, whose purpose is to get information by detect events

or changes in its environment and the sending to those information to other electronics,

frequently a computer processor. A sensor can’t work alone it’s always used with other

electronics.[25]

Figure 7: CPS’s sensors.

26

Difference between Cyber-Physical Systems and Internet of Things

Figure 7 shows the different types of sensors , and this difference is on the type of the

captured information.

2.2.5 Application Area of Cyber Physical Systems (CPS):

Due to our needs to The cyber physical systems in our life because they use to help

us and make our life more easy. So it spreads in all fields of our life, and those are some

examples :

• Automobile Systems.

• Robotics Systems.

• Smart city and smart house

• Medical systems

• Transportation systems

2.3 Difference between Cyber-Physical Systems and

Internet of Things

The differences between Cyber-Physical Systems and Internet of Things is that IoT

makes more emphasis on connecting “things” towards connecting “everything” while that

CPS put more attention on integrating computation, networking and physical systems[28].

All IoT devices are Cyber-Physical Systems, but CPSs are not necessarily connected

to the Internet and thus, not necessarily IoT devices[4].

2.4 Conclusion

In this chapter, we have presented the different definitions of Internet of Things (IoT)

and Cyber Physical Systems, their architecture, its characteristics and their areas of

applications. The following chapter we will describe and write the approach proposed in

this work which returns to the studied Problem Statement.

27

Chapter 3
Conception

28

Introduction :

3.1 Introduction :

After having presented the theoretical background of Internet of Things, Cloud Com-

puting and Web services, we focus on this chapter to present the general and detailed

architecture of a migrating solution to reuse cyber-physical system on the clouds using

REST-based web services.

We will describe in this chapter the internal structure of the architecture of the

proposed approach, and the overall and detailed conception.

3.2 Motivation

Nowadays, IoT is the technology of the moment, in view of lack of a standard the

communication among various IoT devices. and because IoT devices are controlled by

various end-user applications, the functionalities of IoT devices may be published as IoT

services. IoT services are RESTful services that connect to IoT devices. The uniform

interface of IoT services allows them to be integrated with existing applications. In this

context, we propose to migrate IoT “stand-alone” application to a Service-based IoT.

This solution allows :

• To leverage existing cyber physical systems in cloud-based systemeco-systems.

• The remotely access to the application and its data.

• The use of cloud resources for processing data.

3.3 General Structure of IoT-Application Source-Code

In general, we cam distinguish two type of methods in IoT-application source Code;

The first type is Internet Methods and the second is External methods.

• Internal Methods:

- An internal method is specialized in the set up of IoT devices, such as initial-

ization, triggering,.. etc.

- Their uses is within the IoT device (e.g. : init, setup, etc.)

– Figure 1 depicts an example of an internal method.

29

General Structure of IoT-Application Source-Code

Figure 1: Example of internal method.

• External Methods:

– An external method considerate like an IoT device interface that can make

exchanges with the cloud.

– Some returned variables may represent the sensed data of sensor (e.g. : the

light sensed, obstacle sensed, etc.)

– It is possible to transform external method to an IoT service because the ex-

ternal method gives the possibility to end-users to control an IoT device or to

obtain information from an IoT device

– Figure 2 and Figure 3 depicts an example of an internal method.

Figure 2: Example of external method (1).

30

Approach for Migrating IoT Application to REST-Based API

Figure 3: Example of external method (2).

3.4 Approach for Migrating IoT Application to REST-

Based API

3.4.1 General Architecture

In this approach, the transforming of IoT application to RESTful API is done auto-

matically, there is a many tasks to do for getting our objective.

Figure 4: Input and Output of our approach.

Figure 4 shows the Input and the results of our approach after many tasks of pro-

cessing :

31

Approach for Migrating IoT Application to REST-Based API

• Input : We Start by a cyber-Physical System source code like an input to migrate

it to REST API.

• Processing: We conduct many processing tasks on the input that we will demon-

strate in the following sections.

• Output: There is two outputs; the first is the generation of the corresponding

RESTful API, the second output is the generation of a web form to acquire data.

Figure 5: General Schema

Figure 5 presents the general architecture of our approach.

3.4.2 Collection of IoT Applications

Our approach is applied on Cyber.Physical.Systems applications programmed by python,

since Python is considered as the smart and developed programming language especially

for artificial intelligence and IoT systems, and easy to learn syntax [22].

So we will collect the Cyber.Physical.Systems source code applications to test for, we find

those applications in many websites specialize of the IoT development [3].

32

Approach for Migrating IoT Application to REST-Based API

3.4.3 IoT Source Code Analysis

- Get the Abstract syntax tree (AST) [2] of the Cyber-Physical-System source code.

” The AST module helps applications to process trees of the used programming

language abstract syntax grammar. this module helps to find out

programmatically what the current grammar looks like.”

Figure 6: AST example

- Every node in the AST describes a construct from the constructs that are within

the source code as in Figure 6.

- Analyze this AST to identify all nodes in methods to work on :

• Method name :Name of the method as it is in source code.

• Input variables :All the input variables of method.

• Returned variable :The returned variable if there is.

• Method calls : Methods that are used within the method.

• If-else statement : Tests within the methods.

3.4.4 Processing Method Names

We can distinguish between external and internal methods from words in their names,

so we have to process all the methods names by :

• We split Camel-Case words : Example (GetData - > will be divided into Get

and Data).

• We remove punctuation : Example (Get-Data - > Get and Data).

• We remove numbers : Example (GetData1 - > Get and Data)

• We remove stop words : Example (Get_the_Data - > Get and Data).

33

Approach for Migrating IoT Application to REST-Based API

3.4.5 Extract Internal Methods

After the processing of method name we can easily extract internal method.

If the method name contains one of this key word “init, setup, debug, test ”,we can consid-

ered that it’s an internal method, because internal method specialize on the initialization,

setup and test of IoT devices e.g.Figure1.

3.4.6 Extract External Methods

the extraction of external method is based on the testing about some features in meth-

ods whose obtained from IoT source code analysis and method name processing :

• Condition 1 : If the method name contains one word related to send, action or

IoT service name (e.g. push, post, sense, publish, send, notify, subscribe, get, sense,

set, receive, control, temperature, led, wireless..) , so this method considered as

an external methods, because the method name denotes its objective

• Condition 2 : If method contains ”if-else statements” it means that it has a process

task, and this is one of the external method features.

• Condition 3 : Methods calls within method body, if it has meaning of sending

or action related words (e.g. post, publish, send..), and this is an external method

feature.

In our approach if condition 1 is verified or the both of the condition 2 and condition 3

are verified, the method considered as an external method.

3.4.7 Extract Service Features

After the extraction of external methods that we will work with, we will try to get the

services features corresponding to them :

• Service name : the service name is the method

name (e.g.Figure 2 the service name is Move_On_To).

• URL for access to the service : since it’s RESTful services, the URL has

to respect its syntax like the following (Figure 7) :

34

Approach for Migrating IoT Application to REST-Based API

Figure 7: URL schema of the service.

• HTTP functions (Post or GET):

the choosing between HTTP functions it depending on methods feature that we’ve

seen in (3.4.3):

A – HTTP GET : It means that we will retrieve data (the service sends data), so

if the method name and the method calls within, has send related words(e.g. ”send,

notify, Get, ..”),and it has Return statement(e.g.Figure3).

B – HTTP POST : Method name has receive related words (e.g. “set, receive,..”)

and the existing of If-else statements (e.g.Figure 2).

3.4.8 Generating Web Form based HTML

After extracting all the service features, and because the IoT device can be controlled

by the end-user, the form that allows the end-user to control it, is generated automati-

cally, each web form is depending on the code of the external methods corresponding.

Figure 8 is the HTML code of the web form that is used to control “the move side” by

the end-user, that will sending POST request corresponds to the service extracted from

the method in Figure 2.

Figure 8: Generated HTML code(1)

35

Generating the Corresponding RESTful API

- URL for access to service: “http://localhost:5000/IoTdevice

/b2d100/Services/Move_On_To/information”.

- HTTP method :“POST”.

- Input type :“Radio” because there is an if-else statements.

- Parameter name :“information” is the parameter of the method in Figure2.

- Parameter value : “Right” or “Left” is the value who will be sending.

Figure 9 is the HTML code of the web form that is used to control “the move side” by

the end-user, that will sending POST request corresponds to the service extracted from

the method in Figure 3.

Figure 9: Generated HTML code(2)

- URL for access to service: “http://localhost:5000/IoTdevice

/b2d100/Services/Get_Light_State/information”.

- HTTP method :“GET”.

- Parameter value : ”Value” is the value which we need from the service

3.5 Generating the Corresponding RESTful API

The generation of service source code is automatically for the instantiating of the ser-

vice after that.

The Figure 10 define the RESTful service source code corresponding to method in Figure

2.

36

Generating the Corresponding RESTful API

Figure 10: RESTful API generator(1).

The data that is extracted from the method in Figure 2 :

Operation URL : ”/iotdevice/b2d100/services/Move_On_To/information”.

HTTP method : “POST”.

Value received : Is the value of parameter “information” in HTML form.

- Type of data : the data transmitted follow JSON standard “jsonify”.

The Figure 11 is the RESTful service source code corresponding to method in Figure 3.

Figure 11: RESTful API generator(2).

The data that is extracted from the method in Figure 3 :

Operation URL : ”/iotdevice/b2d100/services/Get_Light_State/information”.

HTTP method : “GET”.

The getting value : Is ”Value” which must be initialized by he developer in

first.

- Type of data : the data transmitted follow JSON standard “jsonify”.

37

Conclusion

3.6 Conclusion

In this chapter, we have presented an approach for the automatic transformation of IoT

application to RESTful API, we started with the global architecture, then we described

the different phases of the approach.

In the next chapter, we will present an implemented in Python which embodies our

approach.

38

Chapter 4
Implementation

39

Introduction

4.1 Introduction

The current chapter is dedicated to the presentation of the implemented prototype to

migrate from legacy Cyber physical system to REST-Based system.

First we will present the languages and the development tools used during the imple-

mentation of the prototype. Then, we will describe the prototype itself, and we will end

this chapter with a conclusion.

4.2 Software Tools Used

In this part we have listed the different software tools used throughout the program-

ming phase

4.2.1 Development Environment

• PyCharm

PyCharm is an Integrated Development Environment (IDE) used for program-

ming in Python. PyCharm is developed by the Czech company JetBrains. It pro-

vides code analysis, a graphical debugger, an integrated unit tester, integration with

version control systems (VCSes), and supports web development with Django as well

as Data Science.

It is cross-platform working on Windows, Mac OS X and Linux. PyCharm has a

Professional Edition and a Community Edition.[20]

Figure 1: PyCharm IDE

40

Software Tools Used

Figure 1 shows a view of PyCharm IDE.

• Sublime Text

Sublime Text is a shareware cross-platform source code editor with a Python

application programming interface (API). This source code editor natively supports

various programming and markup languages, and functions can be added by users

with plugins, typically community-built and maintained under free-software licenses.

[27]

• LaTex

LaTeX is a software system for document editing and preparation. When writing,

the writer uses plain text with commands. It is widely used in academia for the

communication and publication of scientific documents in many fields, including

mathematics, statistics, computer science .. etc

4.2.2 Programming Languages Used

• Python

Python is an interpreted, object-oriented, high-level programming language with

dynamic semantics. It is extremely attractive in the field of Rapid Application De-

velopment because it offers dynamic typing and dynamic binding options. Python’s

simple, easy to learn syntax emphasizes readability and therefore reduces the cost

of program maintenance and development because it allows teams to work collab-

oratively without significant language and experience barriers. Python supports

modules and packages, which encourages program modularity and code reuse.

The Python interpreter and the extensive standard library are available in source or

binary form without charge for all major platforms, and can be freely distributed.[19]

• HTML

HTML is short for Hypertext Markup Language. HTML is used to create elec-

tronic documents (called pages) that are displayed on the World Wide Web. Each

page contains a series of connections to other pages called hyperlinks. Every web

page you see on the Internet is written using one version of HTML code or another.

When multiple web pages are published with a common theme or within a common

domain name, the collection is usually called a web site.

HTML code ensures the proper formatting of text and images for your Internet

browser. Without HTML, a browser would not know how to display text as elements

or load images or other elements. HTML also provides a basic structure of the page,

upon which Cascading Style Sheets are overlaid to change its appearance.[10]

41

About the Migration Tool

4.2.3 Used Frameworks and APIs

• Flask

Flask is an open-source Python Web framework, it provides tools, libraries and

technologies that allow to build a web application.

• PyQt5

PyQt is a GUI widgets toolkit. It is a Python interface for Qt, one of the most

powerful, and popular cross-platform GUI library. PyQt is a blend of Python pro-

gramming language and the Qt library [21].

• Abstract Syntax Tree (AST)

AST is a way of representing the syntax of a programming language as a hierar-

chical tree-like structure where every node describes a construct from the constructs

that are within the source code.

4.3 About the Migration Tool

The ultimate goal of the project is to build a tool who parse codes in python language

and then generate a REST API (i.e. a set of invokable resources that corresponds to the

external methods found in the original source code) and Web form that allows to end-user

the control and the accessing to the service and its data. It is expected that this API do

the same functionality as the original one with some deployment procedures.

4.4 Presentation of the Migration Tool

In this part we will present the main interfaces of our application :

4.4.1 Main Interface

The first window that will shown is Figure 2 :

42

Presentation of the Migration Tool

Figure 2: Main Interface

- By clicking on the start button without adding “file.py”, an error window will appear(

See Figure 3 for illustration):

Figure 3: Error window.

- The clicking on add-file button allows to choose one file in our machine as below in

Figure 4).

43

Presentation of the Migration Tool

Figure 4: choosing “file.py” from machine..

- After choosing a file.py (source code of an CPS) than click on start bottom, the

progressing bar appears Figure 5:

Figure 5: Progressing bar.

the progress bar will be progressing until the preparing of the results.

44

Presentation of the Migration Tool

4.4.2 Results Interface

Figure 6 presents the first window result which holds the following components:

Figure 6: Result window.

• Information about code : In this area we will give information about the number

of external methods extracting from the file entered and also the number of services

types.

• Function List : This area contains the list of the external methods name, and we

have to select one of the them to get its service code and end-user code.

• Services code : This area will contain the service code “PYTHON” of the function

name selected from the function list.

• End-User code : This area contain the end-user code ”HTML” of the function

name selected from the function list.

• Return Button : Clicking on “Return!” will take us to the start application

window shown in Figure 2.

- Selecting of function name from function list gives this result (Figure 7 and Figure 8):

45

Presentation of the Migration Tool

Figure 7: ”get current solar”considered as ”GET” service.

Figure 8: ”star” considered as ”POST” service.

46

Presentation of the Migration Tool

4.4.3 Test of the Obtained Results

• GET Request

First, we get a copy of services code by clicking on “Copy!” Button that situated

down of the area (Figure 6) . next, creating new file ”service.py”, after that paste

service code in “service.py”. And the same thing with End-user code but we paste

it in new file who’s name “end-user.html” as in Figure 9 Figure 10.

Figure 9: “GET” service code.

Figure 10: EndUser code for “GET” service.

- Now we execute the “service.py” to run the RESTful service, Figure 11 presents that :

47

Presentation of the Migration Tool

Figure 11: Run the REST service(1).

- By clicking on “EndUser.html” file, this form will appear (Figure 12) on the browser:

Figure 12: ”GET” End-user form.

- After choosing a checkbox and clicking on ”submit” button, A ”GET” request will

sending to the ”REST API” :

Figure 13: REST Result of “GET” request.

Figure 13 presents the result of GET request, for the returned value must be initialized

by the developer in first use of the service.

48

Presentation of the Migration Tool

• POST Request

First, we get a copy of services code by clicking on “Copy!” Button that situated

down of the area (Figure 6) . next, creating new file ”service.py” after that paste

service code in “service.py”. And the same thing with End-user code but we paste

it in new file who’s name “end-user.html”as in Figure 14 Figure 15.

Figure 14: “POST” service code.

Figure 15: EndUser code for “POST” service.

- Now we execute the “service.py” to run the REST service, Figure 16 presents that :

49

Presentation of the Migration Tool

Figure 16: Run the REST service(2).

- Get the end-user form by clicking on “EndUser.html”, this form will appear (Figure

17) on the browser:

Figure 17: ”POST” End-user form.

- After choosing a checkbox and clicking on ”submit” button, ”POST” request will

sending to the ”REST API” :

Figure 18: REST Result of “POST” request.

Figure 18 presents the result of POST request, after storing the data sending, the

service will show you the sending data.

50

Conclusion

4.5 Conclusion

In this chapter we have presented all the steps of the implementation of our prototype,

with all the tools and programming languages used.

The next section is an overall conclusion that encompasses everything we have done

to achieve our goal.

51

Conclusion

So far, we have presented an approach for migrating local physical system appli-

cations to RESTful-based web service on the cloud. The manuscript was organized in

four chapters; Where we presented the two research areas, Web services and Cloud com-

puting in the first chapter. The objective was to cover all the concepts that are related

to web services and the cloud. Then, in the second chapter, we made an overview of

the two technologies Internet of Things (IoT) and Cyber Physical Systems (CPS) to get

an idea about their principles and characteristics. In the third chapter we explained our

approach that is a migration tool of Cyber Physical Systems to REST-based web service

on the cloud. Our approach allows the end user to control and access to the IoT device

through a REST API. The last chapter in this thesis was devoted for the presentation of

the elaborated tool.

52

Bibliography

[1] Arduino. https://www.arduino.cc/. Accessed: 2020-01-10.

[2] AST-Python. https://docs.python.org/2/library/ast.html. Accessed: 2019-

12-25.

[3] CPS projects. https://www.hackster.io/. Accessed: 2020-03-10.

[4] Ivan De Oliveira Nunes. What is the difference between Internet of Things (IoT)

and Cyber Physical Systems (CPS)? June 2015.

[5] Mark Endrei et al. Patterns: service-oriented architecture and web services. IBM

Corporation, International Technical Support Organization New York, NY, 2004.

[6] Borivoje Furht and Armando Escalante. Handbook of cloud computing. Vol. 3. Springer,

2010.

[7] Jayavardhana Gubbi et al. “Internet of Things (IoT): A vision, architectural ele-

ments, and future directions”. In: Future generation computer systems 29.7 (2013),

pp. 1645–1660.

[8] Qusay F Hassan. Internet of things A to Z: technologies and applications. John

Wiley & Sons, 2018.

[9] Imre Horvath and Bart HM Gerritsen. “Cyber-physical systems: Concepts, tech-

nologies and implementation principles”. In: Proceedings of TMCE. Vol. 1. 2. 2012,

pp. 7–11.

[10] HTML. https://www.computerhope.com/jargon/h/html.htm. Accessed: 2020-

07-03.

[11] Norihisa Komoda. “Service oriented architecture (SOA) in industrial systems”. In:

2006 4th IEEE international conference on industrial informatics. IEEE. 2006,

pp. 1–5.

[12] James P Lawler and Hortense Howell-Barber. Service-oriented architecture: SOA

strategy, methodology, and technology. CRC Press, 2007.

[13] Peter Mell, Tim Grance, et al. “The NIST definition of cloud computing”. In: (2011).

53

https://www.arduino.cc/
https://docs.python.org/2/library/ast.html
https://www.hackster.io/
https://www.computerhope.com/jargon/h/html.htm

Bibliography

[14] Andreas Metzger et al. “Cyber physical systems: Opportunities and challenges for

software, services, cloud and data”. In: NESSI White Paper (2015).

[15] Andreas Metzger et al. “Cyber physical systems: Opportunities and challenges for

software, services, cloud and data”. In: NESSI White Paper (2015).

[16] Andy Neumann, Nuno Laranjeiro, and Jorge Bernardino. “An analysis of public

REST web service APIs”. In: IEEE Transactions on Services Computing (2018).

[17] Keyur K Patel, Sunil M Patel, et al. “Internet of things-IOT: definition, charac-

teristics, architecture, enabling technologies, application & future challenges”. In:

International journal of engineering science and computing 6.5 (2016).

[18] Cesare Pautasso. “RESTful Web service composition with BPEL for REST”. In:

Data & Knowledge Engineering 68.9 (2009), pp. 851–866.

[19] Programing language: Python. https://www.python.org/doc/essays/blurb/.

Accessed: 2020-06-20.

[20] pycharm. https://www.jetbrains.com/help/pycharm/. Accessed: 2019-12-25.

[21] PyQt5. https://www.tutorialspoint.com/pyqt/index.htm. Accessed: 2019-12-

25.

[22] python code. https://docs.python.org/3.8/tutorial/. Accessed: 2020-02-20.

[23] Raspberrypi. https://www.raspberrypi.org/. Accessed: 2020-01-10.

[24] REST. https://fr.wikipedia.org/wiki/Representational_state_transfer.

Accessed: 2020-02-15.

[25] Sensors. https://en.wikipedia.org/wiki/Sensor. Accessed: 2020-02-15.

[26] SOAP. :https://www.guru99.com/soap-simple-object-access-protocol.

html. Accessed: 2020-01-02.

[27] sublimetext. https://www.sublimetext.com/. Accessed: 2020-05-15.

[28] Lihui Wang and Xi Wang. “Latest Advancement in CPS and IoT Applications”. In:

Jan. 2018, pp. 33–61. isbn: 978-3-319-67692-0. doi: 10.1007/978-3-319-67693-

7_2.

[29] Web services. https://documentation.progress.com/output/ua/OpenEdge_

latest/index.html#page/bpm-web/web-services-standards.html. Accessed:

2020-01-02.

[30] Feng Xia et al. “Internet of things”. In: International journal of communication

systems 25.9 (2012), p. 1101.

54

 https://www.python.org/doc/essays/blurb/
https://www.jetbrains.com/help/pycharm/
https://www.tutorialspoint.com/pyqt/index.htm
https://docs.python.org/3.8/tutorial/
https://www.raspberrypi.org/
https://fr.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Sensor
: https://www.guru99.com/soap-simple-object-access-protocol.html
: https://www.guru99.com/soap-simple-object-access-protocol.html
https://www.sublimetext.com/
https://doi.org/10.1007/978-3-319-67693-7_2
https://doi.org/10.1007/978-3-319-67693-7_2
https://documentation.progress.com/output/ua/OpenEdge_latest/index.html##page/bpm-web/web-services-standards.html
https://documentation.progress.com/output/ua/OpenEdge_latest/index.html##page/bpm-web/web-services-standards.html

	Introduction
	Web Services and Cloud Computing
	Web Services
	Introduction
	Definition
	Service Oriented Architecture
	 SOA Definition
	 SOA Characteristics
	 SOA Collaborations
	Advantages of SOA

	 Simple Object Access Protocol (SOAP)
	Definition
	Essential Parts of SOAP
	 SOAP Messages Blocks
	Advantages of SOAP

	Representational State Transfer (REST)
	Definition
	Resources in Vision of REST
	Principles of REST Architecture
	Advantages of REST

	Difference between SOAP and REST

	The Cloud Computing
	Definition
	Essential Characteristics of the Cloud Computing
	On-Demand Self-Service
	Broad Network Access
	 Resource Pooling
	 Rapid Elasticity
	 Measured Service

	Cloud Services Models
	 Infrastructure as a Service (Iaas)
	Platform as a Service (Paas)
	 Software as a Service (Saas)

	Types of the Cloud
	Public Cloud
	Private Cloud
	Hybrid Cloud
	Community Cloud

	Web Services in the Cloud
	Conclusion

	Internet of Things (IoT) and cyber Physical systems(CPS)
	Internet of Things (IoT) :
	Introduction
	Definition
	IoT Architecture
	Perception Layer
	Network Layer
	Middleware Layer
	Application Layer
	Business Layer

	Essential IoT Technologies
	Radio Frequency Identification
	 Wireless Sensor Networks (WSN)
	Middleware
	Cloud Computing
	 IoT Application Software

	Application Area of Internet of Things (IoT) :
	The Advantages and Disadvantages of IoT :
	Advantages :
	Disadvantages :

	Cyber Physical Systems (CPS) :
	Introduction
	Definition
	Architectural of Cyber-Physical Systems :
	Cyber Physical Systems Devices :
	 Arduino
	 Raspberry Pi
	 Sensors

	Application Area of Cyber Physical Systems (CPS):

	Difference between Cyber-Physical Systems and Internet of Things
	Conclusion

	Conception
	Introduction :
	Motivation
	General Structure of IoT-Application Source-Code
	Approach for Migrating IoT Application to REST-Based API
	General Architecture
	 Collection of IoT Applications
	IoT Source Code Analysis
	Processing Method Names
	Extract Internal Methods
	Extract External Methods
	Extract Service Features
	Generating Web Form based HTML

	Generating the Corresponding RESTful API
	Conclusion

	Implementation
	Introduction
	Software Tools Used
	Development Environment
	Programming Languages Used
	Used Frameworks and APIs

	About the Migration Tool
	Presentation of the Migration Tool
	Main Interface
	Results Interface
	Test of the Obtained Results

	Conclusion

	Conclusion
	Bibliography

