
REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

Ministère de l’Enseignement Supérieur et de la Recherche Scientifique

Université Mohamed Khider – BISKRA

Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie

Département d’informatique

N° d’ordre :………………

Série :……………………..

Mémoire

Présenté en vue de l’obtention du diplôme de master académique en

Informatique

Option : Images et vie artificielle

Par :

SERRAYE IBRAHIM

Soutenu le : /09/2020

Devant le jury :

Nom et prénom Grade Qualité

Babahenini Djihane
 M.C.B

Rapporteur

Design and realization of a

voxelization method via

shaders

To my familly...

To my friends...

Acknowledgments

First, I want to thank almighty ALLAH for giving me the will, patience and health

to develop this work although the circumstances surrounding us I would like to

express my profound gratitude to my supervisors Dr. Babahenini Djihane, for her

involvement in this research work

and for the support they have given me, their patience, their availability and the

relevance of their advice that have been of invaluable assistance throughout this

work. Also, I would like to thank all my professors in the computer science

department.

I extend my sincere thanks to the members of the jury, for having accepted to judge

this work.

Finally, I thank my sisters, my big family and my friends for encouraging

me during this year, and to have always been available when I needed it.

Abstract

In this thesis, we present a voxelization algorithm for surface models, this algorithm uses

texture atlas and ray marching algorithm via the GPU to accelerate the execution time, We

first load a 3D object, and according to the size of this object, we create a bounding box.

Then we create a 3D atlas texture by rendering the object to a 3D texture, finally, we visualize

the voxel-based object in the bounding box with a ray marching algorithm using the 3D atlas

texture as a voxel grid. The whole algorithm traverses the geometric model only once and is

accomplished entirely in GPU (graphics processing unit).

The test results show that the method can generate the 3D voxelization efficiently.

Key-words: GPU, voxelization, textutre atlas, ray marching, 3D texture.

Résumé

Dans ce mémoire, nous présentons un algorithme de voxélisation pour les modèles de sur-

face, cet algorithme utilise un atlas de texture et un algorithme de suivi de rayons via le GPU

pour accélérer le temps d’exécution. Nous chargeons d’abord un objet 3D, et en fonction de la

taille de cet objet, nous créons une bôıte englobante . Ensuite, nous créons une texture d’atlas

3D en rendant l’objet en une texture 3D, enfin nous visualisons l’objet à base de voxel dans la

bôıte englobante avec un algorithme de suivi de rayons en utilisant la texture d’atlas 3D comme

une grille de voxel.L’algorithme entier ne traverse le modèle géométrique qu’une seule fois et

est entièrement réalisé en GPU (unité de traitement graphique).

Les résultats des tests montrent que la méthode peut générer efficacement la voxélisation 3D.

Mots clés: GPU, voxélisation, texture d’atlas, suivi de rayons, texture 3D

��
	

jÊÓ

�Ê£

@

�
éJ
Ó

	PP@ñ
	
mÌ'@ è

	
Yë ÐY

	
j

�
J�

�
�ð , i¢�Ë@ h.

	
XAÒ

	
JË I. J
ªº

�
JË @

�
éJ
Ó

	PP@ñ
	

k ,
�

IjJ. Ë @ @
	
Yë ú

	
¯ ú

	
¯ ÐY

�
®

	
K

�
Bð

@ Ðñ

�
®

	
K .

	
YJ

	
®

	
J
�
JË @

�
I

�
¯ð ©K
Qå�

�
JË

�
HAÓñ�QË@

�
ém.
Ì'AªÓ

�
èYgð Ð@Y

	
j

�
J�AK.

�
éª

�
�

B@ ©J.

�
�
�
K

�
éJ
Ó

	PP@ñ
	

kð i. J
�
	
�Ë @

©
	
J�

	
� Õç

�
' . ¡J
m

× ©K. QÓ ZA
�

�
	
�A

K. Ðñ

�
®

	
K , 	á

KA¾Ë@ @

	
Yë Ñm.

k 	
ÊÓ úÎ« @

�
XAÒ

�
J«@ð , XAªK.

B@ ú

�
GC

�
K 	á

KA¿ ÉJ
Òj

�
JK.

úÎ«
�
ZA

	
JK.

	á

KA¾Ë@ Qê

	
¢

	
� @

�Q�

	

g

@ , XAªK.

B@ ú

�
GC

�
K i. J
�

	
� ú

	
¯ XAªK.

B@ ú

�
GC

�
K 	á

KA¾Ë@

	
�QªË i. J
�

	
�Ë @ �Ê£

@

�Ê£

B

�
éª

�
�

B@ ©J.

�
�
�
K

�
éJ
Ó

	PP@ñ
	

k Ð@Y
	

j
�
J�AK. ½Ë

	
Xð 	á

KA¾ËAK. ¡J
jÖÏ @ ©K. QÖÏ @

	
ÊÓ ú

	
¯ I. J
ªº

�
JË @

�
éJ
Ó

	PP@ñ
	

k

. XAªK.

B@ ú

�
GC

�
K i. J
�

	
�Ë @

�
ém.
Ì'AªÓ

�
èYgð ú

	
¯ ÉÓA¾ËAK.

�
�

�
®j

�
J
�
Kð

�
èYg@ð

�
èQÓ ú

æ�Y

	
JêË @ h.

	
XñÒ

	
JË @ ¡

�
®

	
¯ Q�.ª

�
K AêÊÒ»

AK.

�
éJ
Ó

	PP@ñ
	
mÌ'@

XAªK.

B@ ú

�
GC

�
K Õæ�m.

× h.
	
XñÖ

	
ß ÈAª

	
¯ É¾

�
��. YËñ

�
K

	
à

@ 	áºÖß

�
é
�
®K
Q¢Ë@

	
à

@ PAJ.

�
J

	
kB@ l .

�

'A

�
J
	
K Qê

	
¢

�
� .

�
HAÓñ�QË@

. I. J
ªº
�
JËAK.

�Ê£

B@ ,

�
éª

�
�

B@ ©J.

�
�
�
K , i. J
�

	
�Ë @ �Ê£

@ , I. J
ªº

�
JË @ ,

�
HAÓñ�QË@

�
ém.
Ì'AªÓ

�
èYgð :

�
éJ
kA

�
J
	
®ÖÏ @

�
HAÒÊ¾Ë@

. XAªK.

B@ ú

�
GC

�
K

Contents

1 Introduction

2 Volume Modeling 2

2.1 Introduction . 2

2.2 Volume modeling . 2

2.2.1 Definitions . 2

2.2.2 Volume modeling definition . 4

2.2.3 Application domain . 6

2.3 Bounding Volume . 9

2.4 Bounding Volume Hierarchy (BVH) . 11

2.5 Spatial subdivision algorithms . 12

2.5.1 Uniform grid . 12

2.5.2 kd-tree . 13

2.5.3 Octree . 14

2.6 Discussion . 15

2.7 Conclusion . 16

3 Voxelization 17

3.1 Introduction . 17

3.2 Definition . 17

3.3 Voxelization types (according to the nature of data storing) 18

3.3.1 Binary voxelization . 18

3.3.2 Multi-valued voxelization . 19

3.4 Voxelization categories . 20

3.4.1 Surface voxelization . 20

3.4.2 Solid voxelization . 20

3.5 Voxel-based methods . 20

3.5.1 Single-pass GPU Solid Voxelization and Applications 20

3.5.1.1 Main idea . 20

3.5.1.2 The method . 21

3.5.1.3 Implementation issues . 21

3.5.2 Real-time Voxelization for Complex Polygonal Models 22

3.5.2.1 Main idea . 22

3.5.2.2 The method . 22

3.5.2.3 Implementation issues . 24

3.5.3 Hardware Accelerated Voxelization . 25

3.5.3.1 Main idea . 25

3.5.3.2 The method . 25

3.5.3.3 Implementation issues . 27

3.5.4 Efficient Hardware Voxelization . 28

3.5.4.1 Main idea . 28

3.5.4.2 The method . 28

3.5.4.3 Implementation issues . 30

3.5.5 Surface Scanning-based Texture Atlas for Voxelized 3D object 30

3.5.5.1 Main Idea . 30

3.5.5.2 The Method . 31

3.5.5.3 Implementation issues . 34

3.6 Discussion . 35

3.7 Conclusion . 36

4 Conception of 3D voxelization method 37

4.1 Introduction . 37

4.2 Goals . 37

4.3 Main idea and motivation . 37

4.4 Conception . 38

4.4.1 global conception . 38

4.4.2 detailed conception . 40

4.5 conclusion . 44

5 Implementation,results and discussion 45

5.1 Introduction . 45

5.2 Hardware configuration . 45

5.3 Environment and library . 46

5.3.1 Visual Studio 2017 . 46

5.3.2 GLEW . 46

5.3.3 SFML . 46

5.3.4 Assimp . 47

5.3.5 GLM . 47

5.4 Implementation details . 47

5.4.1 3D model loading . 47

5.4.2 Uniform grid creation . 48

5.4.3 Texture atlas . 48

5.4.4 Visualization with ray marching . 49

5.5 Results and discussion . 51

5.5.1 Results . 51

5.5.2 Discussion . 60

5.6 Conclusion . 62

6 Conclusion 63

List of Figures

2.1 Solid 3D Model. 3

2.2 Shell Boundary 3D Model. 4

2.3 Examples of volume model extracted from a MRI and CAT scan. 5

2.4 Diagram depicting the analogy between surface modelling and volume modelling. 6

2.5 3D Model for Games and Animations. 7

2.6 3D Model for science domain. 7

2.7 3D model for architecture domain. 8

2.8 3D Model for engineering domain. 8

2.9 3D Model for medical domain. 9

2.10 3D model for geology domain. 9

2.11 Bounding box. 10

2.12 Axis Aligned Bounding box (AABB). 10

2.13 A bounding box hierarchy. 11

2.14 The main hierarchical structures used for spatial subdivision. 12

2.15 the hierarchical structures used for kd-tree. 14

2.16 Octree algorithm representation. 15

3.1 The transformation of a 3D mesh into a voxelization and its visualization through

a voxel grid. 18

3.2 Binary and multi-valued voxelization. 19

3.3 The input of voxelization is T and its output is an array of attributed voxels pijk. 23

3.4 Volume Slicing. 26

3.5 A 2D analog of the solid voxelization algorithm; (b) with surfaces super-imposed. 27

3.6 Six Z-buffers for a 3D object. 28

3.7 Letter ’G’ and its Z-buffers (X1, X2, Y1, Y2). (b) Erroneous voxels marked in

red. (c) Double Z-buffers and stencil buffer. 29

3.8 Surface scanning-based texture atlases generator (SSTAG). 31

3.9 Slice representation of voxelized 3D object: (a) Input voxelized 3D object. (b)

Set of slices. 2D blobs exist in each slice. 32

3.10 Generation of texture strip on slice. 33

3.11 Generation of texture atlases. 34

3.12 Framework of proposed texture atlas generation. 34

4.1 Conception general of the voxelization algorithm. 39

4.2 Cow 3d object. 40

4.3 Cow 3d object in bounding box. 41

4.4 Cow 3d object in Atlas texture. 42

4.5 Ray marching diagram. 43

4.6 Ray marching conception. 44

5.1 2D representation of tmin and tmax. 50

5.2 3D representation of tmin and tmax in the AABB. 51

5.3 Result of the empty AABB. 52

5.4 Cow Input object. 52

5.5 Result 1 voxelize cow. 53

5.6 Result 2 voxelize cow. 53

5.7 Result 3 voxelize cow. 54

5.8 Result 4 voxelize cow. 54

5.9 Dinosaur Input object. 55

5.10 Result 1 voxelize Dinosaur. 55

5.11 Result 2 voxelize Dinosaur. 56

5.12 Result 3 voxelize Dinosaur. 57

5.13 Angel Input object. 57

5.14 Result 1 voxelize angel. 58

5.15 Result 2 voxelize angel. 59

5.16 Result 3 voxelize angel. 59

5.17 Result 4 voxelize angel. 60

5.18 Execution time graph for different polygon number. 61

5.19 Execution time graph for different resolution grid. 62

List of Tables

2.1 A comparison between the three Spatial Subdivision Methods. 16

3.1 Comparison between the different voxelization presented in this chapter. 35

5.1 Execution time for atlas texture function for different polygon number. 60

5.2 Execution time for atlas texture function for different resolution grid. 61

Chapter 1

Introduction

Volumetric representation is a substitution of the traditional geometric(surface) representation

and plays an important role in computer graphics community since the 1980 s.[Pen04].The

representation of Surface and volumetric models frames the two main classes of representing

objects in computer graphics. Volume models(voxel based models) are used mainly where

volumetric data are available (e.g., medical imaging, CSG, collision detection,analyze 3D data

with deep learning). However, surface models are far more efficient to display and store.[The04]

Often it is useful to convert surface data to voxels so that methods that work with regularly

sampled data can be applied. This process called voxelization and produces a set of values

on a regular three dimensional grid and approximates the shape of the model as closely as

possible.[The04] This concept was first introduced by Arie Kaufman.[Pen04]

And with the increase of using voxel-based data and voxelizing surface data many researchers

have studied voxel representation and used it in computer vision research field.[HWA20]

In the other hand where the geometric complexity in computer scenes is constantly increas-

ing, rendering is becoming more expensive,the number of primitives increases leads to the use

of voxel based models and voxelization techniques.[Shi00]

There are many strategies to conduct voxelization. Basically, they can be classified as

surface voxelization and solid voxelization methods. Another common classification is binary

and multi valued voxelization approaches. [Dec08]

Most previous work focuses on the sampling theory involved in voxelization and render-

ing. However, due to the rapid development of the modelling and sensor technologies, the

size and complexity of the models are even larger. This puts high demands on the perfor-

mance of the voxelization algorithm, especially for time-critical applications such as virtual

medicine,rendering and collision detection.

Most of researchers rely on standard graphics systems for fast voxelization although graphics

hardware is designed for surface rendering,it is often possible to utilize it in different tasks.

However, to our best knowledge, achieving real-time frame rate for a moderate size volume

resolution is still a challenge. Thanks to modern graphics hardware, its powerful flexibility

and programmable, and future graphics hardware will probably be able to accelerate even the

rendering of voxel models (by combining 3D textures and pixel shaders).[Shi00]

This thesis describes a voxelization algorithm for surface models. We decompose the task

into two main stages, creating 3D texture atlas and visualizing with ray marching algorithm,

which are accomplished entirely in GPU (graphics processing units).

The resultant volume is represented as 3D textures in the memory which can be reused

conveniently. With the use of the GPU we can convert thousand of triangles into a 5123 voxels

in milliseconds.

The main goal of this thesis is to generate a 3D voxelized method using GPU to accelerate

the time execution.

The rest of this thesis is organized as follows: chapter 2 gives a brief review of volume

modeling. The different voxelization algorithms are outlined in chapter 3. The conception of

this work is described in chapter 4. The implementation details and results with experimental

results and discussions are presented in chapter 5. Conclusions and future work are addressed

in chapter 6.

1

Chapter 2

Volume Modeling

2.1 Introduction

In few previous years, computer graphics methods are based on trigonometric geometric ob-

jects. Nowadays, volume modeling is a sub-field of Volume graphics and is concerned with the

rendering of volume and geometric objects. Each object is stored in a discrete 3 dimensional

space, where the basic element of this structure is called a voxel.

In this chapter, we will present the volume modeling domain and we will discuss the different

volume modeling techniques .

2.2 Volume modeling

In this section, we will define the 3D models to construct a volume modeling and some appli-

cation domains that use volume modeling.

2.2.1 Definitions

Before defining the volume modeling, we present what is a 3 dimensional model and the 3

dimensional modeling.

1. 3 dimensional model: A three-dimensional mathematical representation (in X, Y, Z)

of any three-dimensional object using a collection of points in 3D space, connected by

various geometric entities such as triangles, lines, curved surfaces, and can be displayed

visually as a 2D image through a process called 3D rendering.

Two most common sources of 3D models:

2

• 3D Scanner: Scanned directly into a computer from real-world objects using 3D

scanners.

• 3D Modeling: Designed by an artist or engineer using 3D modeling tools.in our work,

we interest by this end (3D modeling).

2. 3 dimensional Modeling: The process of developing a 3D model via specialized soft-

ware such as Auto-desk Maya, 3Ds Max, Soft-image.

Almost all 3D models can be divided into two categories Solid and Shell-boundary

• Solid 3D Model: Solid 3D model allows to define the volume of the object they

represent. This model type is realistic, but more difficult to build and mostly used

for non-visual simulations such as medical and engineering simulations, and for spe-

cialized visual applications such as ray tracing and constructive solid geometry. The

following figure 2.1 shows an example of a solid 3D model:

Figure 2.1: Solid 3D Model.

• Shell/Boundary 3D Model: Shell/Boundary 3D Model represents only the surface

object, such as the boundary of the object, not its volume (like a thin eggshells),

The benefit of this model category, that is easier to work with it than solid models

and almost all visual models used in games and film are shell models. As presented

in the figure 2.2 below:

3

Figure 2.2: Shell Boundary 3D Model.

2.2.2 Volume modeling definition

In this section, we have three definitions of volume modeling

1. Modeling volume data

Volume scanning devices such as MRI,CAT,3D simulation and free-hand ultrasound pro-

duce a value of a dependent quantity at various locations in space and each sample of the

data consists of a position in space and the measurement or computation of an associated

dependent variable. Invoking mathematical means of modelling and representing this

type of data is one definition of volume modelling [Nie00]

The next figure 2.3 represents the results of some scanning device (such as MRI or CAT).

4

Figure 2.3: Examples of volume model extracted from a MRI and CAT scan.

2. Analogy to Surface Modelling

In Figure 2.4, we see that the flow of information from top to bottom is “surface” to

“volume” and left to right is “modelling” to “graphics”. The traditional computer graph-

ics pipeline, which is illustrated in the top half of Figure 2.4, consists of a parametric

surface model that is evaluated at a set of parameter values in order to obtain a polygon

tessellation or approximation. The polygons are mapped by the viewing transformation

to device coordinates and then scan converted. In a similar manner we can envision a

“volume graphics” system that takes cells (the 3D analogues of polygons) that have an

associated intensity at each vertex and scan converts them to a 3D frame buffer which

subsequently is used to produce a volume rendering (either by hardware or software). In

the diagram of Figure 2.4, volume modelling is represented by the oval, which is providing

the information for the tessellation process. That is, volume modelling from this point of

view is whatever is evaluated and used to produce the 3D tessellation with density values

at the vertices.[Nie00]

5

Figure 2.4: Diagram depicting the analogy between surface modelling and volume modelling.

3. Input to the Volume Rendering Equation

As an example Ray cast volume rendering images are based upon a rendering equation.

As we can see, all three of these approaches (volume data, volume rendering integral and

analogue to surface modelling) lead to the same definition of volume modelling.

A volume model is a trivariate relationship whose independent argument is a position in

3D space and whose dependent argument is a scalar or tuple of scalars or even a vector.

The volume model might also have the aspect of varying over time.[Nie00]

2.2.3 Application domain

The volume modeling is used in lot of domains, such as:

• Wide Variety of Fields: Game, Movie, Animation: characters, objects, backgrounds,

animations, special effects, etc.

6

Figure 2.5: 3D Model for Games and Animations.

• Science: highly detailed models for calculations, chemical compounds.

Figure 2.6: 3D Model for science domain.

• Architecture: demonstration of proposed buildings and landscapes though software

architectural models.

7

Figure 2.7: 3D model for architecture domain.

• Engineering: designs of new devices, dynamics estimation tests for vehicles.

Figure 2.8: 3D Model for engineering domain.

8

• Medical: detailed models of organs.

Figure 2.9: 3D Model for medical domain.

• Geology: 3D geological models such as Google Earth.

Figure 2.10: 3D model for geology domain.

2.3 Bounding Volume

The intersection computation being very expensive, it is essential to reduce it by adding to

the initial description of the scene a data structure to avoid unnecessary calculations such as

the intersection with objects not located on the ray path.[TP06] A Bounding Volume (BV)

is a volume that encloses a set of objects. The point of a BV is that it should be a much

simpler geometrical shape than contained objects, so that doing tests using BV can be done

9

much faster than using the objects themselves. Examples of BVs: axis-aligned bounding boxes

(AABBs) and oriented bounding boxes (OBBs). [mEHNH08] Bounding volumes are imaginary

boxes that wraps around objects that are being checked for collision or computation for being

so complicated, like pedestrians on or close to the road, other vehicles and signs. There is a 2D

coordinate system and a 3D coordinate system that are both being used. Bounding volumes

are simple geometric objects which fit around the objects. This structure is a tree of bounding

volumes. In computer graphics, bounding box is used to reduce the amount of ray-object

intersections, it is absolutely necessary to use a hierarchical data structure. [Bou14]

The following figure 2.11 presents a sphere into a bounding box, when the figure 2.12 shows

the AABB tree of some simple objects:

Figure 2.11: Bounding box.

Figure 2.12: Axis Aligned Bounding box (AABB).

10

2.4 Bounding Volume Hierarchy (BVH)

A popular and effective way to filter out most non-colliding pairs of elements without spending

a lot of computation is to use bounding volume hierarchies.

A bounding volume hierarchy covering an object is simply a tree in which each node is

associated with a bounding volume, see Figure 2.13 The bounding volume at the root node of

the hierarchy covers the whole object, and the bounding volumes at the children of each node

together cover the portion of the object that the bounding volume at that node covers. The

collection of bounding volumes in each level of a bounding volume hierarchy covers the entire

object, and each successive level of the hierarchy gives a tighter and tighter covering of the

object.

Bounding volume hierarchies have been used in practice for a long time.

suggested to use bounding volume hierarchies as a way to represent virtual objects in a

scene in a hierarchical fashion to render them quickly from any particular view point.

This representation enables efficient clipping algorithm to identify parts of the scene that is

not in the viewing window so that no further work is spent on rendering them.

The representation also allows efficient sorting of objects in a scene according to their

distance to the view point, enabling fast computation of the visible surface.

Bounding volume hierarchies are also used to compute quickly the point where a light ray

first intersects a scene, speeding up rendering in ray tracing. [Ngu06]

BVHs are also excellent for performing various queries. For example, assume that a ray

should be intersected with a scene, and the first intersection should be returned. To use a BVH

for this, testing starts at the root. If the ray misses its BV, then the ray misses all geometry

contained in the BVH. [mEHNH08]

Figure 2.13: A bounding box hierarchy.

11

2.5 Spatial subdivision algorithms

Spatial subdivision is the process of decomposing the space in which the simulation takes place

into subsets, and assigning every object or object primitive to the subset in which it lies.

Spatial subdivision algorithms can be classified based on the type of spatial data structure

used and on the method that maps objects to the chosen structure.

We will consider three families of spatial subdivision approaches: Uniform Grid, kd-tree,

Octree. [Laz12]

Spatial subdivision is widely used in ray tracing applications to cull the number of objects

a ray has to intersect.

Figure 2.14: The main hierarchical structures used for spatial subdivision.

2.5.1 Uniform grid

The Uniform Grid is a responsive layout control which arranges items in a evenly-spaced set of

rows or columns to fill the total available display space. Each cell in the grid, by default, will

be the same size.

1. Algorithm

The Uniform Grid has the same resolution in all the blocks throughout the domain, and

each processor has exactly one block.

The rectangular bounding volume of the scene is subdivided into a uniform 3D grid of

rectangular cells. [Bou14]

2. Advantages

12

• Easy to construct.

• Easy to traverse.

3. Disadvantages

• may be only sparsely filled.

• geometry may still be clumped.

2.5.2 kd-tree

The kd-Tree, abbreviation for ”k-dimensional tree”,is a spatial partitioning of space with k

dimensions allowing to structure the data according to their distribution in space.

The kd-Tree is a special case of “Binary Space Partitioning (BSP) trees”. BSP trees sub-

divide the k-dimensional space by dividing each enclosing volume into two sub-volumes by a

plane of space, and recursively reiterating over these two new volumes thus obtained. BSP trees

can therefore be represented by a binary tree where the two sub-volumes are the two children

of the node corresponding to the bounding volume of higher level.

The cutting planes can be chosen according to the distribution of the data, so that it there

are large bounding volumes, where there is not a great concentration of data and Conversely.

In the case of the kd-Tree, these separate planes are always chosen in such a way that their

normal is a axes of the space coordinate system (planes always perpendicular to the axes as

in figure 2.15). This makes it possible to simplify the construction, but also the path of the

tree.[Fle08]

1. Algorithm

Invented in 1970’s by Jon Bentley and the name kD-tree originally meant “3D-trees,

4D-trees, etc.”

where k was the number of dimensions, Now, people say “kd-tree of dimension d”.

The bounded 3D world to be ray traced is subdivided into cells of varying size. Each cell

contains a list of objects which Pick axis that has “ best ” distribution of objects. and

each subs cell contains a list of objects.

13

Figure 2.15: the hierarchical structures used for kd-tree.

2. Advantages

• grid complexity matches geometric density.

3. Disadvantages

• more expensive to traverse.

2.5.3 Octree

An octree is constructed by enclosing the entire scene in a box, then the box is split simultane-

ously along the three axes, and the split point must be the center of the box this create eight

new boxes.

1. Algorithm

In three dimensions the square is replaced by a cube and the division into four is replaced

by a division into eight sub-cubes – hence octree, since oct = eight.

An octree division divides each cube into eight sub-cubes. And each node corresponds to

a single cube and has exactly eight sub-nodes.

2. Advantages

• The octree branches very rapidly and it doesn’t take very many levels to generate

lots of nodes.

14

• Octrees are useful when you have to search a 3D space.

3. Disadvantages

• As a data structure isn’t difficult.

• Difficult is managing the geometry.

• Dynamic construction often results in an unbalanced tree with areas of space being

covered more finely than others.

Figure 2.16: Octree algorithm representation.

2.6 Discussion

• For simplifying 3D objects representation in order to minimize the intersection computing

time, We use the bounding volume and bounding volume hierarchy (BVH) techniques.

The bounding volume can be used for any object and it is the unit part for the (BVH),

On the other hand (BVH) can be used for more complex and large objects.

• For the optimization and acceleration purpose we use special subdivision algorithms.

Those algorithms are divided into two main groups: uniform and non-uniform.

– Uniform group: uniform grid.

– Non-uniform group: octree, kd-tree.

15

• For choosing the best method of representation and the best algorithms that depends on

your application your entries and hardware.

In the next table 2.1 we can see some comparison between the three methods.

Spatial Subdivision Methods

Uniform Non Uniform

Method Uniform Grid Octree KD tree

Difficulty Easy Hard Very Hard

Resources
Allocation

Very Height Height Low

Access Direct (Fast) Navigation (Slow) Navigation (Slow)

Search Very Slow Fast Very Fast

Table 2.1: A comparison between the three Spatial Subdivision Methods.

2.7 Conclusion

In this chapter we presented the terminology of volume modeling by his definition and applica-

tion domain, then we explained the bounding box and the bounding box hierarchy techniques,

alongside the algorithms of special subdivision, uniform grid, kd-tree, and octree, finally, we

ended up this chapter by a discussion.

In the next chapter, by the name of voxelization we will see then voxelization types and

categories followed by some voxel based methods.

16

Chapter 3

Voxelization

3.1 Introduction

During the last few years, the voxelization has seen a fantastic evolution in several domains,

such as the rendering domain, medical imaging, video games....

The main idea of voxelization is to convert a 3D model (scene) into a voxel representation,

its goal is to accelerate the intersection tests computation.

Traditional CPU-based volumetric representation make use of hierarchical representation

such as octree, kd-tree,... that take several times for generating the data structure. Recently,

with the evolution of modern GPU, it is possible to create voxelized scenes with millions of

polygons in real-time.

In this chapter we will see the definition of voxel and voxelization, voxelization types ac-

cording to the nature of data sorting. Moreover, we will focus on some voxel-based methods.

In the end we will discuss the differences between those methods.

3.2 Definition

The voxelization is the process of transforming a set of triangles that represent the scene to a

set of voxels. In other words, it describes the passage from a continuous representation to a

discrete one.

The voxelization is the best approximation to the continuous geometry. It can be used to

minimize the ray object intersection when computing the global illumination, [Rap16] therefore,

the voxelization method is the process of transforming a 3D model made of polygons into a

model made of voxels.

17

The 3D scene is inserted into an Axis Aligned Bounding Box (AABB). Then, the scene is

subdivided into a grid of 3D cells. [Rap16]

Each cell is called voxel, so the voxel (form ’volume element’) is the voxel is the 3D concep-

tual counterpart of the 2D pixel. it is the basic unit of a three-dimensional digital representation

of a volume. It is a unit of volume and has a numeric value (or values) associated with it that

representing some numerical quantity, such as the color and position [Yag93]

The following figure figure 3.1 demonstrates the main idea of the voxelization process

Figure 3.1: The transformation of a 3D mesh into a voxelization and its visualization through
a voxel grid.

3.3 Voxelization types (according to the nature of data

storing)

The voxel in the three-dimensional regular grid can contain some information about the scene.

The Existing applications of voxelization need to store either one bit (Binary voxelization)

or multiple values (Multi-value voxelization) in a voxel.

3.3.1 Binary voxelization

The binary voxel model is stored as a stack of voxel layers represented as ‘bit-arrays’. [Pat05].

The particular binary voxelization only uses a Boolean indicating the presence of the geom-

etry or not. [Dec08]

18

The advantage of the binary voxelization is that has lower memory requirements, since it is

sufficient to use a single bit to indicate whether a voxel is active. Especially, when we need to

use the voxelization for just accelerate the intersection tests and for computing the visibility

The simplest representation of voxelization is binary encoding that represents if there is a

triangle (or part of triangle) in the 3D voxel grid or not. Since each voxel is mapped into the

set of (0,1), one bit is used for a voxel. Furthermore, binary voxelization means that the space

is either occupied by the object (1) or not (0).

3.3.2 Multi-valued voxelization

In some cases, we need to store in the 3D cell grid, not only the presence of the geometry or

not but all the vectors contained in the triangles like the position, normal, and color or texture

coordinates, we called this voxelization type, multi-valued voxelization. According to previous

researches the binary voxelization method and the multi valued voxelization method depend

on how we store or represent the voxel data.

The figure bellow (figure 3.2) shows the difference between binary and multi-valued vox-

elization

Figure 3.2: Binary and multi-valued voxelization.

19

3.4 Voxelization categories

3.4.1 Surface voxelization

Surface voxelization concerns transforming a continuous polygonal surface. [Sol19]

That’s mean that the process of the surface voxelization algorithm do not care about the

inner part of the object (model), it just considers the most front and viewed triangles of the

model and change it to a surface of voxels.

In a surface voxelization, all voxels are set that fulfill some overlap or distance criterion with

respect to a surface. [Sei10]

3.4.2 Solid voxelization

Solid voxelization represents the process of transforming a polygonal mesh into a voxel repre-

sentation by associating each polygon of a mesh with the cells in the voxel grid. [Mon09] It

capable to detect voxels lying completely inside the model,[Shi00] performing solid voxelization

is more involved than surface only, as it requires voxelating the space contained within a model

as well.

A straight forward approach simply sets the state of all voxels between two surface bound-

aries as being ‘inside’, by flipping bits or flags. [Sol19]

Solid voxelization sets all voxels considered interior to an object. [Sei10]

A solid voxelization where voxels are marked if they lie in the interior of the model. [Dec08]

The final idea of voxelization categories is all about two terms:

• Surface voxelization which consist of representing every surface on the model without

considering the interior of it.

• Solid voxelization is the full representation of the model, so both the surface and the

interior volume of the model will be transformed into a voxel model.

3.5 Voxel-based methods

3.5.1 Single-pass GPU Solid Voxelization and Applications

3.5.1.1 Main idea

The single-pass GPU solid voxelization and application introduced by Elmar Eisemann and

Xavier Decoret as an extension of the original slice map algorithm, and the main idea of this

20

method that it delivers a solid voxelization where voxels are marked if they lie in the interior

of the model and how to efficiently convert a watertight model into a high definition binary

volume representation with solid interior. [Dec08]

This is important in many contexts like simulations, path finding routines, or visibility

computations.

3.5.1.2 The method

• Input and output

As an Input this method take a watertight model and as an output, we get a voxelized

model.

• watertight model: for a better understanding of this method, we have to explain the

watertight model:

In the world of 3D modeling and design, especially tri and quad poly model meshes

(polygon mesh models) there is a chance that models can have gaps or holes. This is why

we refer to the term ”watertight”.

• Single-pass GPU Solid Voxelization

To achieve fast solid voxelization a point has to lie in the interior of the object and if

for any ray leaving this point and calculate the number of intersections with the object’s

surface, and by the number of intersections we determining whether a voxel lies inside

the model or not. [Dec08]

So, the voxel lies inside the model if n (the number of intersections) is odd (nmod2 = 1).

Consider for a moment that each voxel contains an integer counter and each fragment

increments all voxels situated in front of it. [Dec08]

3.5.1.3 Implementation issues

This definition excludes some models from being usable with this technique and as an example

where the definition of an interior is an issue.

• An object (model) with a crack in its hull and, therefore, does not define a proper interior.

[Dec08]

21

• An object (model) contains a supplementary wall that separates the inner volume into

two parts. Rays shot from one inner part into the other will intersect the model in a pair

amount of intersections, while shooting vertically leads to a single intersection.

This model is thus not watertight in the above sense. The same holds if the wall coincides

with the outer hull. [Dec08]

• An object (model) illustrates a box en globing an inner box. Here, the definition implies

that the inner box is an empty region. It is coherent, but not all models are conformed

to this. [Dec08]

3.5.2 Real-time Voxelization for Complex Polygonal Models

3.5.2.1 Main idea

Real-time Voxelization is an efficient voxelization algorithm for complex polygonal models and

the main idea behind this algorithm achieved by exploiting newest programmable graphics

hardware.

First, they convert the model into three separated voxel spaces according to its surface di-

rection. The resultant voxels are encoded as 2D textures and stored in three medium size sheets

buffers called directional sheet buffers. These buffers are finally assembled in one worksheet,

which records the volumetric representation of the target.

The whole algorithm traverses the geometric model only once and is accomplished entirely

in the GPU (graphics processing unit), achieving real-time frame rate for models with up to 2

million triangles. [The04]

3.5.2.2 The method

A triangular mesh model is usually represented as a sequence of vertices with their positions,

normals and texture coordinates associated with a list of indices that form each triangle.

Assume a regularly sampled volume P of the size (2L × 2M × 2N) voxels with spacing d be

defined in the bounding box B of the model.

A voxel p.i.j.k stands for voxelized values including occupancy, density, color and gradient.

[The04]

22

Figure 3.3: The input of voxelization is T and its output is an array of attributed voxels pijk.

In the standard rasterization hardware, triangles are scan and converted into a 2D frame

buffer and Only the front most fragments are kept in the frame buffer storing the rasterization

results, Whereas, voxelization is a 3D rasterization procedure and hence a separated voxel space

is required.

The voxel space consists of an array of voxels that store all voxelized values and it can be

represented as 2D or 3D textures in graphics hardware.

Since writing directly to 3D texture is not supported in mainstream graphics card of PC

platform, they choose to encode the volume in 2D texture. And they call the texture (worksheet)

as it records all voxelization information.

Note that each Texel in the graphics card typically consists of four components for red,

green, blue and alpha channels respectively, depending on the bit-depth of each voxel, one

Texel can represent one or multiple voxels. For instance, an 8-bit red component can store 8

voxels for binary voxelization.

The conversion from volume space to worksheet invokes an encoding procedure called tex-

elization.

The conversion from the triangles to the discrete(separated) voxels representation can be

accomplished in programmable graphics hardware.

The volume is generated slab by slab ,In other words, the worksheet is filled patch by patch.

For each slab, only the triangles that intersect the slab are processed. Each chosen triangle is

rasterized against an axis direction along which it has the maximum projection area.

23

The position of each voxel is transformed to its 3D volume coordinates immediately, these

coordinates are used to find the correct position in the worksheet.

Note that, the discrete voxel space is only a virtual concept and is not explicitly represented

,In order to add a voxel to the worksheet, a blending operation is carried out at corresponding

location, when all triangles are processed, the worksheet encodes the discrete voxel space.

The 2D rasterization in standard graphics hardware involves a 2D linear interpolation pro-

cess.

If a triangle is parallel to the rasterization direction, the interpolation process results in a

line segment in the discrete voxel space. Therefore, a triangle should be rasterized along the

axis direction that is most parallel to its orientation. And three directional sheet buffers are

used as intermediate space during the rasterization and texelization procedures.

Each sheet buffer represents a part of the discrete voxel space. After these sheet buffers are

accomplished, an additional reformulation process is performed to trans code them to the final

worksheet, in this stage, each element is first transformed to the discrete voxel space and then

encoded to the appropriate texel in the worksheet. Actually, the worksheet reformulates the

slabs of the volume along a desired axis direction.

To sum up, the voxelization algorithm consists of three stages as follows:

• Rasterization The triangles are rasterized to the discrete voxel space.

• Texelization Each voxel is encoded and accumulated in some directional sheet buffer.

• Synthesis Three sheet buffers are trans coded to the worksheet representing the final

volume.

3.5.2.3 Implementation issues

Typically, there are three deficiencies for graphics hardware-accelerated voxelization algorithms:

1. First, the performance decreases greatly following the increase of the scene complexity

and the volume resolution since the model is traversed multiple times.

2. Second, the access of frame buffer demands high bandwidth between main memory and

video memory, which is still a heavy bottleneck in modern graphics hardware.

3. Third, the voxelization results are directly stored in color or depth buffer and cost lots

of video memory. Therefore, it is difficult to afford interactive frame rate at the volume

resolution of 256× 256× 256 and above.

24

3.5.3 Hardware Accelerated Voxelization

3.5.3.1 Main idea

Hardware Accelerated Voxelization introduced by Fang as a hardware accelerated approach to

the voxelization of a wide range of 3D objects, including curves/surfaces, solids, and geometric

and volumetric CSG (Constructive Solid Geometry) models.

The algorithms generate slices of the object models using a surface graphics processor to

form the final volume representations.

Boolean operations in a volumetric CSG model are carried out using frame buffer blending

functions. by storing the resulting volume in the 3D texture memory, the algorithms can also

volume render the models in real time by 3D texture mapping.

As a result, this approach is able to perform interactive object manipulations and Boolean

operations in an intermixed environment of geometric and volumetric objects under a unified

volume graphics framework. [Pen04]

3.5.3.2 The method

• Curve/Surface Voxelization

The curve/surface voxelization algorithm generates a volume representation for a scene

consisting of an arbitrary number of curve or surface objects that can be accepted by

OpenGL[Kau90].

These include various types of lines and polygons, quadratic curves and surfaces.

The algorithm is based on the fact that surface graphics displays a curve or a surface by a

2D scan conversion (or rasterization) process. When only a slice of the object is displayed,

the result is essentially a slice of the volume from a 3D scan conversion. Since 2D scan

conversion is implemented in hardware in modern graphics systems, 3D voxelization must

be able to take advantages of it for better performance.

A bounding box is first defined over the scene as the volume space for voxelization.

The algorithm proceeds by moving a cutting plane, called Z-plane, parallel to the projec-

tion plane, with a constant step size in a front-to-back order. [Pen04]

25

The thin space between two adjacent Z-planes within the volume space is called a slice

(as shown in Figure 3.4).

Figure 3.4: Volume Slicing.

For each new Z-plane, the algorithm defines the new slice as the current orthogonal

viewing volume, and renders all the curve and surface primitives using standard OpenGL

procedures.

The resulting frame buffer image from the display of this slice becomes one slice of the

voxelization result of the 3D scene.

The Z-distance between adjacent Z-planes determines the Z-resolution of the volume

representation.

The resolutions in the X and Y directions are defined by the size of the display window.

[Pen04]

• Solid Voxelization

In the solid voxelization algorithm, multiple solid objects may be considered as one solid

representation as long as the boundary surfaces of the different objects do not intersect

each other.

For a given solid representation, the voxelization algorithm aims to generate the set of

voxels that are either inside or on the boundary of a solid object.

The algorithm operates similarly to the surface voxelization algorithm, it proceeds slice-

by-slice in a front-to-back order, with the boundary surfaces displayed within each slice.

26

The frame buffer pixels filled by the display of the current slice constitute the boundary

voxels of the solid object within this slice.

The object’s interior voxels, which also need to be filled, are however not explicitly scanned

by this process.

To generate the interior voxels, the algorithm employs the frame buffer blending function

feature in OpenGL with a logical XOR operation to carry the boundary information to

the interior of the solid object.

This approach is based on the principle that when shooting a ray from a pixel to the

object space, the entering points and the exiting points on the ray against a solid object

always appear in pairs, and the voxels between each pair of entering and exiting points

are the interior voxels.

A frame buffer blending function is a function that blends the current pixel color values

in the frame buffer and the color values of the incoming pixels (to be written to the frame

buffer).

The XOR blending function performs a bit-wise XOR operation between the incoming

color bits and the existing color bits in the frame buffer.

Figure 3.5: A 2D analog of the solid voxelization algorithm; (b) with surfaces super-imposed.

3.5.3.3 Implementation issues

Missing thin regions. When some part of the solid object is very thin (thinner than a slice) in

the Z-direction, it could happen that the entering and exiting points for some pixels fall within

27

the same slice.

This algorithm depends on the hardware implementations of the graphics API, so certain

properties of the voxelization results are difficult to access. For instance, anti aliasing is used

to ensure that the voxelized surfaces are connected and tunnel free. But the exact result may

change slightly on different systems due to the different anti aliasing implementations.

The speed of the algorithms also depends mostly on the graphics subsystem rather than

the CPU.in other word when the number of objects in the scene is increased, the voxelization

process will be proportionally slowed down.

3.5.4 Efficient Hardware Voxelization

3.5.4.1 Main idea

Efficient Hardware Voxelization is an improve on the algorithm proposed by Karabassi and all

so that it can be applied to a wider range of objects without sacrificing performance. [Dav97]

This algorithm uses the depth and stencil buffers, available in most popular graphics hard-

ware, to achieve high performance for the voxelization of surface models that have a random

topology and it is suitable for both polygonal meshes and parametric surfaces. [Dav97]

3.5.4.2 The method

Figure 3.6: Six Z-buffers for a 3D object.

28

• Voxelization using six single layer Z-buffers

Karabassi algorithm rendered six Z-buffers for each object using OpenGL, two per axis,

as shown in (figure 3.6) The camera is placed on each of the six faces of a computed

bounding box of the object and the Z-buffers are taken using parallel projection.

For each pair of opposite directions (e.g., +X, -X). A voxel is inside the object only if it

is ’inside’ the Z-buffer values for all three pairs. [Dav97]

assuming that the object surface is closed any ray in any direction from every point inside

the object must intersect the object’s surface an odd number of times.

Figure 3.7: Letter ’G’ and its Z-buffers (X1, X2, Y1, Y2). (b) Erroneous voxels marked in red.
(c) Double Z-buffers and stencil buffer.

• Voxelization Algorithm

Karabassi’s algorithm can handle convex and a subset of concave objects.

The limitation lies in the fact that certain surface details (like concavities) may not be

visible from any of the six directions, it is not possible to voxelize such parts of the object

correctly. As seen in (Figure 3.7) (a), (b) the letter ’G’ was voxelized incorrectly because

the concavity is not visible from any direction. Furthermore, it is not easy to tell whether

a concave object has been correctly voxelized. [Dav97]

So, the goal of this Efficient Hardware Voxelization algorithm is a voxelization algorithm

that smooth the above problems while using only standard graphics hardware.

29

And, this algorithm proposes two improvements to Karabassi’s algorithm that signifi-

cantly increase the range of objects that are correctly handled:

1. The first is the use of an arbitrary configuration of more than six Z-buffers.

2. The second is the combined use the Z-buffer and the stencil buffer which can handle

up to one concavity per direction.

3.5.4.3 Implementation issues

The cost for this is an extra Z-buffer per direction and a stencil buffer per pair of opposite

directions.

This algorithm assumes that the object is strictly closed and has no irregular faces. and

also observed that triangles perpendicular(vertical) to the Z-buffer planes may produce certain

artifacts, especially in lower voxel resolutions.

This is attributed to the non-linear accuracy of the Z-buffer.

3.5.5 Surface Scanning-based Texture Atlas for Voxelized 3D object

3.5.5.1 Main Idea

Surface Scanning-Based Texture Atlas generator for Voxelized 3D Object (SSTAG) is the first

method that attempt to use a surface scanning scheme for a texture atlas because texture

atlases are widely used for representing voxel colors and , the texture atlas is typically utilized

for encoding voxel colors using image/video encoders , but in this work they represent a 3D

object as slices, and texture strips are obtained by scanning voxels along the surface for each

slice, the texture strips represent the voxel colors while preserving the connectivity of the

voxels.[HWA20]

30

The framework of the surface scanning-based texture atlases generator (SSTAG) is shown

in figure 3.8.

Figure 3.8: Surface scanning-based texture atlases generator (SSTAG).

3.5.5.2 The Method

This method is consists of the following steps:

• Partitioning 3D object

a voxelized 3D object is represented as a set of slices (clusters) using a boundary tracing

algorithm.

31

As shown in figure 3.9, they defined a slice of voxels that have the same X-coordinate (or

Y-coordinate or Z-coordinate), and named it X-slice (or Y-slice, or Z-slice).and they define

the direction of the slice which is the axis of the slice.and each slice can be considered as

a 2D image. [HWA20]

Figure 3.9: Slice representation of voxelized 3D object: (a) Input voxelized 3D object. (b) Set
of slices. 2D blobs exist in each slice.

• Generation of texture strips

In this process, voxels are scanned along the boundary voxels using a boundary tracing

algorithm for each slice and texture strips are generated by the colors of the scanned

voxels.(figure 3.10).

Through boundary tracing, we generate sequences of voxels considering their connectivity

on slices without empty spaces, even if the shape of the 3D object is complex, Here, the

slices are regarded as binary images and pixels in the binary images corresponded to the

voxels on the slices.

32

Finally, texture strips are generated by replacing the voxels in the sequences with their

corresponding colors.

Figure 3.10: Generation of texture strip on slice.

(a) Slice of 3D object with arrows indicating sequence of boundary pixels generated by a

boundary tracing algorithm.

(b) RVs that are not scanned.

(c) Texture strip generated from (a).

• Generation of texture atlases

In this process, texture strips combine to generate texture atlases, by aligning the gen-

erated texture strips and stacking them along the rows or columns of a 2D plane in the

order of slices. as shown in figure : 3.11

33

Figure 3.11: Generation of texture atlases.

3.5.5.3 Implementation issues

Even though all voxels are supposed to be scanned in the above processes, the SSTAG only

processes the boundary voxels on each slice. Hence, there exist voxels that are not processed

by the SSTAG, and they name them as remaining voxels (RVs). To process all voxel colors, the

SSTAG is performed repeatedly, until all voxel colors are processed. As shown in figure below

(figure 3.12):

Figure 3.12: Framework of proposed texture atlas generation.

34

If the input data has a small number of connected voxels, it is difficult to maintain the

spatial coherence of voxels in the proposed texture atlases.

When it comes to high standard deviations of the length of the texture strips, the proposed

method shows performance degradation.

In the alignment, the connectivity of the voxels is measured approximately.[HWA20]

3.6 Discussion

For the sake of better understanding of the voxelization methods and preparing for our work,

a comparison between the different approaches explained above had to be made, considering

these variables:

Voxelization types (according to the nature of data storing), Voxelization categories, water-

tight models.

And represented it in the next table. 3.1

Voxelization types Voxelization categories

Binary
voxelization

Multi-value
voxelization

Surface
voxelization

Solid
voxelization

watertight
models

Single-pass
GPU Solid

Voxelization and
Applications

* * *

Real-time
Voxelization for

Complex
Polygonal

Models

* * *

Hardware
Accelerated
Voxelization

* * *

Efficient
Hardware

Voxelization

* * *

Surface
Scanning-based
Texture Atlas

* * *

Table 3.1: Comparison between the different voxelization presented in this chapter.

35

In the end of this discussion we gain the information that every one of the previous al-

gorithms aim to achieve voxelization representation for watertight models using different ap-

proaches and methods.

3.7 Conclusion

We presented in this chapter the definition of a voxelization method as well as the different

voxelization types. Five voxelization algorithms and methods were presented in this chapter,

alongside the comparison between them after we defined the voxelization terms, its types, and

categories.

In the next chapter we will discuss the conception of 3D voxelization method , along side

with our goals and the main idea of this work.

36

Chapter 4

Conception of 3D voxelization method

4.1 Introduction

In this chapter we will determine the goals of our project and the main idea behind it, next we

will define our global conception followed by the detailed conception for the CPU code, GPU

code and the data passes between them.

4.2 Goals

Our goal is to.

• Voxelize 3d model (that’s mean going from triangular mesh representation to voxel-based

representation).

• Apply this work on the GPU using shaders to accelerate the execution time.

• Compute the execution time of the different 3D models.

4.3 Main idea and motivation

Data acquired by depth sensors, Lidar, and stereo cameras are commonly converted to voxels

because they are more convenient to manipulate than other 3D data representations. Moreover,

deep learning, one of the most interesting topics in recent years, utilizes voxels to analyze 3D

data. In particular, because 3D data are acquired from depth sensors or stereo cameras, with

which it is difficult to collect information from inside an object, many studies in computer vision

fields typically use voxelized surface data. With the increased interest in voxelized surface data,

many researchers have studied voxel representation as well.

37

The main idea behind this work is a fast geometry voxelization using shaders. In the first

time, we load a 3D object model, and we insert it into AABB structure, then we compute

the voxelization using atlas voxelization method, and finally, we visualize the result with ray

marching method. (For more details, please go to the section 4.4.2)

4.4 Conception

4.4.1 global conception

In this section, we present our general conception of our application. first, we load our 3D

model using the Open Asset Import Library (Assimp), then we create a bonding box for the

object , after that we create an atlas 3D texture using frame buffer and an empty 3D texture

data , finally we use ray marching algorithm to calculate all the intersections and find the last

color for every voxel.

In the next scheme figure 4.1 we present our global conception

38

Figure 4.1: Conception general of the voxelization algorithm.

39

4.4.2 detailed conception

In this section, we present our detailed conception of our application.starting by explaining

each part of the general conception and defining all the methods and algorithms used in these

parts.

• Input: Our application takes a 3D object as an input and specifically a triangle mesh

base object in a raw file like (obj files).

• Load a 3D model: This work requires in the first time a 3D object with triangles mesh

as an input data, thus for loading these objects , and to ensure the success of loading a

wide variety of model types we used the Open Asset Import Library (Assimp) to load our

object , Assimp will help us read the raw data from an obj file and turn them to vector

data (vertex,normal,UV coordinate),and store theme in the memory when we need them

,and can clear the data when we done.

The following figure 4.2 shows an example of a 3D triangle mesh base object.

Figure 4.2: Cow 3d object.

• Create a bounding box:

As we have seen in chapter 1, the bounding volume allows us to minimize the intersec-

tion ray-object computation. Thus, we insert our 3D object into the bounding volume

40

structure to start the voxelization method.

To create a bounding box we need two points (min point , max point), these points we

extract from the coordinates of the 3D object so the min point of the box will take the

min(x,y,z) from the object and the max point of the box will take max(x,y,z) of the object.

The next figure 4.3 represent a 3D object in a bounding box.

Figure 4.3: Cow 3d object in bounding box.

• Create a 3D texture as a voxel grid

Using OpenGL library to create an empty 3D texture with only one channel (red channel)

to store the position of the corresponding vertex from the object as a color in this 3D

texture.

In simplest terms, a 3D textures is a series of (width× height× depth). You might think

of it as a series of two dimension textures where an extra parameter (depth, AKA the R

texture coordinate) specifies which 2D texture will be used.

So, The (width,height)coordinates will be the pixel of a texture and the R coordinate will

be the number of slice.

Alongside these(W,H,R) parameters we need to specify the format of the pixel data.

which we use the red, and we need specify the data that the texture will take,which is

41

our object data.

In the end our model will be a stack of 2d textures (3D texture).

• Create Atlas texture

This is the main step in our application, we collect all the previous data and work in this

method in order to create Atlas 3D texture.

To create this texture type, we need to generate an empty 3D texture data (Create a 3D

texture as a voxel grid),then we use a frame-buffer object and sweep the 3D model and

put every vertex position from the object as a color(using only the red color channel) into

the corresponding position in the 3D texture.

The next figure 4.4 represents a 3D object in an atlas texture.

Figure 4.4: Cow 3d object in Atlas texture.

• Visualize the voxel model using ray marching

In order to create the final voxel representation we need the ray marching algorithm

to calculate the intersections between the stored data in the 3D atlas texture and the

corresponding voxel grid and retrieve the (position stored as a color), and projected in a

2D plane representing the screen.

The next (figure 4.5), showing a diagram of ray marching algorithm.

42

Figure 4.5: Ray marching diagram.

For implementing ray marching algorithm in a single pass GPU with one fragment shader,

we followed the next steps.

1. The camera ray direction is calculated by subtracting the vertex positions from the

camera position.

2. Compute the intersections using the intersect (ray, box) method.

Where the ray is the camera ray direction and the box is the pixel entry in the 3D

texture volume.

3. Then based on the ray step size which is the voxel size, the initial entry ray position

is advanced in the ray direction using a loop, This process is continued forward ad-

vancing the current ray position until the ray exits the 3D texture volume calculating

all the intersections and retrieving the color of all the voxels in his direction.

In the next figure 4.6 we presents the ray marching conception.

43

Figure 4.6: Ray marching conception.

• Voxel model

Our output is a 3D voxel model projected on a 2D plane as a screen.

4.5 conclusion

In this chapter by the name conception of 3D voxelization method we start with the goal of our

project and the main idea behind it then we define the global conception as a schema followed

by a more detailed conception of the method.

In the fourth chapter, we will see the implementation, results and discussion of this work.

44

Chapter 5

Implementation,results and discussion

5.1 Introduction

In this chapter we will describe the implementation of the different stages of our application.

Firstly, we will present the hardware configuration and the environment and library of the

machine we used in our project , next we will detail the data structure as well as the algorithms

used in our implementation, and finally we will present and discuss our voxelization results.

5.2 Hardware configuration

Our hardware configuration of an ACER laptop includes the following devices:

• OS : Windows 10 Enterprise 64 bit.

• CPU : Intel(R) Core(TM) i5 7200 U @ 2.50 GHz 4 CPU’s.

• GPU : NVIDIA GeForce GTX 950 M (2 GB) display memory (4 GB) shared memory.

• RAM : 8 GB DDR 4 .

• Storage : 256 GB SSD 500 M/s.

• Screen: Full HD 1080p image resolution (1,920 x 1,080 pixels) approximately 2 million

total pixels.

45

5.3 Environment and library

5.3.1 Visual Studio 2017

Microsoft Visual Studio is an integrated development environment (IDE) from Microsoft, Vi-

sual Studio uses Microsoft software development platforms such as Windows API, Windows

Forms,and it can produce both native code and managed code.

Visual Studio includes a code editor supporting IntelliSense (the code completion compo-

nent) as well as code re factoring.

The integrated debugger works both as a source-level debugger and a machine-level debug-

ger.

Other built-in tools include a code profiler, designer for building GUI applications, web

designer, class designer, and database schema designer.

Visual Studio supports 36 different programming languages like: C,C++,Visual Basic .NET,

C sharp,JavaScript, XML, HTML,CSS,Java, and Python.

We are using Visual studio 2017 community version.[mic20]

5.3.2 GLEW

The OpenGL Extension Wrangler Library (GLEW) is a cross-platform open-source C/C++

extension loading library.

GLEW provides efficient run-time mechanisms for determining which OpenGL extensions

are supported on the target platform. OpenGL core and extension functionality is exposed in

a single header file. [gle20]

We are using GLEW 1.9.0 support for OpenGL 4.3.

5.3.3 SFML

Simple and Fast Multimedia Library (SFML) is a cross-platform software development library

designed to provide a simple application programming interface (API) to various multimedia

components in computers(system, window, graphics, audio and network), and we are using

SFML 2.5.1. [SFM20]

46

5.3.4 Assimp

Open Asset Import Library (Assimp) is a cross-platform 3D model import library which aims to

provide a common application programming interface (API) for different 3D asset file formats.

Written in C++, it offers interfaces for both C and C++, and we are using Assimp 3.0.0.

[ASS20]

5.3.5 GLM

OpenGL Mathematics (GLM) is a header only C++ mathematics library for graphics software

based on the OpenGL Shading Language (GLSL) specifications.

GLM provides classes and functions designed and implemented with the same naming con-

ventions and functionalities than GLSL so that anyone who knows GLSL, can use GLM as well

in C++.

GLM isn’t limited to GLSL features. An extension system, based on the GLSL extension

conventions, provides extended capabilities: matrix transformations, data packing, random

numbers, noise, etc...

GLM is a good library for software rendering (ray tracing / rasterisation), image process-

ing, physic simulations and any development context that requires a simple and convenient

mathematics library.

GLM is written in C++98 but can take advantage of C++11 when supported by the

compiler. [GLM20]

We are using GLM 1.9.0.1.

5.4 Implementation details

5.4.1 3D model loading

After loading our obj model using Assimp library, we need to store the information of the obj

file (vertices, normals, colors or UV) in the vectors. For that, we use a GLM vector data:

• glm::vec3 Vertices: to store the position of the vertices object from the obj file.

• glm::vec3 Normal: to store the object normals from the obj file.

• glm::vec2 UV: to store the object texture coordinates from the obj file.

47

5.4.2 Uniform grid creation

For the uniform grid, we define a structure of the min and the max of AABB.

struct AABB {glm :: vec3 min; glm :: vec3 max; }

• AABB.min : for the min point of the AABB.

• AABB.max : for the max point of the AABB.

To calculate the AABB, we simply loop through all the models vertices, and store the x,y,z

values if they are less or greater then the min and the max x, y, z values.

BEGIN

for(i = 0...vertices number)do

if(vertices[i] < min)then

min = vertices[i];

if(vertices[i] > max)then

max = vertices[i];

END.

5.4.3 Texture atlas

As we mention before in the section 4.4.2, we need to define an empty 3D texture.

For this part we need 2 steps.

• Reserving a memory space with the size of the voxels number for the texture data.

float Data [voxels number 3]

• Creating the empty texture using glTexImage3D function with the (W,H,R) parameters

taking the size of the voxel grid, and the empty data from before.

glTexImage3D(voxels number W, voxels number H , voxels number R, float data);

Now we need to create the atlas texture(3D object, AABB, and 3D texture), and we do

that by following the next steps:

48

• Setting up the model view projection matrix.

– Model matrix will take the identity matrix M [1].

– View matrix will take the look at function.

– Projection matrix will take the perspective projection.

• Setting up a frame buffer for rendering the model in the 3D texture.

• Rendering the 3D atlas texture using special fragment shader.

This fragment shader works as follow:

– Input

3D empty texture.

voxel grid dimension.

min and max values of the AABB

– calculation

Using the model position,AABB values and the voxel grid dimension to calculate

the new position inside the 3D texture.

new position =
(old position− AABB min)

(AABB max− AABB min)
× voxel grid dimension (5.1)

Then we use the GLSL image store function to store a color in the specific position

on the 3D texture.

imageStore(empty 3D texture, new position , a color);

– Output

A 3D texture filled with object data in the memory.

That’s how the 3D texture with the object is created, and it is now in the memory ready

for the ray marching algorithm.

5.4.4 Visualization with ray marching

After all the steps from before we can now visualize the 3D voxel model, to do that we need to

implement the ray marching algorithm as we indicate in the section 4.4.2.

The next steps representing the implementation of ray marching in this application.

49

1. Setting up the scene

• The 3D texture is ready in the memory.

• Setting up the new model view projection matrix for ray marching.

• Creating a 2D plane representing the screen.

2. Rendering the model

The ray marching fragment shader works as follow.

• Input

– 3D texture with object model.

– camera or eye position.

• Calculation

– Computing the view ray.

view ray = normalize(screenCoord - cameraPosition).

– Test for intersection.

Using (ray, box) intersection function, which is works as follow:

* Compute the intersection of the ray with all the six box planes.

* Re-order the intersections to find the smallest and largest intersection on each

axis.

* Return the largest min intersection, and the smallest max intersection in a

voxel(box).

* The next figure (figure 5.1) represents a 2D result of the ray,box intersection

function.

Figure 5.1: 2D representation of tmin and tmax.

50

The following (figure 5.2) representing a 3D result of the ray,box intersection

function.

Figure 5.2: 3D representation of tmin and tmax in the AABB.

– If there is no intersection then return the background color.

– If there is an intersection return the color from the 3d texture .

– Loop until the view ray is out of the AABB with traversing the ray using fixed

step.

• Output

The output of the ray marching algorithm will be the the projection of the voxelize

model on the 2D plane.

5.5 Results and discussion

We present in this section our results of the voxelization method using Atlas texture, and we

evaluate and discuss our results.

5.5.1 Results

The next figure 5.3 represents the empty AABB result.

51

Figure 5.3: Result of the empty AABB.

The next figure 5.4 represents the cow input object.

Figure 5.4: Cow Input object.

The next figure 5.5 represents a result for the cow input object with resolution = 323 voxel.

52

Figure 5.5: Result 1 voxelize cow.

The next figure 5.6 represents a result for the cow input object with resolution = 643 voxel.

Figure 5.6: Result 2 voxelize cow.

The next figure 5.7 represents a result for the cow input object with resolution = 1283 voxel.

53

Figure 5.7: Result 3 voxelize cow.

The next figure 5.8 represents a result for the cow input object with resolution = 2563 voxel.

Figure 5.8: Result 4 voxelize cow.

The next figure 5.9 represents the dinosaur input object.

54

Figure 5.9: Dinosaur Input object.

The next figure 5.10 represents a result for the dinosaur input object with resolution = 1283

voxel.

Figure 5.10: Result 1 voxelize Dinosaur.

55

The next figure 5.11 represents a result for the dinosaur input object with resolution = 2563

voxel.

Figure 5.11: Result 2 voxelize Dinosaur.

The next figure 5.12 represents a result for the dinosaur input object with resolution = 5123

voxel.

56

Figure 5.12: Result 3 voxelize Dinosaur.

The next figure 5.13 represents the angel input object.

Figure 5.13: Angel Input object.

The next figure 5.14 represents a result for the angel input object with resolution = 643

57

voxel.

Figure 5.14: Result 1 voxelize angel.

The next figure 5.15 represents a result for the angel input object with resolution = 1283

voxel.

58

Figure 5.15: Result 2 voxelize angel.

The next figure 5.16 represents a result for the angel input object with resolution = 2563

voxel.

Figure 5.16: Result 3 voxelize angel.

59

The next figure 5.17 represents a result for the angel input object with resolution = 5123

voxel.

Figure 5.17: Result 4 voxelize angel.

5.5.2 Discussion

The following table 5.1 represents the execution time (millisecond) for different polygon number

to five different object.

Polygon number execution time for the better
result

angel 251012 4889

Dinosaur 47166 1464

cow 5804 816

sofa 1621 806

mill 144 751

Table 5.1: Execution time for atlas texture function for different polygon number.

The diagram below (figure 5.18) represents an execution time graph for different polygon

number.

60

Figure 5.18: Execution time graph for different polygon number.

From the table 5.1 and the diagram (figure 5.18) we learned that the execution time will

increase if the polygons number increased but with a slow rate. As we can see the angel model

with almost 250000 polygon executed in around 5000 millisecond, and for the dinosaur model

with almost 50000 polygon executed in around 1000 millisecond, and for the rest of the models

(cow, sofa ,mill) the execution time was so low alongside the number of polygons.

The following table 5.2 represents the execution time (millisecond) for different resolution

grid of five different object(angel,dinosaur, cow, sofa, mill), and as we can see the resolution is

to the power of 3 and changing from 32 to 512 with each step of the number 2n.

execution time (milliseconds) for different resolution grid (R3)

R = 32 R = 64 R = 128 R = 256 R = 512

angel 4602 4615 4669 4690 4889

dinosaur 898 899 902 978 1464

cow 158 186 206 289 816

sofa 135 146 165 236 806

mill 96 101 126 211 751

Table 5.2: Execution time for atlas texture function for different resolution grid.

61

The next plot (figure 5.19) represents an execution time plot for the different resolution

grid.

Figure 5.19: Execution time graph for different resolution grid.

As a result of what we have seen in table 5.2 and graph (figure 5.19), the execution time

will increase significantly with the increment of resolution ,except between the 256 and 512

resolutions, the execution time increased dramatically for all the models.and as we can observe

the angel model executed in around 4500 millisecond for the resolution of 323 voxel and the

execution time increased slightly till the resolution of 2563 but from this resolution to 5123 the

execution time increase dramatically and this change apply for the rest of the models.

5.6 Conclusion

We presented in this chapter the hardware configuration of our machine and the environment we

use alongside the libraries, then we explained the implementation details of this work followed

by some results and a discussion for those results finally we ended this chapter with a conclusion.

62

Chapter 6

Conclusion

Fast or even real-time voxelization is essential for interactive graphics applications. We have

presented a voxelization method via shaders to solve this problem by representing the resultant

volume as 3D textures which can efficiently implemented. This method scales very well with

increasing voxel and object resolutions.

This thesis presents a voxelization method using texture atlas via shaders in GPU.

We started by presenting the volume modeling domain. Then we described the different vox-

elization techniques, and we implemented the voxelisation method based texture atlas.

The approach is simple, robust and easy-to-implement.

As a future work is concerned, an important issue is the improvement of the voxelization

quality by adding normals to the voxel model and apply simple illumination method, loading

more complex object, make the algorithm faster by adding some optimizations techniques.

63

Bibliography

[ASS20] ASSIMP. The open-asset-importer-lib, 2020.

[Bou14] Kadi Bouatouch. Ray tracing. IRISA, 2014.

[Dav97] Mason Woo Jackie Neider Tom Elder Davis. Opengl programming guide. Addison

Wesley Longman Publishing Co, 1997.

[Dec08] Elmar Eisemann Xavier Decoret. Single pass gpu solid voxelization for real-time

applications. ARTIS INRIA Grenoble University Phoenix Interactive, 2008.

[Fle08] Cedric Fleury. Le kd tree une methode de subdivision spatiale. INSA de Rennes,

17 Janvier 2008.

[gle20] glew. The opengl extension wrangler library, 2020.

[GLM20] GLM. Opengl mathematics, 2020.

[HWA20] TAE YOUNG JANG SEONG DAE KIM SUNG SOO HWANG. Surface scanning-

based texture atlas for voxelized 3d object. IEEE ACCESS, 2020.

[Kau90] D Cohen Kaufman. Scan conversion algorithms for linear and quadratic objects.

Volume Visualization, 1990.

[Laz12] Steve Dodier Lazaro. Dynamic spatial subdivision for n-body collision detec-

tion on multi-CPU and multi-GPU architectures. yENSI of Bourges,INSA

Rennes,zUniversity of Rennes IkIRISA, VR4I team, 2012.

[mEHNH08] Tomas Akenine moller Eric Haines Naty Hoffman. Real-time rendering, third

edition, 3rd edition. CRC Press, 2008.

[mic20] microsoft. visual studio, 2020.

[Mon09] Carlos Tripiana Montes. Gpu voxelization. LSI Department Polytechnic Univer-

sity of Catalonia, 2009.

64

[Ngu06] An Nguyen. Implicit bounding volumes and bounding volume hierarchies. Stanford

University408 Panama Mall, Suite 217 Stanford CA United States, 2006.

[Nie00] Gregory M Nielson. Volume modelling. Volume Graphics, 2000.

[Pat05] Sandeep S Patil. Voxel based solid models representation display and geometric

analysis. Computer Science, 2005.

[Pen04] Zhao Dong ; Wei Chen ; Hujun Bao ; Hongxin Zhang ; Qunsheng Peng. Real-time

voxelization for complex polygonal models. IEEE, 2004.

[Rap16] Cosmin Nita Iulian Stroia Lucian Itu Constantin Suciu Viorel Mihalef Manasi

Datar Saikiran Rapaka. Gpu accelerated robust method for voxelization of solid

objects. IEEE, 2016.

[Sei10] Michael Schwarz Hans-Peter Seidel. Fast parallel surface and solid voxelization

on gpus. ACM Transactions on Graphics Article No.: 179, 2010.

[SFM20] SFML. Simple and fast multimedia libraryl, 2020.

[Shi00] HongshengChen ShiaofenFang. Hardware accelerated voxelization. Department

of Computer and Information Science, Indiana University Purdue University In-

dianapolis, 723 W. Michigan Street, Indianapolis, IN 45202, USA, 2000.

[Sol19] Grigory Glukhov Aleksandra Soltan. Gpu volume voxelization exploration of the

performance characteristics of different gpu-based implementations. KTH Royal

Institute of Technology, 2019.

[The04] G Passalis Kakadiaris Theoharis. Efficient hardware voxelization. IEEE, 2004.

[TP06] Kadi Bouatouch Thierry Priol. Synthèse d’image par lancer de rayon sur un

hypercube. HAL Id: inria-00075800, 2006.

[Yag93] Arie Kaufman Daniel Cohen Roni Yagel. Volume graphics. Volume Graphics

IEEE Computer Vol 26, 1993.

65

	7e01046d717ccb1ee9f04f9f46c3f4d4bf917991ff2d3dafbf5c41b05dbf08f0.pdf
	7e01046d717ccb1ee9f04f9f46c3f4d4bf917991ff2d3dafbf5c41b05dbf08f0.pdf
	7e01046d717ccb1ee9f04f9f46c3f4d4bf917991ff2d3dafbf5c41b05dbf08f0.pdf
	7e01046d717ccb1ee9f04f9f46c3f4d4bf917991ff2d3dafbf5c41b05dbf08f0.pdf
	7e01046d717ccb1ee9f04f9f46c3f4d4bf917991ff2d3dafbf5c41b05dbf08f0.pdf
	Introduction
	Volume Modeling
	Introduction
	Volume modeling
	Definitions
	Volume modeling definition
	Application domain

	Bounding Volume
	Bounding Volume Hierarchy (BVH)
	Spatial subdivision algorithms
	Uniform grid
	kd-tree
	Octree

	Discussion
	Conclusion

	Voxelization
	Introduction
	Definition
	Voxelization types (according to the nature of data storing)
	Binary voxelization
	Multi-valued voxelization

	Voxelization categories
	Surface voxelization
	Solid voxelization

	Voxel-based methods
	Single-pass GPU Solid Voxelization and Applications
	Main idea
	The method
	Implementation issues

	Real-time Voxelization for Complex Polygonal Models
	Main idea
	The method
	Implementation issues

	Hardware Accelerated Voxelization
	Main idea
	The method
	Implementation issues

	Efficient Hardware Voxelization
	Main idea
	The method
	Implementation issues

	Surface Scanning-based Texture Atlas for Voxelized 3D object
	Main Idea
	The Method
	Implementation issues

	Discussion
	Conclusion

	Conception of 3D voxelization method
	Introduction
	Goals
	Main idea and motivation
	Conception
	global conception
	detailed conception

	conclusion

	Implementation,results and discussion
	Introduction
	Hardware configuration
	Environment and library
	Visual Studio 2017
	GLEW
	SFML
	Assimp
	GLM

	Implementation details
	3D model loading
	Uniform grid creation
	Texture atlas
	Visualization with ray marching

	Results and discussion
	Results
	Discussion

	Conclusion

	Conclusion

