
ALGERIAN REPUBLIC DEMOCRATIC AND POPULAR

MINISTRY OF HIGH EDUCATION AND SCIENTIFIC

RESEARCHES

University of Mohamed Khider Biskra Faculty of Exact Science and Science

of Life and Nature Department of Computer Science

Dissertation For Master Degree Graduation In Computer Science Field

Artificial Intelligence

Training And Optimizing Deep Artificial Neural Networks Using

Dragonfly Algorithm for Medical Prediction

Realized by:

Nedjai Azzeddine

Supervised by:

DR.Slatnia Sihem

Defended between 20-24 September 2020, in front of the jury composed of:

Dedication

This work is dedicated to:

My beloved Parents who always supported and belived in me.

My brother and sisters Hani, Asma and Imen for their encouragements.

Last but not least, to the boys with no particular order: Aziz, Red, Salouma, Cherif, Sofian,

Babbi, and Ahmed.

And to all those who I love and cherich.

1

Acknowledgements

First and Foremost I would like to show gratitude and praise to God almighty for giving me

the strength, knowledge, ability and opportunity to undertake this challenge and to persevere

and complete it satisfactorily.

wish to express my sincere appreciation Dr.Slatnia Sihem for her valuable guidance.

I also wish to thank the jury members for their efforts to evaluate this work.

And finally I wish to express my deepest gratitude to to my classmates and the academic crew

of the department for their assistance provided through my academic career.

2

Abstract

Artificial intelligence applications can be highly beneficial for healthcare in general to the extent

that it can revolutionise the entire healthcare system. Artificial Neural Network (ANN) is one

of the evolutionary computation techniques that can be used as a medical prediction model

for new data records from shallow ANN such as Multilayer prceptron (MLP) to deep ANN

such as Conversational neural networks (CNN), The ANN will be trained with an optimization

method called Dragonfly Algorithm (DA) as a main focus in a model called (ANN-DA), and

other well known optimizers such as Grey Wolf Optimization (GWO) and many others as an

evaluation method. In order to evaluate ANN-DA. An experimental comparison has been made

using different metrics. The results show that ANN-DA proved its efficiency of performance

over other Models.

Keywords: Medical prediction, Artificial Neural Network (ANN), Conversational neural

networks (CNN),Multilayer prceptron (MLP), Deep Learning, Dragonfly algorithm (DA), Grey

Wolf Optimization (GWO), ANN-DA, ANN-GWO ,CNN-DA, MLP-DA, MLP-GWO.

3

Contents

1 Machine Learning 14

1.1 Iintroduction . 14

1.2 What is Machine Learning ? . 15

1.3 Types of Machine Learning . 15

1.3.1 Overview of Supervised Learning . 15

1.3.2 Overview of Unsupervised Learning . 16

1.3.3 Reinforcement Learning . 17

1.4 Classification . 18

1.4.1 What is Classification? . 18

1.4.2 Classification Algorithms . 19

1.5 ANN Architectures . 22

1.5.1 Feed-forward Neural Network FNN . 22

1.5.2 Recurrent Neural Network . 23

1.5.3 Convolutional Neural Networks CNN . 24

1.6 Convolutional Neural network CNN . 25

1.6.1 Deep Learning . 26

4

CONTENTS 5

1.6.2 Convolutional Neural network CNN . 27

1.6.3 Residual Neural Network ResNet . 30

1.6.4 Resnet-50 Architecure . 32

1.7 Related Work (Medical Prediction and Diagnosis) 34

1.7.1 Prediction of Chronic Kidney DiseasesUsing Deep Artificial Neural Net-

work Technique . 34

1.7.2 Heart disease prediction using K-means and Artificial Neural Network . 34

1.7.3 Prediction of Fatty Liver Disease using Machine Learning Algorithms . . 35

1.7.4 Building Risk Prediction Models for Type 2 Diabetes Using Machine

Learning Techniques . 36

1.8 Summary . 37

2 Optimization Algorithms 38

2.1 Introduction . 38

2.2 Metaheuristics . 38

2.2.1 Definition . 38

2.2.2 Metaheuristics classification criteria . 40

2.2.3 Metaheuristic Thechniques . 41

2.3 Nature-inspired Optimization . 44

2.3.1 Source of inspiration . 45

2.3.2 Classifications of Algorithms . 45

2.4 Dragonfly Algorithm DA . 48

2.4.1 Operators for exploration and exploitation 48

CONTENTS 6

2.5 Grey Wolf Optimization GWO . 55

2.5.1 Mathematical Model . 55

2.5.2 GWO pseudo-code . 60

2.6 Summary . 61

3 Project Design 62

3.1 Introduction . 62

3.2 System Design . 63

3.2.1 Methodology . 63

3.2.2 Global system design . 63

3.2.3 Detailed system design . 65

3.3 Summary . 76

4 Implementation and Results 77

4.1 Environment and developing tools . 77

4.2 Back-end Implementation . 78

4.2.1 Training/Optimizing MLP using DA or GWO 78

4.2.2 Trainig/optimizing CNN using DA for predicting COVID-19 81

4.3 Front-end . 83

4.3.1 1st UI . 83

4.3.2 2nd UI . 84

4.3.3 3rd UI . 86

4.4 Expirements results . 87

CONTENTS 7

4.4.1 MLP-DA and MLP-GWO comparison 88

4.4.2 CNN-DA and other CNN optimizers comparison (adam,sgdm. . . .) com-

parison . 89

4.4.3 Simple CNN training tests . 89

4.4.4 Discussion of the results of training a simple CNN 91

4.4.5 Resnet50 CNN-DA and Resnet50 CNN-ADAM comparison 92

4.4.6 Discussion of results of training Resnet50 CNN 95

4.5 Limitaions . 95

4.6 Summary . 96

List of Figures

1.1 Supervised Learning[22] . 16

1.2 Unsupervised Learning[22] . 17

1.3 Reinforcement Learning[8] . 18

1.4 Decision Tree[2] . 20

1.5 K-Nearest neighbour KNN[2] . 21

1.6 Multilayer Perceptron MLP[12] . 22

1.7 Recurrent network with no self-feedback loops and no hidden neurons[3] 24

1.8 Recurrent network with hidden neurons[3] . 24

1.9 Convolutional Neural Network CNN[3] . 25

1.10 Deep Learning is a subset of Machine Learning and Machine learning is a subset

of IA. [4] . 27

1.11 A simple CNN model [21] . 28

1.12 Example of Max-Pooling of 2*2 filters[21] . 29

1.13 Resnet Architecture model diagram[20] . 31

1.14 Resnet-50 Architecture model diagram[17] . 33

2.1 Diversification and intesification [14] . 40

8

LIST OF FIGURES 9

2.2 The relationship of physics and chemistry based algorithms[9] 47

2.3 Primitive corrective patterns between individuals in a swarm[18] 50

2.4 Swarming behaviour of Enemy artificial dragon flies (w = 0.9–0.2, s = 0.1, a =

0.1, c = 0.7, f = 1, e = 1)[18] . 52

2.5 Dynamic versus static dragonfly swarms[18] . 53

2.6 Dragonfly algorithm pseudo-code[18] . 54

2.7 Hierarchy of grey wolf (dominanc decreases from top down).[19] 55

2.8 2D and 3D position vectors and their possible next locations.[19] 56

2.9 Position updating in GWO.[19] . 57

2.10 Hunting behavior of grey wolves: (A) chasing, approaching, and tracking prey

(B–D) pursuiting, harassing, and encircling (E) stationary situation and attack.[19] 58

2.11 Atacking prey versus searching for prey[19] . 59

2.12 GWO pseudo-code [19] . 60

3.1 Global project design . 64

3.2 Back-end phase design[3] . 65

3.3 Pre-Processing steps[3] . 69

3.4 Example of categorial data[3] . 70

3.5 Example of dummy data[3] . 70

3.6 Example of a dataset with undefined values[3] 71

3.7 Training phase . 73

3.8 ANN-DA[13] . 74

3.9 ANN-GWO[11] . 74

LIST OF FIGURES 10

3.10 ANN-GWO execution steps[25] . 75

3.11 Front-end system . 76

4.1 Matlab logo . 77

4.2 loading and preprossesing the cancer dataset for training the MLP 78

4.3 Optimizing using DA and testing the Trained MLP for breast cancer dataset . . 79

4.4 loading and preprossesing the Heart disease dataset for training the MLP 79

4.5 Optimizing using DA and testing the trained MLP for heart disease dataset . . 80

4.6 loading and preprossesing the Hepatitis dataset for training the MLP 80

4.7 Optimizing using DA and testing the Trained MLP for Hepatitis dataset 81

4.8 loading the dataset of X-ray images . 81

4.9 Preprocessing function . 82

4.10 setting our folds, CNN architacture, and classes 82

4.11 Training/Optimizing our cnn model using DA 83

4.12 1st UI . 84

4.13 2nd UI before results . 85

4.14 2nd UI after results . 85

4.15 3rd UI . 86

4.16 COVID-19 Prediction results . 86

4.17 resNet50 CNN architecture. 87

4.18 Simple CNN with 12 layers . 89

4.19 simple cnn trained by sgdm optimizer . 90

4.20 simple cnn trained by adam optimizer . 90

LIST OF FIGURES 11

4.21 simple cnn trained by DA optimizer . 91

4.22 ResNet50 CNN trained by SGDM optimizer(10th fold) 92

4.23 Confusion matrix of a trained resnet50 CNN-SGDM for predicting COVID-19 . 93

4.24 AUC(area under the curve) of the trained CNN-SGDM for predicting COVID-19

(0.9904) . 93

4.25 ResNet50 CNN trained by DA optimizer(10th fold) 94

4.26 Confusion matrix of a trained resnet50 CNN-DA for predicting COVID-19 . . . 94

4.27 AUC(area under the curve) of the trained CNN-DA for predicting COVID-19

(1.000) . 95

List of Tables

3.1 Breast cancer dataset attributes table[24] . 66

3.2 Hepatitis Dataset attributes table[26] . 68

4.1 Breast cancer MLP training tests . 88

4.2 Heart disease MLP training tests . 88

4.3 Hepatitis MLP training tests . 88

4.4 simple CNN training tests . 90

4.5 resNet50 CNN training tests. 92

12

General Introduction

Research in medical fields is very relevant to clinical advances . In this context, computers

are changing the healthcare industry, as well as research from many perspectives, Within this

scenario, machine learning, pattern recognition, and, more generally, Artificial intelligence (IA)

play a very crucial role . AI is growing rapidly, and its successful application in the eHealth

domain is possibly due, in general, to the availability of massive datasets and computing re-

sources. AI has found application in many medical branches. In general, a major topic of AI

in medicine is related to the clinical decision support (CDS) to assist clinicians at the point of

care .[6]

Health care organizations are leveraging Deep-learning techniques, such as Convolutional

neural networks (CNN),most commonly applied to analyzing visual imagery, meaning it can

predict and/or diagnose diseases via Images of CT scans, X-Rays even microscopic images to

improve delivery of care at a reduced cost.

In order for CNNs to work, they need to be trained, by optimization algorithms such as

Adaptive Moment Estimation (ADAM), Stochastic gradient descent(SGDM)... CNNs can be

also trained by nature based optimization algorithms, it is rareley studied, and that is why it’s

going to be our main focus in this project

In this project we are going to focus on training artficial neural networks from simple

multilayer perceptrons(MLP) to deep CNNs using a novel nature based optimization technique

called Dragonfly algorithm DA, And as a final goal we going to build a CNN model trained by

DA called CNN-DA for COVID-19 diagnosis.

We decided to divide this thesis into a general introduction, a general conclusion, and 4

chapters where we talk about machine learning and its different techniques and methods in the

1st chapter, in the 2nd chapter we will dive into meta-heuristics and optimization algorithms

where we discuss the optimization techniques used in our project, the 3rd chapter will be the

design of our project where we design a solution for our research, finally the 4th chapter will

be the implementation of our new architectures and the test results obtained .

13

Chapter 1

Machine Learning

1.1 Iintroduction

We have seen Machine Learning as a buzzword for the past few years, the reason for this might

be the high amount of data production by applications, the increase of computation power in

the past few years and the development of better algorithms.

Machine Learning is used anywhere from automating mundane tasks to offering intelligent

insights, industries in every sector try to benefit from it. But there are much more examples

of ML in use.

• Image recognition — Machine learning can be used for face detection in an image as

well. There is a separate category for each person in a database of several people.

• Speech Recognition — It is the translation of spoken words into the text. It is used in

voice searches and more. Voice user interfaces include voice dialing, call routing, and appliance

control. It can also be used a simple data entry and the preparation of structured documents.

• Financial industry and trading — companies use ML in fraud investigations and credit

checks.

• Prediction and Medical diagnoses — ML is trained to recognize and predict whether a

person is sick or not, which will be our main focus in this project.

14

CHAPTER 1. MACHINE LEARNING 15

1.2 What is Machine Learning ?

According to Arthur Samuel, Machine Learning algorithms enable the computers to learn from

data, and even improve themselves, without being explicitly programmed.

Machine learning (ML) is a category of an algorithm that allows software applications to

become more accurate in predicting outcomes without being explicitly programmed. The basic

premise of machine learning is to build algorithms that can receive input data and use statistical

analysis to predict an output while updating outputs as new data becomes available.[15]

1.3 Types of Machine Learning

Machine learning can be classified into 3 types of algorithms.

1. Supervised Learning.

2. Unsupervised Learning.

3. Reinforcement Learning.[15]

1.3.1 Overview of Supervised Learning

In Supervised learning, a system is presented with data which is labeled, which means that

each data tagged with the correct label.

The goal is to approximate the mapping function so well that when you have new input

data (x) that you can predict the output variables (Y) for that data.[15]

In this project this is what we will be working with.

CHAPTER 1. MACHINE LEARNING 16

Figure 1.1: Supervised Learning[22]

Types of Supervised Learning

•Regression: A regression problem is when the output variable is a real value, such as

“dollars” or “weight”

•Classification: A classification problem is when the output variable is a category, such

as “red” or “blue” or “disease” and “no disease”. Therefore Classification is very suitable for

this project if we are dealing with medical prediction and diagnosis.[15]

1.3.2 Overview of Unsupervised Learning

In unsupervised learning, a system is presented with unlabeled, uncategorized data and the

system’s algorithms act on the data without prior training. The output is dependent upon the

coded algorithms. Subjecting a system to unsupervised learning is one way of testing AI.[15]

CHAPTER 1. MACHINE LEARNING 17

Figure 1.2: Unsupervised Learning[22]

Types of Unsupervised Learning

•Clustering: A clustering problem is where you want to discover the inherent groupings

in the data, such as grouping customers by purchasing behavior.

•Association: An association rule learning problem is where you want to discover rules

that describe large portions of your data, such as people that buy X also tend to buy Y.[15]

1.3.3 Reinforcement Learning

A reinforcement learning algorithm, or agent, learns by interacting with its environment. The

agent receives rewards by performing correctly and penalties for performing incorrectly. The

agent learns without intervention from a human by maximizing its reward and minimizing its

penalty. It is a type of dynamic programming that trains algorithms using a system of reward

and punishment.[15]

CHAPTER 1. MACHINE LEARNING 18

Figure 1.3: Reinforcement Learning[8]

1.4 Classification

In this project we will be using supervised learning , and because we are dealing with medical

prediction and diagnosis we find that Classification is suitable for such tasks.

1.4.1 What is Classification?

Classification is the process of predicting the class of given data points. Classes are some-

times called as targets/ labels or categories. Classification predictive modeling is the task of

approximating a mapping function (f) from input variables (X) to discrete output variables (y).

Classification belongs to the category of supervised learning where the targets also provided

with the input data. There are many applications in classification in many domains such as in

credit approval, medical diagnosis, target marketing etc.[2]

CHAPTER 1. MACHINE LEARNING 19

1.4.2 Classification Algorithms

There is a lot of classification algorithms available now but it is not possible to conclude which

one is superior to other. It depends on the application and nature of available data set.[2]

In this project we will be working with artificial neural network (ANN) which we will get

to after we discuss some examples of Classification Algorithms .

Decision Tree

Decision tree builds classification models in the form of a tree structure. It utilizes an if-then

rule set which is mutually exclusive and exhaustive for classification. The rules are learned

sequentially using the training data one at a time. Each time a rule is learned, the tuples

covered by the rules are removed. This process is continued on the training set until meeting

a termination condition.

The tree is constructed in a top-down recursive divide-and-conquer manner. All the at-

tributes should be categorical. Otherwise, they should be discretized in advance. Attributes in

the top of the tree have more impact towards in the classification and they are identified using

the information gain concept.

A decision tree can be easily over-fitted generating too many branches and may reflect

anomalies due to noise or outliers. An over-fitted model has a very poor performance on

the unseen data even though it gives an impressive performance on training data. This can

be avoided by pre-pruning which halts tree construction early or post-pruning which removes

branches from the fully grown tree.[2]

CHAPTER 1. MACHINE LEARNING 20

Figure 1.4: Decision Tree[2]

Naive Bayes

Naive Bayes is a probabilistic classifier inspired by the Bayes theorem under a simple assumption

which is the attributes are conditionally independent.

The classification is conducted by deriving the maximum posterior which is the maximal

P(Ci—X) with the above assumption applying to Bayes theorem. This assumption greatly

reduces the computational cost by only counting the class distribution. Even though the as-

sumption is not valid in most cases since the attributes are dependent, surprisingly Naive Bayes

has able to perform impressively.

Naive Bayes is a very simple algorithm to implement and good results have obtained in

most cases. It can be easily scalable to larger datasets since it takes linear time, rather than

by expensive iterative approximation as used for many other types of classifiers.

Naive Bayes can suffer from a problem called the zero probability problem. When the

conditional probability is zero for a particular attribute, it fails to give a valid prediction. This

needs to be fixed explicitly using a Laplacian estimator.

CHAPTER 1. MACHINE LEARNING 21

K-Nearest Neighbour

k-Nearest Neighbor is a lazy learning algorithm which stores all instances correspond to training

data points in n-dimensional space. When an unknown discrete data is received, it analyzes

the closest k number of instances saved (nearest neighbors)and returns the most common class

as the prediction and for real-valued data it returns the mean of k nearest neighbors.

In the distance-weighted nearest neighbor algorithm, it weights the contribution of each of

the k neighbors according to their distance using the following query giving greater weight to

the closest neighbors.

Distance calculating query

Usually KNN is robust to noisy data since it is averaging the k-nearest neighbors.[2]

Figure 1.5: K-Nearest neighbour KNN[2]

Artificial Neural Networks ANN

A definition of Artificial Neural Network (ANN) is : a computing system made up of a number

of simple, highly interconnected processing units, which process information by their dynamic

state response to external inputs. where each connection has a weight associated with it .

During the learning phase, the network learns by adjusting the weights so as to be able to

predict the correct class label of the input tuples.[2]

CHAPTER 1. MACHINE LEARNING 22

1.5 ANN Architectures

There are many network architectures available now like :

1.5.1 Feed-forward Neural Network FNN

FNNs are those NNs with only one-way and one-directional connections between their neurons.

In this type of NNs, neurons are arranged indifferent parallel layers . The first layer is always

called the input layer, whereas the last layer is called the output layer. Other layers between

the input and output layers are called hidden layers .[11]

Multilayer Perceptron MLP

A multi layer perceptron (MLP) is a class of feed forward artificial neural network. MLP

consists of at least three layers of nodes: an input layer, a hidden layer and an output layer.

Except for the input nodes, each node is a neuron that uses a nonlinear activation function.

MLP utilizes a supervised learning technique called back propagation for training.[12]

Figure 1.6: Multilayer Perceptron MLP[12]

After providing the inputs, weights, and biases, the output of our ANN are calculated

throughout the following steps[11]: • Step A : The weighted sums of inputs are first calculated

by:

where n is the number of the input nodes, Wij shows the connection weight from the ith

CHAPTER 1. MACHINE LEARNING 23

node in the input layer to the jth node in the hidden layer, Θj is the bias (threshold) of the jth

hidden node, and Xi indicates the ith input.

• Step B : The output of each hidden node is calculated as follows:

• Step C : The final outputs are defined based on the calculated outputs of the hidden

nodes as follows:

where wjk is the connection weight from the j th hidden node to the kth output node, and

Θ’k is the bias (threshold) of the kth output node.

As may be seen in the stepA to stepC, the weights and biases are responsible for defining

the final output of MLPs from given inputs. Finding proper values for weights and biases in

order to achieve a desirable relation between the inputs and outputs is the exact definition of

training MLPs.[11]

1.5.2 Recurrent Neural Network

A Recurrent neural network is distinguished from an anticipatory neural network in that it has

at least one feedback loop . For example, a recurrent network may consist of a single layer of

neurons with each neuron supplying its output signal to the inputs of all other neurons[3]

CHAPTER 1. MACHINE LEARNING 24

Figure 1.7: Recurrent network with no self-feedback loops and no hidden neurons[3]

We illustrate another class of recurrent networks with hidden neurons. The illustrated

feedback connections also come from hidden neurons. from the output neurons.

Figure 1.8: Recurrent network with hidden neurons[3]

1.5.3 Convolutional Neural Networks CNN

CNN is another Feed-forward neural network that we will be focusing on in this project, CNNs

is a type of acyclic artificial neural network (feed-forward), in which the connection pattern

between neurons is inspired by the animal’s visual cortex.

CHAPTER 1. MACHINE LEARNING 25

Neurons in this region ofthe brain are arranged so that they correspond to overlapping

regions when paving the visualfield .

The goal of a CNN is to learn higher-order features in the data via convolutions. They are

wellsuited to object recognition with images and consistently top image classification competi-

tions.They can identify faces, individuals, street signs, platypuses, and many other aspects of

visualdata. CNNs overlap with text analysis via optical character recognition, but they are also

useful when analyzing words as discrete textual units. They’re also good at analyzing sound,

and at building position and (somewhat) rotation invariant features from raw image data.[3]

Figure 1.9: Convolutional Neural Network CNN[3]

1.6 Convolutional Neural network CNN

Before getting into Convolutional Neural networks, we need to talk about Deep Learning

CHAPTER 1. MACHINE LEARNING 26

1.6.1 Deep Learning

(also known as deep structured learning, hierarchical learning or deep machine learning) is

a branch of machine learning based on a set of algorithms that attempt to model high level

abstractions in data.

In a simple case, you could have two sets of neurons: ones that receive an input signal and

ones that send an output signal. When the input layer receives an input it passes on a modified

version of the input to the next layer. In a deep network, there are many layers between the

input and output (and the layers are not made of neurons but it can help to think of it that

way), allowing the algorithm to use multiple processing layers, composed of multiple linear and

non-linear transformations.

Deep Learning has revolutionized the machine learning recently with some of the great

works being done in this field. These methods have dramatically improved the state-of-the-art

in speech recognition, visual object recognition, object detection and many other domains such

as drug discovery and genomics.

But, the ancient term “Deep Learning” was first introduced to Machine Learning by

Dechter (1986), and to Artificial Neural Networks (NNs) by Aizenberg et al (2000).

It was further popularized by the development of Convolutional Networks Architecture by

Alex Krizhevsky named ‘AlexNet’ that won the competition of ImageNet in 2012 by defeating

all the image processing methods and creating a way for deep learning architectures to be used

in Image Processing.[21]

CHAPTER 1. MACHINE LEARNING 27

Figure 1.10: Deep Learning is a subset of Machine Learning and Machine learning is a subset

of IA. [4]

1.6.2 Convolutional Neural network CNN

In Deep Learning, a convolutional neural network (CNN, or ConvNet) is a type of feed-forward

artificial neural network in which the connectivity pattern between its neurons is inspired by

the organization of the animal visual cortex.

Individual cortical neurons respond to stimuli in a restricted region of space known as the

receptive field. The receptive fields of different neurons partially overlap such that they tile the

visual field.

The response of an individual neuron to stimuli within its receptive field can be approxi-

mated mathematically by a convolution operation. Convolutional networks were inspired by bi-

ological processes and are variations of multilayer perceptrons designed to use minimal amounts

of preprocessing.

CHAPTER 1. MACHINE LEARNING 28

They have wide applications in image and video recognition, recommender systems and

natural language processing.

LeNet was one of the very first convolutional neural networks which helped propel the

field of Deep Learning. This pioneering work by Yann LeCun was named LeNet5 after many

previous successful iterations since the year 1988.

At that time the LeNet architecture was used mainly for character recognition tasks such

as reading zip codes, digits, etc.[21]

Figure 1.11: A simple CNN model [21]

There are four main components in a ConvNet : 1. Convolutional Layer 2. Activation

Function 3. Pooling Layer 4. Fully Connected Layer

Convolutional layer

Convolutional Layer is based on the term ‘Convolution’, which is a mathematical operation

performed on two variables (f*g) to produce a third variable. It is similar to cross-correlation.

The input to a convolutional layer is a m x m x r image where m is the height and width of the

image and r is the number of channels, e.g. an RGB image has r=3. The convolutional layer

will have k filters (or kernels) of size n x n x q where n is smaller than the dimension of the

image and q can either be the same as the number of channels r or smaller and may vary for

each kernel. The size of the filters gives rise to the locally connected structure which are each

convolved with the image to produce k feature maps of size mn+1.8 [21]

CHAPTER 1. MACHINE LEARNING 29

Activation Function

To implement complex mapping functions, activation functions are needed, that are non-linear

in order to bring in the much needed non-linearity property that enables them to approximate

any function. Activation functions are also important for squashing the unbounded linearly

weighted sum from neurons.

This is important to avoid large values accumulating high up the processing hierarchy. A

lot of activation functions are present that can be used with some of the primarily used ones

being sigmoid, tanh and ReLU.[21]

Pooling Layer

Pooling is a sample-based discretization process. The objective is to down-sample an input rep-

resentation (image, hidden-layer output matrix, etc.), reducing it’s dimensionality and allowing

for assumptions to be made about features contained in the sub-regions binned.

This is done to in part to help over-fitting by providing an abstracted form of the repre-

sentation. As well, it reduces the computational cost by reducing the number of parameters to

learn and provides basic translation invariance to the internal representation.

Some of the most prominently used pooling techniques are Max-Pooling, MinPooling and

Average-Pooling.[21]

Figure 1.12: Example of Max-Pooling of 2*2 filters[21]

CHAPTER 1. MACHINE LEARNING 30

Fully Connected Layer

The term “Fully Connected” implies that every neuron in the previous layer is connected

to every neuron on the next layer. The Fully Connected layer is a traditional Multi Layer

Perceptron that uses a softmax activation function or any other similar function in the output

layer. [21]

1.6.3 Residual Neural Network ResNet

ResNets or Residual Networks are a type of Convolutional Neural Network (CNN) architecture

introduced by Kaiming He in his paper ‘Deep Residual Learning for Image Recognition’ in 2015.

This architecture shows a way to train networks with as many as 1000 layers. This helped him

win the ILSVRC 2015 classification task.

Previously, it was believed that it is not possible to train models with more than 20 layers.

The best CNN architecture before ResNets was the VGG19, as the name suggests this model

has 19 convolutional layers. And it wasn’t possible to add more layers to this architecture

because when adding more layers we would encounter a problem commonly referred to as the

‘Vanishing Gradient’ problem. This basically means that if you have more than 8 layers in your

architecture you would reach a point during training when gradients would become infinitely

large or become zero hence making it impossible to train the model. ResNet provides us with a

way to overcome this problem and create models which can have as many as 1000 layers, thus

creating models which can represent more complex features.

The answer that ResNet provided us with is Skip Connections. This means that suppose

we consider two convolutional layers as a single block which we will call the Res block then

the input to this ResBlock has another path which connects it to the output of the Res block.

These inputs are then added to the output of the Res block giving us the final output for

that particular ResBlock. This ensures that during training even if we encounter the vanishing

gradient problem and all the weights in the Res block become zero the output of the Res block

is not zero because the final output of the ResBlock is the output plus input of the Res block,

thus ensuring that output of a Res block can never be zero. This ensures that models can

be trained with a theoretically infinite number of layers provided that all of these layers are

divided into Res blocks with Skip Connections which map the input to the Res block to the

CHAPTER 1. MACHINE LEARNING 31

output.[20]

Figure 1.13: Resnet Architecture model diagram[20]

The image above shows a 5 layer ResNet Model. 2 layers each inside the Res blocks and 1

output layer. Here, the input is connected to the first ResBlock and also to the output of the

first ResBlock where it gets added to the output of the first ResBlock. Then, this output is

considered to be the input to the next ResBlock where again this input has two paths. In this

way we can have N number of Res blocks. This is the layout of a ResNet Architecture model.

The Res blocks typically have 2 convolutional layers in them but we can have as many as we

want.

ResNet is one of the most powerful deep neural networks which has achieved fantabulous

performance results in the ILSVRC 2015 classification challenge. ResNet has achieved excellent

generalization performance on other recognition tasks and won the first place on ImageNet

detection, ImageNet localization, COCO detection and COCO segmentation in ILSVRC and

COCO 2015 competitions. There are many variants of ResNet architecture i.e. same concept

but with a different number of layers. We have ResNet-18, ResNet-34, ResNet-50, ResNet-101,

ResNet-110, ResNet-152, ResNet-164, ResNet-1202 etc. The name ResNet followed by a two

or more digit number simply implies the ResNet architecture with a certain number of neural

network layers[5]

ResNet-50

ResNet-50 is a pretrained Deep Learning model for image classification of the Convolutional

Neural Network(CNN, or ConvNet), which is a class of deep neural networks, most commonly

applied to analyzing visual imagery. ResNet-50 is 50 layers deep and is trained on a million

CHAPTER 1. MACHINE LEARNING 32

images of 1000 categories from the ImageNet database. Furthermore the model has over 23

million trainable parameters, which indicates a deep architecture that makes it better for image

recognition. Using a pretrained model is a highly effective approach, compared if you need to

build it from scratch, where you need to collect great amounts of data and train it yourself. Of

course, there are other pretrained deep models to use such as AlexNet, GoogleNet or VGG19,

but the ResNet-50 is noted for excellent generalization performance with fewer error rates on

recognition tasks and is therefore a useful tool to know.[17]

1.6.4 Resnet-50 Architecure

Now we’ll talk about the architecture of ResNet50. The architecture of ResNet50 has 4 stages

as shown in the diagram below. The network can take the input image having height, width

as multiples of 32 and 3 as channel width. For the sake of explanation, we will consider the

input size as 224 x 224 x 3. Every ResNet architecture performs the initial convolution and

max-pooling using 77 and 33 kernel sizes respectively. Afterward, Stage 1 of the network starts

and it has 3 Residual blocks containing 3 layers each. The size of kernels used to perform the

convolution operation in all 3 layers of the block of stage 1 are 64, 64 and 128 respectively. The

curved arrows refer to the identity connection. The dashed connected arrow represents that the

convolution operation in the Residual Block is performed with stride 2, hence, the size of input

will be reduced to half in terms of height and width but the channel width will be doubled. As

we progress from one stage to another, the channel width is doubled and the size of the input

is reduced to half.

For deeper networks like ResNet50, ResNet152, etc, bottleneck design is used. For each

residual function F, 3 layers are stacked one over the other. The three layers are 11, 33, 11

convolutions. The 11 convolution layers are responsible for reducing and then restoring the

dimensions. The 33 layer is left as a bottleneck with smaller input/output dimensions.

Finally, the network has an Average Pooling layer followed by a fully connected layer

having 1000 neurons (ImageNet class output).[17]

CHAPTER 1. MACHINE LEARNING 33

Figure 1.14: Resnet-50 Architecture model diagram[17]

CHAPTER 1. MACHINE LEARNING 34

1.7 Related Work (Medical Prediction and Diagnosis)

1.7.1 Prediction of Chronic Kidney DiseasesUsing Deep Artificial

Neural Network Technique

The progression of the chronic kidney disease and methodologies to diagnose chronic kidney

disease is a challenging problem which can reduce the cost of treatment.

In 2019 J. Dinesh, Steven Lawrence, Eduardo Thomaz, studied 224 records of chronic

kidney disease available on the UCI machine learning repository named chronic kidney diseases

dating back to 2015. Their proposed method is based on deep neural network which predicts

the presence or absence of chronic kidney disease with an accuracy of 97%. Compared to other

available algorithms, the model built shows better results which is implemented using the cross-

validation technique to keep the model safe from overfitting. This automatic chronic kidney

disease treatment helps reduce the kidney damage progression, but for this chronic kidney

disease detection at initial stage is necessary.[7]

1.7.2 Heart disease prediction using K-means and Artificial Neural

Network

The heart is an important organ of human body part. Life is completely dependent on efficient

working of the heart. What if a heart undergoes a disorder, cardiovascular diseases are the

most challenging disease for reducing patient count. According to survey conducted by WHO,

about 17 million people die around the globe due to cardiovascular diseases i.e 29.20% among

all caused death, mostly in developing countries. Thus there is a need of getting rid of the this

complicated task CVD using advanced data machine learning techniques, in order to discover

knowledge of Heart disease prediction. In 2017 Malav, Amita, Kadam, Kalyani, Kamat, Pooja

proposeed an efficient hybrid algorithmic approach for heart disease prediction that serves

efficient prediction technique to determine and extract the unknown knowledge of heart disease

using hybrid combination of K-means clustering algorithm and artificial neural network.

This proposed model considered 14 attribute out of 74 attributes of UCI Heart Disease

Data Set This technique uses medical terms such as age, weight, gender, blood pressure and

CHAPTER 1. MACHINE LEARNING 35

cholesterol rate etc for prediction. To perform grouping of various attributes it uses k-means

algorithm and for predicting it uses Back propagation technique in neural networks. The main

objective of this research is to develop a prototype for predicting heart diseases with higher

accuracy rate.[1]

1.7.3 Prediction of Fatty Liver Disease using Machine Learning Al-

gorithms

Fatty liver disease (FLD) is a common clinical complication; it is associated with high morbidity

and mortality. However, an early prediction of FLD patients provides an opportunity to make

an appropriate strategy for prevention, early diagnosis and treatment. In 2018 Wu, Chieh-Chen,

Yeh, Wen-Chun, Hsu, and Wen-Ding aimed to develop a machine learning model to predict

FLD that could assist physicians in classifying high-risk patients and make a novel diagnosis,

prevent and manage FLD.

Methods

all patients who had an initial fatty liver screening at the New Taipei City Hospital between

1st and 31st December 2009 were included. Classification models such as random forest (RF),

Näıve Bayes (NB), artificial neural networks (ANN), and logistic regression (LR) were developed

to predict FLD. The area under the receiver operating characteristic curve (ROC) was used to

evaluate performances among the four models.

Results

A total of 577 patients were included in this study; of those 377 patients had fatty liver.

The area under the receiver operating characteristic (AUROC) of RF, NB, ANN, and LR

with 10 fold-cross validation was 0.925, 0.888, 0.895, and 0.854 respectively. Additionally, The

accuracy of RF, NB, ANN, and LR 87.48, 82.65, 81.85, and 76.96 percent.[23]

CHAPTER 1. MACHINE LEARNING 36

1.7.4 Building Risk Prediction Models for Type 2 Diabetes Using

Machine Learning Techniques

As one of the most prevalent chronic diseases in the United States, diabetes, especially type

2 diabetes, affects the health of millions of people and puts an enormous financial burden on

the US economy. In 2019 Xie, Zidian, Nikolayeva, Olga, Luo, Jiebo, and Li, Dongmei aimed to

develop predictive models to identify risk factors for type 2 diabetes, which could help facilitate

early diagnosis and intervention and also reduce medical costs.

Methods

cross-sectional data on 138,146 participants was analyzed, including 20,467 with type 2

diabetes, from the 2014 Behavioral Risk Factor Surveillance System. several machine learning

models for predicting type 2 diabetes were built, including support vector machine, decision

tree, logistic regression, random forest, neural network, and Gaussian Naive Bayes classifiers.

univariable and multivariable weighted logistic regression models were used to investigate the

associations of potential risk factors with type 2 diabetes.

Results

All predictive models for type 2 diabetes achieved a high area under the curve (AUC),

ranging from 0.7182 to 0.7949. Although the neural network model had the highest accuracy

(82.4%), specificity (90.2%), and AUC (0.7949), the decision tree model had the highest sen-

sitivity (51.6%) for type 2 diabetes. It was found that people who slept 9 or more hours per

day (adjusted odds ratio [aOR] = 1.13, 95% confidence interval [CI], 1.03–1.25) or had checkup

frequency of less than 1 year (aOR = 2.31, 95% CI, 1.86–2.85) had higher risk for type 2

diabetes.[27]

CHAPTER 1. MACHINE LEARNING 37

1.8 Summary

In this chapter, we discussed the concepts of Machine Learning.

Machine learning, predictive analytics, and other related topics are very exciting and pow-

erful fields. While these topics can be very technical, many of the concepts involved are rela-

tively simple to understand at a high level. In many cases, a simple understanding is all that’s

required to have discussions based on machine learning problems, projects, techniques, and so

on.

Based on our study of this area, we found that existing related works have certain limita-

tions despite the benefits that offer them. This prompted us to propose our contribution,

which is in including bio-isnpired and metaheursitic appoaches and methods to op-

timize and train neural networks for better performance in medical prediction .

In the next chapter we will provide an introduction to optimization and metaheuristics

Algorithms as well as Nature inspierd optimization Algorithms and we will have an indepth

discussion about the methods used in our project.

Chapter 2

Optimization Algorithms

2.1 Introduction

Optimization is the most essential ingredient in the recipe of machine learning algorithms.

It starts with defining some kind of loss function/cost function and ends with minimizing it

using one or the other optimization routine. The choice of optimization algorithm can make a

difference between getting a good accuracy in hours or days. The applications of optimization

are limitless and is widely researched topic in industry as well as academia.

In the this chapter we will provide an overview to optimization and metaheuristics Algo-

rithms as well as Nature/bio inspierd optimization Algorithms and we will have an indepth

discussion about the methods/techniques used in our project.

2.2 Metaheuristics

2.2.1 Definition

Meta-heuristics were conceived as high-level problem solving strategies to coordinate the coop-

eration between other search methods, including heuristics and/or traditional search techniques

(Glover 1986). The main idea was to provide a guide for designing general problem-independent

strategies, which should be later instantiated by researchers to solve specific hard problems.

38

CHAPTER 2. OPTIMIZATION ALGORITHMS 39

This way, meta heuristics are not specifically focused on solving any kind of problems, but

they propose simple ideas with high applicability to a wide number of problems. These simple

procedures are usually based on emulating natural or physical phenomena, such as the behavior

of flocks of birds and insects, cooling procedures in metals, or the natural evolution, among

many others.

Nowadays, the classic definition of meta-heuristic has been extended in order to include

a wide range of search and optimization procedures, as well as other significantly complex

learning processes. The ‘meta’ component of a meta-heuristic refers to the higher level strategy

that controls a set of underlying heuristic techniques in order to improve the search capabilities

of the resulting algorithm. Meta-heuristics apply this search strategy in a neighborhood of the

current solution. The search ends when a specific stopping criterion is met.

The stopping criterion is usually related to a specified number of iterations, a quality

threshold for solutions or the best solution found, a time limit for the search, or any combi-

nation of the aforementioned criteria. The best solution found on the search, or a given set of

best solutions, are returned. The main goals of the search when using metaheuristics can be

summarised to:

1. find efficiently (i.e., quickly) feasible solutions for a given optimization problem (indeed,

finding feasible solutions can be a NP-hard problem itself)

2. find efficiently (i.e., quickly) good quality solutions (with objective function values near

to the optimum, or accurate enough for the problem solver).

3. cover the solution space without getting stuck in specific zones (especially local optima).

Regarding the aforementioned third goal, a specific goal of the search in a metaheuristic is

to achieve an accurate and balanced pattern for diversification and intensification of solutions.

These two concepts are the key for any successful search or optimization method. Diversification

refers to the capability of the technique for achieving a good exploration pattern for the search

space, usually providing a reasonable coverage and avoiding stagnation in local optima. On

the other hand, intensification is the property of the technique that allows exploiting (i.e.,

improving, from the point of view of the objective function value) accurate solutions already

found in the search, in order to increase their quality. Figure depicts the ideas of diversification

and intensification. Depending on the method and the search strategy, metaheuristics provide

CHAPTER 2. OPTIMIZATION ALGORITHMS 40

different trade-off levels between diversification and intensification. Thus, they have emerged

as both efficient and robust methods for optimization.[14]

Figure 2.1: Diversification and intesification [14]

2.2.2 Metaheuristics classification criteria

• Several classification criteria have been proposed for metaheuristics. The most used classi-

fication applied in the literature takes into account the number of tentative solutions used in

each step of the iterative algorithm. Other relevant classification criteria formetaheuristics are

related to the procedures used within the search strategy, i.e., constructive methods, use of

memory, etc.

• Regarding the number of solutions handled in each step of the iterative search, meta-

heuristics are classified in two categories: trajectory-based metaheuristics and population-based

metaheuristics.

• Trajectory-based metaheuristics work with a single candidate solution, which is

modified in each step, to be replaced by another (often the best) solution found in its neigh-

bourhood, which is defined by (possibly a set of) transformation operator(s) or movement(s). In

fact, this search is characterised by a trajectory in the space of candidate solutions to solve the

problem. Trajectory-based metaheuristics are usually faster and more efficient than population-

based metaheuristics, since they only work with a single solution at the time. Thus, they allow

finding quickly a locally optimal solution and they are usually referred as exploitation-oriented

CHAPTER 2. OPTIMIZATION ALGORITHMS 41

methods, which promote intensification in the search space, by locally improving already found

solutions with good quality.

• On the other hand, population-based metaheuristics work with a set of multiple

candidate solutions in each step of the search. These solutions are modified and/or combined

following some common guidelines. The population paradigm allows the recombination of

solutions, trying to compute better results by using the main features of the original solutions.

In each iteration, some solutions in the population are replaced by newly generated solutions,

often the best ones, or some selected solutions according to a quality-based criterion. As the

main feature of population-based methods is to provide an increased diversification by using

many candidate solutions in the population, this kind of metaheuristics are characterised as

exploration-oriented methods.

• Regarding other useful classification criteria often used to characterise metaheuristics,

we can distinguish between local search-based, i.e., those that use a local strategy to improve

solution(s), based on searching in the neighbourhood of the current ones(s); and constructive

metaheuristics, which apply a specific technique to build new solution(s), based on the char-

acteristics of the current one(s). In addition, we can distinguish between memory-based,i.e.,

those metaheuristics that use a specific structure to account forprevious information about the

search and memory-less, i.e., those methods that do not use memory, and the search performed

in each step is independent of the previous decisions taken during the search.[14]

2.2.3 Metaheuristic Thechniques

Taking into account the classifications introduced in the previous subsection, this subsection

briefly introduces the most well-known metaheuristic techniques proposed in the literature.

The class of trajectory-based metaheuristics

includes several well-known techniques dating from the early years of the research on meta-

heuristics:

• Simulated Annealing SA: A trajectory-based search technique inspired on the anneal-

ing process of metals, which probabilistically allows accepting (i.e., moving to) a solution that

CHAPTER 2. OPTIMIZATION ALGORITHMS 42

does not improve the objective function value, in order to escape from local optima (Kirkpatrick

et al., 1983; Černý, 1985). SA is related to the Metropolis-Hasting Monte Carlo method, and it

was the first metaheuristic proposed in the early 1980s, although the term ‘metaheuristic’ was

not known in those years. SA is trajectory-based, applies a local-search, and is a memory-less

metaheuristic.

• Tabu Search TS: A metaheuristic that applies a traditional local search strategy,

enhanced by using memory structures (i.e., the ‘tabu list’) to store information about solutions

visited in the past. Returning to recently visited solutions is not allowed, in order to promote

diversification. TS was introduced by Glover (1986), in the article that first include the term

‘metaheuristic’, and later formalised by Glover (1989; 1990). TS is trajectory-based, applies a

local-search, and is a memory-based metaheuristic.

• Greedy randomised adaptive search procedure (GRASP): A constructivemeta-

heuristic that performs a solution construction phase by selecting components following a greedy

strategy, and then applies a local search in order to improve the constructed solution. GRASP

was originally proposed by Feo and Resende (1989) and later formalised by Feo and Resende

(1995). GRASP is trajectory-based, applies a constructive search, and is a memory-less meta-

heuristic.

• Variable neighbourhood search (VNS): a set of local search techniques based on

the concept of using different neighbourhood structures during the search (Mladenovic and

Hansen, 1997). A number of specific metaheuristics are within this class, including variable

neighbourhood descent, basic VNS, and skewed VNS (Hansen and Mladenovic, 2002). VNS is

trajectory-based, applies a local-search, and is a memory-less metaheuristic.

• Iterated local search (ILS): A method that combines a hill-climbing/local-search

tofind local optima and a stochastic perturbation or restart strategy, applying a simple and

intuitive idea to prevent the search getting stuck in local optima (Lourenço et al.,2002). ILS is

trajectory-based, applies a local-search, and is a memory-less metaheuristic.[14]

The class of population-based metaheuristic

includes many search techniques that use a group of search agents to benefit of cooperation and

the (intrinsically) parallelism in the search procedure. Most population-based metaheuristic are

CHAPTER 2. OPTIMIZATION ALGORITHMS 43

inspired on, or are based on emulating natural processes:[14]

• Evolutionary computation (EC): A set of non-deterministic methods for search and

optimization that emulate the evolutionary process of species in nature. EC include several

approaches, among them the well-known evolutionary algorithms (EA), genetic programming

(GP), and evolution strategies (ES). The main ideas for applying evolution and self-replication

in computer science dates from the early 1960s (Rechenberg, 1965; Fogel et al., 1966); later EAs

were first formulated by Holland (1975) and gently presented by Goldberg (1989). Since 1990,

a large community of researchers has been studying and applying EC techniques. In general,

EC methods are iterative search techniques (each iteration is called a generation) that work

by applying stochastic operators on a set of candidate solutions (the population), in order to

improve the fitness of solutions, a metric that evaluates how good a solution is to solve the

problem. Different variation operators, most notably including the recombination of solutions

and random changes (mutations) in their contents are applied for building new solutions during

the search. The search is guided by a selection-of-the-best technique to tentative solutions of

higher quality along the generations. In the last 25 years, EC techniques have been extensively

applied to solve a large number of problems in many application areas.[14]

• Swarm intelligence(SI): A class of metaheuristics based on the main concepts of coop-

eration from the collective behaviour of self-organised systems. They are characterised by using

a set of entities or agents, which perform local search explorations in a neighbourhood, while

they locally interact with both neighbouring agents and the environment. Although agents

usually have limited search capabilities, an ‘intelligent’ search pattern emerges when consider-

ing large sets of agents, or swarms. The most well-known metaheuristics in this class are ACO,

which emulates the behaviour of ants foraging for food (Dorigo, 1992), PSO, simulating the

behaviour of flock of birds (Kennedy and Eberhart, 1995), and artificial immune system, which

emulates its biological counterpart (DasGupta, 1998). Recently, some other metaheuristics

based on the paradigm of swarm intelligence have been proposed, including bacterial forag-

ing optimization (Passino, 2002), fish swarm optimization (Li et al., 2002), glowworm swarm

optimization (Krishnanand and Ghose, 2005), firefly algorithm (Yang, 2008), Cuckoo search

(Yang and Deb, 2009), and several bee algorithms that emulate the food foraging behaviour

of bee swarms: honey bee algorithm (Nakrani and Tovey, 2004), honey-bee mating optimiza-

tion (Haddad et al., 2006), and artificial bee colony (Karaboga and Basturk, 2007). Some of

these new proposals of swarm metaheuristic algorithms are not free from criticism from the

CHAPTER 2. OPTIMIZATION ALGORITHMS 44

community .[14]

• Evolutionary inspired metaheuristics (EI): this class includes several other meth-

ods that apply a kind of population-based evolutionary search, with different features and

search procedures. The most well-known metaheuristics in this class are: estimation of dis-

tribution algorithm (EDA), which applies a learning process based on building and sampling

probabilistic models of promising candidate solutions (Larrañaga and Lozano, 2002); scatter

search/path relinking (SS/PR), which applies an approach similar to evolutionary computa-

tion, but including a specific recombination and some ideas from TS (Glover, 1999); differential

evolution (DE), specialised for optimizing real-valued functions (Storn and Price, 1997); har-

mony search (HS), applying an analogy of the improvisation of jazz musicians (Geem et al.,

2001); and memetic algorithms (MA), evolutionary-based optimization techniques that include

a local search phase after applying the evolutionary operators (Moscato, 1999). MA is often

characterised as an hyper-heuristic algorithm, since they include a learning process to automate

the search process.[14]

this project we will be focusing our experiments in population based meta-

heuristics, therefore in the next section we will provide more indepth details about

this class ,which consists of nature/bio inspired techniques for problem solving and

optimization.

2.3 Nature-inspired Optimization

Nature-inspired algorithms for optimization form a hot topic in the developments of new al-

gorithms inspired by nature. These nature-inspired metaheuristic algorithms can be based on

swarm intelligence, biological systems, physical and chemical systems. Therefore, these algo-

rithms can be called swarm-intelligence-based,bio-inspired, physics-based and chemistry-based,

depending on the sources of inspiration. Though not all of them are efficient, a few algorithms

have proved to be very efficient and thus have become popular tools for solving real-world prob-

lems. Although some algorithms are insufficiently studied, in this section we will present a

comprehensive list of well known algorithms in the litterature as well as an indepth

disscussion about new techniques which will be used in this project

CHAPTER 2. OPTIMIZATION ALGORITHMS 45

2.3.1 Source of inspiration

Nature has inspired many researchers in many ways and thus is a rich source of inspiration.

Nowadays, most new algorithms are nature-inspired, because they have been developed by

drawing inspiration from nature. Even with the emphasis on the source of inspiration, we can

still have different levels of classifications, depending on how details and how many subsources

we will wish to use. For simplicity, we will use the highest level sources such as biology, physics

or chemistry. In the most generic term, the main source of inspiration is Nature. Therefore,

almost all new algorithms can be referred to as nature-inspired. By far the majority of nature-

inspired algorithms are based on some successful characteristics of biological system. Therefore,

the largest fraction of nature-inspired algorithms are biology-inspired, or bio-inspired for short.

Among bio-inspired algorithms, a special class of algorithms have been developed by drawing

inspiration from swarm intelligence. Therefore, some of the bioinspired algorithms can be called

swarm-intelligence based. In fact, algorithms based on swarm intelligence are among the most

popular. Good examples are ant colony optimization , particle swarm optimization , cuckoo

search , bat algorithm , and firefly algorithm .

Obviously, not all algorithms were based on biological systems. Many algorithms have

been developed by using inspiration from physical and chemical systems. Some may even be

based on music.[9]

2.3.2 Classifications of Algorithms

Based on the above discussions, we can divide all existing algorithms into four major categories:

• swarm intelligence (SI) based.

• bio-inspired (but not SI-based).

• physics/chemistry-based.

• and others.

We will summarize them in the rest of this section. However, we will focus here on the

relatively new algorithms.

CHAPTER 2. OPTIMIZATION ALGORITHMS 46

Swarm intelligence based

Swarm intelligence (SI) concerns the collective, emerging behaviour of multiple, interacting

agents who follow some simple rules. While each agent may be considered as unintelligent,

the whole system of multiple agents may show some self-organization behaviour and thus can

behave like some sort of collective intelligence. Many algorithms have been developed by

drawing inspiration from swarm-intelligence systems in nature. All SI-based algorithms use

multi-agents, inspired by the collective behaviour of social insects, like ants, termites, bees, and

wasps, as well as from other animal societies like flocks of birds or fish.

• Particle swarm optimization (PSO) : uses the swarming behaviour of fish and birds.

• Firefly algorithm (FA) : uses the flashing behaviour of swarming fireflies.

• Cuckoo search (CS) is based on the brooding parasitism of some cuckoo species.

• bat algorithm(BA) : uses the echolocation of foraging bats.

• Ant colony optimization(ACO) uses the interaction of social insects (e.g., ants).

• Bee colony optimization : are all based on the foraging behaviour of honey bees.

SI-based algorithms are among the most popular and widely used. There are many reasons

for such popularity, one of the reasons is that SI-based algorithms usually sharing information

among multiple agents, so that selforganization, co-evolution and learning during iterations

may help to provide the high efficiency of most SI-based algorithms. Another reason is that

multiple agent can be parallelized easily so that large-scale optimization becomes more practical

from the implementation point of view.[9]

Bio-Inspired (but not SI-Inspired)

SI-based algorithms belong to a wider class of algorithms, called bio-inspired algorithms. In

fact, bio-inspired algorithms form a majority of all nature-inspired algorithms. From the set

theory point of view, SI-based algorithms are a subset of bio-inspired algorithms, while bio-

inspired algorithms are a subset of nature-inspired algorithms. That is SI-based ⊂ bio-inspired

⊂nature-inspired.

CHAPTER 2. OPTIMIZATION ALGORITHMS 47

Conversely, not all nature-inspired algorithms are bioinspired, and some are purely physics

and chemistry based algorithms as we will see below. Many bio-inspired algorithms do not

use directly the swarming behaviour. Therefore, it is better to call them bio-inspired, but not

SI-based. For example, genetic algorithms are bio-inspired, but not SI-based. However, it is

not easy to classify certain algorithms such as differential evolution (DE). Strictly speaking,

DE is not bio-inspired because there is no direct link to any biological behaviour. However, as

it has some similarity to genetic algorithms and also has a key word ‘evolution’, we tentatively

put it in the category of bioinspired algorithms. For example, the flower algorithm, or flower

pollination algorithm , developed by Xin-She Yang in 2012 is a bio-inspired algorithm, but it

is not a SI-based algorithm.

• flower pollination algorithm : tries to mimic the pollination characteristics of flow-

ering plants and the associated flower consistency of some pollinating insects.[9]

Physics and Chemistry Based

Not all metaheuristic algorithms are bio-inspired, because their sources of inspiration often

come from physics and chemistry. For the algorithms that are not bio-inspired, most have been

developed by mimicking certain physical and/or chemical laws, including electrical charges,

gravity, river systems, etc. As different natural systems are relevant to this category, we can

even subdivide these into many subcategories which is not necessary. Schematically, we can

represent the relationship of physics and chemistry based algorithms as the follows:

Figure 2.2: The relationship of physics and chemistry based algorithms[9]

Though physics and chemistry are two different subjects, however, it is not useful to sub-

divide this subcategory further into physics-based and chemistry. After all, many fundamental

laws are the same. So we simply group them as physics and chemistry based algorithms.[9]

CHAPTER 2. OPTIMIZATION ALGORITHMS 48

Other Algorithms

When researchers develop new algorithms, some may look for inspiration away from nature.

Consequently, some algorithms are not bio-inspired or physics/chemistry-based, it is sometimes

difficult to put some algorithms in the above three categories, because these algorithms have

been developed by using various characteristics from different sources, such as social, emotional,

etc. In this case, it is better to put them in the other category.[9]

In the next section we will discuss the details of the optimization techniques used in our

project which are:

• Dragonfly Algorithm (DA 2015).

• Grey Wolf Optimization (GWO 2014).

2.4 Dragonfly Algorithm DA

Dragonfly algorithm (DA) is a novel swarm intelligence optimization technique . Proposed by

Mirjalili Sayedali. The main inspiration of the DA algorithm originates from the static and

dynamic swarming behaviours of dragonflies in nature. Two essential phases of optimization,

exploration and exploitation, are designed by modelling the social interaction of dragonflies in

navigating, searching for foods, and avoiding enemies when swarming dynamically or statisti-

cally.[18]

2.4.1 Operators for exploration and exploitation

According to Reynolds, the behaviour of swarms follows three primitive principles :

• Separation, which refers to the static collision avoidance of the individuals from other

individuals in the neighbourhood.

• Alignment, which indicates velocity matching of individuals to that of other individuals

in neighbourhood.

• Cohesion, which refers to the tendency of individuals towards the centre of the mass of

CHAPTER 2. OPTIMIZATION ALGORITHMS 49

the neighbourhood.

The main objective of any swarm is survival, so all of the individuals should be attracted

towards food sources and distracted outward enemies. Considering these two behaviours, there

are five main factors in position updating of individuals in swarms as shown in Each of these

behaviours is mathematically modelled as follows:

• The separation is calculated as follows :

(Eq.1)

where X is the position of the current individual, Xj shows the position j-th neighbouring

individual, and N is the number of neighbouring individuals.

• The Alignment is calculated as follows :

(Eq.2)

where Xj shows the velocity of j-th neighbouring individual.

• The Cohesion is calculated as follows:

(Eq.3)

where X is the position of the current individual, N is the number of neighbourhoods, and

Xj shows the position j-th neighbouring individual.

• Attraction towards a food source is calculated as follows:

(Eq.4)

where X is the position of the current individual, and X+ shows the position of the food

CHAPTER 2. OPTIMIZATION ALGORITHMS 50

source.

• Distraction outwards an enemy is calculated as follows:

(Eq.5)

where X is the position of the current individual, and X- shows the position of the enemy.

The behaviour of dragonflies is assumed to be the combination of these five corrective

patterns . as shown in

Figure 2.3: Primitive corrective patterns between individuals in a swarm[18]

To update the position of artificial dragonflies in a search space and simulate their move-

ments, two vectors are considered: step (∆ X) and position (X). The step vector is analogous

to the velocity vector in PSO, and the DA algorithm is developed based on the framework of

the PSO algorithm. The step vector shows the direction of the movement of the dragonflies

CHAPTER 2. OPTIMIZATION ALGORITHMS 51

and defined as follows (note that the position updating model of artificial dragonflies is defined

in one dimension, but the introduced method can be extended to higher dimensions):

(Eq.6)

where s shows the separation weight, Si indicates theseparation of the i-th individual, a

is the alignment weight, A is the alignment of i-th individual, c indicates the cohesion weight,

Ci is the cohesion of the i-th individual, f is the food factor, Fi is the food source of the i-th

individual, e is the enemy factor, Ei is the position of enemy of the i-th individual, w is the

inertia weight, and t is the iteration counter. After calculating the step vector, the position

vectors are calculated as follows:

(Eq.7)

where t is the current iteration. With separation, alignment, cohesion, food, and enemy

factors (s, a, c, f, and e), different explorative and exploitative behaviours can achieved during

optimization. Neighbours of dragonflies are very important, so a neighbourhood (circle in a 2D,

sphere in a 3D space, or hypersphere in an nD space) with a certain radius is assumed around

each artificial dragonfly. An example of swarming behaviour of dragonflies with increasing

neighbourhood radius using the proposed mathematical model is illustrated in the Figure.

CHAPTER 2. OPTIMIZATION ALGORITHMS 52

Figure 2.4: Swarming behaviour of Enemy artificial dragon flies (w = 0.9–0.2, s = 0.1, a =

0.1, c = 0.7, f = 1, e = 1)[18]

As discussed in the previous subsection, dragonflies only show two types of swarms: static

and dynamic as shown in Figure. 14. As may be seen in this figure, dragonflies tend to align

their flying while maintaining proper separation and cohesion in a dynamic swarm. In a static

swarm, however, alignments are very low while cohesion is high to attack preys. Therefore,

we assign dragonflies with high alignment and low cohesion weights when exploring the search

space and low alignment and high cohesion when exploiting the search space. For transition

between exploration and exploitation, the radii of neighbourhoods are increased proportional to

the number of iterations. Another way to balance exploration and exploitation is to adaptively

tune the swarming factors (s, a, c, f, e, and w) during optimization.

CHAPTER 2. OPTIMIZATION ALGORITHMS 53

Figure 2.5: Dynamic versus static dragonfly swarms[18]

A question may rise here as to how the convergence of dragonflies is guaranteed during

optimization. The dragonflies are required to change their weights adaptively for transiting

from exploration to exploitation of the search space. It is also assumed that dragonflies tend to

see more dragonflies to adjust flying path as optimization process progresses. In other word, the

neighbourhood area is increased as well whereby the swarm become one group at the final stage

of optimization to converge to the global optimum. The food source and enemy are chosen from

the best and worst solutions that the whole swarm is found so far. This causes convergence

towards promising areas of the search space and divergence outward non-promising regions of

the search space.

To improve the randomness, stochastic behaviour, and exploration of the artificial dragon-

flies, they are required to fly around the search space using a random walk (Levy flight) when

there is no neighbouring solutions. In this case, the position of dragonflies is updated using the

following equation:

(Eq.8)

where t is the current iteration, and d is the dimension of the position vectors.

The Levy flight is calculated as follows :

CHAPTER 2. OPTIMIZATION ALGORITHMS 54

(Eq.9)

where r1, r2 are two random numbers in [0,1], β is a constant (equal to 1.5 in this work),

and α is calculated as follows:

(Eq.10)

The DA algorithm starts optimization process by creating a set of random solutions for a

given optimization problems. In fact, the position and step vectors of dragonflies are initialized

by random values defined within the lower and upper bounds of the variables. In each iteration,

the position and step of each dragonfly are updated using Eqs. (7)/(8) and (6). For updating

X and DX vectors, neighbourhood of each dragonfly is chosen by calculating the Euclidean

distance between all the dragonflies and selecting N of them. The position updating process

is continued iteratively until the end criterion is satisfied.[18] The pseudo-codes of the DA

algorithm are provided in the next Figure.

Figure 2.6: Dragonfly algorithm pseudo-code[18]

CHAPTER 2. OPTIMIZATION ALGORITHMS 55

2.5 Grey Wolf Optimization GWO

The GWO algorithm mimics the leadership hierarchy and hunting mechanism of gray wolves

in nature proposed by Mirjalili et al. in 2014. Four types of grey wolves such as alpha, beta,

delta, and omega are employed for simulating the leadership hierarchy. In addition, three main

steps of hunting, searching for prey, encircling prey, and attacking prey, are implemented to

perform optimization.[19]

2.5.1 Mathematical Model

The hunting technique and the social hierarchy of grey wolves are mathematically modeled in

order to design GWO and perform optimization. The proposed mathematical models of the

social hierarchy, tracking, encircling, and attacking prey are as follows:

Social hierarchy

In order to mathematically model the social hierarchy of wolves when designing GWO, we

consider the fittest solution as the alpha (α). Consequently, the second and third best solutions

are named beta (β) and delta (δ) respectively. The rest of the candidate solutions are assumed

to be omega (ω). In the GWO algorithm the hunting (optimization) is guided by α, β, and δ.

The ω wolves follow these three wolves.

Figure 2.7: Hierarchy of grey wolf (dominanc decreases from top down).[19]

CHAPTER 2. OPTIMIZATION ALGORITHMS 56

Encyvling Prey

As mentioned above, grey wolves encircle prey during the hunt. In order to mathematically

model encircling behavior the following equations are proposed:

where t indicates the current iteration,
⇀

A and
⇀

C are coefficient vectors,
⇀

Xp the position

vector of the prey, and
⇀

X indicates the position vector of a grey wolf. The vector
⇀

A and
⇀

C are

calculated as follows:

Where components of
⇀
α are linearly decreased from 2 to 0 over the course of iterations

and r1 ,r2 are random vectors in [0,1]. With the above equations, a grey wolf in the position of

(X,Y) can update its position according to the position of the prey (X*,Y*). Different places

around the best agent can be reached with respect to the current position by adjusting the

value of r1 and r2 vectors. For instance, (X*-X,Y*) can be reached by setting
⇀
α=(1,0) and

⇀

C=(1,1) . Note that the random vectors
⇀

A and
⇀

C allow wolves to reach any position between

the two particular points. So a grey wolf can update its position inside the space around the

prey in any random location by the above-mentioned equations. The same concept can be

extended to a search space with n dimensions, and the grey wolves will move in hyper-cubes

(or hyper-spheres) around the best solution obtained so far.

Figure 2.8: 2D and 3D position vectors and their possible next locations.[19]

CHAPTER 2. OPTIMIZATION ALGORITHMS 57

Hunting

Grey wolves have the ability to recognize the location of prey and encircle them. The hunt is

usually guided by the alpha. The beta and delta might also participate in hunting occasionally.

However, in an abstract search space we have no idea about the location of the optimum (prey).

In order to mathematically simulate the hunting behavior of grey wolves, we suppose that the

alpha (best candidate solution) beta, and delta have better knowledge about the potential

location of prey. Therefore, we save the first three best solutions obtained so far and oblige the

other search agents (including the omegas) to update their positions according to the position

of the best search agent. The following formulas are proposed in this regard.

With these equations, a search agent updates its position according to alpha, beta, and

delta in a n dimensional search space. In addition, the final position would be in a random

place within a circle which is defined by the positions of alpha, beta, and delta in the search

space. In other words alpha, beta, and delta estimate the position of the prey, and other wolves

updates their positions randomly around the prey.

Figure 2.9: Position updating in GWO.[19]

CHAPTER 2. OPTIMIZATION ALGORITHMS 58

Attacking Prey(Exploitation)

As mentioned above the grey wolves finish the hunt by attacking the prey when it stops moving.

In order to mathematically model approaching the prey we decrease the value of
⇀
α . Note that

the fluctuation range of
⇀

A is also decreased by
⇀
α. In other words

⇀

A is a random value in the

interval [-2a,2a] where a is decreased from 2 to 0 over the course of iterations. When random

values of
⇀
α are in [-1,1], the next position of a search agent can be in any position between

its current position and the position of the prey. With the operators proposed so far, the

GWO algorithm allows its search agents to update their position based on the location of the

alpha, beta, and delta; and attack towards the prey. However, the GWO algorithm is prone

to stagnation in local solutions with these operators. It is true that the encircling mechanism

proposed shows exploration to some extent, but GWO needs more operators to emphasize

exploration.

Figure 2.10: Hunting behavior of grey wolves: (A) chasing, approaching, and tracking prey

(B–D) pursuiting, harassing, and encircling (E) stationary situation and attack.[19]

Searching for Prey

Grey wolves mostly search according to the position of the alpha, beta, and delta. They diverge

from each other to search for prey and converge to attack prey. In order to mathematically

CHAPTER 2. OPTIMIZATION ALGORITHMS 59

model divergence, we utilize
⇀

A with random values greater than 1 or less than -1 to oblige

the search agent to diverge from the prey. This emphasizes exploration and allows the GWO

algorithm to search globally. | A | >1 forces the grey wolves to diverge from the prey to

hopefully find a fitter prey. Another component of GWO that favors exploration is
⇀

C, which

contains random values in [0, 2]. This component provides random weights for prey in order

to stochastically emphasize (C>1) or de-emphasize (C<1) the effect of prey in defining the

distance. This assists GWO to show a more random behavior throughout optimization, favoring

exploration and local optima avoidance. It is worth mentioning here that C is not linearly

decreased in contrast to A. We deliberately require C to provide random values at all times in

order to emphasize exploration not only during initial iterations but also final iterations. This

component is very helpful in case of local optima stagnation, especially in the final iterations.

The C vector can be also considered as the effect of obstacles to approaching prey in

nature. Generally speaking, the obstacles in nature appear in the hunting paths of wolves

and in fact prevent them from quickly and conveniently approaching prey. This is exactly

what the vector C does. Depending on the position of a wolf, it can randomly give the prey

a weight and make it harder and farther to reach for wolves, or vice versa. To sum up, the

search process starts with creating a random population of grey wolves (candidate solutions)

in the GWO algorithm. Over the course of iterations, alpha, beta, and delta wolves estimate

the probable position of the prey. Each candidate solution updates its distance from the prey.

The parameter a is decreased from 2 to 0 in order to emphasize exploration and exploitation,

respectively. Candidate solutions tend to diverge from the prey when |
⇀

A | >1 and converge

towards the prey when |
⇀

A | <1. Finally, the GWO algorithm is terminated by the satisfaction

of an end criterion.[19]

Figure 2.11: Atacking prey versus searching for prey[19]

CHAPTER 2. OPTIMIZATION ALGORITHMS 60

2.5.2 GWO pseudo-code

Figure 2.12: GWO pseudo-code [19]

To see how GWO is theoretically able to solve optimization problems, some points may be

noted:

• The proposed social hierarchy assists GWO to save the best solutions obtained so far

over the course of iteration

• The proposed encircling mechanism defines a circle-shaped neighborhood around the

solutions which can be extended to higher dimensions as a hyper-sphere

• The random parameters A and C assist candidate solutions to have hyper-spheres with

different random radii

• The proposed hunting method allows candidate solutions to locate the probable position

of the prey

• Exploration and exploitation are guaranteed by the adaptive values of a and A

CHAPTER 2. OPTIMIZATION ALGORITHMS 61

• The adaptive values of parameters a and A allow GWO to smoothly transition between

exploration and exploitation

• With decreasing A, half of the iterations are devoted to exploration (| A | ≥1) and the

other half are dedicated to exploitation (| A | < 1)

• The GWO has only two main parameters to be adjusted (a and C)[19]

2.6 Summary

In this Chapter we had an introduction about Metaheurstics and Optimization Algorithms as

well as Nature-Inspired Optimization Algorithms. And then we took a deep dive into Dragonfly

algorithm. DA is inspired by the behaviour of dragonflies’ swarms in nature. Static and

dynamic swarming behaviours of dragonflies were used to explore and exploit the search space,

respectively.

The DA algorithm was equipped with five parameters to control cohesion, alignment,

separation, attraction (towards food sources), and distraction (outwards enemies) of individuals

in the swarm. Suitable operators were integrated to the proposed DA algorithm for solving

different kind of problems.

We Also talked about another novel nature-inspired Optimization Algorithms which is Grey

wolf Optimization (GWO) , GWO mimics the leadership hierarchy and hunting mechanism of

grey wolves in nature. Four types of grey wolves such as alpha, beta, delta, and omega are

employed for simulating the leadership hierarchy. In addition to, the three main steps of

hunting, searching for prey, encircling prey, and attacking prey.

The following two chapters will be the design and implementation of this project regarding

training neural networks with novel nature inspired techniuqes for medical prediction.

Chapter 3

Project Design

3.1 Introduction

Medical prediction has attracted a lot of attention in recent decades. Researchers have made

significant breakthroughs in this area with the rapid development of maching learning algo-

rithms and the most successful applications in this field. So far, they are using neural network-

based methods. Artificial neural networks or ANN have been very successful in various medical

prediction applications.

In our project, we were interested in creating a medical prediction system that uses ANNs.

To achieve our goal, In this chapter we propose a novel technique for training and optimizing

neural networks for better performance and prediction accuracy using the new nature based

optimization algorithm (Dragonfly algorithms), this method is called (ANN-DA) .

NOTE :In this project we will be training and optimizing feed-forward neural networks

from a simple multilayer perceptron MLP to deep convolutional neural networks (ResNet-50

CNN).that is why we chose the term ANN-DA because it generalize Artificial neural networks

optimized by dragonfly algorithm

62

CHAPTER 3. PROJECT DESIGN 63

3.2 System Design

3.2.1 Methodology

In our system, we are going to use a few of the image processing techniques such as pre-

processing, adjustments, and data augmentation etc.., also we gonna use an appropriate super-

vised machine learning methods both deep and shallow (simple MLP to deep CNN) which are

very suitable for medical prediction and image recognition. And for training and optimizing

our ANN we will be using the novel nature-based Agorithm called Dragonfly Algorithm (DA).

This technique allows us to make medical predcition which we want to accomplish by

creating and designing a descent training architecture seeking for better accuracy results.

3.2.2 Global system design

Generally, Our medical prediction system will be following a certain steps, as we represent the

global architecture in the below figure:

CHAPTER 3. PROJECT DESIGN 64

Figure 3.1: Global project design

CHAPTER 3. PROJECT DESIGN 65

As shown in the previous figure, our system have two main phases :

Front-end : (User Inteface) which is an important phase for the user where the interaction

and the requests of files are done, also the displaying and the stored data and results after getting

them from the back-end phase.

Back-end : is the most important phase in the system, during this process we will do the

data collecting including data pre-processing and augmentation, and then the training phase

which gives us as an output the model that we gonna use later-on the prediction phase, the

prediction model takes as input data and then results as output.

3.2.3 Detailed system design

Back-end

The back-end phase its the main body of the system where we gonna pass thought important

steps described in following :

1. The collection and Preparation of datasets.

2. Pre-processing the datasets.

3. Training.

4. Use of the output model.

Figure 3.2: Back-end phase design[3]

CHAPTER 3. PROJECT DESIGN 66

A-The collection and preparation of datasets In our system we are going to work on

four different type of diseases (breast cancer, heart disease, hepatitis, and Covid-19), for that

we need to collect and prepare the breast cancer, heart disease and hepatitis datasets for our

MLP, wich are textual datasets, and the COVID-19 dataset for our CNN which is a set of

Lungs X-Ray images

Breast cancer : This dataset was obtained from the University of Wisconsin Hospitals,

Madison from Dr. William H. Wolberg.[24]

• Number of Instances: 699 (Training set : 599, Testing set: 100)

• Number of Attributes: 10 plus the class attribute :

1. Sample code number id number

2. Clump Thickness 1 - 10

3. Uniformity of Cell Size 1 - 10

4. Uniformity of Cell Shape 1 - 10

5. Marginal Adhesion 1 - 10

6. Single Epithelial Cell Size 1 - 10

7. Bare Nuclei 1 - 10

8. Bland Chromatin 1 - 10

9. Normal Nucleoli 1 - 10

10. Mitoses 1 - 10

11. Class: (0 for benign, 1 for malignant)

Table 3.1: Breast cancer dataset attributes table[24]

• Class distribution: Benign: 458 (65.5%) Malignant: 241 (34.5%)

Heart disease : The dataset describes diagnosing of cardiac Single Proton Emission

Computed Tomography (SPECT) images. Each of the patients is classified into two categories:

normal and abnormal. The dataset of 267 SPECT image sets (patients) was processed to

extract features that summarize the original SPECT images. As a result, 44 continuous feature

pattern was created for each patient. The pattern was further processed to obtain 22 binary

feature patterns.

CHAPTER 3. PROJECT DESIGN 67

SPECT is a good data set for testing ML algorithms; it has 267 instances that are descibed

by 23 binary attributes

• Attribute information :

A1 : Overall diagnosis (1,0 binary, class attribute)

A2 : 0,1 (the partial diagnosis 1, binary)

Ai : 0,1 (the partial diagnosis i, binary)

A23 : 0,1 (the partial diagnosis 23, binary)

• Original owners : Krzysztof J. Cios, Lukasz A. Kurgan, University of Colorado at Denver,

Denver, CO 80217, U.S.A.

• Dataset is devides to :Training set 80 instances, and Testing set 187 instances[10]

Hepatitis : this dataset was optained from Carnegie-Mellon University in Pittsburgh,

Pennsylvania. Via DR. G.Gong[26]

• Number of Instances: 648 (Training set : 568 Testing set : 80)

• Number of Attributes: 20 (including the class attribute)

• Attribute information:

CHAPTER 3. PROJECT DESIGN 68

1. Class: DIE, LIVE

2. AGE: 10, 20, 30, 40, 50, 60, 70, 80

3. SEX: male, female

4. STEROID: no, yes

5. ANTIVIRALS: no, yes

6. FATIGUE: no, yes

7. MALAISE: no, yes

8. ANOREXIA: no, yes

9. LIVER BIG: no, yes

10. LIVER FIRM: no, yes

11. SPLEEN PALPABLE: no, yes

12. SPIDERS: no, yes

13. ASCITES: no, yes

14. VARICES: no, yes

15. BILIRUBIN: 0.39, 0.80, 1.20, 2.00, 3.00, 4.00

16. ALK PHOSPHATE: 33, 80, 120, 160, 200, 250

17. SGOT: 13, 100, 200, 300, 400, 500

18. ALBUMIN: 2.1, 3.0, 3.8, 4.5, 5.0, 6.0

19. PROTIME: 10, 20, 30, 40, 50, 60, 70, 80, 90

20. HISTOLOGY: no, yes

Table 3.2: Hepatitis Dataset attributes table[26]

COVID-19 dataset utilized in this research was curated by Dr. Joseph Cohen, a post-

doctoral fellow at the University of Montreal. Thanks to the article by Dr. Adrian Rosebrock

for making this chest radiograph dataset reachable to researchers across the globe and for pre-

senting the initial work using Deep Learning. we solely utilize the x-ray images. We should

be able to download the images from the article directly. After downloading the ZIP files

from the website and extracting them to a folder called ”Covid 19”, we have one sub-folder

per class in ”dataset”. Label ”Covid” indicates the presence of COVID-19 in the patient and

”normal” otherwise. Since, we have equal distribution (25 images) of both classes, there is no

class imbalance issue here.[16]

CHAPTER 3. PROJECT DESIGN 69

B-Pre-processing the datasets Data preprocessing is the first (and arguably most impor-

tant) step toward building a working Maching learning model. It’s critical . Data preprocessing

is a data mining technique that involves transforming raw data into an understandable format.

Real-world data is often incomplete, inconsistent, and/or lacking in certain behaviors or trends,

and is likely to contain many errors. Data preprocessing is a proven method of resolving such

issues.

In Real world data are generally incomplete: lacking attribute values, lacking certain

attributes of interest, or containing only aggregate data. Noisy: containing errors or outliers.

Inconsistent: containing discrepancies in codes or names.

Figure 3.3: Pre-Processing steps[3]

Step 1: Import Libraries

First step is usually importing the libraries that will be needed in the program. A library

is essentially a collection of modules that can be called and used. A lot of the things in the

programming world do not need to be written explicitly ever time they are required. There are

functions for them, which can simply be invoked. also the libraries we need to load datasets

and work on them.

Step 2: Import the Datasets

A lot of datasets come in different formats. We will need to locate the directory of the

CHAPTER 3. PROJECT DESIGN 70

datasets files at first (it’s more efficient to keep the dataset in the same directory your sys-

tem) read them using a methods which can be found in the libraries into the variables on

memory,furthermore used in following pre-processing steps.

Step 3: Taking care of Missing Data in Dataset

Sometimes you may find some data are missing in the dataset. We need to be equipped

to handle the problem when we come across them. Obviously you could remove the entire line

of data, of course we would not want to do that. One of the most common idea to handle

the problem is to take a mean of all the values of the same column and have it to replace the

missing data.

Step 4: Encoding categorical data

Sometimes our data is in qualitative form, that is we have texts as our data. We can

find categories in text form. Now it gets complicated for machines to understand texts and

process them, rather than numbers, since the models are based on mathematical equations and

calculations. Therefore, we have to encode the categorical data.

Figure 3.4: Example of categorial data[3]

Figure 3.5: Example of dummy data[3]

Step 5: Splitting the Dataset into Training set and Test Set

CHAPTER 3. PROJECT DESIGN 71

Now we need to split our dataset into two sets–a Training set and a Test set. We will

train our machine learning models on our training set, our machine learning models will try to

understand any correlations in our training set and then we will test the models on our test set

to check how accurately it can predict. A general rule of the thumb is to allocate 80% of the

dataset to training set and the remaining 20% to test set.

Step 6: Feature Scaling

The final step of data preprocessing is to apply the very important feature scaling. Feature

Scaling It is a method used to standardize the range of independent variables or features of

data. also to limit the range of variables so that they can be compared on common grounds.

Suppose we have this data-set:

Figure 3.6: Example of a dataset with undefined values[3]

In the figure above, notice the Age and Salary column. You can easily noticed Salary and

Age variable don’t have the same scale and this will cause some issue in your deep learning

model. Because most of the Deep learning models are based on Euclidean Distance.

Let’s say we take two values from Age and Salary column, Age- 40 and 27, Salary- 72000

and 48000.

One can easily compute and see that Salary column will be dominated in Euclidean Dis-

tance. And we don’t want this thing. So there are several ways of scaling your data

Re-scaling (min-max normalization) Also known as min-max scaling or min-max

normalization, is the simplest method and consists in re-scaling the range of features to scale

CHAPTER 3. PROJECT DESIGN 72

the range in [0, 1] or [-1, 1]. Selecting the target range depends on the nature of the data. The

general formula is given as:

where x is an original value, x’ is the normalized value. For example, suppose that we

have the students’ weight data, and the students’ weights span [160 pounds, 200 pounds]. To

re-scale this data, we first subtract 160 from each student’s weight and divide the result by 40

(the difference between the maximum and minimum weights).[3]

Mean normalization

where x is an original value, x’ is the normalized value.

Standardization The general method of calculation is to determine the distribution mean

and standard deviation for each feature. Next we subtract the mean from each feature. Then

we divide the values (mean is already subtracted) of each feature by its standard deviation.

Where x is the original feature vector, x = average(x) x = average(x) is the mean of that

feature vector, and sigma is its standard deviation.[3]

C- Training Its the important phase in our system, which we gonna train an Artificial neural

networks model with a specific architecture wheeling to achieve best accuracy result and less

data loss, Next can be used in Medical predition, the training phase could be divided into two

steps illustrated in the figure

CHAPTER 3. PROJECT DESIGN 73

Figure 3.7: Training phase

Step 1: Model architecture design

As we already know the maching learning method we are going to work with ”Artificial

neural networks” (MLPs and deep CNNs) , We design the model parameters with how much

layers, each layer size , each layer type and defining layer function , Also the layers placement.

Step 2: Training and Optimizing After getting the model architecture ready and

designed, And the pre-processed datasets, Now we configure the training and optimizing phase

: there are two cases

• Case 1 : training and optimizing the ANN usnig the Dragonfly algorithm

(ANN-DA) :

1. Initialize the dragonfly positions X (weights solutions) to 0.5.

2. Initialize the positions difference (∆X) to random numbers.

3. Calculate the fitness (Mean Squared Error MSE) values.

4. Start the static phase by updating the best fitness value and the best position found so

far using a greedy selection.

5. If the fitness value was better than the best fitness so far, then update the food source

CHAPTER 3. PROJECT DESIGN 74

with the weight solution.

6. If the fitness value was worse than the worst fitness so far, then update the enemy

source with the weight solution.

7. Start the dynamic phase by calculating the weights of separation, alignment, cohesion,

attraction to food, distraction from enemy, and positions difference (s, a, c, f, e, w, and ∆X).

8. Calculate the separation, alignment, cohesion, attraction to food, and distraction from

enemy values.

9. Update the dragonfly positions difference (∆X).

10. Update the dragonfly positions (weights).

11. Repeat step 3-10 until maximum iteration is reached.

Figure 3.8: ANN-DA[13]

• Case 2 : training and optimizing the ANN using the Grey Wolf Optimization

(ANN-GWO)

Figure 3.9: ANN-GWO[11]

CHAPTER 3. PROJECT DESIGN 75

Figure 3.10: ANN-GWO execution steps[25]

CHAPTER 3. PROJECT DESIGN 76

Front-end

In our front-end system, The main part for the user-backend interaction, Giving the ability of

exchanging data between user-backend, we gonna make simple access design for each part, and

each request will interact with the backend related to. The Figure bellow will illustrate the

whole mechanism.

Figure 3.11: Front-end system

3.3 Summary

In this chapter we presented the general and detailed design of our system which consists of

using nature based algorithms to train and optimize artificial neural networks from simple

multilayer perceptrons MLP to deep convolutional neural networks for medical purposes.

We focused on using Dragonfly algorithm DA and Grey wolf optimization GWO as trainers

and optimizers for artificial neural networks, in a technique called (ANN-DA) and (ANN-GWO),

to build a prediction model for medical purposes.

Chapter 4

Implementation and Results

4.1 Environment and developing tools

To Develop our system, we are going to use matlab R2020a and its various tools, toolboxes

and Add-Ons such as Simulink, Deep Learning Toolbox and ResNet-50 CNN Add-on. . . etc,

that’s for the backend part of the system, as for the front-end we are going to use Matlab App

Designer which was first introduced in 2018, App Designer offers cutting edge design technology

to build aesthetically pleasing user interfaces .

Figure 4.1: Matlab logo

77

CHAPTER 4. IMPLEMENTATION AND RESULTS 78

4.2 Back-end Implementation

In this part of the project we are going to develop the backend system where the training

and the processing happen using Matlab programming language and its various tools. Our

project is devided into two parts , the first part is an exprimental comparison between training

a Multilayer perceptron(MLP) using dragonfly algorithm(DA) and training a MLP using grey

wolf optimization (GWO), and the second part is training/optimizing a convolutional neural

network (CNN) using DA and comparing the results with other diffrent optimizer such as

ADAM and SGDM.

4.2.1 Training/Optimizing MLP using DA or GWO

Loading/preprocessing datasets to train/optimize and test

Cancer dataset After searching and downloading the benchmark datasets, we want to load

them into the memory so it can be pre-processed for training/optimizing and testing the MLP

model.

Figure 4.2: loading and preprossesing the cancer dataset for training the MLP

CHAPTER 4. IMPLEMENTATION AND RESULTS 79

Figure 4.3: Optimizing using DA and testing the Trained MLP for breast cancer dataset

Heart disease dataset

Figure 4.4: loading and preprossesing the Heart disease dataset for training the MLP

CHAPTER 4. IMPLEMENTATION AND RESULTS 80

Figure 4.5: Optimizing using DA and testing the trained MLP for heart disease dataset

Hepatitis dataset

Figure 4.6: loading and preprossesing the Hepatitis dataset for training the MLP

CHAPTER 4. IMPLEMENTATION AND RESULTS 81

Figure 4.7: Optimizing using DA and testing the Trained MLP for Hepatitis dataset

PS : in order to use GWO we just replace this line of code :

dBest score,Best pos,DA cg curvee=DA(SearchAgents no,Max iteration,lb,ub,dim,fobj,curve,app);

with:

dBest score,Best pos,GWO cg curvee=GWO(SearchAgents no,Max iteration,lb,ub,dim,fobj,curve,app)

4.2.2 Trainig/optimizing CNN using DA for predicting COVID-19

Loading the dataset (X-ray images)

Figure 4.8: loading the dataset of X-ray images

CHAPTER 4. IMPLEMENTATION AND RESULTS 82

Preprocessing the dataset

Figure 4.9: Preprocessing function

Training the CNN

In this project we are working with Resnet50 CNN, we are training and optimizing this CNN

using DA , and as a validation procedure we are implementing the K-fold cross validation(10

folds)

Figure 4.10: setting our folds, CNN architacture, and classes

CHAPTER 4. IMPLEMENTATION AND RESULTS 83

Figure 4.11: Training/Optimizing our cnn model using DA

4.3 Front-end

In the front-end part of the system, we want to create a simple design that can be easily used

by diffrent demographics , but also aesthetically pleasing, that is why we are using Matlab APP

designer, and the next figures will explain how our user interface works.

4.3.1 1st UI

we have 3 button :

• 1st button will open another UI where the user could apply experimental comparisons be-

tween DA and GWO by training/optimizing MLP’s and with different datasets (breast cancer,

heart disease and hepatitis).

• 2nd button will open a UI where the user browse for lungs X-ray image of a COVID-19

infected or non-infected specimen and predict the possibility of the invection, the user could

also analyse the architecture of our CNN model (resnet50).

CHAPTER 4. IMPLEMENTATION AND RESULTS 84

• 3rd button is the exit button.

Figure 4.12: 1st UI

4.3.2 2nd UI

train/optimize MLP with DA/GWO :

• The user will first choose the dataset and the training algorithm (DA or GWO).

• Click train to train MLP

• Wait for resutls

The results are :

o Classification rate(accuracy).

o The Mean squared error (MSE).

o MSE curve that changes in real time.

o A text area where the MSE value changes in real time.

o Training time.

CHAPTER 4. IMPLEMENTATION AND RESULTS 85

Figure 4.13: 2nd UI before results

Figure 4.14: 2nd UI after results

CHAPTER 4. IMPLEMENTATION AND RESULTS 86

4.3.3 3rd UI

predicting COVID-19 infection possibility.

The user browse for lungs X-ray image of a COVID-19 infected or non-infected specimen

and predict the possibility of the infection, the user could also analyse the architecture of our

CNN model (resnet50).

Figure 4.15: 3rd UI

• Predict COVID-19 button results :

Figure 4.16: COVID-19 Prediction results

CHAPTER 4. IMPLEMENTATION AND RESULTS 87

• Show CNN architecture button results :

Figure 4.17: resNet50 CNN architecture.

NOTE: after training, our Resnet50 CNN has 177 layers, that is why we could not capture

the full structure of the network, we discussed ResNet50 CNN in the 1st chapter for more details.

4.4 Expirements results

In this project we are using an Acer Aspire5 :

• Core i5 7th gen CPU.

• 8gigs of RAM.

• Nvidia Geforce MX940 GPU (2gigs of VRAM).

• 256gigs SSD for storage.

• Windows 10

CHAPTER 4. IMPLEMENTATION AND RESULTS 88

4.4.1 MLP-DA and MLP-GWO comparison

Breast cancer dataset results

No. MLP architecture Search Agents Iterations Training time Mean Squared Error(MSE) Accuracy(%)

Test 1 MLP-DA 20 50 25.06 sec 0.0088 90%

Test 2 MLP-DA 200 200 40min7sec 0.0001 99%

Test 3 MLP-GWO 21 50 21.8834 sec 0.0061878 75%

Test 4 MLP-GWO 200 200 38min 47sec 0.00023 93%

Table 4.1: Breast cancer MLP training tests

Heart disease dataset results

No. MLP architecture Search Agents Iterations Training time Mean Squared Error(MSE) Accuracy(%)

Test 1 MLP-DA 20 50 30.9617sec 0.15713 80.2139%

Test 2 MLP-DA 65 200 13min 0.0432 90%

Test 3 MLP-GWO 20 50 14.6687sec 0.1131 66.3102%

Test 4 MLP-GWO 65 200 11min 23sec 0.0563 75.420%

Table 4.2: Heart disease MLP training tests

Hepatitis dataset results

No. MLP architecture Search Agents Iterations Training time Mean Squared Error(MSE) Accuracy(%)

Test 1 MLP-DA 20 50 43.8655sec 0.096658 80%

Test 2 MLP-DA 45 100 3min30sec 0.06596 82.5%

Test 3 MLP-GWO 20 50 14.6687sec 0.092654 65%

Test 4 MLP-GWO 45 100 112.2229sec 0.08289 65%

Table 4.3: Hepatitis MLP training tests

Discussion of the results of training MLPs

• From Table.1(breast cancer dataset) we can notice that DA performs better than GWO

in training a multilayer perceptron (MLP) in terms of accuracy and MSE,although GWO is

CHAPTER 4. IMPLEMENTATION AND RESULTS 89

slightly faster than DA.

• From Table 2 and 3 we can see that MLP-DA gives better accuracy and slightly higher

MSE than MLP-GWO when the number of search agents and iteration is low, but MLP-GWO

is still a little bit faster than MLP-DA because GWO has less number of phases than DA.

• On the long run we can conclude that if we add more iteration an search agents to

MLP-DA it can be more effective and can out-perform MLP-GWO

4.4.2 CNN-DA and other CNN optimizers comparison (adam,sgdm. . . .)

comparison

4.4.3 Simple CNN training tests

We are first going test different well-known optimizers such as (adam,sgdm) and DA with a

simple CNN of 12 layers, here is its architecture :

Figure 4.18: Simple CNN with 12 layers

CHAPTER 4. IMPLEMENTATION AND RESULTS 90

No. CNN architecture Search agents Iterations Training time Loss Accuracy%

Test 1 CNN-sgdm N/A 30 1min30sec 16.29% 85.71%

Test 2 CNN-adam N/A 30 1min45sec 21.43% 78.57%

Test 3 CNN-DA 50 30 1min33sec 7.14% 92.86%

Table 4.4: simple CNN training tests

CNN-sgdm

Figure 4.19: simple cnn trained by sgdm optimizer

CNN-adam

Figure 4.20: simple cnn trained by adam optimizer

CHAPTER 4. IMPLEMENTATION AND RESULTS 91

CNN-DA

Figure 4.21: simple cnn trained by DA optimizer

4.4.4 Discussion of the results of training a simple CNN

• In terms of both accuracy and loss value and in a short period of time, we can obviously

notice that even with a simple CNN architecture CNN-DA dominates in comparison with the

CNN trained by ADAM optimizer or SGDM optimizer.

• This CNN architecture trained by dragonfly algorithm (CNN-DA) was able to achieve an

accuracy of 92.86% in just 1min32sec which is a decent percentage knowing that this CNN has

only 12 layers.

CHAPTER 4. IMPLEMENTATION AND RESULTS 92

4.4.5 Resnet50 CNN-DA and Resnet50 CNN-ADAM comparison

No. CNN architecture Search agents Iterations Training time Loss Accuracy%

Test 1 resNet50-DA 50 300 2h20min29sec 2% 98%

Test 2 resNet50-SGDM N/A 300 2h17min59sec 4% 96%

Table 4.5: resNet50 CNN training tests.

Resnet50 CNN-SGDM

Figure 4.22: ResNet50 CNN trained by SGDM optimizer(10th fold)

CHAPTER 4. IMPLEMENTATION AND RESULTS 93

Figure 4.23: Confusion matrix of a trained resnet50 CNN-SGDM for predicting COVID-19

Figure 4.24: AUC(area under the curve) of the trained CNN-SGDM for predicting COVID-19

(0.9904)

CHAPTER 4. IMPLEMENTATION AND RESULTS 94

ResNet50 CNN-DA

Figure 4.25: ResNet50 CNN trained by DA optimizer(10th fold)

Figure 4.26: Confusion matrix of a trained resnet50 CNN-DA for predicting COVID-19

CHAPTER 4. IMPLEMENTATION AND RESULTS 95

Figure 4.27: AUC(area under the curve) of the trained CNN-DA for predicting COVID-19

(1.000)

4.4.6 Discussion of results of training Resnet50 CNN

• Using deep learning Resnet50 CNN (see figure 52) we were able to build a COVID-19 predic-

tion model, and after many tests using different optimizer/trainers such as ADAM and SGDM

we come to the conclusion that Dragonfly algorithm DA is the more efficient and better perform-

ing algorithm in our case, which is image (X-Ray) classification for predicting the possibility of

COVID-19 infection . • The results we got by training a ResNet50 CNN with SGDM optimizer

were very promosing, we were able to 96% prediction accuracy in 2h17min59sec.

• We were able to reach an accuracy of 98% by training/optimizing ResNet50 with Drag-

onfly algorithm DA and using K-fold cross validation (10 folds) as a validation procedure

4.5 Limitaions

With the good results we had and achieved using the Deep learning technique (ResNet50

Convolution neural networks) to detect the possibility of COVID-19 infection from lungs X-

Ray images, and during testing the performance of our system, here are the limitations we

had:

CHAPTER 4. IMPLEMENTATION AND RESULTS 96

• Our model cannot detect COVID-19 infection possibility from CT scan images or any

ther forms of scanned images .

• Our model only works with X-Ray Images in order to detect COVID-19 infection possi-

bility.

• Our model does not detect other lung infections meaning if the prediction is not covid-19(

normal) does not mean the speciemen has healthy lungs.

4.6 Summary

The objective of this chapter was to present the general and detailed implementation of our

system which consists of using nature based algorithms to train and optimize artificial neural

networks from simple multilayer perceptrons MLP to deep convolutional neural networks for

medical purposes.

In this project, we focused on using Dragonfly algorithm as trainer and optimizer for

neural networks, and after many tests and comparisons with other optimizer such as Grey

wolf optimization which is also nature based and also other well known optimizers in the deep

learning realm such as ADAM and SGDM, DA proved to be very efficient, accurate and reliable

when it comes to training and optimizing neural networks.

General Conclusion

AI applications can be highly beneficial for healthcare in general to the extent that it can

revolutionise the entire healthcare system.

An AI system can have access to all this data, to make a quick diagnosis of conditions

that require a more detailed examination. AI systems can use machine learning to correlate

medical histories with various sensor readings, and learn to diagnose patients. With the records

of millions of patients, maybe the system will be able to make even better predictions than the

medical doctors. That would be one of the primary applications.

AI can also look at medical images, it could spot tumors where the physician might miss

it, which has already been shown in AI literature.

This research goal was to use train artificial neural networks using Dragonfly Algorithm

or ANN-DA (MLP-DA and CNN-da) to build a model that can predict diseases and compare

its results in a comprehensive study with other trainer and optimizers such as (Grey Wolf

Optimization ,ADAM, SGDM...etc) . To evaluate the proposed approaches, four medical real

datasets have been used. Then, the data was divided into training sets and testing sets. The

metrics taken into consideration in the results evaluation were accuracy, loss, MSE, AUC, and

confusion matrix. Our models were tested using accuracy as a fitness function.

The results showed that ANN-DA got the highest accuracy in all of the datasets and got

the highest AUC in all of the datasets.

Finally, based on the results we got, as a future work it is beneficial to test the proposed

approaches on other problems, and compare it with other optimization algorithms. and improve

our CNN model to predict whether the patient has COVID-19 or other anomolies or completely

healthy lungs other than just COVID or NO-COVID.

97

Bibliography

[1] Pooja Kamat Amita Malav Kalyani Kadam. “PREDICTION OF HEART DISEASE

USING K-MEANS and ARTIFICIAL NEURAL NETWORK as HYBRID APPROACH

to IMPROVE ACCURACY”. In: (2017).

[2] Sdiath Asiri. Machine Learning Classifiers. url: https://towardsdatascience.com/

machine-learning-classifiers-a5cc4e1b0623.

[3] Ishak barkat. “Character Recognition In The Image Using Deep Learning”. 2019.

[4] Tyler Elliot Bettilyon. introduction to deep learning. url: https://medium.com/tebs-

lab/introduction-to-deep-learning-a46e92cb0022.

[5] Nina Danielsen. Simple Image Classification with ResNet-50. url: https://medium.

com/@nina95dan/simple-image-classification-with-resnet-50-334366e7311a.

[6] Giuseppe Pirlo Donato Impedovo. “eHealth and Artificial Intelligence”. In: (2019).

[7] Bhumi Patel Sudipta Roy Himanshu KriplaniEmail. “Prediction of Chronic Kidney Dis-

eases Using Deep Artificial Neural Network Techniqu”. In: (2019).

[8] Introduction to Reinforcement Learning. url: http://www.sra.vjti.info/blog/

machine-learning/introduction-to-reinforcement-learning-in-2-minutes.

[9] Iztok Fister Iztok Fister jr Xin-She Yang. “A Brief Review of Nature-Inspired Algorithms

for Optimization”. In: (2013).

[10] Lukasz A. Kurgan Krzysztof J. Cios. SPECT Heart Data Set. url: https://archive.

ics.uci.edu/ml/datasets/SPECT+Heart.

[11] Sayedli mirjalili. “How effective is the GreyWolf optimizer in training multi-layer percep-

trons”. In: (2015).

98

BIBLIOGRAPHY 99

[12] Awhan Mohanty. Multi layer Perceptron (MLP) Models on Real World Banking Data.

url: https://becominghuman.ai/multi-layer-perceptron-mlp-models-on-real-

world-banking-data-f6dd3d7e998f.

[13] Nadim Obeid Nailah Al-Madi Mais Yasen. “Optimizing Neural Networks using Dragonfly

Algorithm for Medical Prediction”. In: (2018).

[14] Sergio Nesmachnow. “An overview of metaheuristics: Accurate and efficient methods for

optimisation”. In: (2014).

[15] ayush pant. Introduction to Machine Learning for Beginners. url: https://towardsdatascience.

com/introduction-to-machine-learning-for-beginners-eed6024fdb08.

[16] Adrian Rosebrock. Detecting COVID-19 in X-ray images with Keras, TensorFlow, and

Deep Learning. url: https://www.pyimagesearch.com/2020/03/16/detecting-

covid-19-in-x-ray-images-with-keras-tensorflow-and-deep-learning/.

[17] Ankit Sachan. Detailed Guide to Understand and Implement ResNets. url: https://cv-

tricks.com/keras/understand-implement-resnets/.

[18] Mirjalili Sayedli. “Dragonfly algorithm: a new meta-heuristic optimization technique for

solving single-objective, discrete, and multi-objective problems”. In: (2015).

[19] Mirjalili Sayedli. Grey Wolf Optimization. url: https://en.wikiversity.org/wiki/

Algorithm_models/Grey_Wolf_Optimizer.

[20] Shdangwal. A Brief and Simple Introduction to ResNet. url: https://medium.com/

@shdangwal/a-brief-and-simple-introduction-to-resnet-47432eff95b8.

[21] Kumar Shridhar. A Beginners Guide to Deep Learning. url: https://medium.com/

botsupply/a-beginners-guide-to-deep-learning-5ee814cf7706.

[22] Supervised vs. Unsupervised Machine Learning. url: https://medium.com/@chisoftware/

supervised-vs-unsupervised-machine-learning-7f26118d5ee6.

[23] Chieh-ChenWu Wen-ChunYehb. “Prediction of fatty liver disease using machine learning

algorithms”. In: (2019).

[24] Dr. WIlliam H. Wolberg. Breast Cancer Wisconsin (Original) Data Set. url: https:

//archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+original.

[25] Tikhamarine Yazid and Malik Anurag. “Estimation of monthly reference evapotranspira-

tion using novel hybrid machine learning approaches for solving single-objective, discrete,

and multi-objective problems”. In: (2019).

BIBLIOGRAPHY 100

[26] yvkrishna. ml-for-hepatitis-disease-prediction. url: https://github.com/yvkrishna/

ml-for-hepatitis-disease-prediction.

[27] Olga Nikolayeva Zidian Xie. “Building Risk Prediction Models for Type 2 Diabetes Using

Machine Learning Techniques”. In: (2019).

