
Democratic and Popular Republic of Algeria
Ministry of Higher Education and Scientific
Research
University of Mohamed Khider - BISKRA
Faculty of Exact Sciences, Natural Sciences and Life
Computer Science Department

Order Number:

Memoir
Presented to obtain the diploma of academic Master in

Computer Science
Option: Software Engineering and Distributed Systems

Software Architecture-Based Evolution for

Component/Service-Oriented Systems

By:

Amani KHADRAOUI

Defended the/..../2020, in front of the jury composed of:

.......................... ... President

Dr. Mohamed Lamine KERDOUDI MCB Supervisor

........................... ... Examiner

College Year: 2019 - 2020

République Algérienne Démocratique
et Populaire
Ministère de L’Enseignement Supérieur et
de La Recherche Scientifique
Université Mohamed Khider - BISKRA
Faculté des Sciences Exactes, des Sciences
de La Nature et de La Vie
Département d’Informatique

numéro d’Ordre:

Mémoire
Présenté pour obtenir le diplôme de master académique en

Informatique
Parcours: Génie Logiciel et Systèmes Distribuées

Évolution à Base d’Architecture pour Les

Systèmes Orientés Composants/Services

Par:

Amani KHADRAOUI

Soutenu le/..../2020, devant le jury composé de:

........................... ... Président

Dr. Mohamed Lamine KERDOUDI MCB Rapporteur

........................... ... Examinateur

Année Universitaire: 2019 - 2020

Acknowledgements

Before all, I thank Allah who gave me all the courage and the will to go till the end
for the accomplishment of this work.

I express my deep gratitude and sincere appreciation to my teachers and supervisors
Dr. Mohamed Lamine KERDOUDI

for the time he devoted to me and for his follow-up during the period of realization of
my project.

Also, I appreciate the support of Ph.D. student Ikram MAOUCHE for her time,
assistance, and guidance to realize this work.

My thanks are also extended to the members of the jury for honoring me with their
reading and their evaluation of my dissertation.

My finally thanks go to all my teachers at the Computer Science Department of
Biskra.

Dedication

I dedicate this work to my dear parents, my father Said and my mother Nabila for
their endless advice, encouragement, and support as a testimony of my gratitude, in

the hope that they will be proud.

To my dear brother Dr.Mohamed Amine.
To my lovely sisters Sara, Soumaya, Yousra, Sabrine, and Meriem Sirine.

To my great professor, Dr.Nesrine OUANNES may God have mercy on her.
To all my family and friends.

To all my dear ones.

Abstract

Software architecture is a high-level abstract description of the system and its compo-
nents. It plays an important role during the maintenance and evolution of the system,
which saves time, money and effort. The evolution of the software architecture can be
at design time (static evolution), in which there is no direct update or modification of
the system and its components, or can be at the time of system execution (dynamic
evolution), in which one can update and change both the architecture and the system
while removing / adding components during the execution of this system. This work
aims to help developers evolve their systems at runtime based on its dynamic soft-
ware architecture. We have proposed a process, it is applied on a component-based
application. The process first begins to recover the component-based architecture of
the system at runtime. The second step is to evolve the system by manipulating this
architecture. Changes to the architecture are reflected in the system.

Keywords: Software architecture, Software architecture evolution, Dynamic evo-
lution, Component-based architecture, OSGi.

Résumé

L’architecture logicielle est une description abstraite de haut niveau du système et de
ses composants. Elle joue un rôle important lors de la maintenance et de l’évolution du
système, ce qui permet d’économiser du temps, de l’argent et des efforts. L’évolution de
l’architecture logicielle peut être au moment de la conception (évolution statique), dans
laquelle il n’y a pas de mise à jour ou de modification direct du système et et de ses
composants, ou peut être au moment de l’exécution du système (évolution dynamique),
dans lequel on peut mettre à jour et changer l’architecture et le système à la fois tout
en supprimant/ajoutant des composants durant l’exécution de ce système. Ce travail
vise à aider les développeurs à évoluer leurs systèmes à l’exécution en se basont sur son
architecture logicielle dynamique. Nous avons proposé un processus, il est appliqué sur
une application basée composants. Le processus commence premièrement à récupérer
l’architecture basée composants du système au moment de son exécution. La deuxième
etape consiste à evoluer le système en manipulant cette architecture. Les changements
sur l’architecture est refléter sur le système.

Mots clés: Architecture logicielle, évolution de l’architecture logicielle, évolution
dynamique, architecture basée sur les composants, OSGi.

Software Architecture-Based Evolution for
Component/Service-Oriented Systems

Amani KHADRAOUI

September 15, 2020

Contents

Contents 1

List of Figures 3

General Introduction 7

1 Software Architecture and Software Architecture Evolution 10

1.1 Introduction . 10
1.2 Software Architecture . 10

1.2.1 Software Architecture Definition 10
1.2.2 Software Architectures Styles 11

1.2.2.1 Client-Server Architecture Style 11
1.2.2.2 Object-Oriented Architecture Style 13
1.2.2.3 Component-Based Architecture Style 14
1.2.2.4 Service-Oriented Architecture Style 16

1.2.3 Software Architecture Importance 17
1.3 Software Evolution . 18

1.3.1 Software Evolution Concept . 18
1.3.2 Software Evolution Laws . 19
1.3.3 Software Evolution Process . 20
1.3.4 Software Evolution Importance 20

1.4 Software Architecture Evolution . 20
1.4.1 Software Architecture Evolution Concept 21
1.4.2 Software Architecture Evolution Process 22

1.5 Conclusion . 22

2 Component-Based Software Development 25

2.1 Introduction . 25
2.2 Software Component Definition . 25

1

CONTENTS

2.3 Component Model Definition . 26
2.4 Component Models . 26

2.4.1 CORBA Component Model . 26
2.4.2 Enterprise Java Beans . 27
2.4.3 FRACTAL . 29
2.4.4 Open Services Gateway Initiative 30
2.4.5 Service Component Architecture 30

2.5 Open Services Gateway Initiative Technology 31
2.5.1 OSGi Framework . 32
2.5.2 OSGi Framework Implementations 32
2.5.3 OSGi Component . 33

2.5.3.1 Bundle Concept . 33
2.5.3.2 Bundle Lifecycle . 35

2.5.4 OSGi Services . 36
2.5.4.1 Service Component . 37
2.5.4.2 Service Component Lifecycle 37

2.5.5 OSGi Benefits . 39
2.6 Conclusion . 40

3 State of the Art 42

3.1 Introduction . 42
3.2 Component-Based Architecture Recovering 42
3.3 Service-Oriented Architecture Recovering 44
3.4 Software Architecture Static Evolution 45
3.5 Software Architecture Dynamic Evolution 46
3.6 Conclusion . 48

4 Software Architecture-Based Evolution for Component/Service Ori-

ented Systems 50

4.1 Introduction . 50
4.2 General Process . 50

4.2.1 Proposed Approach Overview 50
4.2.2 Proposed OSGi Meta-Model . 52

4.3 Software Architecture Recovering . 57
4.3.1 Static Analysis . 57
4.3.2 Dynamic Analysis . 57
4.3.3 Component Architecture Generation 57

2

CONTENTS

4.4 Dynamic Software Architecture Evolution 58
4.4.1 Graphical Visualization & Comprehension of Software Architec-

tures . 58
4.4.2 Update the Architecture . 58
4.4.3 Automatic Software Architecture Generation & Software Archi-

tecture As XMI File . 59
4.5 Conclusion . 59

5 Implementation and Case Study 61

5.1 Introduction . 61
5.2 ArchDynEvol Tool . 61

5.2.1 Architecture of ArchDynEvol 61
5.2.2 Development of Graphical Software Architecture Editor 63

5.2.2.1 OSGI EMF Meta-Model 63
5.2.2.2 Graphic Editor Creation 67

5.2.3 Recovering Software Architecture Components 73
5.2.4 Implementation of Evolution Actions 74

5.3 Case Study: Eclipse Based Applications 78
5.4 Conclusion . 84

General Conclusion 85

3

List of Figures

1.1 Client-Server Model. 12
1.2 Object-Oriented Architecture objects interact [Akm+17]. 13
1.3 Principles of Component-Based Architecture. 15
1.4 Service-Oriented Architecture. 16
1.5 Software Evolution Process [Gri]. 20
1.6 Software Architecture Evolution Process Graph [Bar13]. 22

2.1 A CCM Component [PPR03] . 27
2.2 Enterprise Java Beans Types . 28
2.3 SCA Component [Haa]. 31
2.4 Layering-OSGi [Allc]. 32
2.5 Bundle Contents [Hal+11]. 34
2.6 Example Bundle MANIFEST.MF file. 34
2.7 Example Bundle "plugin.xml" file. 35
2.8 Bundle Lifecycle [Allb] . 36
2.9 Operation of OSGi Services [Allc] . 37
2.10 Delayed Component Lifecycle [Blo] . 38
2.11 Immediate Component Lifecycle [Blo] 38

4.1 Our Proposed Approach for Software Architecture Based Evolution for
Component/Service Oriented Systems. 51

4.2 OSGi Meta-Model. 53

5.1 ArchDynEvol global Architecture. 62
5.2 Empty EMF Project Creation Steps. 63
5.3 Ecore Meta-Model Creation Steps. 64
5.4 The Properties View. 64
5.5 The Ecore model "newcompo.ecore". 65
5.6 GMF Dashboard View. 65

4

LIST OF FIGURES

5.7 "newcompo.genmodel" Creation Steps. 66
5.8 Source Code Generation Steps. 67
5.9 Tooling Definition Model Creation Steps. 68
5.10 Graphical Definition Model Creation. 68
5.11 Graphical Definition Model Creation. 69
5.12 Changement of Elements Figure Descriptor. 70
5.13 SVG Figure Creation. 70
5.14 Mapping Model Creation Steps. 71
5.15 Map Domain Model Elements. 72
5.16 Our Mapping Model "newcompo.gmfmap". 72
5.17 The "diagram" plugin and the model "newcompo.gmfgen". 73
5.18 XMI File of Recovered Software Architecture at Runtime. 75
5.19 The "objectContribution" Properties Section. 76
5.20 The "Start Action" and "Stop Action" Actions Properties Section. . . . 77
5.21 The Run Configuration of Our Application. 78
5.22 The Host OSGi Console. 79
5.23 Search Result for Plugin ID. 79
5.24 The Recovered Software Architecture in Our Graphic Editor. 80
5.25 Runtime Change State Menu and Its Options. 81
5.26 "RESOLVED" and "STOPPING" Warning Messages. 81
5.27 "ACTIVE" Warning Messages. 82
5.28 Runtime Add Components Menu (Services Options). 82
5.29 The System Services List. 82
5.30 Runtime Remove Components Menu (Services Options). 83
5.31 Add Plugin Action. 83

5

General Introduction

Today, software architecture plays an important role during software systems main-
tenance and the evolution process. It gives an abstract description of its structure with
system components information. It has the potential to provide a basis for managing
software evolution, as there are interconnections between the described purposes of soft-
ware engineering and software evolution [BCL12]. Architecture evolution can occur at
the specification (design) time that is called a static evolution or during the execution
of the system (at runtime) that is called dynamic evolution. If there are no changes
to the system architecture at runtime that the software system architecture is a static
architecture, this means there are no new connections between the system components,
and the existing components are can not destroy, but a dynamic architecture if the
system’s components and connections can be created and destroyed at runtime accord-
ing to the rules from design-time [Ryc17]. Software architecture evolution at runtime
may ultimately lead to incorrect architectural configurations that can lead to major
architectural violations at runtime [BR00]. In this work, we are interested to answer
to the question : How can we use dynamic software architectures to help developers for
evolving and maintaining their systems at runtime?

Based on the previous points, our main objective in this project is to propose a
software architecture based evolution approach for assisting developers to evolve their
systems at runtime. Our process is divided into two main sub-processes. The first one
titled "Software Architecture Recovering", its objective recovering component-based
architecture from applications at runtime. The second sub-process titled "Dynamic
Software Architecture Evolution", its objective makes the recovered architectures in-
teractive which allows developers to remove or update existing components (change
state, modify names...), add new components, services, interfaces, or connectors at run-
time. We apply our approach on the OSGi based applications. Indeed, we extended

7

General Introduction

an existing OSGi meta-model [Ker+19] to represent the OSGi software architectures
that are recovered at runtime. Where, the existing meta-model allows to represents the
systems only at design time. Finally, we developed a set of tools that offer: i) Recover-
ing software architecture at runtime. ii) Presenting the recovered software architecture
at runtime as an XMI file. iii) A graphical editor for visualizing and analyzing the
recovered software architecture at runtime. iv) Evolving the system via the software
architecture at runtime: Updating components, services, interfaces, etc. v) Automatic
software architecture generation (the new one).

This thesis is organized as follow:

• General Introduction: the presents the context, the problem, and the aim of
this work.

• Chapter 1: it presents the concepts and terminology of software architecture,
their different styles of systems presentation, and their importance. Next, we
present the concept of software evolution, and software architecture evolution.

• Chapter 2: introduces the software component and component model concepts.
It presents also an overview of the different technologies and components models.
Then, we introduce the Open Service Gateway Initiative technology (OSGi), one
of the component models.

• Chapter 3: presents the state of the art of software architecture evolution. We
present the existing techniques and works of software architecture evolution.

• Chapter 4: It presents our proposed approach for software architecture based
evolution for component/service-oriented systems. We start first with an overview
of the proposed approach. After that explain each step in detail. We present also
in this chapter our proposed OSGi meta-model with an explanation of all its
elements.

• Chapter 5: It introduces the global architecture of our tool ArchDynEvol, the
details of the implementation of our proposed approach, the frameworks and tools
that we have used. Finally, we provide an illustration of our tool via a concrete
example.

• General Conclusion: we conclude and we introduce some perspectives, and future
directions.

8

Chapter 1

Software Architecture and Software

Architecture Evolution

1.1 Introduction

Software architectures of large systems are important for understanding the structure
and behavior of a given systems during maintenance by offering an abstract representa-
tion of systems, and are important to the successful development of a software systems.
In this chapter, we present the concepts and terminology of software architecture, its
different styles of systems presentation, and its importance. Then, we present the
software evolution concept, Lehman’s laws, show an overview of its process, and its
importance. Finally, we introduce the software architecture evolution concept and how
can be affected by architectural dimensions, and its process.

1.2 Software Architecture

In this section, we present the different definitions of software architecture, its most
famous styles and its importance.

1.2.1 Software Architecture Definition

There are a different definition of software architecture, most famous and accepted one is
proposed by Rick Kazman et al. [BCK03]: "The software architecture of a system is the
set of structures needed to reason about the system, which comprise software elements,
relations among them The software architecture of a program or computing system is the
structure or structures of the system, which comprise software elements, the externally

10

CHAPTER 1. SOFTWARE ARCHITECTURE AND SOFTWARE
ARCHITECTURE EVOLUTION

visible properties of those elements, and the relationships among them. Architecture is
concerned with the public side of interfaces; private details of elements—details having
to do solely with internal implementation—are not architectural." From this definition:

• Software architecture is a set of structures. Structure is a set of components or
elements keep together by a relation. Structure has three categories (Module,
Component-And-Connector, Allocation) and this different structures are impor-
tant in the design, documentation and analysis of architectures.

• Software architecture is an abstract representation with more details about com-
ponents and how are used, related and interacted.

• Every system has a software architecture.

In summary, software architecture gives an abstract description of its structure.
This structure gives information about components of system. Software architecture
plays an important role in different aspects of software development and maintenance.

1.2.2 Software Architectures Styles

Software architecture styles are an abstract framework developed for a family of systems
to provide solutions to problems that arise in the software life cycle process. There are
set of principles and guidance’s to define the vocabulary of components and connectors
of that style [Akm+17]. Existing a different styles of software architectures, we give
here the most famous styles client-service architectures (CSA), object-oriented architec-
tures (OOA), component-based architectures (CBA) and service-oriented architectures
(SOA).

1.2.2.1 Client-Server Architecture Style

The client-server architecture style describes distributed systems that involve separate
client and server system, and a connecting network [Con+09]. Clients send requests to
Server and wait for a reply. A server receives a request from a client and sends it the
reply. Figure 1.1 represent the relationship between server and client [OLB16].

11

CHAPTER 1. SOFTWARE ARCHITECTURE AND SOFTWARE
ARCHITECTURE EVOLUTION

Figure 1.1: Client-Server Model.

Key Client-Server Architecture Principles

The main principles of client-server architecture style and how it works:

• The server is a service provider and the client is a consumer of services.

• Always the client who start the service request and the server passively waits for
clients requests.

• Sharing resources such that, a server treats several clients at the same time and
controls their access to resources.

• The data are managed centrally on the server. Clients remain individual and
independent.

Benefits Of The Client-Server Architecture Style

The most important benefits of this architectural style are [Con+09]:

• Higher Security: All data is stored on the server that offers a greater control
of security.

• Centralized Data Access: Data is on the server access and updates any data
are easier to administer.

• Ease of Maintenance: There are roles and responsibilities of a computing sys-
tem are distributed among several servers that are known to each other through
a network. This ensures that a client remains unaware and unaffected by a server
repair, upgrade or relocation.

12

CHAPTER 1. SOFTWARE ARCHITECTURE AND SOFTWARE
ARCHITECTURE EVOLUTION

Limits Of The Client-Server Architecture Style

The client-server architecture style limits are:

• Overloaded servers and that when there are frequent simultaneous client requests,
server severely get overloaded.

• Impact of centralized architecture and that when a critical server failed, client
requests are not accomplished.

1.2.2.2 Object-Oriented Architecture Style

Object-oriented architecture is a design paradigm based on the division of responsibili-
ties for an application or system into individual reusable and self-sufficient objects, each
containing the data and the behavior relevant to the object. Objects are discrete, inde-
pendent, and loosely coupled; they communicate through interfaces, by calling methods
or accessing properties in other objects, and by sending and receiving messages as Figure
1.2 shown.

Figure 1.2: Object-Oriented Architecture objects interact [Akm+17].

Key Object-Oriented Architecture Principles

The key principles of the object-oriented architecture are:

• Inheritance: Where objects can inherit the characteristics of other objects.

• Polymorphism: Giving an object multiple forms.

• Abstraction, is process where only relevant data is presented without any details.

13

CHAPTER 1. SOFTWARE ARCHITECTURE AND SOFTWARE
ARCHITECTURE EVOLUTION

• Encapsulation: The internal of an object can be hidden from others so that
only that object can manipulate its own state and variables.

Benefits Of Object-Oriented Architecture Style

The most important benefits of this architectural style are:

• Understandable: It maps the application more closely to the real world objects.

• Reusable: It provides for reusability through polymorphism and abstraction.

• Testable: It provides for improved testability through encapsulation.

Limits Of Object-Oriented Architecture Style

The object-oriented architecture style limits are [Akm+17]:

• Service integration and strong coupling between objects.

• Strong coupling between super classes and sub classes, swapping out super classes
can break sub classes.

1.2.2.3 Component-Based Architecture Style

Component based architecture is an architecture that focuses on decomposing soft-
ware design into functional or logical components with their own methods, events and
properties [Akm+17]. It provides a high level of abstraction.

Key Component-Based Architecture Principles

The main principles of component-based architecture style are:

• Extensible: A components can be extended from existing components to provide
new behavior.

• Replaceable: Components may be readily substituted with other similar com-
ponent.

• Encapsulated: Components exposes interfaces and hides the details of the in-
ternal processes or any internal variables or state.

• Independent: Components can be designed to have minimal dependencies on
other components.

14

CHAPTER 1. SOFTWARE ARCHITECTURE AND SOFTWARE
ARCHITECTURE EVOLUTION

• Reusable: Components are designed to be reused in different scenarios in differ-
ent applications.

• No Contexts Specific: Components are designed to operate in different envi-
ronment and contexts. Specific information such as state data should be passed
to the component instead of being included in or accessed by the component.

Figure 1.3 abstract the major principles of component based architecture style.

Figure 1.3: Principles of Component-Based Architecture.

Benefits Of Component-Based Architecture Style

The most important benefits of component-based architectural style are [Con+09]:

• Reduced Cost: The use of third-party components allows you to spread the
cost of development and maintenance.

• Ease of Development: Components implement well-known interfaces to provide
defined functionality allowing development without impacting other parts of the
system.

• Ease of Maintaining/Update: It is easy to maintain and update the imple-
mentation without affecting the rest of the system.

15

CHAPTER 1. SOFTWARE ARCHITECTURE AND SOFTWARE
ARCHITECTURE EVOLUTION

Limits Of Component-Based Architecture Style

The component-based architectural style limits are [Akm+17]:

• Complexity: While this style of architecture is designed to reduce complexity
of systems it introduces a different type of complexity in terms of component-to-
component interactions.

• Testing: Can be difficult if the component doesn’t come with its own execution
environment.

1.2.2.4 Service-Oriented Architecture Style

Service oriented architecture is an architecture style supports service orientation, and
it makes application functionality to be provided as a set of services, and the creation
of applications that make use of software services. Figure 1.4 represent the basic com-
ponents in service oriented architecture, service provider, service users or consumer and
service registry [Akm+17].

Figure 1.4: Service-Oriented Architecture.

Key Service-Oriented Architecture Principles

The main principles of this architectural style are [Con+09]:

• Autonomous Services: Each service is maintained, developed, deployed and
versioned independently.

• Distributable Services: Services can be located anywhere on a network, locally
or remotely.

16

CHAPTER 1. SOFTWARE ARCHITECTURE AND SOFTWARE
ARCHITECTURE EVOLUTION

• Loosely Coupled Services: Each service is independent of others, and can be
replaced or updated without breaking applications.

• Services Communication: Services share schemas and contracts when they
communicate, not internal classes.

Benefits Of Service-Oriented Architecture Style

The most important benefits of service-oriented architecture style are [Con+09]:

• Domain Alignment: Reuse of common services with standard interfaces in-
creases business and technology opportunities and reduces cost.

• Abstraction: Services are autonomous and accessed through a formal contract,
which provides loose coupling and abstraction.

• Interoperability: Because the protocols and data formats are based on industry
standard, the provider and consumer of the service can be built and deployed on
different platforms.

• Discoverability: Services can expose descriptions that allow other applications
and services to locate them and automatically determine the interface.

Limits Of Service-Oriented Architecture Style

Service-oriented architecture is not suitable for [BA+15]:

• Applications which are based on heavy data exchange.

• Application that has short living time span.

• Application which does not provide full functionality or does not work as a com-
plete system instead serve as a component and have limited scope.

• Application which is tightly coupled, where loose coupling is not recommended
or to consider it would be pointless.

1.2.3 Software Architecture Importance

With a high level of abstraction, software architecture represents the structure of sys-
tems including its components, properties, and interaction with one another. Virtually,
software architecture plays the role of a bridge between requirements and the implemen-
tation (code), so it can help in the following aspects of software development [Gar00]:

17

CHAPTER 1. SOFTWARE ARCHITECTURE AND SOFTWARE
ARCHITECTURE EVOLUTION

• Construction: Software architecture indicates the major system components, to
allow developers to focus on its implementation, relationships, and iteratively to
refine it.

• Analysis: Software architecture assists in the systems analysis aspect by system
consistency checking, conformance to constraints imposed by an architectural
style, conformance to quality attributes, dependence analysis, and domain-specific
analyses for architectures built-in specific styles.

• Understanding: Presenting the software architecture for a large system with a
high level of abstraction makes comprehend and understanding the system simple
and easier.

• Reuse: The software architecture allows determining the reusable components
of the system and the way to use them.

• Management: An evaluation of architecture leads to a much clearer under-
standing of requirements, implementation strategies, and potential risks to ensure
successful development.

• Evolution: Software architecture provides the structure of the system and ex-
poses the parts that need special attention for its evolution, this allows manage
the propagation of changes and to evaluate the costs associated with the evolution.

1.3 Software Evolution

Evolution is an essential nature of software systems, and it is considered a process of
progressive change in the properties of the evolving entity or that of one or more of its
constituent elements[MFP06]. We present in this section the concept, the laws, and the
process of software evolution and its importance.

1.3.1 Software Evolution Concept

Evolution of software recognized as one of the most problematic and challenging areas
in the field of software engineering. Lehman et al.[LR02] describes software evolution
phenomenon as following: "Software evolution is the collection of all programming ac-
tivities intended to generate a new version from an older and operational version." It
relates to how software systems change over time, and these changes may be in several
types [Gri]:

18

CHAPTER 1. SOFTWARE ARCHITECTURE AND SOFTWARE
ARCHITECTURE EVOLUTION

• Changing the system so that it runs in a different environment from its initial
implementation.

• Modifying the system to meet new requirements for adding new functionality.

• Changing the system to correct deficiencies to meet its requirements.

• Improving the performance and the structure of the system without changing
functional behavior.

1.3.2 Software Evolution Laws

Lehman has given also laws for software evolution generally applicable to large, tailored
systems developed by large organizations, they are [Gri; Tutb]:

• Continuing Change: Any software system that represents some real-world re-
ality undergoes continuous change or become progressively less useful in that
environment.

• Increasing Complexity: As the software system evolves, its structure becomes
more complex unless effective efforts are made to avoid this phenomenon.

• Conservation of Familiarity: During the active lifetime of the program, changes
made in the successive release are almost constant.

• Continuing Growth: The functionality provided by the systems must be con-
tinuously increased to maintain user satisfaction.

• Declining Quality: The quality of systems will decline unless modified to reflect
changes in their operating environment.

• Feedback Systems: Evolution processes incorporate multi-agent, multi-loop
feedback systems that must be treated as systems to achieve significant product
improvement.

• Large Program Evolution: Program evolution is a self-regulating process.
System attributes (such as size, the time between releases, and the number of
reported errors...) are approximately invariant for each system release.

• Organizational Stability: Over the life of a program, its development rate
is constant and nearly independent of the resource dedicated to developing the
system.

19

CHAPTER 1. SOFTWARE ARCHITECTURE AND SOFTWARE
ARCHITECTURE EVOLUTION

1.3.3 Software Evolution Process

Software evolution processes differ depending on the type of software being maintained,
the development processes used in an organization, and the skills of the people involved
[Gri].

Figure 1.5: Software Evolution Process [Gri].

Figure 1.5 shows an overview of the software evolution process. It includes the
fundamental activities of change analysis, release planning, system implementation, and
releasing a system to customers. The cost and impact of these changes are evaluated
to find out how much the system will be affected by the change and how much it will
cost to implement the change. Planning for a new version of the system is linked to
the acceptance of the proposed changes, with consideration to fault repair, adaptation,
and new functionality. The changes are implemented and validated, and a new version
of the system is released. The process then iterates with a new set of changes proposed
for the next release [Rah].

1.3.4 Software Evolution Importance

Software evolution is important because organizations have invested large amounts of
money in their software and are now completely dependent on these systems. Their
systems are critical business assets and they have to invest in system change to main-
tain the value of these assets. Consequently, most large companies spend more on
maintaining existing systems than on new systems development [Gri].

1.4 Software Architecture Evolution

Software architecture evolution is the process of maintaining and adapting an existing
software architecture to meet changes in requirements and environment instances of

20

CHAPTER 1. SOFTWARE ARCHITECTURE AND SOFTWARE
ARCHITECTURE EVOLUTION

industrial-scale architecture evolution often take months or years to complete and entail
the expenditure of substantial resources.
In this section, we present the concept of software architecture evolution, its process,
and its importance.

1.4.1 Software Architecture Evolution Concept

Jeffrey M.Barnes defined software architecture evolution as [Bar12]: "Software architec-
ture evolution is a phenomenon that occurs in virtually all software systems of significant
size and longevity. As a software system ages, it often needs to be structurally redesigned
to support new features, incorporate new technologies, adapt to changing market condi-
tions, or meet new architectural quality requirements. In addition, many systems over
the years tend to accrue a patchwork of architectural workarounds, makeshift adapters,
and other degradations in architectural quality, requiring some sort of architectural over-
haul to address." Architecture evolution can occur at the specification time that called
a static evolution or at the system execution time that called dynamic evolution.

• Static Evolution: Static evolution is principally concerned with structuring
systems as separated abstractions, and then evolving these abstractions offline.
By identifying all dependencies, and isolating those abstractions that are indepen-
dent, static evolvability enables individual application requirements to be changed
in isolation [Fal+04].

• Dynamic Evolution: Dynamic evolution means that software architectures can
be modified and those changes can be enacted during the system’s execution. This
behavior is most commonly known as runtime evolution or reconfiguration. The
typical evolution operations for the dynamic evolution of software architectures
include adding, removing, and updating components or connectors, changing the
architecture topology by adding or removing connections between components
and connectors [XZ10].

Evolution of software architecture can be affect by some architectural dimensions [Lea]:

• Technical: The implementation parts of the architecture (the frameworks, de-
pendent libraries) and the implementation language(s).

• Data: Database schemas, table layouts, optimization planning.

• Operational/System: Concerns how the architecture map to existing physical
and/or virtual infrastructure (servers, switches, cloud resources).

21

CHAPTER 1. SOFTWARE ARCHITECTURE AND SOFTWARE
ARCHITECTURE EVOLUTION

1.4.2 Software Architecture Evolution Process

The software architecture evolution process is a plan as a series of evolution states and
evolution transitions leading from the initial architecture to the target architecture. An
evolution path is a plan described in such a way. Figure 1.6 shows an evolution process
graph of software architecture. In which, the software architecture is the node in the
graph and the possible evolutionary transitions are the edges.

Figure 1.6: Software Architecture Evolution Process Graph [Bar13].

In any evolution possible scenario, there may be many evolution paths that seem
feasible. The task of the evolution architect is to consider these paths and select the
one that is optimal of evolving the system from the initial architecture to the target
architecture.

1.5 Conclusion

In this chapter, we talked about the terminology of software architecture, and the most
famous styles of software architecture, client-server architecture (CSA), object-oriented
architecture (OOA), component-based architecture (CBA) and service oriented archi-
tecture (SOA) with main principles, benefits and limits of every style. In this work, we
adopt the component-based architecture style. Also, we talked about software architec-
ture importance. Then, we presented the concept, the eight Lehman’s laws of software
evolution, law of continuing change, increasing complexity, conservation of familiarity,
continuing growth, declining quality, feedback systems, large program evolution, and
law of organizational stability. Also, we took an overview of software evolution process

22

CHAPTER 1. SOFTWARE ARCHITECTURE AND SOFTWARE
ARCHITECTURE EVOLUTION

and its importance. In the last part, we talked about software architecture evolution
concept and their kinds, static and dynamic evolution. Also, we talked about how the
evolution of software architecture can be affect by technical or data side. Then we
took an overview of its process. In this work, we are more interested in the dynamic
evolution of software architecture.

23

Chapter 2

Component-Based Software

Development

2.1 Introduction

The primary objective of component-based software development is to ensure compo-
nent reusability. A component encapsulates functionality and behaviors of a software
element into a reusable and deployable binary unit.
In this chapter, we present the software component and component model concepts and
take an overview of the different components technologies or models. Then, we intro-
duce the Open Service Gateway Initiative technology (OSGi), one of the component
models. Also, we present its components, services, and what are its benefits.

2.2 Software Component Definition

There is tow definitions of a software component, the first one focuses on characteri-
zation of a software component of Szyperski [Szy02]: "A software component is a unit
of composition with contractually specified interface and explicit context dependencies
only. A software component can be deployed independently and is subject to composi-
tion by third party." The second definition of Heineman and Councill is more general
[HC01] : "A software component is a software element that conforms to a component
model and can be independently deployed and composed without modification according
to a composition standard." From this tow definitions, we conclude:

• A component is a composition unit.

• A component can be deployed on different platforms.

25

CHAPTER 2. COMPONENT-BASED SOFTWARE DEVELOPMENT

• A component may be a subject to composition by a third party.

• A component is a software object, intended to interact with other components,
encapsulating certain functionality or a set of functionalities.

• A component has an obviously defined interface and conforms to a recommended
behavior common to all components with an architecture.

2.3 Component Model Definition

Heineman and Councill define a component model as follows [HC01]: "A component
model defines a set of standards for component implementation, naming, interoperabil-
ity, customization, composition, evolution and deployment." From this definition, a
component model is the set of rules and abstraction that allow the characterization,
implementation and deployment of software components. There are tow component
model types, flat component models and hierarchical component models.
The hierarchical model is more flexible and extensible than the flat model, which is
indeed a particular case of hierarchical model. This type of model have another prop-
erty, it is possible to compose new components from existing native components, also
it support declarative specification of composite components [AME12].

2.4 Component Models

There are a lot of component model, in this work we just present five models, CORBA
Component Model (CCM), Enterprise Java Beans (EJB), Fractal Component Model,
the Open Services Gateway Initiative (OSGi) and Service Component Architecture
(SCA).

2.4.1 CORBA Component Model

Common Object Request Broker Architecture or CORBA component model (CCM) is
a basic model of OMG’s (Object Management Group) component specification. The
CCM specification defines an abstract model, a programming, a packaging model, a
deployment model, an execution model and a meta-model defines the concepts and the
relationships of the other models [Crn+11].

26

CHAPTER 2. COMPONENT-BASED SOFTWARE DEVELOPMENT

Figure 2.1: A CCM Component [PPR03]

A component in CCM is composed of a set of ports, through this ports component
communicate with outside world.
Figure 2.1 represent a component of CCM and the kinds of ports. There are five kinds
of ports [PPR03]:

1. Facets: are named connection point that provide services available as interfaces.

2. Receptacles: are named connection point to be connected to a facets. They
describe the component’s ability to use a reference supplied by some external
agent.

3. Event Source: are named connection points that emit typed events to one or
more interested event customers, or to an event channel.

4. Event Sinks: are named connection points into which events of a specified type
may be pushed.

5. Attributes: are named values exposed through read and write operations.

CCM uses a separate language IDL (Interface Definition Language) for the compo-
nent specification, also provides a Component Implementation Framework (CIF) which
relies on Component Implementation Definition Language (CIDL) and describes how
functional and nonfunctional parts of a component should interact with each other
[Crn+11].

2.4.2 Enterprise Java Beans

Enterprise Java Beans (EJB) developed by Sun MicroSystems envisions the construction
of object-oriented and distributed business applications. It provides a set of services,
such as transactions, persistence, concurrency and interoperability.

27

CHAPTER 2. COMPONENT-BASED SOFTWARE DEVELOPMENT

EJB is an architecture for setting up program components, written in the java pro-
gramming language, that run in the server parts of a computer network that uses the
client/server model [Rou], also it is like CORBA component model uses a flat compo-
nent model [Crn+11].

Figure 2.2: Enterprise Java Beans Types

EJB offer three types of components as 2.2 shown, and they namely:

• Session Bean: It implement a conversation between a client and the server side.
Also, it execute a particular business task on behalf of a single client during a
single session. There are tow types of session bean [WOR; Tuta]:

1. Stateful Session Bean: A stateful bean represents a conversational session
with a particular client.

2. Stateless Session Bean: A stateless bean represents a conversation with the
client without storing any state.

• Entity Beans: Entity beans are persistent objects. They typically represent
business entities, such as customers, products, accounts and orders. Each entity
bean has an underlying table in a relational database. The state of an entity
bean is persistent, transactional and shared among different clients. There are
tow types of entity beans:

1. Container-Managed Persistence (CMP): In a CMP entity bean, the EJB con-
tainer manages the bean’s persistence according to the data-object mapping
in the deployment descriptor. Any change in the entity bean’s state will be
automatically saved to the database by the container.

28

CHAPTER 2. COMPONENT-BASED SOFTWARE DEVELOPMENT

2. Bean-Managed Persistence (BMP): A BMP entity bean has to manage both
the database connections and all the changes to the bean’s state.

• Message Driven Beans: Message driven beans are used in context of JMS
(Java Messaging Service). It can consumes JMS messages from external entities
and act accordingly.

Each of these beans is deployed in an EJB container which is in charge of their man-
agement at runtime (start, stop, passivation or activation).

2.4.3 FRACTAL

FRACTAL is an hierarchical component model developed by France Telecom, R&D
and INRIA [Crn+11]. It is a general component model which is intended to implement,
deploy and manage complex software systems, including in particular operating systems
and middleware. The main characteristic of fractal model are [Bru+04]:

• Introspection Capabilities: Introspection capabilities to monitor a running
system.

• Re-configuration Capabilities: To deploy and dynamically configure a system.

• Composite Components: To have a uniform view of applications at various
levels of abstraction.

• Shared Components: To model resources and resources sharing while main-
taining component encapsulation.

FRACTAL is defined as an extensible system of relations between selected concepts,
where components can be endowed with different forms of reflective features "con-

trol".The following are examples of useful forms of controllers [Bru+04]:

• Attributes Controller: An attribute is a configurable property of a component.
A component can provide an AttributeController interface to expose getter and
setter operations for its attributes.

• Binding Controller: A component can provide the BindingController interface
to allow binding and unbinding its client interfaces to server interfaces.

• Content Controller: A component can provide the ContentController interface
to list, add and remove sub-components in its contents.

29

CHAPTER 2. COMPONENT-BASED SOFTWARE DEVELOPMENT

• Life-cycle Controller: A component can provide the LifeCycleController in-
terface to allow explicit control over its main behavioral phases, in support for
dynamic reconfiguration, this interface include methods to start and stop the
execution of the component.

An interface is an access point to a component, that supports a finite set of operations.
There are tow kinds of interfaces [Bru+04]:

• Service Interfaces: Which this interfaces correspond to access points accepting
incoming operation invocations.

• Client Interfaces: Which this interfaces correspond to access points supporting
outgoing operation invocations.

The main purpose of Fractal is to provide an extensible, open and general component
model that can be tuned to fit a large variety of applications and domains.

2.4.4 Open Services Gateway Initiative

Open Services Gateway initiative (OSGi) is a set of specifications that define a dynamic
component system for Java [Allc], in which these specifications enable components
to hide their implementations from other components while communicating through
services, which are objects that are explicitly shared between components [Alla]. OSGi
component is named bundle or plugin, interact with each other via an Application
Programming Interface (API). The API is defined as a set of classes and methods
which can be used from other components. A component also has a set of classes and
methods which are considered as internal to the software component.
The components can be dynamically installed, activated, de-activated, updated and
uninstalled [Gmb]. The OSGi specification has several implementations, for example
Eclipse Equinox and Apache Felix. In the next section, we will talk about OSGi with
more detail.

2.4.5 Service Component Architecture

Service component architecture (SCA) is a set of specifications released by the OSOA
(Open Service Oriented Architecture), which describe a model for building applications
and systems using a Service Oriented Architecture (SOA). SCA is based on the idea
that business function is provided as a series of services, which are assembled together
to create solutions that serve a particular business need. Also, SCA provides a model

30

CHAPTER 2. COMPONENT-BASED SOFTWARE DEVELOPMENT

both for the composition of services and for the creation of service component including
the reuse of existing application function within SCA compositions [Geya].

Figure 2.3: SCA Component [Haa].

Figure2.3 shown the structure of a SCA component, and it consists of [Geyb]:

• Service: It represent an addressable interface of the component.

• Reference: It represent a requirement that the component has a service.

• Properties: A property allows for the configuration of component with externally
set values.

• Implementation: It represent characteristics inherent to the component itself.

2.5 Open Services Gateway Initiative Technology

Open Service Gateway Initiative or OSGi is a specification defining a Java based compo-
nent system. The first version of OSGi dates in Mars 1999 by the OSGi Alliance (which
includes IBM, Oracle, Samsung, Nokia, · · ·) [Tib]. The OSGi Alliance’s framework spec-
ification defines the proper behavior of the framework, which gives a well-defined API
to program against [Hal+11].

31

CHAPTER 2. COMPONENT-BASED SOFTWARE DEVELOPMENT

2.5.1 OSGi Framework

The OSGi framework has a central role in OSGi-based applications creation considering
it’s the application’s execution environment [Hal+11], that is means the framework is
the runtime that implements and provides OSGi functionality. The functionality of the
Framework is divided in the following layers as the figure 2.4 is shown:

Figure 2.4: Layering-OSGi [Allc].

• Bundles: Bundles are the name of OSGi components, also called plugins.

• Security: The security layer is an optional layer that underlies the OSGi frame-
work that handles the security aspects.

• Services: The service layer concerned with interaction and communication among
modules, specifically the components contained in them.

• Life-Cycle: This layer concerned with providing execution-time module man-
agement and access to the underlying OSGi framework.

• Modules: This layer that defines how a bundle packaging and sharing code.

• Execution Environment: The execution environment layer defines the avail-
able methods and classes in a specific platform.

2.5.2 OSGi Framework Implementations

The OSGi specification enables the creation of multiple implementations of the core
framework and that by several open-source and commercial entities [MAV10]. There
are four open-source implementations of the framework are the most famous [Allc]:

32

CHAPTER 2. COMPONENT-BASED SOFTWARE DEVELOPMENT

• Apache Felix: Felix developed by Apache1 and it provides framework imple-
mentation in addition to many service implementation.

• Eclipse Concierge: Concierge2 is an optimized OSGi framework implementa-
tions, it ideal for mobile or embedded devices. It developed as part of the flowSGi
project, which is an ongoing research project at Institute for Pervasive Comput-
ing, ETH Zurich.

• Eclipse Equinox: Equinox is the reference implementation for the core frame-
work specification and several service specifications, developed by IBM and sup-
plied under the Eclipse Public License (EPL3). It is the base runtime for all Eclipse
tooling, rich client and service-side.

• Knopflerfish: Knopflerfish4 provides framework implementation, open-source
OSGi SDK and runtime container. Led and maintained by Makewave.

2.5.3 OSGi Component

The OSGi specification defines a component model to be executed in the framework,
called bundle or plugin in Eclipse terminology.

2.5.3.1 Bundle Concept

Bundle is a JAR file with extra meta-data (META-INF/MANIFEST.MF), class files
and their related resources (plugin.xml) as the figure 2.5 is shown.
There are two things that make bundles stronger than standard JAR files [Hal+11]:

• Ability to declare on which external packages the bundles depend and they called
imported packages.

• Ability to declare which contained packages are externally visible and they called
exported packages.

1Apache: http://felix.apache.org/
2Concierge: https://www.eclipse.org/concierge/
3EPL: https://www.eclipse.org/equinox/
4Knopflerfish: https://www.knopflerfish.org/

33

http://felix.apache.org/
https://www.eclipse.org/concierge/
https://www.eclipse.org/equinox/
https://www.knopflerfish.org/

CHAPTER 2. COMPONENT-BASED SOFTWARE DEVELOPMENT

Figure 2.5: Bundle Contents [Hal+11].

Meta-Data File

The meta-data file specified enables the OSGi Framework to process the modular as-
pects of the bundle, and it called META-INF/MANIFEST.MF file [Cen]. Figure 2.6
shows an example bundle manifest file (META-INF/MANIFEST.MF).

Figure 2.6: Example Bundle MANIFEST.MF file.

The most important information can be found in the bundle manifest file:

• Bundle-ManifestVersion: Indicated the OSGi specification to use for reading
this bundle.

• Bundle-Name: A name was given by the developer.

34

CHAPTER 2. COMPONENT-BASED SOFTWARE DEVELOPMENT

• Bundle-SymbolicName: Bundle name (unique).

• Bundle-Version: The version of bundle.

• Bundle-ClassPath: Specifies where to load the bundle classes, default is (.).

• Bundle-RequiredExecutionEnvironment: Specify the version of Java re-
quired to run the bundle.

• Export-Package: The visible packages are declared out of the bundle.

• Require-Bundle: The list of required bundles.

• Bundle-ActivationPolicy: Allow a bundle to specify a boot strategy.

• Bundle-Activator: Define the name of the executable class in the bundle.

• Import-Package: The external dependencies of the bundle that the OSGi Frame-
work uses to resolve the bundle.

Resources File

From the resource file, we take plugin.xml, describes how the bundle extends the plat-
form, what extensions it publishes itself, and how it implements its functionality [FOU].
In a separate Java JAR file can found the implementation code, is loaded when the bun-
dle has to be run. Figure 2.7 example bundle plugin.xml file.

Figure 2.7: Example Bundle "plugin.xml" file.

2.5.3.2 Bundle Lifecycle

The lifecycle explains how bundles management dynamically in the OSGi framework.
Figure 2.8 shows the possible bundle states transitions.

35

CHAPTER 2. COMPONENT-BASED SOFTWARE DEVELOPMENT

Figure 2.8: Bundle Lifecycle [Allb]

The bundle can be in one of these six states [Allb]:

• ACTIVE: A bundle is in ACTIVE state meaning is running now.

• RESOLVED: A bundle is in RESOLVED state meaning is ready to be started
or has stopped.

• INSTALLED: A bundle is in INSTALLED state meaning is installed in the
framework but is not yet resolved.

• STARTING: A bundle is in STARTING state meaning is in the process of
starting, the bundle will stay in the STARTING state until the bundle is activated.

• STOPPING: A bundle is in STOPPING state meaning is in the process of
stopping and moving to the RESOLVED state.

• UNINSTALLED: A bundle is in UNINSTALLED state meaning can not move
into another state and may not be used.

The bundle changes its state automatically these can be safely added to and removed
from the framework without restarting the application process or by the developer
manually.

2.5.4 OSGi Services

OSGi services are Java interfaces representing a conceptual contract between service
providers and service clients [Hal+11]. The services are registered in the Service Reg-
istry so that they can use or consume through other bundles.

36

CHAPTER 2. COMPONENT-BASED SOFTWARE DEVELOPMENT

Figure 2.9: Operation of OSGi Services [Allc]

Figure 2.9 show how OSGi services work, so that a bundle "A" can register/publish
a service implementation or multiple services at the same time, another bundle "B"
can consume it, and that by finding and getting this service(s) from the OSGi Service
Registry.

2.5.4.1 Service Component

A Java class inside a bundle that is declared via component description in an XML doc-
ument and managed by a Service Component Runtime [Blo]. The Service Component
Runtime or SCR is an implementation of the OSGi declarative services specification
offering a service-oriented component model to simplify OSGi-based development [Ale].
There are three types of component [Blo]:

• Delayed Component: A Delayed Component needs to specify a service and
activation does not occur until a service object is requested. Therefore, class
loading and copying can be delayed until that time.

• Immediate Component: An Immediate Component does not need to specify
a service and they are activated as soon as their dependencies are satisfied.

• Factory Component: A Factory Component creates and activates new Com-
ponent Configurations on request.

2.5.4.2 Service Component Lifecycle

Service Components have their own lifecycle, which is contained in the bundle lifecycle
(see Figure 2.8).
Figures 2.10 and 2.11 shows the possible Delayed/Immediate Component states tran-
sitions.

37

CHAPTER 2. COMPONENT-BASED SOFTWARE DEVELOPMENT

Figure 2.10: Delayed Component Lifecycle [Blo]

Figure 2.11: Immediate Component Lifecycle [Blo]

From these two figures, the possible components states are:

• Disabled: All components are disabled when the bundle is stopped.

• Enabled: The component’s initial enabled state is defined by the component
description.

• Satisfied: The component is in a satisfied state when it is enabled and the
required reference services are available.

• ACTIVE: The component has been activated due to immediate activation or,
in case of a Delayed Component, it was requested.

• REGISTERED: Only the Delayed Components can be in the REGISTERED
state if it satisfied and not yet requested.

38

CHAPTER 2. COMPONENT-BASED SOFTWARE DEVELOPMENT

• UNSATISFIED: The component is not ready to start or is not satisfied any-
more.

2.5.5 OSGi Benefits

OSGi provides a stable and evolving technology platform for developing open-source
projects with a set of benefits [Alld]:

• Reduced Complexity: OSGi bundles hide their internals from other bundles
and just communicate through defined services, that reduce the number of bugs
and make bundles simpler to develop through defined interfaces.

• Dynamic Updates: Dynamic OSGi component model allows bundles to change
their states (installed, started, stopped, updated, and not installed) without bring-
ing down the whole system.

• Reuse: The OSGi component model allow easily to use other components in an
application.

• Real World: Dynamic OSGi framework allows the update of bundles quickly
with a dynamic services movement that makes the services a perfect match for
many real world scenarios.

• Simple: Despite the powerful dependency management, configuration, and dy-
namics, OSGi code looks almost identical to classic Java code.

• Runs Everywhere: This can only be true if:

1. OSGi APIs should not use classes not available in all environments.

2. The bundle should not start if it contains a code that is not available in the
execution environment.

• Non Intrusive: This strategy makes application/bundle code easier to port to
another environment.

• Secure: The OSGi framework is loading the classes from bundles and it knows
for each bundle exactly which bundle provides these classes, which is a significant
speed up factor at startup.

39

CHAPTER 2. COMPONENT-BASED SOFTWARE DEVELOPMENT

2.6 Conclusion

In this chapter, we presented the different concepts of the software component and the
component model. Also, we took an overview of the most famous component models,
started with Common Object Request Broker Architecture Component Model (CO-
BRA), Enterprise Java Beans (EJB), FRACTAL, Open Services Gateway Initiative
(OSGi) and Service Component Architecture (SCA).
In this work our interested in OSGi technology, so we presented more detail and expla-
nation on this technique. First, the OSGi framework and the famous implementations of
this framework, like Apache Felix, Eclipse Concierge, Eclipse Equinox, and Knopfler-
fish. Then we talked about bundle (or plugin) the OSGi component and what it’s
contents(meta-data file, resources file and class files) and it’s lifecycle. Also, we took an
overview of OSGi Services, it’s components and lifecycle. Finally, we presented OSGi
benefits that make it a successful technology in the dynamic module system.

40

Chapter 3

State of the Art

3.1 Introduction

We present in this chapter the state of the art of dynamic software architecture evo-
lution approaches. In this work, we are interested in dynamic software evolution for
component/service-oriented systems. First, we present works about software architec-
ture recovering (component-based and service-oriented architecture). Then, we talk
about existing works of software architecture static and dynamic evolution.

3.2 Component-Based Architecture Recovering

There is many existing component-based architecture recovering works in the literature
such as [LZN04; Cha+08; ESH10; ML16; Lut+17] in which show a different proposed
approaches.

Chung-Horng Lung et al., [LZN04] presented an approach that can be applied to
software partitioning, recovery, restructuring, and decoupling. This approach can sup-
port a rapid and effective evaluation of a system based on the relationships between
components and features, or component interdependencies at various levels of abstrac-
tion. System partitioning is usually performed by designers based on their experiences.
Also, it can help designers quickly obtain an outline of the architecture or design and
provide an alternative view. More evaluations could then be conducted to identify po-
tential problems early in the development process. The architecture recovered from the
approach, if different from the current or existing design, could also force the designers
to reason and compare the differences, and potentially restructure the system.

42

CHAPTER 3. STATE OF THE ART

Sylvain Chardigny et al., [Cha+08] proposed an approach called ROMANTIC for
the extraction of a component-based architecture from an object-oriented system. The
main idea of this approach is to propose a quasi-automatic process of architecture recov-
ery based on semantic and structural characteristics of software architecture concepts.
These characteristics guide the partitioning of the system classes and the abstraction of
each shape in a component. The extraction process split into two steps, the first one is
to define a correspondence model between code elements (that is mean object concepts
such as classes, interfaces, packages, ...) and the architectural concepts (components,
connectors, interfaces, ...). The second is to instantiate the previous correspondence
model and extract the architecture from the software, in which that architecture must
be respects the four guides: i) must be semantically correct. ii) must have good quality
properties. iii) must respect precisely the recommendation of the architect, and speci-
fications and constraints defined in documentations. iv) must be able to be adapted to
the specificity of the deployment hardware architecture).

Alae-Eddine El Hamdouni et al., [ESH10] proposed an approach of architecture
recovery which aims to extract component-based architecture from an object-oriented
system, by a semiautomatic exploration process in order to identify the architectural
components by the relational concept analysis (RCA). The RCA approach comes as a
complementary method to relieve some limits of the existing implementation of RO-
MANTIC based on a simulated annealing algorithm. The architectural components in
this approach are identified from concepts derived by exploiting all existing dependency
relations between classes of the object-oriented system. The relational concept analysis
process steps are: i) extraction of a dependency graph (DG) of the source code classes.
ii) creation of an RCA model using the information of the dependency graph. iii) gener-
ation of a lattice of concepts representing clusters of object classes. iv) identification of
candidate components from resulting lattice. The obtained lattice allows to: i) identify
architectures with several abstraction levels. ii) identify composite components. iii)
select components according to some grouping criteria and navigating in the lattice.
The evaluation of the feasibility of the approach was on a Java software.

Hong Mei and Jian Lü [ML16] presented an approach to recovering software archi-
tecture from component-based systems at runtime and changing the runtime systems
via manipulating the recovered software architecture in which can accurately and thor-
oughly describe the actual states and behaviors of the runtime system. In order to keep
the recovered software architecture update at any time and change the runtime system
via manipulating its recovered software architecture, the elements in the recovered soft-
ware architecture are implemented as a set of meta-objects that are created at runtime

43

CHAPTER 3. STATE OF THE ART

and reflect other runtime entities internal of the system. It ensures that changes made
on the recovered software architecture immediately lead to corresponding changes in
the actual states and behaviors of the runtime system, and vice versa. Manipulation of
the recovered software architecture can be divided into the next categories: i) lifecycle
management of runtime entities. ii) add/remove/replacement of runtime entities. iii)
statistics of runtime entities. iv) business invocation of methods exposed by runtime
entities. The approach presented is demonstrated on Peking University Application
Server (PKUAS), a reflective J2EE (Java 2 Enterprise Edition) application server.

Thibaud Lutellier et al., [Lut+17] worked to improve on previous studies of y recover
software architectures from software implementations by study the impact of leveraging
accurate symbol dependencies on the accuracy of architecture recovery techniques. In
addition, they evaluated other factors of the input dependencies such as the level of
granularity and the dynamic-bindings graph construction, in which they evaluated nine
architecture recovery techniques. The results suggest that: i) using accurate symbol
dependencies has a major influence on recovery quality. ii) more accurate recovery
techniques are needed. Also, they developed a new submodule-based technique to
recover preliminary versions of ground-truth architectures.

3.3 Service-Oriented Architecture Recovering

In this section, we present an existing service-oriented architecture recovering works in
the literature such as [GSK14; ASS14; KTS18].

Marvin Grieger et al., [GSK14] proposed a semi-automatic approach that combines
hierarchical and partitioning clustering in order to improve initial service design by
restructuring the service-oriented architecture. The purpose of the approach is to create
a maintainable, service-oriented architecture. There are two steps in the restructuring
process. The first step is to perform hierarchical clustering based on the dependencies
between the services. The resulting clusters are aggregate services that are related in
terms of the underlying business process. The second step of the restructuring process
is to detect and remove software clones. The described process has been manually
applied to an application for architecture reconstruction and migration of an enterprise
legacy system.

Seza Adjoyan et al., [ASS14] proposed an approach that identifies services as groups
of classes in the legacy software source code, it based on the definition of a fitness
function that measures semantic the correctness of each group of source code elements

44

CHAPTER 3. STATE OF THE ART

to be considered as a service. In order to identify the services from object-oriented
code, a mapping between object-oriented and service-oriented architecture concepts is
defined. The proposed approach has been evaluated on just two realistic case studies
Java Calculator Suite and Mobile-Media.

Mohamed Lamine Kerdoudi et al., [KTS18] proposed an approach to recover the
architecture of a service-oriented system, depending on a particular use case that re-
flects the use context. This approach contributes to a multi-step process that analyzes
the source code of the system and interacts with the runtime environment, including
the service registry, to build a first core architecture modeling the components of the
system that always run then this core architecture is enriched. In this approach pro-
cess, a method to reduce the size and complexity of the architecture in which when the
architectures recovered from large systems are however complex and difficult to grasp
or to grip by spotlight the active elements (components/services) and ignore other ele-
ments that are not running in which represent noise in the recovered architecture. The
implementation of the work proposed process on the OSGi system, in which the OSGi
platform provides a well-know service-based framework for Java applications.

3.4 Software Architecture Static Evolution

In this section, we present an existing software architecture static evolution works in
the literature such as [OST05; GS09; BGS14]

Mourad Oussalah et al., [OST05] proposed a model for software architecture evolu-
tion, independently of their description language, named SAEV (Software Architecture
EVolution Model. The SAEV offered a set of concepts to describe and manage the evo-
lution of a given architecture, that evolution is reflected through the different changes
carried out on the software architecture elements such as adding or removing compo-
nents (elements). The SAEV associates an evolution strategy for each architectural
element. A strategy gathers the whole of evolution rules which describes the operations
that can be applied to this architectural element. SAEV proposed also an evolution
mechanism in which describes the execution process of the evolution model at specifi-
cation time and at execution time.

David Garlan and Bradley Schmerl [GS09] developed a tool for architecture evo-
lution planning and analysis that allows architects to plan evolutionary changes to a
software system from an architectural perspective. Architects can define changes to be
made in each step of evolution and can explore multiple such evolution paths. The tool

45

CHAPTER 3. STATE OF THE ART

provides a plugin framework allowing analyses so that an architect can compare and
swap multiple possible evolution paths. These analyses can be tailored to particular
evolution domains and to particular business environments of concern to the architect.

Jeffrey Barnes et al., [BGS14] described an approach for planning and reasoning
about architecture evolution. The approach focuses on providing architects with the
means to model prospective evolution paths and supporting analysis to select among
these candidate paths. They characterized recurring patterns as a set of related paths,
which we term evolution styles. Such styles can be formally characterized, allowing for
support by tools. They evaluated their approach for software architecture evolution
modeling by two very different methods. In the first method, they evaluated the com-
putational complexity of model-checking evolution path constraints. This theoretical
study showed that the approach to verifying path validity is computationally feasible.
In the second method, they demonstrated the applicability of the approach in a small
case study that exemplifies the kinds of concerns that arise in real world evolution.

3.5 Software Architecture Dynamic Evolution

In this section, we present an existing software architecture dynamic evolution works
in the literature such as [HMY04; FA04; Pér+05; OST05; ML16; HQO16]

Gang Huang et al., [HMY04] proposed runtime software architecture (RSA) sup-
porting architecture-based software maintenance and evolution. RSA extends the tra-
ditional architecture description language to accurately represent the actual states and
behaviors of the runtime system according to the perspective of software architecture
at runtime. RSA can immediately capture changes of the runtime system so as to keep
itself updated and ensure that changes made on itself will immediately lead to corre-
sponding changes of the runtime system. The approach presented is demonstrated on
Peking University Application Server (PKUAS), a reflective J2EE application server.
A set of APIs is defined for accessing and manipulating RSA, are protected by some
access control mechanisms. There is also a PKUAS Management Tool, a graphical
maintenance and evolution tool built on RSA.

Paolo Falcarin and Gustavo Alonso [FA04] proposed an approach to dynamically
evolve a software architecture based on runtime aspect-oriented programming. They
developed also a framework called JADDA (Java Adaptive component for Dynamic Dis-
tributed Architectures) that allowed a system designer or administrator can control the
architecture of an application by dynamically inserting and removing code extensions.

46

CHAPTER 3. STATE OF THE ART

The JADDA aims to: i) easing timeline variability (changes that can be applied at
either development time or run time) of different middleware implementations used. ii)
updating the connectors of a system by acting on its xADL (XML-based Architecture
Description Language) architectural specification, in this way reconfiguration can be
decided at a higher level than source code and all the needed information are stored in
the xADL file. iii) dynamic reconfiguration is also handled using a dynamic program-
ming side platform to allow additional classes transport in a reliable. The work focused
on handling more complex architectures with related consistency issues.

Jennifer Pérez et al., [Pér+05] presented a solution to the evolution problem of
software architectures provided by PRISMA. PRISMA is an architecture modeling ap-
proach that integrates the advantages of component-based software development and
aspect-oriented software development, it presented as a framework to evolve aspect-
oriented and component-based architectures by requirements driven evolution. The
evolution is supported by means of a meta-level and the reflexive properties of PRISMA
which have been implemented as middleware. It is demonstrated also how the evolution
services of the PRISMA meta-level permit the run-time evolution of software architec-
tures using an industrial case study, the TeachMover Robot.

Mourad Oussalah et al., [OST05] also proposed a model SAEV for software archi-
tecture evolution, independently of their description language, that we talked about it
int the previous section.

Hong Mei and Jian Lü [ML16] presented an approach to recovering software ar-
chitecture from component-based systems at runtime and changing the runtime sys-
tems via manipulating the recovered software architecture in which can accurately and
thoroughly describe the actual states and behaviors of the runtime system, we had
mentioned the details of this work in the section.

Adel Hassan et al., [HQO16] proposed a dynamic evolution style for the software
architecture dynamic evolution, and to provide a style sufficiently rich to model the
dynamic changes in the software architecture of a real-time system and to be able to
represent the potential ways of performing these changes. For that, they integrated the
behavior concepts of dynamic changes into the Meta Evolution Style (MES) so they
can have a sound understanding of dynamic evolution issues (safe stopping of running
artifacts, transferring state, change management, and dynamic evolution scheduling)
and constraints, which is a prerequisite to developing a modeling environment that
supports dynamic evolution styles.

47

CHAPTER 3. STATE OF THE ART

3.6 Conclusion

In this chapter, we presented the state of the art of dynamic software architecture evo-
lution approaches. We first presented some works of software architecture recovering
(component-based and service-oriented architecture). Then we presented works of soft-
ware architecture static and dynamic evolution. In this work, we focus on dynamic
software evolution for component/service-oriented systems.

48

Chapter 4

Software Architecture-Based

Evolution for Component/Service

Oriented Systems

4.1 Introduction

In this chapter, we present our proposed approach for software architecture based evo-
lution of component/service-oriented systems. We start first with an overview of the
proposed approach, then we give more details of each step. We present also in this
chapter our proposed OSGi meta-model with an explanation of all its elements.

4.2 General Process

We first introduce an overview of the proposed approach for software architecture based
evolution for component/service-oriented systems, then we present our proposed OSGi
meta-model.

4.2.1 Proposed Approach Overview

Figure 4.1 depicts the overall process of our approach of the software architecture
based evolution for component/service-oriented systems. It is divided into two main
sub-processes, the first one titled Software Architecture Recovering. Its input is the
application at runtime in different use cases, and gives as output component-based
architecture after going through a few steps.
The second process named Dynamic Software Architecture Evolution. It takes as input

50

CHAPTER 4. SOFTWARE ARCHITECTURE-BASED EVOLUTION FOR
COMPONENT/SERVICE ORIENTED SYSTEMS

existing software architecture or component-based architecture and gives a new software
architecture (updated version) and an evolved system after going through a few steps.

Figure 4.1: Our Proposed Approach for Software Architecture Based Evolution for
Component/Service Oriented Systems.

For each process, there are certain steps:

1. Software Architecture Recovering:

• Static Analysis: As input, this step takes the application at runtime in
different use cases to analyze and identifies the system entities and their
relationship with each other. The output is static software architecture.

• Dynamic Analysis: In this step, the software architecture recovering at run-
time task is starting by recovering the application bundles and the associated
elements (components) with these bundles. The output is dynamic software
architecture.

• Component Architecture Generation: In the final step, creating the XMI file
version of the recovered software architecture at runtime and generating the
component model in which it is an instance from our meta-model. The out-
put of this step is the result of the Software Architecture Recovering process,
and it is a component based architecture.

51

CHAPTER 4. SOFTWARE ARCHITECTURE-BASED EVOLUTION FOR
COMPONENT/SERVICE ORIENTED SYSTEMS

2. Dynamic Software Architecture Evolution:

• Graphical Visualization and Comprehension of Software Architectures: As
an input, it can be an existing software architecture or component based ar-
chitecture (the previous process result) to visualize the architecture graph-
ically and to make its comprehension easier. The output is a graphical
visualization of software architecture.

• Update the Architecture: The graphical visualization allows developers to
visualize and edit dynamically and easily software architecture, such as re-
moving or updating existing components (change state, modify names. . .),
adding new components to the architecture (services, interfaces,...). The
output is a new software architecture.

• Automatic Software Architecture Generation and Software Architecture As
XMI File: The last step of the Dynamic Software Architecture Evolution
process to generate automatically the new software architecture (with the
XMI version) and the evolved system.

4.2.2 Proposed OSGi Meta-Model

Our proposed OSGi meta-model presents in Figure 4.2, it defines the architectural el-
ements of OSGi, the dynamic component system for Java. Our meta-model based on
an existing OSGi meta-model in the literature which is presented in [Ker+19].
In our meta-model, we added the dynamic aspect by adding the attribute State to
PluginElement class. Also we added four new classes extend from Connector class (Ex-
tensionConnector, PackageConnector, InterfaceConnector, and ServiceConnector), and
more attributes to PluginElement class (source, output, targetPlatform, withActivator,
ulPlugin, rac, useTemplate, and expost). The meta-model is available on Google Drive5.

5Our meta-model: https://drive.google.com/file/d/15k4xXs2Ur6MMYU7nr7yski7b2eYBjXYh/
view?usp=sharing

52

https://drive.google.com/file/d/15k4xXs2Ur6MMYU7nr7yski7b2eYBjXYh/view?usp=sharing
https://drive.google.com/file/d/15k4xXs2Ur6MMYU7nr7yski7b2eYBjXYh/view?usp=sharing

CHAPTER 4. SOFTWARE ARCHITECTURE-BASED EVOLUTION FOR
COMPONENT/SERVICE ORIENTED SYSTEMS

Figure 4.2: OSGi Meta-Model.

53

CHAPTER 4. SOFTWARE ARCHITECTURE-BASED EVOLUTION FOR
COMPONENT/SERVICE ORIENTED SYSTEMS

The OSGi meta-model is composed of a set of meta-classes, and they are:

• CompositeElement: The root element of our meta-model, it represents the
container of all architecture components, it composed of many components and
connectors.

• ComponentElement: Ameta-class, it represents the component elements of the
software architecture. It composed of several ProvidedElement and RequiredEle-
ment, and it is the base class of PluginElement.

• Connector: A meta-class, it represents a connection between the ProvidedEle-
ment and the RequiredElement. Also, it is the base class of ExtensionConnector,
PackageConnector, InterfaceConnector, and ServiceConnector.

• ProvidedElement: A meta-class, it represents the provided elements of the
component in the software architecture. It managed by ComponentElement and
it is the base class of ExtensionPointElement, ExportedPackageElement, Provided-
InterfaceElement, and RegisteredServiceElement.

• RequiredElement: A meta-class, it represents the required elements of the com-
ponent in the software architecture. It managed by ComponentElement and it
is the base class of ExtensionElement, ImportedPackageElement, RequiredInter-
faceElement, and ConsumedServiceElement.

• PluginElement: A meta-class, it represents the OSGi component (or bundle),
it extends of ComponentElement. It composed of several extensions (Extension-
PointElement and ExtensionElement), packages (ExportedPackageElement and
ImportedPackageElement), interfaces (ProvidedInterfaceElement and RequiredIn-
terfaceElement), and services (RegisteredServiceElement and ConsumedServiceEle-
ment). Also, it has a set of attributes that are:

1. name: is the name of the plugin (bundle).

2. pluginSymbName: is the symbolic name of the plugin, specified by its Bundle-
SymbolicName manifest header.

3. pluginVersion: is the version of the plugin, specified by its Bundle-Version
manifest header.

4. state: is the state of the plugin, and it can be in ACTIVE state or IN-

STALLED, RESOLVED, STARTING, UNINSTALLED, or STOP-

PING state.

54

CHAPTER 4. SOFTWARE ARCHITECTURE-BASED EVOLUTION FOR
COMPONENT/SERVICE ORIENTED SYSTEMS

5. source: is the plugin source folder, its value is specified by build.properties
and it is "src".

6. output: is the plugin output folder, its value is specified by build.properties
and it is "bin".

7. targetPlatform: target platform show if the plugin is targeted to run with
an OSGi framework or eclipse version.

8. withActivator: generate an activator (a java class that controls the plugin’s
life cycle) or no.

9. uiplugin: the plugin will make contributions to the UI (user interface) or no.

10. rac: create a rich client applications or no.

11. useTemplate: create a plugin using one of the templates.

• ExtensionPointElement: A meta-class, it represents the extension points ele-
ments of the plugin, define new function points for the platform that other plugins
can plug into. It extends of ProvidedElement and managed by PluginElement, it
has three attributes:

1. id: is the identifier of the extension point.

2. name: is the name space identifier of the extension point.

3. schema: is the reference to the extension point schema.

• ExtensionElement: A meta-class, it represents the extensions elements of the
plugin, the central mechanism for contributing behavior to the platform. It ex-
tends of RequiredElement and managed by PluginElement, it has two attributes:

1. point: is the extension point to which this extension should be contributed.

2. className: is the name of the generated java class/interface.

• ExtensionConnector: A meta-class, it represents a connection between an ex-
tension point element (target) and an extension element (source).

• ExportedPackageElement: A meta-class, it represents the exported packages
elements, the packages that the plugin exposes to clients, specified by its Export-
Package manifest header. The name attribute is the name of the exported pack-
age.

55

CHAPTER 4. SOFTWARE ARCHITECTURE-BASED EVOLUTION FOR
COMPONENT/SERVICE ORIENTED SYSTEMS

• ImportedPackageElement: A meta-class, it represents the imported package
element, the packages on which this plugin depends without explicitly identifying
their originating plugin, specified by its Import-Package manifest header. The
name attribute is the name of the imported package.

• PackageConnector: A meta-class, it represents a connection between an ex-
ported package element (target) and an imported package element (source).

• ProvidedInterfaceElement: A meta-class, it represents the provided interfaces
elements, the interfaces that this plugin provided to other plugins. It has two
attributes:

1. interfaceName: is the name of the provided interface.

2. operations: is the list of the operations that this plugin provided from this
interface.

• RequiredInterfaceElement: A meta-class, it represents the required interfaces
elements, the interfaces that this plugin used from other plugins. It has two
attributes:

1. interfaceName: is the name of the required interface.

2. operations: is the list of the operations that this plugin used from this inter-
face.

• InterfaceConnector: A meta-class, it represents a connection between a pro-
vided interface element (target) and a required interface element (source).

• RegisteredServiceElement: A meta-class, it represents the registered services
elements, the services that registered by this plugin. It has two attributes:

1. objName: is the name of the service object registered by this plugin.

2. interfaceName: is the name of the provided interface.

• ConsumedServiceElement: A meta-class, it represents the consumed services
elements, the services that this plugin is using. It has two attributes:

1. objName: is the name of the service object this plugin is using.

2. interfaceName: is the name of the required interface.

• ServiceConnector: A meta-class, it represents a connection between a regis-
tered service element (target) and a consumed service element (source).

56

CHAPTER 4. SOFTWARE ARCHITECTURE-BASED EVOLUTION FOR
COMPONENT/SERVICE ORIENTED SYSTEMS

4.3 Software Architecture Recovering

The starting of the first step of the software architecture recovering process is during
the execution of one of the use cases of the application, in which the "Use Case 0" is
the launch of the application without applying a specific use case.

4.3.1 Static Analysis

Static Analysis is the first step of the software architecture recovering process, it aims
to:

• Definite the entities of the system.

• Finding the relationship between system entities to get the necessary informa-
tion to move to the next step, the recovering of software architecture at runtime
(Dynamic Analysis).

4.3.2 Dynamic Analysis

The goal of this step is to recover the software architecture at runtime and that by
identify the architectural elements of the system through "Bundles". After extracted
the bundles of the software architecture, the role comes on the elements (components)
associated with them. From the extracted bundles:

• Recovering the extension and the extension point.

• Recovering the imported and the exported packages.

• Recovering the provided and the required interfaces.

• Recovering the registered and the consumed services.

4.3.3 Component Architecture Generation

Component Architecture Generation is the last step in the software architecture recov-
ering process. In this step first creating the XMI file version of the recovered software
architecture at runtime by applying the following steps:

• Create the CompositeElement, the software architecture elements container.

• For each bundle of the software architecture, we create a PluginElement to rep-
resent it.

57

CHAPTER 4. SOFTWARE ARCHITECTURE-BASED EVOLUTION FOR
COMPONENT/SERVICE ORIENTED SYSTEMS

• For each bundle, we create their associated elements(ExtensionElement and Ex-
tensionPointElement, ImportedPackageElement and ExportedPackageElement, Pro-
videdInterfaceElement and RequiredInterfaceElement, RegisteredServiceElement
and ConsumedServiceElement).

After that, we get four XMI files for each architecture element type (extensions, inter-
faces, packages, and services) to make it easier. Now, generating an instance of our
meta-model based on the previous XMI files of the recovered software architecture at
runtime with the extension ".newcompo".
The generated component model is transformed into a graphical architecture to repre-
sent the recovered software architecture at runtime with its components and how they
interact with each other in an abstract view.

4.4 Dynamic Software Architecture Evolution

4.4.1 Graphical Visualization & Comprehension of Software Ar-

chitectures

The first step of the dynamic software architecture evolution process aims to repre-
sent the software architecture graphically with a high-level of abstraction to make its
comprehension and the next steps of this process easier for the developers.

4.4.2 Update the Architecture

The graphical visualization allows developers to edit easily the recovered software archi-
tecture, so the goal of this step is to make a visual interaction between the developers
and the software architecture easily and give them different options to update this
architecture.

• Add New Components: In this case, we allow the developer to add new com-
ponents to the software architecture, such as adding new plugins, new services,
interfaces, and packages once right-click.

• Update Components: We give the possibility to developer to update different
components, such as the ability to stop or start plugins and change components
names.

• Remove Components: We allow to developer to remove any component from the
software architecture (plugins, services, packages, extensions, or interfaces).

58

CHAPTER 4. SOFTWARE ARCHITECTURE-BASED EVOLUTION FOR
COMPONENT/SERVICE ORIENTED SYSTEMS

4.4.3 Automatic Software Architecture Generation & Software

Architecture As XMI File

After updating and evolving the recovered software architecture, now we go to the last
step of the dynamic software architecture evolution process to generate automatically
the new software architecture (with the XMI file version) and the evolved system.

4.5 Conclusion

In this chapter, we introduced the process of our approach to the evolution of soft-
ware architecture for component/service-oriented systems. Also, we introduced the
OSGi meta-model and explained its elements. in the next chapter, we will present our
implementation for our proposed approach process and the frameworks used.

59

Chapter 5

Implementation and Case Study

5.1 Introduction

In this chapter, we introduce the global and detailed architecture of our tool Arch-
DynEvol. We present also the implementation of our proposed approach process, the
frameworks and tools we use, and the steps we take to create our application.
We provide in this chapter a case study based on the Eclipse (example) illustrating the
use of our application.

5.2 ArchDynEvol Tool

In this section, we present the global and detailed architecture of our tool ArchDynEvol,
and all the steps we are taking to develop and implement our application on Eclipse.

5.2.1 Architecture of ArchDynEvol

Figure 5.1 represents the global architecture of our tool. It is represented in UML
Component Diagram using Visual Paradigm Online (VP Online) Express Edition. It
composed of three main components: Software Architecture Recover, Graphical Soft-
ware Architecture Editor, and Software Architecture Evolver.

61

CHAPTER 5. IMPLEMENTATION AND CASE STUDY

Figure 5.1: ArchDynEvol global Architecture.

1. Component "Software Architecture Recover"

The component "Software Architecture Recover" recovers the software architec-
ture from the application at runtime and generated the dynamic software archi-
tecture as result. It composed oh two sub-components:

(a) Component "Static Software Architecture Recover"

This component recovers the software architecture from the application, to
identify the application entities and their relationships between them.

(b) Component "Dynamic Software Architecture Recover"

This component recovers the software architecture from the application at
runtime, to extract their all components. These recovered components used
to generate the dynamic software architecture.

2. Component "Graphical Software Architecture Editor"

The component "Graphical Software Architecture Editor" represents the graphical
editor that use to visualize graphically the recovered software architecture and to
change it. These changes are presented as a set of operations add or update
component, provided element, or required element.

3. Component "Software Architecture Evolver"

The Component "Software Architecture Evolver" evolves the recovered software

62

CHAPTER 5. IMPLEMENTATION AND CASE STUDY

architecture with the help of the component Graphical Software Architecture Ed-
itor by updating the architecture graphically to generate new software architec-
ture.

5.2.2 Development of Graphical Software Architecture Editor

We present here all the steps that we take to develop our graphical software architecture
editor.

5.2.2.1 OSGI EMF Meta-Model

The Eclipse Modeling Framework (EMF) is a modeling framework and code generation
facility for building tools and applications based on a structured data model. From
a model specification described in XMI, EMF provides tools and runtime support to
produce a set of Java classes for the model [Gro].
EMF meta-model based on ecore file and genmodel file. In this step, we present the
way for creating EMF meta-model files.

Ecore Model Creation

Ecore meta-model generate the entity classes of our application, to create it we follow
these steps:

• First, we create an empty EMF project by clicking "File"→ "New"→ "Other...",
choose from Eclipse Modeling Framework "Empty EMF Project", then clicking
at "Next" and giving a name to this project then "Finish" as Figure 5.2 show.

Figure 5.2: Empty EMF Project Creation Steps.

63

CHAPTER 5. IMPLEMENTATION AND CASE STUDY

• Now, we create the Ecore file. First, we go to the "model" folder on the cre-
ated project, right-clicking "New" → "Other" and choosing from Eclipse Model-
ing Framework "Ecore Model", clicking "Next" then giving a name and clicking
"Finish" button as the Figure 5.3 show.

Figure 5.3: Ecore Meta-Model Creation Steps.

• In the properties view, we give the package of the new model a name and a URI as
shown in Figure 5.4. We named the package and Ns Prefix the same "newcompo",
and change Ns URI to "platform:/resource/org.archbasedevol.dynarch/model/
newcompo.ecore".

Figure 5.4: The Properties View.

• Now, the addition of the Ecore model meta-classes (CompositeElement, Plug-
inElement, Connector,...), and they are of type EClass. Our final Ecore model
"newcompo.ecore" is shown in Figure 5.5.

64

CHAPTER 5. IMPLEMENTATION AND CASE STUDY

Figure 5.5: The Ecore model "newcompo.ecore".

Genmodel Creation

Genmodel file contains information for the generation of the Ecore model entities and
code, to create it we follow these steps:

• First, we show "GMF Dashboard" view by clicking at "Window"→ "Show View"
→ "other..." in "general" folder choose "GMF Dashboard", such as figure 5.6
showing.

Figure 5.6: GMF Dashboard View.

• From the GMF Dashboard view, we click on "Select" of "Domain Model" then
choosing the created Ecore model → "Drive". We give a name to this genmodel
"newcompo.genmodel", clicking "Next" → Ecore model → "Next" → "Load" →
"Finish". (see Figure 5.7)

65

CHAPTER 5. IMPLEMENTATION AND CASE STUDY

Figure 5.7: "newcompo.genmodel" Creation Steps.

• Then, we go to the root node of the "newcompo.genmodel" to set the compliance
level to 6.0 from the properties view.

We right-click to the root node of genmodel and choose "Generate All", that will
give three packages in the project "src" folder which contains entities that help the
creation of the model instances, and other three plugins "edit", "editor", and "tests"
as Figure 5.8 show.

66

CHAPTER 5. IMPLEMENTATION AND CASE STUDY

Figure 5.8: Source Code Generation Steps.

5.2.2.2 Graphic Editor Creation

The Graphical Modeling Framework (GMF) provides a generative component and run-
time infrastructure for developing graphical editors based on Eclipse Modeling Frame-
work (EMF) and Graphical Editing Framework (GEF) [Wik].
We use the graphic editor to visualize the recovered software architecture at runtime
and to make the evolution task easier for developers. To create it we follow these steps:

• Tooling definition model creation.

• Graphical definition model creation.

• Mapping model creation.

• Diagram editor gen model creation.

Tooling Definition Model Creation

This model presents the palette and menu elements of the graphic editor. To create the
tooling definition model first we click "Drive" of "Tooling Def Model" on the dashboard
view, then we give "newcompo.gmftool" as a name → "Next" → "Load" → we select
the root, in our case is "CompositeElement" → "Next" → then checking the palette
elements → "Finish". (see Figure 5.9)

67

CHAPTER 5. IMPLEMENTATION AND CASE STUDY

Figure 5.9: Tooling Definition Model Creation Steps.

We can change the palette icons by placing the new ones in folder "icons" in the
"edit" plugin (edit → icons → full → obj16), and it should have the same name and
with "GIF" extension.
Figure 5.10 shows our palette and menu elements of the graphic editor.

Figure 5.10: Graphical Definition Model Creation.

68

CHAPTER 5. IMPLEMENTATION AND CASE STUDY

Graphical Definition Model Creation

This model defines the graphical editor’s surface elements. To create the graphical
definition model first we click "Drive" of "Graphical Def Model" on the dashboard
view, then we give "newcompo.gmfgraph" as a name→ "Next"→ "Load"→ we select
the root (CompositeElement)→ "Next"→ now checking our elements that must viewed
on the editor surface → "Finish", as Figure 5.11 show.

Figure 5.11: Graphical Definition Model Creation.

We can change the graphical editor’s surface default elements icons such as setting
its size, color, and layout... by the graphical def model. (see Figure 5.12)

69

CHAPTER 5. IMPLEMENTATION AND CASE STUDY

Figure 5.12: Changement of Elements Figure Descriptor.

Also we can replace the old icons with new ones have "svg" extension, and that by:

1. Download and add the "org.eclipse.gmf.runtime.lite.svg" jar in the Eclipse plugin.

2. Go to "Figure Descriptor" of the element → right-click → New Sibling → SVG
Figure.

3. Go to the properties view, give a name to the SVG figure, and set the document
URI where the SVG icons will be in this project ("diagram" plugin → icons →
figure), as shown Figure 5.13.

Figure 5.13: SVG Figure Creation.

Mapping Model Creation

This model binds the three previous models: the domain, the graphical definition, and
the tooling definition. To create the mapping model first we click "Combine" in the

70

CHAPTER 5. IMPLEMENTATION AND CASE STUDY

dashboard, then giving "newcompo.gmfmap" as a name → "Next" → "Load" → we
select the root element (CompositeElement)→ "Next"→ "Load"→ "Next"→ "Load"
→ "Next". (see Figure 5.14)

Figure 5.14: Mapping Model Creation Steps.

In the map domain model elements, we find two sections (Nodes and Links) and
they represent:

• In the "Nodes" section, we must select only the elements that correspond with our
architecture nodes (PluginElement, ImportedPackageElement, ExportedPackageEle-
ment...).

• In the "Links" section, we must select only the elements that correspond with our
architecture links (InterfaceConnector, PackageConnector, ExtensionConnector,
and ServiceConnector).

Now for each link, it is important to check its properties and that by, select the link
→ "Change..." → and verify the values of "Source Feature" and "Target Feature",
"Diagram Link", and "Tool" → "OK". (see Figure 5.15)

71

CHAPTER 5. IMPLEMENTATION AND CASE STUDY

Figure 5.15: Map Domain Model Elements.

After the generation of our mapping model, we must verify the "Tool" and "Diagram
Node" properties for each "Node Mapping". Also, we must verify the "Containment
Feature" and "Reference Child" properties for each "Child Reference" of our mapping
model, as Figure 5.16 shown.

Figure 5.16: Our Mapping Model "newcompo.gmfmap".

Diagram Editor Gen Model Creation

This is the last step in the graphic editor creation. First, we go to the dashboard
and check the "RCP" box → clicking "Transform", that will give the model "new-
compo.gmfgen" → clicking "Gen Editor Generation" and configure its properties. We
return to the dashboard and clicking on "Generate Diagram Editor" to generate the
plugin "diagram". (see Figure 5.17)

72

CHAPTER 5. IMPLEMENTATION AND CASE STUDY

Figure 5.17: The "diagram" plugin and the model "newcompo.gmfgen".

Note: After the generation of the plugin "diagram", add a new folder named "icons"
(for the SVG icons of the graphical definition model creation step).

5.2.3 Recovering Software Architecture Components

The Eclipse platform relies on plugins which are represented as bundles in OSGi speci-
fication. So we can represent our architecture via OSGi bundles, for that we use classes
in "org.osgi.framework" package to get the bundles at runtime, such as class "Bundle",
"BundleContext", and "FrameworkUtil" class. For each recovered bundle, we identify
its name, symbolic name, version, state, source, target, output, and its target platform
(location). These specifications are different in each bundle.
Then, we can extract the rest components from these bundles.

• Consumed and Registered Services: We can recover both kinds of services
of a bundle using the methods in the "Bundle" class from "org.osgi.framework"
package. In which, we use the method ".getServicesInUse()" for consumed ser-
vices and ".getRegisteredServices()" for registered service.

• Required and Provided Interfaces: We can recover the bundle interfaces
from its services. In which, the required interfaces are related by the consumed
services and the provided interfaces by the registered services.

• Imported and Exported Packages: We can recover the bundle packages from
its MANIFEST.MF file, for that we developed a class "ManifestParser.java" to
parse bundle manifest file and reset its import and export packages.

73

CHAPTER 5. IMPLEMENTATION AND CASE STUDY

• Extensions and Extension Points: To recover the bundle extensions and ex-
tension points, we need to use another package "org.eclipse.core.runtime". For the
extensions we use the method ".getExtensions()" from "IExtensionPoint" class
and for the extension points the method ".getExtensionPoints()" from "IExten-
sionRegistry" class.

5.2.4 Implementation of Evolution Actions

Before starting the evolution task for the system, we need to create the XMI version
(instance) of our recovered software architecture at runtime to use it in the graphical
presentation. To create it we follow these steps:

• Initialization of the model then retrieving the default factory singleton.

• Creation of the content of the model:

1. We create first the "CompositeElement" that represents the recovered soft-
ware architecture elements container at runtime.

2. Now, we create a "PluginElement" for each bundle of the software architec-
ture and its all attributes (Name, State, Version...).

3. Now for each "PluginElement" that we created, we create its associated ele-
ments (ExtensionElement and ExtensionPointElement, ImportedPackageEle-
ment and ExportedPackageElement, ProvidedInterfaceElement and Required-
InterfaceElement, RegisteredServiceElement and ConsumedServiceElement)
also with all their attributes.

• Saving the XMI file.

Figure 5.18 presents a part of the XMI file of recovered software architecture at runtime
with service elements.

74

CHAPTER 5. IMPLEMENTATION AND CASE STUDY

Figure 5.18: XMI File of Recovered Software Architecture at Runtime.

These steps are executed during the software architecture at runtime recovered. Our
tool generates an XMI file for each type of the architecture elements (that’s mean four
files). After the recovered of the software architecture at runtime and generate its XMI
version, now to present this architecture graphically do this:

• Copying the XMI file in the "Project Explorer" view with changing its extension
to ".newcompo".

• Clicking "File → "Initialize newcompo-diagram diagram file" → selecting the
XMI file that we want evolving → "Finish".

Now, we can make our recovered software evolvable architecture through these opera-
tions:

• Changing the plugins state (Start or Stop).

• Adding new components to the recovered software architecture plugins (exten-
sions and extension points, imported packages and exported packages, provided
Interfaces and required interfaces, registered services and consumed services).

• Adding new plugins to software architecture.

• Changing the properties of components.

• Removing components from software architecture.

75

CHAPTER 5. IMPLEMENTATION AND CASE STUDY

Changing The Plugins State

To make our software architecture plugins changing its state we follow the next steps:

• The first step is to create a menu that contains the actions, and that by opening
the "MANIFEST.MF" file "META-INF" document in the project → clicking
"Extensions"→ "Add"→ selecting "org.eclipse.ui.popupMenus" as an extension
point filter → "Finish" → going to "Extension Details" and giving an ID to this
extension. In the plugin define extension section, right-clicking the created popup
menu extension → "New" → "objectContribution".

Figure 5.19: The "objectContribution" Properties Section.

• Now, we go to the "Extension Elements Details" to set the created objectContri-
bution properties (See figure 5.19). Then, right-clicking the created objectContri-
bution → "New" → "menu" → setting the menu properties, then right-clicking
the menu → "New" → "separator".
Note: We find the object class (PluginElementEditPart) in ".diagram/edit/parts".

• Then we create the state actions (Stop and Start), by returning to the object-
Contribution right-click → "New" → "action" → setting the action properties in
the "Extension Elements Details" section. We make this step twice, for the Stop
action and Start action. (see Figure 5.20)

76

CHAPTER 5. IMPLEMENTATION AND CASE STUDY

Figure 5.20: The "Start Action" and "Stop Action" Actions Properties Section.

• Now, we create the management class of the changement state action. It extends
from "ActionDelegate" and implements from "IObjectActionDelegate". In this
class, we find two principal methods, the first one determines the type of elements
that we want to select (for us is the pluginElement). In the second method, we
determine the type of action of the selected elements, we take "Stop Action" as an
example. We test first the state of the selected plugin, if it is in "RESOLVED" or
"STOPPING" state we give a warning message that it is impossible to make this
changement, else this action is successful. With the setting of the plugin state to
"STOPPING," there is removed to all the components elements that relate with
the updated plugin.

Adding New Components: Services

In this step, we develop the possibility of adding new components to the software
architecture, and we take "Services" as an example of components by following the
next steps:

• First, we create a new menu for the addition of the services so we return to
the created objectContribution right-clicking→ "New"→ "menu"→ setting the
menu properties, then right-clicking the menu → "New" → "separator".

• Then we create the addition services actions (Consumed and Registered), by back
to the objectContribution right-click → "New" → "action" → setting the action
properties in the "Extension Elements Details" section. We make this step twice,
for the consumed services addition and the registered services addition.

77

CHAPTER 5. IMPLEMENTATION AND CASE STUDY

• Now, we create the management class of the service addition action. It also
extends from "Action-Delegate" and implements from "IObjectActionDelegate"
such as the previous class (class of the state change) with the two principal meth-
ods, the first one responsible for the element selection and the second for the
addition of services. First, we get all the system existed services and show it as a
list of checkboxes, then we choose what services we want→ OK, and the services
are added at the selected plugin.

We take the same steps for the other operations such as adding new plugins to the
architecture or remove it and changing components properties.

5.3 Case Study: Eclipse Based Applications

In this section, we present an example of running our application on the Eclipse plat-
form.

1. To run our application we need first to create a new configuration. In "Run
Configurations", we right-click "Eclipse Application" → "New" → setting the
configuration name→ "Apply"→ "Run" (see Figure 5.21). After we click "Run",
"Validation" is shown we select "org.apache.xmlrpc" → "OK".

Figure 5.21: The Run Configuration of Our Application.

Because it is the first time to run this configuration we need to activate our plugin
through the "Host OSGi Console". (see Figure 5.22)

78

CHAPTER 5. IMPLEMENTATION AND CASE STUDY

Figure 5.22: The Host OSGi Console.

2. Now we need to know the "id" of our plugin to activate it and that by typing "ss
name of the plugin" in the Host OSGi Console (see Figure 5.23). After getting
the id (at this moment our id = 59), now we activate our plugin by typing "start
59".

Figure 5.23: Search Result for Plugin ID.

Note: This step is not necessary after the first run, we can do it just to make
sure that our plugin is active.

With activating our plugin, the task of recovering software architecture also be-
gins. We save the recovered software architecture in four XMI files (for services,
extensions, interfaces, and packages) such as shown in Figure 5.18.

3. Then, we create a project document ("File" → "New" → selecting "General"
→ "Project" → giving it a name → "Finish") to put the recovered software
architecture XMI file on it. Now, we copy the generated software architecture
XMI file in the created project, in this example we take the services architecture
file and changing its extension to ".newcompo".

4. To visualize our recovered software architecture graphically we follow these steps,
clicking "File" → "Initialize newcomp-diagram diagram file" → selecting the file
that coped → "Next" → selecting the diagram root (for us it is "CompositeEle-
ment") → "Finish". After that our software architecture is presented graphically
as shows Figure 5.24.

79

CHAPTER 5. IMPLEMENTATION AND CASE STUDY

Figure 5.24: The Recovered Software Architecture in Our Graphic Editor.

Our Graphic Editor is composed of four parts:

• The Project Explorer view is where we put the recovered software architec-
ture files and its diagrams.

• The space used to visualize and update the recovered software architecture.

• The palette and menu elements of the graphic editor provide the software
architecture components. All our palette elements were shown in Figure
5.10.

• The properties view which provides the information of each component in
the software architecture.

The composite (cyan surface) is the container for all components of the recovered
software architecture and the plugin elements are represented with the white
rectangles.

5. Now we can apply our methods of evolution (changing state, adding or removing
components).

• To changing the plugin state, we just select a plugin, right-clicking→ "Run-
time Change State" → and choosing one of the two options (see Figure
5.25).

80

CHAPTER 5. IMPLEMENTATION AND CASE STUDY

Figure 5.25: Runtime Change State Menu and Its Options.

If we choose "Stop Action" and the plugin state is "ACTIVE" or "START-
ING", can note that its state in the properties view is changed to "STOP-
PING" and all the related components with this plugin are removed. But
if the selected plugin state is "RESOLVED" or "STOPPING", a warning
message is shown as Figure 5.26 shown.

Figure 5.26: "RESOLVED" and "STOPPING" Warning Messages.

If we choose "Start Action" and the plugin state is "RESOLVED", "START-
ING", or "STOPPING" can note that its state in the properties view is
changed to "ACTIVE". But if the selected plugin state is "ACTIVE", a
warning message. (see Figure 5.27)

81

CHAPTER 5. IMPLEMENTATION AND CASE STUDY

Figure 5.27: "ACTIVE" Warning Messages.

• To add services to a plugin (we take services as an example of components),
we just select the plugin, right-clicking → "Runtime Add Components" →
and choosing one of the two kinds of services. (see Figure 5.28)

Figure 5.28: Runtime Add Components Menu (Services Options).

When choosing any of the addition of services options, a list of all the system
services is shown (see Figure 5.29), then check the box of any service it will
be added in the plugin → "OK".

Figure 5.29: The System Services List.

82

CHAPTER 5. IMPLEMENTATION AND CASE STUDY

• To remove services from a plugin (we take services as an example of compo-
nents), we just select the plugin, right-clicking → "Runtime Remove Com-
ponents" → and choosing one of the three options. (see Figure 5.30)

Figure 5.30: Runtime Remove Components Menu (Services Options).

If we choose "Remove Registered Services", all the registered services that
related to the selected plugin are removed. The same action will happen with
the consumed services if we choose "Remove Consumed Services". And if
we choose "Remove All Services", both kinds are removing from the plugin.

• To add a new plugin to the architecture we select the composite, right-
clicking → "Add Plugin". (see Figure 5.31)

Figure 5.31: Add Plugin Action.

83

CHAPTER 5. IMPLEMENTATION AND CASE STUDY

5.4 Conclusion

In this chapter, we introduced the global and detailed architecture of our tool Arch-
DynEvol that we represented as a UML component diagram. We presented also the
development tools and frameworks that we used to implement our proposed approach
process. Then, we showed the steps that we took to create and develop our application.
In the final, we provided an execution example of our application based on Eclipse.

84

General Conclusion

The dynamic evolution of software architecture means that the architecture can be
modified or changed during runtime such as adding, removing, and updating its com-
ponents or connectors. The goal of software architecture dynamic evolution is to reduce
the time, effort, and complexity involved in the maintenance and evolution task of large
software systems. In this project, our aim was to assist developers to evolve and main-
tain their systems during runtime via dynamic software architecture. We proposed a
process divided into two sub-processes. Software Architecture Recovering is the first
process, its aim recovering component-based architecture from applications at runtime.
It starts with identifying the application entities and their relationship to each other
from source code using static analysis. Then, recovering the application bundles and
their associated elements at runtime from source code using dynamic analysis. After
that, we generate the component architecture as an XMI file and create an instance
of our OSGi meta-model using this file. The second sub-process titled Dynamic Soft-
ware Architecture Evolution, its objective making the recovered architecture interactive
which allows developers to update or removing existing components or adding new ones
during runtime. It starts with a graphical visualization of software architecture which
helps developers to understand and comprehend the system to start the evolving and
maintaining task. We can work with an existing software architecture or with the recov-
ered one from the previous process. Next, developers can begin the evolution task and
updating the system via the architecture, they can add, update, remove components,
or update its properties at runtime. In the end, we get new software architecture and
an evolved system. We implemented our proposed process on a set of tools integrated
into Eclipse. These tools offer: i) recovering software architecture at runtime with all
its components, so that assist the comprehension of the system. ii) a graphical editor
for visualization and analyzing the recovered software architecture at runtime, so that
provides a clear and abstract representation helps to understand the system with less
time and effort. iii) evolving the system graphically using software architecture, which
makes this task easier and faster. iv) generating automatically the new software archi-

85

CHAPTER 5. IMPLEMENTATION AND CASE STUDY

tecture after the maintenance and evolution task.
We plane in the near future to:

• Experience our app with platforms other than Eclipse to demonstrate its effec-
tiveness.

• Evaluate the aspect of our application in recovering the software architecture
using different techniques.

• Evaluate the aspect of generating the new system after the task of evolving its
architecture.

86

Bibliography

[Akm+17] Feidu Akmel et al. “A Comparative ANALYSIS ON SOFTWARE AR-
CHITECTURE STYLES”. In: International Journal in Foundations of
Computer Science & Technology 7.5/6 (2017), pp. 11–22. doi: 10.5121/
ijfcst.2017.7602.

[Ale] Alexander.D.Brown. OSGi Demystified: 5.1 – Declarative Services: A Tu-
torial. url: https://developer.ibm.com/cics/2019/01/29/osgi-
declarative-service-tutorial/.

[Alla] Architecture – OSGiTM Alliance. The Dynamic Module System for Java,
What is OSGi? url: https://www.osgi.org/developer/what- is-
osgi/.

[Allb] OSGiTM Alliance. OSGi Core Release 7. url: https://docs.osgi.org/
specification/osgi.core/7.0.0/framework.lifecycle.html.

[Allc] OSGiTM Alliance. The Dynamic Module System for Java, Architecture.
url: https://www.osgi.org/developer/architecture/.

[Alld] OSGiTM Alliance. The Dynamic Module System for Java, Benefits of Using
OSGi. url: https://www.osgi.org/developer/benefits-of-using-
osgi/.

[AME12] Aitor Agirre, Marga Marcos, and Elisabet Estévez. “Distributed applica-
tions management platform based on Service Component Architecture”.
In: Proceedings of 2012 IEEE 17th International Conference on Emerging
Technologies & Factory Automation (ETFA 2012). IEEE. 2012, pp. 1–4.

[ASS14] Seza Adjoyan, Abdelhak-Djamel Seriai, and Anas Shatnawi. “Service iden-
tification based on quality metrics object-oriented legacy system migration
towards soa”. In: SEKE: Software Engineering and Knowledge Engineering.
Knowledge Systems Institute Graduate School. 2014, pp. 1–6.

87

https://doi.org/10.5121/ijfcst.2017.7602
https://doi.org/10.5121/ijfcst.2017.7602
https://developer.ibm.com/cics/2019/01/29/osgi-declarative-service-tutorial/
https://developer.ibm.com/cics/2019/01/29/osgi-declarative-service-tutorial/
https://www.osgi.org/developer/what-is-osgi/
https://www.osgi.org/developer/what-is-osgi/
https://docs.osgi.org/specification/osgi.core/7.0.0/framework.lifecycle.html
https://docs.osgi.org/specification/osgi.core/7.0.0/framework.lifecycle.html
https://www.osgi.org/developer/architecture/
https://www.osgi.org/developer/benefits-of-using-osgi/
https://www.osgi.org/developer/benefits-of-using-osgi/

BIBLIOGRAPHY

[BA+15] Syed Mohtashim Abbas Bokhari, Farooque Azam, et al. “Limitations of
Service Oriented Architecture and its Combination with Cloud Comput-
ing”. In: Bahria University Journal of Information & Communication Tech-
nologies(BUJICT) 8.1 (2015).

[Bar12] Jeffrey M. Barnes. “NASA’s Advanced Multimission Operations System: A
Case Study in Software Architecture Evolution”. In: Proceedings of the 8th
International ACM SIGSOFT Conference on Quality of Software Architec-
tures. QoSA ’12. Bertinoro, Italy: Association for Computing Machinery,
2012, pp. 3–12. isbn: 9781450313469. doi: 10.1145/2304696.2304700.
url: https://doi.org/10.1145/2304696.2304700.

[Bar13] Jeffrey M. Barnes. “Software Architecture Evolution”. In: 2013.

[BCK03] Len Bass, Paul Clements, and Rick Kazman. Software architecture in prac-
tice. Addison-Wesley Professional, 2003.

[BCL12] Hongyu Pei Breivold, Ivica Crnkovic, and Magnus Larsson. “Software ar-
chitecture evolution through evolvability analysis”. In: Journal of Systems
and Software 85.11 (2012), pp. 2574–2592.

[BGS14] Jeffrey M Barnes, David Garlan, and Bradley Schmerl. “Evolution styles:
foundations and models for software architecture evolution”. In: Software
& Systems Modeling 13.2 (2014), pp. 649–678.

[Blo] Vogella Blog. Getting Started with OSGi Declarative Services. url: http:
//blog.vogella.com/2016/06/21/getting- started- with- osgi-

declarative-services/.

[BR00] Keith H. Bennett and Václav T. Rajlich. “Software Maintenance and Evo-
lution: A Roadmap”. In: Proceedings of the Conference on The Future of
Software Engineering. ICSE ’00. Limerick, Ireland: Association for Com-
puting Machinery, 2000, pp. 73–87. isbn: 1581132530. doi: 10 . 1145 /

336512.336534. url: https://doi.org/10.1145/336512.336534.

[Bru+04] Eric Bruneton et al. “An open component model and its support in java”.
In: International Symposium on Component-based Software Engineering.
Springer. 2004, pp. 7–22.

[Cen] IBM Knowledge Center. Example: OSGi bundle manifest file. url: https:
//www.ibm.com/support/knowledgecenter/en/SSAW57_8.5.5/com.

ibm.websphere.osgi.nd.multiplatform.doc/ae/ra_bundle_mf.html.

88

https://doi.org/10.1145/2304696.2304700
https://doi.org/10.1145/2304696.2304700
http://blog.vogella.com/2016/06/21/getting-started-with-osgi-declarative-services/
http://blog.vogella.com/2016/06/21/getting-started-with-osgi-declarative-services/
http://blog.vogella.com/2016/06/21/getting-started-with-osgi-declarative-services/
https://doi.org/10.1145/336512.336534
https://doi.org/10.1145/336512.336534
https://doi.org/10.1145/336512.336534
https://www.ibm.com/support/knowledgecenter/en/SSAW57_8.5.5/com.ibm.websphere.osgi.nd.multiplatform.doc/ae/ra_bundle_mf.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_8.5.5/com.ibm.websphere.osgi.nd.multiplatform.doc/ae/ra_bundle_mf.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_8.5.5/com.ibm.websphere.osgi.nd.multiplatform.doc/ae/ra_bundle_mf.html

BIBLIOGRAPHY

[Cha+08] Sylvain Chardigny et al. “Extraction of component-based architecture from
object-oriented systems”. In: Seventh working IEEE/IFIP conference on
software architecture (WICSA 2008). IEEE. 2008, pp. 285–288.

[Con+09] R Conery et al.Microsoft Application Architecture Guide. 2nd ed. Microsoft
Press, 2009.

[Crn+11] Ivica Crnkovic et al. “A Classification Framework for Software Component
Models”. In: Software Engineering, IEEE Transactions on 37 (Nov. 2011),
pp. 593–615. doi: 10.1109/TSE.2010.83.

[ESH10] Alae-Eddine El Hamdouni, Abdelhak-Djamel Seriai, and Marianne Huchard.
“Component-based architecture recovery from object oriented systems via
relational concept analysis”. In: CLA: Concept Lattices and their Applica-
tions. 672. University of Sevilla. 2010, pp. 259–270.

[FA04] Paolo Falcarin and Gustavo Alonso. “Software architecture evolution through
dynamic aop”. In: European Workshop on Software Architecture. Springer.
2004, pp. 57–73.

[Fal+04] Katrina Falkner et al. “Unifying static and dynamic approaches to evolu-
tion through the compliant systems architecture”. In: 37th Annual Hawaii
International Conference on System Sciences, 2004. Proceedings of the.
IEEE. 2004, 9–pp.

[FOU] ECLIPSE FOUNDATION. FAQ What is the plug-in manifest file (plu-
gin.xml)? url: https://wiki.eclipse.org/FAQ_What_is_the_plug-
in_manifest_file_(plugin.xml)%5C%3F.

[Gar00] David Garlan. “Software Architecture: A Roadmap”. In: Proceedings of the
Conference on The Future of Software Engineering. ICSE ’00. Limerick,
Ireland: Association for Computing Machinery, 2000, pp. 91–101. isbn:
1581132530. doi: 10.1145/336512.336537. url: https://doi.org/10.
1145/336512.336537.

[Geya] Carol Geyer. Service Component Architecture (SCA) | OASIS Open CSA.
url: http://www.oasis-opencsa.org/sca.

[Geyb] Carol Geyer. Service Component Architecture Assembly Model Specification
v1.1. url: https://docs.oasis-open.org/opencsa/sca-assembly/
sca-assembly-spec-v1.1-csprd03.html.

89

https://doi.org/10.1109/TSE.2010.83
https://wiki.eclipse.org/FAQ_What_is_the_plug-in_manifest_file_(plugin.xml)%5C%3F
https://wiki.eclipse.org/FAQ_What_is_the_plug-in_manifest_file_(plugin.xml)%5C%3F
https://doi.org/10.1145/336512.336537
https://doi.org/10.1145/336512.336537
https://doi.org/10.1145/336512.336537
http://www.oasis-opencsa.org/sca
https://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-spec-v1.1-csprd03.html
https://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-spec-v1.1-csprd03.html

BIBLIOGRAPHY

[Gmb] 2020 vogella GmbH Lars Vogel (c) 2008. OSGi Modularity - Tutorial.
url: https://www.vogella.com/tutorials/OSGi/article.html#
introduction-into-software-modularity-with-osgi.

[Gri] Duena Griego. Software Evolution. url: https://www.slideserve.com/
duena/software-evolution.

[Gro] Richard Gronback. Eclipse Modeling Project | The Eclipse Foundation.
url: https://www.eclipse.org/modeling/emf/.

[GS09] David Garlan and Bradley Schmerl. “Ævol: A tool for defining and planning
architecture evolution”. In: 2009 IEEE 31st International Conference on
Software Engineering. IEEE. 2009, pp. 591–594.

[GSK14] Marvin Grieger, Stefan Sauer, and Markus Klenke. “Architectural restruc-
turing by semi-automatic clustering to facilitate migration towards a service-
oriented architecture”. In: 2nd Workshop Model-Based and Model-Driven
Software Modernization. 2014, pp. 44–45.

[Haa] Johan den Haan. What every architect should now know about the Service
Component Architecture (SCA). url: http://www.theenterprisearchitect.
eublog / 2009 / 03 / 11 / what - every - architect - should - now - know -

about-the-service-component-architecture-sca/.

[Hal+11] Richard S Hall et al. OSGi in Action, Creating Modular Applications in
Java. Wiley India Pvt. Limited, 2011. isbn: 9781933988917.

[HC01] G Heineman and W Councill. Component-Based Software Engineering:
Putting the Pieces Together. Jan. 2001.

[HMY04] Gang Huang, Hong Mei, and Fuqing Yang. “Runtime software architecture
based on reflective middleware”. In: Science in China Series F: Information
Sciences 47.5 (2004), pp. 555–576. doi: 10.1360/03yf0192.

[HQO16] Adel Hassan, Audrey Queudet, and Mourad Oussalah. “Evolution style:
framework for dynamic evolution of real-time software architecture”. In:
European Conference on Software Architecture. Springer. 2016, pp. 166–
174.

[Ker+19] M. L. Kerdoudi et al. “Recovering Software Architecture Product Lines”. In:
2019 24th International Conference on Engineering of Complex Computer
Systems (ICECCS). 2019, pp. 226–235.

90

https://www.vogella.com/tutorials/OSGi/article.html#introduction-into-software-modularity-with-osgi
https://www.vogella.com/tutorials/OSGi/article.html#introduction-into-software-modularity-with-osgi
https://www.slideserve.com/duena/software-evolution
https://www.slideserve.com/duena/software-evolution
https://www.eclipse.org/modeling/emf/
http://www.theenterprisearchitect.eublog/2009/03/11/what-every-architect-should-now-know-about-the-service-component-architecture-sca/
http://www.theenterprisearchitect.eublog/2009/03/11/what-every-architect-should-now-know-about-the-service-component-architecture-sca/
http://www.theenterprisearchitect.eublog/2009/03/11/what-every-architect-should-now-know-about-the-service-component-architecture-sca/
https://doi.org/10.1360/03yf0192

BIBLIOGRAPHY

[KTS18] Mohamed Lamine Kerdoudi, Chouki Tibermacine, and Salah Sadou. “Spot-
lighting use case specific architectures”. In: European Conference on Soft-
ware Architecture. Springer. 2018, pp. 236–244.

[Lea] O’Reilly Online Learning. Building Evolutionary Architectures. url: https:
//www.oreilly.com/library/view/building-evolutionary-architectures/

9781491986356/ch01.html.

[LR02] Meir M Lehman and Juan F Ramil. “Software evolution and software evolu-
tion processes”. In: Annals of Software Engineering 14.1-4 (2002), pp. 275–
309.

[Lut+17] Thibaud Lutellier et al. “Measuring the impact of code dependencies on
software architecture recovery techniques”. In: IEEE Transactions on Soft-
ware Engineering 44.2 (2017), pp. 159–181.

[LZN04] Chung-Horng Lung, Marzia Zaman, and Amit Nandi. “Applications of clus-
tering techniques to software partitioning, recovery and restructuring”. In:
Journal of Systems and Software 73.2 (2004), pp. 227–244.

[MAV10] Jeff McAffer, Simon Archer, and Paul VanderLei. OSGi and Equinox: Cre-
ating Highly Modular Java Systems. Addison-Wesley Professional, 2010.
isbn: 9780321561510.

[MFP06] Nazim H Madhavji, Juan Fernandez-Ramil, and Dewayne Perry. Software
evolution and feedback: Theory and practice. John Wiley & Sons, 2006.

[ML16] Hong Mei and Jian Lü. “Runtime recovery and manipulation of software ar-
chitecture of component-based systems”. In: Internetware. Springer, 2016,
pp. 115–138.

[OLB16] Flavio Oquendo, Jair Leite, and Thais Batista. Software Architecture in
Action. Springer, 2016.

[OST05] Mourad Oussalah, Nassima Sadou, and Dalila Tamzalit. “A generic model
for managing software architecture evolution”. In: Proceedings of the 9th
WSEAS International Conference on Systems. World Scientific, Engineer-
ing Academy, and Society (WSEAS). 2005, pp. 1–6.

[Pér+05] Jennifer Pérez et al. “Dynamic evolution in aspect-oriented architectural
models”. In: European Workshop on Software Architecture. Springer. 2005,
pp. 59–76.

91

https://www.oreilly.com/library/view/building-evolutionary-architectures/9781491986356/ch01.html
https://www.oreilly.com/library/view/building-evolutionary-architectures/9781491986356/ch01.html
https://www.oreilly.com/library/view/building-evolutionary-architectures/9781491986356/ch01.html

BIBLIOGRAPHY

[PPR03] C. Pérez, T. Priol, and A. Ribes. “A Parallel Corba Component Model
for Numerical Code Coupling”. In: The International Journal of High Per-
formance Computing Applications 17 (2003), pp. 417–429. doi: 10.1177/
10943420030174006.

[Rah] Dewi Rahmawti. Evolution processes. url: http://share.its.ac.id/
blog/index.php?entryid=968.

[Rou] Margaret Rouse. What is Enterprise JavaBeans (EJB)? - Definition from
WhatIs.com. url: https : / / www . theserverside . com / definition /

Enterprise-JavaBeans-EJB.

[Ryc17] Marek Rychly. “Dynamically reconfigurable architectures: An evaluation of
approaches for preventing architectural violations”. In: Jan. 2017, pp. 539–
556. doi: 10.4018/978-1-5225-3923-0.ch022.

[Szy02] Clemens Szyperski. “Component Software: Beyond Object-Oriented Pro-
gramming”. In: (2002).

[Tib] Chouki Tibermacine. Programmation par composants avec osgi. 2013-2014.
url: http://www.lirmm.fr/~tibermacin/ens/gmin30f/cours/cours2.
pdf.

[Tuta] Tutorialspoint. EJB - Overview - Tutorialspoint. url: https : / / www .

tutorialspoint.com/ejb/ejb_overview.htm.

[Tutb] Tutorialspoint. Software Engineering Overview - Tutorialspoint. url: https:
//www.tutorialspoint.com/software_engineering/software_engineering_

overview.htm.

[Wik] Wiki.eclipse.org.Graphical Modeling Framework - Eclipsepedia. url: https:
//wiki.eclipse.org/Graphical_Modeling_Framework.

[WOR] EJB WORLD. Day 02. Understanding EJB Types and Interfaces – EJB
In 21 Days ? url: https://ejbvn.wordpress.com/category/week-1-
enterprise-java-architecture/day-02-understanding-ejb-types-

and-interfaces/.

[XZ10] Hongzhen Xu and Guosun Zeng. “Specification and verification of dynamic
evolution of software architectures”. In: Journal of Systems Architecture -
Embedded Systems Design 56 (Oct. 2010), pp. 523–533. doi: 10.1016/j.
sysarc.2010.08.005.

92

https://doi.org/10.1177/10943420030174006
https://doi.org/10.1177/10943420030174006
http://share.its.ac.id/blog/index.php?entryid=968
http://share.its.ac.id/blog/index.php?entryid=968
https://www.theserverside.com/definition/Enterprise-JavaBeans-EJB
https://www.theserverside.com/definition/Enterprise-JavaBeans-EJB
https://doi.org/10.4018/978-1-5225-3923-0.ch022
http://www.lirmm.fr/~tibermacin/ens/gmin30f/cours/cours2.pdf
http://www.lirmm.fr/~tibermacin/ens/gmin30f/cours/cours2.pdf
https://www.tutorialspoint.com/ejb/ejb_overview.htm
https://www.tutorialspoint.com/ejb/ejb_overview.htm
https://www.tutorialspoint.com/software_engineering/software_engineering_overview.htm
https://www.tutorialspoint.com/software_engineering/software_engineering_overview.htm
https://www.tutorialspoint.com/software_engineering/software_engineering_overview.htm
https://wiki.eclipse.org/Graphical_Modeling_Framework
https://wiki.eclipse.org/Graphical_Modeling_Framework
https://ejbvn.wordpress.com/category/week-1-enterprise-java-architecture/day-02-understanding-ejb-types-and-interfaces/
https://ejbvn.wordpress.com/category/week-1-enterprise-java-architecture/day-02-understanding-ejb-types-and-interfaces/
https://ejbvn.wordpress.com/category/week-1-enterprise-java-architecture/day-02-understanding-ejb-types-and-interfaces/
https://doi.org/10.1016/j.sysarc.2010.08.005
https://doi.org/10.1016/j.sysarc.2010.08.005

	Contents
	List of Figures
	General Introduction
	Software Architecture and Software Architecture Evolution
	Introduction
	Software Architecture
	Software Architecture Definition
	Software Architectures Styles
	Client-Server Architecture Style
	Object-Oriented Architecture Style
	Component-Based Architecture Style
	Service-Oriented Architecture Style

	Software Architecture Importance

	Software Evolution
	Software Evolution Concept
	Software Evolution Laws
	Software Evolution Process
	Software Evolution Importance

	Software Architecture Evolution
	Software Architecture Evolution Concept
	Software Architecture Evolution Process

	Conclusion

	Component-Based Software Development
	Introduction
	Software Component Definition
	Component Model Definition
	Component Models
	CORBA Component Model
	Enterprise Java Beans
	FRACTAL
	Open Services Gateway Initiative
	Service Component Architecture

	Open Services Gateway Initiative Technology
	OSGi Framework
	OSGi Framework Implementations
	OSGi Component
	Bundle Concept
	Bundle Lifecycle

	OSGi Services
	Service Component
	Service Component Lifecycle

	OSGi Benefits

	Conclusion

	State of the Art
	Introduction
	Component-Based Architecture Recovering
	Service-Oriented Architecture Recovering
	Software Architecture Static Evolution
	Software Architecture Dynamic Evolution
	Conclusion

	Software Architecture-Based Evolution for Component/Service Oriented Systems
	Introduction
	General Process
	Proposed Approach Overview
	Proposed OSGi Meta-Model

	Software Architecture Recovering
	Static Analysis
	Dynamic Analysis
	Component Architecture Generation

	Dynamic Software Architecture Evolution
	Graphical Visualization & Comprehension of Software Architectures
	Update the Architecture
	Automatic Software Architecture Generation & Software Architecture As XMI File

	Conclusion

	Implementation and Case Study
	Introduction
	ArchDynEvol Tool
	Architecture of ArchDynEvol
	Development of Graphical Software Architecture Editor
	OSGI EMF Meta-Model
	Graphic Editor Creation

	Recovering Software Architecture Components
	Implementation of Evolution Actions

	Case Study: Eclipse Based Applications
	Conclusion

	General Conclusion

