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Abstract 

 

Software-Defined Networking is becoming more and more present in the network due to the 

complexity and difficulty to manage the traditional network. This new paradigm aims to 

separate the control plane and the data plane for more network programmability, 

serviceability, heterogeneity, and maintainability.  

To improve the performance of data transmission in SDN, this project proposes an adaptive 

routing approach by taking advantage of the global network view of SDN, aimed at routing 

the data in the network with minimal costs based on machine learning technique (ANN). 

We collect three network metrics from each transmission path. These metrics are bandwidth 

utilization, packet loss, latency. By using these three-load metrics, an Artificial Neural 

Network model is trained to predict the time spent (latency) for a different path and to choose 

one with low-latency as the data-flow transmission path. The contrast experiment results show 

that an adaptive routing approach proposed in this work can select a more rational 

transmission path for data-flow and can reduce network latency, especially when we have 

large network congestion. 
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General introduction 

 These days the usage of the network is growing at a faster pace, at the same time a lot of 

challenges are facing by the network administrator, to tackle the frequent network access by 

the users. The network infrastructure is growing rapidly to meet the business need, but it 

requires re-policing and reconfiguration of the network. But managing the underlying 

infrastructure becomes more complicated to handle the unprecedented network demand. The 

Software Defined Network (SDN), is the next-generation Internet technology, which not only 

solves the ossification of the Internet but also creates innovations and simplifies network 

management. The key idea behind SDN is a separation of the control plane from the data 

plane, as a result, devices in the data plane simple becomes the forwarding device and transfer 

all the decision-making activities in a centralized system called a controller.  

With the recent advances in the field of Artificial Intelligence (AI), and especially the 

breakthroughs in Machine Learning (ML) and Deep Learning, we are experiencing more 

research interest in adopting AI as a tool for solving modern computer network problems. 

Computer networks are becoming increasingly complex and dynamic. AI is revolutionizing 

how complex computer networks and services are managed by making more informed 

decisions based on the vast amount of network data. AI techniques have shown great promises 

in many network and service management problems including cloud management, routing 

and traffic engineering, cybersecurity, etc. AI has also been a central component in cognitive 

networks and communication researches. 

 

This project aims to propose and develop an adaptive routing approach based on Artificial 

Intelligence algorithms for SDN to optimize the management of network data centers 

according to the network behavior (Average Bandwidth, Packet loss, and latency).  

The first chapter of this work opens with the explanation of the traditional network and its 

limitation, and the difference between data plane and control plane and further describes in 

detail the technology of SDN, this is followed by the principle of Open flow protocol. The 

chapter concludes SDN created an opportunity for solving the Traditional network's 

longstanding problems. 

The second chapter presents machine learning and its approaches, and an overview of the 

neural network and its types. Also presents some research works done so far in the area of 

routing in SDN networks by using artificial neural networks. 

The third chapter deals with the proposed system structure and explains each component in it. 

The fourth chapter provides the tests and results of the proposed approach. Additionally, there 

is a presentation and explanation of the tools and the environment used in this work. 
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1.1. Introduction 
 

A new networking paradigm, Software-Defined Networking (SDN), promises to help to 

overcome the flexibility and scalability limitations of traditional networking by making use of 

network management centralization and by fostering automation using network 

programmability. Even though the idea of a programmable network is not new, SDN has 

recently become a hot topic in the networking community. Software-Defined Networking is 

already changing the way some organizations deploy and manage their networks. Microsoft, 

Amazon, Google, and Facebook among others, who run most of the internet traffic today, are 

early adopters of SDN and drivers of several SDN initiatives. They are part of the Open 

Networking Foundation, ONF, established in 2011 to standardize SDN architecture and 

protocols. 

 

1.2. Traditional network  
 

Conventionally, the networking worked to connecting hardware like routers and switches 

backed with a basic software program that used to define a configuration for all the connected 

devices in a network [1]. This can be observed from the following figure. 

 

     

 

                                            Figure 1: Traditional Network [2] 
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Even today traditional networks are used extensively worldwide. With some help of 

networking skills, a network administrator manages to architect the whole components of the 

network. Though the above figure looks simply, the overall size of the network goes on 

increasing usage and requirement over time. As the complexity of the network increases, it 

becomes difficult to add a program for every new device and to reconfigure the whole new 

system each time. This scenario becomes an extra overhead for network management. 

Problems associated with traditional networking: 

➢ Scalability 

➢ Classification of data and routing traffic 

➢ Time Consuming 

➢ Multi-vendor environment requires a high level of expertise 

➢ Decentralized network control 

Thus, to address the problems associated with traditional networking, the concept of 

Software-defined networking was introduced. 

 

1.3. Software-Defined Networking  
 

The traditional computer networks are complex, difficult to manage, built from a large 

number of network devices. All of those drawbacks show the needed to find a new way to 

facilitate network evolution. In this context, it appeared the idea of “programmable network” 

[3]. Software-Defined Networking is one of the solutions developed. It separates the control 

plane (which decides how to handle the traffic) from the data plane (which forwards traffic 

according to decisions that the control plane makes). This characteristic expects a more 

simplify network management, but also enables innovation and evolution. But, SDN does not 

appear suddenly, it is a part of a long way of efforts to make the network more programmable. 

 

1.3.1. History 
 

Software-Defined Networking relies on past research on active networking and works on 

separating the control plane and the data plane, for example in the telephony networks, where 

the separation is used to simplify network management and the deployment of new services 

[4]. 

 

 

 

 



 

5 
 

1.3.1.1. Active Networking  
 

The first work which contributed to the current SDN is the active networking (between the 

mid-1990s and the early 2000s). It introduced programmable functions in the network to 

enable innovation. Two programming models have been proposed by the active networking 

community: the capsule model and the programmable router/switch model. The intellectual 

contribution of active networks to SDN are: 

➢ programmable functions in the network to lower the barrier to innovation; 

➢ network virtualization, and the ability to demultiplex to software programs based on 

packet headers. 

➢ the vision of a unified architecture for middlebox orchestration. 

 

1.3.1.2. Separating control and data planes 
 

In the early 2000s, the idea to separate the control and data planes has been developed, and 

two innovations appeared: an open interface between the control and data planes, such as the 

ForCES (Forwarding and Control Element Separation), and logically centralized control of 

the network. Those two innovations have an intellectual contribution to SDN which is: 

➢ logically centralized control using an open interface to the data plane. 

➢ distributed state management.  

 

1.3.1.3. OpenFlow  
 

In the mid-2000s, a group of researchers of Stanford created OpenFlow switches [5]. To 

enable the creation of many new control applications, the design of controller platforms has 

quickly followed. The intellectual contributions are: 

➢ generalizing network devices and functions.  

➢ the vision of a network operating system. 

➢ distributed state management techniques. 

The term “SDN” has been first used to describe Stanford’s OpenFlow project, but now the 

definition is expanded to include a much wider array of technologies. All those innovations 

permitted the definition of a new paradigm for network architecture, called Software-Defined 

Networking, which refers to a network architecture where the forwarding state in the data 

plane is managed by a remote control plane decoupled from the former [6]. 
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1.3.2. SDN Architecture 
 

The basic elements of SDN include SDN devices, SDN controllers, and applications. The 

SDN devices contain components for deciding what to do with incoming traffic (frames or 

packets). The SDN controller programs the network devices and presents an abstraction of the 

underlying network infrastructure to the SDN applications. The controller allows an SDN 

application to define traffic flows and paths, in terms of common characteristics of packets, 

on the network devices to satisfy its needs and to respond to dynamic requirements by users 

and traffic/network conditions. The Open Networking Foundation defines a high-level 

architecture for SDN with three main layers as shown in Figure (2). [7] 

 

 

                                                                               Figure 2. SDN Architecture [8] 

 

1.3.2.1. Infrastructure Layer   
 

This layer consists of SDN devices (both physical and virtual) that perform packet switching 

and forwarding.  Specifically, an SDN device is composed of an application program interface 

(API) for communication with the controller, an abstraction layer, and a packet-processing 

component. The abstraction layer abstracts an SDN device as a set of flow tables. The packet 

processing function decides on actions to be taken, based on the results of the evaluating 

incoming packets relative to flow entries in the flow tables. 
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1.3.2.2. Control Layer  
 

This layer provides the logically centralized control functionality that supervises the network 

forwarding behavior through an open interface. An SDN controller controls, through a 

southbound API, all SDN devices that make up the network infrastructure; and implements 

policy decisions such as routing, forwarding, load balancing, etc. It provides an abstract view 

of the entire network to the applications through a northbound interface. 

 

1.3.2.3. Application Layer 
 

his layer consists of end-user applications that utilize the SDN communications and network 

services [9]. Through the controller the applications can affect the behavior of the underlying 

infrastructure by configuring the flows to route packets through the best path between two 

endpoints, balancing traffic loads across multiple paths or destined to a set of endpoints, 

reacting to changes in network topology such as link failures and the addition of new devices 

and paths, or redirecting traffic for purposes of inspection, authentication, segregation, and 

similar security-related tasks. 

 

1.3.3. Application of SDN 
 

Recently, Google, Amazon, Facebook, Microsoft, and others have invested heavily in 

Software Defined Networking both in their data centers and their wide area networks (WAN), 

and many have published details about their homegrown SDN software and white box switch 

implementations.  

In [10], they classified the Applications of SDN into the following domains.  

➢ Data Centers 

➢ Service Providers 

➢ Campus Networks 

 

1.3.3.1. Campus/Enterprise/Home Networks 
 

There have been various use-cases within campus/enterprise networks. The applications such 

as Video Streaming and Collaboration, BYOD and Seamless Mobility, and Network 

Virtualization (Slicing/Traffic Isolation), Application-Aware Routing, are explored using 

SDN.  
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1.3.3.2. Data Center Networks 
 

1.3.3.2.1. Network Virtualization 
 

Network virtualization is one of the major applications of SDN in data-center networks. Two 

major scenarios of network virtualization, for which SDN is used in data-centers, are to 

realize multi-tenant Networks and stretched/extended networks. SDN is applied to 

dynamically create segregated topologically equivalent networks (multitenancy) across a data-

center and to create location-agnostic networks, across racks or across data-centers, with VM 

mobility and dynamic reallocation of resources (stretched/extended networks). Some of the 

advantages of SDN in data-centers for network virtualization are better utilization of data-

center resources, faster turnaround times, improved recovery times in disasters, overcome 

various limitations such as 4K of VLAN. 

 

1.3.3.2.2. Tap Aggregation 
 

Provide visibility and troubleshooting capabilities on any port in a multi-switch deployment 

without the use of numerous expensive network packet brokers (NPB). The advantages of 

using SDN are Dramatic savings and cost reduction, savings of 50-100K per 24 to 48 

switches in the infrastructure. Less overhead in initial deployment, reducing the need to run 

extra cables from NPBs to every switch. 

 

1.3.3.2.3. Energy Saving 
 

A network-wide power manager that utilizes SDN to find the minimum-power network subset 

which satisfies current traffic conditions and turns off switches that are not needed. As a 

result, they show energy savings between 25-62% under varying traffic conditions. The 

Honeyguide approach to energy optimization in which it uses virtual machine migration to 

increase the number of machines and switches, that can be shutdown. 

 

1.3.3.3. Service Provider and Transport Networks 
 

SDN provides a fully programmatic Operator-Network interface, which allows it to address a 

wide variety of operator requirements without changing any of the lower-level aspects of the 

network. SDN achieves this flexibility by decoupling the control plane from the topology of 

the data plane so that the distribution model of the control plane need not mimic the 

distribution of the data plane. Below, we enlist a few use-cases related to service provider 

networks. 
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1.3.3.3.1. Dynamic WAN reroutes 
 

SDN is used to provide dynamic yet authenticated programmable access to flow-level bypass 

using APIs to network switches and routers. The advantages of using SDN in this case: 

Savings of hundreds of thousands of dollars’ unnecessary investment in 10Gbps or 100Gbps 

L4-7 firewalls, load-balancers, IPS/IDS that process unnecessary traffic. 

 

1.3.3.3.2. Bandwidth on Demand 
 

Enable programmatic controls on carrier links to request extra bandwidth when needed (e.g. 

DR, backups). The advantages of using SDN, in this case, are reduced operational expenses 

allowing self-service by customers and increased agility saving long periods of manual 

provisioning. 

 

1.3.3.3.3. NFV and Virtual Edge 
2.  

In combination with NFV initiatives, replace existing Customer Premises Equipment (CPE) at 

residences and businesses with lightweight versions, moving common functions and complex 

traffic handling into POP (points-of-presence) or SP datacenter. The advantages of using SDN 

are: the increased usable lifespan of on-premises equipment, improved troubleshooting, and 

flexibility to sell new services to business 

 

1.4. SDN routing versus legacy routing 
 

Legacy routing protocols such as OSPF and BGP have been developed very comprehensive, 

but its rigid complex system has been difficult to adapt to the fast-growing Internet. The 

emergence of the Software-Defined Network has brought hope for the solution of this 

problem. Benefit from the advantage of computation and fine-grained control for packets. 

However, is the performance of SDN routing better than legacy routing. [11] 

➢ Routing in the SDN network has an advantage in a large-scale network topology. 

➢ Routing convergence in legacy networks is much more influenced by link delay. 

➢ Routing convergence time in the SDN network is less than legacy networks. 
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1.5. Open Flow   

OpenFlow is the most popular SDN technology. It proposes to standardize the communication 

between the switches and the software-based controller [5]. Even if some people consider 

SDN and OpenFlow as synonyms, there are different. Indeed, SDN consists of decoupling the 

control and the data planes, while OpenFlow describes how a software controller and a switch 

should communicate in an SDN architecture [12]. 

 

1.5.1. Overview  
 

An OpenFlow architecture consists of three basic concepts, as shown in figure (3). 

➢ the network is built up by OpenFlow-compliant switches that compose the data plane. 

➢ the control plane consists of one or more OpenFlow controllers. 

➢ a secure control channel connects the switches with the control plane. 

 

 

                                                                       Figure 3. OpenFlow Components [13] 
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1.5.2. OpenFlow switches 

 

OpenFlow switches consist of one or more flow table, a group table which perform packet 

lookups and forwarding, a meter table consists of meter entries, defining per-flow meters, one 

or more OpenFlow channel to an external controller, and port to forward flow entries. The 

components of an OpenFlow switch are illustrated in figure (4). 

 

 

                                                                 Figure 4. OpenFlow switch Components [14] 

 

1.5.3. Flow tables 
 

Each flow table in the switch contains a set of flow entries. In specification 1.0 [15], each of 

them consists of match fields, counters, and a set of instructions to apply to match packets as 

illustrated in figure (5). The header fields describe to which packet this entry is applicable. 

The counters are reserved for collecting statistics about flow. The actions specify how a 

packet of that flow is handled. 

 

                                         

                                                             Figure 5. Flow table entry in OpenFlow 1.0 [14] 

Header Fields Counters Actions 
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Other components have been added in the next specifications, in the figure (6), the header 

fields have been replaced by match fields which consist of the ingress port and packet 

headers, and optionally other pipeline fields such as metadata specified by a previous table. 

Priority is matching the precedence of the flow entry. Timeout is the maximum amount of 

time or idle time before a flow is expired by the switch. Cookies opaque data value chosen by 

the controller. And flags alter the way flow entries are managed. 

 

 

                                                              Figure 6. Flow table entry in OpenFlow 1.5 [14] 

 

1.5.4. Packet flow through an OpenSwitch 

 

The figure (7) illustrates the packet processing in the OpenFlow pipeline. This processes in 

two stages, ingress processing and egress processing, which can be optional. The process 

always starts with the ingress processing at the first flow table. The packet is matched against 

the consecutive flow table from each of which the highest-priority matching flow table entry 

is selected. If a flow entry is found, the set of instructions of that flow entry executed. 

Otherwise, if there is a table miss, its instruction is executed, or the packet is dropped. 

 

 

                                            Figure 7. Packet flow through the processing pipeline [14] 

 

Match Fields Priority Counters Instructions Timeouts Cookie Flags 
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Figure (8) summarizes the packet process through an OpenFlow switch. The process 

following by the packet is: 

➢ the switch starts by performing a table lookup in the first flow table, and based on the 

pipeline processing, may perform table lookups in other flow tables. 

➢ packet header fields are extracted and packet pipeline fields are retrieved. 

➢ packet matches a flow entry if all the match fields of the flow entry are matching the 

corresponding header fields and pipeline fields from the packet 

 

                           Figure 8. Simplified flowchart detailing packet flow through an OpenFlow switch [14] 
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1.5.5. OpenFlow messages 
 

The controller configures and manages switches, receives events from them, and sends a 

packet out through the OpenFlow channel, an interface that connects OpenFlow switch and 

OpenFlow controller. The OpenFlow switch protocol supports three messages types. 

➢ Controller-to-switch 

Controller-to-switch messages are initiated by the controller and used directly to manage or 

inspect the state of the switch. A response from the switch may not be required. Those 

messages are: 

• features: identity and basic capabilities of a switch. 

• configuration: to set and query configuration parameters in the switch. 

• modify-state: to manage state on the switch. 

• read-state: to collect various information from the switch. 

• packet-out: to send packets out of a specified port on the switch. 

• barrier: they are request/reply messages use to ensure message dependencies have 

been met or to receive notifications for completed operation. 

• role-request: to set the role of the OpenFlow channel, set the Controller ID, or query 

them. 

• asynchronous-configuration: to set an additional filter on the asynchronous 

messages. 

 

➢ Asynchronous 

Asynchronous messages are sent from the switch without a controller soliciting. Those 

messages informing the controller are: 

• packet-in: transfer the control of a packet. 

• flow-removed: removal of a flow entry from a flow table. 

• Port-status : change on a port. 

• role-status: change of the role of the controller. 

• controller-status: the status of OpenFlow channel changes. 
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➢ Symmetric 

Symmetric messages are sent without any solicitation from the controller and switch. They 

are: 

• Hello: messages exchanged between the switch and controller upon connection 

startup. 

• Echo: request/reply messages to verify the liveness of a controller switch 

connection, and as well can be used to measure its latency or bandwidth. 

• error: to notify a problem to the other side of the connection. 

• experimenter: provide a standard way for OpenFlow switches to offer additional 

functionality within the OpenFlow message type space. 

 

Figure (9) summarizes the main messages used to measure the delay between the switch and 

the controller. 

                  

                                                                 Figure 9. Types of OpenFlow messages [14] 

 

1.6. Conclusion 
 

In this chapter, we gave an overview of SDN architecture and compared it to traditional 

networks. We outlined its strength and challenges. We have also given a comparison of SDN 

routing and legacy routing, and we have given some applications of SDN. Then, we presented 

an overview on OpenFlow protocol and its architecture and components. In the next chapter, 

we present an overview on Machine learning and some related works done so far. 



 

 
 

 

 

 

 

 

 

 

 

Chapter 2:  Machine Learning and SDN  
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2.1. Introduction  
 

SDN decouples the control plane and the data plane. The network resources in SDN are 

managed by a logically centralized controller, which acts as the Networking Operating 

System (NOS). The SDN controller can program the network dynamically. Furthermore, the 

centralized controller has a global view of the network by monitoring and collecting the real-

time network state and configuration data, as well as packet and flow-granularity information. 

Applying machine learning techniques in SDN is suitable and efficient for the following 

reasons. First, recent advances in computing technologies such as Graphics Processing Unit 

(GPU) and Tensor Processing Unit (TPU) provide a good opportunity to apply promising 

machine learning techniques (e.g., deep neural networks) in the network field [16], [17]. 

Second, data is the key to the data-driven machine learning algorithms. The centralized SDN 

controller has a global network view and can collect various network data, which facilitate the 

applications of machine learning algorithms. Third, based on the real-time and historical 

network data, machine learning techniques can bring intelligence to the SDN controller by 

performing data analysis, network optimization, and automated provision of network services. 

Finally, the programmability of SDN enables the optimal network solutions (e.g., 

configuration and resource allocation) made by machine learning algorithms that can be 

executed on the network in real-time [18]. 

 

2.1. Machine learning  
 

Machine Learning (ML) is a field of computer science, the objective of which is to study and 

develop algorithms that can “learn”. The “learning” concept refers to the ability of these 

algorithms to generalize different behaviors by only using information from training 

examples. In traditional software, the information needed to generalize this behavior is hard-

coded in the program, whereas the code of ML algorithms defines the ability to learn, which 

can be used to generalize many behaviors. In other words, the main difference between 

traditional software and machine learning approaches is that, in machine learning algorithms, 

the output of the execution depends on the training phase of the software, therefore, the same 

algorithm can produce different outputs depending on the training data used.  

Machine Learning techniques are used in a wide range of applications: image processing, 

voice recognition, search engines, intelligent personal assistants, self-driving cars, video 

games, However, there are few applications on the networking field. 

The training is the process in which the model learns the best parameters to minimize the 

error. To improve the generalization capabilities of the model, usually, the dataset is divided 

into three sets: the training set, the validation set, and the test set. The training set and the 

validation set are used in the training phase: the training set is used by the learning algorithm 

to learn the best model parameters, whereas the validation set is used to explore different ML 

configuration parameters and to choose the optimal. Finally, the test dataset is used to give an 

independent metric of the performance of the model. 



 

 
17 

 

 

2.1.1. Machine Learning Approaches 
 

2.1.1.1. Unsupervised learning 
 

In this learning approach, the model is training by observing new data and extracting patterns 

in the data without being instructed on what they are. Opposed to supervised learning 

described below, the advantage of this approach is that the model can learn from data without 

supervision (as the name suggests). This means that there is no need for input data to be 

annotated, therefore it takes much less time and resources to deploy these models in practice. 

The biggest hurdle of the supervised learning approach in real-world applications is to obtain 

appropriate data. Appropriate data in this context means, data that were somehow classified 

into different categories, which can be a very tedious and slow process. In some cases, the 

task itself prevents the usage of labeled data (i.e. labeled data are impossible to obtain or don’t 

exist at all).  

The majority of unsupervised learning algorithms belong to a group called clustering 

algorithms. These algorithms are centered on the idea to analyze geometric clustering of data 

in input space to determine their affiliation. This is achieved by the presupposition that data 

point clustering in input space is likely to exhibit similar properties. [19] 

 

2.1.1.2. Supervised learning 
 

The supervised learning approach is more commonly used. This approach requires training 

data in a specific format. Each instance has to have an assigned label. These labels provide 

supervision for the learning algorithm. The training process of supervised learning is based on 

the following principle. Firstly, the training data are fed into the model to produce a prediction 

of output. This prediction is compared to the assigned label of the training data to estimate 

model error. Based on this error the learning algorithm adjusts the model’s parameters to 

reduce it. [19] 

 

2.1.1.3. Reinforcement learning 
 

In reinforcement learning, the machine learning algorithm interacts with an environment and 

must reach a certain goal. This could be to learn to play a game or to drive a vehicle in a 

simulation. The algorithm gets only information on how good or bad he has interacted with 

the environment. For example, in learning to play a game, could this information the winning 

or the losing of a game. [20] 
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2.1.2. Artificial Neural Networks 
 

2.1.2.1. Structure 
 

Artificial Neural Networks (ANNs) are an ML model inspired by the behavior of biological 

neurons and their interconnections. Each unit or neuron performs a simple action based on 

multiple input signals to produce a single output. The interconnection of many neurons is 

known as the network. Biologic neural networks do not follow any particular structure, but 

ANNs usually follow a layer-based structure in which the first layer is known as the input 

layer, the last layer is known as the output layer and the layers in between are known as a 

hidden layer. When there is more than one hidden layer, they are also referred to as Deep 

Learning.  

Artificial Neural Networks (ANNs) were first proposed in the middle of the 20th century as a 

biologically inspired learning algorithm. In 1975, the backpropagation algorithm was first 

introduced, which made it possible to train multiple layers’ networks [21]. However, the main 

revolution in the ANN field was in the 21st century, in which the advances in computing and 

GPU made it possible to train a complex network in a reasonable time. 

Artificial Neural Networks (ANNs) can model complex non-linear systems, and for this 

reason, is one of the most used ML technique. However, the main trouble when using 

Artificial Neural Networks (ANNs) is the huge quantity of hyperparameters to choose from, 

to be able to learn efficiently. The parameters of the ANN are the values of the models that 

are used to compute the output, the hyper-parameters are the parameters that change the 

learning process and the fitting capabilities, but that is not part of the resulting model. 

Mathematically, the operations performed in an ANN can be recursively defined by the 

equation (2.1), where 𝑖 is the neuron: 

                                            𝑦𝑖 = 𝑓𝑖(∑ 𝑊𝑖,𝑗  ∀𝑗 𝑥𝑖 + 𝑏𝑖)                                   (2.1) 

Argument (∑ 𝑊𝑖,𝑗∀𝑗 𝑥𝑖 + 𝑏𝑖) of function 𝑓 is often regarded as  𝑧. Therefore, the equation can 

be rewritten as 

                                                   𝑦𝑖 = 𝑓𝑖(𝑧)                                                             (2.2) 

Typical schema is shown in Figure (10), which depicts inputs, weights, bias, and activation 

function. 



 

 
19 

 

 

                                                               Figure 10. Model of the artificial neuron [22] 

Inputs 

Each neuron has multiple inputs  𝑥𝑖   that are combined to execute some operation. Each input 

has designated weight assigned to it. 

Weights 

Inputs of a neuron are weighted by parameters  𝑊𝑖,𝑗  that are modified during the learning 

process. Each weight gives strength to each input into the neuron. The basic idea is that when 

the weight is small the particular input doesn’t influence the output of the neuron very much. 

Its influence is large in the opposite case. 

Bias 

Another modifiable parameter is bias  𝑏𝑖   that controls the influence of the neuron as a whole. 

Activation Function 

This is done with activation function 𝑓𝑖(𝑧)  . There are several different commonly used 

activation functions. Its usage depends on the type of network and also on the type of layer in 

which they operate. [19] 

One of the oldest and historically most commonly used activation functions is the sigmoid 

function. It is defined by 

                                                        𝑓𝑖(𝑧) =
1

1+e−z
                                                           (2.3) 
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Another activation function is the hyperbolic tangent. It is defined as 

                                                       𝑓𝑖(𝑧) = tanh(−z)                                                     (2.4) 

The hyperbolic tangent function is less common in feed-forward NN, but it is largely used in 

RNN. 

 

Currently most frequently used activation function is Restricted Linear Unit (ReLU). It is very 

commonly used in both convolutional and fully connected layers. It is defined by 

                                                        𝑓𝑖(𝑧) = Max(0, z)                                                 (2.5) 

 

It has a drawback because it is not differentiable for 𝑧 = 0, but it is not a problem in software 

implementation and one of its biggest advantages is that it can learn very quickly. All three 

activation functions are illustrated in Figure (11). 

 

 

                                                                       Figure 11. Activation Functions [19] 
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2.1.2.2. Type of Neural Network 
 

2.1.2.2.1. Single-layer feed-forward network 
 

A neural network in which the input layer of source nodes projects into an output layer of 

neurons but not vice-versa is known as a single feed-forward or acyclic network. In the 

single-layer network, ‘single-layer’ refers to the output layer of computation nodes as shown 

in Figure (12). [23] 

 

                                                         Figure 12.  A Single layer feedforward network 

 

2.1.2.2.2. Multilayer feed-forward network 
 

This type of network (Figure 13) consists of one or more hidden layers, whose computation 

nodes are called hidden neurons or hidden units. The function of hidden neurons is to interact 

between the external input and network output in some useful manner and to extract higher-

order statistics. The source nodes in the input layer of the network supply the input signal to 

neurons in the second layer (1st hidden layer). The output signals of the 2nd layer are used as 

inputs to the third layer and so on. The set of output signals of the neurons in the output layer 

of the network constitutes Figure 3: A Single layer feedforward network Input layer Output 

Layer the overall response of the network to the activation pattern supplied by source nodes in 

the input first layer. [23] 
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                                                           Figure 13.  A multilayer feed-forward network 

 

 

2.1.2.2.3. Recurrent Network 
 

A feed-forward neural network having one or more hidden layers with at least one feedback 

loop is known as a recurrent network as shown in Figure (14). The feedback may be a self-

feedback, i.e., where the output of a neuron is fed back to its input. Sometimes, feedback 

loops involve the use of unit delay elements, which results in nonlinear dynamic behavior, 

assuming that neural network contains nonlinear units. [23] 

 

                                                                         Figure 14. A recurrent network 
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2.2. Machine learning in SDN 
 

The centralized SDN controller has a global network view, which makes the network easy to 

control and manage. Machine learning techniques can bring intelligence to the SDN controller 

by performing data analysis, network optimization, and automated provision of network 

services. In other words, the learning capability enables the SDN controller to autonomously 

learn to make optimal decisions to adapt to the network environments. In this subsection, we 

review some existing machine learning efforts to address issues in SDN, such as traffic 

classification and routing optimization. 

 

2.2.1. Traffic Classification 
 

Traffic classification is an important network function, which provides a way to perform fine-

grained network management by identifying different traffic flow types. With the help of 

traffic classification, network operators can handle different services and allocate network 

resources more efficiently. 

 The widely-used traffic classification techniques include a port-based approach, Deep Packet 

Inspection (DPI), and machine learning [24] [25] [26]. The port-based approach uses TCP and 

UDP port numbers to determine applications. In the past, many applications used well-known 

ports such as TCP port 80 for HTTP protocol. Nowadays, most applications run on dynamic 

ports, which makes the port-based approach no longer effective.  

DPI matches the payload of traffic flows with predefined patterns to identify the applications 

that traffic flows belong to. The patterns are defined by regular expressions. The DPI-based 

approach generally has high classification accuracy. However, it has some shortcomings. 

First, DPI can only recognize applications whose patterns are available. The exponential 

growth of applications makes the pattern update difficult and impractical. Second, DPI incurs 

high computational cost as all traffic flows need to be checked. Third, DPI cannot classify 

encrypted traffic on the Internet.  

ML-based approaches can correctly recognize encrypted traffic and incur much lower 

computational cost than the DPI-based approach. Thus, ML-based approaches have been 

extensively studied. To do traffic classification, a large number of traffic flows are first 

collected, and then ML techniques are applied to extract knowledge from the collected traffic 

flows. In SDN, the controller has a global network view, which facilitates traffic collection 

and analysis. Thus, the ML-based approaches are generally implemented in the controller. 

Many studies have been done to classify traffic from different perspectives, such as elephant 

flow-aware [27], application-aware, and QoS-aware traffic classification [28].  
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2.2.2. Routing Optimization 
 

Routing is a fundamental network function. In SDN, the controller can control the routing of 

traffic flows by modifying flow tables in switches. For example, the controller can guide 

switches to discard a traffic flow or route it through a specific path. Inefficient routing 

decisions can lead to the overloading of network links and increase the end-to-end 

transmission delay, which affects the overall performance of SDN. Thus, how to optimize the 

routing of traffic flows is an important research problem. 

Shortest Path First (SPF) algorithm and heuristic algorithms [29] are two types of widely-used 

routing optimization approaches. SPF algorithm routes packets according to simple criteria 

such as hop-count or delay. Despite its simplicity, the SPF algorithm is a best-effort routing 

protocol and does not make the best use of network resources [30]. Heuristic algorithms (e.g., 

ant colony optimization algorithm) are another approach to solve the routing optimization 

problem. The high computational complexity is the main shortcoming of heuristic algorithms 

[30], [31]. 

In SDN, the controller is responsible for calculating the routing policy for each new flow. In 

this case, heuristic algorithms are not suitable because they increase the computational burden 

of the controller. Many studies have tried to solve the routing optimization problem using 

machine learning algorithms. Compared with heuristic algorithms, machine learning 

algorithms have some advantages. On one hand, once trained, machine learning algorithms 

can give the near-optimal routing solutions quickly. On the other hand, machine learning 

algorithms do not need an exact mathematical model of the underlying network. The routing 

optimization problem can be considered as a decision-making task. Thus, reinforcement 

learning is an effective approach. Supervised learning algorithms are also applied by many 

studies to optimize routing. 

 

2.3. Network Performance Metrics 
 

2.3.1. Throughput 
 

throughput is the rate at which the sending process can deliver bits to the receiving process. 

Because other sessions will be sharing the bandwidth along the network path, and because 

these other sessions will be coming and going, the available throughput can fluctuate with 

time. [32] 

 

2.3.2. Latency 
 

In computer networking, latency is an expression of how much time it takes for a data packet 

to travel from one designated point to another. [33] 
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2.3.3. Delay 
 

packet starts in a host (the source), passes through a series of routers, and ends its journey in 

another host (the destination). As a packet travels from one node (host or router) to the 

subsequent node (host or router) along this path, the packet suffers from several types of 

delays at each node along the path. The most important of these delays are the nodal 

processing delay, queuing delay, transmission delay, and propagation delay; together, these 

delays accumulate to give a total nodal delay. The performance of many Internet 

applications—such as search, Web browsing, e-mail, maps, instant messaging, and voice-

over-IP—are greatly affected by network delays. [32] 

Processing Delay 

The time required to examine the packet’s header and determine where to direct the packet is 

part of the processing delay. The processing delay can also include other factors, such as the 

time needed to check for bit-level errors.  

Queuing Delay 

At the queue, the packet experiences a queuing delay as it waits to be transmitted onto the 

link. The length of the queuing delay of a specific packet will depend on the number of 

earlier-arriving packets that are queued and waiting for transmission onto the link. If the 

queue is empty and no other packet is currently being transmitted, then our packet’s queuing 

delay will be zero. On the other hand, if the traffic is heavy and many other packets are also 

waiting to be transmitted, the queuing delay will be long.  

Transmission Delay 

Assuming that packets are transmitted in a first-come-first-served manner, as is common in 

packet-switched networks, our packet can be transmitted only after all the packets that have 

arrived before it has been transmitted. Denote the length of the packet by L bits, and denote 

the transmission rate of the link from router A to router B by R bits/sec. For example, for a 10 

Mbps Ethernet link, the rate is R = 10 Mbps; for a 100 Mbps Ethernet link, the rate is 𝑅 =

 100 Mbps. The transmission delay is 𝐿/𝑅. This is the amount of time required to push (that 

is, transmit) all of the packet’s bits into the link.  

Propagation Delay 

Once a bit is pushed into the link, it needs to propagate to the destination. The time required 

to propagate from the beginning of the link to the destination is the propagation delay. 
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2.3.4. Jitter 
 

A crucial component of delay is the varying queuing delays that a packet experiences in the 

network’s routers. Because of these varying delays, the time from when a packet is generated 

at the source until it is received at the receiver can fluctuate from packet to packet. This 

phenomenon is called jitter. [32] 

 

2.3.5. Packet loss 
 

Each packet switch has multiple links attached to it. For each attached link, the packet switch 

has an output buffer (also called an output queue), which stores packets that the router is 

about to send into that link. The output buffers play a key role in packet switching. If an 

arriving packet needs to be transmitted onto a link but finds the link busy with the 

transmission of another packet, the arriving packet must wait in the output buffer. Thus, in 

addition to the store-and-forward delays, packets suffer output buffer queuing delays. These 

delays are variable and depend on the level of congestion in the network. Since the amount of 

buffer space is finite, an arriving packet may find that the buffer is completely full with other 

packets waiting for transmission. In this case, packet loss will occur—either the arriving 

packet or one of the already-queued packets will be dropped. [32] 

 

2.3.6. Bandwidth utilization 
 

Bandwidth is the maximum data transmission rate possible on a network. Bandwidth 

utilization is an important factor to improve network performance refers to how much 

bandwidth is currently being used on a network. 
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2.4. Related work 
 

With the recent advances in the field of Artificial Intelligence, we are experiencing more 

research interest in adopting AI as a tool for solving modern computer network problems, 

especially in SDN. 

A load balance (Adaptive) solution scheme proposed in [34]. By taking advantage of the 

global network view of SDN, four load features are collected from each transmission path. 

These features are bandwidth utilization ratio, packet loss rate, transmission latency, and 

transmission hops. By using these four load features, an Artificial Neural Network model is 

trained to predict the integrated load of each path.  

Some operations in this method could have been included in the same neural network model, 

for example when we have N paths from source to destination, their neural network will run N 

times to predict a load of each path separately, then take the lowest load path as a selected 

transmission path, while it was possible to perform these operations only once.   

KDN (Knowledge-defined) approach based on a load balancing method proposed in [35] 

using performance metrics (bandwidth and latency) of each path of the network. Applying an 

Artificial Neural Network (ANN) to model the system behavior, this model takes bandwidth 

of all links existing in the topology as inputs, and outputs are paths latency, after the training 

their model can predict paths latency from given bandwidth links. 

Since this model takes all the links as inputs, this means that when multiple requests arrive at 

the same time to find the transmission path, their model gives us the same result for different 

connections because the inputs are similar. 

Implementation of a neural network inside the OpenFlow switch as an internal controller 

proposed in [36]. this NN model takes packet loss and available bandwidth as inputs, after 

that it can predict the transmission path. this method eliminates one of the aims of the SDN 

controller since switch can route alone, also doesn't take into account the number of 

transmission hops. 

The following table represents a comparison between the neural network models used in our 

related works, in each one we refer to the input and output features used in it. 

 

                    Inputs                     Outputs 

Research on Load Balance 

Method in SDN [34] 

bandwidth utilization ratio, 

packet loss rate, transmission 

latency, and transmission 

hops for the path. 

 

Integrated load path. 
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A Load Balancing Method 

Based on Artificial Neural 

Networks for Knowledge-

defined Data Center Networking 

[35] 

 

the available bandwidth of 

all existing links. 

 

paths latency. 

Implementation of Neural 

Switch using OpenFlow as Load 

Balancing Method in Data 

Center [36] 

 

available bandwidth, packet 

loss. 

 

Transmission path 

 

Table 1. related work's neural network model 

 

 

Our proposed NN model takes the advantages of [37] (multiple metrics as inputs because 

using different metrics may cause different accuracy and rationality) and [38] (paths latency 

as outputs, so we don't need a self-learning approach because we have a metric by which we 

can figure out the ideal path). we collect 3 metrics, which referred to bandwidth utilization, 

packet loss, latency. this model can predict paths latency by the inputs (bandwidth utilization 

and packet loss for the links that make up these output paths) to choose the least loaded path. 

we will explain it in the next chapter in detail. 

 

 

2.5. Conclusion 
 

In this chapter, we presented a review on machine learning and its approaches, and we gave 

an overview of the neural network and its types. We have also given reviews on research 

works done so far in the area of routing in SDN networks by using artificial neural networks. 

In the next chapter, we present our proposed approach for adaptive routing in SDN 

environments. 
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3.1. Introduction 
4.  

Path redundancy technology in SDN effectively provides the robustness and stability for the 

network. But how to evenly distribute traffic among multiple paths has become an urgent 

problem for SDN researchers. In this work, we have proposed and implemented an adaptive 

routing for SDN using AI. Adaptive routing is a method that will establish an optimal routing 

path for data packets depending on the real-time status of the network. With the help of SDN 

architecture, the implementation of adaptive routing is much easier. Due to the openness of 

SDN, the determination of optimal routing paths and directing packets through these optimal 

paths is possible. Adaptive routing can be implemented according to many parameters such as 

bandwidth, packet loss, latency, and other networking constraints to provide an optimal path. 

Adaptive routing can help the network to achieve desirable QoS parameters. 

3.2. General Architecture 
1.  

The general architecture of our proposed approach is illustrated in figure (15), where we see 

that it consists of three principal components which are:  

The centralized controller: it manages the network topology by linking devices between them, 

also enables the network to be intelligently and centrally controlled, or programmed using 

software applications. 

The network topology: is a physical description of the total resources in a network, this 

topology contains switches and hosts that are connected to each other and managed by the 

controller. 

Decision-making based Machine learning module: Requested by the centralized controller to 

smartly route network traffic. 

ML based decision-making 
module

Network topology

Centralized Controller

Switch 1 Switch 6

Host 1 Host 8Host 2 Host 3 Host 4 Host 5 Host 6 Host 7

Switch 3

Switch 2

Switch 4

Switch 5

Switch 7 Switch 8

Switch 9 Switch 10

 

                                                                                Figure 15. General Architecture  
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3.3. Detailed Architecture 
4.  

The figure (16) shows the detailed architecture of our proposed adaptive routing approach in 

SDN environment using Machine Learning technics. 
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                                                                                 Figure 16. Detailed Architecture  
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3.3.1. Network Topology 
 

In our work, we have studied and proposed an adaptive routing-based ML approach for Fat-

Tree topology which is the most implemented topology in nowadays data centers, the 

processing elements are interconnected by a tree structure, in which the IP cores are at the 

leaves of the tree, and the interior nodes are switches. An advantage of a tree structure is that 

communication distances are short for local communication patterns. Moreover, the fat-tree is 

a tree structure with redundant interconnections on its branches; the number of 

interconnections increases as the root is reached. The purpose is to increase the bandwidth at 

higher levels, where it is most needed. Because it is not feasible to provide a channel between 

every pair of nodes, the network channels are shared among the IP nodes. [39] 

Figure (17) depicts a Fat-Tree topology which is built with 𝑘-port switches have 𝑘 pods, each 

of which contains two layers of (𝑘/2) switches. It consists of (𝑘/2)2 core switches, (𝑘2/2) 

aggregation and edge switches respectively and supports (𝑘3/4) servers in total. However, 

the wiring complexity is 𝑂(𝑛3) which is a serious challenge. [40] 

 

                                                                Figure 17. A simple 3-level Fat-Tree topology. [41] 

 

3.3.2. Statistics Collector 
4.  

The statistics collector module gathers statistics from switch's interfaces where interface 

counters (bits, packet …) are collected from switches and sent across the network to the 

Collector. 

 Statistics received are analyzed to convert into actionable metrics or summary statistics, and 

then the real-time results are stored. 

statistics accessible through REST API, any language that supports HTTP request messages 

can be used to retrieve statistics from the collector. 
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3.3.3.     SDN Controller 
3.  

SDN Controller is the main component of the architecture where it fully manages the network 

topology, implements algorithms that collect network statistics (Bandwidth usage and packet 

loss, latency) according to specific metrics and uses our proposed ML module to direct 

network traffic smartly. 

3.3.3.1. Metrics Collection 
4.  

The metrics collection module runs in the SDN controller to collect three real-time metrics 

namely, bandwidth utilization and packet loss, latency. 

A. Bandwidth utilization 
One of the basic tasks in monitoring network traffic is to accurately track the utilization of 

links in your network. The statistic collector used to obtain the link load condition between 

switches.   

The utilization of links on a particular interface are defined by the equations (3.1) and (3.2): 

 

               𝒊𝒇𝒐𝒖𝒕𝒖𝒕𝒊𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏 =  
(𝑖𝑓𝑜𝑢𝑡𝑜𝑐𝑡𝑒𝑡𝑠 × 8)

(𝑖𝑓𝑠𝑝𝑒𝑒𝑑 × 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙)
 ×  100                                           (3.1) 

Where  

𝑖𝑓𝑜𝑢𝑡𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛  : Acronym for interface output utilization refer to the percentage of 

maximum outbound bandwidth that is being currently used. [42] 

𝑖𝑓𝑜𝑢𝑡𝑜𝑐𝑡𝑒𝑡𝑠  : the total number of octets sent from the interface. 

𝑖𝑓𝑠𝑝𝑒𝑒𝑑  : speed of the interface. 

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 ∶ time interval. 

               𝒊𝒇𝒊𝒏𝒖𝒕𝒊𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏 =  
(𝑖𝑓𝑖𝑛𝑡𝑜𝑐𝑡𝑒𝑡𝑠 × 8)

(𝑖𝑓𝑠𝑝𝑒𝑒𝑑 × 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙)
  ×  100                                            (3.2) 

where 

𝑖𝑓𝑖𝑛𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛  : Acronym for interface input utilization refer to the percentage of maximum 

inbound bandwidth that is being currently used. [42] 

𝑖𝑓𝑖𝑛𝑜𝑐𝑡𝑒𝑡𝑠  : the total number of inbound octets. 

𝑖𝑓𝑠𝑝𝑒𝑒𝑑  : speed of the interface.  

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 ∶ time interval. 

https://www.ibm.com/support/knowledgecenter/SSZJZF_4.3.0/com.ibm.omegamon_xezvm.doc_4.3/kvluser/kvl_user_monitoring_datacoll.html


 

33 
 

Now, each direction on the link has its own bandwidth, so both numbers are needed. If we 

want to summarize the link bandwidth utilization, we could take the maximum of the two 

utilizations. The following algorithm (Algorithm 1) describes how to measure link utilization. 

 

Algorithm: Bandwidth utilization algorithm 

Input   srcifinutilization, srcifoututilization, dstifinutilization,  

            dstifoututilization. 

Output BW 

 

srcMaxUtilization = Max (srcifinutilization, srcifoututilization); 

dstMaxUtilization = Max (dstifinutilization, dstifoututilization); 

             BW          = Max (srcMaxUtilization, dstMaxUtilization); 
 

                                                              Algorithm 1. Bandwidth utilization algorithm 

 

The following table (Table 2) represents a description of the notations used in the previous algorithm. 

Notations Description 

Srcifinutilization 

Srcifoututilization 

dstifinutilization 

dstifoututilization 

srcMaxUtilization 

dstMaxUtilization 

BW 

Source Port Receive bandwidth 

Source Port Send bandwidth 

Destination Port Receive bandwidth 

Destination Port Send bandwidth 

Source Port Max bandwidth 

Destination Port Max bandwidth 

The Link bandwidth 
                                                            

                                                                         Table 2. Notation and Variables 

 

B. Packet loss 
Packet loss (PLoss) always occurs during the packet processing period in a data transmission 

device. If switches in the network are too busy to process the incoming packets, the packets 

may be dropped by switches. The packet loss indicates the busy condition of the switch. The 

SDN controller can collect a cumulative number of transmitted packets 𝑇𝑥 and a cumulative 

number of received packets 𝑅𝑥 at corresponding OpenFlow switch ports. Thus, the packet 

loss can be calculated by Equation (3.3): 

                                                      𝑷𝑳𝒐𝒔𝒔 =  
𝑇𝑥 − 𝑅𝑥

𝑇𝑥
                                                                       (3.3) 

Now, each direction on the link has its own packet loss. If we want to summarize the link 

packet loss, we could take the maximum of the two directions. 



 

34 
 

C. Latency 
According to the OpenFlow specification, the SDN controller detects the current network 

topology actively using Link Layer Discovery Protocol (LLDP) and maintains global 

topology information. During the process of link discovery, the controller sends LLDP 

packets as Packet-out messages to all switches in the network. When the SDN switch receives 

an LLDP packet from the controller, it sends the packet to all other switches connected to it 

directly. When a switch receives an LLDP packet from another switch, it sends the LLDP 

packet to the controller as a Packet-in message for help, because there is no corresponding 

forwarding rule in the switch’s Flow Table. After the SDN controller receives Packet-in 

messages with LLDP, it can analyze which switches are connected directly to each other, and 

construct the global topology. [43] 

Floodlight controller [44] provides a method using the existing LLDP protocol for measuring 

latency where latency is computed by injecting timestamps into LLDP packets and sending 

these LLDP packets as packet-outs to each switch in the network. When the controller 

receives one of its own LLDPs on a neighboring switch and processes that LLDP as a packet-

in, it will examine the timestamp in the LLDP and subtract it from the current time. This 

elapsed time, minus the control plane latency of the origin switch (calculated by OpenFlow 

echo request/reply), minus the control plane latency of the switch that sent the packet-in 

(calculated by OpenFlow echo request/reply), yields the latency of the link, steps illustrated in 

the figure (18). [45] 

 

                                        Figure 18. An illustration of how floodlight controller measures the link latency 
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𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑙:  the time spent by the link 𝑙. 

𝑡𝑜𝑡𝑎𝑙𝑡𝑖𝑚𝑒 = 𝑇1 − 𝑇2 

                                                     𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑙 = 𝑡𝑜𝑡𝑎𝑙𝑡𝑖𝑚𝑒 − (
𝑇3 + 𝑇4

2
)                                       (3.4) 

   𝑤ℎ𝑒𝑟𝑒  𝒍 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑖𝑛𝑘 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑤𝑖𝑡𝑐ℎ 𝒊 𝑎𝑛𝑑 𝒋   

 

For several links 𝐿1, 𝐿2 … 𝐿𝑛 with its transmission latency 𝑙𝑎𝑡𝑒𝑛𝑐𝑦1, 𝑙𝑎𝑡𝑒𝑛𝑐𝑦2 ... 𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑛, 

respectively, then the total latency of this path is as follows: 

                                                           𝑃_𝑙𝑎𝑡𝑒𝑛𝑐𝑦 =
1

𝑛
× ∑ 𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑙

𝑛

𝑙=1

                                           (3.5)  

       𝑤ℎ𝑒𝑟𝑒 𝑃_𝑙𝑎𝑡𝑒𝑛𝑐𝑦 means path latency. 

 

3.3.4. ML based decision-making module 
 

The machine learning module used as a decision-maker is an artificial neural network module. 

This NN module implements the Multilayer Perceptron Network MLP (also called as 

multilayer feedforward networks, that was explained in the previous chapter) to find the low-

latency path between a source node and destination node in real-time, this module using 3 

features (bandwidth utilization, packet loss, latency). Because using different methods or 

different features may cause different accuracy and rationality, it is very important to choose 

an accurate and rational machine learning method. 

we know that the path is a set of links. Now, when we have multiple paths and we want to 

know which path is less time-consuming. NN module takes load (bandwidth utilization, 

packet loss) of the links that make up these paths as inputs, then the NN module can predict 

the time spent in each path. 

in our NN architecture, layers are defined as follows: 

Input layer 

bandwidth utilization and packet loss are taken as input features where: 

- [𝐵𝑊1 − 𝐵𝑊n]: are bandwidth utilization of the links that make up the output layer 

paths.  

- [𝑃𝐿𝑜𝑠𝑠1 − 𝑃𝐿𝑜𝑠𝑠n]: are packet loss of the links that make up the output layer paths.  

Where 𝐧 is the number of links that make up the output layer paths. 
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Hidden layer 

There are many rule-of-thumb methods for determining the correct number of neurons to use 

in the hidden layers, such as the following [35] 

• The number of neurons should be between the size of the input layer and the size of 

the output layer. 

• The number of neurons should be 2/3 the size of the input layer, plus the size of the 

output layer. 

• The number of neurons should be less than twice the size of the input layer 

• The number of neurons is determined by the following equation [34] 

𝑁 = √𝑚 + 𝑛 + 𝑎  

Where 𝑁 denotes as the number of neurons in the hidden layer, 𝑚 denotes as the number of 

neurons in the input layer, 𝑛 denotes as the number of neurons in the output layer and 𝑎 is the 

constant between 1 and 10. 

Output layer 

Fat-Tree topology has three layers. The core layer is the busiest layer, where all the 

communication between the PODs passes on it. If we assume that we took all possible paths 

between each two hosts, this gives us about a thousand possible paths (the higher the number 

k) which makes the process difficult. For this reason, we chose the number of core switches as 

the number of paths. NN module’s output layer gives the latency of the path depending on 

input features.  

- [𝑃_𝑙𝑎𝑡𝑒𝑛𝑐𝑦1 − 𝑃_𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑚]: paths latency. 

Where 𝒎 is the number of core switches in Fat-Tree topology.  

Consequently, the structure of the MLP can be depicted in Figure (19), where the activation 

function used is the popular ReLU activation function. 
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                                                                          Figure 19. Neural Network Architecture 

 

 

3.4. The flowchart of the proposed approach 
 

The proposed adaptive routing algorithm is as follows:  

1. When a new data-flow transmitted into the SDN domain, OpenFlow switches process 

the matching between packet head information and flow-tables. If the flow-table 

matches the packet head information, this data-flow will be transmitted by the Action 

field in the flow-table. And if there is no flow-table to match this packet, OpenFlow 

switches will transmit this packet’s head information to the SDN controller to decide 

the transmission path. 

2. When finding only one path for data transmission, the SDN controller will create new 

flow-tables and allocate them to OpenFlow switches to active data transmission 

3. When finding multiple paths for data transmission, the SDN controller will transmit 

bandwidth utilization and packet loss for the links that make up these paths to the 

ANN module. 

4. The ANN module processes the metrics and chooses the low-latency path and sent to 

the SDN controller. 

5. The SDN controller receives the chosen path from the ANN module  
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We also illustrated our approach using a flowchart as shown in figure (20). 

 

 

                                                            Figure 20. The flowchart of the proposed approach 
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3.5. Routing algorithm based on the low-latency path 
 

To confirm the effectiveness of the proposed ANN-based adaptive routing, we propose a 

routing algorithm in an SDN network based on the low-latency path. Since the two proposed 

routing methods depend on the low-latency path, this enables us to see how effective ANN-

based routing is by comparing them together. This algorithm is run by the controller and deals 

with the Packet_in packet sent by the OpenFlow switch. Table (4) shows the steps of the 

algorithm, the first step is to create a graph corresponding to the topology, then we compute 

the first (𝑘/2)2 paths of all switches using Yen’s algorithm [46], then we find the low-latency 

path between every two switches in one direction, and finally, we store the selected path in 

cache table, steps 2, 3, and 4 repeated every 10s. When a switch needs a path, the controller 

gets it from the cache table that the algorithm fills. 

 

Algorithm: Routing algorithm 

Input   links latency, source node S and target node T 

 /*  k is the POD number in Fat-Tree topology & (k/2)² is the Core number  */ 

 

Step 1) Computing first (k/2)² available path according to transmission source node S 

and Target node T. 

 

Step 2) Computing first (k/2)² paths. 

 

Step 3) Calculate the first low-latency path. 

 

Step 4) Store the Selected transmission path in the cache table with corresponding S 

and T. 

 

                                                                    Algorithm 3. Proposed Routing Algorithm 

 

Figure (21) shows an example of the algorithm process. When Host 1 has a flow transmission 

request to Host 2, the request will be processed by following steps: Host 1 transmit flow to 

Switch A, there are no available forwarding rules so Switch A sends a Packet-In message to 

Controller. When the Controller received the transmission request from Host 1 to Host 2, the 

Controller obtains three available paths according to the network topology and then selects the 

low-latency path. After that, the Controller sends a Packet-Out to Switch A, B, C, D, and E to 

allocate a flow so that the packets will be transmitted to Host 2 then back to Host 1. 
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                                                                        Figure 21. An example of the algorithm process 

 

 

3.6. Conclusion 
 

In this chapter, we have presented our adaptive routing-based ML approach, we explained 

each component in it and the relationship between them. After that, we have presented a 

calculated low-latency routing algorithm in order to see the effectiveness of the proposed 

ANN-based adaptive routing. 
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4.1. Introduction 
 

In order to confirm the effectiveness of the proposed approach, we will do a case study where 

we create a scenario simulates reality as possible in order to build a dataset, this dataset uses 

to training an ANN module on different hidden layers until we get accurate results, and then 

we see the effectiveness of the proposed adaptive routing is by comparing it with low-latency 

routing. 

 

4.2. Software Tools 
 

4.2.1. Mininet software 
 

The Mininet program is a network emulator. It can simultaneously perform a set of terminals, 

routers, Ethernet switches, and respective links to a single Linux Kernel (core). It uses 

virtualization technology to enable a single system to be simulated as a complete network 

using the same core system. Each virtual terminal in Mininet works like a real terminal. 

Moreover, it enables secure connection (type SSH) in the terminal, executes any program 

(provided that it is installed on the Linux system). The running programs can send packets 

between the terminals as well as recognizes the link between the interfaces as type Ethernet. 

While sending of packets is carried out by given connection speed and the required delay. The 

packets are processed by devices that operate as routers (Ethernet switches, routers) [47]. 

Briefly, in Mininet, terminals, routers, switches, controllers, and connections are created using 

software and not hardware. It is possible to create a Mininet network similar to a real network 

based on hardware, or the creation of a hardware network similar to that of Mininet, which 

performs the same binary code and applications on each platform. 

 

4.2.1.1. Topologies in Mininet 
 

Mininet supports the creation of customizable topologies. With the creation of the 

corresponding Python code, it is possible to create flexible topology which can be configured 

based on the information included in the code and can be reused in multiple experiments [47]. 

For example, the following illustrates a network topology consisting of a specified number of 

users (hosts) and associated with a switch. 

 

1. #!/usr/bin/python   

2. from mininet.topo import Topo   

3. from mininet.net import Mininet   

4. from mininet.util import dumpNodeConnections   

5. from mininet.log import setLogLevel   

6. class SingleSwitchTopo(Topo):   
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7. "Single switch connected to n hosts."   

8. def __init__(self, n=2, **opts):   

9. # Initialize topology and default options   

10.  Topo.__init__(self, **opts)switch = self.addSwitch('s1')   

11. # Python's range(N) generates 0..N-1   

12. for h in range(n):   

13. host = self.addHost('h%s' % (h + 1)) 

14. self.addLink(host, switch)   

15. def simpleTest():   

16. "Create and test a simple network"   

17.  topo = SingleSwitchTopo(n=4)   

18.  net = Mininet(topo)   

19.  net.start()   

20.  print "Dumping host connections"   

21.  dumpNodeConnections(net.hosts)   

22.  print "Testing network connectivity "   

23.  net.pingAll()   

24.  net.stop()   

25. if __name__ == '__main__':   

26. # Tell mininet to print useful information   

27.  setLogLevel('info')   

28. simpleTest()   

 

Classes and functions used are explained further: 

• Topo: The base class used in topologies Mininet 

▪ addSwitch (): adds a switch in the topology and returns the name of the switch. 

▪ addHost (): adds terminal in topology and returns the name. 

▪ addLink (): adds a two-way connection in topology. (Connections to Mininet both 

ways unless otherwise stated). 

• Mininet: main class for the creation and management of the network 

▪ start (): Enables the operation of the network. 

▪ pingAll (): check the connectivity of the terminal by performing successive ping 

requests between nodes. 

▪ stop (): Terminates the network operation. 

▪ net.hosts: Returns the name of all hosts. 

▪ dumpNodeConnections nodes (): dumps connections to / from a set of nodes. 
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4.2.1.2. Setting performance parameters 
 

Besides the basic functions of networking, Mininet provides configurable performance and 

isolation of certain characteristics, through CPULimitedHost and TCLink classes. 

1. #!/usr/bin/python   

2. from mininet.topo import Topo   

3. from mininet.net import Mininet   

4. from mininet.node import CPULimitedHost   

5. from mininet.link import TCLink   

6. from mininet.util import dumpNodeConnections   

7. from mininet.log import setLogLevel   

8. class SingleSwitchTopo(Topo):   

9. "Single switch connected to n hosts."   

10. def __init__(self, n=2, **opts):   

11. Topo.__init__(self, **opts)   

12. switch = self.addSwitch('s1')   

13. for h in range(n):   

14. # Each host gets 50%/n of system CPU   

15. host = self.addHost('h%s' % (h + 1), cpu=.5/n)   

16. # 10 Mbps, 5ms delay, 10% loss, 1000 packet queue   

17. self.addLink(host,switch,bw=10, delay='5ms', loss=10, max_queue_size=1000, use_htb=True) 

18. def perfTest():   

19. "Create network and run simple performance test"   

20.  topo = SingleSwitchTopo(n=4)   

21.  net = Mininet(topo=topo,   

22.  Host=CPULimitedHost, link=TCLink)   

23.  net.start()   

24.  print "Dumping host connections"   

25.  dumpNodeConnections(net.hosts)   

26.  print "Testing network connectivity "   

27.  net.pingAll()   

28. print "Testing bandwidth between h1 and h4"   

29.  h1, h4 = net.get('h1', 'h4')   

30.  net.iperf((h1, h4))   

31.  net.stop()   

32.  if __name__ == '__main__':   

33.  setLogLevel('info')   

34. perfTest()  

 

The most important methods and parameters used are explained further: 

• self.addHost (name, cpu): With the use of this command allows the definition of the 

percentage of total system CPU that will use the virtual user. 

• self.addLink (node1, node2, bw = 10, delay = '5ms', max_queue_size = 1000, loss = 

10, use_htb = True): Creates a bidirectional connection between two nodes with 

specific characteristics such as capacity, delay, packet loss tolerance, with a maximum 

queue size of 100 packets. The parameter bw is expressed in Mb / s, while the delay is 

followed by the corresponding unit time (s, ms, us). Antitheta loos the parameter is 

expressed in percentage. 
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4.2.1.3. Run programs in virtual terminals 
 

Running programs in terminals are the most memorable event during the execution of the 

experiments, so further commands can be supported from the usual pingAll () and iperf () 

type commands. This process is supported by the Mininet software. Each terminal in Mininet 

is a bash shell type associated with one or more network interfaces thus support running bash 

type commands. For this reason, to communicate with each terminal is mainly used method 

type CMD [47]. 

For example: (execute a command from a host and imprinting effect through method cmd). 

1. h1 = net.get('h1')   

2. result = h1.cmd('ifconfig')   

3. print result  

 

4.2.1.4. Configuration methods of hosts 
 

Hosts in Mininet provide several processes that contribute to the ease of network 

configuration [47]. 

• IP (): Returns the IP address of the terminal as a specific interface. 

• MAC (): Returns the MAC address of the terminal as a specific interface. 

• setARP (): Creates a static ARP entry in the ARP cache of the terminal. 

• setIP (): Settings specific IP address for a terminal interface. 

• setMAC (): Settings specific IP address for a terminal interface. 

For example: 

print "Host", h1.name, "has IP address", h1.IP(), "and MAC address", h1.MAC()   

 

4.2.1.5. Mininet CLI 
 

The Mininet includes Command Line Interface that can operate on a network. It provides a 

variety of useful commands, and the ability to display xterm window for execution on 

individual nodes of a network [47]. 

1. from mininet.topo import SingleSwitchTopo   

2. from mininet.net import Mininet   

3. from mininet.cli import CLI   

4. net = Mininet(SingleSwitchTopo(2))   

5. net.start()   

6. CLI(net)   

7. net.stop()   
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Using command-line helps to debug the network, displays the network topology (using the 

command net), checks the connectivity (with pingall command), and sends commands to all 

terminals independently. 

1. *** Starting CLI:   

2. mininet> net   

3. c0   

4. s1 lo: s1-eth1:h1-eth0 s1-eth2:h2-eth0   

5. h1 h1-eth0:s1-eth1   

6. h2 h2-eth0:s1-eth2   

7. mininet> pingall   

8. *** Ping: testing ping reachability   

9. h1 -> h2   

10. h2 -> h1   

11. *** Results: 0% dropped (0/2 lost)   

12. mininet> h1 ip link show   

13. 746: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state UNKNOWN   

14. link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00   

15. 749: h1-eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc   

16. pfifo_fast state UP qlen 1000   

17. link/ether d6:13:2d:6f:98:95 brd ff:ff:ff:ff:ff:ff   

 

4.2.2. Floodlight controller 
 

Floodlight Controller is based on Java. The controller comprises an autonomous collection of 

modules which perform the main functions of Floodlight as OpenFlow controller and 

applications are developed to overlap (on-top) the base unit controller (REST applications) or 

to operate together with the controller (Module applications), as shown in the following figure 

(22) [44]. 

         

 

                                                                 Figure 22.Floodlight architecture [48]. 



 

47 
 

As shown above, Floodlight consists of functional topology and link modules (Topology 

Manager, Link Discovery), control devices and units (Device Manager, Module Manager), 

OpenFlow services (OpenFlow Services), unit storage and handling (Storage, Counter Store, 

Flow Cache, Packet Streamer, Thread Pool). 

 Applications that use Floodlight as an underlying layer are developed as independent Java 

modules and use the programming REST interface of the controller (REST API application 

programming interface). Through its REST API applications, Floodlight communicates with 

the controller and can use the network for any function. Also, applications can be developed 

and adjusted to the level of the Floodlight controller, enough to develop and implement the 

controller modules as Java (Java modules). This way, although more demanding and difficult 

than the use of the REST API's, has significant benefits as regards the execution speed of the 

application and greater communication bandwidth offer with Floodlight, since the coupling of 

application controller becomes more directly to the use of Java API. 

 

4.2.3. sFlow-RT 
 

sFlow-RT is a real-time and scalable platform and a traffic collector to provide real-time 

visibility to SDN. It is sampling technology to analyze and interpret the flows depending on 

time. 

The sFlow system consists of two basic components:  

• sFlow agent – a program that, after initiation on a network node, sends the packet 

samples and data traffic counters to the component sFlow collector, which later 

processes this information, and 

• sFlow collector – an application that handles sFlow datagrams sent by the sFlow agent 

and displays (graphically or through REST API) the analyzed parameters.  

Figure (23) gives an overview of the network with basic sFlow components and illustrates 

how the technology works. sFlow has two very important functions are polling and sample 

rate. The polling function defines the temporal sampling of counters. This is the time interval, 

expressed in seconds, through which a network device with running sFlow agent counts 

packets. For example, if that interval is 90, a network device will count all packets that passed 

through the interface in the last 90 seconds. The sample rate is the function that defines the 

sampling of data flow. That is the number that defines how many packets, counted during a 

polling interval, will be forwarded to the sFlow agent. If that number is defined as 1/10, it 

means that every tenth packet counted during polling will be forwarded to the sFlow agent 

[49]. 
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                                              Figure 23. The schema of the sFlow agent and collector network [49] 

 

4.2.3.1. sFlow-RT traffic counters 
 

Traffic counters are defined for each interface of each node on which collecting information 

about that interface is wanted. The majority of sFlow-RT interface counters (Table 5) use 

SNMP-names and properties from the SNMP MIB table [50]. The objects in the sFlow-RT 

are compliant to the SNMP SMI (Structure of Management Information) [51]. 

 

Object Description Unit 

ifinoctets The total number of octets received on the interface Octets 

ifindiscards The number of inbound frames (Ethernet) or packets (IP, IPX, AppleTalk) which 

were chosen to be discarded, even though no errors had been 

detected (e.g. discarded because buffer space was full) 

 

ifoututilization The number that represents link utilization for outgoing traffic of interface % 

ifspeed Evaluation of interface bandwidth. Interface whose bandwidth does not vary or 

assessment cannot be made, this entry should contain the 

nominal value of the bandwidth 

bit/s 
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ifinpkts The number of received packets on the interface  

ifoutdiscards The number of outgoing frames (Ethernet) or packets (IP, IPX, AppleTalk) 

which were chosen to be discarded, even though no errors had been detected (e.g. 

discarded because buffer space was full) 

 

ifinutilization The number that represents link utilization for incoming traffic on interface % 

ifindex The number that uniquely identifies interface, must be greater than zero  

ifinucastpkts The number of unicast packets delivered to higher-level protocols (e.g. 

packets delivered to PPP (point-to-point) protocol) 

 

iftype Type of interface (e.g. ethernet Csmacd)  

ifinmulticastpkts The number of incoming multicast packets  

ifouterrors The number of packets that could not be transmitted because of errors  

ifinerrors The number of inbound packets that contain errors and cannot be 

delivered to higher-level protocol (e.g., packets with incorrect CRC (Cyclic 

Redundancy Check)) 

 

ifoutoctets The total number of octets sent out of interface Octets 

ifoutpkts The total number of packets sent out of interface  

ifoutucastpkts The total number of packets that will be delivered from higher-level protocols 

and sent to unicast address, including those that will be discarded on lower layer 

and those that will not be send because of 

Errors 

 

 

                                                                       Table 3. sFlow-RT Traffic counters [42] 

 

4.2.4. Keras 
 

The implementation of the proposed module is constructed based on using the Python 

programming language. Python has a large number of scientific libraries for data processing 

and machine learning approaches. In this work, we used a Keras library, Keras is a deep-

learning framework for python that provides high-level building blocks for developing almost 

any kind of deep-learning model in a much more convenient way than to build it all from 

scratch. Keras also allows the same code to be run on both the CPU and GPU. Keras does 

however not handle low-level operations, such as tensor manipulation and differentiation. So, 

what it does instead is to rely on well-optimized tensor libraries (like TensorFlow) to handle 

that part, functioning as a backend engine of Keras. As of now, the Keras team recommends 

using TensorFlow as its backend [52]. 
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4.3. Case Study 
 

4.3.1. Experimental Environment 
 

We used Mininet as the network emulator and Floodlight as the SDN controller to run 

experiments on multipath topologies to evaluate the performance of the proposed adaptive 

routing method. The emulated data-center topology is shown in Figure (24), Fat-Tree with 9 

Core switches, 18 Aggregation switches, 18 Edge switches, 54 Hosts. 

In the real network environment, network traffic presents strong randomness and uncertainty. 

So, in this work, the experiment is designed to simulate the network environment in reality as 

possible. Traffic will be transmitted randomly among hosts, also the time spent on traffic is 

random. 

The final purpose of the experiment is to build a dataset for training NN module. During the 

traffic transmission, we collect metrics (bandwidth utilization, packet loss, and latency). The 

routing algorithm used for this experiment is the proposed low-latency routing algorithm. 

 

 

                                                                              Figure 24. Fat-Tree Topology (k = 6) 

 

4.3.2. Experimental Results Analyze 
 

4.3.2.1. Training Results of neural network module 
 

Before utilizing the MLP to indicate the low-latency path, it is indispensable to train the 

neural network with a large number of datasets to achieve the least error Artificial Neural 

Network. We use Mininet to emulate the SDN topology as shown in Figure (24). Hosts in the 

topology will transmit traffic randomly to other hosts to simulate the network traffic, also the 

time spent on traffic is random, while the SDN controller utilizes OpenFlow and sFlow 
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protocol to record the network metrics (bandwidth utilization, packet loss, and latency). We 

collect metrics in 100 sec to generate the dataset to train the MLP. 

Each path between two hosts present in two different pods has 4 links, and we have 9 core 

switches in our topology. So, the input layer has 72 features, 36 (4 multiply 9) for bandwidth 

utilization, and 36 for packet loss. Every 10 sec we calculate the latency of paths between all 

the hosts except the hosts in the same pod, through our topology we will get 270 samples, we 

use these paths in the dataset to train the NN module. At the end of the scenario, we get 2700 

samples. The following timeline (Fig.25) summarizes what we have said.  

...

• generate a random traffic between 
hosts where time spent on traffic is 
random.

• collect bandwidth utilization and 
packet loss, latency from links.

• generate a random traffic between 
hosts where time spent on traffic is 
random.

• collect bandwidth utilization and 
packet loss, latency from links.

9/7/2015

• Calculate latency of the paths

• Build 270 rows in the dataset

100s10s

# we do the same process every 10s.

90s

9/7/2015

0s

• Calculate latency of the paths

• Build 270 rows in the dataset

 

                                                                    Figure 25. Scenario timeline for building the dataset 

 

The variables in this data set are as follows (Table 4), average bandwidth and packet loss of 

the links as inputs and path’s latency as outputs. 

Variable Name Type Description 

BWi Numeric average bandwidth of the link i 

PLossi Numeric packet loss bandwidth of the link i 

P_Latencyi Numeric latency of the path i 
 

                                                                   Table 4. Notations and variables in this data set 

 

Since, the input layer has 72 features, 36 for bandwidth utilization, and 36 for packet loss and 

every 10 sec we calculate the latency of paths between all the hosts except the hosts in the 

same pod. So, the structure of the dataset will be as follows (Table 5).  

rows Time INPUTS OUTPUTS 

 

270 records 

per 10s 

 

 

Each 10 

until 100 sec 

 

BW1 
 

… 

 

BW36 
  

PLoss1 
 

… 

 

PLoss36 
 

P_Latency1 
 

… 

 

P_Latency9 

 

                                                                                        Table 5. dataset structure 
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As depicted in the previous chapter on the ANN module, the number of neurons in the hidden 

layer cannot be easily determined. In the procedure of training, we train the MLP with a value 

of 18, 48, and 140 as the number of neurons in the hidden layer. And we can get the results of 

these different neural networks to evaluate the performance of these 3 neural networks. 

Figure (26) shows the error in the three MLPs with different neuron numbers in the hidden 

layer. As shown in Figure (26) when the number of neurons in the hidden layer is too small 

(namely 18), the error of the trained MLP is relatively the largest. Along with the increase in 

the size of datasets, all the error results of MLP are decreasing. When the number of neurons 

comes into 140, the error results are relatively least and keep steady. Take all this into 

consideration, MLP with 140 neurons in the hidden layer is selected, meaning this type of 

MLP is the fittest one for SDN network case. 

 

 

                                           Figure 26. Error for Different number of neurons in the hidden layer of MLP 

 

 

Figure (27) shows the accuracy in the three MLPs with different neuron numbers in the 

hidden layer. When the number of neurons comes into 140, the results are more accurate and 

keep steady, MLP with 140 neurons in the hidden layer is selected, meaning this type of MLP 

is the fittest one for SDN network case. 
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                                                Figure 27. Accuracy for Different number of neurons in the hidden layer of MLP 

 

4.3.2.2. Experimental Results of low-latency Routing based on SDN  
 

In this section, we apply the simulation experiment platform of Mininet and floodlight to 

confirm the effectiveness of the proposed algorithm and compare it with single-path (first 

shortest path) transmission methods. The same scenario was launched in two methods, in 

which traffic is transmitted between hosts present in different pods, also the time spent on 

traffic is random, and we deliberately have a large traffic to make the congestion in the 

network. We calculate RTT time during each communication and compare results between 

the two algorithms. The experiment takes 100 sec. (the RTT is how long it takes for a request 

sent from a source to a destination, and for the response to get back to the original source. 

Basically, the latency in each direction). 

 

In order to know the efficiency of the proposed algorithm, two different topologies were tried 

(Fat-Tree 4-array and 6-array). We examine the performance of the round-trip time in Fat-

Tree with 4-array, as shown in Figure (28). Compared with single-path, low-latency routing, 

on the whole, is smooth and can reduce the time delay. 
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                              Figure 28. RTT comparison between the two algorithms (4-array Fat-Tree topology experiment) 

 

Now, we examine the performance of the round-trip time in Fat-Tree with 6-array, as shown 

in Figure (29). Compared with single-path, low-latency routing, on the whole, is smooth and 

can reduce the time delay. Also, we have noticed that with large topology and large network 

congestion, the proposed algorithm is much better. 

 

                                  Figure 29. RTT comparison between the two algorithms (6-array Fat-Tree topology experiment) 
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4.3.2.3. Experimental Results of Adaptive Routing based on ANN 
 

In order to evaluate an adaptive routing approach based on ANN, we have used one other 

routing method strategy as a comparison. it's the proposed low-latency routing because it 

performs the same ANN routing approach (they both choose to route on the low-latency path), 

and this is good for testing the effectiveness of ANN. In the 100 sec of the experiment, traffic 

is transmitted between hosts present in different pods, and the time spent on traffic is random, 

and we deliberately have large traffic to make the congestion in the network. During the 

experiment, the round-trip time and the packet loss will be calculated in each communication, 

and we compare them in both methods. The experimental results are shown in Figure (30) and 

Figure (31). 

 

We first examine the performance of the round-trip time, as shown in Figure (30). Compared 

with low-latency, and single-path routing methods, ANN-based routing, on the whole, is 

smooth and can reduce the time delay. This is due to ANN-based routing doesn't take time to 

calculate the ideal path. When a request arrives in order to choose the best path among the 

paths, ANN predicts directly the transmission path. Contrary to low-latency routing that needs 

to process each path alone, this is what caused the ANN-based routing response to be faster 

and reduce the time delay over time. As for the First Shortest Path, RTT is larger because it 

chooses the same path throughout the experiment. We have noticed that with large topology 

and large network congestion, the proposed ANN-based routing is much better. 

 

              Figure 30. RTT when using the proposed ANN-based routing compared to low-latency and First shortest path 

routing methods 
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The packet loss was tested in the same test environment, as shown in Figure (31). As can be 

seen from the graph, the fluctuation of the packet loss is relatively smooth and less than 0.2% 

when using the ANN-based routing method compared to low-latency routing method, and less 

than 3% when compared to First Shortest Path routing method because it makes full use of 

idle paths, which reduces the adverse effects of congestion caused by a single link. 

 

                    Figure 31. Packet Loss when using the proposed ANN-based routing compared to low-latency and First 

shortest path routing methods 

  

 

4.4. Conclusion 
 

In this chapter, we have presented the tests and results of our proposed approach. 

Additionally, there is a presentation and explanation of the tools and the environment used in 

this work. We have concluded that our proposed approach can improve the routing process, 

especially when we have large network congestion. 
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General Conclusion 
 

Software-defined network is still a new architecture to create and manage computer networks, 

which are still being developed and tested. Over time protocols that support it (like 

OpenFlow) become more mature and reliable, and more controllers are developed in different 

programming languages providing more and more features to create centralized, functional, 

and reliable computer networks. 

The main purpose of this project was to provides an adaptive routing approach for SDN using 

neural networks. The first main step has been to discover and learn more about SDN and 

OpenFlow protocol. And the second one was to see How artificial neural networks work. And 

the third one, confirm the effectiveness of this approach by comparing it in two other 

methods. 

The main purpose of this project was to provide an adaptive routing approach for SDN using 

neural networks as a Machine Learning approach. The first main step has been to discover 

and learn more about SDN and OpenFlow protocol, and the second one was to see how 

artificial neural networks work. Finally, confirm the effectiveness of this approach by 

comparing it in two other methods. 

As the same with traditional networks, path redundancy technology in SDN effectively 

provides the robustness and stability for the network. But how to evenly distribute traffic 

among multiple paths has become an urgent problem for SDN researchers. Taking advantage 

of the global network view of SDN, this project proposes an adaptive routing solution scheme 

based on real-time path load conditions. This method collects bandwidth utilization, packet 

loss rate, latency, and integrate them by Artificial Neural Network to indicate the path's time 

spent. We utilize Mininet and Floodlight controller to simulate the SDN network (on this 

project is Fat-Tree with 6-array). an adaptive routing approach proposed in this project is 

applied in the simulation experiment. Compared with low-latency and First shortest path 

routing methods, the experimental results show that the approach proposes in this project 

provides better network performance and can reduce network latency, especially when we 

have large network congestion. 

During this study, we concluded that adopting ML in networks gives a great help, especially 

with the presence of SDN. This study proved this, where we used ML to improve the routing 

process and we got good results. 
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ANNEX A: Scripts created in this project  

A.1. Script to create Network Topology (Fat-Tree with 6-array) 
 

1. # called sFlow-RT to install agents in the OpenFlow switches   
2. execfile('sflow-rt/extras/sflow.py')    
3.    
4. CoreSwitchList = []   
5. AggSwitchList = []   
6. EdgeSwitchList = []   
7. HostList = []   
8.    
9.    
10. class FatTree( Topo ):   
11.     
12.     # create a Fat-Tree Topology   
13.     def __init__( self, k):   
14.         " Create Fat Tree topo."   
15.         POD = k   
16.         pod = POD   
17.         end = pod / 2   
18.         iCoreLayerSwitch = (k / 2) ** 2   
19.         iAggLayerSwitch = k * (k / 2)   
20.         iEdgeLayerSwitch = k * (k / 2)   
21.         iHost = iEdgeLayerSwitch * (k / 2)   
22.            
23.         # Init Topo   
24.         Topo.__init__(self)   
25.         SCount = 0   
26.         for x in range(1, pod * (pod / 2) + 1):   
27.           PREFIX = "s"   
28.           EdgeSwitchList.append(self.addSwitch(PREFIX + str(x)))   
29.           SCount = SCount + 1   
30.           print("ESwitch[", SCount, "]")   
31.    
32.         for x in range(SCount + 1, SCount + pod * (pod / 2) + 1):   
33.           PREFIX = "s"   
34.           AggSwitchList.append(self.addSwitch(PREFIX + str(x)))   
35.           SCount = SCount + 1   
36.           print("ASwitch[", SCount, "]")   
37.    
38.         for x in range(SCount + 1, SCount + ((pod / 2) ** 2) + 1):   
39.           PREFIX = "s"   
40.           CoreSwitchList.append(self.addSwitch(PREFIX + str(x)))   
41.           SCount = SCount + 1   
42.           print("CSwitch[", SCount, "]")   
43.    
44.    
45.         count = 0   
46.         digit2 = 0   
47.         digit3 = 0   
48.    
49.         for a in range(0, pod):   
50.           for b in range(0, pod / 2):   
51.              for c in range(2, 2 + (pod / 2)):   
52.                 count = count + 1   
53.                 digit2 = count / 100   
54.                 digit3 = count / 10000   
55.                 PREFIX = "h"   
56.                 print("host ip:", "10." + str(a) + "." + str(b) + "." + str(c))   
57.                 print("host mac:", "00:00:00:" + str(digit3 % 100).zfill(2) + ":" + 

str(digit2 % 100).zfill(2) + ":" + str(   
58.                     count % 100).zfill(2))   
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59.                 HostList.append(self.addHost(PREFIX + str(count), ip="10." + str(a) 
+ "." + str(b) + "." + str(c),   

60.                                              mac="00:00:00:" + str(digit3 % 100).zfi
ll(2) + ":" + str(   

61.                                              digit2 % 100).zfill(2) + ":" + str(coun
t % 100).zfill(2)))   

62.                    
63.         for x in range(0, iEdgeLayerSwitch):   
64.           for y in range(0, end):   
65.              self.addLink(EdgeSwitchList[x], HostList[end * x + y], bw=10)   
66.    
67.    
68.         print("iAggLayerSwitch=", iAggLayerSwitch)   
69.         for x in range(0, iAggLayerSwitch):   
70.          if(varr == 7 ): varr = 4   
71.          for y in range(0, end):   
72.           self.addLink(AggSwitchList[x], EdgeSwitchList[end * (x / end) + y], bw=10 

)   
73.    
74.    
75.         for x in range(0, iAggLayerSwitch, end):   
76.           for y in range(0, end):   
77.              for z in range(0, end):   
78.               self.addLink(CoreSwitchList[y * end + z], AggSwitchList[x + y], bw=10)

   
79.    
80.    
81. def Dataset_load():   
82.     print(os.system("java -jar code/link_utilization.jar "))   
83. def Dataset_loss():   
84.     print(os.system("java -jar code/packet_loss.jar "))    
85. def Dataset_latency():   
86.     print(os.system("java -jar code/latency.jar "))   
87.    
88.    
89. def ping_pod1(h1,h2,h3,h4,h5,h6):   
90.    
91.     # Run PING Between hosts   
92.     time.sleep(random.randint(0,5))   
93.     h1.cmd('ping  -s65000 -w 20 %s' % h2.IP())         
94.     time.sleep(random.randint(0,5))   
95.     h1.cmd('ping  -s65000 -w 15 %s' % h3.IP())     
96.     time.sleep(random.randint(0,5))   
97.     h1.cmd('ping  -s65000 -w 20 %s' % h4.IP())   
98.     time.sleep(random.randint(0,5))   
99.     h1.cmd('ping  -s65000 -w 15 %s' % h5.IP())   
100.     time.sleep(random.randint(0,5))   
101.     h1.cmd('ping  -s65000 -w 20 %s' % h6.IP())   
102.        
103. def ping_pod2(h1,h2,h3,h4,h5,h6):   
104.    
105.     # Run PING Between hosts   
106.     time.sleep(random.randint(0,5))   
107.     h3.cmd('ping  -s65000 -w 20 %s' % h4.IP())       
108.     time.sleep(random.randint(0,5))   
109.     h2.cmd('ping  -s65000 -w 15 %s' % h5.IP())   
110.     time.sleep(random.randint(0,5))   
111.     h2.cmd('ping  -s65000 -w 20 %s' % h6.IP())   
112.     time.sleep(random.randint(0,5))   
113.     h2.cmd('ping  -s65000 -w 15 %s' % h4.IP())   
114.     time.sleep(random.randint(0,5))   
115.     h2.cmd('ping  -s65000 -w 20 %s' % h3.IP())   
116.    
117. def ping_pod3(f,h1,h2,h3,h4,h5,h6):   
118.    
119.     # Run PING Between hosts   
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120.     time.sleep(random.randint(0,5))   
121.     h5.cmd('ping  -s65000 -w 20 %s' % h6.IP())       
122.     time.sleep(random.randint(0,5))   
123.     h4.cmd('ping  -s65000 -w 15 %s' % h6.IP())   
124.     time.sleep(random.randint(0,5))   
125.     h3.cmd('ping  -s65000 -w 20 %s' % h5.IP())   
126.     time.sleep(random.randint(0,5))   
127.     h3.cmd('ping  -s65000 -w 15 %s' % h6.IP())   
128.     time.sleep(random.randint(0,5))   
129.     h4.cmd('ping  -s65000 -w 20 %s' % h5.IP())   
130.    
131.    
132. def topology():    
133.     "Create and fat-tree with 6-array"   
134.     topo = FatTree(k=6)   
135.     # build networ with ovsswitch   
136.     net = Mininet(topo=topo,host=CPULimitedHost, link=TCLink, controller=None

,switch=partial(OVSSwitch))   
137.     # connect to controller   
138.     c1 = net.addController('c1', controller=RemoteController, ip='127.0.0.1',

 port=6653)   
139.        
140.       
141.     print("*** Starting network")   
142.     thrds = []    
143.     net.start()   
144.    
145.     for i in range(0,9):   
146.       # we first run the script to collect metrics (bandwidth usage, packet l

oss, latency)   
147.       if i == 0:    
148.         thread = threading.Thread(target=Dataset_load, args=()); thrds.append

(thread); thread.start();   
149.         thread = threading.Thread(target=Dataset_latency, args=()); thrds.app

end(thread);  thread.start();   
150.         thread = threading.Thread(target=Dataset_loss, args=()); thrds.append

(thread); thread.start();   
151.    
152.         # build thread Between hosts for runing PING traffic   
153.         thread = threading.Thread(target=ping_pod1, args=(writer,net.hosts[i]

,net.hosts[i+9],net.hosts[i+18],net.hosts[i+27],net.hosts[i+36],net.hosts[i+45],))   
154.         thrds.append(thread)   
155.         thread.start()   
156.    
157.         thread = threading.Thread(target=ping_pod2, args=(writer,net.hosts[i]

,net.hosts[i+9],net.hosts[i+18],net.hosts[i+27],net.hosts[i+36],net.hosts[i+45],))   
158.         thrds.append(thread)   
159.         thread.start()   
160.    
161.         thread = threading.Thread(target=ping_pod3, args=(writer,net.hosts[i]

,net.hosts[i+9],net.hosts[i+18],net.hosts[i+27],net.hosts[i+36],net.hosts[i+45],))   
162.         thrds.append(thread)   
163.         thread.start()   
164.    
165.     # to prevent bugs from threads (synchron)    
166.     for j in thrds:   
167.         j.join()   
168.    
169.     CLI(net)   
170.     net.stop()   
171.    
172. if __name__ == '__main__':   
173.     # setLogLevel( 'info' )   
174.     topology()   
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A.2. Script to Collect Bandwidth Utilization Metric. 
 

1. public class linkUtilization {   
2.        
3.     static JSONParser parser ;   
4.     static URL oracle ; // URL to Parse   
5.     static URLConnection yc ;   
6.     static BufferedReader in ;   
7.     static String inputLine;  static StringBuilder s;   
8.        
9.     public linkUtilization() {   
10.         super();   
11.     }   
12.        
13.     public static void main(final String[] array) throws IOException, JSONException,

 InterruptedException, ParseException {   
14.          
15.         try (final PrintWriter printWriter = new PrintWriter(new File("/home/code/Da

tabase/link_utilization.csv"))) {   
16.             final StringBuilder sb = new StringBuilder();   
17.             sb.append("Time,Link,%Link_utilization\n");   
18.             int n = 10;   
19.             while (true) {   
20.                 Thread.sleep(10 * 1000);   
21.                 final JSONObject jsonFromUrl = readJsonFromUrl("http://localhost:800

8/app/link-metrics/scripts/metrics.js/metric/json");   
22.                    
23.                 final JSONObject OutUtilization = (JSONObject)jsonFromUrl.get("ifout

utilization");   
24.                 final JSONObject InUtilization = (JSONObject)jsonFromUrl.get("ifinut

ilization");   
25.                   
26.                    
27.                 for (final Map.Entry<String, String> entry : hashMap.entrySet()) {   
28.                    
29.                     // bandwidth  utilization in and out    
30.                     float utilization_BW_0 = 0.0f;   
31.                     float utilization_BW_1 = 0.0f;   
32.                        
33.                        
34.                     /************************************* LINK UTILIZATON *********

***********************************************/   
35.                        
36.                     // get switch id from links file    
37.                     final String[] port = entry.getValue().toString().split("<-

>");   
38.                        
39.                        
40.                     /***** get max from in and out utilization from the first direct

ion *******/   
41.                        
42.                     if (OutUtilization.has(port[0]) && InUtilization.has(port[0])) {

   
43.                         utilization_BW_0 = Max(Float.parseFloat(OutUtilization.get(p

ort[0]).toString()), Float.parseFloat(InUtilization.get(port[0]).toString()));   
44.                        }   
45.                     else if (OutUtilization.has(port[0])) {   
46.                         utilization_BW_0 = Float.parseFloat(OutUtilization.get(port[

0]).toString());   
47.                        }   
48.                     else if (InUtilization.has(port[0])) {   
49.                         utilization_BW_0 = Float.parseFloat(InUtilization.get(port[0

]).toString());   
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50.                        }   
51.                        
52.                     /***** get max from in and out utilization from the second direc

tion ******/   
53.                     if (OutUtilization.has(port[1]) && InUtilization.has(port[1])) {

   
54.                         utilization_BW_1 = Max(Float.parseFloat(OutUtilization.get(p

ort[1]).toString()), Float.parseFloat(InUtilization.get(port[1]).toString()));   
55.                        }   
56.                     else if (OutUtilization.has(port[1])) {   
57.                         utilization_BW_1 = Float.parseFloat(OutUtilization.get(port[

1]).toString());   
58.                        }   
59.                     else if (InUtilization.has(port[1])) {   
60.                         utilization_BW_1 = Float.parseFloat(InUtilization.get(port[1

]).toString());   
61.                        }   
62.              
63.                        
64.                     /************************************* RESULTS *****************

***************************************/   
65.                        
66.                     // link utilization & packet loss summary   
67.                     sb.append(n + "," + (Object)entry.getKey() + "," + String.format

("%.2f", Max(utilization_BW_0, utilization_BW_1)) +"\n");   
68.                   }   
69.                    n += 10;   
70.                    if (n == 110) {   
71.                     break;   
72.                     }   
73.             }   
74.             printWriter.write(sb.toString());   
75.             System.out.println("done!");   
76.         }   
77.         catch (FileNotFoundException ex2) {   
78.             System.out.println(ex2.getMessage());   
79.         }   
80.     }   
81.        
82. }   
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A.3. Script to Collect Packet loss Metric. 

1. public class packetLossTx_Rx {   
2.        
3.        
4.     static HashMap<String, String> packetLoss = new HashMap<String, String>();   
5.        
6.        
7.     public static void main(final String[] array) throws IOException, JSONException,

 InterruptedException, ParseException {   
8.          
9.         try (final PrintWriter printWriter = new PrintWriter(new File("/home/code/Da

tabase/Packet loss.csv"))) {   
10.             final StringBuilder sb = new StringBuilder();   
11.             sb.append("Time,Link,%Packet loss\n");   
12.             int n = 10;   
13.             while (true) {   
14.                                    
15.                 Thread.sleep(10 * 1000);   
16.                 int link_num = 1 ;   
17.                 for (final Map.Entry<String, String> entry : packetLoss.entrySet()) 

{    
18.                     String src = entry.getKey().split("&")[0];   
19.                     String dst = entry.getKey().split("&")[1];   
20.                        
21.                     //System.out.println("src "+src+" dst "+dst);   
22.                     int getTxsrc = getTx(src); int getTxdst = getTx(dst);   
23.                     int getRxsrc = getRx(src); int getRxdst = getRx(dst);    
24.                     int Src_TX =  getTxsrc -

 Integer.parseInt((entry.getValue().split("&")[0]).split("-")[0]);   
25.                     int Src_RX =  getRxsrc -

 Integer.parseInt((entry.getValue().split("&")[0]).split("-")[1]);   
26.                        
27.                     int Dst_TX =  getTxdst -

 Integer.parseInt((entry.getValue().split("&")[1]).split("-")[0]);   
28.                     int Dst_RX =  getRxdst -

 Integer.parseInt((entry.getValue().split("&")[1]).split("-")[1]);   
29.    
30.                     float PL ;   
31.                     if( (Src_TX - Dst_RX) > (Dst_TX - Src_RX) ) { PL =  (Src_TX -

 Dst_RX);  PL /= Src_TX; }   
32.                     else { PL =  (Dst_TX - Src_RX); PL /= Dst_TX; }   
33.    
34.                     if(PL < 0 ) PL = 0 ;   
35.                     sb.append(n + "," + "L"+link_num + "," + String.format("%.2f", (

PL  * 100 ) ) +"\n");   
36.                     link_num++;   
37.                     packetLoss.put(src+"&"+dst, +getTxsrc+"-

"+getRxsrc+"&"+getTxdst+"-"+getRxdst);   
38.      
39.                   }   
40.    
41.               n += 10;   
42.               if (n == 110) break;   
43.                        
44.             }   
45.             printWriter.write(sb.toString());   
46.             System.out.println("done!");   
47.         }   
48.         catch (FileNotFoundException ex2) {   
49.             System.out.println(ex2.getMessage());   
50.         }   
51.     }   
52.        
53.        
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54.        
55.    public static int getTx(String Switch){   
56.           
57.        int Tx = 0;   
58.        try{   
59.    
60.         String[] command = {"/bin/sh","-c","ifconfig "+Switch};    
61.         Process ifconfig = Runtime.getRuntime().exec(command);   
62.             BufferedReader r = new BufferedReader(new InputStreamReader(ifconfig.get

InputStream()));   
63.             StringBuilder sber = new StringBuilder();   
64.             String s ;   
65.             while (( s = r.readLine()) != null) sber.append(s);   
66.             r.close();   
67.             Pattern TX = Pattern.compile("TX packets:(\\d+)");   
68.             Matcher matcherTx = TX.matcher(sber.toString());   
69.             while (matcherTx.find())    
70.               Tx = Integer.parseInt(matcherTx.group(1));   
71.             return Tx;   
72.               }catch (IOException e) {e.printStackTrace();}   
73.           
74.     return Tx;     
75.           
76.    }   
77.       
78.      
79.    
80.    public static int getRx(String Switch){   
81.           
82.        int Rx = 0;   
83.        try{   
84.    
85.         String[] command = {"/bin/sh","-c","ifconfig "+Switch};    
86.         Process ifconfig = Runtime.getRuntime().exec(command);   
87.             BufferedReader r = new BufferedReader(new InputStreamReader(ifconfig.get

InputStream()));   
88.             StringBuilder sber = new StringBuilder();   
89.             String s ;   
90.             while (( s = r.readLine()) != null) sber.append(s);   
91.             r.close();   
92.             Pattern RX = Pattern.compile("RX packets:(\\d+)");   
93.             Matcher matcherRx = RX.matcher(sber.toString());   
94.             while (matcherRx.find())    
95.               Rx = Integer.parseInt(matcherRx.group(1));   
96.             return Rx;     
97.           } catch (IOException e) {e.printStackTrace();}   
98.           
99.     return Rx;     
100.    }   
101.    
102. }   
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A.4. Script to Collect Latency Metric. 

1. public class latency {   
2.        
3.     static JSONParser parser ;   
4.     static URL oracle ; // URL to Parse   
5.     static URLConnection yc ;   
6.     static BufferedReader in ;   
7.     static String inputLine;  static StringBuilder s;   
8.     static float[] latency = new float[108];   
9.     static String[] links = new String[108];   
10.        
11.     public latency() {   
12.         super();   
13.     }   
14.        
15.     public static void main(final String[] array) throws IOException, JSONException,

 InterruptedException, ParseException {   
16.            
17.         for (int i = 0; i < latency.length; ++i) latency[i] = 0.0f;   
18.         try (final PrintWriter printWriter = new PrintWriter(new File("/home/code/Da

tabase/latency.csv"))) {   
19.             final StringBuilder sb = new StringBuilder();   
20.             sb.append("Time,Link,latency(ms)\n");   
21.             int n = 1;   
22.             while (true) {   
23.                 Thread.sleep(1 * 1000);   
24.                    
25.                 JSONObject link;    
26.                 parser = new JSONParser();   
27.                 oracle = new URL("http://127.0.0.1:8080/wm/topology/links/json"); //

 URL to Parse   
28.                 yc = oracle.openConnection();   
29.                 in = new BufferedReader(new InputStreamReader(yc.getInputStream()));

   
30.                  s = new StringBuilder();   
31.                while ((inputLine = in.readLine()) != null)   
32.                        s.append(inputLine);   
33.                link = new JSONObject("{ \"links\":"+s.toString()+"}");   
34.                JSONArray jArray = link.getJSONArray("links");   
35.                int indx = 0;   
36.                for (final Map.Entry<String, String> entry : hashMap.entrySet()) {   
37.        
38.                    final String[] port = entry.getValue().toString().split("<->");   
39.    
40.     
41.                        
42.                   /************************************* LATENCY *******************

*************************************/   
43.                   String src = (port[0].toString().split("-"))[0] ;    
44.                   String des = (port[1].toString().split("-"))[0];   
45.                   String pid_src = null , pid_des = null ;    
46.                   JSONObject jb = null;   
47.                      
48.                   for (int i = 0; i < jArray.length(); i++) {   
49.                       jb = jArray.getJSONObject(i);                          
50.                       if(pid_src.equals(jb.getString("src-

switch")) && pid_des.equals(jb.getString("dst-switch")))    
51.                         { latency[indx] += Float.parseFloat( jb.get("latency").toStr

ing());   
52.                           links[indx] = entry.getKey().toString();   
53.                           break;}   
54.                       else if(pid_des.equals(jb.getString("src-

switch")) && pid_src.equals(jb.getString("dst-switch")))   



 

70 
 

55.                          {latency[indx] += Float.parseFloat( jb.get("latency").toStr
ing());   

56.                            links[indx] = entry.getKey().toString();   
57.                            break;}   
58.    
59.                   }   
60.    
61.                 indx++;   
62.                }   
63.                if (n % 10 == 0) {   
64.                    for (int m = 0; m < MyDataSets.latency.latency.length; ++m) {   
65.                        sb.append(String.valueOf(n) + "," + links[m] + "," + String.f

ormat("%.2f",latency[m] / 10) + "\n");   
66.                        latency[m] = 0.0f;   
67.                        links[m] = "";   
68.                    }   
69.                }   
70.                 n +=1;   
71.                 if (n == 101) break;   
72.                    
73.                   
74.             }   
75.             printWriter.write(sb.toString());   
76.             System.out.println("done!");   
77.         }   
78.         catch (FileNotFoundException ex2) {   
79.             System.out.println(ex2.getMessage());   
80.         }   
81.     }   
82.        
83.    
84.     public static JSONObject readJsonFromUrl(final String s) throws IOException, JSO

NException {   
85.         final InputStream openStream = new URL(s).openStream();   
86.         return new JSONObject(readAll(new BufferedReader(new InputStreamReader(openS

tream, Charset.forName("UTF-8")))));   
87.    
88.     }   
89.        
90.     private static String readAll(final Reader reader) throws IOException {   
91.         final StringBuilder sb = new StringBuilder();   
92.         int read;   
93.         while ((read = reader.read()) != -1) {   
94.             sb.append((char)read);   
95.         }   
96.         return sb.toString();   
97.     }   
98. }   
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A.5. Script for routing traffic in the low-latency path in SDN. 

1. public class lowLatencyRouting {   
2.    
3.     public static LinkDiscoveryManager ld = null;   
4.     public static TopologyManager tm = null;   
5.     public static IOFSwitchService switchService;    
6.     static ArrayList<String> PATHs ;   
7.     static HashMap<String, List<Path>> mapOfPaths = new HashMap<String, List<Path>>(

);   
8.     static HashMap<String, List<Route>> AllPaths = new HashMap<String, List<Route>>(

);   
9.     public static Map<String, String> PathLatency = Collections.synchronizedMap(new 

HashMap<String, String>());   
10.     static OFMessageDamper messageDamper;   
11.     HashMap<String, String> mapOfpatH = new HashMap<String, String>();   
12.     static int var = 0, muasure=0;   
13.     static Boolean pol;   
14.     private final static Object lock = new Object();   
15.    
16.    
17.     public lowLatencyRouting() {   
18.          Map<Link, LinkInfo> links = new HashMap<Link, LinkInfo>();            
19.    
20.                
21.         while (true) {   
22.    
23.             if (ld != null) {   
24.    
25.                 links.clear();   
26.                 links.putAll(ld.getLinks());   
27.                    
28.             HashMap<String, String> mapOfpath = new HashMap<String, String>();   
29.             HashMap<String, String> map = new HashMap<String, String>();   
30.             List<String> PATH = new ArrayList<String>();   
31.                     ArrayList<Edge> edge = new ArrayList<Edge>();   
32.                 for (Link link: links.keySet()) {   
33.                     if(var == 0){   
34.                         edge.add(new Edge(link.getSrc().toString(),link.getDst().toS

tring(),1));   
35.                         if(!mapOfpatH.containsKey(link.getDst().toString()+" "+link.

getSrc().toString()))   
36.                              mapOfpatH.put(link.getSrc().toString()+" "+link.getDst(

).toString(),link.getSrc().toString()+"-"+link.getSrcPort()+" "+link.getDst()+"-
"+link.getDstPort().toString());   

37.                         }   
38.                        
39.                     mapOfpath.put(link.getSrc().toString()+" "+link.getDst().toStrin

g(),link.getSrc().toString()+"-"+link.getSrcPort()+" "+link.getDst().toString()+"-
"+link.getDstPort()+"::"+link.getLatency().getBigInteger());   

40.                      }   
41.                    
42.    
43.                 if(var == 0){   
44.                       messageDamper = new OFMessageDamper(1000,EnumSet.of(OFType.FLO

W_MOD),250);   
45.                       Graph graph = new Graph(edge);   
46.                       TopologyInstance ti = tm.getCurrentInstance(true);   
47.                       Set<DatapathId> switches = ti.getSwitches();   
48.                       DatapathId[] IDs = new DatapathId[switches.size()];   
49.                       switches.toArray(IDs);    
50.                       List<Path> paths;    
51.                       for (int i = 0; i < IDs.length; i++) {   
52.                             for (int j = i+1; j < IDs.length; j++) {   
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53.                                 paths = new DefaultKShortestPathFinder().findShortes
tPaths(IDs[i].toString(),IDs[j].toString(), graph, 4);   

54.                                 mapOfPaths.put(IDs[i].toString()+" "+IDs[j].toString
(), paths) ;   

55.                             }}   
56.                       if(links.size() == TOTAL_NUM_LINKS && switches.size() == NUM_S

Ws) var++;   
57.                      }    
58.    
59.                   for (final Entry<String, List<Path>> entry : mapOfPaths.entrySet()

) {   
60.                       int latency , min = 0  , val = 0;   
61.                         for (Path path : entry.getValue()){   
62.                         latency  = 0;   
63.                         PATHs = new ArrayList<String>();   
64.                         for (int l = 0; l < path.getNodeList().size()-1; l++) {   
65.                             String SrcDst = mapOfpath.get(path.getNodeList().get(l)+

" "+path.getNodeList().get(l+1));   
66.                             if(SrcDst != null && !"".equals(SrcDst) ){   
67.                                 PATHs.add(SrcDst.split("::")[0]);   
68.                                 latency += Integer.parseInt(SrcDst.split("::")[1]); 

  
69.                                 if(val != 0 && min < latency ) break;   
70.                             }   
71.                               
72.                           }   
73.                         if(val == 0) {min = latency; PATH = PATHs; }   
74.                         else if(latency < min ){min = latency; PATH = PATHs;}     
75.                         val++;     
76.                            
77.                         }   
78.                         map.put(entry.getKey().split(" ")[0]+" "+entry.getKey().spli

t(" ")[1],PATH.toString().replace("[","").replace("]","").replace(", "," "));   
79.    
80.                    }   
81.                      
82.                   synchronized (RoutingBasedOnLatency.map) {   
83.                                       // return latency from each path to take the l

ow one.   
84.                       RoutingBasedOnLatency.map.clear(); RoutingBasedOnLatency.map.p

utAll(map);    
85.                     }   
86.             }   
87.                
88.                
89.             try {   
90.                 Thread.sleep(10000);   
91.             } catch (InterruptedException e) {}   
92.         }       
93.             
94. }   
95.    
96. }   
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