

University Mohamed Khider of Biskra

Faculty of Science and Technology

Electrical Engineering Department

Final Year Project Report in View of Obtaining

The Diploma Of

MASTER

Science and Technology

Embedded System

Theme:

LIDAR Mapping and Localization

Presented and Supported By:

Houhou Mounir

On: October ,2020

Jury:

❖Mme: Hendaoui Mounira MCA University of Biskra President

❖Mr: Rahmani Nacereddine MAA University of Biskra Supervisor

❖Mme: Terghini Ouarda MCB University of Biskra Examiner

Academic Year: 2021 – 2020

University Mohamed Khider of Biskra

Faculty of Science and Technology

Electrical Engineering Department

Final Year Project Report in View of Obtaining

The Diploma Of

MASTER

Science and Technology

Embedded System

Theme:

LIDAR Mapping and Localization

Presented and Supported By:

Houhou Mounir

On: October ,2020

Presented by: Favorable opinion of the supervisor: Signature

Houhou Mounir RAHMANI Nacereddine .

Favorable opinion of the President of Jury: Signature

 Hendaoui Mounira .

 Stamp and signature

 .

University Mohamed Khider of Biskra

Faculty of Science and Technology

Electrical Engineering Department

Final Year Project Report in View of Obtaining

The Diploma Of

MASTER

Science and Technology Embedded System

Theme:

LIDAR Mapping and Localization

Proposed by: RAHMANI Nacereddine

Directed by: RAHMANI Nacereddine

Abstract (English and Arabic)

The more technology gets harder the more science makes a step forward specially in

robotics, to be more specific self-driving cars (autonomous vehicle), We need them to navigate

throw lands and outside and inside doors application. Mapping and localization can easily be

solved by autonomous robot who can create a map and gives us a localization of itself. It can be

more useful in hard daily jobs like discovering caves and map old buildings; it consists of wheels

and motors, circuits, sensors to detect the surroundings. Using some mapping and navigation

algorithms. The goal of this project is to learn how to develop your robot and test it even before in

real application and make this robot map a surface and navigate on autonomously.

تحديدا ،تالروبوتا مجال في وخاصة الأمام إلى خطوة اتخاذ من العلم استطاع كلما التكنولوجيا صعوبة ازدادت كلما

والخارجية الداخلية المساحات و يضاالأر في للملاحة إليها نحتاج التي ؛)حكم تال ذاتية سيارة(القيادة ذاتية سياراتال في

وقد .خريطة إنشاء على قادر التحكم ذاتي آلي إنسان بواسطة والتموضع التخطيط عملية انشاء بسهولة الممكن من حيث

عجلات من يتألف فهو ؛القديمة للمباني خرائط ورسم الكهوف اكتشاف مثل الصعبة اليومية المهام في فائدة أكثر يكون

والتنقل تخطيطلل خوارزميات استخدام يمكنه و ؛المحيطة المناطق لاكتشاف استشعار وأجهزة كهربائية اراتود ومحركات .

وجعل الحقيقي التطبيق في انشاءه قبل حتى واختباره بك الخاص الروبوت تطوير كيفية تعلم هو المشروع هذا من الهدف

 مستقل نحو على فيها والتنقل ما خريطةسطح ينشئ. الروبوت هذا

Acknowledgement
First and supreme, I thank Allah the Almighty for this blessed work without an enough effort

I will be lost thankful for protection from all diseases to be strong all the way.

I give my gratitude and appreciation to my sympathetic supervisor Mr. RAHMANI

Nacereddine and for his precious time and guidance and especially the encouragement, patience

and wonderful support.

I also thank specially Ouamane Fatma Zohra who helped me a lot in my work without

forgeting my friends Ikhenache Wail, Houhou Ihssane who helped me to give such work

supporting my back whenever I turn.

Appreciation also goes to all the administrators and teachers at the Department of electronics

in the University of Biskra for their hard work and dedication and without forgetting the leader of

laboratory Mr. Hamza thanks for all your support.

Finally, a heartfelt gratitude to my family and all my friends and colleagues for the

encouragement and help they offered.

Dedication

I dedicate this work to my father and mother and to my brother and sister and too all

professors and my friends and without forgetting any one gives help.

For all who believes in those sayings

“Give your best be good “hard work gives you good result and say good words to your

classmates this will make your work be greater than just good, after being in this department in

university of biskra I learned a lot of things about electronics and I miss some moments which is

get to know yourself. never turn your back for someone who says to you “help me” because helping

someone will shape your skills and you gain more. For me helping friends is the best thing

happened in all semesters.

“Be good with family “they rase and teach you secrets of life teach you to fall and rise again.

Teach you love and carenes so be great full for all support your get from them they laugh with you

they cray for you they hoop that your success through your path.

“Covid” I pray every day asking Allah to spear us and forgive us from all since. And ask

rahma for all the dead from covid to be chahid in Allah hands.

List of Content

Acknowledgement……………………………………….………………………...……...

Dedication……………………………………………..………………….………….……

List of Figures………………………………………………..………………….……... I

List of Tables…...…...……………………...…………………………..………….. VIII

General Introduction…………………………………………………………………....2

I. Robotics. .. 4

I.1 Introduction Robotics ... 4

I.2 Characteristics and types of robots ... 4

I.2.1 Characteristics: .. 4

I.2.2 Types of Robots: ... 6

I.3 Scope And limitations Of Robots:.. 7

I.4 advantages and disadvantages: ... 7

I.5 Classification of robots: .. 8

I.5.1 Some robot’s pictures: ... 9

I.6 Robotic Most Important Parts: ...11

I.6.1 Mechanism: ...11

I.6.2 Electronics Parts: ...12

I.6.3 Software in Robots: ...13

I.7 Conclusion: ...14

II. Localization and Mapping on Robots:..16

II.1 Introduction: ..16

II.2 How SLAM started: ..17

II.3 The Futures of SLAM (Simultaneous Localization And Mapping):18

II.3.1 What is and Why we use SLAM? ..18

II.3.2 SLAM Applications? ...21

II.3.3 How SLAM Works? ..23

II.4 How We Implement SLAM System in Robots:24

II.4.1 Content And Design Of SLAM Problems:31

II.4.2 Probabilistic SLAM: ..32

II.4.3 Solutions to The SLAM Problem: ...35

II.5 The Relation with Next Chapter: ..37

II.6 Conclusion ...37

III. Robotic Operation System: ..39

III.1 Introduction ..39

III.2 ROS Goals: ..40

III.3 Operations System: ..41

III.4 ROS Context: ...41

III.5 ROS Versions(distribution): ..42

III.6 Ubuntu Install of ROS kinetic ...44

III.6.1 Installation: ...44

III.6.2 Configure Your Ubuntu Repositories ...44

III.6.3 Setup Your Sources List ...44

III.6.4 Set Up Your Keys ...44

III.6.5 Installation ..45

III.6.6 Environment Setup ...46

III.6.7 Dependencies for Building Packages ...46

III.6.8 Initialize Rosdep ...47

III.6.9 Build Farm Status ...47

III.7 Start Your Project: ...47

III.8 Why Using ROS? ...47

III.8.1 ROS in General: ..47

III.8.2 ROS Packages for Everything: ...48

III.8.3 ROS Has Great Simulation Tools: ...48

III.8.4 You Can Control Multiple Robots With ROS:48

III.8.5 ROS Is Light: ..48

III.8.6 More Compatible with Your Ideas: ..48

III.9 Conclusion: ..48

IV. Application and Discussion...50

IV.1 Introduction: ..50

IV.2 Component and Design of Robot: ...50

IV.2.1 Objectives: ..51

IV.2.2 Choosing the Component: ..51

IV.3 Our Robot Electronic Circuit assembly: ...59

IV.4 Getting Started: ..59

IV.4.1 Installing Linux To Fix Our ROS Tools:60

IV.5 Applying Some Algorithms On Linux Using The Terminal:63

IV.6 Build Our Robots In Linux. ...69

IV.6.1 Creating Our Work Space (robot folder):70

IV.6.2 Creating Src File Inside the Working Space And Compile The

Folder: 70

IV.6.3 Creating our robot packages: ..72

IV.6.4 Robot Coding: ..74

IV.6.5 Compiling Our Project Work Space: ...82

IV.6.6 Testing Our Sensor (RPLIDAR): ...87

IV.7 How Is Our Robot Attached? ..90

IV.8 Joints of Our Robot: ..94

IV.9 Test Our Robot (Mapping and localization):95

IV.9.1 Mapping: ...95

IV.9.2 Code the control file: ..96

IV.9.3 The Code Of Navigation Package: ...98

IV.9.4 Start seeing results ..101

IV.9.5 Navigation: ...106

IV.10 Measure distances in maps ..109

IV.10.1 Creating our package: ...110

IV.10.2 Results: ...111

IV.11 Build Our Robot on Reality: ..112

IV.11.1 Preparing the Raspberry Pi: ..112

IV.11.2 Test the sensor: ...113

IV.11.3 Import hector slam: ..113

IV.11.4 Compile the Files: ..113

IV.11.5 Run Mapping Algorithm: ...113

IV.12 Conclusion: ..117

General conclusion………...…………………………………….………………….…119

Bibliographie……………………………………………..……………………..……..120

I

List of Figure

I. Robotics

Figure I.1Classification of Robots by Environment and Mechanism of

Interaction. ... 8

Figure I.2 Classification of Robots by Application Field [6]. 9

Figure I.3 Industrial Robots. .. 9

Figure I.4Humanoid Robots. ...10

Figure I.5Autonomes Mobile Robots. ...10

Figure I.6Learning Robot. ...10

Figure I.7Learning Robot Turtelbot. ...11

Figure I.8Robot Arm. ...11

Figure I.9Moving Robot Arm. ...12

Figure I.10Robot Electronic Parts(face). ...12

Figure I.11Robot Electrical Wiring. ..13

Figure I.12 Coding Example. ...13

II. Localization and mapping on robots

Figure II.1 This represent a SLAM results (mapping and localization).17

Figure II.2The Birth Of SLAM [10]. ...18

Figure II.3represent SLAM technic to detect object using camera.19

Figure II.4SLAM Application (Localization). ..20

Figure II.53D SLAM Map. ..20

II

Figure II.6Google's Self-Driving Car's Perception System. From IEEE

Spectrum's. ...21

Figure II.7 Plains Using SLAM [12]. ..22

Figure II.8 Plains Result Using SLAM Algorithms [12].22

Figure II.9 3D Map Using SLAM (Mapping and Localization Technic) [12].

 ..22

Figure II.10Educations Environment Using Robot And Visual SLAM

Technologie. ...23

Figure II.11 2D Map. SLAM Result Using Virtual Simulation In Linux.23

Figure II.12 3D Map. SLAM Result Using Virtual Simulation in Linux.24

Figure II.13 Robot Car with LIDAR Sensor. ..25

Figure II.14 Raspberry pi 3 (Microcontroller or CPU Unite).25

Figure II.15 Smart Vacuum Cleaner. ...26

Figure II.16 Old Vacuum Cleaner. ..26

Figure II.17Self Driving Car With LIDAR And Camera.27

Figure II.18 Control Unity. ..27

Figure II.19 RPLIDAR A1 Sensor. ...28

Figure II.20Overall Flowchart Of A Particle Filter-Based Algorithm.28

Figure II.21 The essential SLAM problem. ..32

Figure II.22 Time-update. ..33

Figure II.23Measurement Update. ...33

III

III. Robotic Operation System

Figure II.24Spring network analogy [8]. ...35

Figure II.25 Realization of Robot Path in The Fast -SLAM Algorithm.36

Figure III.1 Roscore Launch in Terminal. ...40

Figure III.2ROS in Windows 10. ...41

Figure III.3ROS Topic Mechanism. ..42

Figure III.4 ROS List of Distribution [24]...43

IV. Application and Discussion

Figure IV.1 Straight BO Motor..52

Figure IV.2 Wheels. ...52

Figure IV.3 Transparent chassis. ...53

Figure IV.4 Tools and equipment’s. ...53

Figure IV.5 Raspberry pi 3 B+ Module ..54

Figure IV.6 H-bridge Driver. ..55

Figure IV.7 L298 Driver. ..55

Figure IV.8 Raspberry pi 3 WIFI. ..55

Figure IV.9 3.7 Battery 8800 mAh. ..56

Figure IV.10 RPLIDAR System Composition. ..56

Figure IV.11 RPLIDAR With USB Adapter. ..57

Figure IV.12 RPLIDAR A1 Working Schematic. ...58

Figure IV.13 An Example About How RPLIDAR Work Inside Doors.58

file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52354968
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52354969
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52354970
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52354971
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52354972
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52354973
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52354974
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52354975
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52354976
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52354977
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52354979
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52354980

IV

Figure IV.14 Robot Circuit. ...59

Figure IV.15 Robot Control Direction Circuit (H-bridg and Motors).59

Figure IV.16Ubuntu 16.04 Linux System. ..60

Figure IV.17Terminal Window. ..61

Figure IV.18Setting the Source. ..61

Figure IV.19 Preparing Keys. ..61

Figure IV.20 Updating. ..62

Figure IV.21Installing. ...62

Figure IV.22 Adding Dependencies. ...63

Figure IV.23 initialize. ...63

Figure IV.24 Some Tools In ROS. ..64

Figure IV.25 Source the File. ...64

Figure IV.26Creating Work Space(mybot_ws). ..65

Figure IV.27 Writing the Subscriber Node..66

Figure IV.28 Writing the Publisher Node..66

Figure IV.29 First Run the Roscore. ...67

Figure IV.30Second Rosrun Beginner_Tutorials Talker.68

Figure IV.31Third Rosrun Beginner_Tuturials Listener.68

Figure IV.32 Topic from Terminal Command. ...68

Figure IV.33 Robot Final Goals. ...69

Figure IV.34 Working Space Folder. ..70

file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52354981
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52354982
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52354994
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52354995
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355000
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355001

V

Figure IV.35 Src Robot Code And Configuration File.70

Figure IV.36 Building The Project And Source The File...............................71

Figure IV.37 Mybot_Ws File After The Compiling.71

Figure IV.38 Create Mybot_Description Package. ..72

Figure IV.39 Mybot_Description Package. ...72

Figure IV.40 src file with robot packages. ...73

Figure IV.41 Mybot_Discription Package folder. ...73

Figure IV.42 mybot.gazebo Package folder. ...74

Figure IV.43 mybot_world.launch. ...75

Figure IV.44 World Launch File. ..75

Figure IV.45 Gazebo Application From The Launch File76

Figure IV.46 Colors File (materials.xacro). ..77

Figure IV.47 Gazebo Application Code Plugins(gazebo.xacro).78

Figure IV.48 3D Design Robot Code (mybot.xacro).79

Figure IV.49 Right Wheel Code Link(mybot.xacro).80

Figure IV.50 Right Wheel Joint (mybot.xacro). ..81

Figure IV.51 The Difference Between The Right Wheel And Right Back

Wheel(mybot.xacro). ...82

Figure IV.52 how to launch the project file run_gazebo.sh.82

Figure IV.53 The File Who Launch Our Robot Packages.83

Figure IV.54 3D Robot Design Displayed In Gazebo Application.83

file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355002
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355003
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355004
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355005
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355006
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355007
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355008
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355009
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355010
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355011
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355012
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355013
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355014
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355016
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355018
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355018
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355019
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355020
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355021

VI

Figure IV.55 Rviz Launch File. ...84

Figure IV.56Rviz Visualization Application. ..84

Figure IV.57 Setting Map to Odom. ..85

Figure IV.58 Adding Our Robot Model from This List.85

Figure IV.59 3D Robot Model From Our Description Package In Rviz.86

Figure IV.60 Get the Laser Scan. ..87

Figure IV.61 Select The Topic of laser scan. ..88

Figure IV.62 Adding Some Spheres and Cube. ...89

Figure IV.63 The Readings Is Imported From Gazebo Throw The Topic To

Rviz. ...89

Figure IV.64 Results After Moving The Shapes. ..90

Figure IV.65Open the Robot Attach Tree. ..90

Figure IV.66 Frames Results. ..91

Figure IV.67 Left Side from The Frames. ..91

Figure IV.68The Right Side from The Frame. ..92

Figure IV.69 Laser Topic. ..93

Figure IV.70 Publisher and Subscriber Information Of /Mybot/Laser/Scan

Topic. ...93

Figure IV.71 Wheel Joint. ..94

Figure IV.72 ControlFile Configuration. ..96

Figure IV.73 Launch File Of The Controller...96

file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355024
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355025
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355026
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355027
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355028
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355030
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355030
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355034
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355036
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355037
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355037
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355038
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355040

VII

Figure IV.74 Navigation Package Config File. ..97

Figure IV.75 mybot_teleop.launch-----gmapping_demmo.launch Files.98

Figure IV.76 Map Loader File. ...99

Figure IV.77 Rviz Extra Files. ...100

Figure IV.78 Launching Gazebo With Our Robot Module With Room ful

with spher And A Boxes. ...101

Figure IV.79 Our Robot Module Inside A Room with A Box.102

Figure IV.80 Terminal Window with Gmapping Algorithm.102

Figure IV.81 Rviz With Mapping Results. ..103

Figure IV.82 The Robot Controller Keys. ...103

Figure IV.83After Moving through all obstacles. ...104

Figure IV.84 first Map sample without obstacles. ...104

Figure IV.85 Saving The Map Ender The Name Test1_Map.105

Figure IV.86 Rostopic List. ..105

Figure IV.87 Loading The Map Of Navigation In Rviz.107

Figure IV.88 Camera on Our Robot. ..107

Figure IV.89 Robot While Moving to The Target. ..108

Figure IV.90 lib_gazebo_ros_planar_move robot four wheels driver109

Figure IV.91 The Robot While Taking A Turn through the obstacle109

Figure IV.92 Compiling Our File. ...110

Figure IV.93 Contours That Exist on Our first map Picture.111

file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355041
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355043
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355045
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355045
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355046
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355053
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355054
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355055
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355056
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355057
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355058
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355059
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355060

VIII

Figure IV.94 Zoom The Map. ...111

Figure IV.95 Ubuntu 16.04 Raspberry Compatible.112

Figure IV.96 RPLIDAR And Hector Slam Repositories.113

Figure IV.97 Launch Rplidar Package. ..114

Figure IV.98 Launch the Hector Slam Package. ..114

Figure IV.99 Reseults In Rviz Application After Launching Hector Slam

(Mapping). ..115

Figure IV.100 Second Try Launching Hector Slam Algorithm Shown in Rviz.

 ..116

Figure IV.101 Results After Solving the Problem.116

List of tables

Table I.1Advantages and Disadvantages Of human And Robot Technology. .. 7

Table II.1 Some of SLAM Map Types Vs Algorithms29

Table II.2 EKF Operations for Achieving SLAM. ..36

file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355061
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355062
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355063
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355064
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355065
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355066
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355066
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355067
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355067
file:///C:/Users/houho/Desktop/houhou/officiel_memoir.docx%23_Toc52355068

General

Introduction

2

General Introduction

Maps have old history, from ages people relay on them through drawing on rocks or animals’

leathers to map the world they use it in army planning and commercial fields. Now with the

advance of technology mapping get jumped from animal leathers to our screen computers with

deferent designs we can tell the time and potion from the attitude and longitude. From now maps

are used in every domain, even the architecture like buildings schematics from rivers maps to water

channels, it’s important to make our life simpler.

In our work were going to learn how to build robots that can make a map for certain

environment and how they function and which tools you need, to form his shape. The important

thing is how can the robot sense it’s surrounding by using sensor and actuators. The main thing in

this project is divided into two parts how you can use virtual world to simulate your robot in 3D

application (gazebo, rviz) and try to build our real robot with sensors.

 In the first chapter were going to see about robots in general from appearance and their

applications characteristics, advantage of using robots, deferent type of robots and most important

parts from it. In the next chapter 2(Two) we will be talking about mapping and localization of the

robot and how it will be applicated and implemented it in our robot system and deferent algorithms

Principe and problems. In the third chapter we ill discuses a new application with ROS (Robotic

Operation System) a definition about it and how you install it and work with it in Linux

environment. Maybe it will be confusing but you will be informed with every detail. In the fourth

chapter you will see the simulated robot in 3D module with all sensors implemented and real

practical robot with the same simulated application additional to that, were going to shape the same

robot in real application with the same sensor (LIDAR). Our robot consists of raspberry pi 3 which

is the robot brain who control the direction and send the sensor data for his wide application and

we can install on it all ROS tools.

Now the main question is how to begin the project and how we end up with great result?

the answer is in the following four chapters.

Chapter 1

Robotics

Chapter1__________________Robotics

4

 Robotics.

 Introduction Robotics

When we think about robotics first thing we think about is automation. We all know

that robot do tasks on thire own without himain interfering, except for initial programming

and instruction set being provided to them by the user. Robots can be devide into two groups

moving and stasionary robots , what I have seen in my childhood when we were on a visit to

a milk processing factory, most close, robots can do packaging for certain materials like

milk or pouder boxes. The packaging material running through the machine, each time half a

liter of milk falls into the roll and then a mechanism in the machine seals and cuts the packet

[1].

 Characteristics and types of robots

There are some characteristics and types of robots like the following [2]:

Characteristics:

• Appearance:

Robots have a physical body. They are held by the structure of their body and are moved by

their mechanical parts. Without appearance and mechanism, robots will be just a software program

and some electronics parts.

• Brain:

Another name of brain in robots is On-board control unit. Using this robot receive

information and sends commands as output. With this control unit robot knows what to do else

it’ll be just a remote-controlled machine.

• Sensors:

 The use of these sensors in robots is to gather info from the outside world and send it to

Brain. Basically, these sensors have circuits in them that produces the voltage in them.

Chapter1__________________Robotics

5

•Sensing:

In the first your robot will be able of sensing its own envirenment.it will do this with deferent

way from you. Giving your robot sensors: light sensors like your eyes touch and pressure sensors

like your hands chemical sensors (nose), Sonar sensors (ears) [3].

• Actuators:

 The robots move and the parts with the help of these robot’s move is called Actuators. Some

examples of actuators are motors, pumps, and compressor etc. The brain tells these actuators when

and how to respond or move [1].

• Program:

Robots only works or responds to the instructions which are provided to them in the form of

a program. These programs only tell the brain when to perform which operation like when to move,

produce sounds etc. These programs only tell the robot how to use sensors data to make decisions.

• Behavior:

 Robots behavior is decided by the program which has been built for it. Once the robot starts

making the movement, one can easily tell which kind of program is being installed inside the robot.

•Movement:

 Your robot needs to be capable of moving around in environment. whether a robot with

wheels or legs the robot needs to be able to move.

•Energy:

A robot needs to be powered by itself. Maybe by a solar power and battery. The way your

robot will get his energy it depends on how it functions.

❖Intelligence:

A robot somehow needs to think (be smart) this is when the programing begins and be

formed by programmers and receive commands on how it will be functioning.

Chapter1__________________Robotics

6

Types of Robots:

There is many of robot’s types like following [1]:

• Articulated:

The feature of this robot is its rotary joints and range of these are from 2 to 10 or more joints.

The arm is connected to the rotary joint and each joint is known as the axis which provides a range

of movements.

• Cartesian:

 These are also known as gantry robots. These have three joints which use the Cartesian

coordinate system i.e x, y, z. These robots are provided with attached wrists to provide rotatory

motion.

• Cylindrical:

 These types of robots have at least one rotatory joint and one prismatic joint which are used

to connect the links. The use of rotatory joints is to rotate along the axis and prismatic joint used

to provide linear motion.

• Polar:

These are also known as spherical robots. The arm is connected to base with a twisting joint

and have a combination of 2 rotatory joint and one linear joint.

• Scara:

These robots are mainly used in assembly applications. Its arm is in cylindrical in design. It

has two parallel joints which are used to provide compliance in one selected plane.

• Delta:

The structure of these robots is like spider-shaped. They are built by joint parallelograms

that are connected to the common base. The parallelogram moves in a dome-shaped work area.

These are mainly used in food and electrical industries

Chapter1__________________Robotics

7

 Scope And limitations Of Robots:

The people should be aware about robots benefits and if they will be helpful or not. Robots

can go to planets remoting them from distance and exploring the space. they can pick information

from people to spy on them so robots have two parts so were going to see advantage and

disadvantage of robots [4].

 advantages and disadvantages:

 Now were going to see Advantages and disadvantages of human and robot technology we

did take medical field as an example.in small table [5]:

Table I.1 Advantages and Disadvantages Of human And Robot Technology.

The above table was adapted from information provided by Stoianovici (2000), Lanfranco

et al (2003). and Camarillo and al (2004).

Chapter1__________________Robotics

8

 Classification of robots:

 Robots can be classified based on their environment and do an action according to the next

figure. (Figure I.2) represent the deference between mobile and fixed robots. The fixed robots are

commonly used in industrial field to perform specific tasks such soldering or painting parts in car

manufacturing plants and many in medical field to manipulate a surgery in hospitals according to

their precision.

By contrast, mobile robots are used to move around and perform tasks in large scale. They

deal with more complex situation and do it effective and fast way possible. Examples of mobile

robots are robotic vacuum cleaners and self-driving cars [6].

Figure I.1Classification of Robots by Environment and Mechanism of Interaction.

Chapter1__________________Robotics

9

Figure I.2 Classification of Robots by Application Field [6].

Some robot’s pictures:

Figure I.3 Industrial Robots.

Chapter1__________________Robotics

10

Figure I.4Humanoid Robots.

Figure I.5Autonomes Mobile Robots.

Figure I.6Learning Robot.

Chapter1__________________Robotics

11

Figure I.7Learning Robot Turtelbot.

 Robotic Most Important Parts:

 Mechanism:

A robot is a machine can do a physical work with interfering with their surroundings.

physical means manipulation, locomotion, and any action will affect the environment or change

the state of the robot (robot will move around). A robot has a lot of forms of mechanism parts to

do certain action and can move around easily.

Figure I.8Robot Arm.

Chapter1__________________Robotics

12

Figure I.9Moving Robot Arm.

 Electronics Parts:

Some robot just works with mechanism and some need electronics part like the previews

Pictures Figure (I.7,I.6). It represented in microcontroller or CPU unity to calculate and make sure

the robot will move around by controlling motors. Or to read some sensors and show the collected

data on a screen. Or give an order to the robotic arm to grab or move some stuff from the

surrounding of the robot.

Figure I.10Robot Electronic Parts(face).

Chapter1__________________Robotics

13

Figure I.11Robot Electrical Wiring.

Software in Robots:

 Without command robot will not do a single step without some coding (software or

algorithms). The code it will be written by engineers or anyone has some level at coding. there is

a lot of code language such as python, java, C++, C#. ect. the code will be uploaded into the robot

electrical system (CPU). So, the CPU will execute the code so the robot can move around.

Figure I.12 Coding Example.

Chapter1__________________Robotics

14

 Conclusion:

In this chapter we did present some characteristics and types of robots depending on how

they function on real life and how they sense their environment using sensors and actuator to do

some duties such as industrial field or medical surgeries or helping human kind in their daily life.

And we did show the advantage and disadvantage of robots and including humans in the situation

to know how can robots effect our lives, some robots classified like fixed robot and mobile robots

according on how they function.

In the next chapter we will be talking about Localization and mapping methods.

Chapter 2

Localization and Mapping on Robots

Chapter2 __________Localization and Mapping on Robots

16

 Localization and Mapping on Robots:

Chapter Guideline:

▪You will learn:

❖The reason why robots used for being important to discover environment and knows its

characteristics and the roll of using mapping to achieve that.

❖A title on history of mobile robots.

❖How we implement localization and mapping on robots.

▪Tools needed:

oKnow the classification of the problem to make localization and mapping.

oThe relation with next chapter.

 Introduction:

According to complexity and quickly becoming mathematically intractable. To being with,

we have a fundamental issue with power supply, the robot needs to achieve some hard tasks

autonomously during long period of time operation. This robot has to be aware with his

environment all the time so it can move around without problems. Engineers can build a workspace

to make robots explore it and knows its characteristics. It’s a common to face unknown space or

region to explore and give great results. And to have correct results Sensors be crucial for mobile

robots precisely for that reason. The amount of data that the sensors can provides, it will be turned

into results using deferent algorithms.

The relation between environment and the robot will be how it can recognize it

characteristics so it can transform it into a map(data). So, before the robot can gives a map it has

to calculate and perform some equations and algorithms to come up with some numbers, and

convert it from numbers into 2D map or 3D according the how its system works. And it can give

us also localization of the robot from this data.

Chapter2 __________Localization and Mapping on Robots

17

One solution to this particular one is to estimate the map and localization of robot’s positions.

This called simultaneous localization and mapping, and it’s currently known by the science

community as SLAM acronym. This chapter will talk about how we can build a map assuming

that localization has been solved somehow. SLAM is more complex then localization it’s means

that dealing with mapping and localization separately are easier.

Figure II.1 This represent a SLAM results (mapping and localization).

 How SLAM started:

SLAM was first shown in International Symposium on Robotics Research in 1995.after IEEE

did define it in Robotics and Automation Conference in 1986. studies using statistical theory and

navigation [7]. this was a time to show probabilistic methode were only just beginners to be

introduced into robotics and AI am group of researchers was aiming to apply estimations theoretic

method to solve mapping and localization problems. This include Peter Cheeseman, Jim Crowley,

and Hugh Durrant-Whyte. Raja Chatila, Oliver Faugeras, Randal Smith and others also made

useful contributions to the conversation S [8].

SLAM is a type of temporal model in which the goal is to infer a sequence of states from a

noisy set of measurements [9].it can be to the calculation known for the system as a map that was

given the previous states of measurements. states can be a lot of things for example Rosales and

Chapter2 __________Localization and Mapping on Robots

18

Sclaroff (1999) used states as a 3D position of a bounding box around pedestrians for tracking their

movements.

In 1998, at the Europe conference on Computer Vision Davison and others did presented a

method by using camera without sensors this did led to the SLAM technology to be developed into

vision-based SLAM that uses camera as a three-dimensional position detector.

Figure II.2The Birth Of SLAM [10].

 The Futures of SLAM (Simultaneous Localization And Mapping):

There is always different method available to deal with robot localization and mapping it’s

only based on probability and theory and statistics. There are many of ways to get quit great

efficiency, to define our environment characteristics, an available sensors and actuators are more

likely needed before we put SLAM method in the picture. The more our robot have sensors the

more details can get from its surrounding.

What is and Why we use SLAM?

Visual SLAM algorithms are able to simultaneously build 3D maps of the world while

tracking the location and orientation of the camera (hand-held or head-mounted for AR or mounted

on a robot). SLAM algorithms are complementary to ConvNets and Deep Learning: SLAM

focuses on geometric problems and Deep Learning is the master of perception (recognition)

Chapter2 __________Localization and Mapping on Robots

19

problems. If you want a robot to go towards your refrigerator without hitting a wall, use SLAM.

If you want the robot to identify the items inside your fridge, use ConvNets [13].

Figure II.3represent SLAM technic to detect object using camera.

SLAM is a real-time version of Structure from Motion (SfM). Visual SLAM or vision-based SLAM is a

camera-only variant of SLAM which forgoes expensive laser sensors and inertial measurement units (IMUs).

Monocular SLAM uses a single camera while non-monocular SLAM typically uses a pre-calibrated fixed-baseline

stereo camera rig. SLAM is prime example of a what is called a "Geometric Method" in Computer Vision. In fact,

CMU's Robotics Institute splits the graduate level computer vision curriculum into a Learning-based Methods in

Vision course and a separate Geometry-Based Methods in Vision course [10].

o Localization

Many people don’t know their own location or distance so they can be lost in roads the robot

will calculate all the path and direction they did pass into and study all the short movements relative

with the surrounding so the SLAM tech will solve this problem and detect everything and convert

it into a map.

http://graphics.cs.cmu.edu/courses/16-824-S15/index.html
http://graphics.cs.cmu.edu/courses/16-824-S15/index.html
http://www.cs.cmu.edu/~hebert/geom.html

Chapter2 __________Localization and Mapping on Robots

20

Figure II.4SLAM Application (Localization).

oMapping

Vision-based SLAM will use camera to collect point (data) from all viewpoints through

detection and matching. once all the points are assembled by the triangulation techniques a map

will be generated by the program.

Figure II.53D SLAM Map.

Chapter2 __________Localization and Mapping on Robots

21

SLAM Applications?

The most common real application of SLAM is self-driving cars it’s from the most important

application in human life that will avoid traffic and prevent work accident from happening. For

many years to come it will make sense that the SLAM depends on how we develop many

algorithms based only on webcam to be that efficiency. As a research topic, Visual SLAM is much

friendlier to thousands of early-stage PhD students who’ll first need years of in-lab experience

with SLAM before even starting to think about expensive robotic platforms such as self-driving

cars.

Figure II.6Google's Self-Driving Car's Perception System. From IEEE Spectrum's.

Also SLAM technology is used into field robots. For example, rovers and landers for

exploring Mars use visual SLAM systems to navigate autonomously. And agriculture field, as well

as drones to explore valleys and forest from the top of sky’s all those techs use mapping and

different SLAM algorithms [11].

One of the great opportunities for SLAM systems is to replace GPS tracking to navigate in

certain applications, because GPS system are not used indoors applications or in mega cities where

the building is too high so that the satellite can reach. Visual SLAM systems solve each of these

problems as they’re not dependent on satellite information and its great measure tool with the

physical world around.

Chapter2 __________Localization and Mapping on Robots

22

Figure II.7 Plains Using SLAM [12].

Figure II.8 Plains Result Using SLAM Algorithms [12].

In figure 2.3 and figure 2.3 we can see that the SLAM technology is used in plain to discover

forest and to detect object from the sky from measuring latitude of plain and calculating distance

from the ground and tress we get 3D map by applicating difficult and complex algorithms [12]

(SLAM algorithms).

Figure II.9 3D Map Using SLAM (Mapping and Localization Technic) [12].

Chapter2 __________Localization and Mapping on Robots

23

Visual SLAM is just one of many innovative technologies under the umbrella of embedded

vision. Many studies are being developed and new technics based on deep learning and machine

learning so that can applicate SLAM technology in different fields. Like educations purposes.

Figure II.10Educations Environment Using Robot And Visual SLAM Technologie.

How SLAM Works?
Most visual SLAM systems begin by tracking set points through set of camera or deferent

smart sensors to get their 3D or 2D positions. while simultaneously using this information to

approximate camera pose. The goals of those systems are to map the environment based on their

location for the purposes of navigation [12].

Figure II.11 2D Map. SLAM Result Using Virtual Simulation In Linux.

Chapter2 __________Localization and Mapping on Robots

24

This is possible with a single 3D vision camera, unlike other forms of SLAM technology.as

long as there more data available (points) through each frame, both the orientation of the sensor

and the structure of the environment can be easy to understand by using this technology.

Figure II.12 3D Map. SLAM Result Using Virtual Simulation in Linux.

 All systems who works with SLAM algorithms are aiming to minimize reprojections error,

Visual SLAM algorithms all working in real time, so often location data and mapping data be

processed in the moment, but simultaneously, to facilities faster processing before last results.

 How We Implement SLAM System in Robots:

SLAM can be applicated into robots with simple ways. Like adding sensors or camera into

the robot and a microcontroller to collect data and analyze it and convert it into useful information.

robots needed to move around so that it can give us a map and his location or our car location for

unknows environment, it’s not easy to localize itself because we need a map so the robot can

estimate localization.

Chapter2 __________Localization and Mapping on Robots

25

Figure II.13 Robot Car with LIDAR Sensor.

 Clearly, lightweight SLAM algorithms are needed in intelligent robotic systems, mobile

robots are limited because of the size and capabilities and power budget so it’s simply equipped

with microcontroller which has lower capability then a high CPU performance

Figure II.14 Raspberry pi 3 (Microcontroller or CPU Unite).

Robotic vacuum cleaner it’s been used in indoor housekeeping applications, most of this

vacuum just wander around the environment and clean up the floor along its path. After integrating

SALM into the robotic system we can make our robots intelligent

Chapter2 __________Localization and Mapping on Robots

26

Figure II.15 Smart Vacuum Cleaner.

Figure II.16 Old Vacuum Cleaner.

Also, Self-driving cars was developed to be used in autonomies driving using complex

SLAM algorithms

Chapter2 __________Localization and Mapping on Robots

27

Figure II.17 Self Driving Car With LIDAR And Camera.

We conclue how we impliment SLAM in robot systems we need microcontroller and sensor

and algorithms that can calculate and connect every point togather to get map and localization.

Figure II.18 Control Unity.

Chapter2 __________Localization and Mapping on Robots

28

Figure II.19 RPLIDAR A1 Sensor.

Figure II.20 Overall Flowchart Of A Particle Filter-Based Algorithm.

Usually an RBPF-based SLAM algorithm can be implemented by using the Sampling

Importance Resampling (SIR) filter, which is one of the most commonly used particle filtering

algorithms (hindawi, 2011)[13,14], and a map update technique. The entire procedure can be

summarized in the following steps,

(1) Sampling: New particles are generated from the previous particle using a motion model.

(2) Importance Weighting: Each new particle is assigned an importance weight to determine

the accuracy of the particle according to how well the current observation matches the map it has

already built.

Chapter2 __________Localization and Mapping on Robots

29

(3) Resamp

ling: Particles with low weights are likely to be replaced by the ones with high weights.

(4) Map Update: The most current map observed by the laser range finder is updated to each

remaining particle after the resampling step according to its individual pose, so that each particle

has a most updated map of the environment.

Not all SLAM algorithms fit any kind of observation (sensor data) and produce any map

type. The following table summarizes what algorithms (of those implemented in

Mobile Robot Programming Toolkit (MRPT)) fit what situation.

Table II.1 Some of SLAM Map Types Vs Algorithms

Some of the List of MRPT apps

• Application: carmen2rawlog

• Application: carmen2simplemap

• Application: DifOdometry-Camera

• Application: DifOdometry-Datasets

• Application: features-matching

https://www.mrpt.org/list-of-mrpt-apps/applicationcarmen2rawlog/
https://www.mrpt.org/list-of-mrpt-apps/applicationcarmen2simplemap/
https://www.mrpt.org/list-of-mrpt-apps/application-difodometry-camera/
https://www.mrpt.org/list-of-mrpt-apps/application-difodometry-datasets/
https://www.mrpt.org/list-of-mrpt-apps/applicationfeatures-matching/

Chapter2 __________Localization and Mapping on Robots

30

• Application: gps2rawlog

• Application: graph-slam

• Application: graphslam-engine

• Application: grid-matching

• Application: holonomic-navigator-demo

• Application: icp-slam

• Application: icp-slam-live

• Application: image2gridmap

• Application: kf-slam

• Application: kinect-3d-slam

• Application: kinect-3d-view

• Application: kinect-stereo-calib

• Application: map-partition

• Application: navlog-viewer

• Application: observations2map

• Application: pf-localization

• Application: PTG-configurator

• Application: rawlog-edit

• Application: rawlog-grabber

• Application: rbpf-slam

• Application: ReactiveNav3D-Demo

• Application: ReactiveNavigationDemo

• Application: ro-localization

• Application: robotic-arm-kinematics

https://www.mrpt.org/list-of-mrpt-apps/application-gps2rawlog/
https://www.mrpt.org/list-of-mrpt-apps/application-graph-slam/
https://www.mrpt.org/list-of-mrpt-apps/application-graphslamengine/
https://www.mrpt.org/list-of-mrpt-apps/application-grid-matching/
https://www.mrpt.org/list-of-mrpt-apps/application-holonomic-navigator-demo/
https://www.mrpt.org/list-of-mrpt-apps/application-icp-slam/
https://www.mrpt.org/list-of-mrpt-apps/application-icp-slam-live/
https://www.mrpt.org/list-of-mrpt-apps/application-image2gridmap/
https://www.mrpt.org/list-of-mrpt-apps/application-kf-slam/
https://www.mrpt.org/list-of-mrpt-apps/application-kinect-3d-slam/
https://www.mrpt.org/list-of-mrpt-apps/application-kinect-3d-view/
https://www.mrpt.org/list-of-mrpt-apps/application-kinect-stereo-calib/
https://www.mrpt.org/list-of-mrpt-apps/applicationmap-partition/
https://www.mrpt.org/list-of-mrpt-apps/application-navlog-viewer/
https://www.mrpt.org/list-of-mrpt-apps/application-observations2map/
https://www.mrpt.org/list-of-mrpt-apps/application-pf-localization/
https://www.mrpt.org/list-of-mrpt-apps/application-ptg-configurator/
https://www.mrpt.org/list-of-mrpt-apps/application-rawlog-edit/
https://www.mrpt.org/list-of-mrpt-apps/application-rawlog-grabber/
https://www.mrpt.org/list-of-mrpt-apps/application-rbpf-slam/
https://www.mrpt.org/list-of-mrpt-apps/application-reactivenav3d-demo/
https://www.mrpt.org/list-of-mrpt-apps/application-reactivenavigationdemo/
https://www.mrpt.org/list-of-mrpt-apps/application-ro-localization/
https://www.mrpt.org/list-of-mrpt-apps/application-robotic-arm-kinematics/

Chapter2 __________Localization and Mapping on Robots

31

• Application: SceneViewer3D

• Application: simul-landmarks

• Application: srba-slam (Relative Bundle Adjustment and Relative Graph-SLAM)

• Application: track-video-features

• Application: velodyne-view

• Application: 2d-slam-demo

• Application: camera-calib (Camera intrinsic calibration)

• Application: RawLogViewer

• Application: GridmapNavSimul (mrpt, 2020) [15]

SLAM algorithms:

• SLAM (Simultaneous Localization and Mapping) for beginners: the basics

• Bayesian range-only SLAM (RO-SLAM) with SOGs

• Derivation and Implementation of a Full 6D EKF-based Solution to Range-Bearing SLAM

• HMT-SLAM

• RBPF-SLAM algorithms (C++ library mrpt-slam)

• Sparser Relative Bundle Adjustment (SRBA)

Now were going through some of details about one of the SLAM algorithms which is SLAM

(Simultaneous Localization and Mapping) for beginners: the basics

Content And Design Of SLAM Problems:

SLAM is a way that a robot can build a map and gives a localization information. In slam

both the path and platform and location of all indicators are estimated on-line without the need for

any previous knowledge of location.

https://www.mrpt.org/list-of-mrpt-apps/application-sceneviewer3d/
https://www.mrpt.org/list-of-mrpt-apps/application-simul-landmarks/
https://www.mrpt.org/list-of-mrpt-apps/application-srba-slam-relative-bundle-adjustment-and-relative-graph-slam/
https://www.mrpt.org/list-of-mrpt-apps/application-track-video-features/
https://www.mrpt.org/list-of-mrpt-apps/application-velodyne-view/
https://www.mrpt.org/list-of-mrpt-apps/application-2d-slam-demo/
https://www.mrpt.org/list-of-mrpt-apps/application_camera-calib/
https://www.mrpt.org/list-of-mrpt-apps/rawlogviewer/
https://www.mrpt.org/list-of-mrpt-apps/application_gridmapnavsimul/
https://www.mrpt.org/tutorials/slam-algorithms/slam-simultaneous-localization-and-mapping-for-beginners-the-basics/
https://www.mrpt.org/tutorials/slam-algorithms/rangeonly_slam/
https://www.mrpt.org/tutorials/slam-algorithms/6d-slam/
https://www.mrpt.org/tutorials/slam-algorithms/hmt-slam/
https://www.mrpt.org/tutorials/slam-algorithms/rbpf-slam_algorithms/
https://www.mrpt.org/srba
https://www.mrpt.org/tutorials/slam-algorithms/slam-simultaneous-localization-and-mapping-for-beginners-the-basics/
https://www.mrpt.org/tutorials/slam-algorithms/slam-simultaneous-localization-and-mapping-for-beginners-the-basics/

Chapter2 __________Localization and Mapping on Robots

32

Figure II.21 The essential SLAM problem.

A simultaneous estimate of both robot and landmark locations is required. The true locations are

never known or measured directly. Observations are made between true robot and landmark locations. See

text for details [8].

figure II.21 At a time instant k, the following quantities are defined:

• xk: The state vector describing the location and orientation of the vehicle.

 • uk: The control vector, applied at time k−1 to drive the vehicle to a state xk at time k.

• mi: A vector describing the location of the i the landmark whose true location is assumed

time invariant.

• zik: An observation taken from the vehicle of the location of the i the landmark at time k.

When there are multiple landmark observations at any one time or when the specific landmark is

not relevant to the discussion, the observation will be written simply as zk [8].

 Probabilistic SLAM:

 In probabilistic form, the Simultaneous Localization and Map making (SLAM) problem

requires that the probability distribution [8].

probability distribution --------------> [P (xk, m | Z0: k, U0: k, x0] (1)

Chapter2 __________Localization and Mapping on Robots

33

 be calculated for all times k, this probability distribution explains the parts posterior density

of the landmark locations and vehicle status (at time K) given the recorded observations and

control inputs up to and including time k together with the initial state of the vehicle.

Starting with an estimate for the distribution P(xk−1, m | Z0:k−1, U0:k−1) at time k − 1, the

joint posterior, following a control uk and observation zk, is calculated using Bayes Theorem. This

calculation needs that transition model and an observation model are define explaining the effect

of control input and observation respectively.

The observation model describes the probability of making an observation zk when the

location and land mark are knowing it will be described in from

P(zk | xk, m). (2)

The Motion model for the robot can be explained in terms of a probability distribution on

state transition in the form

P(xk | xk−1, uk)(3)

The SLAM algorithms are now added into a standard two-step recursive (sequential)

prediction (time-update) correction (measurement-update)

Figure II.22 Time-update.

Figure II.23Measurement Update.

However, the SLAM problem has more forms then this equation.

Chapter2 __________Localization and Mapping on Robots

34

Referring again to (figure II.21) it can see much error between predicting and the true

localization between landmarks and is in fact due to a single source errors in common of where

the robot will be in the position (landmarks) observations are made. In turn, this implies that the

errors in landmark location estimates are highly correlated. Practically, it’s means that the location

between every two landmarks mi-mj, will be known even if the landmark is risky to know [8].

The important thing in SLAM was realizing that the correlations with landmark be predicted

increase 4 monotonically as more and more observations are made. Its means that the location is

always improved to be known and never diverges, regardless of robot motion.

This convergence occurs because the robot observation can be considered as nearly

independent measurements of the relative location between landmarks. Referring again to (figure

II.21), consider the robot at location xk observing the two landmarks mi and mj the relative

location of landmarks is separated from coordinated frame of the vehicle and great observation

from the fixed location will be independent measurements of the relative relationship between

landmarks. Soon the robot when it changes a location to another will observe landmark mj this

allows the prediction of location of the robot and landmark to be updated relative to the last point

(landmark) xK. This occurs because the two landmarks are highly correlated (their relative location

is well known). Also, in (figure II.21) at location xK+1 the robot will observe two new landmarks

relative to the mj immediately the new land marks will be updated to the map. Later update to

these landmarks will also update landmark mj and through this landmark mi and so on. All of this

end up with forming a network linked by relative location or correlations whose precision or value

increases whenever an observation is made.

This process can be seen in (figure II.24) as a network of springs connecting all landmarks

together, when the robot moves through this environment and takes observation if the new points

(landmarks) the springs become more strong.in the limit, a grid map of landmarks orprecisely

relative map of the surrounding is obtained. As the map is built, the location accuracy of the robot

will be known it depend on how much the quality of the map is relative to measurement sensor. In

Chapter2 __________Localization and Mapping on Robots

35

the theoretical limit, robot relative location accuracy becomes equal to the localization accuracy

achievable with a given map.

Figure II.24Spring network analogy [8].

 Solutions to The SLAM Problem:

Solutions to the probabilistic SLAM problem involve finding an appropriate representation

for the observation model Equation 2 and motion model Equation 3 which allows efficient and

consistent computation of the prior and posterior distributions in Equations 4 and 5. By far the

most common representation is in the form of a state-space model with additive Gaussian noise,

leading to the use of the Extended Kalman Filter (EKF) to solve the SLAM problem as described.

 In robotics, EKF SLAM is a class of algorithms which deals withthe extended Kalman

filter (EKF) for simultaneous localization and mapping (SLAM). Normally, EKF SLAM

algorithms are feature based, and use the maximum likelihood algorithm for data association. In

the 1990s and 2000s, EKF SLAM had been the de facto method for SLAM, until the introduction

of FastSLAM [16].

https://en.wikipedia.org/wiki/Robotics
https://en.wikipedia.org/wiki/Extended_Kalman_filter
https://en.wikipedia.org/wiki/Extended_Kalman_filter
https://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
https://en.wikipedia.org/wiki/FastSLAM

Chapter2 __________Localization and Mapping on Robots

36

In order to achieve exploration the EKF machinery is full with extra step of landmarks

initialization, where every new land marks will be added to the map Landmark initialization is

performed by inverting the observation function and using it and its Jacobians to compute, from

the sensor pose and the measurements, the observed landmark state and its necessary co- and cross-

variances with the rest of the map. These relations are then appended to the state vector and the

covariances matrix.

The following table explain the similarity and differences between EKF and EKFSLAM:

Table II.2 EKF Operations for Achieving SLAM.

Figure II.25 Realization of Robot Path in The Fast -SLAM Algorithm.

The ellipsoids show the proposal distribution for each update stage, from which a robot did

stop is a data gathering and assuming the postions is perfect the observed landmarks are updated.

The quality of the map it depends on the accuracy of the trajectory. Many such trajectories provide

a probabilistic model of robot location [8].

Chapter2 __________Localization and Mapping on Robots

37

 The Relation with Next Chapter:

Next chapter will be talking how we can import different SLAM algorithms ender a ROS

(Robot Operation System) that will operate in Linux system.

 Conclusion

In this chapter we explained in general about SLAM technology (Simultaneous localization and

Mapping) .to make a map from scratch and let the robot to know its localization into that environment

and the SLAM work in real time and predict its own path and also connect everything together to get

a 2D or 3D map. And various application field which is self-driving cars plains, drones and educational

robot cars like Turtelbot. Specially how SLAM was developed in the first start by researchers and

SLAM problems in first depart and some solution to that problem and it end up with fast-SLAM

algorithms. And now everyone is seeking to develop faster algorithms to get great result on difficult

situation like AI and deep learning.

Chapter 3

ROS

(Robotic Operation System)

Chapter3 ______________Robotic Operation System

39

 Robotic Operation System:

 Introduction

ROS (Robots Operation System) is an open-source, system for robots it provides every

tool you need including hardware abstraction low-level device control implementation of

commonly-used functionality, message-passing between processes and package management it

also provides some tools and libraries for building writing and running some code across multiple

computers. Although the research community is quite active in developing applications with ROS

and extending its features, the amount of references does not translate the huge amount of work

being done.

 Running sets of ROS-based processes are shown in a graph architecture where processing

takes place in nodes that may receive, post and veracity of sensor data, control, state, planning.

ROS itself is not real-time OS but it is possible to write some real time algorithms in ROS system,

the lack of support for real-time systems has been addressed in the creation of ROS 2.0.

Software in the ROS system can be separated into three groups:

▪language-and platform-independent tools used for building and distributing ROS-based

software.

▪ROS client library implementations such as roscpp, rospy, and roslisp

▪packages containing application-related code which uses one or more ROS client libraries.

Chapter3 ______________Robotic Operation System

40

 ROS Goals:

Figure III.1 Roscore Launch in Terminal.

The first goal of ROS is to support code preparation in robotcs research and development.

ROS is a distributed framework of processes (aka Nodes) that enables executables to be

individually designed and loosely coupled at runtime. This process can be gathered into packages

and be simply shared. This design, from the filesystem level to the community level, enables

independent decisions about development and implementation, but all can be brought together

with ROS infrastructure tools [17].

 There are several other goals of the ROS framework:

ROS-agnostic libraries: the preferred development model is to write ROS-agnostic

libraries with clean functional interfaces.

Language independence: ROS are easy to be putted in any modern programming language

it’s already programed in python and C++ and Lisp and we have experimental libraries in Java

and Lua.

Easy testing: ROS has a builtin unit/integration test framework called rostest that makes it

easy to bring up and tear down test fixtures.

Scaling: ROS is appropriate for large runtime systems and for large development processes.

http://wiki.ros.org/rostest

Chapter3 ______________Robotic Operation System

41

 Operations System:

 ROS only work on Unix-based platforms. Software for ROS is primarily tested on Ubuntu

and Mac OS X systems, the community has contributing support for Fedora, Gentoo, Arch Linux

and other Linux platforms.While in windows is available but it’s not fully explored.

Figure III.2ROS in Windows 10.

 ROS Context:

Master: often referred to as roscore.to launch a system core and enable all commands and

tools and you can connect every node in the system [18].

Graph Resource: a name of resources (node, topic, service, or parameter) The naming

scheme is hierarchical and has many aspects in common to UNIX file system paths.

Node: A node is a process that performs computation. Nodes are combined together into a

graph and communicate with one another using streaming topics[19].

Topic: A unidirectional, asynchronous, strongly typed, it’s a style communication in the

publish-subscribe mechanism identified by the Graph Resource.

Messages: tool can print out message. Also, we can say it’s a description language for

describing the data values that ROS node are publishing. This will make it easy to ROS tools to

http://wiki.ros.org/Topics

Chapter3 ______________Robotic Operation System

42

generate source code for the message type in more than one language.[20] Messages can

communicate with each other by publishing messages to topics. A message is a simple data

structure, comprising typed fields.

Figure III.3ROS Topic Mechanism.

Service:its defined by bunch of messages one for requesting and the other for replaying.

Services are defined using srv files, which are compiled into source code by a ROS client

library [21].

Roslaunch: A command line tool and XML format to coherently start a set of nodes

including remapping of names and setting of parameters [22]

 ROS Versions(distribution):

A ROS distribution is a set of ROS packages. They are all connected to Linux. The purpose

of the ROS distributions is to let developers work against a relatively stable codebase until they

are ready to roll everything forward. Sometimes there is some bugs in the ROS version so they try

to fix it every time by updating all packages but for "higher" level packages, the rules are less

strict, and so it falls to the maintainers of a given package to avoid breaking changes [23].

http://wiki.ros.org/Topics
http://wiki.ros.org/srv

Chapter3 ______________Robotic Operation System

43

Figure III.4 ROS List of Distribution [24].

Signs:

• light yellow: future release.

• green: supported release.

• grey: unsupported release (End of Life).

Chapter3 ______________Robotic Operation System

44

 Ubuntu Install of ROS kinetic

Installation:

ROS Kinetic ONLY supports Wily (Ubuntu 15.10), Xenial (Ubuntu 16.04) and Jessie

(Debian 8) for debian packages. ROS kinetic only support some versions like ubuntu 15.10 Xenial

Ubuntu 16.04.This installation is provided by the official community of ROS developers [25].

http://wiki.ros.org/kinetic/Installation/Ubuntu

Configure Your Ubuntu Repositories

 Configure your Ubuntu repositories to allow "restricted," "universe," and "multiverse." You

can follow the Ubuntu guide for instructions on doing this.

 Setup Your Sources List

Setup your computer to accept software from packages.ros.org.

 sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main" >

/etc/apt/sources.list.d/ros-latest.list'

Set Up Your Keys

sudo apt-key adv --keyserver 'hkp://keyserver.ubuntu.com:80' --recv-key

C1CF6E31E6BADE8868B172B4F42ED6FBAB17C654

 If you experience issues connecting to the keyserver, you can try

substituting hkp://pgp.mit.edu:80 or hkp://keyserver.ubuntu.com:80 in the previous command.

Alternatively, you can use curl instead of the apt-key command, which can be helpful if you are

behind a proxy server:

curlsSL'http://keyserver.ubuntu.com/pks/lookup?op=get&search=0xC1CF6E31E6BADE8

868B172B4F42ED6FBAB17C654' | sudo apt-key add –

http://wiki.ros.org/kinetic/Installation/Ubuntu
https://help.ubuntu.com/community/Repositories/Ubuntu

Chapter3 ______________Robotic Operation System

45

 Installation

First, make sure your Debian package index is up-to-date:

sudo apt-get update

There are many different libraries and tools in ROS. We provided four default configurations

to get you started. You can also install ROS packages individually.

In case of problems with the next step, you can use following repositories instead of the ones

mentioned above ros-shadow-fixed

• Desktop-Full Install: (Recommended) :

ROS, rqt, rviz, robot-generic libraries, 2D/3D simulators, navigation and 2D/3D perception

sudo apt-get install ros-kinetic-desktop-full

• Desktop Install: ROS, rqt, rviz, and robot-generic libraries

sudo apt-get install ros-kinetic-desktop

• ROS-Base: (Bare Bones) ROS package, build, and communication libraries. No GUI

tools.

sudo apt-get install ros-kinetic-ros-base

• Individual Package:

You can also install a specific ROS package (replace underscores with dashes of the package

name):

sudo apt-get install ros-kinetic-PACKAGE

e.g.

sudo apt-get install ros-kinetic-slam-gmapping

To find available packages, use:

http://wiki.ros.org/ShadowRepository
http://wiki.ros.org/rqt
http://wiki.ros.org/rviz
http://wiki.ros.org/rqt
http://wiki.ros.org/rviz

Chapter3 ______________Robotic Operation System

46

apt-cache search ros-kinetic

Environment Setup

 It's convenient if the ROS environment variables are automatically added to your bash

session every time a new shell is launched:

echo "source /opt/ros/kinetic/setup.bash" >> ~/.bashrc

source ~/.bashrc

 If you have more than one ROS distribution installed, ~/.bashrc must only source

the setup.bash for the version you are currently using.

If you just want to change the environment of your current shell, instead of the above you

can type:

source /opt/ros/kinetic/setup.bash

 If you use zsh instead of bash you need to run the following commands to set up your shell:

echo "source /opt/ros/kinetic/setup.zsh" >> ~/.zshrc

source ~/.zshrc

Dependencies for Building Packages

Up to now you have installed what you need to run the core ROS packages. To create and

manage your own ROS workspaces, there are various tools and requirements that are distributed

separately.For example, rosinstall is a frequently used command-line tool that enables you to

easily download many source trees for ROS packages with one command.

To install this tool and other dependencies for building ROS packages, run:

sudo apt install python-rosdep python-rosinstall python-rosinstall-generator python-wstool

build-essential

http://wiki.ros.org/rosinstall

Chapter3 ______________Robotic Operation System

47

 Initialize Rosdep

Before you can use many ROS tools, you will need to initialize rosdep. rosdep enables you

to easily install system dependencies for source you want to compile and is required to run some

core components in ROS. If you have not yet installed rosdep, do so as follows.

sudo apt install python-rosdep

With the following, you can initialize rosdep.

sudo rosdep init

rosdep update

Build Farm Status

 The packages that you installed were built by the ROS build farm. You can check the status

of individual packages here.

 Start Your Project:

 After the installation of the ROS kinetic and updating all packages you can work and deal

with different projects and write your code even with Python OR C++ or Lisp.

 Why Using ROS?

 ROS in General:

The same reason when you build your project in the field and many application like drones

and four wheels motors.., you can only use ROS to build your part in virtual world using some

coding the fastest you figure outthe meaning of how communications works between nodes of the

program, you can set up new parts of an application very easily [26].

http://build.ros.org/
http://repositories.ros.org/status_page/ros_kinetic_default.html

Chapter3 ______________Robotic Operation System

48

 ROS Packages for Everything:

ROS this system has everything you need form driving cars automatically just you access

this with a package and controlling robot with joystick that available as a package you can also

import some project and modify them to suet your ideas.

ROS Has Great Simulation Tools:

In any project you need some tools to run your project in good conditions and those tools,

such as Rviz and Gazebo. Gazebo you can simulate some robots in 3D vision. Or mapping the

environment surrounding your robot.

You Can Control Multiple Robots With ROS:

This means you can access to different robot in the same time and each robot can

communicate with each other and each robot has its own ROS system.

ROS Is Light:

The ROS system it can’t take so much from your system drive and resources you can easily

install it and start in few minutes. And you can even import the ROS into an embedded system so

you can use in deferent way.

More Compatible with Your Ideas:

You can do more stuff in your ROS system but you don’t have to create each part from

your project you might focus on some development point, and integrate the rest from other

sources.

 Conclusion:

 In this chapter we did explain about ROS (Robotic Operation System). How you upload the kinetic

version into your Linux system and how you can use all tools provided by the ROS system like setting the

environment source it to apply your requirement. And we showed all the version that you can install it into

Linux. Most important part how the system communicate with you and how you can extract all information.

Chapter 4

Application and Discussion

Chapter4 ______________Application and Discussion

50

 Application and Discussion.

 Introduction:

Maps can be so difficult things to understand and they help us in our systems to figure out

our way into the exit or the target that we want to find, Humans have admit the importance and the

value of maps to their lives, saying that maps can be found in the old cycles more than 5,000 years

ago, now maps are so important that were using it in different fields from Google Maps into GPS

to find our way, In other definition maps even became an important tools that went inside our cars

systems we used daily from finding our way to home or work and event in robotics fields like

autonomous cars that google companies did developed and equipped it with cameras and smart

sensor to detect and efficient navigate surrounding unknown areas. This technology of mapping is

more useful to be used in hard and difficult terrains to explore without spearing human soles.

Other ways GPS use maps to navigate and localize the position of the car by using satellites

with triangulation method to calculate position and velocity by applying some algorithms based

on Artificial Intelligent. Sometimes GPS don’t work inside big buildings or mega police cities

because the minimum number of satellites is 3 to localize the position so it can’t connect to the

GPS, Robot can access inside building so with the right sensors we can create 2D or 3D map for

that facility without using GPS or something else [27].

 To test this technology we have many ways, even in real application or by testing it in virtual

world using some coding and simulations platforms that enable us to use some expensive sensors

and multiple version robots’ cars, drones, rovers, all that is shown down in this chapter.

 Component and Design of Robot:

The first thing about robots is the hardware that matters from the process unity into the power

supply and for this project I did chose to work with four wheels robot can only move in flat surface,

you can count on any robot can move according what you want to do, for example a robot who

can climb stairs and pic up things like robotic arm so with that you can apply some high and

Chapter4 ______________Application and Discussion

51

complexmovement beside just moving around, in this chapter we only need a robot who can carry

some sensor to create a simple map for the environment.

Objectives:

- Installing and Learning about ROS environment.

- Applying some algorithms on Linux using the Terminal.

- build some robots in Linux.

- Built our own robot using some tools and test it.

- Built our real robot.

- Test our robot with sensors.

Choosing the Component:

IV.2.2.1 Mechanical parts:

Motors, wheels, power supply, jumping wires, chassis.

o100 RPM Bo Motor – Straight:

The motors is shown down in (figure IV.1).

➢ Low density: lightweight, low inertia.

➢ Capability to absorb shock and vibration as a result of elastic compliance.

➢ Ability to operate with minimum or no lubrication, due to inherent lubricity.

➢ The relatively low coefficient of friction.

➢ Operating Voltage (VDC): 3~12.

➢ Shaft Length (mm): 8.5

➢ Shaft Diameter (mm): 5.5 (Double D-type)..

➢ No Load Current: 40-180mA.

➢ Rated Speed(After Reduction): 100 RPM.

➢ Rated Torque: 1 Kgcm.

➢ The motor is ideal for DIY enthusiast

oDual Shaft Bo Motor with Big Wheel:

Chapter4 ______________Application and Discussion

52

The Wheels is shown down in (figure IV.2).

➢ With upgraded tire tread for greater friction.

➢ Small shaft with matching wheels gives an optimized design for your application or

robot

➢ Diameter: 65 mm.

➢ Width: 28 mm.

➢ Color: Yellow

Figure IV.1 Straight BO

Motor.

Figure IV.2 Wheels.

Chapter4 ______________Application and Discussion

53

oChassis:

 This this is the buddy of our robot the one who holds the motors and wheels in the follows

figure:

Tools-and-equipment:

That are the equipment your going to need them to assemble your robot together for example

the multimeters for checking that all parts are connected all presented in (figure IV.4).

➢ Soldering iron.

➢ Jumper wires.

➢ Multimeters.

Figure IV.3 Transparent chassis.

Figure IV.4 Tools and equipment’s.

Chapter4 ______________Application and Discussion

54

oProcess Unity:

In this project you will choose anything you want to analyze the Data coming from sensors.

In this real building part, I did go with raspberry pi 3 B module in (figure IV.5) because we’re

going to use ROS (Robotic Operation System) to use some important tools from it.

➢ 1.4GHz 64-bit quad-core processor, dual-band wireless LAN, Bluetooth 4.2/BLE, faster

Ethernet, and Power-over-Ethernet support (with separate PoE HAT)

➢ These modules allow a designer to leverage the Raspberry Pi hardware and software stack

in their own custom systems and form factors.

➢ These modules have extra IO interfaces over and above what is available on the Raspberry

Pi model A/B boards, opening up more options for the designer.

To know more about raspberry pi 3 b + visit its datasheet:

https://www.raspberrypi.org/documentation/hardware/computemodule/datasheets/rpi_DAT

A_CM3plus_1p0.pdf.

oDrivers:

➢ l298 motor driver and ultrasonic sensor hc-sr04(H-bridge) (figure IV.6).

It’s a device that enable us to control motor direction and speed by sensing commands throw

the command pins like it shown in (figure IV.7).

Figure IV.5 Raspberry pi 3 B+ Module

https://www.raspberrypi.org/documentation/hardware/computemodule/datasheets/rpi_DATA_CM3plus_1p0.pdf
https://www.raspberrypi.org/documentation/hardware/computemodule/datasheets/rpi_DATA_CM3plus_1p0.pdf

Chapter4 ______________Application and Discussion

55

o Communication:

➢ we will access to the robot by using the WIFI on the raspberry pi 3 by

activating the (SSH mode).

oPower supply:

Using Two batteries of 3.7 v in series to have more power with 2 x 8800 mAh.

Figure IV.7 L298 Driver.

Figure IV.6 H-bridge Driver.

Figure IV.8 Raspberry pi 3 WIFI.

Chapter4 ______________Application and Discussion

56

oSensors:

In this project we did choose an expensive sensor (LIDAR) (figure IV.11).

➢ RPLIDAR A1 is a low cost 360-degree 2D laser scanner (LIDAR) solution developed by

SLAMTEC. The system can perform 360degree scan within 6meter range. The produced 2D point

cloud data can be used in mapping, localization and object/environment modeling.

➢ RPLIDAR A1’s scanning frequency reached 5.5 hz when sampling 360 points each round.

And it can be configured up to 10 hz maximum.

➢ RPLIDAR A1 is basically a laser triangulation measurement system. It can work excellent

in all kinds of indoor environment and outdoor environment without sunlight.

➢ System connection: with USB adapter Figure IV.11.

➢ Sensor power supply only needs from (5-10v).

Figure IV.9 3.7 Battery 8800 mAh.

Figure IV.10 RPLIDAR System Composition.

Chapter4 ______________Application and Discussion

57

Figure IV.11 RPLIDAR With USB Adapter.

oWhy This Sensor:

 According for what we want to do in this project (build 2D map with our robot), The best

way is with this sensor it comes with different feature specially in its own mechanism.

 RPLIDAR is based on laser triangulation ranging principle and uses high-speed vision

acquisition and processing hardware developed by SLAMTEC. The system measures distance

data in more than 2000 times per second and with high resolution distance output.

 RPLIDAR emits modulated infrared laser signal and the laser signal is then reflected by the

object to be detected. The returning signal is sampled by vision acquisition system in RPLIDAR

A1 and the DSP embedded in RPLIDAR A1 start processing the sample data and output distance

value and angle value between object and RPLIDAR A1 through communication interface.

Chapter4 ______________Application and Discussion

58

➢ in simple word the LIDAR gives us points each point represent a distance according into

our Sensor like in (figure IV.12).

Figure IV.12 RPLIDAR A1 Working Schematic.

Figure IV.13 An Example About How RPLIDAR Work Inside Doors.

Chapter4 ______________Application and Discussion

59

 Our Robot Electronic Circuit assembly:

 Getting Started:

 In this part were going to demonstrate the work into two divisions some work only will be

in software and the other will be with the real robot.

Figure IV.14 Robot Circuit.

Figure IV.15 Robot Control Direction Circuit (H-bridg and Motors).

Chapter4 ______________Application and Discussion

60

Installing Linux To Fix Our ROS Tools:

IV.4.1.1 Installing Linux:

 First you need to prepare your computer with with Linux system Ubuntu 16.04 so you can

install and build your project using some tools from ROS.

Figure IV.16Ubuntu 16.04 Linux System.

➢ To install ubuntu 16.04 visit this site:

https://ubuntu.com/tutorials/install-ubuntu-desktop-1604#1-overview

IV.4.1.2 Installing and Configure ROS Environment:

 To Install ROS, you need to run some commands lines in the Terminal we have deferent

ROS Versions we did choose ROS kinetic distribution. To start installation, you need to follow

the next steps “http://wiki.ros.org/kinetic/Installation/Ubuntu”.

➢ Open the Terminal:

And type some configuration commands and it follow with some ROS installation command

and update the system.

https://ubuntu.com/tutorials/install-ubuntu-desktop-1604#1-overview
http://wiki.ros.org/kinetic/Installation/Ubuntu

Chapter4 ______________Application and Discussion

61

Figure IV.17Terminal Window.

oFirst setting up the source list with this command

sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main" >

/etc/apt/sources.list.d/ros-latest.list'

Figure IV.18Setting the Source.

osetting keys

sudo apt-key adv --keyserver 'hkp://keyserver.ubuntu.com:80' --recv-key

C1CF6E31E6BADE8868B172B4F42ED6FBAB17C654

Figure IV.19 Preparing Keys.

oinstallation

sudo apt-get update

Chapter4 ______________Application and Discussion

62

you need the update to prepare for new installation. after completing those steps, you need

to set your environment

echo "source /opt/ros/kinetic/setup.bash" >> ~/.bashrc

source ~/.bashrc

Figure IV.20 Updating.

Figure IV.21Installing.

There is some extra details provided by the site web so you need to follow them for some

rare cases down this page.

Some dependencies have to be installed

osudo apt install python-rosdep python-rosinstall python-rosinstall-generator python-

wstool build-essential.

Chapter4 ______________Application and Discussion

63

Figure IV.22 Adding Dependencies.

Initialize rosdep

rosdep update

Figure IV.23 initialize.

Now after the ROS is install it to check you need to run this command roscore

 Applying Some Algorithms on Linux Using The Terminal:

To understand the nodes and topics in ROS (robotic operation system) we must apply some

algorithms

Publisher and subscriber:

Chapter4 ______________Application and Discussion

64

Figure IV.24 Some Tools In ROS.

We preferred to put some algorithms here to give sense toour work.

After all this we must prepare the work space by creating and compiling some folders

Opening the Terminal and type the following commands:

In this line we have to source the file so we can get acces to our ROS tools

- $ source /opt/ros/kinetic/setup.bash

Figure IV.25 Source the File.

This following line is to create a folder inside one.

Catkin_ws and src.

Cd to access folders from command Terminals

Catkin_make is a command built our project file

Chapter4 ______________Application and Discussion

65

$ mkdir -p ~/catkin_ws/src

$ cd ~/catkin_ws/

$ catkin_make

Figure IV.26Creating Work Space(mybot_ws).

Create a package with a name beginner_tutorials with this path:

Mybot_ws/src/beginner_tutorials/src/listener.cpp

Mybot_ws/src/beginner_tutorials/src/talker.cpp

Going back to our code:

 To explain this code is like some who’s righting a letter and other one who receive and read

the letter.

 The idea here is creating to folders each file is written with C++ language.

First file is publisher.cpp

Second file is subscriber.cpp

Chapter4 ______________Application and Discussion

66

Close and save the files.

Figure IV.27 Writing the Subscriber Node.

Figure IV.28 Writing the Publisher Node.

Chapter4 ______________Application and Discussion

67

To build and run the code open the Terminal and access to your work space which is

catkin_ws

In your catkin workspace

$ cd ~/catkin_ws

$ catkin_make

To run codes

Open3 windows Terminal

Figure IV.29 First Run the Roscore.

Chapter4 ______________Application and Discussion

68

Figure IV.30Second Rosrun Beginner_Tutorials Talker.

Figure IV.31Third Rosrun Beginner_Tuturials Listener.

This work of listener and talker is all to understand nodes and topicsto know more we must

run rostopic listin the Terminal and get info from our listener topic

Figure IV.32 Topic from Terminal Command.

Chapter4 ______________Application and Discussion

69

When we did check the topic /chatter we did find in his description that talker file is writing

a message. And the listener is publishing to the talker to receive that message.

 Build Our Robots In Linux.

 This is the main part of the work is to build our robot and simulate it in virtual application

like gazebo and rviz and place our sensor in our robot and try some mapping algorithms.

Figure IV.33 Robot Final Goals.

Chapter4 ______________Application and Discussion

70

Creating Our Work Space (robot folder):

First thing you want to do is creating a folder with your robot name (mybot_ws)

Creating Src File Inside the Working Space and Compile the Folder:

Creating a file named src to hold our robot code

Compiling this folder to make sure that all ROS packages and tools can be uploaded with

two files automatically throw the Terminal.

/mybot_ws/src /mybot_ws/build /mybot_ws/devel

Figure IV.34 Working Space Folder.

Figure IV.35 Src Robot Code And Configuration File.

Chapter4 ______________Application and Discussion

71

Source the file means saying that were going to use the ROS tools and packages only in this

file that were going to create it later.

After building the file two extra files will appears build and devel.

Figure IV.36 Building The Project And Source The File.

Figure IV.37 Mybot_Ws File After The Compiling.

Chapter4 ______________Application and Discussion

72

Creating our robot packages:

 After compiling the project file, we need to create our packages who has the shape and

design of our robot.

You can now more about packages in chapter 3 start your project.

To create a package, you need a name for this package and some parameters

Catkin_create_pkname_of_packageparam1 param2 param 3

Packages 1::: Catkin_create_pkmybot_description

Packages 2::: Catkin_create_pkmybot_gazebo

Figure IV.38 Create Mybot_Description

Package.

Figure IV.39 Mybot_Description Package.

Chapter4 ______________Application and Discussion

73

 Each package contains cMakeLists.txt and package.xml and some codes inside that were

going to discuss later in this chapter. Last thing in the folder path design is packages contains.

Figure IV.40 src file with robot packages.

Figure IV.41 Mybot_Discription Package folder.

Chapter4 ______________Application and Discussion

74

Robot Coding:

We will learn now the Principe of using some new language rather than C++ or python using

nodes and topics and how will our robot going to form

❖Starting with Gazebo Package:

This package is responsible for the launching all nodes and call all files from the description

package such as the 3D design and sensors wheels, colors. Also, this file is the main who’s going

to publish some information and share it with us.

oStarting with The Launch File

(mybot_ws/src/mybot_gazebo/mybot_world.launch)

This is the launch file correspondent for launching our project

Figure IV.42 mybot.gazebo Package folder.

Chapter4 ______________Application and Discussion

75

o World file this file is correspondent for setting the parameter like the sun and camera

position.

Figure IV.43 mybot_world.launch.

Figure IV.44 World Launch File.

Chapter4 ______________Application and Discussion

76

❖Description Package:

This file is to set our 3D robot model using the Urdf or Xarco language we did choose to go

with Xarco because it’s simpler and more practical to form your robot

oStarting by creating a folder calls URDF and creating 4 files. Each file has its own preps

like colors, 3D design and plugins.

➢ Colors file code: mybot_ws/src/ mybot_description /urdf/ materials.xacrothis file is

correspondent for robot colors and calling this file from the mybot.gazebo like in (figure

IV.46)line 8 from the code.

➢ Plugins robot file code mybot_ws/src/ mybot_description /urdf/ mybot.gazebo (figure

IV.47)

➢ 3D design file code:mybot_ws/src/ mybot_description /urdf/ mybot.xacro (figure IV.46)

Figure IV.45 Gazebo Application From The Launch

File

Correspondent For Our Robot World Environment.

Chapter4 ______________Application and Discussion

77

 Figure IV.46 Colors File

(materials.xacro).

Chapter4 ______________Application and Discussion

78

Figure IV.47 Gazebo Application Code

Plugins(gazebo.xacro).

Chapter4 ______________Application and Discussion

79

Figure IV.48 3D Design Robot Code (mybot.xacro).

There is a plugin for wheels and chassis and hokuyo sensor (RPLIDAR sensor). So that it

can be displayed on the gazebo you must place every joints in this file (figure IV.45) and even the

material like colors (figure IV.46).

Chapter4 ______________Application and Discussion

80

The chassis is the main robot core which is responsible for holding the wheels and the sensor.

Our robot has four wheels and a laser sensor on top of it, to explain the code were going to give

an example for the right wheel.

This link code is responsible for creating a small wheel in chape of cylinder with radius 0.1

and length 0.05 you can set this parameter as you like according to your robot, you must set the

position of the wheel from the next code in figure IV.49

Figure IV.49 Right Wheel Code Link(mybot.xacro).

Chapter4 ______________Application and Discussion

81

Figure IV.50 Right Wheel Joint (mybot.xacro).

 The right wheel joint is displayed also in the file gazebo.xacro so that can appears in gazebo

application (figure IV.47) line 11 from the code.

 Each wheel is represented by this code but you must place the right position of the wheels

like the right back wheel is has just the same code as the front right wheel there is a name

Chapter4 ______________Application and Discussion

82

and position difference like in (figure IV.49)

Compiling Our Project Work Space:

You can run your project throw ROS tools by typing some commands to run specific launch

file you must use rosrun command in Terminal window.

roslaunch package_name file_name.launch.

you can run this command or do something else that were going to explain here:

go to mybot_ws/ directory create a file with this name run_gazebo.sh

so we can add the following line inside that file like in (figure IV.50)

To run this file run this command like in (figure IV.53)

Figure IV.51 The Difference Between The Right Wheel And Right Back

Wheel(mybot.xacro).

Figure IV.52 how to launch the project file run_gazebo.sh.

Chapter4 ______________Application and Discussion

83

 ./run_gazebo.sh

before you run this file, you must make sure that you did source the work space with this

command (source devel/setup.bash) so the ROS tools can be accessed from this file.

After you source the work space run the file like in (figure IV.25), soon as you tape the enter

key the gazebo application should appears with the 3D robot design like in (figure IV.54)

If the robot dose not appears make sure you did write all your code correct because even if

the name off the right wheel dose not match you will get an error in your code.

Next, we will launch the rviz to visual the robot from other side which is topics:

Figure IV.53 The File Who Launch Our Robot Packages.

Figure IV.54 3D Robot Design Displayed In Gazebo Application.

Chapter4 ______________Application and Discussion

84

We can launch it by taping this command

roslaunchmybot_description mybot_rviz.launch

or create a sh file so that we can call the riviz launch file like in (figure IV.55)

Figure IV.55 Rviz Launch File.

After launching this file rviz will appears to you with a blank world space (figure IV.56) so

you need to set some parameters to see your 3D model robot.

Figure IV.56Rviz Visualization Application.

Chapter4 ______________Application and Discussion

85

❖Setting up the rviz parameters:

Figure IV.57 Setting Map to Odom.

Figure IV.58 Adding Our Robot Model from This List.

Chapter4 ______________Application and Discussion

86

Search the robot model by searching it in the list (figure IV.58).

 as you add the robot model your robot will appears in the blank space (figure IV.59)

You can see the code in gazebo packages that we did set the colors (figure IV.47) in

following order:

❖Chassis blue.

❖Wheels green.

To resume our work from building our work space to compiling our robot and see this

result:

- Create work space.

- Building the work space.

- Create the packages

- Config our lunch files.

- Design our robot with xacro language.

Figure IV.59 3D Robot Model From Our Description Package In Rviz.

Chapter4 ______________Application and Discussion

87

- Source the work space file

- Compile the project and see results.

Problems that you’re going to face:

- Some errors in xml language.

- Errors in compiling due to bad installation of ROS kinetic.

- Missing some libraries (must be installed).

- Strong 3D projects need strong GPU.

 Testing Our Sensor (RPLIDAR):

Figure IV.60 Get the Laser Scan.

Chapter4 ______________Application and Discussion

88

When you select the laser scan you must do some modification and select the

mybot/laser/scan topic so you can get results from the laser sensor

Before you select this topic go to gazebo try to put some obstacle to test the laser

Figure IV.61 Select The Topic of laser scan.

Chapter4 ______________Application and Discussion

89

Figure IV.62 Adding Some Spheres and Cube.

Soon as you add the obstacle return to rviz and select the topic like in (figure IV.63) and you

will receive the laser data in shape of red points like in (figure IV.64).

 Figure IV.63 The Readings Is Imported From Gazebo Throw The Topic

To Rviz.

Chapter4 ______________Application and Discussion

90

 We tried to move the shapes from their initial like in (figure IV.61) positions and the results

of the laser changed.

Figure IV.64 Results After Moving The Shapes.

 How Is Our Robot Attached?

 To understand our code in (figure IV.47) were going to generate a tree of our joints of out

robot which part is connected with.

Figure IV.65Open the Robot Attach Tree.

Chapter4 ______________Application and Discussion

91

A window will open with the pdf contain a description about how our robot is attached with

every joint (figure IV.66).

Figure IV.66 Frames Results.

This side of the frame describe where the (left_wheel, left_back_wheel and hokuyo sensor)

is attached which is the chassis.

Figure IV.67 Left Side from The Frames.

Chapter4 ______________Application and Discussion

92

Figure IV.68The Right Side from The Frame.

This side of the frame describe where the (right_wheel, right_back_wheel) is attached which

is the chassis.

Chassis: which is the main core of our robot, The chassis is broadcasting to odomwhich all

information is attached to gazebo throw odom to transfer the direction, robot position and the laser

data from gazebo and share it with rviz.

To understand this last thing which is how the information be transferred throw nodes and

topics we must use the tools that exist int figure IV.24.

Chapter4 ______________Application and Discussion

93

To check the laser topic, we need to run this command to see who’s the publisher and the

subscriber.

rostopic info topic_name

You must choose just one topic, like in figure IV.69.

Figure IV.69 Laser Topic.

Figure IV.70 Publisher and Subscriber Information Of /Mybot/Laser/Scan Topic.

Chapter4 ______________Application and Discussion

94

Publisher:

Gazebo will share the information throw odom throw sensor_msgs/laserScan even when you

open the rviz we said that you must select the odom to recive our robot state (figure IV.55) and to

recive the laser scan we must select the laser topic from the laser scan module like in (figure

IV.60).

Subscriber:

Rviz will subscribe to gazebo to bring all information throw the node and show it in virtual

world.

 Joints of Our Robot:

 This following figure explain the what joints are:

Joints are the axe of the wheels (x y z) and we can find these parameters exist in our code to

place it and attach it with chassis like in (figure IV.50).

Figure IV.71 Wheel Joint.

Chapter4 ______________Application and Discussion

95

 Test Our Robot (Mapping and localization):

Mapping:

 Now were going to implement our mapping algorithms.

To our precedent file (work space file) were going to add certain files to import the g-

mapping algorithms like the following paths

❖Mybot_ws/src/mybot_control/config/mybot_control.yaml(figure IV.72)

❖Mybot_ws/src/mybot_control/launch/mybot_control.launch (figure IV.73)

❖Mybot_ws/src/mybot_navigation/launch/amcl_demo.launch (figure IV.76)

❖Mybot_ws/src/mybot_navigation/launch/gmaping_demo.lacunch

❖Mybot_ws/src/mybot_navigation/launch/mybot_teleop.launch (figure IV.75)

❖Mybot_ws/src/mybot_navigation/config/ base_local_planner_params.yaml

❖Mybot_ws/src/mybot_navigation/config/ costmap_common_params.yaml

❖Mybot_ws/src/mybot_navigation/config/ global_costmap_params.yaml

❖Mybot_ws/src/mybot_navigation/config/ local_costmap_params.yaml

The config file is displayed in (figure IV.74)

❖Mybot_ws/src/mybot_description/launch/mybot_rviz_amcl.launch

❖Mybot_ws/src/mybot_description/launch/mybot.rviz_gmapping.launch

(figure IV.77)

Chapter4 ______________Application and Discussion

96

 Code the control file:

 We must make our robot move around our 3D gazebo surface to do that we must install one

of the tools which is the teleop_twist and we must make sure that the differential drive controller

(diff_drive_controller kinetic compatible) is installed. So, our robot can move left, right,

backward and forward.

Figure IV.72 ControlFile Configuration.

 These two files are to make sure that our robot receive commands from the differential drive

and enable us to control it by launching the teleop_twist.

Figure IV.73 Launch File Of The Controller.

Chapter4 ______________Application and Discussion

97

The navigation package is connected with control file. It specifies the parameters like max

speed angle axes like in (figure IV.74).

figure IV.74 Part1

setting the speed and angles.

figure IV.74 Part2

setting the obstacle ranges.

Put seeing view (from laser scan sensor)

Figure IV.74 Navigation Package Config File.

Chapter4 ______________Application and Discussion

98

Config the laser scan sensor such as name, type of data and most important which topic

getting the data from (/mybot/laser/scan topic).

figure IV.74 Part (3—4): this part of the picture is for the map configuration.

The Code Of Navigation Package:

Figure IV.75 mybot_teleop.launch-----gmapping_demmo.launch Files.

Top file- figure IV.74:

Is correspondent for launching the teleop control file A node of this

package turtlebot_teleop_keyboard publishes a topic called cmd_vel that represents velocity

commands for the robot. Like in line 7 from the code.

gmaping file-figure IV.74:

Chapter4 ______________Application and Discussion

99

It’s a launch file who call and launch gmaping algorithm from our tools ROS repositories

and set some important parameters. Like importing the data from the mybot/laser/scan topic and

send all the gmapping data from a node called “slam_gmapping”

When we launch the gmapping file to create a map after the map complete, we can save the

map with the following command

rosrun map_server map_saver -f ~/mybot_ws/src/mybot_navigation/maps/test1_map

you will get two files:

 test1_map.pgm

Figure IV.76 Map Loader File.

Chapter4 ______________Application and Discussion

100

 test1_map.yaml

To visual the results we must add rviz files to description package so we can see how the

map will generate

Figure IV.77 Rviz Extra Files.

The top file of (figure IV.77) (mybot_rviz_acml.launch) is to visual the generated map

and see some navigation autonomously.

Chapter4 ______________Application and Discussion

101

In the other file of (figure IV.77) (mybot_rviz_gmapping.launch) to visual the map while

is been created by our gmaping algorithm

Start seeing results

 After completing the coding, catkin_make again your work space and source the file so that

can be accessed to ros tools and packages

❖Launching gazebo:

After launching the gazebo, I did create a room with a box inside that our robot doesn’t know

and seen it before (figure IV.79)

Figure IV.78 Launching Gazebo With Our Robot Module With Room ful with

spher And A Boxes.

Chapter4 ______________Application and Discussion

102

Figure IV.80 Terminal Window with Gmapping Algorithm.

After launching this command, the gmaping will receive the data from the sensor

Figure IV.79 Our Robot Module Inside A Room with A Box.

Chapter4 ______________Application and Discussion

103

❖Launching rviz to see the map:

Figure IV.81 Rviz With Mapping Results.

You must add the robot model and the map to see how the map will generate when you move

your robot

❖Launch the teleop_controller:

Figure IV.82 The Robot Controller Keys.

Chapter4 ______________Application and Discussion

104

“i”: forward. “,”: backward. “l”: right. “j”: left. “k”: stop.

Figure IV.83After Moving through all obstacles.

Figure IV.84 first Map sample without obstacles.

After mapping all the surrounding time to register the map into the file that exist in

navigation packages with the name of maps

Chapter4 ______________Application and Discussion

105

Figure IV.85 Saving the Map Ender the Name Test1_Map.

Now the map is completed, so we can close the Gmapping Terminal window and we can

take a closer look on our map by opening the.

Before you see the results and closing the terminals, we can see that the topic list shows the

data from where is being taking from (slam_gmapping) (figure IV.88).

We can see that slam_gmapping node is subscribing to the laser scan topic.

Figure IV.86 Rostopic List.

Chapter4 ______________Application and Discussion

106

 Navigation:

In this part were going to make sure that we add in a navigation and description file some

extra files

After all we must run the gazebo file with the 3D robot module

./run_gazebo.sh

and after it make sure we run the next two files

➢ Mybot_ws/src/mybot_navigation/launch/amcl_demo.launch (figure IV.76)

 This file is correspondent for loading the map that we did register before under the name

test1_map with the next command (figure IV.85).

roslaunch mybot_navigation amcl_demo.launch

this two first steps the gazebo file that you did launch must be the same world that we did

map so we can navigate through it.

➢ Mybot_ws/src/mybot_description/launch/mybot_rviz_amcl.launch (figure IV.77)

This file is correspondent for loading the rviz application so we visual the map, our robot,

the path that the robot is going for.

Chapter4 ______________Application and Discussion

107

Results:

We did add a camera plugin in our robot gazebo plug in file to visual our surrounding.

Figure IV.87 Loading The Map Of Navigation In Rviz.

Figure IV.88 Camera on Our Robot.

Chapter4 ______________Application and Discussion

108

To give the robot a target to move forward we must pic the green arow in the rviz application

and point to the direction that we want and the robot will move automatically to that target

(position).

Problems:

• In this simulation we got a problem with the robot while his moving throw ground which

is being too slow to move. Only the reasons I found is Real Time Factor on the gazebo application

it supposed to be 1 and is down to 0.71 (left bottom in figure IV.90) even while we were doing

the mapping algorithms when we controlled the robot with teleope_twist (figure IV.82) the robot

was too slow to turn left and right we did manage to figure out the problem will be shown in

solution part.

Figure IV.89 Robot While Moving to The Target.

Chapter4 ______________Application and Discussion

109

• Having strong computer equipment get you more close to reality simulation.

• We only try to make the robot go toward and it get stuck on it.

Solution:

•To make the robot move easier we must change the mechanism control system we did

install the differential drive control which supposed to our robot will only be controlled by two

wheels in our case our robot has four wheels so we have to install other robot driver

“lib_gazebo_ros_planar_move” to fix the slow driving movement.

 Measure distances in maps

In this part of work were going to try to measure distances from our generated map to do

that we chose to work on OpenCV language. The idea here is to try to work on image analyzing

detecting contours and shapes (square, rectangles, circles) from the generated map and in the last

we calculate the distances for each shape inside our generated map from our robot.

Figure IV.91 The Robot While Taking A Turn through the obstacle .

Figure IV.90 lib_gazebo_ros_planar_move robot four wheels

driver

Chapter4 ______________Application and Discussion

110

 First step is installing the right version of OpenCV2 python, there is deferent type of this

new language for example if you tried to compile a code who use some tools from OpenCV

language it will show you an error that means you’re missing the right version for the right python

version from your Linux operation system.

 The next step will be after preparing our environment is to create a package who’s going to

hold our codes parameters.

Creating our package:

 To createa package you need a command like following:

- Using the catkin_create_pkg command line in the Terminal to create a package under the

name measure_dis.

- Inside the src file create a python file under the name opencv.py to hold our code.

- Make the last file executable.

- Start coding.

- Compiling the file through the Terminal typing python opencv.py.

Figure IV.92 Compiling Our File.

Chapter4 ______________Application and Discussion

111

Results:

➢ Detecting contours on our map

➢ Get only big contour and zoom in

 The idea here is give the map a starting distance which is long and width from those starting

points we can measure anything inside the biggest contour (our map).

Figure IV.93 Contours That Exist on Our first map Picture.

Figure IV.94 Zoom The Map.

Chapter4 ______________Application and Discussion

112

 Build Our Robot on Reality:

To build our robot we need the next equipment’s:

- Chassis of our robot.

- Wheels and DC motors.

- Control unity (raspberry pi 3 b + module).

- Sensor (RPLIDAR A1).

- Power supply.

- Connecting wires.

- Mouse and keyboard (to navigate throw Ubuntu).

 Preparing the Raspberry Pi:

To do the same work as the simulation we need to import ROS to our Raspberry pi 3 B+

module with it we can compile and execute some gmapping algorithms

Installing ubuntu version who has an integrated ROS version inside it (Raspberry pi Image

Ubiquity Robotics).

 In this version is exactly the same procedure from working with Terminal command to

creating a work space and compile it in Linux.

Raspberry pi Image Ubiquity Robotics= ubuntu 16.04 + ROS integrated with in.

Figure IV.95 Ubuntu 16.04 Raspberry Compatible.

Chapter4 ______________Application and Discussion

113

 Test the sensor:

Get Clone RPLIDAR A1 repository from GitHub

Import hector slam:

Get Clone hector SLAM repository from GitHub which include all tools that we need do

mapping and localization with our Real robot and sensor

Compile the Files:

- When we did compile all files with our Raspberry pi 3 b + module it got stock because due

to the lake of RAM (1GB) and with the size of our file we don’t have enough RAM to compile it.

Solutions:

- Upgrade to the new Raspberry pi 4 version with 4 GB of RAM.

- Compiling done without any problem.

 Run Mapping Algorithm:

o Plug the RPLIDAR first with the Serial port converter with an USB cable to the Raspberry

pi 4 USB port and run the following command lines.

Figure IV.96 RPLIDAR And Hector Slam Repositories.

Chapter4 ______________Application and Discussion

114

o Run the hector slam algorithm

After running the hector mapping package rviz will show up some parameters.

Figure IV.97 Launch Rplidar Package.

Figure IV.98 Launch the Hector Slam Package.

Chapter4 ______________Application and Discussion

115

The blue green red axe represents the sensor and the green line represent the path that our

sensor did goes through

- The map is not well generating.

- Second problem is when you move your laser to much the map will be moved around like

(Figure IV.101).

Figure IV.99 Reseults In Rviz Application After Launching

Hector Slam (Mapping).

Chapter4 ______________Application and Discussion

116

Solusions:

- First you need flat surface because in the code we determined that the robot space is flat.

Figure IV.100 Second Try Launching Hector Slam Algorithm Shown in Rviz.

Figure IV.101 Results After Solving the Problem.

Chapter4 ______________Application and Discussion

117

In this third try we looking at the room map is being almost generated (figure IV.103) but

when we did move the laser the map image got ruined

 Conclusion:

 After building our robot in 3D world and in reality, successfully we did generate a map

with it and save it. Also managed to control all system using nodes and topic and figure out how

Linux work and how much problem to install all tools like robot module, Gazebo, Rviz, and with

a lot of bugs in the system specially during compiling files. Without forgetting about how much

our system requirement is low to get a close real time simulation but we manage to do Mapping

and navigation. Also, we come up with an idea of measure the map shapes from a starting point

using OpenCV language and some python assistance but unfortunately, it’s not completely done.

General Conclusion

119

General Conclusion

After all, every day the science is jumping a step forward in electronics and programming

due to their importance and mater in our style life to make it easier. This advantage is making us

to give more potential and hard work to provide new way to the next generation each move

consider like mine of gold. Humanins are smart to create artificial intelligent and integrate it inside

robots so it can act like us and think like us and predict our steps into the future and improve it.

The objective of our research project not completely achieved, but the main goal from this

project was done, which is mapping and small navigation step. Through developing a 3D robot

inside 3D environment, with a short in equipment we achieved that goal. And we did manage to

aim on how this project was build and pass through some hard steps like libraries installation errors

and multiple bugs in Linux system and dealing with Robotic Operation System. However, all steps

in the simulation and results was done in real application except building the robot, that we suppose

to build the real robot with 4 DC motors and an expensive Sensor RPLIDAR A1 and the newest

version of raspberry pi 4 we did manage to compile the project and got some results of just building

a map.

In this work the most difficult thing is to install and prepare for your ROS system because

there will be a lot of errors and bugs in the system (Linux) so when you face something you must

search online to see all solution possible. To build your robot you need to learn some coding

Princip, and the best advice it’s trying to compile easy things like we did in the last chapter.

As a small project is really hard to study all things all at once but you can learn a lot of things

from it like python, C++, OpenCV, Robotic Operation System, URDF and SDF files Nodes and

Topics all of this will leads you to having great skills but it’s a risky way to march on, the

perspectives of this work is to know for example the deference between working with MATLAB

and with real robot environment to work with tools can be close to real application and you can

develop your own library and equipment with any language you want.

120

Bibliographie

[1] bright hub engineering 2020, What is Robotics. What are Robots? Introduction to Robotics,

viewed 04 april 2020, < https://www.brighthubengineering.com/robotics/26216-

introduction-to-robotics/ >.

[2] Geeksforgeeks, Robotics | Introduction, viewed 04 april 2020,

<https://www.geeksforgeeks.org/robotics-introduction/>.

[3] Robotics, But what exactly is a robot? viewed April 2020,

<https://www.galileo.org/robotics/intro.html>.

[4] Online sciences 2014, Advantages and disadvantages of using robots in our life,viewed 04

april 2020,<https://www.online-sciences.com/robotics/advantages-and-disadvantages-of-

using-robots-in-our-life/>.

[5] Researchgate 2008-2020, Advantages and disadvantages of human and robot technology,

viewed 04 april 2020, <https://www.researchgate.net/figure/Advantages-and-

disadvantages-of-human-and-robot-technology_tbl1_228652684>.

[6] M. Ben-Ari and F. Mondada.(2018). Robots and Their Applications , 1(1), page 1-2

<https://doi.org/10.1007/978-3-319-62533-1_1 >.

[7] medium. (2019, 7 18). SLAM, Core technology of AR, What is it? Retrieved 07 17, 2020,

from medium: <https://medium.com/maxst/slam-core-technology-of-ar-what-is-it-

e6c9ae4839b4>.

[8] Durrant-Whyte, H., & Bailey, T. (2006). Simultaneous localization and mapping (SLAM):

part I The Essential Algorithms. Robotics & Automation Magazine, 2, 99–110, page 1.

<https://doi.org/10.1109/MRA.2006.1638022>.

[9] Simon J. D. Prince (2012). Computer Vision: Models, Learning and Inference. Cambridge

University Press.

https://doi.org/10.1007/978-3-319-62533-1_1
https://medium.com/maxst/slam-core-technology-of-ar-what-is-it-e6c9ae4839b4
https://medium.com/maxst/slam-core-technology-of-ar-what-is-it-e6c9ae4839b4
https://doi.org/10.1109/MRA.2006.1638022

121

[10] Computervisionblog. (2016, 1 13). The Future of Real-Time SLAM and Deep Learning vs

SLAM. Retrieved 05 10, 2020, from computer vision blog:

<https://www.computervisionblog.com/2016/01/why-slam-matters-future-of-

realtime.html?m=1&fbclid=IwAR3h7gXu9BKDgWIXIutYYwMAWcsUPH7epBo3SoOn

tRpiW3tSAp20JmxbP4g>.

[11] visiononline. (2009-2020). What-is-Visual-SLAM-Technology-and-What-is-it-Used-For.

Consulté le 06 02, 2020, sur visiononline: <https://www.visiononline.org/blog-

article.cfm/What-is-Visual-SLAM-Technology-and-What-is-it-Used-

for/99?fbclid=IwAR2gou8TNByEp2tnqTzldE

SmazE6Gs2MXx4SzrCdtOxvim0l9BaWEuZ35uY>.

[12] How Does LiDAR Remote Sensing Work? Light Detection and Ranging(video file)available

from:<https://www.youtube.com/watch?v=EYbhNSUnIdU&t=105s>.

[13] hindawi. (2011). A Light-and-Fast SLAM Algorithm for Robots in Indoor Environments

Using Line Segment Map. Retrieved 05 01, 2020, from hindawi:

<https://www.hindawi.com/journals/jr/2011/257852/>.

[14] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for grid mapping with rao-

blackwellized particle filters,” IEEE Transactions on Robotics, vol. 23, no. 1, pp. 34–46,

2007.

[15] Mrpt. (2020). List of MRPT apps. Retrieved 05 15, 2020, from mrpt:

<https://www.mrpt.org/list-of-mrpt-apps/>.

[16] Wikipedia contributors. (2019, August 29). EKF SLAM. In Wikipedia, The Free

Encyclopedia. Retrieved 16:26, July 18, 2020,

from< https://en.wikipedia.org/w/index.php?title=EKF_SLAM&oldid=913085542>.

[17] wiki.ros.(2018,August,08).ROS Introduction, in Wiki ROS, The Free Encyclopedia

Retrieved 16:26, July 18, 2020, from< http://wiki.ros.org/ROS/Introduction>.

[18] wiki.ros.(2019-September-05).roscore, in Wiki ROS, The Free Encyclopedia Retrieved

16:26, July 18, 2020, from< http://wiki.ros.org/roscore>.

https://www.computervisionblog.com/2016/01/why-slam-matters-future-of-realtime.html?m=1&fbclid=IwAR3h7gXu9BKDgWIXIutYYwMAWcsUPH7epBo3SoOntRpiW3tSAp20JmxbP4g
https://www.computervisionblog.com/2016/01/why-slam-matters-future-of-realtime.html?m=1&fbclid=IwAR3h7gXu9BKDgWIXIutYYwMAWcsUPH7epBo3SoOntRpiW3tSAp20JmxbP4g
https://www.computervisionblog.com/2016/01/why-slam-matters-future-of-realtime.html?m=1&fbclid=IwAR3h7gXu9BKDgWIXIutYYwMAWcsUPH7epBo3SoOntRpiW3tSAp20JmxbP4g
https://www.youtube.com/watch?v=EYbhNSUnIdU&t=105s
https://www.hindawi.com/journals/jr/2011/257852/
https://en.wikipedia.org/w/index.php?title=EKF_SLAM&oldid=913085542
http://wiki.ros.org/ROS/Introduction
http://wiki.ros.org/roscore

122

[19] wiki.ros.(2018-December-05).nodes, in Wiki ROS, The Free Encyclopedia Retrieved 17:00,

July 18, 2020, from< http://wiki.ros.org/Nodes>.

[20] wiki.ros.(2019-January-13).msg, in Wiki ROS, The Free Encyclopedia Retrieved 17:15,

July 18, 2020, from< http://wiki.ros.org/msg>.

[21] wiki.ros.(2019-July-18).Services, in Wiki ROS, The Free Encyclopedia Retrieved 17:15,

July 18, 2020, from< http://wiki.ros.org/Services>.

[22] Alajlan, M., & Koubâa, A. (2016). Writing global path planners plugins in ROS: A tutorial.

In Studies in Computational Intelligence (Vol. 625, Issue Volume 1),page 31-

32,<https://doi.org/10.1007/978-3-319-26054-9_4>.

[23] wiki.ros.(2020-June-11).Distrubutions , in Wiki ROS, The Free Encyclopedia Retrieved

17:15, July 18, 2020, from< http://wiki.ros.org/Distributions>.

[24] wiki.ros.(2020-June-11).Distrubutions ,List of Distrubutions, in Wiki ROS, The Free

Encyclopedia Retrieved 17:15, July 18, 2020, from < http://wiki.ros.org/Distributions>.

[25] wiki.ros.(2020-mars-25). Ubuntu install of ROS Kinetic, in Wiki ROS, The Free

Encyclopedia Retrieved 17:15, July 18, 2020, from

< http://wiki.ros.org/kinetic/Installation/Ubuntu>.

[26] NIRYO. (2018, 11 23). Debug Niryo One motors one by one. Consulté le 07 10, 2020, sur

NIRYO: <https://niryo.com/2018/01/8-reasons-use-ros-robotics-projects/D.>

[27] https://www.icsm.gov.au/education/fundamentals-mapping/history-mapping

http://wiki.ros.org/Nodes
http://wiki.ros.org/msg
http://wiki.ros.org/Services
http://wiki.ros.org/Distributions
http://wiki.ros.org/Distributions
http://wiki.ros.org/kinetic/Installation/Ubuntu
https://niryo.com/2018/01/8-reasons-use-ros-robotics-projects/D
https://www.icsm.gov.au/education/fundamentals-mapping/history-mapping

