

Université Mohamed Khider de Biskra

Faculté des sciences et de la technologie

Département de Génie Mécanique

MÉMOIRE DE MASTER

Domaine : Sciences et Techniques

Filière : Génie Mécanique

Spécialité : Construction Mécanique

Réf. :

Présenté et soutenu par :

CHAKER GAMMANE

Le 25 \ 09 \ 2020

Etude de la rupture en MODE I d'un bio-composite

Polymère/fibres de palmier dattier

Jury :

Dr. Mabrouk HECINI	Pr	Université de Biskra	Président
Dr. Youcef DJEBLOUN	MCB	Université de Biskra	Rapporteur
Dr. Djemoui MEHAMDI	MCB	Université de Biskra	Examinateur

Année universitaire : 2019-2020

"Je suis de ceux qui pensent que la science est d'une grande beauté. Un scientifique dans son laboratoire est non seulement un technicien : il est aussi un enfant placé devant des phénomènes naturels qui l'impressionnent comme des contes de fées."

" Marie Curie" 1938

« La connaissance s'acquiert par l'expérience, tout le reste n'est que de l'information »

"Albert Einstein" 1879 - 1955

Dédicace

- A mes chers parents en reconnaissance de tous leurs sacrifices et leur soutien en toutes circonstances,
- A mes frères et ma sœur : pour leurs encouragements et leur formidable soutien,
- Une pensée toute particulière aux familles gammane, ouarab et ait ali.
- A mes amis, et collègues
- A tous ceux qui me sont chers...

Remerciements

En premier temps, je remercie dieu Allah tout puissant de m'avoir accordé le courage pour accomplir ce modeste travail.

je remercie mon Rapporteur Docteur Youcef DJABLOUN qui m'a proposé ce sujet et qui m'a bien guidé tout le long de ce travail.

Enfin je remercie tous les enseignants du département de génie mécanique de l'université de Mohamed KHIDER de Biskra.

<u>Chaker gammane</u>

Sommaire.

Dédicace	i
Remerciements	ii
Sommaire	iii
Liste des figures	ix
Liste des tableaux	x
Introduction générale	.1

Chapitre I : Etude Bibliographique

Introduction	2
I.1 Généralités sur les composites	2
I.1 Définitions	2
I.2. Classification des matériaux composites	2
I.3. Constitution des matériaux composites	3
I.3.1. Matrice	3
a. Matrices thermodurcissables	4
b. Matrices thermoplastiques	4
I.3.2. Les renforts	5
I.3.2.1. Principales catégories des renforts	5
I.4. Les fibres végétales	5
I.4.1. Méthodes d'extraction des fibres végétales	6
I.5. Mise en œuvre des composites renforcés de fibres végétales	6
I.6. Architecture des matériaux composites	7
I.6.1. Monocouche	7
I.6.2. Stratifies	7
I.6.3. Sandwichs	
I.7. Avantages et inconvénients des matériaux composites à charges végétales	8

Chapitre II. Comportement mécanique et endommagement en mode I d'un Composite

Introduction	10
II.1. Généralité sur le comportement élastique du matériau	10
II.2. Elasticité linéaire	10

II.2.1. Matériau anisotrope	11
II.2.2. Matériau monoclinique	11
II.2.3. Matériau orthotrope	12
II.2.4.Matériaux isotropes transverses	12
II.2.5. Matériau isotrope	13
II.3. Caractéristiques mécaniques du mélange renfort-matrice	14
II.3.1. Les lois de mélange	14
II.3.2.Teneur en volume et en masse du renfort et de la matrice	14
II.4. Mode de rupture	15
II.4.1. Analyse des contraintes des fissures en MODE I	15
II.4.2. Facteur d'intensité des contraintes K ₁	16
II.4.3. Facteur de ténacité des contraintes K _{IC}	16

CHAPITRE III : Modélisation numérique de la rupture en mode I

Introduction	18
III. 1. Géométrie de l'éprouvette	18
III. 2. Création de la Géométrie sur ABAQUS	18
III. 3. Création de la pré-fissure	20
III. 4. Assemblage de la pré-fissure avec l'éprouvette CT	21
III. 5. Condition initial	21
III. 6. Maillage et conditions aux limites	22
III. 7. Lancement du calcul	22
III.8.resultats	23

CONCLUSION GENERALE

lusion générale

ANNEX	27
Références bibliographique	

Liste des figures

- Figure. I.1 : Matériaux composite
- Figure. I.2: Classification schématique des différents types de composites
- Figure. I.3 : Les différents types des matrices
- Figure. I.4: Classification des fibres végétales
- Figure. I.5 : Monocouche
- Figure. I.6 : Constitution d'un stratifié
- Figure. I.7 : Matériaux sandwiches à âmes pleines
- Figure. II.1 Plan de symétrie
- Figure. II.2 : Matériau orthotrope
- Figure. II.3 : Schématisation des trios modes de rupture
- Figure. II.4 : Tenseur de contrainte au point M
- Figure. II.5 : Variations caractéristiques de la ténacité K_{IC}
- Figure. III.1 : les dimensions de l'éprouvette CT
- Figure. III.2 ; géométrie de l'éprouvette CT sur ABAQUS
- Figure. III.3 : l'éprouvette CT en 3D
- Figure. III.4 : les dimensions de fissuration
- Figure. III.5 : fissuration en 3D
- Figure. III.6 : l'éprouvette CT avec pré-fissure
- Figure. III.7 : condition initial
- Figure. III.8 : maillage de l'éprouvette CT avec pré-fissure
- Figure. III.9: en coure d'exécution des résultats
- Figure. III.10 : propagation de la fissure
- Figure. III.11 : influence de la direction de propagation de la fissure en fonction du temps
- Figure III.12 : influence du facteur JKs en fonction du temps
- Figure III.13: influence du facteur d'intensité de contrainte K en fonction du temps

Liste des tableaux

- Tableau I.1: Caractéristiques des résines thermodurcissables
- Tableau I.2: Caractéristiques des résines thermoplastiques
- Tableau I.3 : Techniques d'extractions des fibres

Introduction Générale

\

Introduction Générale

Les composites à fibres végétales sont actuellement en forte expansion en raison notamment de l'intérêt croissant que leur accorde l'industrie automobile. Ces fibres présentent une excellente alternative aux fibres de verre d'un point de vue environnemental en raison de leur biodégradabilité et de leur combustibilité beaucoup plus neutre en termes de dégagement de gaz nocifs ou de résidus solides

Le renforcement des matériaux de construction (béton, mortier et composite) par des fibres est une technique de plus en plus utilisée dans le but d'améliorer leur performances mécaniques, notamment leurs résistances à la traction et à la fissuration.

Plusieurs investigations ont été menées pour renforcer différents types de polymères tels que les thermodurcissables et les thermoplastiques. L'idée principale derrière l'introduction des fibres naturelles dans les plastiques était de réduire le coût des matières premières et les problèmes environnementaux, tout en produisant des matériaux avec des propriétés acceptables

L'endommagement des matériaux composites à fibres végétales est causés par l'usure ou une attaque physique ou chimique. Il conduit à une dégradation de ses capacités physiques et mécaniques pouvant conduire à la rupture sans oublier de prendre en considération les géométries et les formes des composites

Le but de ce travail de donner une approche numérique de l'étude de la rupture en mode I d'un matériau composite à base de fibres courtes du palmier dattier par l'utilisation de la méthode d'éléments finis sur ABAQUS. Il s'agit d'établir un modèle numérique basé sur des éléments cubiques permettant de déterminer le facteur d'intensité de contrainte. et La compréhension des phénomènes microscopiques d'interaction entre fibre et matrice en basant sur le mode d'ouverture des composite avec des défauts localisés répartis aléatoirement le long des fibres a été jugée nécessaire pour la prévision et le contrôle des propriétés mécaniques des composites fibreux.

La modélisation numérique par la méthode des éléments finis est un outil très efficace permettant de répondre à cette problématique.

Pour mener à terme ce projet, nous avons structuré ce travail en trois chapitres suivants:

CHAPITRE I : Etude bibliographique

Dans ce chapitre, on donne un aperçu sur les matériaux composites d'une manière générale. Par la suite, Nous avons consacré la dernière partie de ce chapitre aux biomatériaux composites, procédés de fabrication et avantages et inconvénients des matériaux composites à charges végétales

CHAPITRE II : Comportement mécanique et endommagement en mode I d'un Composite

Dans ce chapitre, on donne un aperçu sur le comportement élastique des matériaux composites et on donnant une approche sur les lois de mélange et les modes de rupture

CHAPITRE III : Modélisation numérique de la rupture de mode I

Le but des essais présentés dans cette partie est de déterminer les propriétés mécaniques du composite qui interviennent dans la modélisation de la propagation de pré-fissure avec l'éprouvette CT en mode I d'un matériau bio composite en utilisant le logiciel **ABAQUS**. Le travail se termine par une conclusion générale synthétisant les résultats obtenus en proposant des perspectives relatives à l'étude réalisée

Introduction

Dans ce chapitre, nous exposons en premier temps, une généralité sur les matériaux composites en commencent par la définition de ces matériaux, leurs constituants et leurs classifications, cette étude bibliographique donne un aperçu sur les matériaux bio-composites d'une manière générale. Les différents procédés de mises en œuvre utilisées. Enfin les avantages et les inconvénients et quelques domaines d'application des bio-composites

I. Généralité sur les matériaux composites

I.1. Définition

Un matériau composite peut être défini d'une manière générale comme l'assemblage de deux ou plusieurs matériaux, le produit fini ayant des propriétés supérieures aux propriétés de chacun des matériaux constitutifs. On appelle maintenant de façon courante "matériaux composites" des arrangements des fibres ou des renforts noyés dans une matrice dont la résistance mécanique est beaucoup plus faible [1].

Le renfort généralement de nature fibreuse permet de supporter la charge de la structure(**Figure.I.1**), réduit les contraintes thermiques et assure la rigidité et la résistance macroscopique.

La matrice permet de lier le renfort, assurer une protection face aux agents extérieurs et transférer les charges au renfort via la liaison entre la fibre et la matrice [2].

Figure I.1 : Matériaux composite [2]

I.2. Classification des matériaux composites

La classification des composites peut être effectuée selon la forme des composantes ou suivant leurs natures [2].

Figure I.2: Classification schématique des différents types de composites [3]

I.3. Constitution des matériaux composites

I.3.1. Matrice :

La matrice est l'élément qui lie et maintient les fibres. Elle répartie les efforts (résistance à la compression ou à la flexion) et assure la protection chimique des fibres.[3],dont les fonctions sont :

- De réaliser la liaison entre les renforts de manière à répartir les sollicitations et ainsi de prévenir les ruptures catastrophiques,
- D'assurer la protection de ces renforts vis-à-vis des agents agressifs,
- De donner la forme à la pièce et garantir ses caractéristiques géométriques.

Les matrices utilisées dans les matériaux composites se divisent en deux grandes familles : les matrices organiques et les matrices inorganiques (minérales). La Figure I.2 présente les types des matrices.[4]

Figure. I.3 : Différents types des matrices

Les matrices les plus employées sont les matrices thermodurcissables et thermoplastiques.

a. Matrices thermodurcissables

Ces résines possèdent la propriété de passer de façon irréversible d'un état liquide à l'état solide [5].

Elles sont en solutions sous forme de polymère réticule en suspension dans des solvants. Les résines polyesters insaturées, les résines de condensation (phénoliques, aminoplastes et furaniques) et les résines époxydes sont des résine thermodurcissables [6].

Les résines thermodurcissables ont des propriétés mécaniques élevées, on trouve les époxydes possédant de bonnes propriétés thermomécaniques, et une bonne adhésion avec la fibre. Les principales caractéristiques sont présentées dans le Tableau I.1

Dáchara	Masse volumique	Résistance	Module d'Young	Allongement
Resines	(g/cm3)	(MPa)	(GPa)	(%)
Polyester	1.2	80	4	2.5
Epoxy	1.1-1.5	130	4.5	2

Tableau I.1: Caractéristiques des résines thermodurcissables [7]

b. Matrices thermoplastiques

Les matrices ou les résines thermoplastiques présentent la propriété de passer de façon réversible de l'état solide à l'état pâteux [8].

Les matrices thermoplastiques à macromolécules linéaires ou légèrement ramifiées sont les plus utilisées compte tenu de leur facilité de mise en œuvre et de leur faible coût.

De même que pour les résines thermodurcissables, les matériaux les plus performants ont des caractéristiques mécaniques élevées et une masse volumique faible.

Les principales caractéristiques sont présentées dans le Tableau I.2.

	Masse volumique	Résistance	Module d'Young	Allongement
Résines	(g/cm3)	(MPa)	(GPa)	(%)
Polypropylène	1.2	30	1.2	20-400
Polyamide	1.1	70	2	200

Tableau I.2: Caractéristiques des résines thermoplastiques [7]

I.3.2. Les renforts

Le renfort est le constituant qui confère au composite ses caractéristiques mécaniques : la rigidité, la résistance à la rupture, la dureté. Les caractéristiques recherchées pour les renforts sont de propriétés mécaniques élevées, une masse volumique faible, une bonne compatibilité avec les résines, une facilité de mise en œuvre, un faible cout.

I.3.2.1. Principales catégories des renforts

Il existe un grand nombre des renforts sous forme de fibres que l'on peut diviser en quatre grandes catégories [9]

•Les fibres synthétiques : ces fibres sont obtenues par filage d'un polymère synthétique et mise en œuvre à partir d'un procédé d'extrusion/filage par voie fondu ou solvant. Les principales variétés sont : polyamides, polyesters polyoléfines, chlorofibres, fibres de PVA et les thermoplastiques hautes performances.

•Les fibres de spécialité : cette catégorie regroupe les fibres les plus utilisées dans l'industrie

•Les fibres artificielles : elles sont obtenues après dissolution de matières naturelles et filage de la solution par un procédé d'extrusion. Les fibres les plus utilisées sont : les fibres de viscose haute ténacité ; les fibres d'alginate

•Les fibres naturelles : il s'agit essentiellement de fibres végétales (lin, chanvre, sisal, jute, ect) ou animales (poiles et la soie de sécrétion)

I.4. Les fibres végétales

Les fibres végétales sont des matériaux filamenteux issus de la biomasse. Elles peuvent être extraites du fruit, de la tige ou de la feuille d'une plante cultivée, des arbustes et des herbes. Sont susceptibles d'être filées pour fabriqués des fils et des cordes. Elles sont tissées, tricotées ou tressées pour confectionner des textiles indispensables à la société.

La fibre végétale présente une variabilité très importante en fonction de leur origine .En effet, les dimensions des filaments végétales dépendent de l'état de maturité et aussi des conditions environnementales de croissance de la plante. La variabilité du diamètre peut être très importante le long de la même fibre végétale [10]

Figure I.4: Classification des fibres végétales

I.4.1. Méthodes d'extraction des fibres végétales

Pour un usage de renfort de matériau composite, les fibres végétales sont prélevées dans la chaîne de transformation de l'industrie textile. Cette filière a développé depuis de très nombreuses années, des techniques pour séparer les fibres du reste de la plante. Les techniques utilisées pour séparer et présenter les fibres sont l'extraction mécanique, chimique et biologique [11].Ces procédés de séparation des fibres sont organisés dans le tableau I.3

Méthodes	Type de méthode		
d'extraction			
mécanique	teillage	déflexion	laminage
chimique	Au bisulfite	acide	A la soude
biologique	Rouissage a terre	Rouissage a l'eau	Action microbienne

Tableau I.3 : Techniques d'extractions des fibres

I.5. Mise en œuvre des composites renforcés de fibres végétales [12]:

Des différentes techniques sont utilisées pour la mise en œuvre des composites à renfort végétale. Ces dernières incluent le moulage au contact, la pultrusion, l'enroulement filamentaire, l'extrusion, le moulage par injection, etc. De manière générale, la mise en forme des composites s'effectue par moulage et comporte deux grandes étapes :

•Disposer les fibres et la matrice liquide dans un moule

•Solidifier la matrice.

I.6. Architecture Des Matériaux Composites :

I.6.1. Monocouche:

Les monocouches représentent l'élément de base de la structure composite. Les différents types de monocouches sont caractérisés par la forme du renfort : à fibres continue, à fibres courtes, fibres tissus et mat.

I.6.2. Stratifies :

Les stratifiés sont constitués de couches successives (appelées parfois plis) de renforts (fils, stratifies, mat, tissus, etc.) imprégnés de résines.

Figure. (I.6) : Constitution d'un stratifié

I.6.3. Sandwichs :

Matériaux composés de deux semelles (ou peaux) de grande rigidité et de faible épaisseur enveloppant une âme (ou cœur) de forte épaisseur et faible résistance. L'ensemble forme une structure d'une grande légèreté. Le matériau sandwich possède une grande rigidité en flexion et c'est un excellent isolant thermique. [13]

		Í		
	/		Mi	Stratife
ôme i				K
Résinct				
	*.		-	

Figure. (I.7) : Matériaux sandwiches à âmes pleines

I.7. Avantages et inconvénients des matériaux composites à charges végétales

L'utilisation des matériaux composites à fibres végétales sous différentes conditions environnementales est devenue populaire ces dernières années. Beaucoup de fibres végétales ont été employées en tant que renfort efficace dans des matrices polymériques [14]. Les composites sont préférés à d'autres matériaux parce qu'ils offrent des atouts liés à:

• Leur légèreté;

• Leur résistance à la corrosion et aussi à la fatigue;

• Leur insensibilité aux produits comme les graisses, les liquides hydrauliques, les peintures et les solvants;

• Leur possibilité de prendre plusieurs formes, d'intégrer des accessoires et permettre la réduction de bruit.

► Cependant, certains inconvénients freinent leur diffusion :

- Les coûts des matières premières et des procédés de fabrication.
- La gestion des déchets engendrés et la réglementation de plus en plus stricte.
- Faible stabilité dimensionnelle.
- Absorption de l'eau.

Chapitre II. Comportement mécanique et endommagement en mode I d'un Composite

Introduction

Les matériaux composites, notamment ceux à forte anisotropie, présentent un avantage très particulier par rapport aux métaux. La direction de l'endommagement dépend, non pas du mode de chargement, mais de l'arrangement géométrique des constituants du composites. La conception et la réalisation d'une structure en composite nécessite actuellement de nombreux essais allant jusqu'à la rupture en se servant soit des essais de rupture statique ou bien des essais de rupture par fatigue. Ces matériaux ont fait l'objet de très nombreux travaux de recherche afin de comprendre leur comportement et réaliser des simulations. Les mécanismes de dégradation de ces composites sont donc aujourd'hui relativement connus. Cependant, la simulation des stratifiés jusqu'à la rupture reste un challenge majeur et nécessite des nouvelles études aussi bien en terme de modélisation qu'en terme d'outils de calcul.

II.1. Généralité sur le comportement élastique du matériau

Pour un matériau donné, la loi de comportement consiste à déterminer la relation entre les contraintes et les déformations quand il est soumis à des sollicitations extérieures. Dans un milieu continu élastique l'état de contraintes, en un point dans un repère orthonormé (x, y, z) donné est entièrement définis par le tenseur des contraintes noté σ_{ij} . Les propriétés mécaniques de l'interface entre fibres et matrice sont très importantes dans la réalisation d'une structure composite. En effet, il ne doit avoir ni glissement ni séparation entre les différentes phases de la structure pour obtenir de bonnes caractéristiques mécaniques élastiques [15].

II.2. Elasticité linéaire [16]

La relation d'élasticité linéaire peut s'écrire sous la forme matricielle suivante :

$$\begin{bmatrix} \sigma_{1} \\ \sigma_{2} \\ \sigma_{3} \\ \sigma_{4} \\ \sigma_{5} \\ \sigma_{6} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \\ & C_{22} & C_{23} & C_{24} & C_{25} & C_{26} \\ & & C_{33} & C_{34} & C_{35} & C_{36} \\ & & & C_{44} & C_{45} & C_{46} \\ & & & & C_{55} & C_{56} \\ & & & & & C_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \varepsilon_{3} \\ \varepsilon_{4} \\ \varepsilon_{5} \\ \varepsilon_{6} \end{bmatrix}$$
 II.1

Avec :

 $\{\sigma\}$: Vecteur des contraintes

[C] : Tenseur de rigidité

 $\{ \varepsilon \}$: Vecteur de la déformation '

Ou sous forme condensée :

$$\sigma = C\varepsilon \qquad \qquad \text{II.2}$$

Cette loi, généralement appelée loi de Hooke généralisée, introduit la matrice de rigidité C, symétrique.

Le comportement linéaire d'un matériau est donc décrit dans le cas général par 21 coefficients indépendants.

La relation d'élasticité peut s'écrite sous la forme inverse, suivant :

$$\varepsilon = S\sigma$$
 avec $S = C^1$ II.3

S : matrice de flexibilité ou de souplesse (symétrique).

II.2.1. Matériau anisotrope

Dans le cas le plus général, la matrice de rigidité et la matrice de souplesse sont déterminées chacune par 21 constantes indépendantes. Ce cas correspond à un matériau ne possédant aucune propriété de symétrie. Un tel matériau est appelé matériau triclinique ou matériau anisotrope.

II.2.2. Matériau monoclinique

Un matériau monoclinique est un matériau qui possède un plan de symétrie

Figure. (II.1) Plan de symétrie [17]

La forme de la matrice de rigidité (ou souplesse) doit être telle qu'un changement de base effectué par symétrie par rapport à ce plan ne modifie pas la matrice. Dans le cas où le plan de symétrie est le plan (1,2), l'exploitation des changements de base conduit à une matrice de rigidité de la forme :

$$\begin{bmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & C_{16} \\ C_{12} & C_{22} & C_{23} & 0 & 0 & C_{26} \\ C_{13} & C_{23} & C_{33} & 0 & 0 & C_{36} \\ 0 & 0 & 0 & C_{44} & C_{45} & 0 \\ 0 & 0 & 0 & C_{45} & C_{55} & 0 \\ C_{16} & C_{26} & C_{36} & 0 & 0 & C_{66} \end{bmatrix}$$
 II.4

La matrice de souplesse a la même forme. Le nombre de constantes d'élasticité indépendantes est réduit à 13.

II.2.3. Matériau orthotrope

Un matériau orthotrope possède trois plans de symétrie, perpendiculaires deux à deux. Il est à noter que l'existence de deux plans de symétrie perpendiculaires implique l'existence du troisième.

Figure. (II.2) : Matériau orthotrope

La forme de la matrice de rigidité est donc obtenue en ajoutant au matériau monoclinique un plan de symétrie perpendiculaire au précédent. L'invariance de la matrice dans un changement de base effectué par symétrie par rapport à ce deuxième plan conduit à une matrice de rigidité de la forme :

$$\begin{bmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\ C_{12} & C_{22} & C_{23} & 0 & 0 & 0 \\ C_{13} & C_{23} & C_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{55} & 0 \\ 0 & 0 & 0 & 0 & 0 & C_{66} \end{bmatrix}$$
II.5

La matrice de souplesse a la même forme. Le nombre de constantes d'élasticité indépendantes est ramené à 9.

II.2.4. Matériaux isotropes transverses

Un matériau isotrope transverse est un matériau orthotrope qui comporte un axe ou un plan d'isotropie. Les propriétés suivant l'axe 2 et 3 sont identiques, [15]

Avec

•
$$C_{22} = C_{33}C_{44} = \frac{C_{22} - C_{33}}{2}$$

•
$$C_{12} = C_{13}C_{55} = C_{66}$$

Donc Le nombre de coefficients indépendants se réduit à 5.

La matrice de rigidité s'écrit donc suivant

$$\begin{bmatrix} C_{11} & C_{12} & C_{12} & 0 & 0 & 0 \\ C_{12} & C_{22} & C_{23} & 0 & 0 & 0 \\ C_{12} & C_{23} & C_{22} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{C_{22} - C_{23}}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{66} & 0 \\ 0 & 0 & 0 & 0 & 0 & C_{66} \end{bmatrix}$$
II.6

La matrice de souplesse a la même forme.

II.2.5. Matériau isotrope

Dans ce cas toutes les directions et en tout point du matériau ont les mêmes propriétés mécaniques. Le nombre de coefficients indépendants se réduit à 2 coefficients et la loi de comportement s'écrit [18].

$$\begin{bmatrix} C_{11} & C_{12} & C_{12} & 0 & 0 & 0 \\ C_{12} & C_{11} & C_{12} & 0 & 0 & 0 \\ C_{12} & C_{12} & C_{11} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2}(C_{11} - C_{12}) & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2}(C_{11} - C_{12}) & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2}(C_{11} - C_{12}) \end{bmatrix}$$
II.7

La matrice de souplesse a la même forme.

Généralement, les constante de rigidité sont exprimées en introduisant les coefficients de lamé λ et μ :

$$\begin{cases} C_{11} = \lambda + 2\mu \\ C_{12} = \lambda \end{cases}$$
 II.8

II.3. Caractéristiques mécaniques du mélange renfort-matrice

II.3.1. Les lois de mélange [18,19].

Les lois de mélange permettent de déterminer les caractéristiques d'un matériau composites en fonction de ces constituants (fibre et matrice) et leur teneur volumique.

• dans le sens des fibres

$$E_l = E_m V_m + E_f V_f \qquad \text{II.9}$$

• dans le sens transversal des fibres

$$E_{t} = E_m \left[\frac{1}{(1 - V_m) + \frac{E_m}{E_f_t} V_f} \right] E_{f_t}$$
 II.10

 E_{f_t} : Module de Young dans le sens transversal des fibres (fibres anisotropes), mais dans la majorité des cas on utilisant $E_{f_t} \approx E_f$ donc :

$$E_t = \frac{E_m E_f}{E_f V_m + E_m V_f}$$
 II.11

II.3.2. Teneur en volume et en masse du renfort et de la matrice

$$V_f = rac{volumederenfort}{volumetotale}$$
 et $V_m = rac{volumedelamatrice}{volumetotale}$ II.12

Avec :

$$V_m = 1 - V_f$$
 et $V_m = \frac{\frac{M_f}{\rho_f}}{\frac{M_f}{\rho_f} + \frac{M_m}{\rho_m}}$ II.13

$$M_f = \frac{massederenfort}{massetotale}$$
 $M_m = \frac{massedelamatrice}{massetotale}$ II.14

Avec :

$$M_f = 1 - M_m$$
 et $M_m = \frac{V_f \rho_f}{V_f \rho_f + V_m \rho_m}$ II.15

 V_f , V_m : Teneur volumique des constituants (f : fibre, m : matrice).

 E_f, E_m : Modules de Young.

 ρ_f, ρ_m : Masse volumique (f : fibre, m : matrice).

II.4. Mode de rupture

La propagation d'une fissure peut se faire suivent trois modes de déplacement des faces de la fissure dans un plan défini. Elle peut aussi se faire suivant des modes mixtes qui les combinent tous les trois ou bien deux mode différent. La figure (II.1) illustre les trois modes de rupture

Figure. (II.3) : Schématisation des trios modes de rupture

Il existe trois façons d'appliquer une force pour permettre à une fissure de se propager :

- Mode I Une contrainte de traction normale au plan de fissure,
- **Mode II** Une contrainte de cisaillement agissant parallèlement au plan de la fissure et perpendiculaire au front de fissure,
- **Mode III** Une contrainte de cisaillement agissant parallèlement au plan de la fissure et parallèlement au front de fissure.

De manière générale, une fissure se propage dans un matériau sous une combinaison de contraintes dans les trois modes.

La rupture réelle est généralement une combinaison de ces trois modes élémentaires. Les modes I et II peuvent être analysés par la théorie de l'élasticité plane en considérant les fissures planes. Le mode III peut faire l'objet d'une étude d'un problème plan en cisaillement pure. On dit qu'il y a propagation lorsqu'un critère basé sur les facteurs d'intensité de contraintes dépasse une valeur critique

II.4.1. Analyse des contraintes des fissures en MODE I

En mode I, les contraintes agissant sur la fissure en fonction du radial , la distance r et l'angle θ .par les équation suivante [20].

$$\sigma_{xx} = \frac{K_I}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left(1 - \sin \frac{\theta}{2} \sin \frac{3\theta}{2} \right)$$

$$\sigma_{yy} = \frac{K_I}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left(1 + \sin \frac{\theta}{2} \sin \frac{3\theta}{2} \right)$$

$$\tau_{xy} = \frac{K_I}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \sin \frac{\theta}{2} \cos \frac{3\theta}{2}$$

II.16

 K_I : le facteur d'intensité de contraintes en mode I

II.4.2. Facteur d'intensité des contraintes KI :

Le facteur d'intensité de contrainte augmente lorsque la taille de la fissure augmente. Même si la contrainte nominale demeure constante, les contraintes locales peuvent croître si la fissure s'agrandit. Quand le facteur d'intensité de contrainte atteint une valeur critique, les contraintes sont tellement importantes en pointe de fissure qu'il y a rupture brutale

Figure(II.4): Tenseur de contrainte au point M

la fissure devient instable et se propage lorsque le facteur d'intensité de contraintes K_I atteint une valeur critique K_{IC} appelée ténacité qui caractérise quantitativement la résistance d'un matériau à la propagation brutale d'une fissure en mode I

II.4.3. Facteur de ténacité des contraintes K_{IC}

La ténacité est la capacité d'un matériau à résister à la propagation d'une fissure On peut aussi définir la ténacité comme étant la quantité d'énergie qu'un matériau peut absorber avant de rompre, La ténacité K_{IC} joue le rôle que la limite d'élasticité en mécanique classique. Elle dépend elle aussi d'un certain nombre de paramètres (températures d'essai, vitesse de déformation, épaisseur du matériau...)

Figure .II.5: Variations caractéristiques de la ténacité K_{IC}

Modélisation numérique de la rupture de mode I

Introduction

Ce chapitre porte sur la modélisation par ABAQUS de la propagation de pré-fissure en mode I d'une éprouvette de type traction compactes CT d'un matériau composite polyester- fibres de palmier dattier. On étudié dans ce travail, la variation du facteur de concentration de contrainte dans différentes directions autour d'un pré fissure on passe par des différent étapes a l'aide du logiciel;

III.1. Géométrie de l'éprouvette

Dans le prolongement de l'entaille, la zone endommagée se propage très rapidement jusqu'à atteindre la face arrière de l'éprouvette avant qu'une fraction significative de fibres ne se rompe. Pour ces raisons, des éprouvettes de traction compactes «CT» ont été choisie car celles-ci possèdent un ligament plus grand

Figure III.1 : Dimensions de l'éprouvette CT

Le choix de la pré-fissure est d'après le rapport $0.3 \le \frac{a}{w} \le 0.7$

III. 2. Création de la géométrie sur l'Abaqus

La géométrie et les dimensions de l'éprouvette de l'étude sont illustrées dans la figure (III.2). L'étude étant restreinte au mode I, l'éprouvette est soumise à une sollicitation de traction afin de solliciter la fissure en mode ouverture

Figure III.2 : Géométrie de l'éprouvette CT sur Abaqus

Après avoir crié la géométrie initiale on ajoute une épaisseur de B=0.5 mm par la fonction d'extrusion afin de voir la forme finale en 3D

Figure III.3 : Eprouvette CT en 3D

III. 3. Création de la pré-fissure

On a commencé par dessiner la largeur de la fissuration après on ajout une longueur (figure III.3) et on finissant par la fonction d'extrusion figure (III.4).

Figure III.4: Dimensions de fissuration

Figure III.5 : Fissuration en 3D

III. 4. Assemblage de la pré-fissure avec l'éprouvette CT

Dans cette étape on a assemblé les deux parties présidant illustrée dans la figure (III.5) afin d'obtenir la pièce final figure (III.6).

Figure III.6 : Eprouvette CT avec pré-fissure

III. 5. Conditions initial

Figure III.7 : Conditions initial

III. 6. Maillage et conditions aux limites

Le but principal d'un maillage d'éléments finis est de rapprocher adéquatement la géométrie du corps modélisé, représentant toutes les fonctionnalités de la géométrie de l'objet à la solution.

Les résultats numériques étant destinés à une analyse en mécanique de la rupture, une attention particulière est accordée au maillage notamment en fond de fissure et dans son voisinage. Pour ce faire, on utilise un maillage très fin (Figure III.8) avec des éléments de C3D8R Intégration réduite de brique linéaire à 8 nœuds, contrôle du sablier

En supposant le matériau composite (polyester – fibres coutes du Lif du palmier dattier) est isotrope avec des comportements E= 1540 MPa et v=0.31 donné expérimentale

Figure III.8 : Maillage de l'éprouvette CT avec pré-fissure

III. 7. Lancement du calcul

Cette étape a pris un petit peu de temps parce qu'on a utilisé un maillage très fin pour obtenir des résultats précis.

Le calcul est fait par un seul cas $\frac{a}{w} = 0.4$

+ Abaqus/CAE 6.11-PR3 -	Model Data	base: C:\Temp\CT Creck o	omposite.cae [Viewport:	1]				_ 8 ×
Ele Model Viewport	View Job	Adaptivity Co-execution	Qptimization Tools P	lug-ins <u>H</u> elp K ?				- & ×
i 🗋 🚰 🖬 🖶	C Q 3	、 🖸 🚺 🗄 🛔 🛙 🗋	All					
Model Results	Module:	Job 💌 Model: 🙀	Model-1 🔻 Step:	Step-1				
😫 M 🛫 😩 🗞 🧇	# 📼							
Models (1)	B	🜲 Job Manager				×		
E Parts (2)		Name	Model	Туре	Status	Write Input		
🗄 🖉 Materials (1)		CT_HFEM3D	Model-1	Full Analysis	Running	Data Check		
Calbrations	87 😁						×RP-1	
Brofiler	II dh issui				-	SUDINE.		
E ta Assembly					-	Continue		
🗄 o ⁴ a Steps (2)					_	Monitor		
Field Output						Results		
History Outp					1	Kill		
Bo ALE Adaptive				1 - 1	1			
Interactions		Create	Edit Copy	. Rename	Delete	Dismiss		
H Interaction F							z X	
- HC Contact Con								
Constraints								
Connector S							Xara	
⊕ <i>F</i> Fields								
E Dis Loads (1)								
BCs (2)								
Predefined F								
Remeshing F								
The Skatchar								
Annotations		z 🗖 🔭 🗙						
E 🗱 Analysis								~
🕂 🛃 Jobs (1) 💌	+ × Dr	ag the mouse in a viewport to	pan the view					35 SIMULIA
Job CT_HFEM3D	Abaqus	Standard completed	successfully.					-
Job CT_HFEM3D	complete file "Cl	ed successfully. F HFEM3D, inp" has b	een submitted for	analysis				
Job CT_HFEM3D	Analysi	is Input File Proce	ssor completed su	ccessfully.				
🖉 Démarrer		🚣 👰 📣 🛽	2 🖸 🕨		S 🔶 🔤	1		FR * 10:57 =

Figure III.9 : En coure d'exécution des résultats

III.8. Résultats

L'analyse de rupture dans la figure (IV.1) montre que les contraintes maximales se situent au niveau du fond d'entaille. Nous relevons que la contrainte diminue progressivement on s'éloignant du fond d'entaille, nous distinguons une propagation de fissuration très grave aux niveaux d'entaille les autre résultats sont dans l'annexe

Figure III.11 : Influence de la direction de propagation de la fissure en fonction du temps

Figure III.12: Influence du facteur JKs en fonction du temps

Figure III.13: Influence du facteur d'intensité de contrainte K en fonction du temps

Conclusion générale

Dans le domaine des structures à risque comme les équipements sous pression par exemple, en présence de défaut ou de fissure et pour des raisons de sécurité évidentes, il est fondamental de connaitre de manière précise le degré de nocivité du défaut. La modélisation numérique par la méthode des éléments finis est un outil très efficace permettant de répondre à cette problématique. Nous avons réalisé un modèle numérique sur **Abaqus 6.11-PR3** d'une éprouvette de traction (**CT**) en vue d'étudier l'évolution de la contrainte et le facteur d'intensité de contrainte dans le ligament de l'éprouvette pour un niveau de contraintes appliquées. Pour l'ensemble des résultats, nous constatons que les courbes des contrainte exhibent une évolution parabolique pour se stabiliser à une valeur égale à la contrainte appliquée. Les contraintes maximales se situent au niveau de fond d'entaille. La longueur de l'entaille critique diminue en augmentant la contrainte. Le modèle éléments finis que nous avons adopté pour notre étude est couramment utilisé et peut être étendu aux applications réelles.

Comme perspectives futures à ce travail, nous cherchons des nouvelles techniques d'entré les paramètres du matériau composite à base de fibres courtes.

Une étude approfondie par plusieurs longueurs de la pré-fissure.

Enfin, tracé les courbes charges-déplacements et le facteur d'intensité de contrainte en fonction du rapport $\frac{a}{w}$.

Abaqus 6.11-PR3

Date 25-Sep-2020 Time 09:23:06

For use by Team AWXS under license from Dassault Systemes or its subsidiary.

* NOTICE *

Abaqus 6.11-PR3 BUILD ID: 2011_04_11-00.59.39 111381

This is a prerelease of 6.11. Only very basic QA has been done for this release

K FACTOR ESTIMATES

	CRACK	CRACKF	RONT (CONTO	U R S		
	NAME	NODE SE	Г				
	1	2	3	4	5		
	6	7	8	9	10		
CRACK-1							
XFE	M_1 K1	: 17.82	12.14	7.726	8.737	11.31	
	K2:	4.420	2.137	2.935	9.6229E-02	2.572	
	K3	: -0.1992	-1.130	-1.240	-1.128	-1.039	
MERR DIRE	ECTION (D	EG): -25.70	-19.15	-35.42	2 0.000	-23.90	
	J from K	Ks: 0.1978	9.0311E-	02 4.139	96E-02 4.58	37E-02	7.9879E-02
	K1:	9.812	9.211	9.693	9.635	9.603	
	K2:	2.494	2.053	1.830	1.578	1.275	
	K3:	-1.024	-0.7122	-0.2660	1.8339E-02	-5.8131	E-02
MERR	DIRECTIO	ON (DEG):	-26.21 -	23.51	-20.41 -1	7.93 -	-14.62
	J from Ks:	6.1048E-02	5.2705E-0)2 5.717	2E-02 5.594	9E-02 5	.5082E-02
XFE	M_2 K	1: 17.82	12.14	7.726	8.737	11.31	
	K	2: 4.420	2.137	2.935	9.6229E-0)2 2.572	2
	K	3: 0.1992	1.130	1.240	1.128	1.039	
MERR	DIRECTIO	ON (DEG):	-25.70 -	19.15	-35.42 0	.000 -	23.90
	J from Ks:	0.1978	9.0311E-02	4.1396E	E-02 4.5887E	2-02 7.98	879E-02

9.0311E-02 4.1396E-02 4.5887E-02

27

7.9879E-02

K1	: 9.812	9.211	9.693	9.635	9.603							
К2	: 2.494	2.053	1.830	1.578	1.275							
К3	: 1.024	0.7122	0.2660	-1.8339E-02	5.8131E-	02						
MERR DIRE	ECTION (DEC	i): -26.21	-23.51	-20.41	-17.93	-14.62						
J from	n Ks: 6.1048E	5.2705	5E-02 5.71	172E-02 5.	5949E-02	5.5082E-02						
INCREMENT 2 S	INCREMENT 2 SUMMARY											
TIME INCREMENT COMPLETED 1.000E-02, FRACTION OF STEP COMPLETED 2.000E-02												
STEP TIME COMP	PLETED 2.0	000E-02, TO	TAL TIME C	COMPLETED	2.000E	-02						
	K FA	CTOR I	ESTIMAT	ΓES								
CRACK CRAC	KFRONT	СОМТОЦ	U R S									
NAME NODI	E SET											
	1 2	3	4	5								
	6 7	8	9	10								
CRACK-1												
XFEM_1	K1: 36.3	24.79	15.77	17.84	23.07							
	K2: 8.992	2 4.334	5.963	0.1743	5.219							
	K3: -0.410	-2.317	7 -2.548	-2.325	-2.149							
MERR DIRE	ECTION (DEG	i): -25.63	-19.04	-35.32	0.000	-23.80						
J from	n Ks: 0.8241	0.3763	0.1724	0.1913	0.3324							
K1	: 20.03	18.80	19.78	19.66	19.60							
K2	: 5.068	4.167	3.710	3.197	2.580							
K3	: -2.118	-1.481	-0.5696	1.0614E-02	-0.1456							
MERR DIRE	ECTION (DEC	i): -26.10	-23.40	-20.27	-17.82	-14.47						
J from	n Ks: 0.2543	0.2195	0.2381	0.2330	0.2294							
XFEM_2	K1: 36.3	24.79	15.77	17.84	23.07							
	K2: 8.992	2 4.334	5.963	0.1743	5.219							
	K3: 0.410	2.31	7 2.548	2.325	2.149							
MERR DIRE	ECTION (DEG	i): -25.63	-19.04	-35.32	0.000	-23.80						
J from	n Ks: 0.8241	0.3763	0.1724	0.1913	0.3324							

	K1:	20.03	18.80	19.78	19.66	19.60	
	K2:	5.068	4.167	3.710	3.197	2.580	
	K3:	2.118	1.481	0.5696	-1.0614E-02	0.1456	
MER	R DIRECT	TION (DEG)	: -26.10	-23.40	-20.27	-17.82	-14.47
	J from Ks	s: 0.2543	0.2195	0.2381	0.2330	0.2294	

INCREMENT 3 SUMMARY

TIME INCREMENT COMPLETED 1.500E-02, FRACTION OF STEP COMPLETED 3.500E-02STEP TIME COMPLETED 3.500E-02, TOTAL TIME COMPLETED 3.500E-02K FACTOR ESTIMATES

C	CRACK	CRA	CKFRONT	CON	NTOURS		
]	NAME	NOE	DE SET				
		1	2	3	4 5		
		6	7	8	9 10)	
CRACK-1							
XFEM_1	K1:	63.88	43.54	27.70	31.33	40.51	
	K2:	15.75	7.577	10.44	0.2779	9.129	
	K3:	-0.7265	-4.083	-4.49	6 -4.113	-3.808	
MERR DIR	ECTION	N (DEG):	-25.56	-18.97	-35.21	0.000	-23.72
J from	n Ks: 2	2.541	1.160	0.5315	0.5904	1.024	
K	1: 35	5.16	33.01	34.74	34.53	34.41	
K2	: 8.8	370	7.290	6.484	5.585	4.501	
К3	: -3.7	754	-2.635	-1.034	-1.5655E-02	-0.2902	
MERR DIR	ECTION	N (DEG):	-26.03	-23.33	-20.20	-17.71	-14.40
J from	n Ks: 0	.7840	0.6766	0.7340	0.7182	0.7071	
XFEM_2	K1:	63.88	43.54	27.70	31.33	40.51	
]	K2:	15.75	7.577	10.44	0.2779	9.129	
]	K3: 0	0.7265	4.083	4.496	4.113	3.808	
MERR DIR	ECTION	V (DEG):	-25.56	-18.97	-35.21	0.000	-23.72

J from	n Ks: 2.54	1 1.160	0.5315	0.5904	1.024	
K 1	: 35.16	33.01	34.74	34.53	34.41	
K2:	: 8.870	7.290	6.484	5.585	4.501	
K3:	: 3.754	2.635	1.034	1.5655E-02	0.2902	
MERR DIRE	ECTION (D	EG): -26.03	-23.33	-20.20	-17.71	-14.40
J from	n Ks: 0.784	0 0.6766	0.7340	0.7182	0.7071	
INCREMENT 4 S	UMMARY					
TIME INCREMENT	COMPLE	TED 2.250E-02	, FRACTIO	N OF STEP (COMPLETED	5.750E-02
STEP TIME COMP	LETED	5.750E-02, TC	TAL TIME	COMPLETE	D 5.750E	-02
K	FACTC	R ESTIN	MATES			
CRACK	CRACK	FRONT C	ONTOUI	R S		
NAME	NODE S	SET				
	1	2 3	4	5		
	6	7 8	9	10		
CRACK-1						
XFEM_1	K1: 1	05.1 71.6	5 45.58	51.55	66.65	
	K2: 25	5.89 12.44	17.14	0.4338	14.99	
	K3: -1	.200 -6.72	9 -7.41	6 -6.792	-6.296	
MERR DIRE	ECTION (D	EG): -25.52	-18.94	-35.17	0.000	-23.69
J from	n Ks: 6.88	1 3.142	1.439	1.599	2.773	
K1	: 57.86	54.31	57.17	56.82	56.63	
K2	2: 14.57	11.97	10.64	9.166	7.382	
K3	6.207	-4.365	-1.730	-5.4261E-02	2 -0.5062	
MERR DIRE	ECTION (D	EG): -25.99	-23.29	-20.16	-17.68	-14.33
J from	n Ks: 2.12	2 1.832	1.987	1.944	1.914	
XFEM_2 K1	: 105.1	71.65	45.58	51.55	66.65	
K2:	: 25.89	12.44	17.14	0.4338	14.99	
K3:	: 1.200	6.729	7.416	6.792	6.296	
MERR DIRE	ECTION (D	EG): -25.52	-18.94	-35.17	0.000	-23.69

J from	Ks: 6.88	3.1	142 1.4	439 1.	599	2.773	
K1:	57.86	54.3	1 57.1	7 56.8	2 56	5.63	
K2:	14.57	11.97	7 10.64	4 9.16	6 7.	382	
K3:	6.207	4.36	5 1.73	0 5.426	51E-02	0.5062	
MERR DIRE	CTION (I	DEG): -25.	.99 -23	.29 -20).16	-17.68	-14.33
J from	Ks: 2.12	22 1.8	332 1.9	987 1.	944	1.914	
INCREMENT 5 SU	JMMARY	Z					
TIME INCREMENT	COMPLE	TED 3.37	5E-02, FRA	CTION OF	STEP CO	MPLETED	9.125E-02
STEP TIME COMPL	ETED	9.125E-02	2, TOTAL T	IME COM	PLETED	9.125E-()2
	K F.	ACTOR	ESTIN	MATES			
CRACK CRACK	FRONT	CON	TOURS				
NAME NODE S	SET						
	1	2	3	4 5			
	6	7	8	9 10	I		
CRACK-1							
XFEM_1	K1:	167.0	113.8	72.41	81.88	105.9	
	K2:	41.09	19.73	27.21	0.6678	23.78	
	K3:	-1.910	-10.70	-11.80	-10.81	-10.03	
MERR DIRE	CTION (I	DEG): -25.	.52 -18	.90 -35	5.17	0.000	-23.65
J from	Ks: 17.3	36 7.9	928 3.0	530 4.	035	6.994	
K1:	91.91	86.27	7 90.8	0 90.2	5 89	9.95	
K2:	23.12	18.99	9 16.8	8 14.5	4 11	.70	
K3:	-9.886	-6.96	0 -2.77	4 -0.11	-0).8301	
MERR DIRE	CTION (I	DEG): -25.	.99 -23	.26 -20).12	-17.64	-14.33
J from	Ks: 5.3	55 4.0	521 5.0	013 4.	905	4.830	
XFEM_2 K1	: 167	0 113	3.8 72	.41 81	.88	105.9	
K2	2: 41.0	9 19.	73 27.	.21 0.6	678	23.78	
K3	: 1.91	0 10.	70 11.	.80 10	.81	10.03	
MERR DIRE	CTION (I	DEG): -25.	.52 -18	.90 -35	5.17	0.000	-23.65
J from	Ks: 17.3	36 7.9	928 3.0	530 4.	035	6.994	

K1:	91.	91	86.27	90.80	90.25	89.95	
K2:	23.	.12	18.99	16.88	14.54	11.70	
K3:	9.8	86	6.960	2.774	0.1121	0.8301	
MERR DIRE	CTION	V (DEG):	-25.99	-23.26	-20.12	-17.64	-14.33
J from	Ks: 5	5.355	4.621	5.013	4.905	4.830	
INCREMENT 6 SU	JMMA	RY					
TIME INCREMENT	COMF	PLETED	5.063E-02,	FRACTION	N OF STEP C	COMPLETED	0.142
STEP TIME COMPL	ETED	0.14	2 , TOTA	L TIME CO	MPLETED	0.142	
	ΚF	ACTO	R EST	TIMATE	S		
CRACK CRACK	FRON	T C	CONTOU	RS			
NAME NODE	SET						
	1	2	3	4	5		
	6	7	8	9	10		
CRACK-1							
XFEM_1	K1:	259.8	177.0	112.6	127.4	164.7	
	K2:	63.90	30.67	42.30	1.019	36.97	
	K3:	-2.975	-16.65	-18.37	7 -16.84	-15.62	
MERR DIRE	CTION	N (DEG):	-25.52	-18.90	-35.14	0.000	-23.65
J from	Ks: 4	42.01	19.19	8.785	9.766	16.93	
K1:	14	3.0	134.2	141.3	140.4	139.9	
K2:	35.	.95	29.53	26.24	22.59	18.19	
K3:	-15	.41	-10.85	-4.340	-0.1987	-1.316	
MERR DIRE	CTION	N (DEG):	-25.99	-23.26	-20.12	-17.64	-14.29
J from	Ks:	12.96	11.18	12.13	11.87	11.69	
XFEM_2	K1:	259.8	177.0	112.6	127.4	164.7	
	K2:	63.90	30.67	42.30	1.019	36.97	
	K3:	2.975	16.65	18.37	16.84	15.62	
MERR DIRE	CTION	N (DEG):	-25.52	-18.90	-35.14	0.000	-23.65
J from	Ks: 4	42.01	19.19	8.785	9.766	16.93	
K1	: 14	43.0	134.2	141.3	140.4	139.9	

	K2:	35.95	29.53	26.24	22.59	18.19	
I	K3:	15.41	10.85	4.340	0.1987	1.316	
MERR DIRE	CTIO	N (DEG):	-25.99	-23.26	-20.12	-17.64	-14.29
J from	Ks:	12.96	11.18	12.13	11.87	11.69	
INCREMENT 7 S	UMM	ARY					
TIME INCREMENT	СОМ	PLETED	7.594E-02,	FRACTION	N OF STEP (COMPLETED	0.218
STEP TIME COMPL	LETEI	0.21	8 , TOTA	L TIME CO	MPLETED	0.218	
		I	K FACTO	DR ES'	ТІМАТЕ	S	
CRACK CRACK	KFROI	NT (СОМТОИ	U R S			
NAME NODE	SET						
	1	2	3	4	5		
	6	7	8	9	10		
CRACK-1							
XFEM_1	K1:	399.0	271.9	173.0) 195.6	252.9	
	K2:	98.11	47.08	64.94	1.545	56.75	
	K3:	-4.572	-25.59	-28.22	-25.88	-24.02	
MERR DIRE	CTIO	N (DEG):	-25.52	-18.86	-35.14	0.000	-23.65
J from	Ks:	99.10	45.25	20.72	23.04	39.92	
K1:	21	9.6	206.1	216.9	215.6	214.9	
K2:	55	5.19	45.33	40.28	34.68	27.91	
K3:	-23	3.68	-16.69	-6.688	-0.3285	-2.044	
MERR DIRE	CTIO	N (DEG):	-25.96	-23.26	-20.09	-17.64	-14.29
J from	Ks:	30.56	26.37	28.61	28.00	27.56	
XFEM_2 K	1:	399.0	271.9	173.0	195.6	252.9	
K	2:	98.11	47.08	64.94	1.545	56.75	
K	3:	4.572	25.59	28.22	25.88	24.02	
MERR DIRE	CTIO	N (DEG):	-25.52	-18.86	-35.14	0.000	-23.65
J from	Ks:	99.10	45.25	20.72	23.04	39.92	
K1:	21	9.6	206.1	216.9	215.6	214.9	

	K2:	55.19	45.33	40.28	34.68	27.91	
	K3:	23.68	16.69	6.688	0.3285	2.044	
MERR	DIRECT	ION (DEG)	: -25.96	-23.26	-20.09	-17.64	-14.29
J	from Ks	: 30.56	26.37	28.61	28.00	27.56	

INCREMENT 8 SUMMARY

TIME	INCREME	NT CON	MPLETEI	D 0.114	, FR	ACTION C	F STEP C	COMPLE	ETED 0.332
STEP	TIME COM	IPLETH	ED 0.3	32 , 7	ГОТАL	TIME CO	MPLETEI	D 0.3	332
		ΚF	ACTO	R E	STIM	A T E S			
CRACK	CRACKFI	RONT	COD	ΝΤΟΙ	JRS				
NAME	NODE SE	ΕT							
	1		2	3	4	5			
	6	ō	7	8	9	10			
CRACK-1									
XI	FE M_1	K1:	607.8	414	.2	263.5	298.0	385	.2
		K2:	149.4	71.0	59	98.89	2.336	86.4	43
		K3:	-6.968	-38	.98	-43.00	-39.44	-36	5.61
MER	RR DIRECT	ΓΙΟΝ (Ε	DEG): -2:	5.52	-18.8	6 -35	.14	0.000	-23.65
	J from K	s: 229	.9 1	05.0	48.0	8 53.	46	92.62	
	K1:	334.5	313	.9	330.5	328.5	32	7.3	
	K2:	84.04	69.0	03	61.33	52.80	42	.50	
	K3:	-36.10	-25.	44	-10.21	-0.522	29 -3	3.137	
MEF	RR DIRECT	ΓΙΟΝ (Ε	DEG): -2:	5.96	-23.2	6 -20	.09 -	17.60	-14.29
	J from K	s: 70.9	92 6	1.20	66.3	9 64.	96	63.96	
XFEM_	_2 K1:	607.8	414	.2	263.5	298.0	38	5.2	
	K2:	149.4	71.0	59	98.89	2.336	5 86	.43	
	K3:	6.968	38.9	98	43.00	39.44	36	.61	
MER	RR DIRECT	ΓΙΟΝ (Ε	DEG): -2:	5.52	-18.8	6 -35	.14	0.000	-23.65
	J from K	s: 229	.9 1	05.0	48.0	8 53.	.46	92.62	
	K1:	334.5	313	.9	330.5	328.5	32	7.3	

	K2:	84.04	69.03	61.33	52.80	42.50					
	K3:	36.10	25.44	10.21	0.5229	3.137					
MER	R DIRECT	TION (DE	G): -25.96	-23.26	-20.09	-17.60	-14.29				
	J from Ks	s: 70.92	61.20	66.39	64.96	63.96					
INCREMENT 9 SUMMARY											
TIME INCREMENT COMPLETED 0.171 , FRACTION OF STEP COMPLETED 0.503											
STEP TIME COMPLETED 0.503 , TOTAL TIME COMPLETED 0.503											
			K FAC	TORE	STIMAT	E S					
CRACK	CRACKF	RONT	CONT	O U R S							
NAME	NODE SET	Г									
	1		2 3	4	5						
	6	i ·	7 8	9	10						
CRACK-1											
XFI	EM K1:	920.9	627.6	399.3	451.6	583.7					
	K2:	226.4	108.6	149.8	3.521	130.9					
	K3:	-10.56	-59.08	-65.17	-59.79	-55.50					
MER	R DIRECT	TION (DE	G): -25.49	-18.86	-35.14	0.000	-23.65				
	J from Ks	s: 528.0	241.1	110.4	122.7	212.7					
	K1:	506.8	475.7	500.7	497.7	496.0					
	K2:	127.3	104.6	92.91	80.00	64.38					
	K3:	-54.72	-38.58	-15.49	-0.8139	-4.775					
MER	R DIRECT	TION (DE	G): -25.96	-23.26	-20.09	-17.60	-14.26				
	J from Ks	s: 162.8	140.5	152.4	149.2	146.9					
XFEM_2	K1: 92	0.9	627.6	399.3	451.6	583.7					
	K2: 22	6.4	108.6	149.8	3.521	130.9					
	K3: 10).56	59.08	65.17	59.79	55.50					
MER	R DIRECT	TION (DE	G): -25.49	-18.86	-35.14	0.000	-23.65				
	J from Ks	s: 528.0	241.1	110.4	122.7	212.7					

K1:	506.8	475.7	500.7	497.7	496.0	
K2:	127.3	104.6	92.91	80.00	64.38	
K3:	54.72	38.58	15.49	0.8139	4.775	
MERR DIRE	CTION (DE	G): -25.96	-23.26	-20.09	-17.60	-14.26
J from	Ks: 162.8	140.5	152.4	149.2	146.9	
INCREMENT 10 S	UMMARY					
TIME INCREMENT	COMPLETE	ED 0.256 ,	FRACTION	OF STEP C	OMPLETED	0.759
STEP TIME COMPL	ETED 0	.759 , TOT	CAL TIME C	OMPLETED	0.759	
	K FA	CTOR	ESTIMA	TES		
CRACK CRACK	FRONT	СОNТО	URS			
NAME NODE S	ET					
	1 2	2 3	4	5		
	6 7	7 8	9	10		
CRACK-1		-	-			
XFFM 1	K1· 1	391 9/	17.8 60	3.0 68	19 881	4
AI LMLI	K1. 1 K2. 2	41 0 1 <i>6</i>	54.0 22	60 53	01 107	.т 7
	K2. J	15.05	22	0.2 J.3	$\begin{array}{ccc} 01 & 197 \\ 0.30 & 83 \end{array}$., 2.80
	CTION (DE	(3.33) - 6	19.22 -7	25 14	0.000	22.65
MERK DIRE	L = 1204	540.8	-10.00	-55.14	484.0	-23.03
J 110111 171.	N 8. 1204.	719.2	251.7	219.9	404.9	
KI:	/05.5	/18.5	140.2	120.0	749.0	
K2:	192.3	157.9	140.3	120.8	97.20	
K3:	-82.66	-58.27	-23.41	-1.249	-7.230	
MERR DIRE	CTION (DE	G): -25.96	-23.26	-20.09	-17.60	-14.26
J from	Ks: 371.3	320.4	347.6	340.1	334.9	
XFEM_2 K1:	1391.	947.8	603.0	681.9	881.4	
K2:	341.9	164.0	226.2	5.301	197.7	
K3:	15.95	89.22	98.43	90.30	83.82	
MERR DIRECTION (DEG): -25.49 -18.86 -35.14 0.000 -23.65						
J from	Ks: 1204.	549.8	251.7	279.9	484.9	

K1:	765.3	718.3	756.2	751.6	749.0	
K2:	192.3	157.9	140.3	120.8	97.20	
K3:	82.66	58.27	23.41	1.249	7.230	
MERR DIRE	ECTION (DEG): -25.96	-23.26	-20.09	-17.60	-14.26
J from	n Ks: 371.3	320.4	347.6	340.1	334.9	
INCREMENT 11 S	SUMMARY					
TIME INCREMENT	COMPLETEI	O 0.241 , F	FRACTION (OF STEP CO	MPLETED	1.00
STEP TIME COMP	LETED 1.	00 , TOTA	L TIME CO	MPLETED	1.00	
	K FAC	CTOR E	ESTIMAT	TES		
CRACK CRACH	KFRONT	СОNТО	URS			
NAME NODE	SET					
	1 2	3	4	5		
	6 7	8	9	10		
CRACK-1						
XFEM_1	K1: 1833	3. 1249	. 794.7	898.6	1162.	
	K2: 450.	5 216.1	298.1	6.977	260.5	
	K3: -21.0)2 -117.	6 -129.	7 -119.	.0 -110.5	5
MERR DIRE	ECTION (DEG): -25.49	-18.86	-35.10	0.000	-23.65
J from	n Ks: 2091.	954.8	437.1	486.1	842.1	
K1	: 1009.	946.6	996.5	990.4	987.0	
K2:	253.4	208.1	184.9	159.2	128.1	
K3:	-108.9	-76.81	-30.86	-1.656	-9.539	
MERR DIRE	ECTION (DEG): -25.96	-23.22	-20.09	-17.60	-14.26
J from	n Ks: 644.8	556.4	603.7	590.6	581.5	
XFEM_2 K1	: 1833.	1249.	794.7	898.6	1162.	
K2:	450.5	216.1	298.1	6.977	260.5	
K3:	21.02	117.6	129.7	119.0	110.5	
MERR DIRE	ECTION (DEG): -25.49	-18.86	-35.10	0.000	-23.65
J from	n Ks: 2091.	954.8	437.1	486.1	842.1	

K1:	1009.	946.6	996.5	990.4	987.0	
K2:	253.4	208.1	184.9	159.2	128.1	
K3:	108.9	76.81	30.86	1.656	9.539	
MERR DIREC	CTION (DEG	i): -25.96	-23.22	-20.09	-17.60	-14.26
J from]	Ks: 644.8	556.4	603.7	590.6	581.5	

THE ANALYSIS HAS BEEN COMPLETED

Références bibliographique :

[1]. A. Elouaer, "Contribution à la compréhension et à la modélisation du comportement mécanique de matériaux composites à renfort en fibres végétales," Thèse de doctorat, Reims, France, 2011.

[2] .Rokbi. M, «Comportement à la rupture et caractérisation mécanique de composites polyester-fibres de verre», thèse Magister, M'sila, 2001.

[3]. M. Ragoubi, "Contribution à l'amélioration de la compatibilité interraciale fibres naturelles/matrice thermoplastique via un traitement sous décharge couronne," Thèse de doctorat, Nancy 1, 2010.

[4]. BOUZIT. F, «élaboration et caractérisation mécanique, en statique et en fatigue, des panneaux sandwiches à base de renforts naturels», thèse Magister, BOUMERDES 2015

[5] RIGAL. J.C, NEGRIER. A, «Présentation des matériaux composites», Éditions Techniques de l'Ingénieur, a7790, 2013

[6]. LAURENT GORNET." Généralités sur les matériaux composites". Engineering schéol. (2008).

[7]. H. Djemai, "Contribution à l'étude de l'endommagement dans les matériaux composites sandwiches," Thèse de doctorat, Université Mohamed Khider-Biskra, 2017.

[8]. BARRAU. J.J, «Structures en matériaux composites», Éditions Techniques de l'Ingénieur, bm5080, 2004

[9]. CARAMARO. L, «Fibres et fils à usage technique», Éditions Techniques de l'Ingénieur, n2510, 2005.

[10]. K. Charlet, C. Morvan, J. Bréard, J. Jernot, and M. Gomina, "Etude morphologique d'un composite naturel. La fibre de lin," Revue des Composites et des Matériaux Avancés, vol.16, p. 11, 2006.

[11] . C. BALEY, Fibres naturelles de renfort pour matériaux composites: Ed. Techniques Ingénieur. Matériaux fonction fonctionnels, N° N2220., 2005.

[12]. J. L. BERTHELOT, Matériaux composites (comportement mécanique et analyse de structure), Paris 1999.

[13] . BERIBECHE. A, Analyse par la méthode des éléments finis du délaminage des matériaux composites stratifiés. Thèse de magister, Université de Batna 2002

[14]. Z.N. Azwa, B.F. Yousif, A.C. Manalo et W. Karunasena. «A review on the degradability of polymeric composites based on natural fibres. ». Matériels and Design., Vol. 47, 2013

[15].Boubeker, R., Etude Expérimentale et Numérique du Comportement des Plaques Trouées en Matériaux Composites, 2016, Université Mohamed Khider-Biskra

[16]. LAROZE. S, JEAN-JACQUES. B, Mécanique des structures (Calcul des structures en matériaux composites), Tome 4, 1987

[17] DJEBLOUN Youcef, mémoire de magistère « Etude de la rupture en mode I d'ouverture des matériaux composites ». Université Mohamed Khider-Biskra 2004

[18].Berthelot J. M, «Matériaux composites : Comportement mécanique et analyse des structures », 4éme édition, 2010.

[19]https://www.maxicours.com/se/cours/les-materiaux-

composites/#:~:text=La%20loi%20des%20m%C3%A9langes%20(non,de%20l'axe%20de s%20fibres.&text=On%20a%20par%20exemple%20les,carbone%2C%20de%20kevlar%2C%20etc.

[20].Irwin, G.R., "Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate," Journal of Applied Mechanics, Vol. 24

Résume :

Dans cette étude, nous avons utilisé le logiciel de L'Abaqus pour la simulation d'une éprouvette de type CT pour un matériau composite renforcé de fibres courtes de palmier dattier avec un pré fissure, le but de ce travail est l'observation de l'endommagement du matériau. Ensuite, détermination le facteur d'intensité de la contrainte d'une rupture de mode I en fonction du temps.

Mots clés :

Abaqus, éprouvette type CT, pré-fissure, facteur d'intensité de contrainte, rupture MODE I.

ملخص :

في هذه الدراسة ،استخدمنا برنامجabaqus لمحاكاة قطعة اختبار من نوع C Tم لمادة مركبة معززة بألياف نخيل التمر القصيرة مع صدع مسبق ، والهدف من هذا العمل هو مراقبة تلف المادة. بعد ذلك ، تحديد عامل شدة الإجهاد التي يمكن أن تسببها كسور في I MODE بدالة الوقت

الكلمات المفتاحية:

برنامج abaqus.قطعة اختبار مننوع CT. صدعمسبق. عامل شدة الإجهاد. MODE .