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Abstract

As an emerged network paradigm that was developed to reduce network complexity,
Software-defined networks (SDN) became widely implemented in different data centers’
network environments. Nevertheless, having vulnerabilities makes it prone to different attacks
especially DoS and DDoS which tend to target the controller the most to have full access to

the whole network which remains a true challenge for manufacturers to solve.

Deploying and performing the intrusion detection systems and techniques for monitoring
the malicious activities relies on the quality of the dataset. Therefore, the proposed models
based on machine learning for this project are trained on the newly generated INSDN dataset
to predict and detect the DoS/DDoS attacks that can occur in the different SDN platform
elements.

According to the obtained results, the ANN model that was trained on a specific set of
selected features performed better than the Support Vector Machine and Random Forest

classifiers.

Key words: Intrusion Detection System (IDS); DoS/DDoS attacks, Software Defined Network
(SDN), Security, Machine Learning.
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General Introduction

A Software-defined network (SDN) is a new paradigm that came to light in recent years to
solve the conventional network's problems and limits. Unlike the traditional network that
implements the network traffic and configures traffic policies on each device independently such
as routing, switching and quality of service, SDN separates the control and data plane so the
management of the network is carried out by the central controller that has the ability to control
and apply network policies to the whole network from a single point. Decoupling the data and
control planes gave SDN the ability to make the network more flexible and easier to manage
because of the centralized controller as a key benefit. This flexible nature helps in enhancing the
security measurements like threat detection and prevention, as it accelerates innovation research

compared with conventional networks.

However, despite all the benefits and advantages SDN can provide, like any other network,
it is prone to several security issues and exposed to specific attacks. the most dangerous attack that
can affect SDN is the DoS/DDoS attacks that can be exploited by attackers to perform malicious
tasks, in which the users are denied to access the network services, especially if the target was the
SDN controller that will expose the whole network to critical threats. thus, deploying IDS
techniques is considered an essential part in order to detect malicious intrusions in SDN network

traffic.

Therefore, with the recent advances in the field of Artificial Intelligence and machine
learning, we are experiencing more research on SDN security using several machine learning

techniques for DoS/DDOS attack detection and prevention.

This project aims to propose and develop models based on machine learning techniques

for DoS/DDoS intrusion detection using a newly generated dataset called INSDN.
This dissertation is organized into four chapters, the topics of which are given as follows:

e Chapter 1. concerns generalities related to this subject. it starts with a general view of the
SDN and how it differs from the traditional networks. followed by discussing the security
part, IDS and the DoS/DDoS attacks in SDN.

I1



Chapter 2: presents machine learning, its techniques in general and an overview of the
selected models for this work. In the end, some research works that were done on the same
topic are discussed.

Chapter 3: explains the followed steps in order to realize the proposed models

Chapter 4: provides the used tools and work environment and discusses the obtained

results after evaluating the models.

IV
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Chapter 1 Generalities

1.1. Introduction

Software-Defined Network (SDN) as a new networking paradigm was developed to help
overcome the flexibility and scalability limitation of traditional networks and reduce complexity
by managing the network centrally. SDN recently has been widely implemented and became a hot
topic in the networking community. in spot of that, SDN technology introduces many
vulnerabilities and threats that make a real challenge for developers to address it. especially the
Denial of Service (DoS) and Distributed Denial of Service (DDoS) attacks that made deploying
Intrusion Detection System (IDS) for monitoring malicious activities an important and a crucial

part of the network.

1.2. Software Defined Networking (SDN)

Software Defined Network is a term of the programable networks paradigm. It is a new
networking technology that was designed to make a network more flexible and easier to manage.
SDN decouples the control plane in which deals only with the routing and forwarding decisions of
networking elements such as routers, switches...) from the data plane (orchestrates the network
traffic in accordance with the established configuration in the control plane), in which results the

uncomplication of both the administration and management [1].

1.2.1. History

Traditional computer networks have always been known for their complexity and the
difficulty to manage the large number of devices its built from, and the huge problems it suffers
from such as scalability, classification of data and routing traffic, time consuming, decentralized
network control... and so on. addressing these problems gave the desire to provide a user-controlled
management of forwarding in network node, in which was the driver behind the concept of SDN
that has been evolving since 1996 [2]. The history of this approach is divided into 3 stages, each

has its own contributions:
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1.2.1.1. Active Networks
Active networking came at a time when the Internet was seeing much more diverse

applications and increasing use (mid-1900’s to early 2000’s) and was the first attempt to make
networks programmable. It proposed two programming models: the capsule of model and the
programmable router/switch model. The intellectual contributions of active networking to SDN
included [3]:

e The notion of programmable functions in the network.

e Network virtualization.

e The ability to have a packet demultiplex into software programs.

e And although it was never realized, active networking did offer a vision of a unified

architecture for middlebox orchestration.

1.2.1.2. Separating control and data planes
The idea to separate control and data planes appeared in the early 2000’s (2001-2007), it
developed open interfaces between the control and data planes, thus, two innovations came to light:
e Open interface between the control and data planes (Forwarding and Control
Element Separation (ForCES)...).
e Logically centralized control of the network.
Control and data plane separation offered two important intellectual contributions to SDN The first
was the notion of logically centralized control using an open interface to routers and switches. The
second was technologies and algorithms for achieving distributed state management across a

distributed set of network controllers [3].

1.2.1.3. OpenFlow

OpenFlow is a communication protocol standard that is used by the controller to
manipulate data plane operations, it was created by a group of researchers of Stanford in the mid-
2000s. OpenFlow was initially adopted in campuses and then in data centers and now there is more
deployments of open flow in a variety of different networks. It offered several intellectual

contributions [3]:
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e Generalizing the network devices and functions that control data plan to
support.

e The vision of a network operating system with three layers: a data plan with an
open API, a layer from managing state, and a third control logic layer that
affected the data plans based on the state of the network.

e Developed new distributed state management techniques.

1.2.2. SDN architecture

SDN basically is composed of SDN devices (include components in which deal with the
incoming traffic), SDN controllers and applications. The SDN controller programs the network
devices and presents an abstraction of the underlying network infrastructure to the SDN
applications. The controller allows an SDN application to define traffic flows and paths, in terms
of common characteristics of packets, on the network devices to satisfy its needs and to respond
to dynamic requirements by users and traffic/network conditions. The Open Networking
Foundation (ONF) defines a high-level architecture for SDN with three main layers as shown in
Figure (1.1).[4]

Application Plane

NORTHBOUND INTERFACE 2 ,CQU?['.O_I,.,P,/QQQ

CONTROLLERS

A

APPLICATIONS

Control/Infrastructure API

SOUTHBOUND INTERFACE

Data Plane

Data Flow

NETWORK DEVICES

Data Flow Data Flow

Figure 1. 1: SDN architecture [4]
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1.2.2.1. Infrastructure Layer

Infrastructure or data layer is the bottom layer, it consists of various networking equipment
that form underlying networks to forward traffic such as router, physical/virtual switches, access
points etc. The SDN devices are composed of APl to communicate with the controller that is
positioning in the control layer to manage underlying physical networks. The packet processing
function decides on actions to be taken, based on the results of the evaluating incoming packets

relative to flow entries in the flow tables.

1.2.2.2. Control Layer
An SDN control plane comprises a set of software-based SDN controller(s) to provide
control functionality in order to supervise the network forwarding behavior through an open
interface. It has interfaces to enable communication among controllers in a control plane, between
controllers and network devices through a southbound, and also between controllers and
application through a northbound. As mentioned in [5], a controller consists of two main
components:
e Functional component, in which the controllers can include more than one like
coordinator, Virtualize and so on, to manage the controller behavior.
e control logic that maps networking requirements of applications into instructions

for network element resources.

1.2.2.3. Application Layer
This layer consists of one or more end-user applications (security, virtualization etc.) that

interact with controller(s) to utilize an abstract view of the network for their internal decision-
making process [5]. the controller allows the applications to affect the behavior of underlying
infrastructure by:

e flows configuration.

e traffic loads balancing across multiple paths.

e reacting to changes in networking topology (link failures, the addition of new

devices and paths...).

e redirecting traffic for purposes of inspection.
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1.2.2.4. SDN vs Traditional Networks

Conventionally, Networking was made to connect the hardware equipment like routers and
switched backed with basic software programs in which used to configure all the connected
devices in a network. However, with the technology’s development and the wide use of networks,
the SDN showed up with many differences on several levels. Alongside the evident variation in
the architecture that is shown in Figure 1.2, SDN is a software-based unlike the Traditional
Networks that are typically hardware-based, which made room for more differences in many

characteristics that are shown in Table 1.1 that was made based on our studies.

Characteristics SDN Traditional Networks
Centralized control centralized control distributed control
Configuration automatic static/manual

Global network view Central view at controller difficult
Time required for Quite easy because of central ~ Sometimes it takes months
update/error handling controller(s)
Programmability Programmable Non programmable
Flexibility More Less
Implementation Easy Hard
Maintenance Cost low High
Authenticity, integrity and important Not important

consistency of

controller(s)

Network Management Easy with the help of the Difficult because changes are
controller(s) implemented separately at
each device

Table 1. 1: Software-defined networking (SDN) versus traditional networks
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Applications

I Controller

Classical Architecture SDN Architecture

Figure 1. 2: SDN VS Classical Architecture [1]

1.2.3. Application of SDN

The use of SDN has been increasing recently, that many companies (Google, Facebook,

Microsoft...) have invested in it with their both data centers and WANSs (wide area networks). the

applications of SDN are classified according to [6] into domains:

1.2.3.1. Data Center Networks domain

Some of the data center networks domain include:

e Network virtualization is considered as one of the major applications of SDN in
datacenters, for which it is used to realize multi-tenant networks and stretched/extended
Networks. Dynamically SDN is applied to create location-agnostic networks and
separated topologically equivalent networks across a datacenter, with dynamic
reallocation of resources and VM mobility. In this case SDN has many advantages, it
helped to improve the recovery time in disasters, offered a better utilization of datacenter

resources, faster turnaround times and so on.

e Service Insertion or Chaining means creating dynamic chains of L4-7 services

(application services running within those OSI layers that provide data storage,
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manipulation, and communication services) to accommodate self-service L4-7 service
selection or policy based L4-7, for example turning on DDoS protection in response to
attacks, self-service firewall, IPS (intrusion prevention system) services in hosting
environments. As [7] claimed the use of SDN reduced the provisioning time from weeks
to months, as the improvement of agility and self-service provided new revenue and

service opportunities with lower costs.

e Tap Aggregation that provides total traffic visibility and troubleshooting on any port
into network and facilitates optimal performance and security. therefore, using SDN
reduces the cost (saves 50-100k per 24 to 48 switches) and leads to less overhead in

initial deployment, reducing need to run extra cables from NPBs or every switch.

1.2.3.2. Service Provider and Transport Networks domain

The programmatic Operator-Network interfaces provided by SDN allows addressing
operator requirements without changing the lower-lever aspects of the network. this flexibility is
a result of decoupling the control and data plane so the distribution doesn’t need to mimic the
distribution of data plane. SDN has many advantages on many use-cases:

e Dynamic WAN reroute: Savings lot of money from unnecessary investment in 10
Gbps or 100 Gbps L4-7 firewalls, load-balancers, IPS/IDS that process unnecessary
traffic.

e Dynamic WAN interconnects: Ability to instantly connect and providing ability to
enable self-service by reducing the operational expense in creating cross
organization interconnects.

e Bandwidth on Demand: reduce operational expense, and increase the agility saving

long periods of manual provisioning.

1.2.3.3.  Campus/Enterprise/Home Networks domain
SDN has known various use-cases with this type of networks, therefore, many applications
are explored using SDN such as video streaming, BYOD and network virtualization, application

aware routing etc.
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1.3.  Security in SDN

Like with any other network or platform, the software-defined networks require security

against every threat, to which they might be exposed.
1.3.1. Security analysis of SDN architecture

The Software-Defined-Networking (SDN) concept moves traditional networking from
hardware to software with the benefits of automating and simplifying network operation and
administration and improving the network performance. Therefore, because of its design nature,

SDN has security advantages, of between it:

» The effective monitoring of abnormal traffic: it is easier to notice any abnormal behavior
caused by any attacker because the controller allows to perceive the entire network traffic
simultaneously.

» Timely dealing with vulnerabilities, i.e., once new threats are detected, new analyzing
software can be programmed to immediately deal with the vulnerability, instead of
spending time in waiting for updates.

Unfortunately, SDN technology introduces new vulnerabilities and threat vectors that are
inherent to its novel architecture. In fact, SDN also have a lot of security flaws, the most important
of which is the "vulnerable controller” that is a very high-value target, where most functions
(network information collection, configuration, routing...) are concentrated. in other word, once
the controller is controlled, the entire network is controlled. Furthermore, the open nature of
programmable interfaces made SDN more susceptible to security threats and causes many risks in
view of the fact that it exposes the controller's vulnerabilities and caused interfaces abuse (e.g.,
embedding malicious code). As the separation of the planes in SDN offered more points to attack

(switches, controllers, applications and links between them) as shown in Figure 1.3.[8][9][10]
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Figure 1. 3: Possible attack points is SDN architecture [8]

1.3.2. Security attacks and threats to SDN architecture

The SDN architecture has its unique requirements of security and lacking these
requirements make the architecture vulnerable to various attacks and threats [11] that can occur
through various points in the network. each layer and interface in SDN's architecture is sensitive
to certain attacks that might compromise the network components in the same layer or target
elements in other layers. The virtualized behavior of the SDN makes the network susceptible
to new attacks, which are different from those found in the conventional network [12]. The

threats are classified into groups according to the layers/points at which it occurs.

1.3.2.1. Infrastructure Layer Security Threats

The Data Plane layer contains a large number of interconnected switches that are
responsible for forwarding packets. It is considered as the direct entry point of network access for
end-devices users. The switch can get attacked by attacking the link to its port. Identifying the
possible security threats in this layer is very important, the main attacks are the Man-In-The-
Middle (MITM) attacks that occur between the switch and the controller, and DoS attacks to
overflow both OpenFlow switch’s function modules (Flow Table and Flow Buffer).[8]
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1.3.2.1.1. Man-In-The-Middle Attacks (MITM)

A typical network attack that consists on inserting an agent node between the destination
and source nodes to control the communication process. This attack aims to intercepting and
tampering the communication data, without being detected by both sides. Specific MITM attacks
methods include DNS Spoofing in which the attacker provides fake data, Session Hijacking etc.
[13] In SDN, this type of attack takes control of the network packet forwarding by intercepting it
with the forwarding rules issued to the switch, and since the switch and controller can be indirectly
connected, all switches and hosts connected to them (in a direct way) on the communication path
are susceptible to be converted to agent nodes. Achieving MITM attack allows implementing
further attacks like Black-hole attacks.[14][15]

1.3.2.1.2. Denial-of-Service (DoS) Attacks

DoS attack allows the attacker to generate numerous fake packets destined to unknown
network devices in a short time period. This can paralyze the legal traffic and prevent forwarding
correctly, because the overflow of irregular traffic in the Flow Table will fill up the switch's limited
Flow Table storage capacity, hence, it won't be able to insert new rules. Flow Buffer (in which the
packets are buffered while searching for a rule or inserting new one before getting forwarded out)
as well is another target of DoS attacks. Similarly, to the "Flow Table", flow buffer has a limited
storage capacity. Hences, flooding large packets (belong to different flow than the switch normally
encounters) lead to its saturation. Thus, there will be no space for the new legitimate packet and

get dropped.[8]

1.3.2.2.  Control Layer Security Threats

In SDN the control plane (i.e., the OpenFlow controllers) is a centralized decision- making
entity that have a great impact on the whole network. If the controller is hacked the whole network
will get effected. As it has direct impact on the forwarding level because the controller is

responsible on the forwarding rules (if the switch didn't receive any forward rules from the
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controller, it cannot forward packets). Being the main part in the network made it the controller

hackers main focus, more exposed to various attacks and faces a lot of challenges.
1.3.2.2.1. DoS/DDosS attacks on the controller

DoS and distributed DoS attacks are the most threatening security challenges for the SDN
controller. It is an attempt to make a network resource unavailable to legitimate users [11] by
exhausting memory resources in both the Control-Plane and Data-Plane [14].
as shown in Figure 1.5, an attacker implements DoS\DDoS out of producing a large amount of
flooding traffic in a short period of time to the SDN-Enabled network using its own host or
controlling other distributed hosts, that will be mixed with the normal traffic and it will be hard to
differentiate between the two types. In this case, the controller will struggle in dealing with the
huge amount of Packet_In messages generated in short time by the flooding traffic. This will lead
to consuming all the resources as a try to control the situation and process the normal traffic. At
the same time, the bandwidth between the controller and the switches may be fully occupied this

will seriously reduce the performance of the whole network.[12]

Controller (Exhausting resources)

Packet_In messages{ﬂzoﬁdﬁg,trsﬂ‘i:}
-

Legitimate users

Figure 1. 4:DoS/DDoS Attacks on the Controller [8]

1.3.2.2.2. Threats from Applications

The threats to the controller can also come from the applications that run on the controller.
For each type of application that has different functional requirements, the network needs to
specify a specific security policy. For example, load balancing applications may need to have
access to network packet statistics, and intrusion detection applications (IDS) may need to check
the header field of packets.[11]
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1.3.2.2.3. Threats on distributed multi-controllers

SDN were designed at first as a single controller architecture, but got upgraded to be a
distributed control architecture (in form of clusters) as a solution to address the lack of scalability
and reliability and process the management of a huge number and variety of devices that cannot
be managed by a single SDN controller. This divided the network into different subnetworks,
where each individual controller controls specific number of switches, and the controllers can
communicate to manage the whole network collaboratively. However, this dividing makes
information aggregation and maintaining different privacy rules in each sub-network a challenge.
In this situation, an application that passes over multiple network control domains will face
numerous security problems, such as authentication, authorization and privacy issues... In addition
to the hidden inconsistent configuration threats, that are resulted from the switch-over of the master

controller and the coexistence of multiple controllers in a single network domain.[11][8]

1.3.2.3.  Application Layer Security Threats

Attackers in the application layer can seize network resources, damage the configuration
and steal information, and more of the same, all through the insertion of spyware or malware
programs into the application, so in this way, it can damage the network and influence its reliability
and availability. Even though OpenFlow deployed flow-based security detection algorithms for
security applications, these applications weren't compelling nor mandatory [16]. Besides that, the
absence of agreed-upon development environments or network programming models/paradigms
led to developing applications with different programming languages, which could cause
interoperability inconsistency and security policy conflict. therefore, every malicious application
should be stopped early as soon as possible. Some of the security threats to and countermeasures

of the application layer are described below.

1.3.2.1.1. lllegal Access

As known, the applications running on the controller are flexible and extensible and have
special rights to control the network behavior and access the resources. Therefore, the lack of a
standardized security mechanism for SDN applications causes serious security threats [8] and

makes the application layer vulnerable to illegal access. [14]
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1.3.2.1.2. Security Rules and Configuration Conflicts

The difference in programming languages of each application is considered as an
obstruction to the cooperation of the various applications used in the application layer which cause

Security rules and configuration conflict.[15]

1.4. Intrusion Detection System (IDS)

Intrusion Detection System (IDS) is a mechanism or technology that was built to monitor
a network or system for intrusions, detect unauthorized access or malicious activities. IDS’ main
role in a network is to help computer systems prepare to deal with network attacks and take suitable
treatments by reporting the detected intrusion. According to [17] Intrusion detection functions

include:

» Monitoring and analyzing both user and system activities.
» Analyzing system configurations and vulnerabilities.
» Assessing system and file integrity.

» Ability to recognize patterns typical of attacks.

1.4.1. 1DS Approaches

There are two basic categories of intrusion detection techniques: anomaly detection and

signature-based detection.
1.4.1.1. Signature based Detection

This technique is based on a database that consists of attacks descriptions or signatures to
be used in the intrusion detection process by comparing the received packet's signature with the
ones in the database. This type is widely used in commercial products due to its high detection rate
and low false alarms, very effective against the known attacks, unlike the 0-day attacks that he
fails to discover. As new attacks are discovered, developers must model and add them to the

signature database.[18]
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1.4.1.2.  Anomaly Based Detection

This type of detection depends on the description and classification of the network to the
normal and anomalous, as this classification is based on rules or heuristics rather than patterns or
signatures. The implementation of this system needs to know the normal behavior of the network.
Unlike the previous type, this type can detect all kinds of intrusion whether it was known or zero-
day attack.[17]

1.4.2. Classification of IDS
IDS can be classified based on the serving component as either host-based, network-based:
1.4.2.1. Host based IDS (HIDS)

This type is placed on one device such as a server or workstation, where the data is analyzed
locally to the machine and are collecting this data from different sources. HIDS can use both

anomaly and misuse detection systems.

1.4.2.2. Network based IDS (NIDS)

NIDS are deployed at strategic points in network infrastructure. The NIDS can capture and
analyze data to detect known attacks by comparing patterns or signatures of the database or
detection of illegal activities by scanning traffic for anomalous activity, it usually detects attacks
such as worms, scans, DoS attacks, botnets, and other types of attacks. NIDS is also referred to as
“packet-sniffers” Because it captures the packets passing through the communication

mediums.[18]

1.5. DOS/DDOS Attacks
1.5.1. Denial-of-Service (DoS)

Denial-of-Service (DoS) attacks are considered a cyberattack that exploits the internet to
target critical Web services. This type of attack is intended to prevent legitimate users from
accessing a specific network resource or degrade normal services by sending huge unwanted traffic

to the victim (machines or networks) to exhaust services and connection capacity or the bandwidth.
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The increasing flow of DoS attacks make servers and network devices on the internet at greater
risk, it becomes more like a body with no brain. DoS attacks can cost an organization both time

and money while their resources and services are inaccessible.[19]

The DoS attacks have two general methods: flooding services or crashing services. the
flood attacks are a result of receiving the system too much traffic for the server to buffer which
causes them to slow down and eventually stop. Other different DoS attacks exploit vulnerabilities
that damage and crash the targeted system or service. Inputs in these attacks are sent to take

advantage of bugs in the target that crash the system so it can be used or accessed.

1.5.2. Distributed-Denial-of-Service (DDoS)

A distributed denial-of-service (DDoS) attack uses multiple hosts to attack against a
system, unlike the DoS attack in which a single source performs the attack. The attackers
developed specialized malware which they spread to as many vulnerable computers as possible.
Malware can spread via compromised websites, email attachments or through an organization's
network. Any users tricked into running such malware will unintentionally turn their computer
into a bot and provide an access point for attackers to their computer. Once a computer turns into
a bot, it connects to the attackers' command and control servers, and it begins to accept orders from
these centralized machines. The orders from the command-and-control servers include directions
for launching an attack from the bots malware to a particular target using selected attack methods.
DDoS allows for exponentially more requests to be sent to the target, therefore increasing the
attack power, as the true source of the attack is harder to identify. The motivations behind DDoS
attacks can be financially driven, pursuit of crippling a business, competitor, activism, political, or
even just for fun.[20][21]

A botnet is an army of bots that usually consists of the infected computers forming a
network (known also as zombies). Anytime the botnet owners want to launch an attack, they send
messages to their botnets, command and control servers with instructions to perform an attack on
a particular target. Any infected machines will comply by launching a coordinated well time
distributed attack, known as a DDoS attack. Figure 1.5 show us the difference between DoS and

DDoS attacks that was explained above.
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1.5.2.1. DDoS attacks Classification

According to [20], the DDoS attacks is classified into two categories: flooding attacks and
logical attacks. Flooding attacks creates avalanche of transmitting packets at the victim side which
makes the target machine incapable of handling request from the legitimate users. In Logical or
software attack, a small number of malformed packets are designed to exploit known software

bugs on the target system.
1.5.2.1.1. Flooding Attack Types
The flooding attack types include:

e SYN Flooding Attack: the attacker uses spoofed IP addresses to send requests to a server.
The server responds by sending the SYN/ACK signal waiting for the ACK signal from its
client. But this time no reply comes since the IP is spoofed and the real client is unaware
of the ACK signal that the server is expecting. This leaves the half open connections on
the server side thus consuming its resources. Therefore, creating thousands and thousands
of requests like this can force the server to crash or hang.

e ICMP Attack: the attacker sends forged ICMP echo packets to broadcast addresses of
vulnerable networks. All the systems on this network reply to the victim with ICMP ECHO
replies. This rapidly exhausts the bandwidth available to the target, effectively denying its

services to legitimate users.
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UDP Flooding Attack: is possible when an attacker sends a UDP packet to a random port
on the victim system. The victim system will look for the application waiting on that port.
When it realizes that there is no application that is waiting on the port, it generates an ICMP
packet of destination unreachable to the forged source address. If flood of UDP packets is

sent to the victim machine, the system will surely go down.

1.5.2.1.2. Logic Attack Types

Logic attack types include:

1.5.3.

Ping of Death: the target system is pinged with a data packet that exceeds the maximum
bytes allowed by TCP/IP.

Teardrop Attack: the attacker sends two fragments (of a packet) that cannot be
reassembled properly making use of a bug in the TCP/IP fragmentation re-assembly code
of various operating systems by manipulating the offset value of packet and cause reboot
or halt the victim system.

Land Attack: An attacker sends a forged packet with the same source and destination IP
address. Whenever victim system replies to that packet it actually sends that packet to itself,
thus creating an infinite loop between the target system and target system itself thus causing

the system to crash or reboot.

DDoS Defense mechanisms

As mentioned in [20], the DDoS defense mechanisms can be classified into prevention,

detection, response, mitigation and tolerance. The attack prevention methods try to stop every well

know signature-based and broadcast-based attack from being launched, which keep all the devices

updated to any new security fixes. It consists of many approaches including anti-DDoS HTTP

Throttling, firewall and packets filtering. An attack detection aims to detect an ongoing attack as

soon as possible without misclassifying and disrupting legitimate traffic. DDoS detection can be

Signature-based or anomaly-based detection. Normally after detecting an attack, the traffic must

be blocked from its source, but in this case, the source can’t be identified due to using spoofed IP

addresses thus making it difficult to trace back. Therefore, mitigation and tolerance aim to reduce
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the effect of these attacks on the victim devices by using load balance, better queue management,
traffic control scheduling etc.

1.6. Conclusion

In this chapter, we highlighted an overview of some generalities that include Software-
defined network and its architecture, difference with traditional network and the security
challenges it faces. We also presented an overview that defines the Intrusion Detection System
(IDS) and both denial of service and distributed denial of services attacks. The next chapter will

focus on the machine learning in networking and some related works analysis study.
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Chapter 2 Machine Learning in Networking

2.1. Introduction

Machine learning technology has been rapidly developed in recent years and used
in various fields to solve many problems. Therefore, some studies have begun to introduce
machine learning methods into SDN, as a new network architecture that enables to control
and define the network through software programming, seeking to solve several problems
that cannot be solved using the traditional methods easily and improve the efficiency of

network Mmanagement.

2.2.  Machine Learning

Machine Learning (ML) is a branch of Artificial Intelligence (Al) as shown in Figure 2.1.
It is considered as the capability of Al systems to learn by extracting models from processed data.
The “learning” concept is about the ability of the developed algorithms to generalize different
behaviors by using the information from the training examples. Using a computer science lexicon,
Tom Mitchell presented it as “A computer program is said to learn from experience (E) with
respect to some class of tasks (T) and performance measure (P), if its performance at tasks in T,
as measured by P, improves with experience E” [22]. Unlike the traditional programming that
relies on hard-coded rules and uses data to run the program on the computer to produce the output,
in machine learning algorithms, the output of the execution depends on the training phase of the
software using the data. Machine Learning focuses on the development of computer programs that
can teach themselves to grow and change when exposed to new data, which mean that the same
algorithm can produce different outputs depending on the training data used.

The entire process of machine learning revolves around two main processes: training and
prediction. The training process relies on the dataset, in which the model learns the best parameters
to minimize the error rate. The dataset is gathered properly according to the achieved outcome and
divided into three sets to improve the generalization capabilities of the model: the training set,
which the algorithms use to learn the best parameters, the validation set that the model
hyperparameters are tuned on and to choose the optimal, finally the test set is used to evaluate the
model's final performance. Prediction is the final step of the machine learning process. this is the

stage where we consider the model to be ready for practical applications. The challenge for the
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model remains whether it can outperform or at least match human judgment in different relevant
scenarios as it draws its own conclusion on the basis of its data sets and training.

Machine Learning uses a number of theories and techniques from Data Science:
classification, categorization, clustering, trend analysis, anomaly detection, visualization and
decision making, these ML techniques and Al are being increasingly used in various functions
such as: image processing, healthcare, data mining, video games, robotics, text analysis and so on.

Artificial
Intelligence

Machine
Learning

Deep
Learning

Figure 2. 1: Machine Learning in Al

2.2.1. Machine Learning techniques
There are typically two different types of machine learning techniques: supervised
Learning and unsupervised Learning, both are typically used for different kinds of machine

learning tasks.

2.2.1.1. Supervised Learning

It uses labeled data, called training data, to build a predictive model to predict the label of
unlabeled data. It seeks to create a model that can make predictions about the response values for
a new dataset. If larger training datasets are used, it is possible to generate models with superior
predictive capacity and, consequently, obtain good results on new sets.[23]
2.2.1.2.  Unsupervised learning

In unsupervised learning, there is no output (unlabeled) associated with the inputs; even

the model tries to extract the relationships from the data [24]. the algorithms learn the structure
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and representations from the unlabeled inputs. The goal is to model the fundamental structure or
distribution in the data to predict unknown data [25]. Unsupervised learning is used as classifying
the set of similar patterns into clusters, dimensionality reduction, and anomaly detection from the
data [24]. When new data has been given to the trained model, the model puts it in one of the
clusters [26].

2.2.2.  Classification in Machine Learning

Classification is a supervised learning approach that predicts the outcome of a class type,
in other words, it is the process of classifying a set of data into classes, where it can be structured
or unstructured data.

The classification model uses the attributes of any type of entity to predict the class of
entities. The attributes of the selected entity can be shape, dimensions, color... and so on. These
data points can be used to predict the outcome of a class, meaning that the model learns that certain
traits belong to certain classes or categories.

The classification model learns that these attributes belong to a particular categorical result
in a supervised manner where you map the data points directly to a category label. The class label
can be binary such as positive or negative, whether or not the disease is present, whether or not
the customer is a returning customer, or whether the job applicant is a successful or unsuccessful
one. Some of the main algorithms used in classification models include decision trees, naive
Bayes, support vector machines, and neural networks. They all take different approaches to predict

the outcome of a class.

2.2.2.1. Support Vector Machine (SVM)

Support vector machines (SVMs) are one of the most popular supervised machine learning
models with related learning algorithms that examine data, distinguish patterns and intended for
categorization, which was invented by Cortes and Vapnik in 1995 [27].

SVM is selected as a classification algorithm for its ability to simultaneously minimize the
empirical classification error and maximize the geometric margin classification space. These
properties reduce the structural risk of over-learning with limited samples. Therefore, it has been
applied successfully to image recognition, text categorization, medical diagnosis, remote sensing,

motion classification and so on as classification problems.[28]
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Yet, SVM's principle is very simple, it separates several classes in the training set with a surface
that maximizes the margin between them, i.e., it allows to maximize the model's generalization
ability [29].

For a given training data, an optimal hyperplane, by the support vector which maximize
the margin between classes, separates (i.e., classify) observations that belong to one class from
another based-on linearly or nonlinearly separable patterns of information called features (Figure
2.2). That hyperplane can then be used to determine the most probable label for unseen data.

The features used to infer the hyperplane typically are not raw data, but derivative data
from some kind of interpolation during the feature selection stage. Features are further referenced
by coordinates based on their relationships to each other and form the support vectors. [30] [31]
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Figure 2. 2: SVM Classifier [30][31]

An SVM model is classified into two types linear classification where the data can be
separated linearly as shown in Figure 2.1, and the other one is non-linear.in this case the support
vector machine uses a kernel trick to transform into a higher dimensional space so it can be easier
to segregate the data points. SVM kernels include linear kernel, polynomial, Radial Basis Function

Kernel etc.

2.2.2.2. Random Forest (RF)

Random forest is a popular supervised classification algorithm that was first introduced by

Breiman in 2001 [32]. As the name refers to, it is a collection of multiple trees that's known as
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decision trees, and the term "Random" is because the algorithm is a forest of randomly created
decision trees either by using random feature selection or bootstrap. Hence, the Random Forest
algorithm is considered as an advancement to the existing decision trees for the overfitting problem

it suffers from. Therefore, RF is considered to be faster and more accurate for complex dataset.

Dataset

Boosting

Training set

Test set

‘

Figure 2. 3: Random Forest Classifier [12]

Random Forest classification algorithm is based on the concept of ensemble learning. As
explained in Figure 2.3, it creates multiple trees, each trained on a bootstrapped sample of the
original training set, and the results from each tree are aggregated to give a prediction for each
observation as the predicted class is calculated based on the majority voting of the trees. [33]

the discrimination function is defined as:

k
H(x) = argmaxyz I(h;(X,0,)=Y) (2.1)

i=i
In which: x is the input vector, I () is the indicator function, h (X, 8;, ) is a classifier (single decision
tree) where 6, represents a random vector for the kth tree, Y is the output variable and "argmax,,"
denotes the output value when maximizing Y¥., I1(h;(X,0,) = Y) .[34]

In the training process, the RF algorithm works on a randomly selected subset of input

features or predictive variables, which reduces the generalization error, to determine node split.
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To make the trees grow from different training data subsets, the RF algorithm uses
bootstrap aggregation or the bagging technique that resample randomly the original dataset with
replacement and each subset selected contains a certain proportion of the training dataset, in which
it increases the diversity of trees. the absent samples in the training subset (i.e., unselected elements
by bootstrapping process that are one-third of the samples) are included in another subset called
OOB (out-of-bag), in which is formed for every tree in the ensemble, can be used to evaluate the
model performance. [35]

The number of variables is the only adjustable parameter. setting the default value to the
square route of the total number of inputs (i.e., limiting the number of used variables for a split)
decrease the correlation between the trees and reduce the computational complexity of the
algorithm. [36]

2.2.2.3. Artificial Neural Networks (ANN)

Artificial Neural Networks are a supervised machine learning model that was initially
derived from the principle of the operation of the human neural system and inspired by the
interconnection between them. It was first proposed in the middle of the 20th century but the main
revolution was in the 21st century in which the advances in computing made it possible to train
complex networks.

Based on multiple input signals, each unit or neuron performs a simple action to produce a
single output. the interconnection between the neurons is known as a network, as shown in Figure
2.4, ANNSs follow usually a layer-based structure that consists of 3 or more neuron layers, the first
is called the “Input layer”, the last is the “Output Layer” and the second one that’s in between is
known as the hidden layer, in which, the neurons of each layer are connected by an axon to each

neuron of the next layer except the neurons of the last one. [37]
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Figure 2. 4: Structure of a neural network [16]

ANNSs are one of the most used ML techniques for its ability to model complex non-linear
systems. The parameters of ANN are the values of the used models to compute the Output. Hyper-
parameters are the parameters that change the learning of the process and the fitting capabilities,
its huge quantity to choose from is considered as the main trouble when using ANNS, though it is
not a part of the resulting model. [37]

The operation performed in ANN is mathematically defined by the equation:
yi = fi(2) (2.2)

In which (i) is the neuron, and the (z) is considered as the argument (Zvjwl-,jx + bi) .
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Figure 2. 5: Model of the artificial neuron [38]
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As explained in Figure 2.5, for each neuron there will be multiple combined inputs Xx; , each
of it has weight assigned to it, in which it is weighted by the parameters w; ; that are modified

during learning process. The weight of each input into the neuron gives it strength, in other word,
the input influences the output of the neuron if it has great weight, as it doesn’t influence it in the

opposite case. The influence of the whole neuron is controlled by the modifiable parameter b;.

The activity of neurons is usually determined via the activation function f;(z), in which its usage

depends on the type of the network and the layer. There are several different used activation
functions, one of which is the Sigmoid function that's considered as one of the oldest and most

[37]

commonly used non-linear functions that is defined by: f;(z) = —
e

2.3. Feature Selection

Feature selection (FS) is the process of selecting the most important and appropriate sample
of features to build an efficient ML model. Employing it aims to narrow down the ML model's set
of features to the most relevant ones for a better evaluation metrics rate, all by eliminating the
redundant or irrelevant input variables. This process has many advantages include [39]:

» simpler models.

» shorter training time and decreased computational cost.
» model's variance reduction.
>

increasing performance of the ML model.

2.3.1. Feature selection methods

There are three main feature selection methods [40][41]:
2.3.1.1. Filter method

Filter method selects features based on their statistical score in various tests for their
correlation with the outcome variable. Some of the existed filter techniques are Information Gain,

Chi-Square Test, Fisher’s Score and so on. Figure 2.6 shows the flowchart of filter method.
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Select best
subset

Input features MLmodel —— Performance

Figure 2. 6: Filter feature selection flowchart [40]

2.3.1.2. Wrapper method

Wrapper method generates feature subset using ML algorithms as a part of the feature
evaluation function. It splits the data into subsets and use it to train the ML models. Based on the
calculated inference and the model’s output, it decides whether the feature will be added or
removed from the subset. Figure 2.7 shows a detailed flowchart. The wrapper method has several
techniques include: forward selection, backwards elimination, genetic algorithm etc.

Select best subset

Generate
Input features —— supset == ML model — Performance

Figure 2. 7: Wrapper feature selection flowchart [40]

2.3.1.3. Embedded method
The embedded method is a result of combining the qualities of both the filter and wrapper

method to generate the best features subset. Figure 2.8 is detailed flowchart of this method.

' }
Generate a
Input features ——  subset —- ML model+

Performance

1 )

Select best subset

Figure 2. 8: Embedded feature selection flowchart [40]
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2.4. Related work

In the recent years, researchers started to be more interested with network security, and
with the significant increasing of the ML and DL techniques that the last decade has witnessed,
many studies have been done on publicly datasets (INSDN dataset) as a try to detect and secure
SDN against DoS/DDoS attacks.

2.4.1.  InSDN: A Novel SDN Intrusion Dataset

Elsayed et al in the article [12], generated a new significant and comprehensive SDN
dataset that includes diverse attack categories that can be found in all SDN elements, the attack
classes are DoS, DDosS, Prob, web attacks, brute force attack, malware and exploitation. further,
they evaluated the quality and demonstrated the use of the proposed INSDN dataset with popular
ML techniques for IDSs by performing an experimental evaluation.

Specifically, 8 common supervised learning algorithms have been employed: two SVM
based methods: linear kernel (lin-SVM) and a radial basis function kernel (rbf-SVM), three tree-
based algorithms: single Decision Tree, RF and adaptive boosting. besides to the K-Nearest
Neighbor (KNN) classifier, Naive Bayes and a Multi-Layer Perceptron model.

The performance of all algorithms is tested with two versions of the proposed dataset, a
specific-featured version of 48 features that was selected using the same method (information gain)
as [42] and a fully-featured version, and trained using the cross-validation technique with K =5,
where the training and test data are split into 80% and 20%. The results for DoS and DDoS attacks
are shown in Table 2.1 and Table 2.2.

Precision Recall F1-score Training Time
RF 0.999876 0.999835 0.999586 61.695
DoS Rbf-SVM 0.987335 0.997009 0.992148 852.874
Lin-SVM 0.981379 0.990146 0.990146 202.16
RF 0.999992 0.999951 0.999971 41.503
DDoS Rbf-SVM 0.999680 0.999885 0.999783 2825.451
Lin-SVM 0.999639 0.999967 0.999803 209.679
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RF
Merged Rbf-SVM
Lin-SVM

0.999931
0.997692
0.999857

0.999942
0.999786
0.999898

0.999936
0.998738
0.999529

231.436
17161.164
12161.164

Table 2. 1: Metrics performance for the fully-featured version of the dataset [12]

Precision Recall Fl-score  Training Time

RF 0.999732 0.999567 0.999649 70.569

DoS Rbf-SVM 0.826327 0.995008 0.902856 2271.213
Lin-SVM 0.817605 0.994204 0.897298 789.381
RF 0.999732 0.999567 0.999649 70.569

DDoS Rbf-SVM 0.999631 0.999672 0.999651 2521.642
Lin-SVM 0.999557 0.999688 0.999623 113.666
RF 0.994269 0.996918 0.995592 226.151

Merged Rbf-SVM 0.963110 0.997622 0.980062 25837.86

Lin-SVM 0.972192 0.995326 0.991338 152475.72

Table 2. 2: Metrics performance for the SDN specific-featured version of the dataset [12]

2.4.2.  Collaborative detection and mitigation of DDoS in Software Defined

Network

Tayfour and Marsono in the work [43] proposed a collaborative DDoS detection and

mitigation method that consists of a machine learning ensemble method called V-NKDE (Voting

-Naive Bayes, K Nearest Neighbors, Decision Tree, and Extra Trees) multiple classifiers to

improve DDoS detection accuracy. The performance of the proposed classifier is tested on several

datasets including the INSDN dataset. The results and evaluation metrics are shown below in Table

2.3.
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Accuracy  Precision Recall F1-score
INSDN 99.84 99.80 99.80 99.80
CICIDS2017 99.67 99.70 99.70 99.70
NSL-KDD 99.77 99.80 99.80 99.80
UNSW-NB15 98.09 98.10 98.10 98.10

Table 2. 3: Evaluation of V-NKDE classifier performance for all dataset [22]

2.4.3.  An evaluation of machine learning methods for classifying Bot traffic in

Software Defined Networks

Staden and Brown in the article [44] made a comparison of various machine learning
algorithms: KNN, SVM, RF, Neural network, logistic regression and multilayer Perceptron, for
identifying malicious bot activity on a network. The ML models were tested against the INSDN
dataset by extracting the top 36, 18 and 8 features from the original 80 features by using the
SELECTKBEST method as shown in Figure 2.9. the dataset was split to 30% test set and a 70%
training set. The Table 2.4 represents the classification results the evaluation metrics.

SYN Flag Cnt INEE—
FIN Flag Cnt IR—
Bwd Pkt Len Std I—
Protoco! INEE——
Pkt Size Avg INEE——
Pkt Len Var I
Fwd Pkt Len Std I
Pkt Len Mean I
Down/Up Ratio I
URG Flag Cnt/
Bwd URG Flagsiy
Fwd Pkt Len Max I
Bwd Pkt Len Mean I
Bwd Seg Size Avgo_

Feature Name

10000 30000 40000 50000

00
Feature Importance

Figure 2. 9: Features ranking [23]

32



Chapter 2

Machine Learning in Networking

NN RF SVM

Precision 77.77 93.53 82.74

36 Features Recall 95.95 9291 98.82
F1-Score 80.50 93.18 88.12

Precision 72.68 93.59 71.99

18 Features Recall 91.32 91.57 97.33
F1-Score 78.31 92.44 79.89

Precision 59.33 92.36 67.68

8 Features Recall 79.20 90.89 96.85
F1-Score 64.87 91.52 76.42

Table 2. 4: Classification results of ML models [44]

24.4.

A comparison between the related works

Table 2.5 shows the comparison between the previous related works with respect to the

following metrics: the machine learning methods and model used, datasets and number of features

used, the Precision, Recall and F1-score obtained by the applied machine learning algorithms.

Article ML method Dataset Number of Pre- Feature  Evaluatio
used features processing  selection  n metrics
48 specific
[12] RF InNSDN 2020 features Yes Information = Table2.1
dataset Fully- featured gain and
SVM (lin/ rbf) version Table2.2
INSDN2020 48 features
CICIDS2017 5 features Yes Information
V-NKDE NSL-KDD 41 features gain
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[43] UNSW- 48 features Table 2.3
NB15
Neural Network  InSDN 2020  Top 36 features SELECTKB
[44] RF dataset Top 18 features Yes EST method Table 2.4
SVM Top 8 features

Table 2. 5: Comparison between related works

After analyzing the previous various related works that address similar issues, it shows
that:
> Allworks trained various machine learning models on the same dataset as ours after
going through the preprocessing step but with different features subsets.
> [21] and [43] used the same feature selection method (Information gain that belongs
to the filter methods) but [44] used the SELECTKBEST method unlike our chosen

feature selected method (Forward Feature Selection).

2.5. Conclusion

In this chapter, we presented an overview on the machine learning focusing on the
supervised classification approach and 3 of its most known models. Next, we gave a simple
glance on the feature selection process and its different methods. At the end, we presented
a summary of related works that treated similar issues and problem of detection DoS/DDoS

attacks in SDN. The next chapter will introduce and discuss our contributions.
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3.1. Introduction

After taking a sufficient look on the machine learning in general and its techniques,

this chapter, will present the process methodology and the different steps that we followed
to achieve our objective in this work.

3.2. General architecture
The general architecture as shown in Figure 3.1 consists of three principal parts:
e Attacks: it indicates the source of the attacks that can infect the SDN datacenter.

e Datacenter infrastructure: an infrastructure that includes SDN datacenter and the

legitimate users that would interact with it and at the same time might be an attacker
as well.

e ML based models: its essential work is predicting and detecting the DoS/DDoS
attacks.

datacenter
11 g) (o

/ N\ / AN Tlr)"ﬁ-'c ML based
vy L) iLl) ) observation  poS/DDoS
— | >
Attackers prediction
! A A A
(@ |

ﬂgj @jf fgj ajaj models

Legitimate
e uscrs

Datacenter infrastructure

Figure 3. 1: General architecture

3.3. Objectif

We aim in our project to develop an efficient model based on machine learning
techniques (supervised learning) to predict DoS/DDoS attacks in SDN using the forward

selection method for features selection from the InNSDN dataset. As shown in the detailed
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architecture Figure 3.2 the purpose is to classify the incoming traffic using ML methods
into normal or attack (DoS/DDoS) traffic.

Selected subset

\ .~ e P ——
\ ML models

Figure 3. 2: Detailed architecture

3.4. Modeling process
The project realization process goes through the following stages and steps, as shown
in Figure 3.3, that are applied for all the used algorithms to achieve the best possible
performance and results:
A. Data preparation and preprocessing.
Processing
Models’ evaluation.

Models Comparison

moo®

Comparative study.
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Figure 3. 3: Project realization process

3.5. Data preparation and preprocessing
Basically, our project realization process depends on studying the proposed the

dataset (INSDN) in [12] and using it for the modeling process.

3.5.1. Data description
INSDN dataset-2020 that was proposed in [12] is a particularly robust dataset for

intrusion detection system assessment in SDN. It includes benign and various attack
categories including DoS, DDoS, Probe, U2R... attacks. The dataset was divided into 3
groups based on the traffic type and target machines:

e Normal traffic (68424 instances).

e OVS machine' attacks traffic (100884 DoS/DDoS instances).

e Metasploitable-2 server’s attack traffic (74674 DoS/DDoS instances).

The INSDN dataset is constructed of more than 80 features (shown in Figure 3.4) that
was extracted using the CICFlowMeter tool especially, for its time-based features

consideration, and been divided into eight groups as the following:
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e Network identifiers attributes: common basic information related to source and
destination.
e Packet-based attributes: information about packets.
e  Bytes-based attributes: information related to the bytes.
e Interarrival time attributes: interarrival time related information (both backward
and forward directions).
e Flow timers’ attributes: the information related to the time of each flow (active
and inactive).
e Flagattributes: the information related to the flags like SYN Flag, RST Flag, Push
flag, etc.
e Flow descriptors attributes: the traffic flow information (the number of
packets...).
e Sub flow descriptors attributes: the information related to sub flows (the number
of packet and bytes in forwarding and backward directions).
Network-identifiers attributes
Feature | Feature name Description Type
Fl Flow-id 1D of the flow €
F2 Src-IP Source IP address [¢]
F3 Src-Port Source port number C.
F4 Dst-IP Destination IP address C
F5 Dst-Port Destination port number [o]
Fo6 Protocol-Type Type of protocol, e.g., tcp. udp, etc. D
F7 Timestamp Timestamp C
Byte-based attributes
F8 | Fwd-Header-Len | Total bytes used for headers in the forward direction [
F9 | Bwd-Header-Len ] Total bytes used for headers in the backward direction [ [
Packet-based attributes
F10 Tot-Fwd-Pkts Total packets in the forward direction €
Fi1 Tot-Bwd -Pkts Total packets in the backward direction [
Fi2 TotLen-Fwd-Pkts Total size of packet in forward direction [
Fi3 TotLen-Bwd-Pkts Total size of packet in backward direction C
FI14 Fwd-Pkt-Len (Min, Mean, Max, Std) | Min, Mean, Max, and standard deviation of the size of packet in forward direction C
F15 Bwd-Pkt-Len (Min, Mean, Max, Std) | Min, Mean, Max, and standard deviation of the size of packet in backward direction (&
Fl6 Pkt-Len (Min, Mean, Max, Var, Std) Min, Mean, Max, Var and standard deviation of the length of a packet [
Fi17 Pkt-Size-Avg Average size of packet [
Interarrival Times attributes
FI8 Duration Duration of the flow in Microsecond C
Fi19 Flow-IAT (Min, Mean, Max, Std) Min, Mean, Max, and standard deviation of the time between two packets sent in the flow (8]
F20 Fwd-IAT (Tot, Min, Mean, Max, Std) | Tot, Min, Mean, Max, and standard deviation of the time between two packets sent in the forward direction [&]
F21 Bwd-IAT (Tot, Min, Mean, Max, Std) | Tot, Min, Mean, Max, and standard deviation of the Time between two packets sent in the backward direction | C
Flow timers attributes
F22 | Active-Time (Min, Mean, Max, Std) ] Min, Mean, Max, Standard deviation of the time flow was active before becoming idle [ C
F23 | Idle (Min, Mean, Max, Std) | Min, Mean, Max, Standard deviation time flow was idle before becoming active e
Flag-based attributes
F24 Fwd-PSH-Flags Number of times the PSH flag was set in packets travelling in the forward direction D
F25 Bwd-PSH-Flags Number of times the PSH flag was set in packets travelling in the backward direction (0 for UDP) D
F26 Fwd-URG-Flags Number of times the URG flag was set in packets travelling in the forward direction (0 for UDP) D
F27 Bwd-URG-Flags Number of times the URG flag was set in packets travelling in the backward direction (0 for UDP) D
F28 FIN-Flag-Cnt Number of packets with FIN D
F29 SYN-Flag-Cnt Number of packets with SYN D
30 BT Binn Far NTorhons ~F mnalomen ool DOT ™

Figure 3. 4: a sample of InSDN dataset’s features [12]
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3.5.2. Data preparation

As a first step of preparing the INSDN dataset that contains several attack types, we
had to get rid of the unwanted types and kept only DOS/DDoS attacks because that's what
our project aims to detect. Figure 3.5 shows us the large gap between the samples of the
categories, as we can clearly see that the “malicious/attack” traffic category makes up the
majority compared to the “normal” traffic category which defines the case of imbalanced
dataset.

175000 +

150000 A

125000 +

100000 A

75000 A

50000 A

25000 A

04

0.0 0.2 04 0.6 08 10

Figure 3. 5: Imbalanced dataset histogram

An imbalanced dataset is a term that usually refers to a classification problem that is
defined as the non-uniform distribution of classes which generally contains two classes:
majority class and minority class.

The imbalanced dataset leads to the build of biased and inaccurate models therefore
balancing it is an important step for a more accurate result. There are several ways and
algorithms that are widely used to deal with imbalanced class distribution:

e Oversampling
e Undersampling

e Generating synthetic data (ex: SMOTE method).
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3.5.3. Data Preprocessing

Raw data is known that's often incomplete, missing certain values, inconsistent and
subjected to numerous errors. Preparing and fitting such a dataset into a machine learning
model is known as "Data preprocessing”. It is one of the most important steps to go
through in processing and dealing with a brute dataset, and indeed is a proven method to
solve dataset problems.

In our project, we as well went through data preprocessing steps that are explained below:

Stepl: Importing libraries and dataset

Before starting the preprocessing, importing libraries and datasets is a must. As it's
known, libraries are extra helpful in storing frequently used routines which helps to simply
access the dataset that can be imported in several ways depending on its format (.xIsx,

.CSV...).

Step2: Missing values verification
“Missing values” is when some participants or values have no stored data due to
incomplete data entry or lost files.... It might cause performance reduction, therefore

properly handling the missing values is an essential step of data preprocessing.

Step3: Splitting data

Any machine learning algorithm needs to be tested for various metrics. Therefore,
the dataset should be divided into a training set and a testing set. this means that the model
will be trained on the training set to teach it the present behaviors in data and evaluated on
a different set (test set) that it has not yet encountered to assess whether it has generalized
well from the data that it has already seen. There are numerous ratio ways to split the
dataset. In our project, to construct the training and evaluation set, we chose both 70:30

and 80:20 ratios, in order to compare and choose the best one.
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Step4: Feature standardization

A crucial part of the data preprocessing stage. it is a method that transforms the
features in a dataset and normalizes the variables within a specific range to compare them
for common patterns. [45]
There are methods to do the feature scaling step including standardization and
normalization. Since there is no hard rule to tell when and what is best method to use, we
can always fit the model, normalized and standardized data and compare the performance
for better results.

3.6. Feature Selection

The main goal behind using the feature selection step is to select the features that
would yield minimum classification error. As mentioned in Chapter 2 section 2.3, among
the several feature selection techniques and methods, we chose the Forward selection for
its ability to select the best features and optimize the models' performance.

Forward selection is an iterative method that uses the searching technique in order
to select the features. The whole process consists of having an empty set of features, starts
adding selected features by an evaluation function, that, at each iteration, selects the best

feature that would create the best performing model until it meets certain criteria.

3.7. Processing
This work uses three of the common supervised learning algorithms: Support Vector
Machines, Random Forest and Artificial Neural Network for classifying our dataset.
Choosing these three relies on the nature of the used dataset and the addressed problem
whereas:
e The type of classification in our case is a binary classification, therefore the
common ML methods used for it include ours.
e We chose random forest over decision tree because it is generally a better model if
the goal is for prediction, as it gives better accuracy and reduces the chances of
overfitting.

The modeling of the used classification techniques is explained below:
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3.7.1. RF Modeling

Figure 3.6 illustrates the modelling of a random forest, that takes specific features
as inputs to build multiple decision trees based on it, each tree represents a possible
occurrence or response. Finally, it will contribute to the decision and predicts the outcome

as if there is an attack or not with a majority vote.

. Traf‘ﬁ({ J| Training set |
information

/N

A —

| Testing set |

2 WaPs

Final predicted output:
¥ Attack traffic
Or
» Normal traffic

majority vote

Figure 3. 6: RF modeling process

3.7.2. ANN Modeling

The artificial neural network receives a subset of selected features as inputs so it
can determine an output that represents the appropriate class which is either 0 or 1. The
whole process can be summarized in few steps as shown in Figure 3.7:

e The received inputs get to be multiplied by the assigned weight w.

e adding the multiplied values to form the weighted sum.

e applying a relevant activation function on the weighted sum of the inputs and their
perspective weights.

e the enable function maps the input to the corresponding output.
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Transfer function e

Hidden layers

Chosen features

Output layer
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Figure 3. 7: ANN modeling process

3.7.3. SVM Modeling

After feeding the SVM classifier a subset of selected features, it will start learning
what a DoS/DDOS attack traffic looks like and how it is different from normal traffic. the
process consists of taking all the data points into consideration to find the optimal
hyperplane (decision boundary) that decides properly both out classes (normal/ attack) and

maximizing the margins as possible to avoid data misclassification.

3.8. Performance Evaluation

Evaluating the ML algorithms after applying them is an essential step to make sure
it is working properly using the performance evaluation metrics. in our work, we relied on
using the most important performance metrics to evaluate our models and do a comparative
analysis such as precision, recall, fl-score along with accuracy. it's known that these

metrics are commonly used for intrusion detection systems.

3.8.1. Confusion Matrix (CM)

A confusion matrix is a performance measurement for classification problems and
is extremely useful in measuring some metrics like Recall, Precision.... It is an n*n matrix
where n is the number of targeted classes (in our study n = 2 because we have two classes
either 1 or 0, i.e., a binary classification). It defines the number of correct and incorrect

predictions a classifier makes. As shown in Figure 3.8 that illustrates an example of a CM,
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the rows represent the predicted values and the columns represent the actual values that
are:

e True Positive (TP): is the number of positive outcomes that are positively
predicted, in this case the number of attacks that are classified as an attack.

e True Negative (TN): defines the false outcomes that were positively predicted,
I.e., the number of normal traffic that are detected as normal.

e False Positive is (FP): the number of positive outcomes that are predicted
negatively, i.e., the number of normal traffic that are detected as attack.

e False Negative (FN): is the number of negative outcomes that are predicted
negatively. i.e., the number of attacks that are detected as normal.

Actual Values

7]
]
=
<
>
=
L
o=
o
Q
=
(=W

Figure 3. 8: Confusion matrix for binary classification [46]

3.8.2. Accuracy

The most used metric to evaluate the performance of a classification problem's
model. it defines the ratio of the correctly predicted data from the total number of made
predictions for a dataset. It is a simple metric for model evaluation and suits the balanced
data unlike unbalanced one. It is defined as [47]:

Number of correct predicitions

Accuracy = (3.1)

Total number of predicitons made
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Or can be defined using positives and negatives for binary classification:
TP+TN
TP+TN + FP + FN

Accuracy = (3.2)

3.8.3. Precision
It defines the ratio of the actual positive observations that were predicted positively,
and the more predictive false positives there are the lower "precision” gets. it is considered
a useful metric for skewed and unbalanced datasets. It is defined as [47]:
TP

Precision = ——— 3.3
recision TP T FP (3.3)

3.8.4. Recall
known also as Sensitivity or True Positive Rate (TPR), defines the ratio of the
correctly identified positive instances. as more false negatives are predicted, the recall gets
lower.it helps to measure the model's ability in detecting positive samples. It is defined as
[47]:
TP

Recall = TP-l-—FN (34)

3.8.5. Fl-score
It is a combination between Recall and precision. it defines the weighted average of the
two previous metrics. it has a range of [0,1]. The higher the F1- score, the better model's

performance we get. It is defined as [47]:

2.precision. Recall
Fl =

"~ Precision + Recall (3:5)
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3.9. Model’s evaluation and comparison

After preprocessing the dataset, building the ML models, and training and testing
them comes the evaluation step in which we analyze and discuss the obtained results of
each model to compare them and choose the best one for predicting the DoS/DDoS attacks.
Then again, we compare our results with the related works' results that were mentioned in
the Chapter2 section (2.2).

3.10. Conclusion

This chapter presented the general and detailed structure to which we explained the
different phases of the projects which summed up in the data analysis, used ML models and the
evaluation techniques. The next chapter will be about the implementation of what we had in this
one followed by discussing the obtained results.
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Chapter 4

4.1. Introduction

Experimental Results and Discussion

In this chapter, we will present and discuss the different experimental results of the

proposed solution that we conceptually described in chapter 3. As an opening to this chapter, we'll

present the environment and tools used for the implementation of this project, after that, we'll move

right ahead to the description of our used dataset and the obtained results, then the performance of

the classification methods will be evaluated using the chosen evaluation metrics. Finally, a

comparative study between the different methods shall be presented.

4.2. Environments and development tools

Table 4.1 shows the different environments and tools we used to realize the project.

Tool

80,

A

@,
S
e
o o>

i.. <o
=~E:::’ NumPy

%matplotlib

Description

Google Colab is a cloud service, offered by Google (free), based on
Jupyter Notebook and intended for training and research in machine
learning. This platform makes it possible to train Machine Learning
and Deep Learning models directly in the cloud. Without therefore

having to install anything on our computer except a browser.

Python is an interpreted, object-oriented, high-level programming
language with dynamic semantics [48]. It is in high demand by a large
community of developers and programmers. Python packages
(libraries) encourage code modularity and reusability. It is used for
web development, Al, machine learning, operating systems, mobile
app development, video games and many more.

NumPy is an extension of the Python programming language,
intended to manipulate matrices or multidimensional arrays as well as
mathematical functions operating on these arrays.

Matplotlib is an open-source Python library for creating data

visualizations.
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- Pandas is a Python written library for data manipulation and analysis.
Flpqndas | _ o |
1 it offers data structure and operations for manipulating numerical
arrays.
Keras is a neural network API written in Python language. It is an
open-source library, running on top of frameworks such as Theano
Ke ra S and TensorFlow. Designed to be modular, fast and easy to use, Keras

was created by Google engineer Frangois Chollet. It offers a simple
and intuitive way to create Deep Learning models.

Scikit-learn is a machine learning free python library. It notably
includes functions for estimating classification algorithms. It is
‘ eem designed to harmonize with other free python libraries, including

NumPy.

Table 4. 1: Development tools

4.3. Environment description

In order to train our dataset, we used Google Colab which is a free cloud service provided
by Google that supports free GPU, and it offers us a single 25GB NVIDIA Tesla K80 GPU that

can be used for up to 12 hours continuously. (See Figure 4.1)
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O

- importing libraries

[ 1 #plot library
import matplotlib.pyplot as plt
from matplotlib import pyplot
from itertools impart cycle
from scipy import interp
import seaborn as sb
#dataset preprocessing
from sklearn.preprocessing import MinMaxScaler
from collections import Counter
from imblearn.under_sampling import RandomUnderSampler
from imblearn.over_sampling import SMOTE
FRAEFFRAAR
import numpy as np

< import pandas as pd
from time import time
= from sklaarn madal calartinn imnant train tact enlit

Figure 4. 1: Work Environment
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4.4. Dataset analysis

4.4.1. Overview on the dataset
The used dataset contains 84 columns and 343889 rows in total, all structured in a .CSV

file. After we got rid of the unwanted attack types, and as we removed all the socket features such
as source IP, destination IP and so on in order to avoid the overfitting problem, where these features
can be changed from network to another, the final dataset now includes 77 columns and 243982
rows, where:

e Columns from 1 to 76 are attributes (features).

e The 77th column represents the target class (label) of the dataset which can be either

0 or 1, which represents normal and DoS/DDoS attack traffic respectively.

A B & D E F G H | J K L M N (o] P «
1 |Protocol Tot Fwd Pkts Tot Bwd Pkt TotLen Fwd I TotLen Bwd | Fwd Pkt Len Fwd Pkt Len Fwd Pkt Len Fwd Pkt Len Bwd Pkt Len Bwd Pkt Len Bwd Pkt Len Bwd Pkt Len Flow Byts/s Flow Pkts/s Flow IAT Me FIGWIE
2 6 2 6 17 2336 17 0 8.5 12.0208153 1448 0 389.333333 623.883216 234830.339 798.403194 1431.42857 2575
2 6 2 6 17 2336 17 0 8.5 120208153 1448 0 389.333333 623.883216 224952.199 764.818356 1494.28571 2445
4 6 2 6 17 2336 17 0 8.5 12.0208153 14438 0 389.333333 623.883216 211239.783 718.197325 1591.28571 2524
5 6 2 6 17 2336 17 0 8.5 12.0208153 1448 0 389.333333 623.883216 170322.114 579.080703 1973.57143 4715
6 6 2 6 17 2336 17 0 8.5 120208153 1448 0 389.333333 623.883216 160085.808 544.29174 2099.71423 455
7 6 2 6 17 2336 17 0 8.5 12.0208153 1448 0 389.333333 623.883216 148024.66 503.271263 2270.85714 4561
8 6 2 6 17 2336 17 0 8.5 12.0208153 1448 0 389.333333 623.883216 140335.182 477.127691 2395.28571 5986
9 6 2 6 17 2336 17 0 8.5 120208153 1448 0 389.333333 623.883216 131665.827 447.652622 2553 5925
10 6 2 6 17 2336 17 0 8.5 12.0208153 1448 0 389.333333 623.883216 119885.872 407.601773 2803.85714 6199
1 6 2 6 17 2336 17 [} 8.5 12.0208153 1443 0 389.333333 623.883216 113671.433 386.47343 2957.14236 6209
12 6 2 6 17 2336 17 0 8.5 12.0208153 1448 0 389 623.883216 355169.811 1207.54717 946428571 2213
13 6 2 6 17 2336 17 0 8.5 12.0208153 1448 0 389.333333 623.883216 285454.325 S70.520442 1177.57143 2597
14 6 2 6 17 2336 17 [} 8.5 12.0208153 1443 0 389.333333 623.883216 254653.68 B865.800866 1320 2590
15 6 2 6 17 2336 17 0 8.5 12.0208153 1448 0 389.333333 623.883216 237868.985 B808.734331 1413.14286 2546
16 6 2 6 17 2336 17 0 8.5 12.0208153 1448 0 389.333333 623.883216 223350.736 739.373517 1505 2574
17 6 2 6 17 2336 17 [} 8.5 12.0208153 1443 0 389.333333 623.883216 207002.727 703.791678 1623.85714 2554
18 6 2 6 17 2336 17 0 8.5 12.0208153 1448 0 389.333333 623.883216 269530.355 916.380298 1247.14286 2737
19 6 2 6 17 2336 17 0 8.5 12.0208153 1443 0 3893.333333 023.883216 247606.019 841.839419 1357.57143 2755
20 6 2 6 17 2336 17 [} 8.5 12.0208153 1443 0 389.333333 623.883216 226992.09 771.753811 1480.85714 283
21 6 2 6 17 2336 17 0 8.5 12.0208153 1448 0 389.333333 623.883216 161396.529 548.734481 2082.71429 4688
22 6 2 6 17 2336 17 0 8.5 12.0208153 1448 0 9. 62: 216 195952.098 666.222518 1715.42857 3922
23 6 2 6 17 2336 17 0 8.5 12.0208153 1443 0 389.333333 623.883216 182799.876  621.50404 1838.85714 3921 E

Figure 4. 2: a csv file dataset

4.4.2. Dataset preprocessing

A. Importing libraries and dataset
As a first step, we start importing the needed libraries and modules. We used a different

set of libraries; each has a different purpose as presented in the Listings below:
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e Libraries needed for preprocessing and visualization the dataset

#plot library

import matplotlib.pyplot as plt

from matplotlib import pyplot

from itertoocls import cycle

from scipy import interp

import seaborn as sb

#dataset preprocessing

from sklearn.preprocessing import MinMaxScaler

from collections import Counter

from imblearn.under sampling import RandomUnderSampler
from imblearn.over sampling import SMOTE

iisisiindedipuded

import numpy as np

import pandas as pd

from time import time

from sklesarn.model selection import train_test split
from sklearn import preprocessing

from sklearn.model selection import cross wal score
from sklearn.model selection import StratifiedkFold
from sklearn import model_selection

from sklearn.preprocessing import StandardScaler
from sklearn.model selection import GridSearchCV

Listing 4. 1: Preprocessing and Plot Libraries
o Necessary libraries for models’ evaluation.

#evaluation library

from sklearn import metrics

from sklearn.metrics import classification report
from sklearn.metrics import confusion_matrix

from sklearn.metrics import accuracy score

from sklearn.metrics import precision_score

from sklearn.metrics import recall score

from sklearn.metrics import precision_recall curve
from sklearn.metrics import mean_absolute error
from sklearn.preprocessing import StandardScaler

Listing 4. 2: Evaluation Libraries
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e The used libraries in building the ML models.

#supervised learning models library

from sklearn.neural network import MLPClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SWC

Listing 4. 3 : Supervised Model Libraries
e Keras libraries

#keras library

from keras import Sequential

from keras.utils import np utils

from keras.layers import Dense

from keras.wrappers.scikit learn import KerasClassifier
#importing activation functions

from keras.layers import LeakyRelLlU,PRelLU,ELU

from keras.layers import Dropout

Listing 4. 4 Keras Libraries

e Libraries used for the feature selection.

#ifor feature selection

import joblib

import sys

sys.modules[ 'sklearn.externals.joblib'] = joblib

from mlxtend.feature selection import SeguentialFeatureSelector as 5FS

Listing 4. 5: Feature Selection Libraries

B. Importing dataset

Since the dataset used is in CSV format, we used “read_csv ()” function of the Pandas

library in order to import it, as shown in Listing 4.6.

dataset= pd.read csv("/content/drive/MyDrive/DATASET/PFEdataset/InSDNmerged.csv”)
print(dataset)

Listing 4. 6 : Importing Dataset

e Separate features and labels

In our dataset, the features take columns from 1 to 76 which are considered inputs

during the phase of model training. the last column"77" contains the Labels that present
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the final output category i.e.; the result of prediction. Listing 4.7 shows the separation step
of labels and features.

#define label and features
K= dataset.drop('Label’, axis=1)
Y= dataset[ 'Label']

Listing 4. 7 : Features and Label Separation

Data visualization:
Data visualization is used to help better understand the used dataset. here as shown in
Figure 4.3 we visualize the distribution of the classes 0 and 1 which represents respectively

normal and malicious traffic.

175000 -

150000 -+

125000 -

100000 A

75000

50000 -+

25000 -

o -

T T
0.0 0.2 04 0.6 0.8 10

Figure 4. 3 : Visualizing Data Classes

C. Missing values verification

As mentioned in the chapter 3 section 3.5.3, checking missing values is a very
important step that should be done during data preprocessing. To perform this step, we
used the " isna ()" function, in which the result was false, i.e., there is no missing values in

our dataset Listing 4.8.
#check missing data
dataset.isna().any().any()
False

Listing 4. 8: Results of missing values check
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D. Splitting data

Dataset splitting remains an essential step. after loading and preparing the dataset, it
shall be split into test and training sets using the 80:20 that we chose after comparing the
model’s evaluation results with the 70:30 ratio, where:

e 80% is a training set that is used by the model to train on.

e 20% is a testing set, used for evaluating the models for predicting these new data.

Train_test_split () is a Python module that's used for data splitting, as shown in Listing 4.9.

#splitting data into train and test sets 88:28
X_train, X _test, Y _train, Y _test = train_test split(X, ¥, test size = 8.28)

print("\n 80:20 ratic split™)
print('\nx_train shape:’, X_train.shape)
print('x_test shape:’, X test.shape)
print('y_train shape:', ¥_train.shape)
print('y_test shape:’, ¥ _test.shape)

88:28 ratio split
¥x_train shape: (185185, 78)
x_test shape: (48797, 76)

y_train shape: (185185,)
y_test shape: (48797,)

Listing 4. 9 : Results of data splitting
E. Feature standardization
This step aims to standardize the variables of the dataset in a specific range. To apply it we

used the StandardScaler () method (See Listing 4.10), and the results of it shown in Figure 4.4.

#standardization

Standardisation = preprocessing.StandardScaler()
#88:28 ratio

¥_train_stand = Standardisation.fit_transform(X_train)
X¥_test stand= Standardisation.fit_transform(X_test)

Listing 4. 10: Feature Standardization
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before standardization :
Protocol Tot Fwd Pkts Tot Bwd Pkts TotLen Fwd Pkts AN

QOOOON

N

OO ROW:

6
=]
17
=]
e

after standardization :
[[ ©.25498343 -©0.00346485 -©.02494384 ... -0.106326572 -©.204
-©.18796108]

[ -©.79282787 -©.00443449 .93977218 ... -18326572
-©.187961e8]

[-©.79282787 -©.00443449 .83977218 ... -18326572
-©.18796108]

.17597082 -©.00394967 .©3235801 ... .1©326572
.18796108]
.79282787 -©.00443449 .©3977218 ... -1©326572
.18796108]
.79282787 -©.00443449 .©3977218 ... .1©326572

Figure 4. 4: Results of feature standardization

F. Data preparation and pre-processing

Among the techniques cited in the previous chapter to deal with the unbalanced class
distribution, we used the SMOTE technique (Synthetic Minority Oversampling Technique-
Oversampling). And it gives us better performance in terms of recall and precision. Table 4.2 and

4.3 show the classes distribution before and after oversampling.

Dataset xtrain set shape: (185185, 7a8)
h xtest set shape: (48757, 76)
shape ytrain set shape: (185185,)
ytrain set shape: (48797,)
Class number of label classes betfore balancing :
proportion Counter({1l: 148319, @: 54866})
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175000 1
150000 4

Imbalanced

125000
data 100000 -
75000 1
50000

25000 4

o

T T
04 06

Table 4. 2: Class distribution results and histogram before oversampling

Dataset xtrain
shape ytrain
Class number of label classes after balancing :
proportion Counter({1: 148319, @: 148319})
140000 4
120000 A
Imbalanced 100000 4
data 80000 1
60000 4
40000 4

20000 4

o

Table 4. 3: class distribution results and histogram after oversampling ( SMOTE)
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G. Hyperparameters choosing
Choosing a set of optimal hyperparameters remains a problem for learning algorithms. the
objective is to find an optimal combination of hyperparameters that would improve and give better
performance to the model. several techniques help to tune the hyperparameters, one of which is
the GridSearchCV/() that we chose in this work, it gives the best collection of hyperparameters
among as set of given parameters. this method was applied on our models to determine their best

hyperparameters for better performance in term of evaluation metrics. (See APPENDIX A sec 2)

H. Feature Selection

Using the forward selection method (Listing 4.11), we got a subset of 55 features that would
give us the best models performance as a result of comparing several subsets with different number
of features. (See APPENDIX B)

| feature selector = SF5({RandomForestClassifier(),
k_features=55,
forward=True,
floating=False,
verbose=2,
scoring="recall’,
cv=5

features = feature selector.fit(x train, y train)

Listing 4. 11: Forward selection method

Table 4.4 represents the obtained features after the feature selection step. Obviously, we
got some common features with the related works’ features like the Protocol, yet there are some

features that wasn't used in the test before as a specific subset like Bwd Blk Rate Avg

No. Attribute Name No. Attribute Name
01 Protocol 29 Fwd PSH Flags
02 Tot Fwd Pkts 30 Bwd PSH Flags
03 Tot Bwd Pkts 31 Fwd URG Flags
04 TotLen Fwd Pkts 32 Bwd URG Flags
05 TotLen Bwd Pkts 33 RST Flag Cnt
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06 Fwd Pkt Len Max 34 PSH Flag Cnt
07 Fwd Pkt Len Min 35 ACK Flag Cnt
08 Fwd Pkt Len Mean 36 URG Flag Cnt
09 Fwd Pkt Len Std 37 CWE Flag Count
10 Bwad Pkt Len Max 38 ECE Flag Cnt
11 Bwd Pkt Len Min 39 Down/Up Ratio
12 Bwd Pkt Len Mean 40 Fwd Seg Size Avg
13 Bwd Pkt Len Std 41 Bwd Seg Size Avg
14 Flow Byts/s 42 Fwd Byts/b Avg
15 Flow Pkts/s 43 Fwd Pkts/b Avg
16 Flow IAT Mean 44 Fwd Blk Rate Avg
17 Flow IAT Std 45 Bwd Byts/b Avg
18 Flow IAT Max 46 Bwd Pkts/b Avg
19 Flow IAT Min 47 Bwd Blk Rate Avg
20 Fwd IAT Tot 48 Subflow Fwd Pkts
21 Fwd IAT Mean 49 Subflow Fwd Byts
22 Fwd IAT Std 50 Subflow Bwd Pkts
23 Fwd IAT Max 51 Subflow Bwd Byts
24 Fwd IAT Min 52 Init Fwd Win Byts
25 Bwd IAT Tot 53 Init Bwd Win Byts
26 Bwd IAT Mean 54 Fwd Act Data Pkts
27 Bwd IAT Std 55 Fwd Seg Size Min
28 Bwd IAT Max

Table 4. 4 : Selected Subset Features

4.5. Model training and evaluation

All the selected models were trained and tested on 2 sets of datasets, a fully featured dataset
(brut) that contains all the features, and a specific features subset.

A. Fully featured version of the dataset

» Support vector machine

e Hyperparameters

Table 4.5 represents the used hyperparameters for training and testing the SVM model.

(APPENDIX A sec2)
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C Gamma Kernel

Table 4. 5 : SVM Hyperparameters

e Results
The Figure 4.5 shows the results of training and evaluating the performance of SVM classifier.

(See APPENDX A).

precision recall fl-score support

1.008 8.99 8.99 135081
1.0 1.e0 1.66 35296

accuracy 1.88 43797
macro avg 1.08 8.99 8.099 48797
weighted avg 1.00 1.08 1.88 48797

- ————————————————5\M evaluation metrics

> accuracy : 0.9957989226648811

> precision score is : ©.9953976983746788

+ Recall score is : 8.9988100634632819

» f1 score is : 8.9971889573911446

> training time: 582.5498443706512

Figure 4. 5 : SVM Evaluation Results

e Confused matrix is presented in Figure 4.6 below:
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0.09%
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]
o 1

Figure 4. 6: SVM Confusion Matrix

e Discussion
According to the confusion matrix, class 1 which represents the malicious traffic was detected
as an attack correctly with 72.25%, also 27.33% of the normal traffic class (0) are detected

correctly as normal traffic, along with a low error rate, which considered good results.

» Random forest

e Hyperparameters
Table 4.7 represents the used hyperparameters for training and testing the random forest
classifier. (APPENDIX A sec2)

Max Max Max Min_ N_estimator

depth features samples samples_split

Table 4. 6 : RF Hyperparameters

e Results and discussion
The performance evaluation results of the RF classifier are shown in Figures 4.7 and 4.8 where

they represent the evaluation metrics and confusion matrix respectively.
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precision recall fl-score

08.95
1.08

1.e8 8.97

accuracy
macro avg
ieighted avg

8.97
8.93

—mmmmmm=—--m-----eeeee————————-—-RF evaluation

> accuracy : ©0.983175195196426

» precision score is : B.9989568981267761
> Recall score is : @.9777218166351922
> fl-score is : ©.9882244947728199

> training time: 4.62763B478851318

Experimental Results and Discussion

support

48797
43797
43797

metrics---------mmmmm e

Figure 4. 7 : RF Evaluation Results
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o - 13526 36
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161%
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1
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Figure 4. 8 : RF Confusion Matrix

From the confusion matrix, we can see that class 1 was detected correctly with a rate of
70.10%, and class 0 got 27.61%, yet the error rate is a bit high.
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» ANN

e Hyperparameters

Table 4.6 represents the used hyperparameters for training and testing the ANN classifier.
(APPENDIX A sec?)

_ Hidden_layers  Max_iter Activation Solver

Table 4. 7 : ANN Hyperparameters

e Results and discussion
The performance evaluation results of the ANN classifier are shown in Figures 4.9 and 4.10

where they represent the evaluation metrics and confusion matrix respectively.

80:28 ration

classification report:
precision recall fl-score  support

a 1.80 1.80 1.808 135081
1 1.86 1.80 1.806 35296

accuracy 1.80 48797
macro avg 3 1.80 48797

weighted avg ] 1.80 48797

> accuracy : 8.99911879828678

» precision score is : 8.999

> Recall score is : ©.9995758226654578
--» fl-score is : B8.99 077976064

» training time: 81.13895498885822

Figure 4. 9: ANN Evaluation Results
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- 35000

- 30000
Tue Neg False Pos
= - 13473 28
27 61% 0.06% - 25000
- 20000
- 15000
False Neg - 10000
—_ 15
0.03%
- 5000

0
Figure 4. 10 : ANN Confusion Matrix

According to the confusion matrix above, class 1 which represents the malicious traffic
was detected as an attack correctly with 72.30%, also 27.61% of the normal traffic class (0) are

detected correctly as normal traffic, along with a low error rate, which considered good results.

» Models Comparison

Table 4.7 shows the performance of the different classifiers using the fully-featured version
of the dataset. we used the most commonly used performance metrics in intrusion detection
systems, besides the accuracy score as well, though we won't focus on it that much compared to
the others because it doesn't yield precise comparisons.

Clearly, the overall score metrics are good enough in detecting malicious traffic for both
split ratios. yet there is a small variation between the classifiers. the recall and F1-score metrics
for the SVM, RF and ANN algorithms of the 70:30 split are lower than the 80:20 split classifiers,
which seem to have the best results of all. Yet in the same ratio, the classifiers are variated, and
we can clearly recognize that SVM and RF have lower metric scores than the ANN. Furthermore,
the performance and training time of SVM is a bit slower, unlike the other classifiers that are
reasonable. Therefore, ANN is considered the best model in this case for detecting and predicting

malicious attacks.
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Split ML Evaluation Metrics

ratio models  Accuracy Precision Recall Fl-score Training time
SVM 0.9957 0.9953 0.9988 0.9971 582.549

80:20 RF 0.9831 0.9989 0.9777 0.9882 4.6270
ANN 0.9991 0.9992 0.9995 0.9993 81.130
SVM 0.9954 0.9950 0.9986 0.9968 440.22

70:30 RF 0.9784 0.9998 0.9703 0.9848 4.0618
ANN 0.9987 0.9991 0.9991 0.9991 79.0199

Table 4. 8 : Performance metrics for Fully-Featured dataset models (70:30 VS 80:20)

B. Specific features version of the dataset

» Support vector machine
The figure 4.11 shows the results of training and evaluating the performance of SVM model
with a featured of the dataset (see APPENDX A).

precision recall fl-score  support

e 1.80 8.99 8.99 13781
1 .99 i.80 1.80 35896

accuracy 1.808 48797

macro avg 1. .99 8.99 48797
weighted avg 1. 1.8 1.08 48797

e m e —-5\WM evaluation metrics-------------mmmooo -

--» accuracy : ©.9954895533660164

--» precision score is : 8.994722585958461
--» Recall score is : ©.9989172555276955
--» 1 score is : ©.9968154677281774

--» training time: 89.56371474266852

Figure 4. 11: Spec_SVM Evaluation Results
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e Confused matrix is presented in figure 4.12 below:

- 35000
- 30000
Tue Neg False Pos
o - 13515 186
27.70% 0.38% - 25000
- 20000
- 15000
False Neg )
- - 35 10000
0.08%
- 5000

1

Figure 4. 12: Spec_SVM Confusion Matrix

e Discussion
Class 0: 13515 instances of this class got classified as normal traffic, and it is normal traffic
scoring a 27.70% with a very low error rate.
Class 1: the rate of malicious attacks that were detected and classified correctly as attack,

according to the confusion matrix, is 71.84%, with a low error rate.

» Random Forest
Figures 4.13 and 4.14 respectively represent the evaluation metrics and confusion matrix of

the performance evaluation of the classifier RF on a specific featured version of the dataset.
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precision recall fl-score support

8 .94 B.99 0.97 13701
1 1.008 B.98 8.99 35896

accuracy B. 43797

macro avg B. 48797
weighted avg B. 48797

mmmemmmmmmmmee-e--————-——--------RF evaluation metrics

--» accuracy : 8.93888594798663361
» precision score is : 8.9967428684664689
> Recall score is : @.9765785274675177
» f1-score is : B.9865576696122738

» training time: 4.182465314865112

Figure 4. 13: Spec_RF Evaluation Results
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Figure 4. 14: Spec_RF Confusion Matrix

e Discussion
Class 0: 13589 instances of this class got classified as a normal traffic, and it is normal
traffic, with rate of 27.85% and a low error rate.
Class 1: the rate of malicious attacks that were detected and classified correctly as attack,

according to the confusion matrix, is 70.24%, with a low error rate.
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» ANN
The coming Figures 4.15 and 4.16 show the evaluation metrics and confusion matrix of the
performance evaluation of the classifier RF on a specific featured version of the dataset,

respectively.

classification report:
precision recall fi1l-score  support

8 1.00 1.80 1.08 137081
1 1.00 1.80 1.08 35896

accuracy 1.88 48797

macro av 1.88 48797
1.08 48797

—————————————————————————————————— ANN evaluation metrics-----—-------—-------———-

> accuracy : 0.9998778121685837

» precision score is : ©.9998318

» Recall score is : ©.9996865739685434
» fl-score is : ©.9993591113818641

» training time: 99.6634736686108962

Figure 4. 15: Spec_ANN Evaluation Results

35000
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o= - 13667 34
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- - 11
002%
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o

Figure 4. 16: Spec_ ANN Confusion Matrix
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e Discussion:
Class 0: the 13667 instances of this class got classified as a normal traffic, and it is normal
traffic. Got a rate of 28.01% and a very low error rate.
Class 1: the rate of malicious attacks that were detected and classified correctly as attack,
according to the confusion matrix, is 71.90% representing 35085 instances, with a very low

error rate.

» Specific features models Comparison

In this section, the models are compared to each other according to the chosen evaluation
metrics. As shown in Table 4.8, the RF classifier tends to have the shortest training time, but the
lowest metrics scores compared to the other classifiers as we can see in Figure 4.17, clearly ANN
is the best model with the best scores in Recall, F1score, Precision and even the Accuracy.

Hode|s Com arlson

Evaluation etru:s
10 -
0.8 -
0.6
g
Q
]
0.4 -
0.2 — SVM
mmm Random Forest
mmm ANMN
0.0 -
Accuracy Precision Recall
Metrics
Figure 4. 17: Specific features models' evaluation metrics comparison
ML Evaluation Metrics
models Accuracy Precision  Recall Fl-score = Training time
Spec_SVM 0.9954 0.9947 0.9989 0.9968 89.563
Spec_RF 0.9808 0.9967 0.9765 0.9865 4.1824
Spec_ ANN 0.9990 0.9990 0.9996 0.9993 99.663

Table 4. 9: Comparison between specific models' performance metrics
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» A comparison between the fully-featured dataset models and the specific

featured dataset models

After testing several machine learning algorithms with different dataset subsets of different
features, we noticed that all the algorithms give good results, but when it comes to the optimal one
that detects the DoS/DDOS attacks, the ANN classifier that was tested with the specific features
dataset, since Recall represents the true positive rate (i.e., the rate of the number of attacks that
was detected as attacks correctly), is considered the optimal, for its Recall score along with the

other metrics scores that were high compared to other classifiers( table 4.9).

SVM Spec_SVM RF Spec_RF ANN Spec_ANN

Accuracy 0.9957 0.9954 0.9831 0.9808 0.9991 0.9990

Precision 0.9953 0.9947 0.9989 0.9967 0.9992 0.9990

Recall 0.9988 0.9989 0.9777 0.9765 0.9995 0.9996

F1-score 0.9971 0.9968 0.9882 0.9865 0.9993 0.9993

Training 582.549 89.563 4.6270 4.1824 81.130 99.663

time

Best ML

model

Table 4. 10: Comparison between all the models

4.6. Comparison with related work models

In order to compare our model with the related works cited in chapter 2, we used the Recall
accuracy rate along with precision and f1 score. Table 4.8 summarizes the results of our model
and the other three works in which we notice that our model gives way better performances

compared to them.
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Chapter 4 Experimental Results and Discussion

Work  Specific featured dataset  Recall Precision F1_score
[12] 48 specific futures Table 2.2 Table 2.2 Table 2.2
[18] 48 specific features 0.9980 0.9980 0.9980
[19] 36/18/8 specific features Table 2.4 Table 2.4  Table 2.4

Our model 55 specific features 0.9996 0.9990 0.9993

Table 4. 11: Comparison with related works models

4.7. Conclusion

In this chapter, we dealt with the implementation part in a detailed way, where we started by
describing the tools, the environments we worked on, and the used dataset. Next, we presented the
preprocessing steps we went through in order to build and evaluate our models and explained all
the experimentations and analyzed the models' results to make a comparative study with the related

works.
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General Conclusion

The implementation of machine learning-based models for intrusion detection has been
widely used, and always caught the researchers' interest, especially in the Software-Defined

Networks which are considered a challenge to address.

Through this dissertation, we have proposed three machine learning models (ANN, SVM
and RF) for classifying and detecting DoS/DDoS attacks in SDN using the newly generated INSDN
dataset for training and testing after going through some preprocessing steps and implementing
the forward selection method to select the best features that achieve higher performance after

discussing some related works that dealt with the same problem as ours.

The obtained results after training and testing the models are quite satisfying. After
comparing the results of each model, we got the ANN model that was evaluated on the specific
features subset as the best performance in terms of the evaluation metrics (Recall, F1-score,

Precision).

Despite the quality of the results obtained, the feature selection method and models’

hyperparameters need to be improved in order to reach the optimal result.

Therefore, as future work, we aspire to develop a genetic algorithm-based model to get the
optimal features and optimal parameters in terms of F1-score, Recall, Precision... of a dataset for

detecting several types of attacks instead of just DoS/DDoS attacks in a realistic environment.
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APPENDIX A: Source Code

1. Data Preprocessing

1.1. Standardization

Standardisation = preprocessing.StandardScaler ()

X train stand = Standardisation.fit transform(X train)
X test stand= Standardisation.fit transform(X test)

1.2. Data balancing

smote = SMOTE ()

X train smote, Y train smote = smote.fit resample (X train sta
nd.astype('float'"),Y train)

2. Hyperparameters Tuning

In order to optimize the performance our models, avoid the overfitting problems, we tuned
the hyperparameters of each model. For that, we used the GridSearchCV function to determine the

optimal values for its simplicity in implementation.
2.1. RF

For the random forest classifier, we specify a group of values to choose the best ones, we focused

on:

e n_estimators: the number of trees in the forest.
e max_depth: represents the depth of each tree in the forest.
e min_samples_split: minimum number of samples required to split an internal node.

e max_features: number of features to consider when looking for the best split.

forest = RandomForestClassifier ()

params = {
'n estimators': [100,150,200],
'max features': ['auto',6 'log2'],
'max depth' : [4,5,6,7],

'min samples split' :[2,3,8],
'max samples': [100,150,200]
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}

CV_rfc = GridSearchCV (estimator=forest, param grid=params, cv= 5

)
CV rfc.fit(x train, y train)
CV_rfc.best params

Result

{'max_depth': 7,
'max_features': 'auto’,
'max_samples': 20@,
'min_samples split': 2,
'n_estimators': 158}

2.2. SVM

For the SVM hyperparameters tuning, we focused on the most effective, the kernel, the C
parameters that perms to regulate how soft the margin can be and the Gamma in which specifies
how far the influence of a single training example can reach, giving each of them a group of values

to select the optimal for a better performance.

params = {
'¢': (0.1, 1, 10, 100, 10001,
'gamma': [1, 0.1, 0.01, 0.001, 0.00017],
'kernel': ['rbf','linear']

clf = GridSearchCV (
estimator=SVC (),
param grid=params,
cv=5,
n_jobs=5,
verbose=1

Result

{'C': 18, 'gamma': @.8881, 'kernel': 'rbf'}
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2.3. ANN

Concerning the ANN classifier, we focused on the most essential parameters that affect on
the classifier performance that are: the number of hidden layer and nodes, the activation function
for the hidden layer, number of epochs to use and the solver algorithm for optimizing the weight
in which we fixed on ‘adam’ algorithm because it is the most known and effective.
ann = MLPClassifier ()
params = {

'hidden layer sizes': [(2,), (6,), (8,)],
'max iter': [100, 150,300],

'activation': ['tanh', 'relu'],

'solver': ['adam']
}
CV_ann = GridSearchCV (estimator=ann, param grid=params, cv= 5, n
_Jobs=-1)

CV_ann.fit(x train stand, y train)
CV_ann.best params

Results

{'activation': 'relu’,
"hidden_layer sizes': (8,),
‘max_iter': 158,

"solver': "adam'}

3. Model Training

3.1. SVM
SVM = SVC (C=10, gamma=0.0001, kernel='rbf'")
start=time ()
SVM.fit (X train undersampled, Y train undersampled)
end=time ()

3.2. RF

RFclassifier = RandomForestClassifier (max depth= 7,max features
='auto', max samples=200,min_ samples split = 2,n estimators=150)
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start=time ()
RFclassifier.fit (X train smote, Y train smote)
end=time ()

3.3. ANN
ANNclassifier = MLPClassifier (hidden layer sizes=(8,),max iter =
150, activation = 'relu',6solver = 'adam')

start=time ()
ANNclassifier.fit (X train smote, Y train smote)
end=time ()

4. Performance evaluation visualization script

4.1. Confusion Matrix

print ("\n\n-------"-----------———— Confusion matrix —--------
———————————————————— \n\n")
cmann=confusion matrix (Y test, ANNPred)

group names = ['True Neg',6 'False Pos','False Neg', 'True Pos']
group _counts = ["{0:0.0f}".format (value) for value in cmann.flat
ten() ]

group_ percentages = ["{0:.2%}".format (value) for value in cmann.

flatten () /np.sum(cmann) ]

labels = [f"{vl}\n{v2}\n{v3}" for vl, v2, v3 in zip(group names,
group counts,group percentages) ]

labels = np.asarray(labels) .reshape(2,2)
heatmap=sb.heatmap (cmann, annot=labels, fmt='"', cmap='Blues')
print (heatmap)

4.2. Evaluation metric comparison bars

fig, (axl) = plt.subplots (1)
fig.suptitle('Models Comparison', fontsize=16, fontweight='bo
1d")

fig.set figheight (4)

fig.set figwidth (9)

fig.set facecolor('white')

## set bar size

barWidth = 0.1

svm_score = [accuracy score (Y test,SVMPred), metrics.precisio
n_score (Y test,SVMPred), metrics.recall score(Y test, SVMPred)
ymetrics.fl score(Y test, SVMPred) ]
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rf score = [accuracy score(Y test, RFPred), metrics.precision
_score (Y test, RFPred), metrics.recall score(Y test, RFPred),
metrics.fl score(Y test, RFPred)]

ann_score = [accuracy score (Y test,ANNPred), metrics.precisio
n score (Y test,ANNPred), metrics.recall score(Y test,ANNPred)
ymetrics.fl score (Y test,ANNPred) ]

## Set position of bar on X axis

rl = np.arange (len(svm_score))

r2 = [x + barWidth for x in rl]
r3 = [x + barWidth for x in r2]
rd = [x + barWidth for x in r3]

## Make the plot

axl.bar(rl, svm score, width=barWidth, edgecolor='white', lab
el="'SVM")

axl.bar(r2, rf score, width=barWidth, edgecolor='white', labe
1="Random Forest')

axl.bar(r3, ann score, width=barWidth, edgecolor='white', lab
el="ANN")

## Configure x and y axis

axl.set xlabel ('Metrics', fontweight='bold")

labels = ['Accuracy', 'Precision', 'Recall', 'F1']
axl.set xticks([r + (barWidth * 1.5) for r in range(len(svm_s
core))l, )

axl.set xticklabels (labels)

axl.set ylabel('Score', fontweight='bold")

axl.set ylim(0O, 1)

## Create legend & title

axl.set title('Evaluation Metrics', fontsize=14, fontweight='
bold'")

axl.legend()
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APPENDIX B: Additional results of feature selection tests

The feature selection process went through several test where we tested and trained our
models on several subsets each with a specific number of features, then made a comparison to

define and precise the best subset that give the best performance results.

1. Subset of 28 features

1.1. SVM evaluation results

precision recall f1-score  support

<] 9.98 - 9.91 13661
1 8.94 .89 8.97 35136

accuracy 8.95 48797

macro avg .9 8.94 48797
weighted avg .9 8.95 48797

--» accuracy : ©.95173828364838772
--» precision score is : ©.9428426656593874
--» Recall score is : 8.9941378673952641

--» f1 score is : ©.9673890465969675

--» training time: 405.463@7784830585
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1.2. RF evaluation results

precision recall fl-score support

8. 8! 8. e. 13661
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48797

» accuracy : 8.91
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1.3. ANN evaluation results

precision recall fl-score  support

accur
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Subset of 33 features
2.1. SVM evaluation results

——m-mmmemomeem oo ————————classification report-------------oooooo——-

precision recall fl-score support
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2.2. RF evaluation results

precision recall fl-score support
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2.3.  ANN evaluation results

classification report:
precision recall fil-score support

8.38 B.97 a. 13883

8.3 B. 34994
accuracy 8. 43797

macro avg 8.6 8.6 8. 43797
weighted avg B. B. . 48797

---------------------------------- ANN evaluation metrics

» accuracy : ©.5384757259667663

» precision score is : ©.09655841731989548
» Recall score is : 32888358

» f1-score is : B.5345843063586168

» training time: 138.75455141867585

20000

17500

15000

12500

- 10000

- 7500

- 5000

- 2500

88



3. Subset of 55 features

3.1. SVM evaluation results

mmmmmmmmmmmmmmmmeeem oo ——————classification report

precision recall fl-score support
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3.2. RF evaluation results

precision recall f1-score
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recall fi1-score support
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e Discussion

According to the obtained results by evaluating the models on subsets of different number
of features, clearly the last subset with 55 features give better performance in terms of the
evaluation metrics used compared to the other subsets

Accuracy Precision  Recall  F1-score Training
time
SVM 0.5717 0.9420 0.9941 0.9673 405.40
28 RF 0.9103 0.9534 0.9204 0.9366 4.7856
features ANN 0.4882 0.9483 0.3059 0.4626 136.289
33 SVM 0.8914 0.9961 0.8518 0.9183 300.0139
features RF 0.9557 0.9711 0.9671 0.9691 4.5596
ANN 0.5384 0.9655 0.3696 0.5345 138.754
55 SVM 0.9954 0.9947 0.9989 0.9968 89.563
features RF 0.9808 0.9967 0.9765 0.9865 4.1824
ANN 0.9990 0.9990 0.9996 0.9993 99.663
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