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Abstract  

 

 

 
As an emerged network paradigm that was developed to reduce network complexity, 

Software-defined networks (SDN) became widely implemented in different data centers’ 

network environments. Nevertheless, having vulnerabilities makes it prone to different attacks 

especially DoS and DDoS which tend to target the controller the most to have full access to 

the whole network which remains a true challenge for manufacturers to solve.  

Deploying and performing the intrusion detection systems and techniques for monitoring 

the malicious activities relies on the quality of the dataset. Therefore, the proposed models 

based on machine learning for this project are trained on the newly generated InSDN dataset 

to predict and detect the DoS/DDoS attacks that can occur in the different SDN platform 

elements. 

According to the obtained results, the ANN model that was trained on a specific set of 

selected features performed better than the Support Vector Machine and Random Forest 

classifiers. 

 

Key words:  Intrusion Detection System (IDS); DoS/DDoS attacks, Software Defined Network 

(SDN), Security, Machine Learning. 

  



 ص ــملخال

( مطبقة على SDNأصبحت الشبكات المعرفة بالبرمجيات ) الشبكة،كنموذج شبكة ناشئ تم تطويره لتقليل تعقيد 

فإن وجود ثغرات أمنية يجعلها عرضة لهجمات مختلفة  ذلك،نطاق واسع في بيئات شبكات مراكز البيانات المختلفة. ومع 

التي تميل إلى استهداف وحدة التحكم أكثر من غيرها للوصول الكامل إلى الشبكة بالكامل والتي  DDoSو DoSخاصةً 

 لا تزال تمثل تحديًا حقيقيًا للمصنعين لحلها.

يتم تدريب  لذلك،ارة على جودة مجموعة البيانات. يعتمد نشر وتنفيذ أنظمة وتقنيات كشف التسلل لمراقبة الأنشطة الض

التي تم إنشاؤها حديثاً للتنبؤ  InSDNالنماذج المقترحة القائمة على التعلم الآلي لهذا المشروع على مجموعة بيانات 

 المختلفة. SDNالتي يمكن أن تحدث في عناصر منصة  DoS / DDoSواكتشاف هجمات 

الذي تم تدريبه على مجموعة فرعية محددة من الميزات  ANNكان أداء نموذج  عليها،وفقاً للنتائج التي تم الحصول 

 المختارة أفضل من مصنفات آلة المتجهات الداعمة ومصنفات الغابة العشوائية.

 

 (،SDNالشبكة المعرفة بالبرمجيات ) ،DoS / DDoSهجمات  (؛IDSنظام كشف التسلل ) الكلمات الأساسية:

 لي.التعلم الآ الأمان،
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General Introduction 

A Software-defined network (SDN) is a new paradigm that came to light in recent years to 

solve the conventional network's problems and limits. Unlike the traditional network that 

implements the network traffic and configures traffic policies on each device independently such 

as routing, switching and quality of service, SDN separates the control and data plane so the 

management of the network is carried out by the central controller that has the ability to control 

and apply network policies to the whole network from a single point. Decoupling the data and 

control planes gave SDN the ability to make the network more flexible and easier to manage 

because of the centralized controller as a key benefit. This flexible nature helps in enhancing the 

security measurements like threat detection and prevention, as it accelerates innovation research 

compared with conventional networks. 

However, despite all the benefits and advantages SDN can provide, like any other network, 

it is prone to several security issues and exposed to specific attacks. the most dangerous attack that 

can affect SDN is the DoS/DDoS attacks that can be exploited by attackers to perform malicious 

tasks, in which the users are denied to access the network services, especially if the target was the 

SDN controller that will expose the whole network to critical threats. thus, deploying IDS 

techniques is considered an essential part in order to detect malicious intrusions in SDN network 

traffic. 

Therefore, with the recent advances in the field of Artificial Intelligence and machine 

learning, we are experiencing more research on SDN security using several machine learning 

techniques for DoS/DDOS attack detection and prevention. 

This project aims to propose and develop models based on machine learning techniques 

for DoS/DDoS intrusion detection using a newly generated dataset called InSDN.  

This dissertation is organized into four chapters, the topics of which are given as follows: 

 Chapter 1:  concerns generalities related to this subject. it starts with a general view of the 

SDN and how it differs from the traditional networks. followed by discussing the security 

part, IDS and the DoS/DDoS attacks in SDN. 
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 Chapter 2:  presents machine learning, its techniques in general and an overview of the 

selected models for this work. In the end, some research works that were done on the same 

topic are discussed. 

 Chapter 3: explains the followed steps in order to realize the proposed models 

 Chapter 4: provides the used tools and work environment and discusses the obtained 

results after evaluating the models. 



 

 

 

 

 

 

 

 

 

 

 

 

Chapter 1: Generalities 
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1.1. Introduction 

Software-Defined Network (SDN) as a new networking paradigm was developed to help 

overcome the flexibility and scalability limitation of traditional networks and reduce complexity 

by managing the network centrally. SDN recently has been widely implemented and became a hot 

topic in the networking community. in spot of that, SDN technology introduces many 

vulnerabilities and threats that make a real challenge for developers to address it. especially the 

Denial of Service (DoS) and Distributed Denial of Service (DDoS) attacks that made deploying 

Intrusion Detection System (IDS) for monitoring malicious activities an important and a crucial 

part of the network. 

 

1.2. Software Defined Networking (SDN) 

Software Defined Network is a term of the programable networks paradigm. It is a new 

networking technology that was designed to make a network more flexible and easier to manage. 

SDN decouples the control plane in which deals only with the routing and forwarding decisions of 

networking elements such as routers, switches…) from the data plane (orchestrates the network 

traffic in accordance with the established configuration in the control plane), in which results the 

uncomplication of both the administration and management [1]. 

 

1.2.1. History 

Traditional computer networks have always been known for their complexity and the 

difficulty to manage the large number of devices its built from, and the huge problems it suffers 

from such as scalability, classification of data and routing traffic, time consuming, decentralized 

network control... and so on. addressing these problems gave the desire to provide a user-controlled 

management of forwarding in network node, in which was the driver behind the concept of SDN 

that has been evolving since 1996 [2]. The history of this approach is divided into 3 stages, each 

has its own contributions:  
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1.2.1.1. Active Networks 

Active networking came at a time when the Internet was seeing much more diverse 

applications and increasing use (mid-1900’s to early 2000’s) and was the first attempt to make 

networks programmable. It proposed two programming models: the capsule of model and the 

programmable router/switch model. The intellectual contributions of active networking to SDN 

included [3]: 

 The notion of programmable functions in the network. 

 Network virtualization. 

 The ability to have a packet demultiplex into software programs. 

 And although it was never realized, active networking did offer a vision of a unified 

architecture for middlebox orchestration. 

 

1.2.1.2. Separating control and data planes 

The idea to separate control and data planes appeared in the early 2000’s (2001-2007), it 

developed open interfaces between the control and data planes, thus, two innovations came to light: 

 Open interface between the control and data planes (Forwarding and Control 

Element Separation (ForCES)…). 

 Logically centralized control of the network. 

Control and data plane separation offered two important intellectual contributions to SDN The first 

was the notion of logically centralized control using an open interface to routers and switches. The 

second was technologies and algorithms for achieving distributed state management across a 

distributed set of network controllers [3]. 

 

1.2.1.3. OpenFlow 

OpenFlow is a communication protocol standard that is used by the controller to 

manipulate data plane operations, it was created by a group of researchers of Stanford in the mid-

2000s. OpenFlow was initially adopted in campuses and then in data centers and now there is more 

deployments of open flow in a variety of different networks. It offered several intellectual 

contributions [3]:  
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 Generalizing the network devices and functions that control data plan to 

support. 

 The vision of a network operating system with three layers: a data plan with an 

open API, a layer from managing state, and a third control logic layer that 

affected the data plans based on the state of the network. 

 Developed new distributed state management techniques. 

 

1.2.2. SDN architecture 

SDN basically is composed of SDN devices (include components in which deal with the 

incoming traffic), SDN controllers and applications. The SDN controller programs the network 

devices and presents an abstraction of the underlying network infrastructure to the SDN 

applications. The controller allows an SDN application to define traffic flows and paths, in terms 

of common characteristics of packets, on the network devices to satisfy its needs and to respond 

to dynamic requirements by users and traffic/network conditions. The Open Networking 

Foundation (ONF) defines a high-level architecture for SDN with three main layers as shown in 

Figure (1.1).[4] 

 

 

Figure 1. 1: SDN architecture [4] 
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1.2.2.1. Infrastructure Layer 

Infrastructure or data layer is the bottom layer, it consists of various networking equipment 

that form underlying networks to forward traffic such as router, physical/virtual switches, access 

points etc. The SDN devices are composed of API to communicate with the controller that is 

positioning in the control layer to manage underlying physical networks. The packet processing 

function decides on actions to be taken, based on the results of the evaluating incoming packets 

relative to flow entries in the flow tables. 

 

1.2.2.2. Control Layer 

An SDN control plane comprises a set of software-based SDN controller(s) to provide 

control functionality in order to supervise the network forwarding behavior through an open 

interface. It has interfaces to enable communication among controllers in a control plane, between 

controllers and network devices through a southbound, and also between controllers and 

application through a northbound. As mentioned in [5], a controller consists of two main 

components:  

 Functional component, in which the controllers can include more than one like 

coordinator, Virtualize and so on, to manage the controller behavior. 

 control logic that maps networking requirements of applications into instructions 

for network element resources. 

 

1.2.2.3. Application Layer 

This layer consists of one or more end-user applications (security, virtualization etc.) that 

interact with controller(s) to utilize an abstract view of the network for their internal decision-

making process [5]. the controller allows the applications to affect the behavior of underlying 

infrastructure by: 

 flows configuration. 

 traffic loads balancing across multiple paths. 

 reacting to changes in networking topology (link failures, the addition of new 

devices and paths…). 

 redirecting traffic for purposes of inspection. 
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1.2.2.4. SDN vs Traditional Networks 

Conventionally, Networking was made to connect the hardware equipment like routers and 

switched backed with basic software programs in which used to configure all the connected 

devices in a network. However, with the technology’s development and the wide use of networks, 

the SDN showed up with many differences on several levels. Alongside the evident variation in 

the architecture that is shown in Figure 1.2, SDN is a software-based unlike the Traditional 

Networks that are typically hardware-based, which made room for more differences in many 

characteristics that are shown in Table 1.1 that was made based on our studies. 

 

Characteristics SDN Traditional Networks 

Centralized control centralized control distributed control 

Configuration automatic static/manual 

Global network view Central view at controller difficult 

Time required for 

update/error handling 

Quite easy because of central 

controller(s) 

Sometimes it takes months 

Programmability Programmable Non programmable 

Flexibility More Less 

Implementation Easy Hard 

Maintenance Cost low High 

Authenticity, integrity and 

consistency of 

controller(s) 

important Not important 

Network Management Easy with the help of the 

controller(s) 

Difficult because changes are 

implemented separately at 

each device 

 

Table 1. 1: Software-defined networking (SDN) versus traditional networks 
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Figure 1. 2: SDN VS Classical Architecture [1] 

 

1.2.3. Application of SDN 

The use of SDN has been increasing recently, that many companies (Google, Facebook, 

Microsoft...) have invested in it with their both data centers and WANs (wide area networks). the 

applications of SDN are classified according to [6] into domains: 

 

1.2.3.1. Data Center Networks domain  

Some of the data center networks domain include: 

 

 Network virtualization is considered as one of the major applications of SDN in 

datacenters, for which it is used to realize multi-tenant networks and stretched/extended 

Networks. Dynamically SDN is applied to create location-agnostic networks and 

separated topologically equivalent networks across a datacenter, with dynamic 

reallocation of resources and VM mobility. In this case SDN has many advantages, it 

helped to improve the recovery time in disasters, offered a better utilization of datacenter 

resources, faster turnaround times and so on. 

 

 Service Insertion or Chaining means creating dynamic chains of L4-7 services 

(application services running within those OSI layers that provide data storage, 
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manipulation, and communication services) to accommodate self-service L4-7 service 

selection or policy based L4-7, for example turning on DDoS protection in response to 

attacks, self-service firewall, IPS (intrusion prevention system) services in hosting 

environments. As [7] claimed the use of SDN reduced the provisioning time from weeks 

to months, as the improvement of agility and self-service provided new revenue and 

service opportunities with lower costs.  

 

 Tap Aggregation that provides total traffic visibility and troubleshooting on any port 

into network and facilitates optimal performance and security. therefore, using SDN 

reduces the cost (saves 50-100k per 24 to 48 switches) and leads to less overhead in 

initial deployment, reducing need to run extra cables from NPBs or every switch. 

 

1.2.3.2. Service Provider and Transport Networks domain  

The programmatic Operator-Network interfaces provided by SDN allows addressing 

operator requirements without changing the lower-lever aspects of the network. this flexibility is 

a result of decoupling the control and data plane so the distribution doesn’t need to mimic the 

distribution of data plane. SDN has many advantages on many use-cases: 

  Dynamic WAN reroute: Savings lot of money from unnecessary investment in 10 

Gbps or 100 Gbps L4-7 firewalls, load-balancers, IPS/IDS that process unnecessary 

traffic. 

 Dynamic WAN interconnects:  Ability to instantly connect and providing ability to 

enable self-service by reducing the operational expense in creating cross 

organization interconnects. 

 Bandwidth on Demand: reduce operational expense, and increase the agility saving 

long periods of manual provisioning. 

 

1.2.3.3.  Campus/Enterprise/Home Networks domain  

SDN has known various use-cases with this type of networks, therefore, many applications 

are explored using SDN such as video streaming, BYOD and network virtualization, application 

aware routing etc. 
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1.3. Security in SDN 

Like with any other network or platform, the software-defined networks require security 

against every threat, to which they might be exposed.   

1.3.1.  Security analysis of SDN architecture 

The Software-Defined-Networking (SDN) concept moves traditional networking from 

hardware to software with the benefits of automating and simplifying network operation and 

administration and improving the network performance. Therefore, because of its design nature, 

SDN has security advantages, of between it: 

 The effective monitoring of abnormal traffic: it is easier to notice any abnormal behavior 

caused by any attacker because the controller allows to perceive the entire network traffic 

simultaneously.   

 Timely dealing with vulnerabilities, i.e., once new threats are detected, new analyzing 

software can be programmed to immediately deal with the vulnerability, instead of 

spending time in waiting for updates. 

Unfortunately, SDN technology introduces new vulnerabilities and threat vectors that are 

inherent to its novel architecture. In fact, SDN also have a lot of security flaws, the most important 

of which is the "vulnerable controller" that is a very high-value target, where most functions 

(network information collection, configuration, routing...) are concentrated. in other word, once 

the controller is controlled, the entire network is controlled. Furthermore, the open nature of 

programmable interfaces made SDN more susceptible to security threats and causes many risks in 

view of the fact that it exposes the controller's vulnerabilities and caused interfaces abuse (e.g., 

embedding malicious code). As the separation of the planes in SDN offered more points to attack 

(switches, controllers, applications and links between them) as shown in Figure 1.3.[8][9][10] 
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Figure 1. 3: Possible attack points is SDN architecture [8] 

 

1.3.2. Security attacks and threats to SDN architecture 

  The SDN architecture has its unique requirements of security and lacking these 

requirements make the architecture vulnerable to various attacks and threats [11] that can occur 

through various points in the network. each layer and interface in SDN's architecture is sensitive 

to certain attacks that might compromise the network components in the same layer or target 

elements in other layers. The virtualized behavior of the SDN makes the network susceptible 

to new attacks, which are different from those found in the conventional network [12].  The 

threats are classified into groups according to the layers/points at which it occurs. 

1.3.2.1.  Infrastructure Layer Security Threats 

The Data Plane layer contains a large number of interconnected switches that are 

responsible for forwarding packets. It is considered as the direct entry point of network access for 

end-devices users. The switch can get attacked by attacking the link to its port. Identifying the 

possible security threats in this layer is very important, the main attacks are the Man-In-The-

Middle (MITM) attacks that occur between the switch and the controller, and DoS attacks to 

overflow both OpenFlow switch’s function modules (Flow Table and Flow Buffer).[8] 
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1.3.2.1.1. Man-In-The-Middle Attacks (MITM)   

A typical network attack that consists on inserting an agent node between the destination 

and source nodes to control the communication process. This attack aims to intercepting and 

tampering the communication data, without being detected by both sides. Specific MITM attacks 

methods include DNS Spoofing in which the attacker provides fake data, Session Hijacking etc. 

[13] In SDN, this type of attack takes control of the network packet forwarding by intercepting it 

with the forwarding rules issued to the switch, and since the switch and controller can be indirectly 

connected, all switches and hosts connected to them (in a direct way) on the communication path 

are susceptible to be converted to agent nodes. Achieving MITM attack allows implementing 

further attacks like Black-hole attacks.[14][15] 

 

1.3.2.1.2. Denial-of-Service (DoS) Attacks 

DoS attack allows the attacker to generate numerous fake packets destined to unknown 

network devices in a short time period. This can paralyze the legal traffic and prevent forwarding 

correctly, because the overflow of irregular traffic in the Flow Table will fill up the switch's limited 

Flow Table storage capacity, hence, it won't be able to insert new rules. Flow Buffer (in which the 

packets are buffered while searching for a rule or inserting new one before getting forwarded out) 

as well is another target of DoS attacks. Similarly, to the "Flow Table", flow buffer has a limited 

storage capacity. Hences, flooding large packets (belong to different flow than the switch normally 

encounters) lead to its saturation. Thus, there will be no space for the new legitimate packet and 

get dropped.[8] 

 

1.3.2.2. Control Layer Security Threats 

In SDN the control plane (i.e., the OpenFlow controllers) is a centralized decision- making 

entity that have a great impact on the whole network. If the controller is hacked the whole network 

will get effected. As it has direct impact on the forwarding level because the controller is 

responsible on the forwarding rules (if the switch didn't receive any forward rules from the 
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controller, it cannot forward packets). Being the main part in the network made it the controller 

hackers main focus, more exposed to various attacks and faces a lot of challenges. 

1.3.2.2.1. DoS/DDoS attacks on the controller 

DoS and distributed DoS attacks are the most threatening security challenges for the SDN 

controller. It is an attempt to make a network resource unavailable to legitimate users [11] by 

exhausting memory resources in both the Control-Plane and Data-Plane [14].  

as shown in Figure 1.5, an attacker implements DoS\DDoS out of producing a large amount of 

flooding traffic in a short period of time to the SDN-Enabled network using its own host or 

controlling other distributed hosts, that will be mixed with the normal traffic and it will be hard to 

differentiate between the two types. In this case, the controller will struggle in dealing with the 

huge amount of Packet_In messages generated in short time by the flooding traffic. This will lead 

to consuming all the resources as a try to control the situation and process the normal traffic. At 

the same time, the bandwidth between the controller and the switches may be fully occupied this 

will seriously reduce the performance of the whole network.[12] 

 

Figure 1. 4:DoS/DDoS Attacks on the Controller [8] 

 

1.3.2.2.2. Threats from Applications 

The threats to the controller can also come from the applications that run on the controller. 

For each type of application that has different functional requirements, the network needs to 

specify a specific security policy. For example, load balancing applications may need to have 

access to network packet statistics, and intrusion detection applications (IDS) may need to check 

the header field of packets.[11] 
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1.3.2.2.3. Threats on distributed multi-controllers 

SDN were designed at first as a single controller architecture, but got upgraded to be a 

distributed control architecture (in form of clusters) as a solution to address the lack of scalability 

and reliability and process the management of a huge number and variety of devices that cannot 

be managed by a single SDN controller. This divided the network into different subnetworks, 

where each individual controller controls specific number of switches, and the controllers can 

communicate to manage the whole network collaboratively. However, this dividing makes 

information aggregation and maintaining different privacy rules in each sub-network a challenge. 

In this situation, an application that passes over multiple network control domains will face 

numerous security problems, such as authentication, authorization and privacy issues... In addition 

to the hidden inconsistent configuration threats, that are resulted from the switch-over of the master 

controller and the coexistence of multiple controllers in a single network domain.[11][8] 

 

1.3.2.3. Application Layer Security Threats 

Attackers in the application layer can seize network resources, damage the configuration 

and steal information, and more of the same, all through the insertion of spyware or malware 

programs into the application, so in this way, it can damage the network and influence its reliability 

and availability. Even though OpenFlow deployed flow-based security detection algorithms for 

security applications, these applications weren't compelling nor mandatory [16]. Besides that, the 

absence of agreed-upon development environments or network programming models/paradigms 

led to developing applications with different programming languages, which could cause 

interoperability inconsistency and security policy conflict. therefore, every malicious application 

should be stopped early as soon as possible. Some of the security threats to and countermeasures 

of the application layer are described below. 

1.3.2.1.1. Illegal Access 

As known, the applications running on the controller are flexible and extensible and have 

special rights to control the network behavior and access the resources. Therefore, the lack of a 

standardized security mechanism for SDN applications causes serious security threats [8] and 

makes the application layer vulnerable to illegal access. [14]   
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1.3.2.1.2. Security Rules and Configuration Conflicts  

The difference in programming languages of each application is considered as an 

obstruction to the cooperation of the various applications used in the application layer which cause 

Security rules and configuration conflict.[15] 

 

1.4. Intrusion Detection System (IDS) 

Intrusion Detection System (IDS) is a mechanism or technology that was built to monitor 

a network or system for intrusions, detect unauthorized access or malicious activities. IDS’ main 

role in a network is to help computer systems prepare to deal with network attacks and take suitable 

treatments by reporting the detected intrusion. According to [17] Intrusion detection functions 

include:  

 Monitoring and analyzing both user and system activities.  

 Analyzing system configurations and vulnerabilities.  

 Assessing system and file integrity.  

 Ability to recognize patterns typical of attacks.  

 

1.4.1. IDS Approaches 

There are two basic categories of intrusion detection techniques: anomaly detection and 

signature-based detection. 

1.4.1.1. Signature based Detection 

This technique is based on a database that consists of attacks descriptions or signatures to 

be used in the intrusion detection process by comparing the received packet's signature with the 

ones in the database. This type is widely used in commercial products due to its high detection rate 

and low false alarms, very effective against the known attacks, unlike the 0-day attacks that he 

fails to discover. As new attacks are discovered, developers must model and add them to the 

signature database.[18] 
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1.4.1.2. Anomaly Based Detection 

This type of detection depends on the description and classification of the network to the 

normal and anomalous, as this classification is based on rules or heuristics rather than patterns or 

signatures. The implementation of this system needs to know the normal behavior of the network. 

Unlike the previous type, this type can detect all kinds of intrusion whether it was known or zero-

day attack.[17] 

 

1.4.2. Classification of IDS 

IDS can be classified based on the serving component as either host-based, network-based: 

1.4.2.1. Host based IDS (HIDS) 

This type is placed on one device such as a server or workstation, where the data is analyzed 

locally to the machine and are collecting this data from different sources. HIDS can use both 

anomaly and misuse detection systems. 

1.4.2.2. Network based IDS (NIDS) 

NIDS are deployed at strategic points in network infrastructure. The NIDS can capture and 

analyze data to detect known attacks by comparing patterns or signatures of the database or 

detection of illegal activities by scanning traffic for anomalous activity, it usually detects attacks 

such as worms, scans, DoS attacks, botnets, and other types of attacks. NIDS is also referred to as 

“packet-sniffers” Because it captures the packets passing through the communication 

mediums.[18] 

 

1.5. DOS/DDOS Attacks 

1.5.1. Denial-of-Service (DoS) 

Denial-of-Service (DoS) attacks are considered a cyberattack that exploits the internet to 

target critical Web services. This type of attack is intended to prevent legitimate users from 

accessing a specific network resource or degrade normal services by sending huge unwanted traffic 

to the victim (machines or networks) to exhaust services and connection capacity or the bandwidth. 
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The increasing flow of DoS attacks make servers and network devices on the internet at greater 

risk, it becomes more like a body with no brain. DoS attacks can cost an organization both time 

and money while their resources and services are inaccessible.[19] 

The DoS attacks have two general methods: flooding services or crashing services. the 

flood attacks are a result of receiving the system too much traffic for the server to buffer which 

causes them to slow down and eventually stop. Other different DoS attacks exploit vulnerabilities 

that damage and crash the targeted system or service. Inputs in these attacks are sent to take 

advantage of bugs in the target that crash the system so it can be used or accessed. 

 

1.5.2. Distributed-Denial-of-Service (DDoS) 

A distributed denial-of-service (DDoS) attack uses multiple hosts to attack against a 

system, unlike the DoS attack in which a single source performs the attack. The attackers 

developed specialized malware which they spread to as many vulnerable computers as possible. 

Malware can spread via compromised websites, email attachments or through an organization's 

network. Any users tricked into running such malware will unintentionally turn their computer 

into a bot and provide an access point for attackers to their computer. Once a computer turns into 

a bot, it connects to the attackers' command and control servers, and it begins to accept orders from 

these centralized machines. The orders from the command-and-control servers include directions 

for launching an attack from the bots malware to a particular target using selected attack methods. 

DDoS allows for exponentially more requests to be sent to the target, therefore increasing the 

attack power, as the true source of the attack is harder to identify. The motivations behind DDoS 

attacks can be financially driven, pursuit of crippling a business, competitor, activism, political, or 

even just for fun.[20][21] 

  A botnet is an army of bots that usually consists of the infected computers forming a 

network (known also as zombies). Anytime the botnet owners want to launch an attack, they send 

messages to their botnets, command and control servers with instructions to perform an attack on 

a particular target. Any infected machines will comply by launching a coordinated well time 

distributed attack, known as a DDoS attack. Figure 1.5 show us the difference between DoS and 

DDoS attacks that was explained above. 
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Figure 1. 5: DoS versus DDoS attack 

 

1.5.2.1. DDoS attacks Classification 

According to [20], the DDoS attacks is classified into two categories: flooding attacks and 

logical attacks. Flooding attacks creates avalanche of transmitting packets at the victim side which 

makes the target machine incapable of handling request from the legitimate users. In Logical or 

software attack, a small number of malformed packets are designed to exploit known software 

bugs on the target system. 

1.5.2.1.1. Flooding Attack Types 

The flooding attack types include: 

 SYN Flooding Attack: the attacker uses spoofed IP addresses to send requests to a server. 

The server responds by sending the SYN/ACK signal waiting for the ACK signal from its 

client. But this time no reply comes since the IP is spoofed and the real client is unaware 

of the ACK signal that the server is expecting. This leaves the half open connections on 

the server side thus consuming its resources. Therefore, creating thousands and thousands 

of requests like this can force the server to crash or hang.   

 ICMP Attack: the attacker sends forged ICMP echo packets to broadcast addresses of 

vulnerable networks. All the systems on this network reply to the victim with ICMP ECHO 

replies. This rapidly exhausts the bandwidth available to the target, effectively denying its 

services to legitimate users. 
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 UDP Flooding Attack: is possible when an attacker sends a UDP packet to a random port 

on the victim system. The victim system will look for the application waiting on that port. 

When it realizes that there is no application that is waiting on the port, it generates an ICMP 

packet of destination unreachable to the forged source address. If flood of UDP packets is 

sent to the victim machine, the system will surely go down. 

 

1.5.2.1.2. Logic Attack Types 

Logic attack types include: 

 Ping of Death:  the target system is pinged with a data packet that exceeds the maximum 

bytes allowed by TCP/IP. 

 Teardrop Attack: the attacker sends two fragments (of a packet) that cannot be 

reassembled properly making use of a bug in the TCP/IP fragmentation re-assembly code 

of various operating systems by manipulating the offset value of packet and cause reboot 

or halt the victim system. 

 Land Attack: An attacker sends a forged packet with the same source and destination IP 

address. Whenever victim system replies to that packet it actually sends that packet to itself, 

thus creating an infinite loop between the target system and target system itself thus causing 

the system to crash or reboot. 

 

1.5.3. DDoS Defense mechanisms  
 

As mentioned in [20], the DDoS defense mechanisms can be classified into prevention, 

detection, response, mitigation and tolerance. The attack prevention methods try to stop every well 

know signature-based and broadcast-based attack from being launched, which keep all the devices 

updated to any new security fixes. It consists of many approaches including anti-DDoS HTTP 

Throttling, firewall and packets filtering. An attack detection aims to detect an ongoing attack as 

soon as possible without misclassifying and disrupting legitimate traffic. DDoS detection can be 

Signature-based or anomaly-based detection. Normally after detecting an attack, the traffic must 

be blocked from its source, but in this case, the source can’t be identified due to using spoofed IP 

addresses thus making it difficult to trace back. Therefore, mitigation and tolerance aim to reduce 
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the effect of these attacks on the victim devices by using load balance, better queue management, 

traffic control scheduling etc. 

 

1.6. Conclusion  

In this chapter, we highlighted an overview of some generalities that include Software-

defined network and its architecture, difference with traditional network and the security 

challenges it faces. We also presented an overview that defines the Intrusion Detection System 

(IDS) and both denial of service and distributed denial of services attacks. The next chapter will 

focus on the machine learning in networking and some related works analysis study. 
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2.1. Introduction 

Machine learning technology has been rapidly developed in recent years and used 

in various fields to solve many problems. Therefore, some studies have begun to introduce 

machine learning methods into SDN, as a new network architecture that enables to control 

and define the network through software programming, seeking to solve several problems 

that cannot be solved using the traditional methods easily and improve the efficiency of 

network management. 

 

2.2.  Machine Learning 

Machine Learning (ML) is a branch of Artificial Intelligence (AI) as shown in Figure 2.1. 

It is considered as the capability of AI systems to learn by extracting models from processed data. 

The “learning” concept is about the ability of the developed algorithms to generalize different 

behaviors by using the information from the training examples. Using a computer science lexicon, 

Tom Mitchell presented it as “A computer program is said to learn from experience (E) with 

respect to some class of tasks (T) and performance measure (P), if its performance at tasks in T, 

as measured by P, improves with experience E” [22]. Unlike the traditional programming that 

relies on hard-coded rules and uses data to run the program on the computer to produce the output, 

in machine learning algorithms, the output of the execution depends on the training phase of the 

software using the data. Machine Learning focuses on the development of computer programs that 

can teach themselves to grow and change when exposed to new data, which mean that the same 

algorithm can produce different outputs depending on the training data used.  

The entire process of machine learning revolves around two main processes: training and 

prediction. The training process relies on the dataset, in which the model learns the best parameters 

to minimize the error rate. The dataset is gathered properly according to the achieved outcome and 

divided into three sets to improve the generalization capabilities of the model: the training set, 

which the algorithms use to learn the best parameters, the validation set that the model 

hyperparameters are tuned on and to choose the optimal, finally the test set is used to evaluate the 

model's final performance. Prediction is the final step of the machine learning process. this is the 

stage where we consider the model to be ready for practical applications. The challenge for the 
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model remains whether it can outperform or at least match human judgment in different relevant 

scenarios as it draws its own conclusion on the basis of its data sets and training. 

Machine Learning uses a number of theories and techniques from Data Science: 

classification, categorization, clustering, trend analysis, anomaly detection, visualization and 

decision making, these ML techniques and AI are being increasingly used in various functions 

such as: image processing, healthcare, data mining, video games, robotics, text analysis and so on. 

 

 

 

Figure 2. 1: Machine Learning in AI 

 

2.2.1. Machine Learning techniques 

There are typically two different types of machine learning techniques: supervised 

Learning and   unsupervised Learning, both are typically used for different kinds of machine 

learning tasks. 

 

2.2.1.1. Supervised Learning 

It uses labeled data, called training data, to build a predictive model to predict the label of 

unlabeled data. It seeks to create a model that can make predictions about the response values for 

a new dataset. If larger training datasets are used, it is possible to generate models with superior 

predictive capacity and, consequently, obtain good results on new sets.[23] 

2.2.1.2. Unsupervised learning 

In unsupervised learning, there is no output (unlabeled) associated with the inputs; even 

the model tries to extract the relationships from the data [24]. the algorithms learn the structure 
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and representations from the unlabeled inputs. The goal is to model the fundamental structure or 

distribution in the data to predict unknown data [25]. Unsupervised learning is used as classifying 

the set of similar patterns into clusters, dimensionality reduction, and anomaly detection from the 

data [24]. When new data has been given to the trained model, the model puts it in one of the 

clusters [26].  

 

2.2.2.     Classification in Machine Learning 

  Classification is a supervised learning approach that predicts the outcome of a class type, 

in other words, it is the process of classifying a set of data into classes, where it can be structured 

or unstructured data. 

The classification model uses the attributes of any type of entity to predict the class of 

entities. The attributes of the selected entity can be shape, dimensions, color… and so on. These 

data points can be used to predict the outcome of a class, meaning that the model learns that certain 

traits belong to certain classes or categories.  

The classification model learns that these attributes belong to a particular categorical result 

in a supervised manner where you map the data points directly to a category label. The class label 

can be binary such as positive or negative, whether or not the disease is present, whether or not 

the customer is a returning customer, or whether the job applicant is a successful or unsuccessful 

one. Some of the main algorithms used in classification models include decision trees, naive 

Bayes, support vector machines, and neural networks. They all take different approaches to predict 

the outcome of a class. 

 

2.2.2.1. Support Vector Machine (SVM) 

Support vector machines (SVMs) are one of the most popular supervised machine learning 

models with related learning algorithms that examine data, distinguish patterns and intended for 

categorization, which was invented by Cortes and Vapnik in 1995 [27]. 

SVM is selected as a classification algorithm for its ability to simultaneously minimize the 

empirical classification error and maximize the geometric margin classification space. These 

properties reduce the structural risk of over-learning with limited samples. Therefore, it has been 

applied successfully to image recognition, text categorization, medical diagnosis, remote sensing, 

motion classification and so on as classification problems.[28] 
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Yet, SVM's principle is very simple, it separates several classes in the training set with a surface 

that maximizes the margin between them, i.e., it allows to maximize the model's generalization 

ability [29].  

For a given training data, an optimal hyperplane, by the support vector which maximize 

the margin between classes, separates (i.e., classify) observations that belong to one class from 

another based-on linearly or nonlinearly separable patterns of information called features (Figure 

2.2). That hyperplane can then be used to determine the most probable label for unseen data. 

The features used to infer the hyperplane typically are not raw data, but derivative data 

from some kind of interpolation during the feature selection stage. Features are further referenced 

by coordinates based on their relationships to each other and form the support vectors. [30] [31]  

 

 

Figure 2. 2: SVM Classifier [30][31] 

 
An SVM model is classified into two types linear classification where the data can be 

separated linearly as shown in Figure 2.1, and the other one is non-linear.in this case the support 

vector machine uses a kernel trick to transform into a higher dimensional space so it can be easier 

to segregate the data points. SVM kernels include linear kernel, polynomial, Radial Basis Function 

Kernel etc. 

 

2.2.2.2.       Random Forest (RF) 

  Random forest is a popular supervised classification algorithm that was first introduced by 

Breiman in 2001 [32]. As the name refers to, it is a collection of multiple trees that's known as 
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decision trees, and the term "Random" is because the algorithm is a forest of randomly created 

decision trees either by using random feature selection or bootstrap. Hence, the Random Forest 

algorithm is considered as an advancement to the existing decision trees for the overfitting problem 

it suffers from. Therefore, RF is considered to be faster and more accurate for complex dataset. 

 

 

Figure 2. 3: Random Forest Classifier [12] 

 
Random Forest classification algorithm is based on the concept of ensemble learning. As 

explained in Figure 2.3, it creates multiple trees, each trained on a bootstrapped sample of the 

original training set, and the results from each tree are aggregated to give a prediction for each 

observation as the predicted class is calculated based on the majority voting of the trees. [33]  

the discrimination function is defined as: 

                                  H(x)  =  argmax𝑦 ∑  I(ℎ𝑖(X, 𝜃𝑘  ) =  Y)                                                 (2.1) 

𝑘

𝑖=𝑖

 

 In which: x is the input vector, I () is the indicator function, h (X, 𝜃𝑘   ) is a classifier (single decision 

tree) where 𝜃𝑘  represents a random vector for the kth tree, Y is the output variable and "argmax𝑦" 

denotes the output value when maximizing    ∑  I(ℎ𝑖(X, 𝜃𝑘  )  =  Y) 𝑘
𝑖=𝑖 .[34]  

In the training process, the RF algorithm works on a randomly selected subset of input 

features or predictive variables, which reduces the generalization error, to determine node split.  
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To make the trees grow from different training data subsets, the RF algorithm uses 

bootstrap aggregation or the bagging technique that resample randomly the original dataset with 

replacement and each subset selected contains a certain proportion of the training dataset, in which 

it increases the diversity of trees. the absent samples in the training subset (i.e., unselected elements 

by bootstrapping process that are one-third of the samples) are included in another subset called 

OOB (out-of-bag), in which is formed for every tree in the ensemble, can be used to evaluate the 

model performance. [35] 

The number of variables is the only adjustable parameter. setting the default value to the 

square route of the total number of inputs (i.e., limiting the number of used variables for a split) 

decrease the correlation between the trees and reduce the computational complexity of the 

algorithm. [36] 

 

2.2.2.3.       Artificial Neural Networks (ANN) 

  Artificial Neural Networks are a supervised machine learning model that was initially 

derived from the principle of the operation of the human neural system and inspired by the 

interconnection between them. It was first proposed in the middle of the 20th century but the main 

revolution was in the 21st century in which the advances in computing made it possible to train 

complex networks. 

Based on multiple input signals, each unit or neuron performs a simple action to produce a 

single output. the interconnection between the neurons is known as a network, as shown in Figure 

2.4, ANNs follow usually a layer-based structure that consists of 3 or more neuron layers, the first 

is called the “Input layer”, the last is the “Output Layer” and the second one that’s in between is 

known as the hidden layer, in which, the neurons of each layer are connected by an axon to each 

neuron of the next layer except the neurons of the last one. [37] 
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Figure 2. 4: Structure of a neural network [16] 

 

  ANNs are one of the most used ML techniques for its ability to model complex non-linear 

systems. The parameters of ANN are the values of the used models to compute the Output. Hyper-

parameters are the parameters that change the learning of the process and the fitting capabilities, 

its huge quantity to choose from is considered as the main trouble when using ANNs, though it is 

not a part of the resulting model. [37] 

The operation performed in ANN is mathematically defined by the equation: 

                                            𝑦𝑖  = 𝑓𝑖(𝑧)                                                                     (2.2) 

 In which  (𝑖 )  is the neuron, and the (𝑧) is considered as the argument (𝛴∀𝑗𝑤𝑖,𝑗𝑥 + 𝑏𝑖) . 

 

 

 

Figure 2. 5: Model of the artificial neuron [38] 
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          As explained in Figure 2.5, for each neuron there will be multiple combined inputs 𝑥𝑖 , each 

of it has weight assigned to it, in which it is weighted by the parameters 𝑤𝑖,𝑗 that are modified 

during learning process. The weight of each input into the neuron gives it strength, in other word, 

the input influences the output of the neuron if it has great weight, as it doesn’t influence it in the 

opposite case. The influence of the whole neuron is controlled by the modifiable parameter 𝑏𝑖. 

 The activity of neurons is usually determined via the activation function 𝑓𝑖(𝑧), in which its usage 

depends on the type of the network and the layer. There are several different used activation 

functions, one of which is the Sigmoid function that's considered as one of the oldest and most 

commonly used non-linear functions that is defined by: 𝑓𝑖(𝑧) =
1

1+𝑒−𝑧
. [37] 

 

2.3. Feature Selection 

Feature selection (FS) is the process of selecting the most important and appropriate sample 

of features to build an efficient ML model. Employing it aims to narrow down the ML model's set 

of features to the most relevant ones for a better evaluation metrics rate, all by eliminating the 

redundant or irrelevant input variables. This process has many advantages include [39]:  

 simpler models. 

 shorter training time and decreased computational cost. 

 model's variance reduction. 

 increasing performance of the ML model.  

 

2.3.1.     Feature selection methods 

There are three main feature selection methods [40][41]: 

2.3.1.1.    Filter method  

Filter method selects features based on their statistical score in various tests for their 

correlation with the outcome variable. Some of the existed filter techniques are Information Gain, 

Chi-Square Test, Fisher’s Score and so on. Figure 2.6 shows the flowchart of filter method. 
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Figure 2. 6: Filter feature selection flowchart [40] 

 

2.3.1.2.    Wrapper method 

Wrapper method generates feature subset using ML algorithms as a part of the feature 

evaluation function. It splits the data into subsets and use it to train the ML models. Based on the 

calculated inference and the model’s output, it decides whether the feature will be added or 

removed from the subset. Figure 2.7 shows a detailed flowchart. The wrapper method has several 

techniques include: forward selection, backwards elimination, genetic algorithm etc.  

 

 

Figure 2. 7: Wrapper feature selection flowchart [40] 

 

2.3.1.3.    Embedded method  

The embedded method is a result of combining the qualities of both the filter and wrapper 

method to generate the best features subset. Figure 2.8 is detailed flowchart of this method. 

 

 

 

Figure 2. 8: Embedded feature selection flowchart [40] 
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2.4. Related work 

In the recent years, researchers started to be more interested with network security, and 

with the significant increasing of the ML and DL techniques that the last decade has witnessed, 

many studies have been done on publicly datasets (InSDN dataset) as a try to detect and secure 

SDN against DoS/DDoS attacks. 

 

2.4.1.     InSDN: A Novel SDN Intrusion Dataset 

Elsayed et al in the article [12], generated a new significant and comprehensive SDN 

dataset that includes diverse attack categories that can be found in all SDN elements, the attack 

classes are DoS, DDoS, Prob, web attacks, brute force attack, malware and exploitation. further, 

they evaluated the quality and demonstrated the use of the proposed InSDN dataset with popular 

ML techniques for IDSs by performing an experimental evaluation.  

Specifically, 8 common supervised learning algorithms have been employed: two SVM 

based methods: linear kernel (lin-SVM) and a radial basis function kernel (rbf-SVM), three tree-

based algorithms: single Decision Tree, RF and adaptive boosting. besides to the K-Nearest 

Neighbor (KNN) classifier, Naive Bayes and a Multi-Layer Perceptron model. 

The performance of all algorithms is tested with two versions of the proposed dataset, a 

specific-featured version of 48 features that was selected using the same method (information gain) 

as [42] and a fully-featured version, and trained using the cross-validation technique with K = 5, 

where the training and test data are split into 80% and 20%. The results for DoS and DDoS attacks 

are shown in Table 2.1 and Table 2.2. 

 

Attack Name Algorithm Metrics 

Precision Recall F1-score Training Time 

 

DoS 

RF 0.999876 0.999835 0.999586 61.695 

Rbf-SVM 0.987335 0.997009 0.992148 852.874 

Lin-SVM 0.981379 0.990146 0.990146 202.16 

 

DDoS 

RF 0.999992 0.999951 0.999971 41.503 

Rbf-SVM 0.999680 0.999885 0.999783 2825.451 

Lin-SVM 0.999639 0.999967 0.999803 209.679 
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Merged 

RF 0.999931 0.999942 0.999936 231.436 

Rbf-SVM 0.997692 0.999786 0.998738 17161.164 

Lin-SVM 0.999857 0.999898 0.999529 12161.164 

 

Table 2. 1: Metrics performance for the fully-featured version of the dataset [12] 

 

Attack Name Algorithm Metrics 

Precision Recall F1-score Training Time 

 

DoS 

RF 0.999732 0.999567 0.999649 70.569 

Rbf-SVM 0.826327 0.995008 0.902856 2271.213 

Lin-SVM 0.817605 0.994204 0.897298 789.381 

 

DDoS 

RF 0.999732 0.999567 0.999649 70.569 

Rbf-SVM 0.999631 0.999672 0.999651 2521.642 

Lin-SVM 0.999557 0.999688 0.999623 113.666 

 

Merged 

RF 0.994269 0.996918 0.995592 226.151 

Rbf-SVM 0.963110 0.997622 0.980062 25837.86 

Lin-SVM 0.972192 0.995326 0.991338 152475.72 

 

Table 2. 2: Metrics performance for the SDN specific-featured version of the dataset [12] 

 

2.4.2.     Collaborative detection and mitigation of DDoS in Software Defined 

Network 

Tayfour and Marsono in the work [43] proposed a collaborative DDoS detection and 

mitigation method that consists of a machine learning ensemble method called V-NKDE (Voting 

‑Naive Bayes, K Nearest Neighbors, Decision Tree, and Extra Trees) multiple classifiers to 

improve DDoS detection accuracy. The performance of the proposed classifier is tested on several 

datasets including the InSDN dataset. The results and evaluation metrics are shown below in Table 

2.3. 
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Dataset Metrics 

Accuracy  Precision Recall F1-score 

InSDN 99.84 99.80 99.80 99.80 

CICIDS2017 99.67 99.70 99.70 99.70 

NSL-KDD 99.77 99.80 99.80 99.80 

UNSW-NB15 98.09 98.10 98.10 98.10 

 

Table 2. 3: Evaluation of V-NKDE classifier performance for all dataset [22] 

2.4.3.     An evaluation of machine learning methods for classifying Bot traffic in 

Software Defined Networks 

Staden and Brown in the article [44] made a comparison of various machine learning 

algorithms: KNN, SVM, RF, Neural network, logistic regression and multilayer Perceptron, for 

identifying malicious bot activity on a network. The ML models were tested against the InSDN 

dataset by extracting the top 36, 18 and 8 features from the original 80 features by using the 

SELECTKBEST method as shown in Figure 2.9. the dataset was split to 30% test set and a 70% 

training set. The Table 2.4 represents the classification results the evaluation metrics. 

 

 

 

Figure 2. 9: Features ranking [23] 
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Features size Metrics  ML Models  

NN RF SVM 

 

36 Features 

Precision 77.77  93.53  82.74  

Recall 95.95 92.91 98.82 

F1-Score 80.50 93.18 88.12 

 

18 Features 

Precision 72.68  93.59  71.99  

Recall 91.32 91.57 97.33 

F1-Score 78.31 92.44 79.89 

 

8 Features 

Precision 59.33  92.36  67.68  

Recall 79.20 90.89 96.85 

F1-Score 64.87 91.52 76.42 

 

Table 2. 4: Classification results of ML models [44] 

 

2.4.4.     A comparison between the related works 

Table 2.5 shows the comparison between the previous related works with respect to the 

following metrics: the machine learning methods and model used, datasets and number of features 

used, the Precision, Recall and F1-score obtained by the applied machine learning algorithms. 

 

Article ML method Dataset 

used 

Number of 

features 

Pre-

processing 

Feature 

selection   

Evaluatio

n metrics 

 

[12] 

 

RF 

 

InSDN 2020  

dataset 

48 specific 

features 

 

Yes  

 

Information  

gain 

 

Table2.1 

and 

Table2.2 

 

SVM (lin/ rbf) 

Fully- featured 

version 

 

 

 

 

V-NKDE 

InSDN2020 48 features   

Yes 

 

Information 

gain 

 

 CICIDS2017 5 features 

NSL-KDD 41 features 
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[43] UNSW-

NB15 

48 features  

 

Table 2.3 

 

[44] 

Neural Network InSDN 2020  

dataset 

Top 36 features  

Yes 

SELECTKB

EST method 

 

Table 2.4 RF Top 18 features 

SVM Top 8 features 

 

Table 2. 5:  Comparison between related works 

 
After analyzing the previous various related works that address similar issues, it shows 

that: 

 All works trained various machine learning models on the same dataset as ours after 

going through the preprocessing step but with different features subsets. 

 [21] and [43] used the same feature selection method (Information gain that belongs 

to the filter methods) but [44] used the SELECTKBEST method unlike our chosen 

feature selected method (Forward Feature Selection). 

 

2.5. Conclusion 

In this chapter, we presented an overview on the machine learning focusing on the 

supervised classification approach and 3 of its most known models. Next, we gave a simple 

glance on the feature selection process and its different methods. At the end, we presented 

a summary of related works that treated similar issues and problem of detection DoS/DDoS 

attacks in SDN. The next chapter will introduce and discuss our contributions.  

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

Chapter 3: ML based Models 

for Intrusion Detection in SDN 
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3.1. Introduction 

After taking a sufficient look on the machine learning in general and its techniques, 

this chapter, will present the process methodology and the different steps that we followed 

to achieve our objective in this work. 

 

3.2. General architecture 

The general architecture as shown in Figure 3.1 consists of three principal parts: 

 Attacks: it indicates the source of the attacks that can infect the SDN datacenter. 

 Datacenter infrastructure: an infrastructure that includes SDN datacenter and the 

legitimate users that would interact with it and at the same time might be an attacker 

as well. 

 ML based models: its essential work is predicting and detecting the DoS/DDoS 

attacks. 

 

 

Figure 3. 1: General architecture 

 

3.3. Objectif 

We aim in our project to develop an efficient model based on machine learning 

techniques (supervised learning) to predict DoS/DDoS attacks in SDN using the forward 

selection method for features selection from the InSDN dataset. As shown in the detailed 
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architecture Figure 3.2 the purpose is to classify the incoming traffic using ML methods 

into normal or attack (DoS/DDoS) traffic.  

 

 

Figure 3. 2: Detailed architecture 

 

3.4. Modeling process  

          The project realization process goes through the following stages and steps, as shown 

in Figure 3.3, that are applied for all the used algorithms to achieve the best possible 

performance and results:  

A. Data preparation and preprocessing. 

B. Processing 

C. Models’ evaluation. 

D. Models Comparison 

E. Comparative study. 
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Figure 3. 3: Project realization process 

3.5. Data preparation and preprocessing  

Basically, our project realization process depends on studying the proposed the 

dataset (InSDN) in [12] and using it for the modeling process. 

 

3.5.1.   Data description 

InSDN dataset-2020 that was proposed in [12] is a particularly robust dataset for 

intrusion detection system assessment in SDN. It includes benign and various attack 

categories including DoS, DDoS, Probe, U2R… attacks. The dataset was divided into 3 

groups based on the traffic type and target machines: 

 Normal traffic (68424 instances). 

 OVS machine' attacks traffic (100884 DoS/DDoS instances). 

 Metasploitable-2 server’s attack traffic (74674 DoS/DDoS instances). 

 

The InSDN dataset is constructed of more than 80 features (shown in Figure 3.4) that 

was extracted using the CICFlowMeter tool especially, for its time-based features 

consideration, and been divided into eight groups as the following: 
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 Network identifiers attributes: common basic information related to source and 

destination.  

 Packet-based attributes: information about packets. 

 Bytes-based attributes: information related to the bytes.  

 Interarrival time attributes: interarrival time related information (both backward 

and forward directions). 

 Flow timers’ attributes: the information related to the time of each flow (active 

and inactive).   

 Flag attributes: the information related to the flags like SYN Flag, RST Flag, Push 

flag, etc.  

 Flow descriptors attributes: the traffic flow information (the number of 

packets...).  

 Sub flow descriptors attributes: the information related to sub flows (the number 

of packet and bytes in forwarding and backward directions). 

 

Figure 3. 4: a sample of InSDN dataset’s features [12] 
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3.5.2.   Data preparation 

As a first step of preparing the InSDN dataset that contains several attack types, we 

had to get rid of the unwanted types and kept only DOS/DDoS attacks because that's what 

our project aims to detect. Figure 3.5 shows us the large gap between the samples of the 

categories, as we can clearly see that the “malicious/attack” traffic category makes up the 

majority compared to the “normal” traffic category which defines the case of imbalanced 

dataset. 

 

 

Figure 3. 5: Imbalanced dataset histogram 

 

An imbalanced dataset is a term that usually refers to a classification problem that is 

defined as the non-uniform distribution of classes which generally contains two classes: 

majority class and minority class.   

The imbalanced dataset leads to the build of biased and inaccurate models therefore 

balancing it is an important step for a more accurate result. There are several ways and 

algorithms that are widely used to deal with imbalanced class distribution: 

 Oversampling 

 Undersampling 

 Generating synthetic data (ex: SMOTE method).   
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3.5.3.    Data Preprocessing 

Raw data is known that's often incomplete, missing certain values, inconsistent and 

subjected to numerous errors. Preparing and fitting such a dataset into a machine learning 

model is known as "Data preprocessing". It is one of the most important steps to go 

through in processing and dealing with a brute dataset, and indeed is a proven method to 

solve dataset problems. 

In our project, we as well went through data preprocessing steps that are explained below: 

 

Step1: Importing libraries and dataset 

Before starting the preprocessing, importing libraries and datasets is a must. As it's 

known, libraries are extra helpful in storing frequently used routines which helps to simply 

access the dataset that can be imported in several ways depending on its format (.xlsx, 

.csv...). 

 

Step2: Missing values verification 

“Missing values” is when some participants or values have no stored data due to 

incomplete data entry or lost files.... It might cause performance reduction, therefore 

properly handling the missing values is an essential step of data preprocessing. 

 

Step3: Splitting data 

Any machine learning algorithm needs to be tested for various metrics. Therefore, 

the dataset should be divided into a training set and a testing set. this means that the model 

will be trained on the training set to teach it the present behaviors in data and evaluated on 

a different set (test set) that it has not yet encountered to assess whether it has generalized 

well from the data that it has already seen. There are numerous ratio ways to split the 

dataset. In our project, to construct the training and evaluation set, we chose both 70:30 

and 80:20 ratios, in order to compare and choose the best one. 
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Step4: Feature standardization 

A crucial part of the data preprocessing stage. it is a method that transforms the 

features in a dataset and normalizes the variables within a specific range to compare them 

for common patterns. [45] 

 There are methods to do the feature scaling step including standardization and 

normalization. Since there is no hard rule to tell when and what is best method to use, we 

can always fit the model, normalized and standardized data and compare the performance 

for better results. 

 

3.6. Feature Selection  

The main goal behind using the feature selection step is to select the features that 

would yield minimum classification error. As mentioned in Chapter 2 section 2.3, among 

the several feature selection techniques and methods, we chose the Forward selection for 

its ability to select the best features and optimize the models' performance.  

Forward selection is an iterative method that uses the searching technique in order 

to select the features. The whole process consists of having an empty set of features, starts 

adding selected features by an evaluation function, that, at each iteration, selects the best 

feature that would create the best performing model until it meets certain criteria. 

 

3.7. Processing  

This work uses three of the common supervised learning algorithms: Support Vector 

Machines, Random Forest and Artificial Neural Network for classifying our dataset. 

Choosing these three relies on the nature of the used dataset and the addressed problem 

whereas: 

 The type of classification in our case is a binary classification, therefore the 

common ML methods used for it include ours. 

 We chose random forest over decision tree because it is generally a better model if 

the goal is for prediction, as it gives better accuracy and reduces the chances of 

overfitting. 

The modeling of the used classification techniques is explained below: 
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3.7.1.   RF Modeling 

Figure 3.6 illustrates the modelling of a random forest, that takes specific features 

as inputs to build multiple decision trees based on it, each tree represents a possible 

occurrence or response. Finally, it will contribute to the decision and predicts the outcome 

as if there is an attack or not with a majority vote. 

 

 

 

Figure 3. 6: RF modeling process 

 

3.7.2.   ANN Modeling 

The artificial neural network receives a subset of selected features as inputs so it 

can determine an output that represents the appropriate class which is either 0 or 1. The 

whole process can be summarized in few steps as shown in Figure 3.7: 

 The received inputs get to be multiplied by the assigned weight w. 

 adding the multiplied values to form the weighted sum. 

 applying a relevant activation function on the weighted sum of the inputs and their 

perspective weights. 

 the enable function maps the input to the corresponding output. 
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Figure 3. 7: ANN modeling process 

3.7.3. SVM Modeling  

After feeding the SVM classifier a subset of selected features, it will start learning 

what a DoS/DDOS attack traffic looks like and how it is different from normal traffic. the 

process consists of taking all the data points into consideration to find the optimal 

hyperplane (decision boundary) that decides properly both out classes (normal/ attack) and 

maximizing the margins as possible to avoid data misclassification. 

 

3.8. Performance Evaluation  

Evaluating the ML algorithms after applying them is an essential step to make sure 

it is working properly using the performance evaluation metrics. in our work, we relied on 

using the most important performance metrics to evaluate our models and do a comparative 

analysis such as precision, recall, f1-score along with accuracy. it's known that these 

metrics are commonly used for intrusion detection systems. 

 

3.8.1. Confusion Matrix (CM) 

A confusion matrix is a performance measurement for classification problems and 

is extremely useful in measuring some metrics like Recall, Precision…. It is an n*n matrix 

where n is the number of targeted classes (in our study n = 2 because we have two classes 

either 1 or 0, i.e., a binary classification). It defines the number of correct and incorrect 

predictions a classifier makes. As shown in Figure 3.8 that illustrates an example of a CM, 
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the rows represent the predicted values and the columns represent the actual values that 

are: 

 

 True Positive (TP): is the number of positive outcomes that are positively 

predicted, in this case the number of attacks that are classified as an attack. 

 True Negative (TN):  defines the false outcomes that were positively predicted, 

i.e., the number of normal traffic that are detected as normal. 

 False Positive is (FP): the number of positive outcomes that are predicted 

negatively, i.e., the number of normal traffic that are detected as attack. 

 False Negative (FN): is the number of negative outcomes that are predicted 

negatively. i.e., the number of attacks that are detected as normal. 

 

 

Figure 3. 8: Confusion matrix for binary classification [46] 

 

3.8.2. Accuracy 

The most used metric to evaluate the performance of a classification problem's 

model. it defines the ratio of the correctly predicted data from the total number of made 

predictions for a dataset. It is a simple metric for model evaluation and suits the balanced 

data unlike unbalanced one. It is defined as [47]: 

       𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑖𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑖𝑡𝑜𝑛𝑠 𝑚𝑎𝑑𝑒
                                    (3.1) 



 
 

 
46 

 

Chapter 3                                         ML based Models for Intrusion Detection in SDN

                               

z 

Or can be defined using positives and negatives for binary classification: 

                           𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                                    (3.2) 

 

3.8.3. Precision  

It defines the ratio of the actual positive observations that were predicted positively, 

and the more predictive false positives there are the lower "precision" gets. it is considered 

a useful metric for skewed and unbalanced datasets. It is defined as [47]: 

                                    𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                  (3.3) 

 

3.8.4. Recall  

known also as Sensitivity or True Positive Rate (TPR), defines the ratio of the 

correctly identified positive instances. as more false negatives are predicted, the recall gets 

lower.it helps to measure the model's ability in detecting positive samples. It is defined as 

[47]: 

                                     𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                       (3.4) 

 

3.8.5. F1-score 

It is a combination between Recall and precision. it defines the weighted average of the 

two previous metrics. it has a range of [0,1]. The higher the F1- score, the better model's 

performance we get. It is defined as [47]: 

 

                                           𝐹1 =  
2. 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                                    (3.5) 
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3.9. Model’s evaluation and comparison  

After preprocessing the dataset, building the ML models, and training and testing 

them comes the evaluation step in which we analyze and discuss the obtained results of 

each model to compare them and choose the best one for predicting the DoS/DDoS attacks. 

Then again, we compare our results with the related works' results that were mentioned in 

the Chapter2 section (2.2). 

 

3.10. Conclusion  

This chapter presented the general and detailed structure to which we explained the 

different phases of the projectة which summed up in the data analysis, used ML models and the 

evaluation techniques. The next chapter will be about the implementation of what we had in this 

one followed by discussing the obtained results. 
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4.1. Introduction  
In this chapter, we will present and discuss the different experimental results of the 

proposed solution that we conceptually described in chapter 3. As an opening to this chapter, we'll 

present the environment and tools used for the implementation of this project, after that, we'll move 

right ahead to the description of our used dataset and the obtained results, then the performance of 

the classification methods will be evaluated using the chosen evaluation metrics. Finally, a 

comparative study between the different methods shall be presented. 

 

4.2. Environments and development tools 

Table 4.1 shows the different environments and tools we used to realize the project. 

 

Tool Description 

 

 

Google Colab is a cloud service, offered by Google (free), based on 

Jupyter Notebook and intended for training and research in machine 

learning. This platform makes it possible to train Machine Learning 

and Deep Learning models directly in the cloud. Without therefore 

having to install anything on our computer except a browser. 

 

 

 

Python is an interpreted, object-oriented, high-level programming 

language with dynamic semantics [48]. It is in high demand by a large 

community of developers and programmers. Python packages 

(libraries) encourage code modularity and reusability. It is used for 

web development, AI, machine learning, operating systems, mobile 

app development, video games and many more. 

 

 

NumPy is an extension of the Python programming language, 

intended to manipulate matrices or multidimensional arrays as well as 

mathematical functions operating on these arrays. 

 

Matplotlib is an open-source Python library for creating data 

visualizations. 



 
 

 
50 

 

Chapter 4                                                                Experimental Results and Discussion

                               

z 

 

Pandas is a Python written library for data manipulation and analysis. 

it offers data structure and operations for manipulating numerical 

arrays. 

 

 

Keras is a neural network API written in Python language. It is an 

open-source library, running on top of frameworks such as Theano 

and TensorFlow. Designed to be modular, fast and easy to use, Keras 

was created by Google engineer François Chollet. It offers a simple 

and intuitive way to create Deep Learning models. 

 

Scikit-learn is a machine learning free python library. It notably 

includes functions for estimating classification algorithms. It is 

designed to harmonize with other free python libraries, including 

NumPy. 

 

Table 4. 1: Development tools 

4.3. Environment description  

In order to train our dataset, we used Google Colab which is a free cloud service provided 

by Google that supports free GPU, and it offers us a single 25GB NVIDIA Tesla K80 GPU that 

can be used for up to 12 hours continuously. (See Figure 4.1) 

 

Figure 4. 1:  Work Environment 
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4.4. Dataset analysis  

4.4.1. Overview on the dataset 

The used dataset contains 84 columns and 343889 rows in total, all structured in a .CSV 

file. After we got rid of the unwanted attack types, and as we removed all the socket features such 

as source IP, destination IP and so on in order to avoid the overfitting problem, where these features 

can be changed from network to another, the final dataset now includes 77 columns and 243982 

rows, where: 

 Columns from 1 to 76 are attributes (features). 

 The 77th column represents the target class (label) of the dataset which can be either 

0 or 1, which represents normal and DoS/DDoS attack traffic respectively. 

 

 

 

Figure 4. 2: a csv file dataset 

 

4.4.2. Dataset preprocessing  

A.  Importing libraries and dataset 

As a first step, we start importing the needed libraries and modules. We used a different 

set of libraries; each has a different purpose as presented in the Listings below: 
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 Libraries needed for preprocessing and visualization the dataset 

 

Listing 4. 1: Preprocessing and Plot Libraries 

 Necessary libraries for models’ evaluation. 

 

Listing 4. 2: Evaluation Libraries 
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 The used libraries in building the ML models.  

 

Listing 4. 3 : Supervised Model Libraries 

 Keras libraries  

 

Listing 4. 4 Keras Libraries 

 Libraries used for the feature selection. 

 

Listing 4. 5: Feature Selection Libraries 

B. Importing dataset 

Since the dataset used is in CSV format, we used “read_csv ()” function of the Pandas 

library in order to import it, as shown in Listing 4.6. 

 

Listing 4. 6 : Importing Dataset 

 Separate features and labels 

In our dataset, the features take columns from 1 to 76 which are considered inputs 

during the phase of model training. the last column"77" contains the Labels that present 
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the final output category i.e.; the result of prediction. Listing 4.7 shows the separation step 

of labels and features. 

 

Listing 4. 7 : Features and Label Separation 

Data visualization: 

Data visualization is used to help better understand the used dataset. here as shown in 

Figure 4.3 we visualize the distribution of the classes 0 and 1 which represents respectively 

normal and malicious traffic. 

 

 

Figure 4. 3 : Visualizing Data Classes 

 

C.  Missing values verification 

As mentioned in the chapter 3 section 3.5.3, checking missing values is a very 

important step that should be done during data preprocessing. To perform this step, we 

used the " isna ()" function, in which the result was false, i.e., there is no missing values in 

our dataset Listing 4.8. 

 

 

Listing 4. 8:  Results of missing values check 
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D.  Splitting data 

Dataset splitting remains an essential step. after loading and preparing the dataset, it 

shall be split into test and training sets using the 80:20 that we chose after comparing the 

model’s evaluation results with the 70:30 ratio, where: 

 80% is a training set that is used by the model to train on. 

 20% is a testing set, used for evaluating the models for predicting these new data. 

Train_test_split () is a Python module that's used for data splitting, as shown in Listing 4.9. 

 

 
Listing 4. 9 : Results of data splitting 

E. Feature standardization 

This step aims to standardize the variables of the dataset in a specific range. To apply it we 

used the StandardScaler () method (See Listing 4.10), and the results of it shown in Figure 4.4. 

 

Listing 4. 10:  Feature Standardization 
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Figure 4. 4: Results of feature standardization 

 

F. Data preparation and pre-processing  

Among the techniques cited in the previous chapter to deal with the unbalanced class 

distribution, we used the SMOTE technique (Synthetic Minority Oversampling Technique-

Oversampling). And it gives us better performance in terms of recall and precision. Table 4.2 and 

4.3 show the classes distribution before and after oversampling. 
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Table 4. 3: class distribution results and histogram after oversampling ( SMOTE) 
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Table 4. 2: Class distribution results and histogram before oversampling 
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G. Hyperparameters choosing  

Choosing a set of optimal hyperparameters remains a problem for learning algorithms. the 

objective is to find an optimal combination of hyperparameters that would improve and give better 

performance to the model. several techniques help to tune the hyperparameters, one of which is 

the GridSearchCV() that we chose in this work, it gives the best collection of hyperparameters 

among as set of given parameters. this method was applied on our models to determine their best 

hyperparameters for better performance in term of evaluation metrics. (See APPENDIX A sec 2) 

 

H. Feature Selection 

Using the forward selection method (Listing 4.11), we got a subset of 55 features that would 

give us the best models performance as a result of comparing several subsets with different number 

of features. (See APPENDIX B) 

 

Listing 4. 11: Forward selection method 

Table 4.4 represents the obtained features after the feature selection step. Obviously, we 

got some common features with the related works’ features like the Protocol, yet there are some 

features that wasn't used in the test before as a specific subset like Bwd Blk Rate Avg   

 

No. Attribute Name No. Attribute Name 

01 Protocol 29 Fwd PSH Flags 

02 Tot Fwd Pkts 30 Bwd PSH Flags 

03 Tot Bwd Pkts 31 Fwd URG Flags 

04 TotLen Fwd Pkts 32 Bwd URG Flags 

05 TotLen Bwd Pkts 33 RST Flag Cnt 
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06 Fwd Pkt Len Max 34 PSH Flag Cnt 

07 Fwd Pkt Len Min 35 ACK Flag Cnt 

08 Fwd Pkt Len Mean 36 URG Flag Cnt 

09 Fwd Pkt Len Std 37 CWE Flag Count 

10 Bwd Pkt Len Max 38 ECE Flag Cnt 

11 Bwd Pkt Len Min 39 Down/Up Ratio 

12 Bwd Pkt Len Mean 40 Fwd Seg Size Avg 

13 Bwd Pkt Len Std 41 Bwd Seg Size Avg 

14 Flow Byts/s 42 Fwd Byts/b Avg 

15 Flow Pkts/s 43 Fwd Pkts/b Avg 

16 Flow IAT Mean 44 Fwd Blk Rate Avg 

17 Flow IAT Std 45 Bwd Byts/b Avg 

18 Flow IAT Max 46 Bwd Pkts/b Avg 

19 Flow IAT Min 47 Bwd Blk Rate Avg 

20 Fwd IAT Tot 48 Subflow Fwd Pkts 

21 Fwd IAT Mean 49 Subflow Fwd Byts 

22 Fwd IAT Std 50 Subflow Bwd Pkts 

23 Fwd IAT Max 51 Subflow Bwd Byts 

24 Fwd IAT Min 52 Init Fwd Win Byts 

25 Bwd IAT Tot 53 Init Bwd Win Byts 

26 Bwd IAT Mean 54 Fwd Act Data Pkts 

27 Bwd IAT Std 55 Fwd Seg Size Min 

28 Bwd IAT Max  

 

Table 4. 4 :  Selected Subset Features 

4.5. Model training and evaluation 

All the selected models were trained and tested on 2 sets of datasets, a fully featured dataset 

(brut) that contains all the features, and a specific features subset. 

A. Fully featured version of the dataset 

 Support vector machine 

 Hyperparameters 

Table 4.5 represents the used hyperparameters for training and testing the SVM model. 

(APPENDIX A sec2) 
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Hyperparameters C Gamma Kernel 

Values 10 0.0001 rbf 

  

Table 4. 5 : SVM Hyperparameters 

 Results 

The Figure 4.5 shows the results of training and evaluating the performance of SVM classifier. 

(See APPENDX A). 

 

 

Figure 4. 5 : SVM Evaluation Results 

 

 Confused matrix is presented in Figure 4.6 below: 
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Figure 4. 6: SVM Confusion Matrix 

 Discussion 

According to the confusion matrix, class 1 which represents the malicious traffic was detected 

as an attack correctly with 72.25%, also 27.33% of the normal traffic class (0) are detected 

correctly as normal traffic, along with a low error rate, which considered good results. 

 

 Random forest  

 Hyperparameters 

Table 4.7 represents the used hyperparameters for training and testing the random forest 

classifier. (APPENDIX A sec2) 

 

Hyperparameters Max_ 

depth 

Max_ 

features 

Max_ 

samples 

Min_ 

samples_split 

N_estimator 

Values 7 auto 200 2 150 

 

Table 4. 6 : RF Hyperparameters 

 

 Results and discussion 

The performance evaluation results of the RF classifier are shown in Figures 4.7 and 4.8 where 

they represent the evaluation metrics and confusion matrix respectively. 
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Figure 4. 7 : RF Evaluation Results 

 
 

 
Figure 4. 8 : RF Confusion Matrix 

 
From the confusion matrix, we can see that class 1 was detected correctly with a rate of 

70.10%, and class 0 got 27.61%, yet the error rate is a bit high. 
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 ANN 

 Hyperparameters 

Table 4.6 represents the used hyperparameters for training and testing the ANN classifier. 

(APPENDIX A sec2) 

Hyperparameters Hidden_layers Max_iter   Activation Solver  

Values 8 150 relu adam 

 

Table 4. 7 : ANN Hyperparameters 

 Results and discussion 

The performance evaluation results of the ANN classifier are shown in Figures 4.9 and 4.10 

where they represent the evaluation metrics and confusion matrix respectively. 

 

 

 

 

Figure 4. 9 : ANN Evaluation Results 
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Figure 4. 10 : ANN Confusion Matrix 

 

According to the confusion matrix above, class 1 which represents the malicious traffic 

was detected as an attack correctly with 72.30%, also 27.61% of the normal traffic class (0) are 

detected correctly as normal traffic, along with a low error rate, which considered good results. 

 

 Models Comparison 

Table 4.7 shows the performance of the different classifiers using the fully-featured version 

of the dataset. we used the most commonly used performance metrics in intrusion detection 

systems, besides the accuracy score as well, though we won't focus on it that much compared to 

the others because it doesn't yield precise comparisons. 

  Clearly, the overall score metrics are good enough in detecting malicious traffic for both 

split ratios. yet there is a small variation between the classifiers. the recall and F1-score metrics 

for the SVM, RF and ANN algorithms of the 70:30 split are lower than the 80:20 split classifiers, 

which seem to have the best results of all. Yet in the same ratio, the classifiers are variated, and 

we can clearly recognize that SVM and RF have lower metric scores than the ANN. Furthermore, 

the performance and training time of SVM is a bit slower, unlike the other classifiers that are 

reasonable. Therefore, ANN is considered the best model in this case for detecting and predicting 

malicious attacks.  
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Split 

ratio 

ML 

models 

Evaluation Metrics 

Accuracy Precision Recall F1-score Training time 

 

80:20 

SVM 0.9957 0.9953 0.9988 0.9971 582.549 

RF 0.9831 0.9989 0.9777 0.9882 4.6270 

ANN 0.9991 0.9992 0.9995 0.9993 81.130 

 

70:30 

SVM 0.9954 0.9950 0.9986 0.9968 440.22 

RF 0.9784 0.9998 0.9703 0.9848 4.0618 

ANN 0.9987 0.9991 0.9991 0.9991 79.0199 

 

Table 4. 8 : Performance metrics for Fully-Featured dataset models (70:30 VS 80:20) 

 

B. Specific features version of the dataset 

 Support vector machine 

The figure 4.11 shows the results of training and evaluating the performance of SVM model 

with a featured of the dataset (see APPENDX A). 

 

Figure 4. 11: Spec_SVM Evaluation Results 



 
 

 
66 

 

Chapter 4                                                                Experimental Results and Discussion

                               

z 

 

 Confused matrix is presented in figure 4.12 below: 

 

Figure 4. 12: Spec_SVM Confusion Matrix 

 Discussion 

Class 0: 13515 instances of this class got classified as normal traffic, and it is normal traffic 

scoring a 27.70% with a very low error rate. 

Class 1: the rate of malicious attacks that were detected and classified correctly as attack, 

according to the confusion matrix, is 71.84%, with a low error rate.   

 

 

 Random Forest 

Figures 4.13 and 4.14 respectively represent the evaluation metrics and confusion matrix of 

the performance evaluation of the classifier RF on a specific featured version of the dataset. 
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Figure 4. 13: Spec_RF Evaluation Results 

 

Figure 4. 14: Spec_RF Confusion Matrix 

 

 Discussion 

Class 0: 13589 instances of this class got classified as a normal traffic, and it is normal 

traffic, with rate of 27.85% and a low error rate. 

Class 1: the rate of malicious attacks that were detected and classified correctly as attack, 

according to the confusion matrix, is 70.24%, with a low error rate.   
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 ANN 

The coming Figures 4.15 and 4.16 show the evaluation metrics and confusion matrix of the 

performance evaluation of the classifier RF on a specific featured version of the dataset, 

respectively. 

 

Figure 4. 15: Spec_ANN Evaluation Results 

 

Figure 4. 16: Spec_ANN Confusion Matrix 
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 Discussion: 

Class 0: the 13667 instances of this class got classified as a normal traffic, and it is normal 

traffic. Got a rate of 28.01% and a very low error rate. 

Class 1: the rate of malicious attacks that were detected and classified correctly as attack, 

according to the confusion matrix, is 71.90% representing 35085 instances, with a very low 

error rate.   

 

 Specific features models Comparison 

In this section, the models are compared to each other according to the chosen evaluation 

metrics. As shown in Table 4.8, the RF classifier tends to have the shortest training time, but the 

lowest metrics scores compared to the other classifiers as we can see in Figure 4.17, clearly ANN 

is the best model with the best scores in Recall, F1score, Precision and even the Accuracy. 

 
Figure 4. 17: Specific features models' evaluation metrics comparison 

ML 

models 

Evaluation Metrics 

Accuracy Precision Recall F1-score Training time 

Spec_SVM 0.9954 0.9947 0.9989 0.9968 89.563 

Spec_RF 0.9808 0.9967 0.9765 0.9865 4.1824 

Spec_ANN 0.9990 0.9990 0.9996 0.9993 99.663 

Table 4. 9: Comparison between specific models' performance metrics 
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 A comparison between the fully-featured dataset models and the specific 

featured dataset models 

 

After testing several machine learning algorithms with different dataset subsets of different 

features, we noticed that all the algorithms give good results, but when it comes to the optimal one 

that detects the DoS/DDOS attacks, the ANN classifier that was tested with the specific features 

dataset, since Recall represents the true positive rate (i.e., the rate of the number of attacks that 

was detected as attacks correctly), is considered the optimal, for its Recall score along with the 

other metrics scores that were high compared to other classifiers( table 4.9). 

 

 SVM Spec_SVM RF Spec_RF ANN Spec_ANN 

Accuracy 0.9957 0.9954 0.9831 0.9808 0.9991 0.9990 

Precision  0.9953 0.9947 0.9989 0.9967 0.9992 0.9990 

Recall 0.9988 0.9989 0.9777 0.9765 0.9995 0.9996 

F1-score 0.9971 0.9968 0.9882 0.9865 0.9993 0.9993 

Training 

time 

582.549 89.563 4.6270 4.1824 81.130 99.663 

      Best ML 

model 

Table 4. 10: Comparison between all the models 

 

 

4.6. Comparison with related work models 

 

     In order to compare our model with the related works cited in chapter 2, we used the Recall 

accuracy rate along with precision and f1 score. Table 4.8 summarizes the results of our model 

and the other three works in which we notice that our model gives way better performances 

compared to them. 
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Work Specific featured dataset Recall  Precision  F1_score 

[12]  48 specific futures Table 2.2 Table 2.2 Table 2.2 

[18] 48 specific features 0.9980 0.9980 0.9980 

[19] 36/18/8 specific features Table 2.4 Table 2.4 Table 2.4 

Our model  55 specific features  0.9996 0.9990 0.9993 

 

Table 4. 11: Comparison with related works models 

4.7. Conclusion  

 
         In this chapter, we dealt with the implementation part in a detailed way, where we started by 

describing the tools, the environments we worked on, and the used dataset. Next, we presented the 

preprocessing steps we went through in order to build and evaluate our models and explained all 

the experimentations and analyzed the models' results to make a comparative study with the related 

works. 
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General Conclusion 

 

The implementation of machine learning-based models for intrusion detection has been 

widely used, and always caught the researchers' interest, especially in the Software-Defined 

Networks which are considered a challenge to address. 

Through this dissertation, we have proposed three machine learning models (ANN, SVM 

and RF) for classifying and detecting DoS/DDoS attacks in SDN using the newly generated InSDN 

dataset for training and testing after going through some preprocessing steps and implementing 

the forward selection method to select the best features that achieve higher performance after 

discussing some related works that dealt with the same problem as ours. 

  The obtained results after training and testing the models are quite satisfying. After 

comparing the results of each model, we got the ANN model that was evaluated on the specific 

features subset as the best performance in terms of the evaluation metrics (Recall, F1-score, 

Precision). 

Despite the quality of the results obtained, the feature selection method and models' 

hyperparameters need to be improved in order to reach the optimal result. 

Therefore, as future work, we aspire to develop a genetic algorithm-based model to get the 

optimal features and optimal parameters in terms of F1-score, Recall, Precision… of a dataset for 

detecting several types of attacks instead of just DoS/DDoS attacks in a realistic environment. 
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APPENDIX A: Source Code 

1. Data Preprocessing 

1.1. Standardization 

Standardisation = preprocessing.StandardScaler() 

 

X_train_stand = Standardisation.fit_transform(X_train) 

X_test_stand= Standardisation.fit_transform(X_test) 

 

1.2. Data balancing 

smote = SMOTE() 

 

X_train_smote, Y_train_smote = smote.fit_resample(X_train_sta

nd.astype('float'),Y_train) 

 

2. Hyperparameters Tuning  

In order to optimize the performance our models, avoid the overfitting problems, we tuned 

the hyperparameters of each model. For that, we used the GridSearchCV function to determine the 

optimal values for its simplicity in implementation. 

2.1. RF 

For the random forest classifier, we specify a group of values to choose the best ones, we focused 

on:  

 n_estimators: the number of trees in the forest. 

 max_depth: represents the depth of each tree in the forest.  

 min_samples_split:  minimum number of samples required to split an internal node.  

 max_features: number of features to consider when looking for the best split. 

forest = RandomForestClassifier() 

params = {  

    'n_estimators': [100,150,200], 

    'max_features': ['auto','log2'], 

    'max_depth' : [4,5,6,7], 

    'min_samples_split' :[2,3,8], 

    'max_samples': [100,150,200] 
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} 

CV_rfc = GridSearchCV(estimator=forest, param_grid=params, cv= 5

) 

CV_rfc.fit(x_train, y_train) 

CV_rfc.best_params_ 

 

Result 

 

2.2. SVM 

For the SVM hyperparameters tuning, we focused on the most effective, the kernel, the C 

parameters that perms to regulate how soft the margin can be and the Gamma in which specifies 

how far the influence of a single training example can reach, giving each of them a group of values 

to select the optimal for a better performance. 

params = { 

    'C': [0.1, 1, 10, 100, 1000], 

    'gamma': [1, 0.1, 0.01, 0.001, 0.0001], 

    'kernel': ['rbf','linear'] 

} 

 

clf = GridSearchCV( 

    estimator=SVC(), 

    param_grid=params, 

    cv=5, 

    n_jobs=5, 

    verbose=1 

) 

 

 Result 
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2.3. ANN 

Concerning the ANN classifier, we focused on the most essential parameters that affect on 

the classifier performance that are: the number of hidden layer and nodes, the activation function 

for the hidden layer, number of epochs to use and the solver algorithm for optimizing the weight 

in which we fixed on ‘adam’ algorithm because it is the most known and effective. 

ann = MLPClassifier() 

params = {  

    'hidden_layer_sizes': [(2,), (6,), (8,)], 

    'max_iter': [100, 150,300], 

    'activation': ['tanh', 'relu'], 

    'solver': ['adam'] 

} 

CV_ann = GridSearchCV(estimator=ann, param_grid=params, cv= 5, n

_jobs=-1) 

CV_ann.fit(x_train_stand, y_train) 

CV_ann.best_params_ 

 

Results  

 

 

3. Model Training  

3.1. SVM 

SVM = SVC(C=10, gamma=0.0001, kernel='rbf') 

 

start=time() 

SVM.fit(X_train_undersampled, Y_train_undersampled) 

end=time() 

 

3.2. RF 

RFclassifier = RandomForestClassifier(max_depth= 7,max_features 

='auto', max_samples=200,min_samples_split = 2,n_estimators=150) 
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start=time() 

RFclassifier.fit(X_train_smote, Y_train_smote) 

end=time() 

 

3.3. ANN 

ANNclassifier = MLPClassifier(hidden_layer_sizes=(8,),max_iter =

 150,activation = 'relu',solver = 'adam') 

start=time() 

ANNclassifier.fit(X_train_smote, Y_train_smote) 

end=time() 

 

4. Performance evaluation visualization script  

4.1. Confusion Matrix 

print("\n\n--------------------------- Confusion matrix --------

--------------------\n\n") 

cmann=confusion_matrix(Y_test,ANNPred) 

group_names = ['True Neg','False Pos','False Neg','True Pos'] 

group_counts = ["{0:0.0f}".format(value) for value in cmann.flat

ten()] 

group_percentages = ["{0:.2%}".format(value) for value in cmann.

flatten()/np.sum(cmann)] 

labels = [f"{v1}\n{v2}\n{v3}" for v1, v2, v3 in zip(group_names,

group_counts,group_percentages)] 

labels = np.asarray(labels).reshape(2,2) 

heatmap=sb.heatmap(cmann, annot=labels, fmt='',cmap='Blues') 

print(heatmap) 

 

4.2. Evaluation metric comparison bars 

fig, (ax1) = plt.subplots(1) 

fig.suptitle('Models Comparison', fontsize=16, fontweight='bo

ld') 

fig.set_figheight(4) 

fig.set_figwidth(9) 

fig.set_facecolor('white') 

## set bar size 

barWidth = 0.1 

svm_score = [accuracy_score(Y_test,SVMPred), metrics.precisio

n_score(Y_test,SVMPred), metrics.recall_score(Y_test,SVMPred)

,metrics.f1_score(Y_test,SVMPred)] 
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rf_score = [accuracy_score(Y_test, RFPred), metrics.precision

_score(Y_test, RFPred), metrics.recall_score(Y_test, RFPred),

metrics.f1_score(Y_test, RFPred)] 

ann_score = [accuracy_score(Y_test,ANNPred), metrics.precisio

n_score(Y_test,ANNPred), metrics.recall_score(Y_test,ANNPred)

,metrics.f1_score(Y_test,ANNPred)] 

## Set position of bar on X axis 

r1 = np.arange(len(svm_score)) 

r2 = [x + barWidth for x in r1] 

r3 = [x + barWidth for x in r2] 

r4 = [x + barWidth for x in r3] 

## Make the plot 

ax1.bar(r1, svm_score, width=barWidth, edgecolor='white', lab

el='SVM') 

ax1.bar(r2, rf_score, width=barWidth, edgecolor='white', labe

l='Random Forest') 

ax1.bar(r3, ann_score, width=barWidth, edgecolor='white', lab

el='ANN') 

## Configure x and y axis 

ax1.set_xlabel('Metrics', fontweight='bold') 

labels = ['Accuracy', 'Precision', 'Recall', 'F1'] 

ax1.set_xticks([r + (barWidth * 1.5) for r in range(len(svm_s

core))], ) 

ax1.set_xticklabels(labels) 

ax1.set_ylabel('Score', fontweight='bold') 

ax1.set_ylim(0, 1) 

## Create legend & title 

ax1.set_title('Evaluation Metrics', fontsize=14, fontweight='

bold') 

ax1.legend() 
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APPENDIX B: Additional results of feature selection tests 

The feature selection process went through several test where we tested and trained our 

models on several subsets each with a specific number of features, then made a comparison to 

define and precise the best subset that give the best performance results. 

1. Subset of 28 features 

1.1. SVM evaluation results 
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1.2. RF evaluation results 

 

 

 

 

 

 

 

 



 

 
85 

 

1.3. ANN evaluation results 
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2. Subset of 33 features 

2.1. SVM evaluation results 
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2.2. RF evaluation results 
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2.3. ANN evaluation results 
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3. Subset of 55 features  

3.1. SVM evaluation results 

 

 

 

 



 

 
90 

 

3.2. RF evaluation results 

 

 

 

 

 

 

3.3. ANN evaluation results 
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 Discussion  

According to the obtained results by evaluating the models on subsets of different number 

of features, clearly the last subset with 55 features give better performance in terms of the 

evaluation metrics used compared to the other subsets 

 

 
Accuracy  Precision  Recall  F1-score Training 

time 

 

28 

features 

SVM 0.5717 0.9420 0.9941 0.9673 405.40 

RF 0.9103 0.9534 0.9204 0.9366 4.7856 

ANN 0.4882 0.9483 0.3059 0.4626 136.289 

33 

features 

SVM 0.8914 0.9961 0.8518 0.9183 300.0139 

RF 0.9557 0.9711 0.9671 0.9691 4.5596 

ANN 0.5384 0.9655 0.3696 0.5345 138.754 

55 

features 

SVM 0.9954 0.9947 0.9989 0.9968 89.563 

RF 0.9808 0.9967 0.9765 0.9865 4.1824 

ANN 0.9990 0.9990 0.9996 0.9993 99.663 
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