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           We are overwhelmed with data, the amount of data in the world and in our lives seems 

to be constantly increasing, and there is no end in sight. Pervasive computers make it too easy 

to save things we would have previously thrown away. Cheap disks and online storage make 

it too easy to postpone decisions on what to do with it all - we just get more memory and keep 

it all. Pervasive electronics record our decisions, our choices at the supermarket, our financial 

habits, our comings and goings. We go around the world, each time a record passes through a 

database. The World Wide Web (WWW) overwhelms us with information; meanwhile, every 

choice we make is recorded. And all of these are just personal choices - they have countless 

counterparts in the world of commerce and industry. We could all witness the growing gap 

between the generation of data and our understanding of it.  

As the volume of data grows, inexorably the proportion of it that people understand 

drops alarmingly. All this data hides potentially useful information that is rarely explained or 

exploited. There is nothing new about finding patterns in data; people have been looking for 

patterns in data since the very beginning of human life. Hunters look for patterns in the 

migration behaviour of animals, farmers look for patterns in the growth of crops, politicians 

look for patterns in voter opinion, and lovers look for patterns in the responses of their 

partners. A scientist's job (like a child's) is to make sense of data, discover the patterns that 

govern how the physical world works, and encapsulate them into theories that can be used to 

predict what will happen in new situations. The job of the entrepreneur is to identify 

opportunities, that is, patterns of behaviour that can be transformed into a profitable business 

and to exploit them.  

In data mining, data is stored electronically and research is automated, or at least 

augmented, by the computer. It's not particularly new, either. Suppose, to take a well-

established example, that the problem is inconsistent customer retention in a highly 

competitive market. A database of customer choices, along with customer profiles, holds the 

key to this problem. Behavioural patterns of past customers can be analyzed to identify the 

distinguishing characteristics of those who can switch and those who can remain loyal. Once 

these characteristics are identified, they can be leveraged to identify current customers who 

are likely to abandon ship. This group may be targeted for special treatment, treatment that is 

too costly to apply to all customers. More positively, the same techniques can be used to 

identify customers who might be attracted to another service provided by the company, which 

they are not currently using, to direct them to special offers promoting that service. In today's 
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highly competitive, customer-centric and service-driven economy, data is the raw material 

that fuels business growth, if only it can be harnessed. [1] 

Now let us talk about machine learning, According to Charles Green, the Director of 

Thought Leadership at Belatrix Software: “It’s a huge challenge to find data scientists, people 

with machine learning experience, or people with the skills to analyze and use the data, as 

well as those who can create the algorithms required for machine learning. Secondly, while 

the technology is still emerging, there are many ongoing developments. It’s clear that AI is a 

long way from how we might imagine it.” [2] 

According to Arthur Samuel machine learning is a subfield of computer science that 

gives computers the ability to learn without being explicitly programmed [4] although not 

directly mentioned in Arthur Samuel's definition, a key feature of machine learning is the 

concept of self-learning. This refers to the application of statistical models to recognize 

patterns and improve performance based on data and empirical information; all without 

programming instructions   directly. This is what Arthur Samuel described as the ability to 

learn   without being explicitly programmed. But it doesn't mean   machines make decisions 

without initial programming. In contrast, machine learning relies heavily on computer 

programming. Instead, Samuel observed in   that the machines do not need a direct input 

command to perform a specified task, but rather input data. [3] 

In recent years, data mining has been widely used to solve problems in chemical, 

material, and engineering processes based on data collected from experiments or simulations. 

Mentioning Predicting Selective Compounds using Machine learning models [5] Accelerated 

search for perovskite materials with higher Curie temperature based on the machine learning 

methods [6] search for materials with targeted properties by adaptive design [7] and in many 

worldwide pressing issues, such as greenhouse gas capture , catalytic materials design and 

optimization, and renewable energy studies. Data mining has shown predictive power to 

extract relationships between intrinsic and extrinsic properties. Typically, the task of a data 

mining process is to predict (or generate) those variables that are difficult to capture from 

experiments/simulations, using the simple variables that can be captured as inputs. A well-

fitting nonlinear form allows predicted variables to be generated quickly from the inputs of 

these independent variables. In other words, a data mining process powered by machine 

learning can accelerate: 
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(i) The optimization of technical processes,  

(ii) The discovery of new functional materials, 

(iii) The understanding of chemical processes. 

Despite a number of studies published over the past decade, there is no established 

philosophy that provides a standard guideline for performing data mining. A general and 

simple but useful data-mining strategy for these scientific and application processes will 

ultimately benefit to the standard development of knowledge-based data-mining through a 

machine learning modelling process. [8] 

In this work a predictive model will be created on the basis of  machine learning and 

data mining methods by providing already established data base filled with ABO3 perovskite- 

type materials samples and try to predict the higher specific surface area of these samples.  

 The first chapter represent a simple Bibliographic Study about machine learning and 

data mining thus a reminder about perovskite-type materials. 

The second chapter talk about how to apply Data mining and Machine learning 

methods in the field of Materials Discovery and Optimization plus mentioning some the 

traditional ways to develop materials. 

The third chapter consist of the workflow of data mining and machine learning 

techniques and an explanation about the data mining software Weka which been used to 

execute these techniques besides the results and the interpretations.  

The forth chapter  contain the synthesis  of five of the perovskite samples (3 samples 

were from the collected data and two samples were screened out using Li Shi, Dongping 

Chang, Xiaobo Ji, and Wencong Lu.Journal model) via Sol-Gel method and characterize them 

using XRD, TGA analyze, Fourier transforms infrared spectroscopy analysis (FTIR), and 

Specific area measurement by the BET method. 
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I. What is Machine learning 

    I.1.Introduction 

         The term machine learning refers to the automated recognition of meaningful patterns in 

data. Over the past two decades, it has become a common tool for almost any task that 

requires extracting information from large datasets. We are surrounded by technology based 

on machine learning: search engines learn how to give us the best results (while placing 

profitable ads), anti-spam software learns to filter our emails, and credit card transactions are 

processed by  software protected, the  learns  to recognize fraud. Digital cameras are learning 

to recognize faces, and smart personal assistant apps on smart phones are learning to 

recognize voice commands. Cars are equipped with accident prevention systems built using 

machine learning algorithms. Machine learning is also commonly used in scientific 

applications such as bioinformatics, medicine, and astronomy. A common feature of all these 

applications is that, in contrast to more traditional uses of computers, in these cases, due to the 

complexity of the patterns to be recognized, a human programmer cannot provide an explicit 

and detailed specification of how such tasks must be performed. Using intelligent beings as an 

example, many of our skills are acquired or honed by learning from our experience (rather 

than following explicit instructions given to us). Machine learning tools are concerned with 

giving programs the ability to "learn" and adapt. [1] 

I.2.General definitions  

I.2.1.Machine learning 

         Machine learning is about extracting knowledge from data. It is a research field at the 

intersection of statistics, artificial intelligence, and computer science and is also 

known as predictive analytics or statistical learning. [2]The goal of Machine Learning (ML) is 

to construct computer programs that can learn from data. ML approaches can be distinguished 

in terms of representation and adaptation. A machine learning system needs to store the 

learned information in some knowledge representation structure which is called (an inductive) 

hypothesis and is typically of the form of a model. The hypothesis should generalize the 

training data giving preference for the simplest hypothesis; to obtain valid generalization, the 

hypothesis should be simpler than the data itself. A learning algorithm specifies how to update 
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the learned hypothesis with new experience such that the performance measure with regard to 

the task is being optimized. [1] 

 

           Goal/Task 

                                                            Model  

           Training data 

 

                         Figure.I.1. A generic machine learning method. [1] 

I.2.2.Machine learning categories 

         Machine learning incorporates several hundred statistical-based algorithms and choosing 

the right algorithm or combination of algorithms for the job is a constant challenge for anyone 

working in this field. It is important to understand the three overarching 

categories of machine learning, supervised, unsupervised, and reinforcement.  

I.2.2.1.Supervised learning: 

         As the first branch of machine learning, supervised learning focuses on learning patterns 

by connecting the relationship between variables and known outcomes and working with 

labeled datasets. Supervised   learning works by feeding the machine pattern data with various 

functions (represented as "X") and returning the correct value of the data (represented as "y"). 

The fact that the output and feature values are known qualifies record as tagged. The 

algorithm then decodes the patterns present in the data and creates a model that can reproduce 

the same underlying rules with new data. 

         After the machine deciphers the rules and patterns of the data, it creates what is known 

as a model: an algorithmic equation for producing an outcome with new data based on the 

rules derived from the training data. Once the model is prepared, it can be applied to new data 

and tested for accuracy. After the model has passed both the training and test data stages, it is 

ready to be applied and used in the real world. 

Examples of supervised learning algorithms include regression analysis, decision trees, k-

nearest neighbors, neural networks, and support vector machines. [3] 

Learning  

Algorithm 



Bibliographic Study 
 

 Page 7 

 

                             X 

 

 

 

 

 

 

Figure.I.2. example of a prediction model [3] 

I.2.2.2.Unupervised learning: 

         In the case of unsupervised learning, not all variables and data patterns are classified. 

Instead, the machine should uncover hidden patterns and make labels through the employment 

of unsupervised learning algorithms.  

         The advantage of unsupervised learning is it enables you to discover patterns in the data 

that you were unaware existed. [3] 

I.2.2.3.Reinforcement Learning 

         Reinforcement learning is that the third and most advanced algorithm category in 

machine learning. In contrast to supervised and unsupervised learning, reinforcement learning 

endlessly improves its model by leverage feedback from previous iterations. [3] 

Attribute 01 

Attribute 02 

 

Attribute 03 

 

Model Y 
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Figure.I.3. simple diagram illustrates the different ML algorithm, along with the categories [4] 

I.2.3.Machine learning tasks 

I.2.3.1.Classification and Regression 

         The tasks of classification and regression deal with the prediction of the value of one 

field (the target) based on the values of the other fields (attributes or features). If the target is 

discrete (e.g. nominal or ordinal) then the given task is called classification. If the target is 

continuous, the task is called regression. Classification or regressions normally are supervised 

procedures: based on a previously correctly labeled set of training instances, the model learns 

to correctly label new unseen instances. [1] 

Classification: 

         Classification is a process of finding a function which helps in dividing the dataset into 

classes based on different parameters. In Classification, a computer program is trained on the 

training dataset and based on that training; it categorizes the data into different classes. The 

task of the classification algorithm is to find the mapping function to map the input(x) to the 

discrete output(y).  

Classification Algorithms can be further divided into the following types: 

❖ Logistic Regression 

❖ Support Vector Machines 

❖ Kernel SVM 

❖ Decision Tree Classification 
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Regression: 

Regression is a process of finding the correlations between dependent and independent 

variables. It helps in predicting the continuous variables. The task of the Regression algorithm 

is to find the mapping function to map the input variable(x) to the continuous output 

variable(y).  

Regression Algorithms can be further divided into the following types: 

❖ Simple Linear Regression 

❖ Polynomial Regression 

❖ Support Vector Regression 

❖ Decision Tree Regression 

 

Figure.I.4. simple diagram representing (a) classification, (b) regression [4] 

I.2.4.Training and test data 

In machine learning, data is split into training data and test data. The first split of data, 

the initial reserve of data you use to develop your model, provides the training data. After a 

successfully developed a model based on the training data and a satisfied accuracy, we'll be 

able to then test the model on the remaining data, referred to as the test data. [3] 

I.2.5.Models 

Machine learning hypotheses might are available a spread of information 

representation forms, such as equations, decision trees, rules, distances and partitions, 

probabilistic and graphical models. Typical machine learning algorithms induce models that 

are hypotheses that characterize globally an entire data set. [1] 

a b 
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I.2.6.Machine learning Algorithms 

I.2.6.1.Support Vector Machine Algorithm 
 

Statistical learning theory was introduced within the late 1960’s. Till the 1990’s it 

absolutely was a strictly theoretical analysis of the matter of perform estimation from a given 

collection of data. Within the middle of the 1990’s new kinds of learning algorithms (called 

support vector machines) based on the developed theory were proposed. [5] 

A support vector machine or SVM is a supervised learning algorithm that can also be 

used for classification and regression problems. The goal of SVM is to create a hyperplane or 

decision boundary that can segregate datasets into different classes. The data points that help 

to define the hyperplane are known as support vectors, and hence it is named as support 

vector machine algorithm. [4] Consider the below diagram:  

 

Figure.I.5. A diagram representing a classified dataset into two different classes.  
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I.2.6.2.Methods of Support vector machine 

The foundations of SVM are developed by Vapnik and are gaining popularity because of 

several enticing features, and promising empirical performance. The term SVM will refer to 

each SVC and SVR methods, which can be used for solving qualitative and quantitative issues 

respectively.  

Support vector classification (SVC) 

SVC has been recently planned as a really effective technique for resolution 

classification problems, which can be restricted to consideration of the 2-class problem while 

not loss of generality. During this problem the goal is to separate the two classes by a 

classifier evoked from available examples. It’s expected that the classifier made has good 

performance on unseen examples, it generalizes well.  

Support vector Regression (SVR) 

In SVR, the basic idea is to map the data x into a higher dimensional feature space F 

via a nonlinear mapping U and then to do linear regression in this space. Therefore, regression 

approximation addresses the problem of estimating a function based on a given data set  

G = {(xi, di)}𝑖
𝑙 

Where xi is the input vector, and di is the desired value).SVR approximates the function in the 

following form: 

𝑦 = ∑ 𝑤𝑖𝜙(𝑥𝑖) + 𝑏

𝑙

𝑖=1

 

Where {𝜙(𝑥𝑖)} 𝑖=1
𝑙  is the set of mappings of input features, and {wi} 𝑖=1

𝑙  and b are 

coefficients. They are estimated by minimizing the regularized risk function R(C): 

𝑅(𝐶) = 𝐶
1

𝑁
∑ 𝐿𝜀(𝑑𝑖𝑦𝑖) +

1

2
‖𝑤‖2

𝑁

𝑖=1

 

Where   𝐿𝜀(𝑑𝑖𝑦𝑖) = |𝑑 − 𝑦| − 𝜀  for  |𝑑 − 𝑦| ≥ 𝜀  
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Otherwise 𝐿𝜀(𝑑𝑖𝑦𝑖) = 0 [6] 

I.2.6.3.Support vector machine principle  

The working of the SVM algorithm can be understood by using an example. Suppose we have 

a dataset that has two tags (green and blue), and the dataset has two features x1 and x2.We 

want a classifier that can classify the pair(x1, x2) of coordinates in either green or blue. So as it 

is 2D space so by just using a straight line, we can easily separate these two classes. But there 

can be multiple lines that can separate these classes. 

 

Figure.I.6.simple graphs representing a. 2 datasets and b. separated datasets into 2 classes 

Hence, the SVM algorithm helps to find the best line or decision boundary; this best boundary 

or region is called as a hyperplane. SVM algorithm finds the closest point of the lines from 

both the classes. These points are called support vectors. The distance between the vectors 

and the hyperplane is called as margin. And the goal of SVM is to maximize this margin. 

The hyperplane with maximum margin is called the optimal hyperplane. On consider the 

image below: 

 

Figure.I.7.The best boundary (hyper plane) found by the SVM algorithm 
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If data is linearly arranged, then we can separate it by using a straight line, but for non-linear 

data, we cannot draw a single straight line. So to separate these data points, we need to add 

one more dimension. For linear data, we have used two dimensions x and y, so for non-linear 

data, we will add a third dimension z. It can be calculated as: z2 = x2 + y2
 [4] 

I.2.7. Under-fitting and Over-fitting: Problems of Machine Learning 

According to statistical learning theory, the machine learning is a process of choosing 

an appropriate function from a given set of functions to correlate the data set. The set of 

functions used is called hypothesis functions or indicator functions*. For example, in the 

process of linear regression or linear separation for different classes of samples, all linear 

functions are used as hypothesis functions. Since the appropriate function has to be chosen 

from the hypothesis functions only, the mathematical model built by using machine learning 

is always constrained within the scope of hypothesis functions used. For example, if a linear 

regression method is used as learning process, the mathematical model found shall be surely 

linear one, even if the actual data set exhibits some nonlinearity, because this nonlinearity has 

been treated as noise or residue and eliminated in the process of machine learning. [7] 

If our algorithm works well with the training dataset but not well with test dataset, 

then such problem is called Over-fitting. And if our algorithm does not perform well even 

with training dataset, then such problem is called under-fitting. [4] 
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I. What is Data mining 

II.1.Introduction 

 The trendy technologies of computers, networks, and sensors have created 

data collection and organization an almost easy task. However, the captured data has to be 

converted into information and knowledge from recorded data to become useful. 

Traditionally, the task of extracting useful information from recorded data has been 

performed by analysts; however, the increasing volume of data in modern businesses and 

sciences demand computer-based strategies for this task.  

 As data sets have grown in size and complexity, thus there had been an 

inevitable shift far from direct hands-on data analysis toward indirect, automatic data 

analysis during which the analyst works via a lot of complicated and complex tools. The 

whole method of applying computer based methodology, as well as new techniques for 

information discovery from data, is commonly known as data mining. 

 The importance of data mining arises from the very fact that the modern 

world is a data-driven world. We are encircled by data, numerical and otherwise, that must 

be analyzed and processed to convert it into information that informs, instructs, answers, 

or otherwise aids understanding and decision-making. 

 The new discipline of data mining has developed particularly to extract 

valuable information from such large data sets. In recent years there has been an explosive 

growth of strategies for locating new knowledge from raw data. this is be not shocking 

given the proliferation of low-priced computers (for implementing such methods in 

software), low-cost sensors, communications, and database technology (for collecting and 

storing data) and highly computer-literate application specialists who can create 

“interesting” and “useful” application problems. 

 Data mining isn't a brand new technology. The idea of extracting 

information and knowledge discovery from recorded data is a well-established concept in 

scientific and medical studies. What’s new is that the convergence of many disciplines 

and corresponding technologies that have created a singular chance for data mining in 

scientific and corporate world. [8] 
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II.2.General definition 

 It is no surprise that data mining, as a very knowledge base subject, may be 

outlined in many alternative ways. Even the term data mining doesn't really present all the 

foremost parts within the picture. To refer to the mining of gold from rocks or sand, we 

are saying gold mining rather than rock or sand mining. 

 Analogously, data mining should have been more appropriately named 

“knowledge mining from data,” which is unfortunately somewhat long. However, the 

shorter term, knowledge mining may not reflect the emphasis on mining from large 

amounts of data. Nevertheless, mining is a vivid term characterizing the process that finds 

a small set of precious nuggets from a great deal of raw material. Thus, such a misnomer 

carrying both “data” and “mining” became a popular choice. In addition, many other 

terms have a similar meaning to data mining for example, knowledge mining from data, 

knowledge extraction, data/pattern analysis, data archaeology, and data dredging [9] 

In summary Data mining is an essential process where intelligent methods are applied to 

extract data patterns. 

II.3. Data Mining Tasks 

 Data mining tasks are generally divided into two main groups: Descriptive 

tasks data mining and predictive data mining. 

Predictive tasks: The goal is to predict the value of a specific attribute based on the 

values of other attributes. The attribute to be predicted is called the target or dependent 

variable, the attributes used to make the prediction are known as the independent 

variables. 

Descriptive tasks: The goal here is to obtain patterns (correlations, trends, clusters, 

trajectories, and anomalies) that summarize the underlying relationships in the data. 

Descriptive data mining tasks are often exploratory in nature and often require post-

processing techniques to validate and explain the results. 
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Figure.II.1: Four of the core data mining tasks. 

Predictive modeling describes the task of building a model for the target variable using the 

independent variables. There are two types of predictive modeling tasks: classification, 

and regression the first is used for discrete target variables, and the last is used for 

continuous target variables.  

Association analysis used to discover patterns that describe features associated with 

strength in the data. The patterns discovered are typically presented in the form of 

implication rules or subsets of features. Because of the exponential size of your search 

space, the goal of association analysis is to efficiently extract the most interesting patterns.  

Cluster analysis attempts to find closely related groups of observations called clusters, 

such that observations belonging to the same clusters are more similar to each other than 

observations belonging to different groups.  

Anomaly detection the task is to identify observations whose characteristics differ 

significantly from the rest of the data. These observations are called anomalies or outliers. 

The goal of an anomaly detection algorithm is to discover the actual anomalies and avoid 

falsely flagging normal objects as anomalous. [10] 
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II.4. Data Mining Process 

The data mining process is a pipeline containing many phases such as data cleaning, 

feature extraction, and algorithmic design. In this section, we will study these different 

phases. The workflow of a typical data mining application contains the following phases 

(Fig.II.2). 

The Data collection phase:  

Data collection may require the use of specialized hardware or software tools like 

document crawling engine for collecting documents. Although this phase is very application 

specific and often outside the purview of the data mining analyst, it is critical because good 

decisions at this phase can significantly impact the data mining process. After the collection 

phase, the data is often stored in a database or more generally in a data warehouse for 

processing.

 

 Figure.II.2: The data processing pipeline  
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The Data Pre-processing Phase: 

The data pre-processing phase is perhaps the most crucial one in the data mining process. 

Yet, it is rarely explored to the extent that it deserves because most of the focus is on the 

analytical aspects of data mining. This phase begins after the collection of the data, and it 

consists of the following steps: 

▪ Feature extraction: An analyst may be faced with large volumes of raw documents, or 

system logs, with little guidance on how to turn that raw data into meaningful database 

functions for processing. This phase relies heavily on the analyst's ability to abstract 

the features that are most relevant to a particular application. Therefore, extracting the 

right features requires an understanding of the specific application domain involved. 

▪ Data cleaning: The extracted data may contain incorrect or missing entries. Therefore, 

it may be necessary to delete some records or estimate missing entries. Inconsistencies 

may need to be eliminated. 

▪ Feature selection and transformation: When the data is of very large dimensions, many 

data mining algorithms do not work effectively. Also, many of the high-dimensional 

features are noisy and can add errors to the data mining process. Therefore, a variety 

of methods are used to  remove irrelevant features or transform the current set of 

features into a new data space that is more suitable for analysis. Another related aspect 

is data transformation, where a data set with a specific set of attributes can be 

transformed into a data set with a different set of attributes of the same or different 

type. 

The Analytical Phase: 

A major challenge is that each data mining application is unique, making it difficult to 

create common and reusable techniques across applications. However, many data mining 

formulations are used over and over again in the context of different applications. These 

correspond to the most important "super problems" or building blocks of the data mining 

process.  
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II.5.The Basic Data Types 

One of the interesting aspects of the data mining process is the wide variety of data types 

that are available for analysis. There are two broad types of data, of varying complexity, for 

the data mining process: 

• Nondependency-oriented data: This typically refers to simple data types such as 

multidimensional data or text data. These data types are the simplest and most 

commonly encountered. In these cases, the data records do not have any specified 

dependencies between either the data items or the attributes.  

• Dependency-oriented data: In these cases, implicit or explicit relationships may exist 

between data items, like web graphs, Chemical compound databases…etc. In general, 

dependency-oriented data are more challenging because of the complexities created by 

preexisting relationships between data items. Such dependencies between data items 

need to be incorporated directly into the analytical process to obtain contextually 

meaningful results. [11] 
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III.     Relationship between Data mining and Machine Learning 

Relevant disciplines can also be difficult to tell apart at first glance, such as “machine 

learning” and “data mining.” Machine learning, data mining, computer programming, and 

most relevant fields (excluding classical statistics) derive first from computer science, which 

encompasses everything related to the design and use of computers. Within the all-

encompassing space of computer science is the next broad field: data science. Narrower than 

computer science, data science comprises methods and systems to extract knowledge and 

insights from data through the use of computers. 

As mentioned, machine learning also overlaps with data mining. A popular algorithm, 

such as k-means clustering, association analysis, and regression analysis, are applied in both 

data mining and machine learning to analyze data. But where machine learning focuses on the 

incremental process of self-learning and data modelling to form predictions about the 

future, data mining narrows in on cleaning large datasets to glean valuable insight from the 

past. Both data mining and machine learning appear similar, and they do use many of the 

same tools. [3] 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.III.1:  Visual representation of the relationship between data-related fields  

Computer Science 

 

Data Science 

 

Artificial 
intelligence 

 
Data 

mining 

 

Machine 
Learning 



Bibliographic Study 
 

 Page 21 

IV.     Perovskite 

IV.1.Introduction 

Discovered by a Russian scientist, Gustav Rose, in 1839 in mineral deposits in the 

Ural Mountains and the research was conducted by the Russian mineralogist Lev Perovski, 

for whom this mineral was named perovskite. Perovskites are a class of compounds with 

similar structures to the mineral perovskite, CaTiO3, and can be viewed as being derived from 

a parent phase with the general formula ABX3. They have been intensively studied since the 

middle of the 20th century because of their innate properties: initially dielectric, piezoelectric 

and ferroelectric. This range of behaviour has been extended to areas such as magnetic 

ordering, multiferroic properties, electronic conductivity, superconductivity, and thermal and 

optical properties. In addition to these purely physical aspects, the phases have a large number 

of chemical properties. Many perovskite phases exhibit useful redox and catalytic behaviour, 

often dependent on the presence of chemical defects in the phase. The importance of 

perovskite became apparent when the valuable dielectric and ferroelectric properties of 

barium titanate, BaTiO3, were discovered in the 1940s. This material quickly found 

applications in electronics in the form of capacitors and transducers. In the following decades, 

attempts to improve the material properties of BaTiO3 led to intensive research into the 

structure-property relationships of a large number of phases related to the nominally ionic 

ceramic perovskite with the general composition ABO3, with the result that a large number of 

new phases developed synthesized [12] 

 

 

 

 

 

 

 

 

 

 

 

 



Bibliographic Study 
 

 Page 22 

IV.2.Perovskite ideal structure 
The ideal ABX3 perovskite structure is described together with some of the structural 

variations that occur which have significance for chemical and physical properties and which 

make precise structure determination a difficult task. [12] 

 
Figure.IV.1: Structure of a perovskite with general chemical formula ABX3. The red spheres 

are X atoms (usually oxygens), the blue spheres are B atoms (a smaller metal cation, such as 

Ti4+), and the green spheres are the A atoms (a larger metal cation, such as Ca2+). [14] 

 

Generally we are talking about a considerable number of mixed oxides which are 

referred to as perovskite oxide distinguish by a unique formula ABO3 where A represent a 

large radius cation with a coordination number 12 (e.g. Ca, Pb, Rb, Sr, Na, K...), B a lower 

radius cation, higher load with a coordination number 6 (e.g. Ti, Sn, W, Zr, Nb, Ta, ...), and 

finally the oxygen ion. [13] 

The idealized perovskite structure is cubic and is adopted by SrTiO3 at room 

temperature.  

There are two general ways of listing the atoms in the cubic unit cell.  

✓ The standard crystallographic description places the choice of origin at the Sr atom: 

SrTiO3: cubic; a = 0.3905 nm, Z = 1; space group, Pm3m 

Atoms positions:   

• Sr : 1(a) 0, 0, 0 

• Ti : 1(b) ½, ½, ½ 

• O : 3(c) ½, ½, 0 ; ½, 0, ½ ; 0, ½, ½  
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Figure.IV.2:  The idealised perovskite structure of SrTiO3: (a) atom positions with Sr2+ 

at cell origin; (b) TiO6 octahedral coordination polyhedron; (c) atom positions with 

Ti4+ at cell origin; (d) TiO6 octahedral polyhedron framework with Sr2+ at the cell 

centre; (e) cuboctahedral cage site [15] 

 

The Sr2+ ions lie at the corners of the unit cell. The Ti4+ ions lie at the cell centre and are 

surrounded by a regular octahedron of O2− ions (Figure a and b). For some purposes it is 

useful to translate the cell origin to the Ti4+ ions: 

Atoms positions: 

• Ti : 1(a) 0, 0, 0 

• Sr : 1(b) ½, ½, ½ 

• O : 3(d) ½, 0, 0 ; 0, ½, 0 ; 0, 0, ½ 

The large Sr2+ ions are coordinated to 12 O2− ions and are now situated at the unit cell centre 

(Figure c). For a discussion of the chemical and physical properties of this (and other) 

perovskite, it is convenient to think of the structure as built‐up from an array of corner sharing 

TiO6 octahedra (Figure d). The large Sr2+ ions are located at the unit cell centre and are 

surrounded by a cuboctahedral cage of O2− ions (Figure e). 

The TiO6 framework is regular and the octahedra are parallel to each other. All the 

Ti4+─O2− bond lengths are equal and the six O2−─Ti4+─O2− bonds are linear.  
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IV.3. Tetragonal perovskite 
The best known example of a tetragonal perovskite is probably the room temperature 

form of the ferroelectric BaTiO3, with a = 3.944 Ᾰ, and c = 4.038 Ᾰ and Z = 1. In this case the 

TiO6-octahedra are somewhat distorted (one Ti-O bond at 1.86 Ᾰ, four at 2.00 Ᾰ and one 

longer at 2.17 Ᾰ). Barium is coordinated by four oxygens at 2.80 Ᾰ, four at 2.83 Ᾰ and four 

more at 2.88 Ᾰ. A number of other tetragonal perovskites (PbHfO3, SrPbO3, SrZrO3, AgTaO3, 

KCoF3, CsPbCl3, CsPbBr3, etc.) are isotypic with BaTi03 and possess unimolecular cells. 

 

IV.4. Rhombohedral perovskites 
In several materials the cubic cell may have a small deformation to rhombohedral 

symmetry. If this deformation does not enlarge the unit cell, it is possible to index it on a unit 

cell containing either one or two formula units with rhombohedral angles a~90° or a~60° 

respectively. However, the anions are generally displaced as requires the larger unit cell with 

a~60°. Examples of rhombohedral perovskites are LaA1O3, PrAlO3, LaNi03 and LaCoO3. 

 

IV.5. Orthorhombic perovskites 
The GdFeO3 structure is probably the most common of all the orthorhombically 

distorted perovskites. Its space group is Pbnm and the cell constants are: a = 5.346Ᾰ, b = 

5.616 Ᾰ and c = 7.666 Ᾰ with Z = 4. These constants are related to the cubic pseudocell a' by 

a~b~√2 a' and c~2a’ 

In this structure the FeO6- octahedra are distorted and tilted. Also the GdO12-

polyhedron is severely distorted, showing (8+4) coordination. 

           Other materials adopting this orthorhombic-distorted structure are NaUO3, NaMgF3, 

LaYbO3 and a great number of lanthanide compounds of the type LnCrO3, LnGaO3, LnFeO3, 

LnMnO3, LnRhO3, etc. 

IV.6. Monoclinic and triclinic perovskites 
Monoclinic (AgCuF3, CsPbI3, PbSnO3, BiCrO3, etc.) or triclinic (BiMnO3, BiScO3) 

unit cells have been reported in several cases. However, in many cases these cells have proved 

to be pseudocells of a real multiple cell. For example, GdFeO3-type phases have been 

frequently indexed on the bases of a monoclinic pseudocell with a~b~c~a’ and B~90°. 
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IV.7. General properties and application of perovskite materials 

          The ABX3 perovskites exhibit several interesting properties such as ferromagnetism, 

ferroelectricity, pyro- and piezoelectricity, superconductivity (both, classic and high Tc), large 

thermal conductivity, fluorescence and catalytic activity. 

IV.7.1. Magnetic properties 

          A number of different and interesting magnetic properties have been reported for 

perovskite-like materials. In some of them, the outer d-electrons are localized and 

spontaneously magnetic, in some they are itinerant and spontaneously magnetic and in others, 

Pauli paramagnetism has been found. Which of these properties is stabilized depends on the 

number of d-electrons per transition metal B cation and the strength of the B-O-B interactions. 

IV.7.2. Optical properties 

          The measurement of optical properties has often been used to characterize perovskite 

materials and also to identify phase transitions. The electro optical properties of different 

oxide materials have also been analyzed. 

IV.7.3. Piezoelectricity 

          A piezoelectric material develops an electric polarization when it is mechanically 

stressed along an appropriate direction. In the converse effect, an applied electric field 

produces a mechanical distortion in the material. Among the 32 crystal classes, 11 are 

centrosymmetric and therefore do not possess polar properties. Of the 21 non-

centrosymmetric classes, 20 of them exhibit piezoelectricity whereas the remaining one (the 

cubic class 432) has a set of symmetry elements that combine to exclude piezoelectric 

character. [15] 
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I. Introduction 

The field of computational chemistry has become increasingly predictive in the 21st 

century, with activity in applications ranging from the development of catalysts for the 

conversion of greenhouse gases, to the discovery of materials for harvesting and storing 

energy, to computational drug design. Expected connection (with reasonable accuracy) even 

before it is made in the lab. [1] 

 

Data-driven research (data mining) and machine learning (ML) have emerged as 

promising new drivers in chemistry and materials [2]. Recently, the materials community has 

put a renewed focus on collecting and organizing large datasets for research, materials design, 

and eventual application of statistical or "machine learning" techniques. For example, 

searching composite databases through density functional theory (DFT) calculations has been 

used to identify battery materials [3, 4] to aid the design of metal alloys [5,6] and so much other 

applications. 

These datasets presents a big opportunity to form and develop models with reasonable 

accuracy with the help of machine learning and data mining techniques Rather than manually 

designing and programming such models, such techniques produce predictive models by 

learning from a series of examples. Machine learning models have been shown to predict the 

properties of crystalline materials much faster than DFT [7-10], estimate properties that are 

difficult to access via other computational tools [11,12], and guide the search for new materials 

[13-17]. With the continued development of general-purpose data mining methods for many 

types of materials data [18-20] and the proliferation of material property databases [21], this 

emerging field of “materials informatics” is positioned to have a continued impact on 

materials design, Alexander Dunn [22] 

This Chapter includes  a discussion about how to apply Machine learning (ML) methods 

and Data mining (DM) techniques in Chemistry in the materials categories in the goal of 

finding and discovering new materials with promising properties, specifically perovskite like 

materials.  
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II. Why Perovskite materials 

Perovskite materials have attracted much attention in many scientific fields for the 

composition diversity, easily available synthetic conditions and a variety of attractive 

properties[23,24].The ABO3-type perovskite oxide has bit by bit become an exploration hotspot 

in trendy industrial catalysis and thermoelectricity for the manageable structure, outstanding 

stability and low cost. [25,26] Inorganic double perovskite has aroused associate interest in solar 

cells and light-emitting diodes thanks to adjustable photoelectrical properties. [27, 28] 

There are so many papers and articles published about perovskite especially from the 

year 2013 since the solar cell where proposed plus the machine learning application in this 

field show an alarming increase (figure II.1) [29] 

 

Figure II.1. Number of published papers. (a) On keyword of ‘perovskite’ (from 1961 to 

December 2020). (b) On key words of ‘machine learning and material’ and ‘machine learning 

and perovskite’ (from 2002 to December 2020) 
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II.1.The traditional way to develop materials 

The traditional way to develop materials is sometimes based on trial and error, 

continuous synthesis and characterization keep attempting till the properties of virtual 

materials meet the target. The method needs a long-time study on a restricted amount of 

materials and complex experimental procedures, which may be a long and high-ticket 

endeavor. Underneath this limitation, vital scientific progress typically comes from the 

researchers’ expertise and intuition or maybe was discovered by accident. Plus the discovery 

of high-performance materials needs a long cycle from experimental design to 

commercialization. [29] 

II.2. Methods of synthesis and characterization of mixed oxides 

II.2.1. Methods of synthesis 

Several methods have been described for the preparation of perovskite-type oxides: 

Sol-Gel method: Sol-gel technique (S-G) is a method, for material preparation beneath 

delicate condition, of solidifying a compound containing an extremely chemically active 

component through a solution, sol, or gel, and then heat-treating an oxide or other compound. 

This highly chemically active component is used as a precursor uniformly mix these raw 

materials in the liquid phase, and perform hydrolysis and condensation chemical reactions to 

form a stable transparent sol system in solution. The sol slowly polymerizes between the aged 

colloidal particles to form a gel with a three-dimensional network structure. The gel network 

is filled with a solvent that loses fluidity to forma gel. The gel is dried, sintered and solidified 

to prepare molecular and even nano-substructure materials. The chemical process of the sol-

gel method is to first disperse the raw materials in a solvent, and then undergo a hydrolysis 

reaction to form an active monomer. The active monomer is polymerized and begins to 

become a sol, and then a gel with a certain spatial structure is formed. After drying and heat 

treatment Preparation of required materials. [30] 

 

Figure.II.2. the basic process of sol-gel method 
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✓ terminology: 

Sol: Sol is a colloidal system with liquid characteristics. The dispersed particles are solid or 

macro-molecules. The particle size is between 1 and 100 nm (somebodysays1-1000 nm), and 

the particles are evenly distributed in the dispersion medium. 

Gel: The colloidal particles or polymers in the sol or solution are connected to each other 

under certain conditions to form a spatial network structure, and the structural voids are filled 

with liquid as a dispersion medium in xerogel, it can also be gas, xerogel is also called 

aerogel, such a special dispersion system is called a gel. [30] 

The basic reaction steps of the S-G method are as follows: 

Solvation: The metal cation Mz+ attracts water molecules to form the solvent unit M (H2O)n
z+ 

In order to maintain its coordination number, it has a strong tendency to release H+. 

M (H2O)n
z+                    M(H2O)n-1(OH)z-1 + H+ 

Hydrolysis reaction: Non-ionizing molecular precursors, such as metal alkoxide M(OR)n, 

react with water : 

M (OR)n + xH2O               M(OR)n-x(OH)x 

M (OR)n-x(OH)x + xROH               M(OH)n 

Polycondensation reaction: According to the type of molecules removed, it can be divided 

into two categories: 

a) Dehydration polycondensation: 

-M-OH + HO-M-               -M-O-M- + H2O 

b) Dealcoholization polycondensation: 

-M-OR + HO-M-                  -M-O-M- + ROH 

Co-precipitation method: The Co-precipitation synthesis method, proposed by Wackowski 

and his collaborators uses ammonium nitrate, added to the precursor solution of perovskite. 

The resulting product is decomposed at 300°C and then calcinated in oxygen at 500°C. 

Perovskites with specific surfaces of 30 m2/g are obtained in this way.  
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The precursors of sites A and B of the perovskite structure (acetate, chloride, and nitrate) are 

mixed in water. All species are then precipitated at basic pH in the form of oxalate or 

hydroxide, after the intermediate stages of settling, rinsing and filtration the precipitate 

undergoes a washing intended to break the agglomerates. The chemical qualities 

(stoichiometry, homogeneity) and physical qualities (particle size, grain shape) of these 

powders are good. The following parameters are of major significance: 

▪ pH control 

▪ stirring time 

▪ Order of introduction of reagents into the basic solution. 

▪ Room temperature control. [31] 

Solid-state reactions: The synthesis of oxides (perovskite) by solid-state reactions is one of 

the most widely used methods in solid-state chemistry. The basis of this process is the 

reaction by heat treatment between two or more substances in solid form, which are first 

mixed. Reagents, oxides and/or carbonates in powder form are weighed in stoichiometric 

quantities and mixed intimately by grinding in a mortar. 

Obtaining a homogeneous mixture of small particles then facilitates the kinetics of the 

reaction. The powder is then subjected to successive heat treatments until a single phase is 

obtained, the temperature being generally maintained at about 1000°C. 

a. Raw materials: They are composed of oxides, carbonates, nitrates, etc. An ideal 

powder can be described as consisting of small grains (of the order of 1 µm) of regular 

shape with a very narrow particle size distribution. Purity and possible additives are 

checked. The main problem of basic raw materials, which are in the form of powders, 

is the difficulty of assessing the fundamental parameters which reflect the reactivity of 

the material in relation to the others with which it reacts, the thermal history of the 

material, it therefore plays a very important role. 

b. Mixing and grinding: This is one of the essential phases of the production cycle of a 

solid with a perovskite structure. A uniform distribution of precursors is also obtained 

during this process. The powders are weighed according to the stoichiometric 

quantities given by the reaction equation. 

c. Calcination: The materials are subjected to a thermal cycle under controlled 

atmosphere during which, due to diffusion phenomena, they react in the solid phase 
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and form the desired phase. During this reaction, carbon dioxide or oxygen dioxide 

and water vapour are released. 

d. Regrind: The powder is ground again to reduce the granulometry, homogenize it and 

increase its reactivity. The powder is then subjected to a high temperature heat 

treatment to obtain the desired phases. [31] 

Table.II.1. Comparative study of the various methods of synthesis. 

Method 
 

Advantages  Disadvantages 

Sol-Gel  Flexible, dispersed 

homogeneous, technology 

mature 

Solvent, carbon residues 

Co-precipitation High surfaces, low 

C contamination, thermal 

stability 

Solvents, dependent method 

perovskite 

Solid-state reactions thermal stability lower activity 
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II.2.2.Characterization methods 

X-ray diffraction:  

• Principle and equipment 

X-ray diffraction is a tool to study the fine structure of matter. This technique originated 

with von Laue's discovery in 1912 that crystals diffract X-rays, revealing the diffraction shape 

of the crystal structure. At first, X-ray diffraction was only used for crystal structure 

determination. Later, other applications developed, and today the method is used not only for 

structure determination, but also for problems as diverse as chemical analysis and stress 

measurement, to study equilibria of phase and particle size measurement, to determine the 

orientation of a crystal, or the set of Orientations in a polycrystalline aggregate. [32] 

The device used is a diffractometer BRUCKER-D8 ADVANCE which has a theta: theta 

geometry with a copper sealed tube x-ray source producing Cu kα radiation at a wavelength 

of 1.5406 Å from a generator operating at 40 kV and 40 mA. A parallel beam of 

monochromatic x-ray radiation is produced by the use of a Göbel mirror optic (primary optic). 

The diffracted x-rays are recorded on a scintillation counter detector located behind a set of 

long Soller slits/parallel foils. The sample remains flat throughout the measurement but can be 

rotated to allow for better sampling and removal of preferred orientation effects. 

This machine operates using a Copper Line Focus X-ray tube producing Kα radiation 

(Kα1 = 1.540598 Å, Kα2 = 1.544426 Å, Kα ratio 0.5, Kαavrg = 1.541874 Å). 

Data collections using detector scans at a grazing incidence angle of 3° were undertaken 

with a scan range from 10 to 90° at 0.05° step 8 s/step. [33] 
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Figure.II.3. Type diffractometer BRUCKER-D8 ADVANCE 

• X-ray powder diffraction analysis 

X-ray powder diffraction is most widely used for the identification of unknown crystalline 

materials (e.g. minerals, inorganic compounds), is a non-destructive characterization method 

that identifies crystallized phases present in any material compared to a reference file, updated 

annually, which currently contains data on 69,500 compounds (Dossier J.C.P.D.S: Joint 

Committee for Powder Diffraction Standards. A careful analysis of diffractograms gives 

access to various properties of a crystallized material. 

➢ The position: determining the positions of the lines allows the identification of the 

crystalline phase and the calculation of its lattice parameters. 

➢ The form: the shape of the lines provides information about the size of the coherent 

diffraction domains and the rate of structural defects present in the sample. 

➢ Relative intensity: the determination of the relative intensities of the lines allows 

conclusions to be drawn about the position of the various atoms in the crystal lattice.  

• Principle of obtaining spectra: 

The powder, which consists of an infinite number of (crystalline) grains, is bombarded 

with a monochromatic X-ray beam of known wavelength generated by a copper anticathode. 

The emitted radiation is defined by a system of sources (Sollers slits) and windows located 

before and after the sample. The latter is placed on a sample holder that rotates with a uniform 

motion around an axis (angular circle) lying in its plane, which increases the number of 

possible orientations of the lattice planes (hkl). Because the particles are randomly oriented, 
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there will always be a family of planes that lead to diffraction, for which the BRAGG 

relationship is verified. [31] 

2𝑑ℎ𝑘𝑙𝑠𝑖𝑛𝜃 = 𝑛   

 : Incident X-ray beam wavelength 

: Diffraction angle 

dhkl: Inter-reticular distance characterizing the family of planes detected by the indices h,k,l. 

n: integer 

Differential thermal analysis (DTA) / Thermogravimetric analysis (TG) 

Thermal analysis is the analysis of a change in a property of a sample that is related to an 

applied temperature change. The sample is normally in a solid state and the changes that 

occur upon heating include melting, phase transition, sublimation and decomposition. 

• Thermogravimetric analysis (TG) 

The analysis of the change in the mass of a sample on heating. TG measures mass changes 

in a material as a function of temperature (or time) under a controlled atmosphere. Its 

principal uses include measurement of a material's thermal stability and composition. TG is 

most useful for dehydration, decomposition, desorption, and oxidation processes. 

• Differential thermal analysis (DTA) 

The most widely used thermal method of analysis In DTA, the temperature of a sample is 

compared to that of an inert reference material during a programmed temperature change. The 

temperature must remain the same until a thermal event occurs, such as melting, 

decomposition or a change in crystal structure. When an endothermic event occurs within the 

sample, the sample temperature lags behind the reference temperature and a minimum is 

observed on the curve. On the other hand, when an exothermic event occurs, the temperature 

of the sample exceeds the reference temperature and a maximum is observed on the curve. 

The area under the endotherm or oxotherm is related to the enthalpy of the thermal event, ΔH. 

For many problems it is advantageous to use both DTA and TG since DTA events can be 

classified into those that do or do not involve a mass change. [34,35] 
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TG-DTA modes can be used to determine the following:  

Melting points Thermal and oxidative stability 

Glass transition temperatures Purity 

Cristallinity Transformation temperatures 

                               Moisture/ volatile content  

 

 

Figure.II.4. Differential Thermal Analysis (DTA) / Thermogravimetric Analysis (TG) Device 

• Fourier transforms infrared spectroscopy analysis (FTIR): 

Infrared spectroscopy has been a workhorse for materials analysis in the laboratory for 

more than 70 years. An infrared spectrum represents a fingerprint of a sample with absorption 

peaks that correspond to the vibrational frequencies between the bonds of the atoms that make 

up the material. Because each different material is a unique combination of atoms, no two 

compounds produce exactly the same infrared spectrum. Therefore, infrared spectroscopy can 

lead to a positive identification (qualitative analysis) of each different type of material. The 

size of the peaks in the spectrum is also a direct indication of the amount of material present. 

With modern software algorithms, infrared is an excellent tool for quantitative analysis. 

Fourier Transform Infrared (FTIR) spectrometry was developed to overcome the 

limitations encountered with dispersive instruments. The main difficulty was the slow 

scanning process. A method was needed to measure all infrared frequencies simultaneously 

rather than individually. A solution was devised using a very simple optical device called an 

interferometer.  The interferometer produces a unique type of signal in which all infrared 
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frequencies are encoded. The signal can be measured very quickly, typically on the order of a 

second or so. 

  This reduces the amount of time per scan to a few seconds instead of several minutes. 

The interferometer is the result of the mutual "interference" of these two beams. The resulting 

signal is called an interferogram and has the unique property that each data point (a function 

of the position of the moving mirror) that makes up the signal contains information about each 

infrared frequency coming from the source. 

Since the analyst needs a frequency spectrum (a plot of the intensity at each individual 

frequency) for identification, the measured interferogram signal cannot be directly interpreted. 

A means of "decoding" each frequency is needed. This can be accomplished through a well-

known mathematical technique called the Fourier Transformation. This transformation is 

performed by the computer, which then presents the user with the desired spectral information 

for analysis. [36] 

 

Figure.II.5. FT-IR workflow 

• Specific area measurement by the BET method 

The BET method was developed by Brunauer, Emett and Teller in 1938 and allows 

specific surface areas to be measured by gas adsorption. It is based on the determination of 

gas quantity necessary to cover the external surface and internal pores of a solid by a 

complete monolayer. The method is applicable on powdered solid sample which particle 

diameter does not exceed 2 mm and which specific surface area is greater than 0.2 m2∙g-1. 

The sample is placed in an oven at 105°C, crushed and put into a glass sample holder. In 

order to empty the sample porosity of water and air that it may contain and enable fixation of 

N2 gas, the powdered sample is degassed at 105°C for 120 minutes and cooled in a bath of 

liquid nitrogen at a temperature of 77 K, to avoid gas condensation with increasing 
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temperature. Helium, a gas that will not fix on the sample surface, is injected into the sample 

holder to measure the volume which is not occupied by the sample. After helium evacuation, 

nitrogen is injected by successive steps, enabling the apparatus to measure the pressure in the 

sample holder. The partial pressure regularly measured and in the range of 0 to 0.995 enables 

to determine the quantity of adsorbed nitrogen. Results are processed using the equation of 

Brunauer, Emmett and Teller: [37] 

𝑃𝑆
𝑃0

𝑛𝑎(1−
𝑃𝑆
𝑃0

)
=

1

𝑛𝑚𝐶
+ (

𝑐−1

𝑛𝑚𝐶
) 𝑃𝑠/𝑃0   * 

𝑃𝑆[𝑃𝑎]: is the pressure of adsorption gas in equilibrium with the adsorbate gas. 

𝑃0[𝑃𝑎]: is the saturation vapour pressure of the adsorption gas. 

𝑃𝑆

𝑃0
: is the relative pressure of the adsorption gas. 

𝑛𝑎[mol∙g-1]: is the specific adsorbed gas quantity. 

𝑛𝑚 [mol∙g-1]: is the molecular coverage capacity, quantity of adsorbed gas necessary to cover 

a unit surface with a complete monolayer. 

𝐶: is the BET constant. 

𝑃𝑆
𝑃0

𝑛𝑎(1−
𝑃𝑆
𝑃0

)
:  is represented in function of relative pressure 𝑃𝑠/𝑃0. When 𝑃𝑠/𝑃0 is in the range 

0.05 to 0.35. 

Equation * is a linear function 𝑦= 𝑎𝑥+𝑏 with slope 𝑎 = (
𝑐−1

𝑛𝑚𝐶
) 

and y-intercept  𝑏 =
1

𝑛𝑚𝐶
 

BET constant writes: 𝐶 =
𝑎

𝑏
+ 1 

And the monolayer volume is given by: 

𝑉𝑚 =
1

𝑎 + 𝑏
 

The corresponding specific surface area is deduced with the following relation 
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𝐴𝑠 =
𝑉𝑀

𝑉𝑚𝑉𝑠𝑎𝑚𝑝𝑙𝑒
𝑆𝐴𝑑𝑠𝑜𝑟𝑏𝑎𝑡𝑒𝑁𝐴 

Where 𝐴𝑠 [m2∙g-1]: is the specific surface area of the solid. 

𝑉𝑀[cm3]: is the volume of the adsorbed gas monolayer. 

𝑆𝐴𝑑𝑠𝑜𝑟𝑏𝑎𝑡𝑒 [m²]: is the area of the efficient section per adsorbate molecule. 

𝑉𝑀   [22414 cm3∙mol-1 at P = 1 atm and T = 25°C]: is the volume of a molecular gram. 

𝑀𝑠𝑎𝑚𝑝𝑙𝑒 [g]: the mass of the sample after degassing. 

𝑁𝐴 [6.022∙1023 atomes∙mol-1]: is the Avogadro constant. 

 

Figure.II.6.BET Surface Area Analyzer quantachrome 
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III. Applying Machine learning and Data mining methods in 

perovskite materials design and discovery 

In this section we will talk about the successful application of ML and DM techniques 

in properties prediction and stability assessment of perovskite material. 

III.1.The workflow of Machine Learning and Data Mining 

The most common application of ML is to construct a statistical model used for data 

analysis and prediction. The main purpose of ML aims at evaluating or predicting the objects 

after training the model with historical data and specific conditions [38] 

Figure.III.1. the general workflow of ML in perovskite materials 

• The general form and layout of the workflow may change depending on the Data and 

its features.  

III.1.1.Data preparation: 

The dataset used for ML sometimes contains dependent and independent variables 

related to the materials. independent variables, also called features ,descriptors or Attributes, 

refer to the representative info involving the structure and characteristics of materials, 

together with the chemical composition, atomic or molecular parameters, structural 

parameters, additionally because the technological conditions for synthesis process. The 

dependent variables refer to the target property of the materials affected by the independent 

variables, also known as the target variables. [39,40] 

There are few important notes to take while preparing the data: 

✓ The quantity and quality of data are key factors within the discovery of materials.  

✓ A general rule of thumb is that a reasonable ml model needs the quantity of data over 

thrice of descriptors at least. 

Data 
preparation 

and 
preprocessing

Feature 
generation

Feature 
selection

Model 
selection

Model 
evaluation

Model 
application
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✓ The quality of the data depends on the spatial coverage of the target properties and the 

uncertainties associated with the data. 

✓ Data with a standard distribution is best for ML, insufficient data of specific target or 

poor coverage of specific properties might not form an appropriate data distribution 

for ML. 

✓ Data uncertainty, such as experimental error or calculation error, might have an effect 

on the quality of data. The roughness of the modeling data directly determines the 

consequences and results of the created model. 

✓ The prediction error of the model is higher than the error of the training data. 

• To reduce the roughness of the data there are several steps to do we included some 

of them: 

✓ The deletion of missing values  

✓ The completion of experimental conditions 

✓ Data normalization and scaling 

✓ Data standardization and (can improve model accuracy and convergence speed) 

• We can retrieve and collect the data from known and valid sources like available 

and authorize databases, research papers 

✓ The use of autonomous workflows to generate data in a convenient and fast way but 

risk the quality of data obtained cause it will be inferior to the data obtained from 

databases  

✓ The dataset could also be generated through lab-scale calculations performed by many 

data mining for materials packages like Materials Studio (MS), Vienna Ab initio 

Simulation Package (VASP)…etc. 

• ML models created by the calculated data have comparatively sensible evaluation 

metrics. However, the calculations of complicated materials might take up too 

many calculation resources and take an extended time. 

• The results of many ml algorithms will vary with whether or not any 

standardization or scaled. It’s value noting that each feature variables and target 

variables can be normalized or scale. 

• Data need to be reformatted into a single tabular form, imputed missing values, 

eliminated erroneous or incomparable data points, and normalized and rescaled the 

data. [29] 
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Table.III.1. Publicly accessible databases of various materials 

Database 
 

Brief description 
 

URL 
 

Materials Project (MP) 
 

Calculation data of 
properties of known and 
hypothetical materials 

https://materialsproject.org 
 

The Inorganic Crystal 
Structure 
Database (ICSD) 
 

Experimental 
characterization data of 
inorganic crystal 
structure 

https://icsd.fiz-
karlsruhe.de/index.xhtml 
 

Cambridge Structural 
Database (CSD) 
 

The structure database of 
small molecules and 
metal-organic 
molecular crystals based 
on X-ray and neutron 
diffraction 
experiments collected by 
the Cambridge 
Crystallographic 
Data Centre 

https://www.ccdc.cam.ac.uk/ 
 

Aflow-Automatic-
FLOW for Materials 
Discovery (AFLOW) 
 

A data repository of 
structure and property of 
inorganic materials 
from high-throughput ab 
initio calculations 

http://www.aflowlib.org 
 

Crystallography Open 
Database (COD) 
 

Structures data of 
organic, inorganic, and 
metal-organic 
compounds and minerals 

http://cod.ensicaen.fr 
 

Open Quantum 
Materials 
Database (OQMD) 
 

Theoretical simulation 
calculation data of 
mostly hypothetical 
materials 

http://www.oqmd.org/ 
 

Materials Platform for 
Data 
Science (MPDS) 
 

Peer-reviewed crystal 
structure, phase diagram, 
or physical 
property 

https://mpds.io/#modal/menu 
 

Springer Materials 
 

The world’s largest 
material data resource, a 
unique, high-quality 
numerical database 

https://materials.springer.com 
 

Materials Cloud 
 

Structural calculation 
data of candidate two-
dimensional materials 

https://www.materialscloud.org/ 
discover/2dstructures/dashboard/ptable 
 

Materiae 
 

Topological material 

database 

http://materiae.iphy.ac.cn/ 
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III.1.2.Feature generation and Feature selection 

  We will need a set of candidate features or attributes to form a valid benchmark data 

set to train and test the model. These features are usually derived from known properties of 

the constituent elements such as atomic radius and electronegativity. The quantity of features 

should be less than that of dataset samples for effectively training and avoiding overfitting. 

The properties of each material depend on a specific set of features; therefore feature 

selection should reduce the dimension of input space as much as possible without losing 

important information. In particular, redundant and high self-correlation features should be 

removed to guarantee the efficiency and accuracy of models. Known feature selection 

methods are: 

Exhaustive search: Exhaustive search can get the best subset, but it is only suitable for small 

datasets because it consumes a lot of computer time. 

Heuristic search: It is suitable for medium-sized data sets. 

Non-deterministic search: like search with the genetic algorithm and others. It can be used for large 

datasets. 

Reasonable material features should meet the following three conditions: 

➢ Perfect representation of material properties. 

➢ Sensitive to target properties. 

➢ Easy to discover and obtain. [29] 
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III.1.3.Model selection 

ML algorithms could be briefly divided into two categories:  

supervised learning and unsupervised learning. Supervised learning is the process of using a 

set of samples with known labels to adjust the parameters of the models and achieve the 

required performance, which is further divided into regression and classification. If the target 

property is a continuous value, the process is called regression. If the target is a discrete 

value, the process of searching the prediction function is called classification (Figure III.2)  

Generally, the best model is obtained by comparing multiple algorithms. The criteria 

of algorithm selection are mainly based on the results of cross validation and independent test. 

The commonly used evaluation metrics include mean absolute error (MAE), mean squared 

error (MSE), root mean squared error (RMSE), determination coefficient (R2), and correlation 

coefficient (R) for regression.  

MAE =
∑ |yi − xi|

n
i=1

n
=

∑ |ei|
n
i=1

n
 

MSE =
1

n
∑(y − ŷ)2

n

i=1

 

RMSE = √
∑ (y − ŷ)2n

i=1

N
 

𝑅 =
𝑛 ∑ 𝑥𝑦 − (∑ 𝑥)(∑ 𝑦)

√[𝑛 ∑ 𝑥2 − (∑ 𝑥)
2][𝑛 ∑ 𝑦2 − (∑ 𝑦)

2]

 

There other evaluation metrics such as confusion matrix, precision, recall, receiver 

operating characteristic curve (ROC), and area under ROC curve (AUC) for classification.  [29] 
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Figure.III.2. Commonly used machine learning algorithms in materials science 

Explaining some of the ML algorithms: 

Support vector machine: Support vector machine (SVM) includes support vector 

classification (SVC) and support vector regression (SVR). The main idea of SVC is to 

establish an optimal decision hyperplane to maximize the distance between the two kinds of 

samples closest to the plane on both sides of the plane. The basic idea of SVR is to map the 

data X into a higher-dimensional feature space F via a nonlinear mapping Φ and then to do 

linear regression in this space. SVM provides good generalization ability for classification and 

regression tasks.  

Artificial Neural Networks (ANN): falls in the category of regression and classification 

tasks. A neural network is composed of a large number of connected nodes (neurons). 

Samples are classified or regressed according to different connection modes and connection 

signals (weights) between nodes.  

Multiple Linear Regressions: Solve the regression problem when the relationship between 

multiple independent variables and one dependent variable is linear. [29] 

III.1.4.Model evaluation 
After model selection, it is usually necessary to tune the internal hyper-parameters of the 

model algorithm to for balance over-fitting and under-fitting, in other word optimize the 

selected model. 

Even well-trained ML models can contain errors due to noise in the training data, 

measurement limitations, computational uncertainties, or simply outliers or missing data. Poor 

model performance usually indicates high bias or high variance. [29,41] 
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➢ Terminology: 

Model optimization: When the learner (or set of learners) has been chosen and predictions are 

being made, the newly constructed model should be evaluated to permit for optimization and 

supreme choice of the most effective model. 3 principal sources of error arise and must be 

taken into account: model bias, model variance, and irreducible errors. 

Total Error = Bias + Variance + Irreducible Errors 

Bias: It is the error of wrong assumptions in the algorithm and can cause the model to lack 

underlying relationships. 

Variance: is sensitivity to small fluctuations in the training set 

High bias: or under-fitting It occurs when the model is not flexible enough to adequately 

describe the relationship between the expected inputs and predicted outputs, or when the data 

is not detailed enough to allow appropriate rules to be discovered. 

High variance: or over-fitting occurs when a model becomes too complex; typically this 

occurs when the number of parameters is increased. The diagnostic test for over-fitting is that 

a model's accuracy in representing training data continues to improve while its performance in 

estimating test data declines. [41] 

➢ model evaluation methods: 

There are three commonly used model evaluation methods: independent test, cross 

validation, 

and bootstrapping. 

Independent test method: The model's generalization error can be assessed by testing, but the 

goal of the model is to predict unknown samples. Therefore, a set of tests is required to test 

generalizability. The error obtained with the test set can be taken as an approximation of the 

generalization error. The smallest error from the independent test generally indicates the 

strongest generalization of the available model. It's worth noting that the independent test set 

and the training set must be mutually exclusive. 

Cross validation (CV) or k-fold cross validation method: this method is used to evaluate the 

reliability of the ML models. The input data is divided into k mutually exclusive subsets of 

the similar size, each subset is generated by ‘stratified samples’. The union of k-1 subsets is 

used as the training set with the remaining one used as the testing set. After k times of training 
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and testing, all test results are averaged to represent the final ML performance. The stability 

and fidelity of the evaluation results of the CV method depend to a large extent on the value 

of k. 

 K is a specified number; the commonly used values are 5, 10, and 20. When k is equal to the 

sample number of input data, this method is called leave-one-out cross validation (LOOCV). 

LOOCV is not affected by random sample partitioning and the results are often considered to 

be more accurate. 

Bootstrap method: represented by giving Given a dataset D containing m samples, then it will 

randomly copy a sample from D to the dataset D’ at a time until D’ contains m samples. Some 

data may be sampled repeatedly while some data may never be sampled.  

D is designated as the training set and D’ is used as the testing set. 

The number of training samples obtained by the bootstrapping method is equal to the original 

dataset. 

The bootstrapping method is effective under the condition of a small dataset. [29] 

III.1.5. Model application 

The purpose of ML is to generalize the hidden patterns between descriptors and 

material properties of existing data samples. The properties could be accurately predicted with 

the built model. Therefore, the developed ML model can be applied to high-throughput 

screening. First, many virtual patterns could be designed and then the properties could be 

predicted with the ML model. Finally, the materials with the desired properties would be 

selected from the hypothetical samples for the experiments. [29] 

As an optional step we can develop the online prediction model for sharing. The 

network model enables more users to predict target properties this make model applications 

easier and faster. For example Furmanchuk and al. [42] developed an online application to 

predict the Seebeck coefficient of crystalline materials. 
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IV. Application of machine learning and data mining in 

perovskite materials  

The maximum thrilling success of materials studies is to discover a few new 

compounds with distinctive shape and high-quality properties new perovsite type materials 

with exciting properties this is achieved by using the support vector machine algorithm. 

➢ Predicting the thermodynamic stability of around 230,000 possible ABX3 compounds 

and screen out the stable candidates using ERT algorithm with the prediction accuracy 

was set and evaluated with MAE scores 121 meV/atom. [43] 

➢ 40 potential ABX3 perovskite halides with high perovskite crystal structure formation 

probability where determined using SVM algorithm with the training set scores 93.8% 

and the testing set 92.1%.[44] 

➢ Taking an important step towards a basic understanding of the interfacial properties of 

perovskite, facilitating further breakthroughs in photovoltaic technology. Proposed 

two promising stable candidate materials, RbSnCl3 and RbSnBr3, for future 

photovoltaic and related applications using also SVM with the training set scores 94% 

and the testing set 96%[45] 

➢ Propose 11 undiscovered Li (Na) based perovskite materials with ideal bandgap and 

formation energy ranges for solar cell applications using RF algorithm mean score is 

0.98 standard deviation is 0.002. [46] 
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I. Introduction 

The ABO3 perovskite have an interesting property known as the specific surface 

area (SSA) that is one of the vital and necessary properties related to photo catalytic ability 

[1]. In this work the main objective is to try to study the link between the SSA (in the vary of 

1−60 m2 g−1) of perovskite and its features, together with technical parameters and chemical 

compositions with a help of data mining tasks and machine learning algorithms, basically will 

preparing a workflow consist of data mining crucial tasks (data preparation and pre-

processing, generating and selecting features) and machine learning algorithms (generally 

classification and regression) in the goal of creating a predictive model capable of predicting 

and finding perovskite-type materials with higher specific surface area. 

Once understanding each step of the workflow, a question will pop up where and how to 

execute these important steps, which platforms and tools that help you process your data make 

predictions and create your model. There are a lot of web applications and software that can 

help you execute ML and DM tasks like jupyter notebook powered by python a programming 

language which is the most effective in ML and DM projects, this language houses so many 

libraries such us NumPy, Pandas, and Scikit-learn which are a collection of pre-compiled 

programming routines frequently used in machine learning. Other software like Monkey 

Learn, Rapid Miner, Weka… etc. As a beginner using the data mining software Weka to 

perform the many DM and ML tasks, is an efficient and easy way. 

This work is inspired by a group of researchers from the university of Materials Genome 

Institute, Shanghai University China who were able to create a data mining model capable of 

predicting the specific surface area (SSA m2.g-1) of perovskite-type materials (ABO3) using 

Genetic-support vector regression algorithm (Ga-SVR) implemented by a computational 

software called ExpMiner (a data mining software package) developed in their laboratory and 

then they screen out 5 perovskite-type materials using the Online Computation Platform for 

Materials Data Mining (OCPMDM) developed in their lab too which been found very hard to 

use because of it being in beta state and not that completely functional. They used specifically 

SVR algorithm (a supervised machine learning algorithm)  By comparing it to two different 

machine learning algorithms, namely, partial least-squares (PLS)[2], and artificial neural 

network (ANN)[3] and they find that the optimal model is the SVR model[4].( as said in chapter 

2 SVR algorithm been used a lot in materials chemistry). 
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By constructing a SVR model they found the correlation coefficient (R) between the 

predicted and experiment SSA as high as 0.986 for the training dataset and 0.935 for the leave 

one out cross validation (LOOCV). From they were able to predict and screen out 5 

perovsikte type materials with a higher specific surface area utilizing this model throw the 

OCPMDM. 

Table.I.1.The four perovskite-type materials screened out using Li Shi, Dongping Chang, 

Xiaobo Ji, and Wencong Lu.Journal model 

Molecular formula SSA (m2 g-1) 
LaFe0.8Mg0.2O3 
 

57.70 
 

LaFe0.7Mg0.3O3 
 

58.09 
 

LaFe0.9Co0.1O3 
 

54.81 
 

LaFe0.8Co0.2O3 
 

54.82 
 

LaFe0.7Co0.3O3 
 

52.03 
 

 

So returning to this work where an SVR model will be created but with a twist by using a 

little different set of features from the same dataset for each model that means through feature 

selection then picking the best model that gives the best results .Note that the researchers also 

worked with different set of features which are B-aff (electron affinity of the B position),B-

Tm(the melting point of the B position),A-Tb(normal boiling point of the A 

position),CT(Calcinations temperature),and AH(calcinations time). 

All the work will be done using Weka as said before. Further explanation here below: 

I.1.What is Weka: 
Developed at the University of Waikato in New Zealand and named after a flightless 

bird found only on the islands of New Zealand, Weka is an open-source software for data 

mining it contains tools for data preparation, regression classification, clustering, association 

rules mining, feature selection, and visualization to help in various DM and ML tasks all this 

without writing any program code at all. It runs on almost any platform and has been tested 

under Linux, Windows, and Macintosh operating systems. 
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Figure.I.1. Weka graphic interface 

I.2.How to use Weka 

     A simple way to use Weka is to go and upload your dataset into the software apply a 

learning method and analyze its output to learn more about the data. Also you can use learned 

models to generate predictions for new samples (instances). Another useful way is applying 

different learners and compares their performance to select one to predict. In the interactive 

WEKA interface, we can select the desired learning method from an easy access menu. Plus 

we can tune and modify a number of parameters of these methods through an object editor. 

The explorer option is where all the work will be done from all the data mining tasks and 

machine learning techniques. Through it we can quickly read in a dataset from a file with 

different types ( csv, data, Libsvm…etc) with Weka standard file type comes with (.arff) 

extension. It guides very well by giving access to all of its facilities using menu selection and 

form filling. 

The experiment option helps us answer which methods and parameter values work best for 

the given problem when applying classification and regression techniques. 

The Knowledge Flow interface allows us to design configurations for streamed data 

processing. 

The last one the workbench which is the most configurable s a unified graphical user 

interfaces that combines the other three. [5] 

Much of the work will circle around the explorer section so an explanation is below with 

further details.  
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Figure.I.2. the Explorer interface. 

Pre-process section: from this option you will be able to import the dataset and modify it in 

various ways. Only files whose names end in .arff appear in the file browser you can change 

the Format item in the file selection box. Weka support many data files such as 

• Spreadsheet files with extension .csv • C4.5’s native file format with 

extensions .names and .data 

• Serialized instances with extension 

.bsi 

• LIBSVM format files with extension 

.libsvm 

• SVM-Light format files with 

extension .dat 

• XML-based ARFF format files with 

extension .xrff 

• ASCII Matlab files with extension .m • Excel extension files .xls and .xlsx 

Also in this section you can import databases from the DB button generate and import data 

from a URL…etc and so much other useful tools. 

 

Figure.I.3. the Explorer interface pre-process section. 

Applying multiple filters that can 

help with data preparation and 

pre-processing 

 

The list where we can see the 

features relevant to the dataset 

 

General information about the features like mean values, 

type, name ...etc and if there are missing values 

 Visualize the distribution of our 

data 

 

Textual log of the actions that 

WEKA has performed 
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Classify section: the option lets you apply Varity of ML algorithms in order to perform 

classification or regression and evaluate them. Plus it let us train and test our data perform a 

lot of evaluation methods and more option to create an accurate models.  

 

Figure.I.4. the Explorer interface classify section. 

Select attributes section:  where you can select key features which are the most relevant 

aspects of the dataset, it gives different methods for feature selection which are divided into a 

search method and attribute evaluators both are configurable. 

 

Figure.I.5. the Explorer interface Select attributes section. 

Visualize section: View different two-dimensional plots of the data and interact with them. 

Results of the tasks performed will 

appear here  

The option to choose the 

algorithms that suits our goal  

Options that help in creating our 

model 

The Target property place 

of appearance and its type 

The list of tasks performed with numerous 

options to visualize the results 
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Figure.I.6.the Explorer interface Visualize section. 

Other sections are: Cluster helps you Learn clusters from the dataset; Associate from you can 

Learn association rules for the data and evaluate them. [5] 
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II. Executing My Data mining workflow: 

Any Data mining and machine learning project need a workflow to better realize and achieve 

the goal of the task at hand so as mentioned in chapter two the workflow or the flowchart of 

data mining and machine learning that will be followed is:  

 

Figure.II.1.My DM and ML workflow 

Beginning with creating the models following different steps in the first half of the workflow 

(data preparation and feature selection). 

II.1.Data preparation 

Data n°01: 

The data which been used consist of a total of 50 samples of Perovskite type-materials 

prepared via sol-gel method with their SSAs ranging from 1 to 60 m2 g-1 (Table.II.1) as 

support information collected by the same group of researchers from the literature [4], besides 

a list of a candidate features consisted of technical parameters and chemical compositions 

(Table.II.2). Deciding to work with this ready dataset in order to better understand how data 

mining and machine learning methods works in materials design and discovery and also 

compare the models results to theirs. 

 

 

 

Data preparation 
and preprocessing

Feature selection

Model selection 
and evaluation

Model application
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Table.II.1.The dataset complete with 50 samples (instances) and 24 candidate features  

NO. Molecular SSA Ra Rb Ea 
1 ZnTiO3 1.05 74 67 1.65 
2 LaFeO3 1.08 103.2 55 1.1 
3 BiFeO3 0.7514 103 55 2.02 
4 BiTi0.15Fe0.85O3 0.9507 103 56.8 2.02 
5 LaCoO3 17 103.2 54.5 1.1 
6 LaCo0.94Mg0.06O3 19 103.2 55.55 1.1 
7 LaCo0.90Mg0.10O3 21 103.2 56.25 1.1 
8 LaCo0.80Mg0.20O3 22 103.2 58 1.1 
9 La0.5Bi0.2Ba0.2Mn0.1FeO3 27.75 105 55 1.287 
10 La0.5Bi0.2Ba0.2Mn0.1FeO3 20.63 105 55 1.287 
11 La0.5Bi0.2Ba0.2Mn0.1FeO3 12.46 105 55 1.287 
12 La0.5Bi0.2Ba0.2Mn0.1FeO3 5.91 105 55 1.287 
13 La0.5Bi0.2Ba0.2Mn0.1FeO3 4.19 105 55 1.287 
14 LaFeO3 11.39 103.2 55 1.1 
15 LaMg0.2Fe0.8O3 15.07 103.2 58.4 1.1 
16 LaMg0.4Fe0.6O3 17.63 103.2 61.8 1.1 
17 LaMg0.6Fe0.4O3 24.41 103.2 65.2 1.1 
18 LaMg0.8Fe0.2O3 13.32 103.2 68.6 1.1 
19 LaMgO3 8.65 103.2 72 1.1 
20 LaCrO3 3.95 103.2 61.5 1.1 
21 LaMg0.2Cr0.8O3 8.42 103.2 63.6 1.1 
22 LaMg0.4Cr0.6O3 29.71 103.2 65.7 1.1 
23 LaMg0.6Cr0.4O3 18.41 103.2 67.8 1.1 
24 LaMg0.8Cr0.2O3 14.46 103.2 69.9 1.1 
25 PrFeO3 10.88 99 55 1.13 
26 LaFe0.9Co0.1O3 51.2 103.2 54.95 1.1 
27 LaFe0.1Co0.9O3 42.8 103.2 54.55 1.1 
28 LaFeO3 8.5 103.2 55 1.1 
29 SrTiO3 16.4 118 67 0.95 
30 La0.002Sr0.998TiO3 19.7 117.9704 67 0.9503 
31 La0.005Sr0.995TiO3 22.3 117.926 67 0.95075 
32 La0.01Sr0.99TiO3 24.1 117.852 67 0.9515 
33 La0.02Sr0.98TiO3 23.2 117.704 67 0.953 
34 LaFeO3 9.5 103.2 55 1.1 
35 La0.5Bi0.2Ba0.2Mn0.1FeO3 25.8 103.2 55 1.1 
36 La0.5Bi0.2Ba0.2Mn0.1FeO3 22.55 103.2 55 1.1 
37 La0.5Bi0.2Ba0.2Mn0.1FeO3 20.04 103.2 55 1.1 
38 La0.5Bi0.2Ba0.2Mn0.1FeO3 8.5 103.2 55 1.1 
39 La0.5Bi0.2Ba0.2Mn0.1FeO3 5.8 103.2 55 1.1 
40 LaNiO3 14.1 103.2 56 1.1 
41 LaNiO3 12.7 103.2 56 1.1 
42 LaNiO3 11.8 103.2 56 1.1 
43 LaNiO3 6.5 103.2 56 1.1 
44 LaNiO3 15.1 103.2 56 1.1 
45 LaNiO3 12.2 103.2 56 1.1 
46 LaFeO3 21.9 103.2 55.0 1.1 
47 LaFeO3 15.4 103.2 55.0 1.1 
48 LaFeO3 10.1 103.2 55.0 1.1 
49 LaFeO3 5.2 103.2 55.0 1.1 
50 LaFeO3 1.1 103.2 55 1.1 

NO. Eb TF aO3 rc Za 
1 1.54 0.731 160.524 -21.762 9.394 
2 1.83 0.882 132.552 11.855 5.577 
3 1.83 0.881 132.55 11.727 7.286 
4 1.7865 0.873 136.795 9.959 7.286 
5 1.88 0.884 131.373 12.341 5.577 
6 1.8458 0.879 133.849 11.318 5.577 
7 1.823 0.876 135.5 10.631 5.577 
8 1.766 0.869 139.627 8.898 5.577 
9 1.83 0.888 132.569 13.005 6.031 
10 1.83 0.888 132.569 13.005 6.031 
11 1.83 0.888 132.569 13.005 6.031 
12 1.83 0.888 132.569 13.005 6.031 
13 1.83 0.888 132.569 13.005 6.031 
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14 1.83 0.882 132.552 11.855 5.577 
15 1.726 0.867 140.571 8.499 5.577 
16 1.622 0.852 148.589 5.063 5.577 
17 1.518 0.838 156.608 1.55 5.577 
18 1.414 0.824 164.626 -2.036 5.577 
19 1.31 0.811 172.644 -5.692 5.577 
20 1.66 0.853 147.882 5.369 5.577 
21 1.59 0.845 152.834 3.212 5.577 
22 1.52 0.836 157.787 1.027 5.577 
23 1.45 0.828 162.739 -1.186 5.577 
24 1.38 0.819 167.692 -3.426 5.577 
25 1.83 0.867 132.512 9.147 5.473 
26 1.835 0.882 132.434 11.904 5.577 
27 1.875 0.884 131.491 12.293 5.577 
28 1.83 0.882 132.552 11.855 5.577 
29 1.54 0.881 160.991 9.581 5.695 
30 1.54 0.881 160.99 9.562 5.695 
31 1.54 0.881 160.99 9.533 5.694 
32 1.54 0.881 160.989 9.484 5.694 
33 1.54 0.88 160.988 9.388 5.693 
34 1.83 0.882 132.552 11.855 5.577 
35 1.83 0.882 132.552 11.855 5.577 
36 1.83 0.882 132.552 11.855 5.577 
37 1.83 0.882 132.552 11.855 5.577 
38 1.83 0.882 132.552 11.855 5.577 
39 1.83 0.882 132.552 11.855 5.577 
40 1.91 0.877 134.911 10.876 5.577 
41 1.91 0.877 134.911 10.876 5.577 
42 1.91 0.877 134.911 10.876 5.577 
43 1.91 0.877 134.911 10.876 5.577 
44 1.91 0.877 134.911 10.876 5.577 
45 1.91 0.877 134.911 10.876 5.577 
46 1.8 0.9 132.6 11.6 5.6 
47 1.8 0.9 132.9 11.9 5.6 
48 1.8 0.9 132.9 11.9 5.6 
49 1.8 0.9 132.9 11.9 5.6 
50 1.83 0.882 132.911 11.855 5.577 

NO. Zb Ra/Rb Mass A-aff B-aff 
1 6.828 1.104 161.27 -58 7.6 
2 7.902 1.876 242.75 48 15.7 
3 7.902 1.873 312.85 91.3 15.7 
4 7.741 1.813 311.6545 91.3 14.485 
5 7.881 1.894 245.83 48 63.8 
6 7.867 1.858 243.7528 48 57.632 
7 7.858 1.835 242.368 48 53.52 
8 7.834 1.779 238.906 48 43.24 
9 7.902 1.909 248.054 36.46 15.7 
10 7.902 1.909 248.054 36.46 15.7 
11 7.902 1.909 248.054 36.46 15.7 
12 7.902 1.909 248.054 36.46 15.7 
13 7.902 1.909 248.054 36.46 15.7 
14 7.902 1.876 242.75 48 15.7 
15 7.851 1.767 236.442 48 4.76 
16 7.8 1.67 230.134 48 -6.18 
17 7.749 1.583 223.826 48 -17.12 
18 7.697 1.504 217.518 48 -28.06 
19 7.646 1.433 211.21 48 -39 
20 6.767 1.678 238.9 48 64.3 
21 6.942 1.623 233.362 48 43.64 
22 7.118 1.571 227.824 48 22.98 
23 7.294 1.522 222.286 48 2.32 
24 7.47 1.476 216.748 48 -18.34 
25 7.902 1.8 244.75 47 15.7 
26 7.9 1.878 243.058 48 20.51 
27 7.883 1.892 245.522 48 58.99 
28 7.902 1.876 242.75 48 15.7 
29 6.828 1.761 183.5 -29 7.6 
30 6.828 1.761 183.60256 -28.846 7.6 
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31 6.828 1.76 183.7564 -28.615 7.6 
32 6.828 1.759 184.0128 -28.23 7.6 
33 6.828 1.757 184.5256 -27.46 7.6 
34 7.902 1.876 242.75 48 15.7 
35 7.902 1.876 242.75 48 15.7 
36 7.902 1.876 242.75 48 15.7 
37 7.902 1.876 242.75 48 15.7 
38 7.902 1.876 242.75 48 15.7 
39 7.902 1.876 242.75 48 15.7 
40 7.64 1.843 245.59 48 111.5 
41 7.64 1.843 245.59 48 111.5 
42 7.64 1.843 245.59 48 111.5 
43 7.64 1.843 245.59 48 111.5 
44 7.64 1.843 245.59 48 111.5 
45 7.64 1.843 245.59 48 111.5 
46 7.9 1.9 242.8 48 15.7 
47 7.9 1.9 242.8 48 15.7 
48 7.9 1.9 242.8 48 15.7 
49 7.9 1.9 242.8 48 15.7 
50 7.902 1.876 242.75 48.00 15.70 

NO. A-Tm B-Tm A-Tb B-Tb A_Hfus 

1 419.53 1670 907 3287 108.1 

2 918 1538 3464 2861 44.6 

3 271.4 1538 1564 2861 53.3 

4 271.4 1557.8 1564 2924.9 53.3 

5 918 1495 3464 2927 44.6 

6 918 1444.3 3464 2816.78 44.6 

7 918 1410.5 3464 2743.3 44.6 

8 918 1326 3464 2559.6 44.6 

9 783.28 1538 2626.7 2861 66.82 

10 783.28 1538 2626.7 2861 66.82 

11 783.28 1538 2626.7 2861 66.82 

12 783.28 1538 2626.7 2861 66.82 

13 783.28 1538 2626.7 2861 66.82 

14 918 1538 3464 2861 44.6 

15 918 1360.4 3464 2506.8 44.6 

16 918 1182.8 3464 2152.6 44.6 

17 918 1005.2 3464 1798.4 44.6 

18 918 827.6 3464 1444.2 44.6 

19 918 650 3464 1090 44.6 

20 918 1907 3464 2671 44.6 

21 918 1655.6 3464 2354.8 44.6 

22 918 1404.2 3464 2038.6 44.6 

23 918 1152.8 3464 1722.4 44.6 

24 918 901.4 3464 1406.2 44.6 

25 931 1538 3520 2861 48.9 

26 918 1533.7 3464 2867.6 44.6 

27 918 1499.3 3464 2920.4 44.6 

28 918 1538 3464 2861 44.6 

29 777 1670 1382 3287 84.8 

30 777.282 1670 1386.164 3287 84.7196 

31 777.705 1670 1392.41 3287 84.599 

32 778.41 1670 1402.82 3287 84.398 

33 779.82 1670 1423.64 3287 83.996 

34 918 1538 3464 2861 44.6 

35 918 1538 3464 2861 44.6 

36 918 1538 3464 2861 44.6 

37 918 1538 3464 2861 44.6 

38 918 1538 3464 2861 44.6 

39 918 1538 3464 2861 44.6 

40 918 1455 3464 2931 44.6 

41 918 1455 3464 2931 44.6 

42 918 1455 3464 2931 44.6 

43 918 1455 3464 2931 44.6 

44 918 1455 3464 2931 44.6 
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45 918 1455 3464 2931 44.6 

46 918 1538 3464 2861 44.6 

47 918 1538 3464 2861 44.6 

48 918 1538 3464 2861 44.6 

49 918 1538 3464 2861 44.6 

50 918.00 1538.00 3464.00 2861.00 44.60 

NO. B_Hfus D-A D-B CT AH DT 
1 295.6 7.14 4.51 900 2 120 
2 247.3 6.15 7.87 900 4 150 
3 247.3 9.79 7.87 900 4 150 
4 254.545 9.79 7.366 900 4 150 
5 272.5 6.15 8.86 750 4 110 
6 277.084 6.15 8.4328 750 4 110 
7 280.14 6.15 8.148 750 4 110 
8 287.78 6.15 7.436 750 4 110 
9 247.3 6.487 7.87 500 4 120 
10 247.3 6.487 7.87 600 4 120 
11 247.3 6.487 7.87 700 4 120 
12 247.3 6.487 7.87 800 4 120 
13 247.3 6.487 7.87 900 4 120 
14 247.3 6.15 7.87 600 5 100 
15 267.62 6.15 6.644 600 5 100 
16 287.94 6.15 5.418 600 5 100 
17 308.26 6.15 4.192 600 5 100 
18 328.58 6.15 2.966 600 5 100 
19 348.9 6.15 1.74 600 5 100 
20 404 6.15 7.15 600 5 100 
21 392.98 6.15 6.068 600 5 100 
22 381.96 6.15 4.986 600 5 100 
23 370.94 6.15 3.904 600 5 100 
24 359.92 6.15 2.822 600 5 100 
25 247.3 6.77 7.87 700 5 90 
26 249.82 6.15 7.969 750 10 110 
27 269.98 6.15 8.761 750 10 110 
28 247.3 6.15 7.87 700 3 110 
29 295.6 2.64 4.51 650 10 110 
30 295.6 2.64702 4.51 650 10 110 
31 295.6 2.65755 4.51 650 10 110 
32 295.6 2.6751 4.51 650 10 110 
33 295.6 2.7102 4.51 650 10 110 
34 247.3 6.15 7.87 700 4 90 
35 247.3 6.15 7.87 500 2 130 
36 247.3 6.15 7.87 600 2 130 
37 247.3 6.15 7.87 700 2 130 
38 247.3 6.15 7.87 800 2 130 
39 247.3 6.15 7.87 900 2 130 
40 290.3 6.15 8.9 600 2 130 
41 290.3 6.15 8.9 700 2 130 
42 290.3 6.15 8.9 800 2 130 
43 290.3 6.15 8.9 900 2 130 
44 290.3 6.15 8.9 600 4 130 
45 290.3 6.15 8.9 600 6 130 
46 247.3 6.15 7.87 500 4 120 
47 247.3 6.15 7.87 600 4 120 
48 247.3 6.15 7.87 700 4 120 
49 247.3 6.15 7.87 800 4 120 
50 247.30 6.15 7.87 900.00 4.00 120.00 
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Table.II.2.The list of 24 candidate features 

1 Atomic radius of the A position (Ra) 

2 Atomic radius of the B position (Rb) 

3 Electronegativity of the A position (Ea) 

4 Electronegativity of the B position (Eb) 

5 Unit cell lattice edge (αO3). 

6 Critical radius (rc) 

7 Ionization potential of the A position (Za) 

8 Ionization potential of the B position (Zb) 

9 Ratio of the atomic radii of the A and B positions (Ra/Rb) 

10 Molecular mass (mass) 

11 Electron affinity of the A position (A-aff) 

12 Electron affinity of the B position (B-aff) 

13 Melting point of the A position (A-Tm) 

14 Melting point of the B position (B-Tm) 

15 Normal boiling point of the A position (A-Tb) 

16 Normal boiling point of the B position (B-Tb) 

17 Enthalpy of fusion at the melting point of the A position (A-Hfus) 

18 Enthalpy of fusion at the melting point of the B position (B-Hfus) 

19 Density of the A position (D-A) 

20 Density of the B position (D-B) 

21 Calcination temperature (CT) 

22 Calcination time (AH) 

23 Drying temperature (DT) 

24 Tolerance factor (TF) 

 

So in order to begin the work the first step is to import the raw-data into Weka to begin pre-
processing phase: 

1. Opening Weka and selecting the explorer option 
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2. Next another window will pop up its the explorer interface

 
3. In order to open the data we need to clique on open file, a small window will open 

asking us for the data file directory we locate where we put the file then clique open; a 

small note will open. Weka can import different file extension we can convert to any 

type supported by Weka so pay intension our data file called raw_data is a .csv file : 

 
4. Now we can see the list of the candidate features that are relevant to the dataset appear 

in the list section, besides the number of samples we have. We can see also some 

information about each attribute (feature) like the general distribution there are no 

missing values, the data is in good shape, besides the type of values (numeric and 

nominal) we can see the minimum mean and maximum value for any of the features.  
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In the case of missing or incomplete value we can add values by going to the edit option to 

see our dataset in a single tabular form.   

 

 

 

5. Now we need to identify the target feature which we will build upon the predictive 

model the target property is the specific surface area (SSA) m2.m-1 in order to identify 

as a target attribute we need to open our data by cliquing on edit option than go to the 

column where SSA situated then selecting attribute as class (target). 

The target feature SSA will appear in the last column in bold: 
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6. We need to normalize and scale our dataset in order to bring all features to the same 

range  by giving them values ranging from 0 to 1 this is an important step it improve 

the model accuracy[6].In order to begin these steps we need to go to the filter option 

than choose unsupervised then attribute then selecting normalize option: 

 

The normalize filter option will then appear in the bare next to choose option we can modify 

and edit the properties of this filter but we recommend leaving the default parameters, to 

activate this filter we need to clique on apply you will notice that the values of each features 

will have a minimum value of 0 and a maximum value of 1: 
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II.2.Feature selection: 

 Now that the data is prepared the next important step is selecting the key features 

that influence heavily the target property. This will ensure an effective data training and avoid 

over-fitting problems by reducing the quantity of the features. 

 In order to use this option we need to go to the attribute selection section we will 

find in front of us two dialogue bars one called attribute evaluator and the other one is search 

method. Weka uses different feature selection methods the one we choose called wrapper 

subset Evaluation with a search method called best first. 

 Wrapper methods utilize the prediction ability of some machine learning 

algorithms (in our case SVR), to evaluate the feature subset. Wrapper method can assure to 

get a feature subset with higher accuracy by using the specified learning machine (SVR here).  

 Wrapper algorithm examines the feature space to qualify subsets of features 

according to their predictive power and optimizes the subsequent induction algorithm that 

uses each subset for classification. [7] 

 First we will begin by choosing from the attribute evaluator bar the wrapper 

subset Evaluation or WrapperEvalsubset, Weka automatically will select the right search 

method in this case its best first search method: 
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Then we come at an important step which is selecting the algorithm the wrapper 

method will work on. We choose the Support vector machine for regression (SVM for 

regression) also known as SMOreg in Weka it’s the main algorithm that we will deploy later 

to train our data and build the model. 

To choose SVM for regression algorithm we need to clique on WrapperSubsetEval bar 

an object editor will appear then go for classifiers, the functions option and finally SMOreg 

which represent the Support vector machine for regression algorithm: 

To select the best possible subset of features we need to make sure that the SVR 

algorithm is well optimized by carefully choosing the right parameters which are the kernel 

function the complexity parameter C the gamma parameter (the kernel parameter) γ and the 

epsilon parameter ε, without forgetting normalize the training data filter. Each of these 

parameters needs to set at these values according to [4] to avoid over fitting and under fitting 

problems, they achieved that by performing a grid search [8] and evaluating the LOOCV 

results for SVR models. 

Another study shows that the value of these parameters according to the grid search 

varies according to the kernel function. It shows that the SVR model is well fitted and 

optimized when the gamma parameter was giving these values (0.001, 0.01, 0.1, 0.5, 0.8, 1, 

and 3) and the C parameter (5, 10, 20, 50, 100, 200, 500, and 1000). [9] 
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The kernel function is RBFKernel (the radial basis function kernel) 

C=73; Γ=0.9; Ε=0.03                                                        To change γ clique on the RBFKernel bar: 

 

 

 

 

 

 

 

 

To change the ε parameters we clique on the regression optimizer option: 

 

 Next is selecting the evaluation measure which will evaluate our feature selection 

method. There are a lot of options for the evaluation metrics, for us we prefer the correlation 

coefficient R and the root mean square error (RMSE). 
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We will use both training set data and cross-validation 10 folds options the results are shown 

in the result panel: 

 

• The results as shown in the output section are: 
Table.II.3.Feature selection results using Wrapper method 

Number of instances  Selected attributes RMSE R 
50 B-Tm 

CT 
AH 

4.624 0.89 

 

The results shows good evaluation by this method we have the best subset of features with R= 0.89 

which is good and RMSE= 4.624 minimizing the error. 

B-Tm: the melting point of the B-position, CT: The calcinations temperature, AH: the calcinations 

time. 
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To further confirm the results we proceed with cross-validation test: 

The cross validation results: 

Evaluation mode:    10-fold cross-validation 

Attribute selection 10 fold cross-validation seed: 1 

Table.II.4.Feature selection results with 10 folds cross validation results 

Number of folds (%) Attribute 
10 1 Ra 
0 2 Rb 
20 3 Ea 
0 4 Eb 
0 5TF 
0 6 aO3 
0 7 rc 
10 8 Za 
0 9 Zb 
0 10 Ra/Rb 
10 11 Mass 
10 12 A-aff 
30 13 B-aff 
0 14 A-Tm 
80 15 B-Tm 
10 16 A-Tb 
0 17 B-Tb 
0 18 A_Hfus 
20 19 B_Hfus 
0 20 D-A 
0 21 D-B 
100 22 CT 
100 23 AH 
30 24 DT. 

 

Figure.II.2.A histogram representing the selected features (attributes) 
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         We can clearly see through the 10-folds cross-validation test that the optimal subset of 

feature according to wrapper method consist of The calcinations temperature (CT) with 100% 

dominance also the calcinations time (AH) scores 100% and the melting point of the B 

position (B-Tm) with 80%.this is good because as chemists we know that the calcinations 

temperature and the calcinations time has a significance impact on the surface area of ABO3-

type perovskite.  

         There other descriptors sharing the same number of folds to pick one of them that 

depend on the chemist’s knowledge. 

Now we reduced our data to just 3 set of features with the target feature being the SSA 

(Table.II.5). 
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Table.II.5.The reduced data well normalized and ready 

B-Tm CT AH SSA (The target property) 
0.811456 1 0 1.05 
0.706444 1 0.25 1.08 
0.706444 1 0.25 0.7514 
0.722196 1 0.25 0.9507 
0.672235 0.625 0.25 17 
0.631901 0.625 0.25 19 
0.605012 0.625 0.25 21 
0.537788 0.625 0.25 22 
0.706444 0 0.25 27.75 
0.706444 0.25 0.25 20.63 
0.706444 0.5 0.25 12.46 
0.706444 0.75 0.25 5.91 
0.706444 1 0.25 4.19 
0.706444 0.25 0.375 11.39 
0.565155 0.25 0.375 15.07 
0.423866 0.25 0.375 17.63 
0.282578 0.25 0.375 24.41 
0.141289 0.25 0.375 13.32 
0 0.25 0.375 8.65 
1 0.25 0.375 3.95 
0.8 0.25 0.375 8.42 
0.6 0.25 0.375 29.71 
0.4 0.25 0.375 18.41 
0.2 0.25 0.375 14.46 
0.706444 0.5 0.375 10.88 
0.703023 0.625 1 51.2 
0.675656 0.625 1 42.8 
0.706444 0.5 0.125 8.5 
0.811456 0.375 1 16.4 
0.811456 0.375 1 19.7 
0.811456 0.375 1 22.3 
0.811456 0.375 1 24.1 
0.811456 0.375 1 23.2 
0.706444 0.5 0.25 9.5 
0.706444 0 0 25.8 
0.706444 0.25 0 22.55 
0.706444 0.5 0 20.04 
0.706444 0.75 0 8.5 
0.706444 1 0 5.8 
0.640414 0.25 0 14.1 
0.640414 0.5 0 12.7 
0.640414 0.75 0 11.8 
0.640414 1 0 6.5 
0.640414 0.25 0.25 15.1 
0.640414 0.25 0.5 12.2 
0.706444 0 0.25 21.9 
0.706444 0.25 0.25 15.4 
0.706444 0.5 0.25 10.1 
0.706444 0.75 0.25 5.2 
0.706444 1 0.25 1.1 
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Data n°02: 

          For this time we will be selecting a different set of features in the bases of 

Doc.Kenoushe’s method which he dividing the raw data into 10000 subdivisions to a get a 

better generalization of the data and get the best possible set of features besides the selection 

of features performed 10000 times all this work was realized using a software called math lab. 

To summarize it here below: 

 

 

 Figure.II.3.A simple figure representing the method 

          For this method we were only interested in the selection of features which according to 
this method was like: 

 

Figure.II.4. A histogram representing the best performed features 
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         We can clearly see according to (Figure.II.3) the best features are the numbers 22 23 

which are respectively calcinations temperature and the calcinations time to select the other 

descriptors I have the number 19, 15, and 10. 

         19 is the Enthalpy of fusion at the melting point of the B position and 15 is the melting 

point of the position B the last number 10 which is the Ratio of the atomic radii of the A and 

B positions. 

         We selected the same B-Tm, CT, AH but this time adding the Enthalpy of fusion at the 

melting point of the B position B-Hfus.  

So the data n°2 has a features set consisted of B-Tm, CT, AH, and B-Hfus. 

         Further we normalized the data with the new set features this time not with Weka but by 

calculating the standard deviation and divide each values of the features on its standard 

deviation. 

S (B-Tm) = 222.487709763749 

S (B-Hfus) = 42.2815399718063 

S (CT) = 117.477744309989 

S (AH) = 2.40958968477614 
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Table.II.6.The normalized dataset for the new selected feature 

NO. B-Tm B_Hfus CT AH SSA 

1 7.5060325883767200 6.9912306930426000 7.6610255439120700 0.8300168334202530 1.05 
2 6.9127413897744900 5.8488881948221700 7.6610255439120700 1.6600336668405100 1.08 
3 6.9127413897744900 5.8488881948221700 7.6610255439120700 1.6600336668405100 0.7514 
4 7.0017350695648200 6.0202395695552400 7.6610255439120700 1.6600336668405100 0.9507 
5 6.7194722871995200 6.4448929765023900 6.3841879532600600 1.6600336668405100 17 
6 6.4915945313727500 6.5533090844080400 6.3841879532600600 1.6600336668405100 19 
7 6.3396760274882400 6.6255864896784600 6.3841879532600600 1.6600336668405100 21 
8 5.9598797677769600 6.8062800028545300 6.3841879532600600 1.6600336668405100 22 
9 6.9127413897744900 5.8488881948221700 4.2561253021733700 1.6600336668405100 27.75 
10 6.9127413897744900 5.8488881948221700 5.1073503626080500 1.6600336668405100 20.63 
11 6.9127413897744900 5.8488881948221700 5.9585754230427200 1.6600336668405100 12.46 
12 6.9127413897744900 5.8488881948221700 6.8098004834773900 1.6600336668405100 5.91 
13 6.9127413897744900 5.8488881948221700 7.6610255439120700 1.6600336668405100 4.19 
14 6.9127413897744900 5.8488881948221700 5.1073503626080500 2.0750420835506300 11.39 
15 6.1144950498369400 6.3294761775103500 5.1073503626080500 2.0750420835506300 15.07 
16 5.3162487098993900 6.8100641601985300 5.1073503626080500 2.0750420835506300 17.63 
17 4.5180023699618400 7.2906521428867100 5.1073503626080500 2.0750420835506300 24.41 
18 3.7197560300242900 7.7712401255748900 5.1073503626080500 2.0750420835506300 13.32 
19 2.9215096900867500 8.2518281082630700 5.1073503626080500 2.0750420835506300 8.65 
20 8.5712599676852700 9.5549972936035500 5.1073503626080500 2.0750420835506300 3.95 
21 7.4413099121655600 9.2943634565354600 5.1073503626080500 2.0750420835506300 8.42 
22 6.3113598566458600 9.0337296194673600 5.1073503626080500 2.0750420835506300 29.71 
23 5.1814098011261600 8.7730957823992600 5.1073503626080500 2.0750420835506300 18.41 
24 4.0514597456064500 8.5124619453311600 5.1073503626080500 2.0750420835506300 14.46 
25 6.9127413897744900 5.8488881948221700 5.9585754230427200 2.0750420835506300 10.88 
26 6.8934144795169900 5.9084886729902000 6.3841879532600600 4.1500841671012700 51.2 
27 6.7387991974570100 6.3852924983343700 6.3841879532600600 4.1500841671012700 42.8 
28 6.9127413897744900 5.8488881948221700 5.9585754230427200 1.2450252501303800 8.5 
29 7.5060325883767200 6.9912306930426000 5.5329628928253800 4.1500841671012700 16.4 
30 7.5060325883767200 6.9912306930426000 5.5329628928253800 4.1500841671012700 19.7 
31 7.5060325883767200 6.9912306930426000 5.5329628928253800 4.1500841671012700 22.3 
32 7.5060325883767200 6.9912306930426000 5.5329628928253800 4.1500841671012700 24.1 
33 7.5060325883767200 6.9912306930426000 5.5329628928253800 4.1500841671012700 23.2 
34 6.9127413897744900 5.8488881948221700 5.9585754230427200 1.6600336668405100 9.5 
35 6.9127413897744900 5.8488881948221700 4.2561253021733700 0.8300168334202530 25.8 
36 6.9127413897744900 5.8488881948221700 5.1073503626080500 0.8300168334202530 22.55 
37 6.9127413897744900 5.8488881948221700 5.9585754230427200 0.8300168334202530 20.04 
38 6.9127413897744900 5.8488881948221700 6.8098004834773900 0.8300168334202530 8.5 
39 6.9127413897744900 5.8488881948221700 7.6610255439120700 0.8300168334202530 5.8 
40 6.5396870755018700 6.8658804810225500 5.1073503626080500 0.8300168334202530 14.1 
41 6.5396870755018700 6.8658804810225500 5.9585754230427200 0.8300168334202530 12.7 
42 6.5396870755018700 6.8658804810225500 6.8098004834773900 0.8300168334202530 11.8 
43 6.5396870755018700 6.8658804810225500 7.6610255439120700 0.8300168334202530 6.5 
44 6.5396870755018700 6.8658804810225500 5.1073503626080500 1.6600336668405100 15.1 
45 6.5396870755018700 6.8658804810225500 5.1073503626080500 2.4900505002607600 12.2 
46 6.9127413897744900 5.8488881948221700 4.2561253021733700 1.6600336668405100 21.9 
47 6.9127413897744900 5.8488881948221700 5.1073503626080500 1.6600336668405100 15.37 
48 6.9127413897744900 5.8488881948221700 5.9585754230427200 1.6600336668405100 10.07 
49 6.9127413897744900 5.8488881948221700 6.8098004834773900 1.6600336668405100 5.24 
50 6.9127413897744900 5.8488881948221700 7.6610255439120700 1.6600336668405100 1.09 
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So to summarize: 

Table.II.7.the selected features in the two datasets 

 Data n°1 Data n°2 
The number of 

samples 
50 50 

The set of features B-Tm, CT, AH. B-Tm, CT, AH, B Hfus 
 

II.3.Model selection: 

Data n°1: 

✓ Splitting the dataset: 

After we reduced the data and made sure it meets and qualifies for a good generalization 

and effect on the SSA we need to execute one more important step which is splitting the 

dataset into a training set and a test set generally the splitting is random but we prefer 

splitting our data into 80% for training and the rest 20% for testing that makes 40 

perovskite samples up for training and the rest 10 for testing. 

        The importance of splitting the data is ensuring the accuracy of the created model you 

have 80% dataset for building and training the model and the 20% for testing the model. 

In Weka splitting the data is made easy let us see how in the following steps: 

 

Figure.II.5.the classify section in Weka where we will perform all the tasks 

First we need to go to the filter option and choose filters unsupervised then instance option 

after that select the Remove Percentage filter: 
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Figure.II.6.choosing Remove percentage Filter  

Next we need to configure the filter so that it can remove 80% from the data for training and 

20% for testing for that happen we need to clique on the Remove Percentage filter bar  an 

object editor will appear we go for the percentage option and selecting 20: 

 

Figure.II.7.Configuring remove percentage filter 

This will give the training dataset with 40 samples ready to train. We need to save the training 

data set by cliquing on save option: 
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Figure.II.8.The training dataset with 40 samples (instances) 

Next is our testing set for that we need to undo what we did early about the training dataset by 

selecting the undo option after that we go for the same filter option cliquing on Remove 

Percentage bar we will see the object editor in front of us this time we will go for the invert 

Selection option and select true this will give us our testing set with 10 samples ready to test 

on.  

 

 

 

 

 

 

 

Figure.II.9.Creating the testing set with 10 samples (instances) 

Now that we have our training and testing data we are ready to build our predictive model to 

achieve that we need to fellow these easy steps: 

➢ Opening the training dataset file (the same when we import our raw data) 

➢ We will find in front of us the list of feature that we selected early threw the feature 

selection method(wrapper method) that is 4 features (attributes) with the target 
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property SSA (the class), the number of samples which is 40 perovskite type materials 

that data is well normalized and scaled (Figure.II.7). 

➢ To build our model we need to select  the algorithm which will do the work for us the 

algorithm selected called SMoreg which is the support vector machine for regression 

(SVR), we are building a regression model  using this algorithm to make this happen 

we need to switch the section and go for the classifier section (Figure.I.4). 

➢ To choose the algorithms we go to the classifier option bar and clique on choose then 

select function then SMoreg algorithm option. 

 

Figure.II.10.selecting the algorithm 

➢ To choose between different metrics to evaluate our model we need to go to more 

options than on the bottom there are a list of metrics that can help. For us we chose 

correlation coefficient, Root Mean absolute error, and Root mean squared error. 

 

Figure.II.11.Different metrics evaluation for testing the model performance 

 

The algorithm 

selection section 
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The building of the model is done  

The results appear as output in the classifier output section 

We achieved these results: 

=== Run information === 

Test mode:    evaluate on training data 

=== Classifier model (full training set) === 

Number of kernel evaluations: 820 (99.851% cached) 

Time taken to build model: 0.01 seconds 

=== Evaluation on training set === 

=== Summary === 

• Correlation coefficient                  0.9451 
• Mean absolute error                      2.1146 
• Root mean squared error                  3.2839 
• Total Number of Instances               40      

 
➢ To validate our model we need to test it further on the testing set built earlier. We 

begin our test by cliquing on the supplied test set option then set it by locating the file 

we created earlier for the testing set it will detect automatically the target attribute 

(SSA class) then clique on start to start the test: 

 
Figure.II.12.Testing the model on the testing set 

The testing of the model is done.  
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The results appear as output in the classifier output section 

We achieved these results: 

=== Run information === 

Test mode:    evaluate on testing data 

=== Classifier model (full training set) === 

Number of kernel evaluations: 820 (99.851% cached) 

Time taken to build model: 0.01 seconds 

=== Evaluation on testing set === 

=== Summary === 

• Correlation coefficient                    0.9571  
• Mean absolute error                      5.4547 
• Root mean squared error                  6.4127 

Total Number of Instances               10    

We can see clearly how our model performed well in the training data and in the testing data 

scoring 0.95 for the training set and 0.96 in the testing set avoiding under fitting and over 

fitting problems. 

➢ We can visualize our classifier errors and see the error between the predicted and the 

actual SSA.  

 

Figure.II.13.a plot visualizing classifiers error on the training set for the y (predicted SSA) 
and x (actual SSA) using the visualize tool JMathtools. 
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Besides that we can see the predicted values and the actual values of the SSA of the samples 

all in this table here: 

Table.II.8. the predicted values and the actual values of the SSA of the samples 

inst# actual predicted error 
1 12.46 10.907 -1.553 
2 5.91 6.753 0.843 
3 4.19 2.643 -1.547 
4 11.39 12.896 1.506 
5 15.07 16.613 1.543 
6 17.63 18.499 0.869 
7 24.41 17.74 -6.67 
8 13.32 14.07 0.75 
9 8.65 7.873 -0.777 
10 3.95 4.16 0.21 
11 8.42 9.968 1.548 
12 29.71 15.827 -13.883 
13 18.41 18.571 0.161 
14 14.46 15.939 1.479 
15 10.88 11.036 0.156 
16 51.2 44.13 -7.07 
17 42.8 44.269 1.469 
18 8.5 12.44 3.94 
19 16.4 21.696 5.296 
20 19.7 21.696 1.996 
21 22.3 21.696 -0.604 
22 24.1 21.696 -2.404 
23 23.2 21.696 -1.504 
24 9.5 10.907 1.407 
25 25.8 26.836 1.036 
26 22.55 21.095 -1.455 
27 20.04 15.338 -4.702 
28 8.5 10.046 1.546 
29 5.8 5.281 -0.519 
30 14.1 18.954 4.854 
31 12.7 14.226 1.526 
32 11.8 10.286 -1.514 
33 6.5 6.768 0.268 
34 15.1 16.178 1.078 
35 12.2 13.654 1.454 
36 21.9 20.373 -1.527 
37 15.4 15.417 0.017 
38 10.1 10.907 0.807 
39 5.2 6.753 1.553 
40 1.1 2.643 1.543 
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Figure.II.14. a Scatter plot representing Actual SSA vs. predicted SSA for perovskite samples 
by SVR model using Origin software. 

The difference is very small besides the good correlation coefficient and the little difference 

in the experimental (actual) and predicted values of the samples representing by the RMSE 

factor .but there are some errors resulting in noticeable differences between the Predicted and 

actual SSA. 

Data n°02: 

For building the SVR model using the other set of features on the same computational 

software weka so all the previous steps are the same. The results are: 

Number of kernel evaluations: 820 (99.402% cached) 

Time taken to build model: 0.02 seconds 

=== Evaluation on training set === 

Time taken to test model on training data: 0 seconds 

=== Summary === 

• Correlation coefficient                  0.99   
• Mean absolute error                      0.5812 
• Root mean squared error                  1.4236 

Total Number of Instances               40 

Number of kernel evaluations: 820 (99.95% cached) 
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Time taken to build model: 0.15 seconds 

=== Evaluation on test set === 

Time taken to test model on supplied test set: 0.01 seconds 

=== Summary === 

• Correlation coefficient                  0.9449 
• Mean absolute error                      5.7012 
• Root mean squared error                  6.5545 

Total Number of Instances               10      

We can see that our second model performed very well on the training set scoring 0.99 and a 

very good result on the testing set almost 0.95. 

We can also visualise the classifier error on the training set and see that it’s a very good 

performance:  

 

Figure.II.15. a plot visualizing classifiers error on the training set for the y (predicted SSA) 
and x (actual SSA) for the second model using the visualize tool JMathtools  

We can see the predicted values and the actual values of the SSA of the samples all in this 

table here: 
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Table.II.9. the predicted values and the actual values of the SSA of the samples for the second 
model 

inst# actual predicted error 
1 12.46 10.04 -2.42 
2 5.91 5.269 -0.641 
3 4.19 4.16 -0.03 
4 11.39 11.42 0.03 
5 15.07 15.04 -0.03 
6 17.63 17.66 0.03 
7 24.41 24.38 -0.03 
8 13.32 13.35 0.03 
9 8.65 8.68 0.03 
10 3.95 3.98 0.03 
11 8.42 8.45 0.03 
12 29.71 29.68 -0.03 
13 18.41 18.441 0.031 
14 14.46 14.43 -0.03 
15 10.88 10.909 0.029 
16 51.2 51.17 -0.03 
17 42.8 42.83 0.03 
18 8.5 12.948 4.448 
19 16.4 22.27 5.87 
20 19.7 22.27 2.57 
21 22.3 22.27 -0.03 
22 24.1 22.27 -1.83 
23 23.2 22.27 -0.93 
24 9.5 10.04 0.54 
25 25.8 25.77 -0.03 
26 22.55 22.58 0.03 
27 20.04 20.009 -0.031 
28 8.5 8.53 0.03 
29 5.8 5.769 -0.031 
30 14.1 14.131 0.031 
31 12.7 12.73 0.03 
32 11.8 11.77 -0.03 
33 6.5 6.53 0.03 
34 15.1 15.07 -0.03 
35 12.2 12.23 0.03 
36 21.9 21.87 -0.03 
37 15.37 15.339 -0.031 
38 10.07 10.04 -0.03 
39 5.24 5.269 0.029 
40 1.09 4.16 3.07 

 

The error between the predicted and the actual SSA in the majority of samples is barely 

noticeable and the difference is very small resulting in a good prediction by this model. 
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Figure.II.16. a Scatter plot representing Actual SSA vs. predicted SSA for perovskite samples 
by SVR second model using Origin software 

Now we evaluate both models by testing them on 5 fold-cross validation (5 folds-CV) and 

leave on out cross validation (LOOCV). 

The tests were carried out using the same computational software Weka through the classifier 

section and selecting the cross validation test. 

 

Figure.II.17.5-folds CV and LOOCV tests on Weka 
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To summarize the results: 

Table.II.10.A simple table representing all the results of the evaluation of the first and the 
second model. 

The test The first model The second model 
 R RMSE MAE R RMSE MAE 
Training data 0.9451 3.2839 2.1146 0.99 0.5812 1.4236 
Testing data 0.9571 6.4127 5.4547 0.9449 6.5545 5.7012 
5 fold-Cross validation 0.9025 4.2744 3.0148 0.8807 5.0033 2.9526 
LOOCV 0.8903 4.5212 3.1681 0.90 4.7415 2.7954 
 

         We can see that the first model scores good for the correlation coefficient on the training 

and testing data with not so big difference plus a good evaluation by the cross validation that 

give us 0.9025 but a less score when it comes to the cross validation. The RMSE factor on the 

training data is small which means that our model is fitting pretty well with the data. 

         In the other hand the second model gave us an excellent results scoring 0.99 on training 

set and 0.9449 on testing set we can see there is a noticeable difference in RMSE and MAE 

factors between the training and testing set same with the first model. 

         The model did well too in the 5-fold cross validation test and LOOCV tests but with a 

slit difference the first model perform well in the 5 fold-CV but a less result on the LOOCV 

which is odd (the LOOCV test tend to give more accurate results then K-fold CV) however 

the second model did good on the 5 fold-CV and better on the LOOCV test. 

         Both models have ups and downs regarding the evaluation the first model built with the 

first data with 3 set of features being B-Tm, CT, AH, with the target property SSA. The 

second model with 4 set of features being B-Tm, B-Hfus, CT, AH, also with the target 

property SSA.  

         We will be selecting the second model for the reason that it performed very well on the 

training set and gave an acceptable score regarding the LOOCV test. 
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II.4.Model application: 

         Once we selected the desired model we will be putting it to prediction by creating a new 

data (removing some of SSA values mainly from the testing set which the model practically 

never seen) and run it through Weka and see if the model will be capable of predicting the 

removed data. 

We have removed 5 SSA values being:  

Sample 20 representing LaCrO3 with 3.95m2.g-1 

Sample 26 representing LaFe0.9Co0.1O3 with 51.2m2.g-1 

Sample 27 representing LaFe0.1Co0.9O3 with 42.8m2.g-1 

Sample 32 representing La0.01Sr0.995TiO3 with 24.1m2.g-1 

Sample 36 representing La0.5Bi0.2Ba0.2Mn0.1FeO3 22.55 with m2.g-1
 

 

Figure.II.18. the removed values of SSA in Weka 
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➢ To put the model on prediction on Weka we need to open our normalized data again in 

Weka and go to the classifier section and then load our model into the result list with 

the same hyperparameters. 

➢ Then selecting the model and cliquing on Re-evaluating model on current test set not 

forgetting to go to more options and uncheck all the information that we don’t need 

plus we need to choose our Output predictions to be as a Plaintext: 

 

 

Figure.II.19. Preparing the model for predictions 

The prediction result:  

Table.II.11.The results of the prediction of the second SVR model 

The sample Actual SSA (m2.g-1) Predicted SSA (m2.g-1) 
LaCrO3 3.95 3.98 

LaFe0.9Co0.1O3 51.2 51.17 
LaFe0.1Co0.9O3 42.8 42.83 

La0.01Sr0.995TiO3 24.1 22.27 
La0.5Bi0.2Ba0.2Mn0.1FeO3 22.55 22.58 

 

We can see that the predicted values are nearly the same as the actual values which tell us 

how good and well fitted our SVR model. 

 

 

Supply the 
test set 

Uncheck all the 
information that we 

don’t need 
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I. Introduction 

 Perovskite oxides are usually synthesized by a variety of methods including reaction to 

the solid state, co-precipitation, and sol-gel method as I mention in chapter 02 and 01 with 

their importance and many properties and application. In this part of work we decide to 

synthesize via sol-gel method some of the samples from the collected data (LaFeO3, LaMgO3, 

and LaMg0.6Fe0.4O3) and two samples (LaFe0.8Mg0.2O3 and LaFe0.7Mg0.3O3) screened out 

using Li Shi, Dongping Chang, Xiaobo Ji, and Wencong Lu.Journal model and characterize 

them using X-ray diffraction (XRD), Thermogravimetric analysis (TG), Fourier transforms 

infrared spectroscopy analysis (FTIR), and Brunauer, Emett and Teller method for Specific 

area measurement (BET).For The LaFe0.7Mg0.3O3 sample unfortunately we just did the FTIR 

analysis. 
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II. LaFeO3, LaMgO3, LaMg0.6Fe0.4O3, LaFe0.8Mg0.2O3, and 

LaFe0.7Mg0.3O3  preparation by sol-gel method 

     Each of the perovskite samples was prepared via the sol-gel method in same conditions 

(calcinations temperature, calcinations time) for the samples from the collected data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.II.1. Synthesis Flowchart of (a). LaFeO3, (b). LaMgO3, (c). LaMg0.6Fe0.4O3, 
,LaFe0.8Mg0.2O3, and LaFe0.7Mg0.3O3 

 La(NO3)3,6H2O Fe(NO3)3,9H2O Citric acid 

Mixing 

Heating under agitation at 
75°C/2H 

Gel formation 

Drying in the oven 24h a 100C° 

Fine powder after grinding and 
calcinations at 900°C/4h 

H2O 
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Fine powder after grinding 
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La(NO3)3,6H2O Mg(NO3)2,6H2O Citric acid 

La(NO3)3,6H2O 
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H2O 
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III. Characterization of the prepared samples  

III.1. X-ray Powder diffraction (XRD) 

           The x-ray powder diffraction analysis was carried out for the four calcinated 

samples using diffractometer Brucker-D8 Advance the XRD spectrums  obtained  via XRD 

software match! 

 

Figure.III.1. XRD pattern of the four samples 

It’s clearly observed in diffractograms of synthesized samples that there is just one 

pure phase that appeared successfully, belongs to LaFeO3 for the undoped sample comparing 

with LaFeO3 phase of the ICDD data file n: 98-154-2033 while we noticed that desired phases 

did not formed for doped materials. 
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III.2. TGA analyse for LaFeO3, LaMgO3, LaMg0.6Fe0.4O3, and LaFe0.8Mg0.2O3   

In order to estimate beforehand the calcinations temperature to obtain a well 

crystallised oxide the five samples were analyzed by thermogravimetry analyse (T.G.A) on a 

type device TGA 1600 °C, Mettler Toledo. 

  

 

 

Figure.III.2.TGA analysis curve for A (LaFeO3), B (LaMgO3), C (LaMg0.6Fe0.4O3), D 
(LaFe0.8Mg0.2O3) 

 TGA analysis shows sample A (LaFeO3) powder behaviour with a starting mass 

18,3330 mg heated up to 1000°C at a speed of 5°C per second. Sample B (LaMgO3) starting 

mass is 23,2660 mg heated up to 1000°C at a speed of 5°C per second. Sample C 

(LaMg0.6Fe0.4O3) starting mass is 11,6050 mg heated up to 1000°C at a speed of 5°C per 

second. Sample D (LaFe0.8Mg0.2O3) starting mass is 17,4300 mg heated up to 1000°C at a 

speed of 5°C per second. 
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III.3. FTIR analyse for LaFeO3, LaMgO3, LaMg0.6Fe0.4O3, LaFe0.8Mg0.2O3, and 

LaFe0.7Mg0.3O3 

The FTIR analysis was done through FTIR-ATR Infrared Spectrometer: Bruker. The 

wavelengths studied are between 4000 – 400 cm-1, for medium infrared. The calcinations 

temperatures for the four different calcinated samples are (900,600,600,900,900) respectively. 

The vibrational mode of the metal-oxygen (M-O) bond at around 400-600 cm-1 indicates the 

formation of a typical perovskite (ABO3) structure.   

 

Figure.III.3. FTIR analyse for the five samples  

The IR spectrum of LaFeO3 shows absorption band at 540 cm-1 attributed to Fe–O 

stretching vibration. For the second sample LaMgO3 an absorption band located at 565 cm-1 

attributed to Mg–O stretching vibration. The third sample LaMg0.6Fe0.4O3 the IR spectrum 

shows that there is an absorption band found at 567 cm-1.the forth calcinated sample 

LaFe0.8Mg0.2O3 an absorption band located at 548 cm-1 attributed to Fe–O stretching vibration. 

The last sample LaFe0.7Mg0.3O3 Fe-O absorption bond can be found at 560 cm-1 attributed to 

Fe–O stretching vibration. There are a slight shift in the last three spectrums and the first 

spectrum concerning LaFeO3, LaMg0.6Fe0.4O3, LaFe0.8Mg0.2O3, and LaFe0.7Mg0.3O3 with x=0, 

x=0.6, x=0.3, x=0.2 respectively. 
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III.4. Specific area measurement by the BET method 

The values of the specific surface area (SSA m2/g) for the 4 perovskite samples were 

calculated using BET Surface Area Analyzer quantachrome version 5.21. In order to obtain 

accurate measurements of the surface, the temperature and pressure of an inert gas are 

adjusted so that a single layer of gas molecules is adsorbed on the entire surface of the solid 

sample. 

Table.III.1 shows the calculated values of the SSA for the synthesized perovskite samples 

besides the values found in the collected data set. 

Table.III.1.Specific surface area of the synthesized samples and the collected samples 

The samples BET surface area (m2 g−1) for 

the synthesized samples 

BET surface area (m2 g−1) for 

the collected samples 

LaFeO3 0.687 1.08 

LaMgO3 19.705 m²/g 8.65 

LaMg0.6Fe0.4O3 122.269 m²/g 24.41 

LaFe0.8Mg0.2O3 14.304 m²/g 57.70 

 

There is a big difference between in the measured surface area and the one from the 

collected data this probably due to errors in the experiment and some of the phases did not 

appear while performing the XRD analysis. 
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Conclusion: 

In this work implementing machine learning and data mining methods to find 

perovskite materials with higher specific surface area by building a predictive model capable 

of predicting specific surface area of ABO3 perovskite-type materials using Support vector 

regression algorithm SVR gave the following conclusions: 

In chapter 03 by using the data mining software Weka two predictive models were 

built with two different features set from the same data set using Support vector regression 

algorithm to predict the specific surface area of 50 samples of perovskite-type materials.  

For the first model the feature set consist of the melting point of the B-position (B-

Tm), the calcinations temperature (CT), and the calcinations time (AH). The feature selection 

was done using wrappers methods implemented by Weka. The performance of the model was 

acceptable the correlation coefficient between the predicted and the actual specific surface 

area was 0.94 for the training data and 0.89 for the leave-one-out cross validation test.  

The second model the feature set consist of the Enthalpy of fusion at the melting point 

of the B position (B-Hfus), the melting point of the B-position (B-Tm), the calcinations 

temperature (CT), and the calcinations time (AH). The feature selection was done by dividing 

the data set into 10000 different subsets. The performance of this model was very good 

scoring 0.99 for the training set and 0.90 for the leave-one-out cross validation test.  

By selecting this model and putting it for application by removing some of the SSA 

values and adding one new sample. The prediction results were very good and the error 

between the predicted and the actual SSA value were very small. 

In Chapter 4 some of the perovskite samples been synthesis via the sol-gel method and 

characterize with XRD analysis, TGA, FTIR analysis, and Specific area measurement by the 

BET method. through diffractograms of synthesized samples there is just one pure phase that 

appeared successfully, belongs to LaFeO3.For the Specific area measurement the results 

shows a difference between the measured surface area and the one from the collected data this 

probably due to errors in the experiment and some of the phases did not appear while 

performing the XRD analysis. 

In the end these simple results demonstrated how data mining and machine learning 

methods can improve how scientists develop, discover, and design materials. 



 

 

 ملخص 

للبيروفسكايت التحفيزية الضوئية  للغاية مرتبطة بالقدرة  في هذا العمل    3ABO-مساحة السطح المحددة هي خاصية مهمة 

 بمساحة سطح محددة أعلى  3ABO- والعثور على البيروفسكايتللبحث   (DM)وطرق تعدين البيانات  (ML)طبقنا بعض التعلم الآلي 

(SSA)   1  60إلى    1تتراوح من -.m2g  بـ بيانات منشأة مسبقًا مليئة  والمعايير    24عينة و    50من قاعدة  الكيميائية  ميزة )التركيبات 

الدعم ناقلات  تراجع  خوارزمية  باستخدام  تنبؤي  نموذج  بناء  طريق  عن  هذا (SVR) التقنية(  البيانات    كل  تعدين  برنامج  بمساعدة 

لـ .Weka المسمى الفعلية  والقيمة  المتوقعة  القيمة  بين  الارتباط  معامل  و    0.99  بـ SSA  يبلغ  التدريب  بيانات    0.90لمجموعة 

  (LOOCV) .المتبادلة للمصادقة  

محددة. ، التعلم الآلي، البيروفسكايت، مساحة سطح استخراج البيانات : المفتاحيةالكلمات   

Abstract 

The specific surface area is a very important property associated with photocatalatic ability of 

ABO3-type perovskite. In this work we applied some of the machine learning (ML) and data mining 

(DM) methods to search and find ABO3-type perovskite with higher specific surface area (SSA) 

ranging from 1 to 60g2.m-1 from a pre-established database filled with 50 samples and 24 features 

(chemical compositions and technical parameters) by building a predictive model using Support vector 

regression algorithm (SVR) all of this with a help of a data mining software called Weka. The 

correlation coefficient between the predicted and the actual value of SSA is 0.99 for the training data 

set and 0.90 for leave-one-out cross-validation (LOOCV).  

Keywords: data mining, machine learning, perovskite, specific surface area. 

Résumé 

La surface spécifique est une propriété très importante associée à la capacité photocatalatique 

de perovskite de type ABO3. Dans ce travail, nous avons appliqué certaines des méthodes 

d’apprentissage automatique (ML) et d’exploration de données (DM) pour rechercher et trouver la 

perovskite de type ABO3 avec une surface spécifique (SSA) plus élevée allant de 1 à 60g2.m-1 à partir 

d’une base de données pré-établie remplie de 50 échantillons et 24 caractéristiques (compositions 

chimiques et paramètres techniques) en construisant un modèle prédictif utilisant l’algorithme de 

régression vectoriel de soutien (SVR) tout cela à l’aide d’un logiciel d’exploration de données appelé 

Weka. Le coefficient de corrélation entre la valeur prédite et la valeur réelle de l’SSA est de 0,99 pour 

l’ensemble de données de formation et de 0,90 pour la validation croisée sans autorisation (LOOCV). 

Mots-clés : data mining, machine learning, perovskite, surface spécifique. 
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