
Mohamed Khider University of Biskra
Faculty of Science and Technology
Department of Electrical Engineering

MASTER THESIS

Electrical Engineering
Telecommunication

Networks and Telecommunication

Réf. : …………………………………………

Submitted and Defended by:

AMMARI Abdessalem

On: Monday, June 27, 2022

OpenCV Object Tracking

Board of Examiners:

Ms. TOUMI Abida Pr University of Biskra President

Ms. FEDIAS Meriem MCB University of Biskra Examiner

Ms. MEDOUAKH Saadia MCB University of Biskra Supervisor

University year: 2021 - 2022

MASTER THESIS

Electrical Engineering
Telecommunication

Networks and Telecommunication

Réf. : …………………………………………

Submitted and Defended by:

AMMARI Abdessalem

On: Monday, June 27, 2022

OpenCV Object Tracking

In:…………………………………

Presented by: Favorable opinion of the supervisor:

 AMMARI ABD ESSALEM Dr. MEDOUAKH Saadia

Favorable opinion of the jury president

TOUMI ABIDA

Stamp and signature

Mohamed Khider University of Biskra
Faculty of Science and Technology
Department of Electrical Engineering

SUMMARY (English and Arabic)

Abstract:

Object tracking is one of the most important and fundamental disciplines of Computer Vision.

Many Computer Vision applications require specific object tracking capabilities, including auton-

omous and smart vehicles, video surveillance, medical treatments, and many others. The OpenCV

as one of the most popular libraries for Computer Vision includes several hundred Computer Vi-

sion algorithms. Object tracking tasks in the library can be roughly clustered in single and multiple

object trackers. The library is widely used for real-time applications, but there are a lot of unan-

swered questions such as when to use a specific tracker, how to evaluate its performance, and for

what kind of objects will the tracker yield the best results? In this thesis, we experiment with single

object tracking with 3 trackers implemented in OpenCV against the OTB dataset. The results are

shown based on quantitative (Center location error and Overlap rate metrics) and qualitative (vis-

ually).

Key words: Computer Vision, Object Tracking, single Object Tracking, OpenCV

 : ملخص

يعد تتبع الكائنات أحد أهم التخصصات الأساسية لرؤية الكمبيوتر. تتطلب العديد من تطبيقات رؤية الكمبيوتر قدرات محددة لتتبع

 OpenCVة، والمراقبة بالفيديو، والعلاجات الطبية، وغيرها الكثير. تتضمن الكائنات، بما في ذلك المركبات الذكية وذاتية القياد

كواحدة من أكثر المكتبات شعبية لرؤية الكمبيوتر عدة مئات من خوارزميات رؤية الكمبيوتر. يمكن تجميع مهام تتبع الكائنات في

ى نطاق واسع للتطبيقات في الوقت الفعلي، ولكن هناك المكتبة تقريبًا في أجهزة تعقب كائنات واحدة ومتعددة. تسُتخدم المكتبة عل

الكثير من الأسئلة التي لم تتم الإجابة عليها مثل متى يجب استخدام متتبع معين ، وكيفية تقييم أدائه ، ولأي نوع من الكائنات

 OpenCVتم تنفيذها في أدوات تعقب 3سيحقق المتعقب أفضل النتائج؟ في هذه الأطروحة ، نجرب تتبع كائن واحد باستخدام

 . يتم عرض النتائج بناءً على الكمية)خطأ موقع المركز ومقاييس معدل التداخل(والنوعية)بصريًا(.OTBمقابل مجموعة بيانات

 OpenCVرؤية الكمبيوتر ، تتبع الكائن ، تتبع كائن واحد ، : الكلمات المفتاحية

Acknowledgment
Alhamdulillah, I praise and thank Allah Almighty, for giving me the

strength and courage to complete this work.

I would like to express my gratitude and sincere thanks to my supervisor

MEDOUAKH SAADIA for her guidance, encouragement, and valuable re-

marks throughout the preparation of this master thesis.

I would like to thank the members of the jury:

Dr. TOUMI Abida, for accepting to be president of the jury.

Dr. FEDIAS Meriem, for accepting to examine our work.

Sincere thanks to all the teachers who taught me during all my studies.

I would also like to thank all the people who have encouraged me during

the realization of this work, family, colleagues, and friends.

Dedication

First and foremost, I thank Allah Almighty for the strength and patience he

has given me to accomplish this work.

I dedicate this work to my father "Allah Yarhmo", and to my mother who

helped me in every step of my life and gave me the willingness to overcome

everything in life.

To all of my brothers and sisters who always encourage me.

To all my friends, and especially my best friend Yacine.

Table of content

Table of contents

Summary

General introduction ... 12

Chapter 1: General information on object tracking

1.1 Introduction ... 15

1.2 Object Tracking .. 15

1.2.1 Object Tacking Applications .. 16

1.2.2 The Challenges in Object Tracking .. 17

1.2.3 Types of Object Tracking Algorithms ... 18

1.3 Object Representation ... 19

1.3.1 Representation of the shape of an object .. 20

1.3.2 Representation of the appearance of an object ... 21

1.4 Visual Features for Object Tracking ... 22

1.5 Object tracking methods ... 24

1.5.1 Tracking by detection ... 25

1.5.2 Tracking by correspondence .. 27

1.5.3 Tracking by Correlation Filter.. 27

1.5.4 Tracking by deep learning .. 28

1.6 Conclusion .. 29

Chapter 2: Object tracking by OpenCV with MOSSE, KCF, CSRT

2.1 Introduction ... 31

2.2 OpenCV library ... 31

2.3 Object tracking with OpenCV .. 32

2.3.1 Tracker Feature Set ... 33

2.3.2 Tracker Sampler Algorithm .. 33

2.3.3 Tracker Model: ... 33

2.4 Object tracking algorithms in OpenCV .. 34

2.5 Correlation filter tracking algorithms in OpenCV .. 35

2.5.1 Correlation filter tracking ... 35

2.5.2 MOSSE algorithm .. 36

2.5.3 KCF algorithm .. 39

Table of content

2.5.4 CSRT algorithm .. 41

2.6 Conclusion .. 43

Chapter 3: Simulation and results

3.1 Introduction ... 45

3.2 Hardware ... 45

3.3 Software .. 45

3.3.1 Python... 45

3.3.2 OpenCV .. 47

3.3.3 PyCharm ... 47

3.3.4 The installation of the software and the packages.. 49

3.4 Algorithm structure ... 51

3.5 Single object tracking in video by OpenCV with MOSSE, KCF, CSRT 51

3.5.1 Create the Object tracker .. 52

3.5.2 Reading the first frame of the video ... 53

3.5.3 Select an object in the first frame with the bounding box .. 53

3.5.4 Initialize the object tracker ... 54

3.5.5 Updating the Object tracker and see the output ... 54

3.6 Performance measurement of a tracking system .. 55

3.6.1 Center location error (CLE) ... 55

3.6.2 Overlap ratio (VOR)... 56

3.7 Experimental results and discussions.. 56

3.7.3 Datasets .. 57

3.7.4 Comparison between MOSSE and KCF and CSRT trackers in OpenCV 58

3.8 Conclusion .. 63

General conclusion.. 65

Bibliography ... 68

List of figures

List of figures

Chapter 1: General information on object tracking
Figure 1.1: Object Tracking Examples ... 16

Figure 1.2: Example of object tracking applications .. 17

Figure 1.3: Some challenges in object tracking .. 18

Figure 1.4: Single Object Tracking Example ... 18

Figure 1.5: Multiple Object Tracking Process .. 19

Figure 1.6: Examples of Object representations. (a): Centroid, (b): multiple points, (c): rectangular,

(d): elliptical, (e): multiple blocks, (f): object skeleton, (g): complete object contour, (h): object

contour, (i): object silhouette. ... 21

Figure 1.7: Taxonomy of object tracking methods. .. 24

Chapter 2: Object tracking by OpenCV with MOSSE, KCF, CSRT
Figure 2.1: Different types of algorithms in OpenCV .. 32

Figure 2.2: A general flow chart for typical correlation filter-based tracking methods. 35

Figure 2.3: The results of the MOSSE filter based tracker on a challenging video sequence. 38

Figure 2.4: Illustration of a circulant matrix. .. 39

Figure 2.5: The principle and effect diagram of cyclic shift ... 40

Figure 2.6: Overview of the CSR-DCF approach. .. 41

Figure 2.7: Spatial reliability map construction from the training region. 42

Figure 2.8: The CSR-DCF tracking iteration. ... 43

Chapter 3: Simulation and results
Figure 3.1: Comparing python to other languages.. 47

Figure 3.2: Create a Python file in PyCharm. ... 50

Figure 3.3: Block diagram of object tracking algorithm in OpenCV ... 51

Figure 3.4: Import libraries. .. 51

Figure 3.5: Checking the OpenCV version. .. 52

Figure 3.6: Create the object tracker. .. 52

Figure 3.7: The video path command. .. 53

Figure 3.8: The command for using the webcam ... 53

Figure 3.9: Reading the first frame of the video ... 53

Figure 3.10: Define an initial bounding box. .. 53

Figure 3.11: Select an object in the first frame with the bounding box. 54

Figure 3.12: Initialize the object tracker ... 54

Figure 3.13: Update the object tracker .. 54

Figure 3.14: The CSRT tracker output ... 55

Figure 3.15: Performance metrics: (a) Center location error, (b) Overlap rate. 56

Figure 3.16: Tracking results on the Car4 sequence with MOSSE (blue rectangle), KCF (red

rectangle), and CSRT (green rectangle).. 59

Figure 3.17: Tracking results on the Skiing_ce sequence with MOSSE (blue rectangle), KCF (red

rectangle), and CSRT (green rectangle).. 60

List of figures

Figure 3.18: Tracking results on the Trellis sequence with MOSSE (blue rectangle), KCF (red

rectangle), and CSRT (green rectangle).. 61

Figure 3.19: Tracking results on the CarScale sequence with MOSSE (blue rectangle), KCF (red

rectangle), and CSRT (green rectangle).. 62

List of tables

List of tables

Chapter 2: Object tracking by OpenCV with MOSSE, KCF, CSRT

Table 2.1: OpenCV single object trackers sorted by the year of their publication. Google Scholar

Citations are accessed on May 15th 2022. .. 34

Chapter 3: Simulation and results
Table 3.2:The image sequences used .. 57

Table 3.3: The averages of the results obtained for the center localization error and the overlap

rate... 58

General Intro-
duction

General Introduction

12 | P a g e

General introduction

Computer vision is a rapidly growing interdisciplinary scientific field devoted to analyzing, mod-

ifying, and high-level understanding of images. It has been a subject of increasing interest for the

last two decades. Its popularity stems from the fact that it provides the means to see as humans do

[1], and in some applications it can even outperform humans [2] [3]. Object tracking is one of the

fundamental tasks in computer vision. It is used almost everywhere: human-computer interaction,

video surveillance, medical treatments, robotics, smart cars, etc. The goal of object tracking is to

estimate the state of the selected object in the subsequent frames [4]. The object being tracked is

usually marked using a rectangle to indicate its location in the starting frame [5].

Although object tracking has been studied for several decades and considerable progress has been

made in recent years, it remains a challenging problem. Numerous factors affect the performance

of a tracking algorithm, including illumination variation, occlusion, and background clutters, and

there exists no single approach that successfully handles all scenarios [4].

OpenCV object tracking is a popular method because OpenCV has so many algorithms built-in

that are specifically optimized for the needs and objectives of object or motion tracking. The

OpenCV library includes eight algorithms for object tracking, which is available through OpenCV

tracking API. In the literature, we provided some information about the available algorithms in the

OpenCV library with their publication years and reference to research papers detailing their im-

plementation [5]. The OpenCV is a well-known library, which integrates necessary structures and

tools for computer vision algorithms; in addition, it integrates a large set of different pre-imple-

mented algorithms solving different parts of the object tracking problems. It is distinguished by its

versatility and simplicity of use[6].

In general, tracking an object in the video involves steps such as: a) choosing the tracker, b) se-

lecting the object (target) from the starting frame with the bounding box, c) initializing the tracker

with information about the frame and bounding box, and d) reading the remaining frames and

finding the new bounding box of the object. The last step is usually implemented in the loop[5].

General Introduction

13 | P a g e

The main objective of this work is to track a single object by pre-implemented tracking algorithms

available in the OpenCV library. We focused on tracking algorithms based on the correlation filter

approach available in OpenCV, such as the MOSSE, KCF, and CSRT trackers. We focused on

single object tracking, in which an object is being tracked even if the environment consists of

multiple objects. We have provided results on the object tracking dataset by experimenting with

the three trackers we selected from the OpenCV library. The experimental results obtained are

expressed on two levels: quantitative (center location error and overlap rate) and qualitative (vis-

ual).

We have chosen to organize our study around three main chapters as follows:

- The first chapter, we will begin with a brief definition of object tracking and its field of

applications and then see the challenges it faces. Next, we describe the representation of

the object's shape and appearance using various features. Finally, we presented the state of

the art of object tracking methods.

- The second chapter, we will first present an overview of the OpenCV library. then, we

talked about object tracking with OpenCV and the solutions it offers, following that, we

are going to provide information about the available algorithms in the OpenCV library.

Finally, we'll go through the principles of the correlation filter tracking approach and how

its algorithms have developed over time, then we will see the principle of the correlation

filter tracking algorithms in OpenCV.

- The third chapter, we will implement the tracking algorithms the MOSSE, KCF, and

CSRT algorithms in OpenCV. Then we will present the results obtained and will do a com-

parative study between the three trackers.

We will end this work with a general conclusion and the perspectives.

Chapter 1

General information on

object tracking

Chapter 1: General information on object tracking

15 | P a g e

1.1 Introduction

Object tracking is an important task within the field of computer vision. The proliferation of high-

powered computers, the availability of high-quality and inexpensive video cameras, and the in-

creasing need for automated video analysis have generated a great deal of interest in object tracking

algorithms[7]. The goal of tracking is to estimate the states of the target in the subsequent

frames.[8]

In this chapter, we will go over the principles of object tracking and its applications, as well as the

challenges that tracking algorithms encounter. We'll also look at the two different types of tracking

algorithms. Next, we will describe the representation of the object’s shape and appearance using

the different features presented. Finally, we will present the state of the art of object tracking meth-

ods, which are classified into several categories: Tracking by detection, Tracking by correspond-

ence, Tracking by correlation filter ...etc.

1.2 Object Tracking

Rapid developments of artificial intelligence and computer vision have been widely visible in var-

ious fields. Computer vision refers to the use of cameras and computers instead of human eyes to

visually recognize, track, and measure targets. First, image processing is performed so that the

processed image is more suitable for human eye observation or instrument detection. Then, the

process of visual object tracking is to track the target state in subsequent video sequence frames

with the presented initial position and size of the target. Currently, object tracking is widely used

in transportation hub monitoring, medical imaging, human–computer interaction, and other related

fields [9].

In its simplest form, tracking can be defined as the problem of estimating the trajectory of an object

in the image plane as it moves around a scene [7]. In other words, object tracking is the estimation

of the location of the object in each of the frames of a video sequence and initially detected on the

first frame. The localization process is based on the recognition of the object of interest from a set

of visual characteristics such as color, shape, speed, etc. [10]

Chapter 1: General information on object tracking

16 | P a g e

 Figure 1.1: Object Tracking Examples.

Many object tracking methods have been proposed in the literature and the difference between

these methods lies partly in the choice of object representation and shape, the features (compo-

nents) of the image used, the nature of estimated motion, etc. This choice depends on the applica-

tion as well as the processed video.[7]

An object tracking method aims to estimate object in each image of the sequence [11]. The object

being tracked is usually marked using a rectangle to indicate its location in the starting frame (the

starting frame does not have to be the first frame in a video sequence). When there are no changes

in the environment, object tracking is not overly complex, but this is rarely the case [5].

1.2.1 Object Tacking Applications

Tracking objects in video sequences has sparked great interest over the past decade due to the

variety of its application areas (see figure 1.2), such as: [12]

▪ Video surveillance (detection, tracking, recognition of the behavior of people).

▪ Human-computer interactions.

▪ Robotics (following obstacles during an avoidance phase).

▪ Traffic management and analysis (car tracking).

▪ Military (tracking targets and missile guidance).

▪ Medical imaging.

Chapter 1: General information on object tracking

17 | P a g e

Figure 1.2: Example of object tracking applications

1.2.2 The Challenges in Object Tracking

Although object tracking has been studied for several decades and considerable progress has been

made in recent years, it remains a challenging problem. Numerous factors affect the performance

of a tracking algorithm, such as[8]:

▪ Illumination variation.

▪ Occlusion.

▪ Background clutters.

▪ Scale variation.

▪ Fast Motion.

▪ Motion Blur.

▪ Out-of-Plane Rotation.

▪ In-Plane Rotation.

▪ object deformation.

Chapter 1: General information on object tracking

18 | P a g e

Figure 1.3: Some challenges in object tracking

1.2.3 Types of Object Tracking Algorithms

Object tracking tasks can be classified based on how many objects are being tracked in a sequence

into[13]:

a) Single Object Tracking (SOT):

A Single Object Tracking (SOT) algorithm tracks only a single object in a video sequence, and

it is successful if it tracks an object even if the environment consists of multiple objects. The

process of (SOT) is selecting a region of interest (in the initial frame of a video) and tracking

the position (i.e. coordinates) of the object in the upcoming frames of the video. In this work,

we will be covering some of the algorithms used for single object tracking.

Figure 1.4: Single Object Tracking Example

Chapter 1: General information on object tracking

19 | P a g e

b) Multiple Object Tracking (MOT):

Multiple object tracking is the task of tracking more than one object in the video. In this case,

the algorithm assigns a unique variable to each of the objects that are detected in the video

frame. Subsequently, it identifies and tracks all these multiple objects in consecutive/upcoming

frames of the video.

Since a video may have a large number of objects, or the video itself may be unclear, and there

can be ambiguity in direction of the object’s motion Multiple Object Tracking is a difficult

task and it thus relies on single frame object detection. Figure 1.5 illustrates the MOT process.

Figure 1.5: Multiple Object Tracking Process

1.3 Object Representation

Like other tasks in computer vision, visual representation plays a fundamental role in object track-

ing. Most object tracking methods are based on an object's appearance. The use of these methods

requires a relevant representation of the object with reliable primitives to describe its content. Ob-

jects can be represented in many ways in terms of their shapes and appearances. Some approaches

use only the shape of the object to represent it, but some also combine shape and appearance. The

choice of the representation of an object strongly depends on the domain of application [10]. Yil-

maz et al [1] were the first to propose a classification of object representation. In this section, we

will use this classification.

Chapter 1: General information on object tracking

20 | P a g e

1.3.1 Representation of the shape of an object

There are many representations based on the shape of an object: a set of points, a geometric shape

(e.g. a rectangle, an ellipse), a contour, a silhouette [14].

▪ Points: The object is represented by a point (center of the object) (Figure 1.6 (a)) or by a

set of points (Figure 1.6 (b)). In general, the point representation is suitable for tracking

objects that occupy small regions in an image.[7]

▪ Primitive geometric shapes: The object is represented by a simple geometric shape such

as a rectangle (Figure 1.6 (c)), an ellipse (Figure 1.6 (d)), etc. allowing a description of the

dimension of the object. This representation is particularly suitable for tracking rigid ob-

jects (vehicles, etc.) but can also be used for non-rigid objects.[10]

▪ Silhouette and contour: Contour representation define the boundary of an object (Figure

1.6 (g), (h)). The region inside the contour is called the silhouette of the object (see Figure

1.6 (i)). Silhouette and contour representations are suitable for tracking complex nonrigid

shapes.[7]

▪ Articulated shape models: Articulated objects are composed of body parts that are held

together with joints. For example, the human body is an articulated object with the torso,

legs, hands, head, and feet connected by joints. The relationship between the parts is gov-

erned by kinematic motion models, for example, joint angle, etc. To represent an articulated

object, one can model the constituent parts using cylinders or ellipses as shown in Figure

1.6 (e).[7]

▪ Skeletal models: The object skeleton can be extracted by applying medial axis transform

to the object silhouette. This model is commonly used as a shape representation for recog-

nizing objects. Skeleton representation can be used to model both articulated and rigid ob-

jects (see Figure 1.6 (f)).[7]

Chapter 1: General information on object tracking

21 | P a g e

Figure 1.6: Examples of Object representations. (a): Centroid, (b): multiple points, (c): rec-

tangular, (d): elliptical, (e): multiple blocks, (f): object skeleton, (g): complete object con-

tour, (h): object contour, (i): object silhouette.

1.3.2 Representation of the appearance of an object

There are several ways to represent the appearance features of objects. Note that shape represen-

tations can also be combined with appearance representations for tracking. Some common appear-

ance representations in the context of object tracking are [7]:

▪ Probability densities of object appearance: The probability density of object appearance

features (color, texture) can be computed from the image regions specified by the shape

models (interior region of an ellipse or a contour). The probability density function of an

object can be parametric, such as Gaussian or a mixture of Gaussians. Similarly, non-par-

ametric kernel based and histograms are also used.

▪ Templates: Templates are formed using simple geometric shapes or silhouettes. An ad-

vantage of a template is that it carries both spatial and appearance information. Templates,

however, only encode the object appearance generated from a single view. Thus, they are

only suitable for tracking objects whose poses do not vary considerably during tracking.

Chapter 1: General information on object tracking

22 | P a g e

▪ Active appearance models: Active appearance models are generated by simultaneously

modeling the object’s shape and appearance. In general, the object’s shape is defined by a

set of landmarks. Similar to the contour-based representation, the landmarks can reside on

the object boundary or they can reside inside the object region. For each landmark, an

appearance vector is stored which is in the form of color, texture, or gradient magnitude.

Active appearance models require a training phase where both the shape and its associated

appearance are learned from a set of samples using, for instance, the principal component

analysis.

▪ Multiview appearance models: These models encode different views of an object. One

approach to represent the different object views is to generate a subspace from the given

views. Subspace approaches, for example, Principal Component Analysis (PCA) and In-

dependent Component Analysis (ICA), have been used for both shape and appearance rep-

resentation. Another approach to modeling appearance is to train a set of classifiers to rep-

resent different views of the object (e.g. Support Vector Machines (SVM)) [7] [15].

1.4 Visual Features for Object Tracking

Selecting the right features plays a critical role in tracking. Generally, features that better distin-

guish between multiple objects and between object and background are best for object tracking.

These features aim to describe the object’s visual properties in the image. Some methods are based

on a single type of feature, while others use a weighted combination of multiple types of features

to improve performance. The details of common visual features are as follows [10].

▪ Color: The apparent color of an object is influenced primarily by two physical factors: 1)

the spectral power distribution of the illuminant, and 2) the surface reflectance properties

of the object. In image acquisition, the RGB (red, green, blue) color space is usually used

to represent color. However, the RGB space is not perceptually uniform, that is, the differ-

ence between the colors in the RGB space does not correspond to the color differences

perceived by humans. Instead, YUV and LAB are perceptually uniform, while HSV (Hue,

Saturation, Value) is an approximately uniform color space. However, these color spaces

are sensitive to noise. In summary, there is no last word on which color space is more

efficient, therefore a variety of color spaces have been used in tracking [16].

Chapter 1: General information on object tracking

23 | P a g e

▪ Gradient: Object boundaries usually generate strong changes in image intensities. Edge

gradient identifies these changes. An important property of edges is that they are less sen-

sitive to illumination changes as compared to color features. Algorithms that track the

boundary of the objects usually use edges as the representative feature. Because of its sim-

plicity and accuracy, the most popular edge detection approach is the Canny Edge detector

[16].

▪ Texture: Texture is a measure of the intensity variation of a surface which quantifies

properties such as smoothness and regularity. Compared to color, texture requires a pro-

cessing step to generate the descriptors. There are various texture descriptors including

gray level co-occurrence matrices, Law’s texture measures (twenty-five 2D filters gener-

ated from five 1D filters corresponding to level, edge, spot, wave, and ripple), wavelets,

Gabor filters, and steerable pyramids. A detailed analysis of texture features can be found

in[17]. the texture features are less sensitive to illumination changes as compared to color.

[16]

▪ Optical Flow: Optical flow is a dense field of displacement vectors that defines the trans-

lation of each pixel in a region. It is computed using a brightness constraint, which assumes

“brightness constancy” of corresponding pixels in consecutive frames and is usually com-

puted using the image derivatives. Optical flow is commonly used as a feature in motion-

based segmentation and tracking applications [16]. A comparison of the popular optical

flow techniques can be found in [18].

Chapter 1: General information on object tracking

24 | P a g e

1.5 Object tracking methods

Many object tracking approaches have been proposed and the difference between these methods

lies partly in the choice of object representation and shape, the image features used, the nature of

the estimated motion, etc. This choice depends on the application as well as the processed video.

There is more than one possible categorization of tracking algorithms in the literature. Yilmaz et

al, [1] propose a classification of tracking methods according to the object representation used:

point tracking, kernel tracking, and silhouette tracking. Recently, another classification for track-

ing algorithms based on the appearance model used. In [19] and [20], the authors distinguish be-

tween two categories: generative and discriminative methods. Generative methods focus on mod-

eling the appearance of the object, which can vary in a different frame. Discriminative methods

distinguish the object from the background, transforming the tracking problem into a binary clas-

sification problem [10]. Li et al [20] provide a very detailed description of all the existing appear-

ance models in tracking and discuss their composition (visual representation and statistical mod-

eling of appearance) [11]. In this section, we take the classification of tracking algorithms (tracking

by detection, tracking by correspondence, tracking by correlation filter, and tracking by deep learn-

ing), The majority of the methods we'll see in this classification of tracking algorithms are built-in

to the OpenCV library. which presented in the following figure.

Figure 1.7: Taxonomy of object tracking methods.

Object
tracking

Tracking by
detection

Generative
methods

L1

IVT

...

Discriminative
methods

Boosting

MIL

TLD

MedianFlow

...

Tracking by
correspondence

KLT

Mean
shift

...

Tracking by
correlation filter

MOSSE

KCF

CSRT

...

Tracking by
deep learning

GOTURN

...

Chapter 1: General information on object tracking

25 | P a g e

1.5.1 Tracking by detection

During the past several years, tracking by detection has become one of the most successful para-

digms for visual object tracking and has achieved state-of-the-art performance. The two main com-

ponents in the tracking-by-detection approach are visual representation and statistical modeling.

In this part, we will focus on the most representative papers related to statistical modeling, which

can be grouped into two categories: generative and discriminative models [21].

1.5.1.1 Generative Method

Tracking with generative modeling typically focuses on learning a model to represent the target

object, and then uses it to find the most similar region in the future frames [21]. In general, this

category of method does not require a large data set for training.[22]

▪ Tracker L1 : Mei et Ling. [23] proposed a robust tracking method, this method treats

object tracking as an approximation problem by acrimonious and introduces the trivial

model to approximate noise and occultation. During tracking, target candidates are repre-

sented as a sparse linear combination of model sets including target models that are ob-

tained from previous frames and trivial models. The L1 tracker requires high computational

resources due to many L1 minimization calculations.

▪ Tracker IVT: Ross et al. [24] proposed a tracking algorithm that uses an incremental sub-

space model to describe the target object to adapt to appearance changes. It carries out the

incremental learning of an object representation subspace (PCA) and adapts the model by

integrating the new appearance of the object with a forgetting factor on the past appear-

ances of the object. This method is not very robust, especially when the location of the

object is imprecise.

1.5.1.2 Discriminative Method

Despite the success, generative modeling usually faces difficulties to describe the target object

without considering background information, especially when the appearance of target object

changes dramatically and/or the background is cluttered. On the contrary, instead of trying to build

a complete model to represent the target object, discriminative modeling treats object tracking as

a classification problem, in order to distinguish the target object from the background. Therefore,

it is usually more robust to complex scenarios by explicitly modeling background as negative

Chapter 1: General information on object tracking

26 | P a g e

training samples. Trackers based on discriminative modeling have evolved rapidly and dominated

almost all datasets in recent years [21].

▪ Boosting Tracker: Grabner et al. [25] applied a similar online boosting framework for

real-time object tracking [21], This method is based on the online version of the AdaBoost

algorithm, the algorithm increases the weights of incorrectly classified objects, which al-

lows a weak classifier to “focus” on their detection. Since the classifier is trained “online”,

the user sets the frame in which the tracking object is located. This object is initially treated

as a positive result of detection, and objects around it are treated as the background. Re-

ceiving a new image frame, the classifier scores the surrounding detection pixels from the

previous frame and the new position of the object will be the area where the score has the

maximum value.[25]

▪ MIL Tracker: Babenko et al. [26] proposed to apply multiple instance learning (MIL) in

visual object tracking, in order to allow the classifier to select from a number of potential

positive samples according to its current state. MIL tracker treats the training samples as

“bags”. A bag is considered as positive if it contains at least one positive instance, other-

wise the bag is set to negative [21].

▪ TLD: Kalal et al. [27] proposed a robust visual tracking algorithm. this algorithm decom-

posed long-term tracking task into three sub-tasks: tracking, learning and detection, and

their corresponding components are designed to form a general tracker, called TLD. The

tracking component estimates the object motion and follows the object continually in order

to produce smooth trajectories, but it also accumulates errors continually and fails to track

if the target is invisible. The detection component localizes the object in all its appearances

that have been observed so far, and reinitializes tracker when it fails. The learning proce-

dure estimates the quality of the results and updated it with only high reliable results [21].

▪ MEDIANFLOW Tracker: This algorithm is based on the Lucas-Kanade method. The

algorithm tracks the movement of the object in the forward and backward directions in

time and estimates the error of these trajectories, which allows the tracker to predict the

further position of the object in real-time.[28]

Chapter 1: General information on object tracking

27 | P a g e

1.5.2 Tracking by correspondence

Matching the representation of a target object between two consecutive frames is a natural way to

estimate its motion and track it over time. This was a dominant tracking approach in the early days,

due to its fairly good performance, simple structure, and low computational requirement [21].

▪ KLT: As a more effective template-matching approach, Lucas and Kanade [29], proposed

The KLT (Kanade-Lucas-Tomasi) tracker. The KLT tracker finds transformed affine cor-

respondences between two successive frames using Spatio-temporal derivatives. The tar-

get's new location is determined by matching its position in the previous frame to the loca-

tion in the current frame using the estimated affine transformation.

▪ Mean shift: Several approaches have emerged to solve the lack of robustness to track non-

rigid objects based on the mean shift algorithm proposed by [Fukunaga et al,1975] which

was originally proposed for data clustering. Comaniciu et al [30], designed mean-shift

trackers to perform matching with color histograms, which is invariant to changes in the

shape of targets. In every new frame, the mean shift algorithm is used to determine the

location of the target by maximizing a similarity metric. This tracker, however, can be

confused by regions with a similar color distribution, due to the lack of spatial information.

1.5.3 Tracking by Correlation Filter

In recent years, correlation filter-based trackers have received much attention due to their sim-

ple structure, state-of-the-art performance and computational efficiency. As a basic operation

in digital image processing, a correlation filter is used to find locations in an image that are

similar to a pre-defined template. Ideally, a correlation filter produces high responses for a pre-

defined template, while generating low responses for background [21].

▪ MOSSE Tracker: Bolme et al. [31] proposed the minimum output sum of squared error

(MOSSE) filter for visual tracking on grayscale images. This algorithm is based on the

calculation of adaptive correlations in Fourier space. The filter minimizes the sum of

squared errors between the actual correlation output and the predicted correlation output.

MOSSE filter-based tracking is computationally efficient with speeds up to several hun-

dred frames per second and robust to variations in illumination, scale, pose, and non-rigid

deformations.

Chapter 1: General information on object tracking

28 | P a g e

▪ KCF Tracker : Henriques et al. [32] proposed KFC (Kernelized Correlation Filters). This

tracker builds on the ideas presented in the previous two trackers (BOOSTING and MIL).

This tracker utilizes the fact that the multiple positive samples used in the MIL tracker have

large overlapping regions. This overlapping data leads to some nice mathematical proper-

ties that are exploited by this tracker to make tracking faster and more accurate at the same

time [33].

▪ CSRT Tracker: CSRT is the implementation of the CSR-DCF (Channel and Spatial Re-

liability of Discriminative Correlation Filter). This algorithm uses spatial reliability maps

for adjusting the filter support to the part of the selected region from the frame for tracking,

which gives an ability to increase the search area and track non-rectangular objects. Relia-

bility indices reflect the quality of the studied filters by channel and are used as weights for

localization. Thus, using HoGs and Colornames as feature sets, the algorithm performs

relatively well [34] [35].

1.5.4 Tracking by deep learning

In recent years approaches based on Deep Learning, in particular, the convolutional neural network

(CNN), have achieved great empirical success and have dominated many computer vision prob-

lems, the application of deep learning to the problem of Visual object tracking requires extra effort,

due to the lack of proper training data, and the target object changing during the video sequence

[21].

GOTURN Tracker: GOTURN, short for (Generic Object Tracking Using Regression Networks).

It is a Deep Learning-based tracking algorithm, based on Convolutional Neural Network (CNN)

[36]. From OpenCV documentation, we know it is “robust to viewpoint changes, lighting changes,

and deformations”. But it does not handle occlusion very well [33].

Chapter 1: General information on object tracking

29 | P a g e

1.6 Conclusion

An important area of computer vision is real-time object tracking, which is now widely used. In

this chapter, we covered a general idea about object tracking and its methods. we first discussed

the theory of object tracking and its applications, as well as the challenges that affect the tracking

algorithms performance, we saw also the two types of tracking algorithms. Then we described the

representation of the object’s shape and appearance using the different features presented. Finally,

we presented the state of the art of object tracking methods, which are classified into several cate-

gories: Tracking by detection, tracking by correspondence, Tracking by correlation filter, ... etc.

The majority of the methods we saw in the classification of tracking algorithms are algorithms

built-in on the OpenCV library.

Chapter 2: Object tracking by OpenCV with MOSSE, KCF, CSRT

Chapter 2

Object tracking by OpenCV

with MOSSE, KCF, CSRT

Chapter 2: Object tracking by OpenCV with MOSSE, KCF, CSRT

31 | P a g e

2.1 Introduction

Locating an item in consecutive frames of a video is known as object tracking. It is implemented

by estimating the state of the concerned object present in the scene from previous information.

Since the object has been tracked till the present frame, it's known how it has been moving. More

simply, the parameters of the model are known. A motion model tells the speed and direction of

motion of the object from previous frames. Algorithms that track objects using this motion model

are known as object tracking algorithms [37]. There is a multitude of algorithms that can be used

for the same purpose. OpenCV offers a number of pre-built algorithms developed explicitly for

the purpose of object tracking.

In this chapter, we will first present an overview of the OpenCV library. then, we'll look into the

three main components that make up OpenCV trackers. In section 4, we provide information about

the available algorithms in the OpenCV library. Finally, in section 5 we will briefly go through the

correlation filter tracking approach basics and how its algorithms have developed over time, and

then we will focus on the three correlation filter tracking algorithms in OpenCV.

2.2 OpenCV library

OpenCV was started at Intel in the year 1999 by Gary Bradsky. The first release came a little

later in the year 2000. Open Source Computer Vision (OpenCV) library is an open source cross-

platform computer vision and machine learning software library. Some of its initial goals still hold

today, such as providing optimized code for basic computer vision infrastructure, disseminating

knowledge to build applications faster, and providing portable, performance-optimized code. The

library is licensed with open-source BSD license, and can be used for academic and commercial

applications [5].

Today OpenCV has around 2,500 optimized algorithms [38], which includes a comprehensive set

of both classic and state-of-the-art computer vision and machine learning algorithms. These algo-

rithms can used to detect and recognize human faces, identify various objects, classify human

actions in video, track moving objects, extract 3D models of objects, etc. OpenCV has more than

47 thousand people of user community and estimated number of downloads exceeding 18 million. The

library is used extensively in companies, research groups and by governmental bodies.

Chapter 2: Object tracking by OpenCV with MOSSE, KCF, CSRT

32 | P a g e

Figure 2.1: Different types of algorithms in OpenCV

Along with well-established companies like Google, Yahoo, Microsoft, Intel, IBM, Sony, Honda,

Toyota that employ the library, there are many start-ups such as Applied Minds, VideoSurf, and

Zeitera, that make extensive use of OpenCV. OpenCV’s deployed uses span the range from stitch-

ing street view images together, monitoring mine equipment in China, helping robots navigate and

pick up objects at Willow Garage, detection of swimming pool drowning accidents in Europe,

running interactive art in Spain and New York, checking runways for debris in Turkey, inspecting

labels on products in factories around the world on to rapid face detection in Japan[39].

It has C++, Python, Java and MATLAB interfaces and supports Windows, Linux, Android and Mac

OS. OpenCV leans mostly towards real-time vision applications and takes advantage of MMX and

SSE instructions when available. A full-featured CUDA and OpenCL interfaces are being actively

developed right now. There are over 500 algorithms and about 10 times as many functions that com-

pose or support those algorithms. OpenCV is written natively in C++ and has a templated interface

that works seamlessly with STL containers. The latest stable OpenCV version release was published

in December 2021 as 4.5.5 version [39].

2.3 Object tracking with OpenCV

Most modern solutions of the object tracking problem assume the presence of a pre-trained classi-

fier that allows you to accurately determine the object you track, whether it is a car, person, animal,

etc. These classifiers are, as a rule, trained on tens to hundreds of thousands of images, which

Chapter 2: Object tracking by OpenCV with MOSSE, KCF, CSRT

33 | P a g e

makes it possible to study the patterns of the selected classes and subsequently to detect the object.

But, what if the user can’t find a suitable classifier or train their own?

In this case, OpenCV object tracking provides solutions that use the “online” or “on the fly” train-

ing [34]. The term online refers to algorithms that are trained using very few examples at run time

[8], in contrast to an offline classifier, which may need thousands of examples to train [33].

In general, tracking an object in the video involves steps such as [40]:

• Choosing the tracker,

• Selecting the object (target) from the starting frame with the bounding box,

• Initializing the tracker with information about the frame and bounding box,

• Reading the remaining frames and finding the new bounding box of the object. The last

step is usually implemented in the loop.

An OpenCV tracker consists of three main components, which also coincide with the components

in a typical tracking algorithm [5]:

2.3.1 Tracker Feature Set:

The tracker feature set is a model of the visual appearance of the target object, and it is used to

represent objects of interest. In OpenCV, possible features can be extracted using HAAR, HOG,

LBP, Feature2D, etc.

2.3.2 Tracker Sampler Algorithm :

The mechanism for matching model parts to image regions at each frame through computes the

patches over the frame based on the last target location.

2.3.3 Tracker Model:

The mechanism for continuously relearning or updating models of targets that change their ap-

pearance over time. The internal representation of the target. It stores all state candidates and com-

putes the trajectory. Tracker Feature Set and Tracker Sampler Algorithm are the visual represen-

tation of the target, while the Tracker Model represents the statistical model.

Chapter 2: Object tracking by OpenCV with MOSSE, KCF, CSRT

34 | P a g e

2.4 Object tracking algorithms in OpenCV

OpenCV object tracking is a popular method because OpenCV has so many algorithms built-in

that are specifically optimized for the needs and objectives of object or motion tracking.

The OpenCV library includes eight algorithms for object tracking the BOOSTING, MIL, KCF,

CSRT, MedianFlow, TLD, MOSSE, and GOTURN algorithms, which are available through

OpenCV tracking API. Each of these trackers is best for different goals. For example, CSRT is

best when the user requires a higher object tracking accuracy and can tolerate slower FPS through-

put, and the selection of an OpenCV object tracking algorithm depends on the advantages and

disadvantages of that specific tracker [5] [37].

Table 2.1 provides some information about the available algorithms in the OpenCV library with

their publication years and reference to research papers detailing their implementation.

Table 2.1: OpenCV single object trackers sorted by the year of their publication. Google

Scholar Citations are accessed on May 15th 2022.

N° Tracker Full Name

(Abbreviation)

Publication Title and Reference Publication

Year

(Google Scholar

Citations)

1. Boosting Real-time tracking via on-line boost-

ing [25]

2006 (1432)

2. Multiple Instance Learning (MIL) Visual tracking with online multiple

instance learning [26]

2009 (2095)

3. MedianFlow Forward-backward error: Automatic

detection of tracking failures [28]

2010 (802)

4. Minimum Output Sum of Squared

Error (MOSSE)

Visual object tracking using adaptive

correlation filters [31]

2010 (1839)

5. Tracking Learning Detection (TLD) Tracking-learning-detection [27] 2011 (3275)

6. Kernelized Correlation Filter (KCF) High-speed tracking with kernelized

correlation filters [32]

2014 (3131)

7. GOTURN (Generic Object Track-

ing Using Regression Networks)

Learning to track at 100 fps with deep

regression networks [36]

2016 (648)

8. CSRT (Channel and Spatial Relia-

bility Tracker)

Discriminative Correlation Filter with

Channel and Spatial Reliability [35]

2017 (444)

Chapter 2: Object tracking by OpenCV with MOSSE, KCF, CSRT

35 | P a g e

2.5 Correlation filter tracking algorithms in OpenCV

In 2010, the correlation filter method was used in object tracking for the first time [9]. In recent

years, correlation filter-based trackers have received much attention due to their simple structure,

state-of-the-art performance, and computational efficiency [21]. In OpenCV, we have the MOSSE,

KCF, and CSRT trackers based on the correlation filter method. In this section, we will briefly go

through the correlation filter tracking approach basics and how its algorithms have developed over

time, and then we will focus on the three correlation filter tracking algorithms that we have in

OpenCV.

2.5.1 Correlation filter tracking

As a basic operation in digital image processing, a correlation filter is used to find locations in an

image that are similar to a pre-defined template. Ideally, a correlation filter produces high re-

sponses for a pre-defined template, while generating low responses for background [21].

The framework of a typical correlation filter-based tracking method (Figure 2.3) can be summa-

rized as follows. In the first frame, an initial correlation filter is trained based on the ground truth

bounding box. For each following frame, various local features are extracted and filtered by a

cosine window in order to smooth the boundary effects. Subsequently, a response map is generated

efficiently with a fast Fourier transform (FFT). The position with the maximum value in this map

is predicted as the new location of the target object. Finally, the new location of the object is used

to update the correlation filter [21] [31].

Figure 2.2:A general flow chart for typical correlation filter-based tracking methods.

Chapter 2: Object tracking by OpenCV with MOSSE, KCF, CSRT

36 | P a g e

After nearly a decade of development, the correlation filter tracking algorithms now have matured.

In this part, we will introduce the development of correlation filter algorithms. The specific devel-

opment process is as follows [9].

By learning from gray images, the minimum output sum of squared error (MOSSE) [31] filter

applies correlation filter to the tracking field for the first time. This filter is easy to calculate and

can quickly track objects, but it does not guarantee to track accurately when the object’s appear-

ance changes. After that, Henriques et al. [43] proposed the circulant structure tracking with ker-

nels (CSK) in 2012. Then, Danwelljan et al. [32] proposed that the Kernels correlation filter (KCF)

further adjusts the channel characteristics to multi-channel features and introduces CN features for

tracking in 2014. The CN feature improves the filter’s discriminative ability. However, the adapt-

ability of the filter to rotation, out-of-view and fast motion still needs to be improved. Subse-

quently, Danelljan et al. [44] proposed a discriminative scale space tracker (DSST) using the fea-

ture pyramid to solve the multi-scale variation problem and also proposed the improved fDSST

algorithm [45]. With the rapid rise of deep learning, the C-COT algorithm [46] effectively repre-

sents spatial position information with shallow CNN features, which is a combination of correla-

tion filtering and CNN. The algorithm won the VOT2016 competition. Similar to C-COT, the

CSR-DCF algorithm [35] also applies CNN features to the correlation filtering algorithm, which

improved the robustness of the algorithms.

2.5.2 MOSSE algorithm

The MOSSE algorithm [31] introduced the correlation filter technology into the visual tracking

field. This kind of algorithm can adapt to the problems of occlusion and rotation and achieve an

amazing tracking speed of 669 fps. The MOSSE filter is trained by the first frame and can have

strong robust performance for illumination, scale, and posture variation. When the target is oc-

cluded, the algorithm can determine the status of object tracking and update the filter parameters

according to the PSR value. When the object reappears, it can be tracked again [9].

In the MOSSE algorithm, to create a fast tracker, the fast Fourier transform (FFT) is used to cal-

culate the correlation in the Fourier domain. First, calculating the 2D Fourier transform of the input

image (F = F (f)) and filter (H = F(h)). The convolution theorem states that correlation is the

element multiplication in the Fourier domain[31]. The symbol ⊙ represents element-by-element

multiplication, (*) indicates complex conjugate and the representation of correlation is as follows:

Chapter 2: Object tracking by OpenCV with MOSSE, KCF, CSRT

37 | P a g e

 g = 𝑓 ⊗ ℎ (2.1)

where g, f and h represent response output, input image and filter template, respectively. It can be

seen that we only need to determine the filter template h to get the response output. The fast Fou-

rier transform (FFT) is used in Eq. (2.1). Therefore, the convolution operation becomes a point

multiplication operation, which greatly reduces the amount of calculation. That is, the above for-

mula becomes[9]:

 𝐹(g) = 𝐹(𝑓 ⊗ ℎ) = 𝐹(𝑓) ⋅ 𝐹(ℎ)∗ (2.2)

Then, the above formula is abbreviated as follows: 𝐺 = 𝐹 ∙ 𝐻∗

And the next task to track is to find the filter template H*: 𝐻∗ =
𝐺

𝐹

In the process of actual tracking, we need to consider the influence of factors such as the appear-

ance of the object. At the same time, considering the m images of the object as a reference can

significantly improve the robustness of the filter template. The MOSSE model formula is as fol-

lows [9]:

min𝐻∗   = ∑  

𝑚

𝑖=1

|𝐻∗𝐹𝑖 − 𝐺𝑖|2
(2.3)

after a series of transformations, a closed solution is obtained:

𝐻∗ =
∑  𝑖 𝐺𝑖 ⋅ 𝐹𝑖

∗

∑  𝑖 𝐹𝑖 ⋅ 𝐹𝑖
∗

(2.4)

The algorithm tracks the object by correlating filters on the search window in the next frame. The

new position of the object is represented by the maximum value of the associated output. Then

performs an online update in the new location. The tracker update method uses the following for-

mula:

𝐻𝑖

∗ =
𝐴𝑖

𝐵𝑖

(2.5)

Chapter 2: Object tracking by OpenCV with MOSSE, KCF, CSRT

38 | P a g e

 𝐴𝑖 = 𝜂𝐺𝑖 ⊙ 𝐹𝑖
∗ + (1 − 𝜂)𝐴𝑖−1 (2.6a)

 𝐵𝑖 = 𝜂𝐹𝑖 ⊙ 𝐹𝑖
∗ + 𝐵𝑖−1 (2.6b)

In equation (2.5), The cumulative values of 𝐴𝑖 and 𝐵𝑖 over a set of initial frames are used to ini-

tialize the filter.

Finally, the Peak to Sidelobe Ratio (PSR) value is used for failure detection:

PSR =

 peak − 𝜇

𝜎

(2.7)

In the experiment, the PSR value between 20 and 60 is considered to be a good tracking effect.

When the PSR value is lower than 7, it is judged as tracking failure and the template is not updated

[9]. The MOSSE algorithm overall can adapt to small-scale variation (the figure 2.4 present the

ability of MOSSE tracker to quickly adapt to scale and rotation changes), but it cannot adapt to

large-scale variation. In addition, the MOSSE algorithm uses grayscale features that are not pow-

erful enough and expressive in general. The sample sampling of the MOSSE algorithm is still a

sparse sampling, and the training effect is general.

Figure 2.3: The results of the MOSSE filter based tracker on a challenging video sequence.

Chapter 2: Object tracking by OpenCV with MOSSE, KCF, CSRT

39 | P a g e

2.5.3 KCF algorithm

KCF stands for Kernelized Correlation Filter, it is a combination of techniques of two tracking

algorithms (BOOSTING and MIL tracker). It is supposed to translate the bounding box (position

of the object) using a circular shift. In simple words, the KCF tracker focuses on the direction of

change in an image (could be motion, extension, or orientation) and tries to generate the probabil-

istic position of the object that is to be tracked[47] .

The KCF [32] is a classic of traditional discriminant method. This series of algorithms learn filters

from a series of training samples. The KCF sample generation method uses the cyclic shift method.

Assuming one-dimensional data as 𝑥 = [𝑥1 , 𝑥2, … , 𝑥𝑛] the cyclic shift of x is denoted as 𝑃𝑥 =

[𝑥𝑛 , 𝑥1, … , 𝑥𝑛−1]. All cyclic shift samples form a cyclic matrix are:

𝑋 = 𝐶(𝑥) = [

𝑥1, 𝑥2 ⋯ 𝑥𝑛

⋮ ⋱ ⋮
𝑥𝑛, 𝑥𝑛−1 ⋯ 𝑥1

]
(2.8)

Figure 2. 4: Illustration of a circulant matrix.

That is, it uses (M × N) image block x to train a filter 𝑓(𝑥) = ⟨𝜔, ∅𝑥⟩, which generates a training

sample by performing a cyclic shift operation on x. The training samples include all cyclic shift

forms Pi, where i ∈ {0, ..., M − 1} × {0, ..., N − 1}. Each Pi generates a corresponding score yi (yi

∈ [0, 1]) which is generated by a Gaussian function based on the shift distance. Minimizing the

regression error, the classifier is trained as:

 𝑤 = argmin
𝑤

∑  

𝑖

(⟨𝑤, 𝜙(𝑥)⟩ − 𝑦𝑖)2 + 𝜆 ∥ 𝑤 ∥2
(2.9)

Chapter 2: Object tracking by OpenCV with MOSSE, KCF, CSRT

40 | P a g e

Among them, 𝜙(𝑥) is the mapping of Fourier space. 𝜆 ≥ 0 is the regularization parameter, which

shows the simplicity of the model. The periodic hypothesis achieves effective training and detec-

tion by using fast Fourier transform. If the translation invariance of the kernel function is used, a

can be quickly obtained as �̂� =
�̂�

�̂�𝑥𝑥+𝜆
 for the special nature of the circulant matrix. In the filtering

conversion process, a m × n candidate image block z for the search space is evaluated by the fol-

lowing formula:

 𝑓(𝑧) = ℱ−1(�̂�𝑥𝑥 ⊙ �̂�) (2.10)

Where f (z) is the filter response of all cyclic matrices z, and the highest response is the object of

the current frame.

The KCF algorithm generates a series of candidate samples by exploiting the properties of the

cyclic matrix on the candidate window. It greatly improves the tracking speed compared to tradi-

tional window sampling. The problem is then converted to a fast operation in the frequency domain

by Fourier transform. This turns the ridge regression problem in the time domain into a cross-

correlation problem in the frequency domain. The KCF algorithm uses a multichannel HOG fea-

ture instead of a single-channel grayscale feature. Due to the use of cyclic shift, the KCF algorithm

has a boundary effect problem. In addition, the search area is fixed in KCF, so it is easy to exceed

the search range in fast motion[9].

Figure 2.5: The principle and effect diagram of cyclic shift

Chapter 2: Object tracking by OpenCV with MOSSE, KCF, CSRT

41 | P a g e

2.5.4 CSRT algorithm

CSRT is the OpenCV implementation of the CSR-DCF (Channel and Spatial Reliability of Dis-

criminative Correlation Filter), it is an advanced algorithm that accommodates changes like en-

larging and non-rectangular objects. Essentially it uses HoG features along with SRM (spatial re-

liability maps) for object localization and tracking [35].

The spatial reliability map adapts the filter support to the part of the object suitable for tracking

which overcomes both the problems of circular shift enabling an arbitrary search range and the

limitations related to the rectangular shape assumption. The second novelty of CSR-DCF is the

channel reliability. The reliability is estimated from the properties of the constrained least-squares

solution. The channel reliability scores were used for weighting the per-channel filter responses in

localization (see figure 2.6) [35]. An experimental comparison with the most recent state-of-the-

art boundary-constraint method shows that there are significant advantages to using this method.

Figure 2.6: Overview of the CSR-DCF approach.

First, we construct a spatial reliability map that calculates the probability of occurrence from the

target foreground/ background color model using Bayesian rules. The a priori probability is deter-

mined by the ratio of the size of the foreground/background histogram extracted regions (see figure

2.7). The method to construct the space reliability map is as follows [48]:

• Select the training patch tracking object boundary.

• Use Spatial priori as a unitary item of Markov random field optimization.

Chapter 2: Object tracking by OpenCV with MOSSE, KCF, CSRT

42 | P a g e

• Determine the object log-likelihood according to the foreground/background color

model.

• Calculate the posterior probability of Markov random field regularization.

• Cover the training patch with the final binary reliability map.

Figure 2. 7: Spatial reliability map construction from the training region.

2.5.4.1 Tracking with channel and spatial reliability

The localization and update steps of the channel and spatial reliability correlation filter tracker

(CSR-DCF) proceed as follows [35].

• Localization step: Localize per-channel responses and the corresponding detection reliability

values are computed and multiplied with the learning reliability measures from previous time-

step 𝐰𝑡−1 into channel reliability scores. The object is localized by summing the responses of

the learned correlation filters 𝐡𝑡−1 weighted by the estimated channel reliability scores. Scale

is estimated by a single scale-space correlation filter from Danelljan et al [44] .

• Update step: Foreground/background histograms �̃� are extracted at the estimated location and

updated by an auto-regressive scheme with learning rate 𝜂𝑐. The foreground histogram is ex-

tracted by a standard Epanechnikov kernel within the estimated object bounding box and the

background is extracted from the neighborhood twice the object size. The spatial reliability

map is constructed, the optimal filters �̃� are computed by optimizing the augmented Lagran-

gian and the per-channel learning reliability �̃� = [�̃�1, … , �̃�𝑁𝑑
]

𝑇
is estimated from their re-

sponses. For temporal robustness, the filters and channel learning reliability weights are up-

dated by an autoregressive model with learning rate 𝜂. The CSR-DCF tracking iteration is

visualized in (Figure 2.8).

Chapter 2: Object tracking by OpenCV with MOSSE, KCF, CSRT

43 | P a g e

Figure 2.8: The CSR-DCF tracking iteration.

2.6 Conclusion

In this chapter, we have introduced the object trackers available in the OpenCV library. we started

with a brief overview of the OpenCV library, then we saw the solutions provided by OpenCV to

track objects using online training also the three main components of an OpenCV tracker, after

that, we provided some information about the eight algorithms available in the OpenCV library

with their reference detailing their implementation. In the last part we focused on the MOSSE,

KCF, and CSRT trackers based on the correlation filter method, we introduced the basics of the

correlation filter tracking approach and the development of its algorithms over time, then we went

over how the three correlation filter trackers in OpenCV function. In the next chapter, we will see

how to implement these three trackers in OpenCV.

Chapter 3

Simulation and results

Chapter 3: Simulation and results

45 | P a g e

3.1 Introduction

After taking a theoretical knowledge in the previous chapter of the basic principle of MOSSE,

KCF, and CSRT tracking algorithms. in this chapter, we will implement these object tracking al-

gorithms in video using OpenCV. The results obtained as well as their discussions will be pre-

sented. To validate this work, we tested the algorithms on different videos.

3.2 Hardware

In order to carry out this work project, a set of the following materials was made available to us:

- PC ASUS X541U Series with the following features:

- Processor: Intel(R) Core (TM) i3-6006U CPU @ 2.00GHz.

- RAM: 4.0 GB.

- Hard disk: 128 GB SSD + 500 GB HDD.

- laptop’s in-built camera to build a real time object tracking.

- Graphic Card: Intel(R) HD Graphics 520.

- System type: 64-bit Operation System.

- Windows edition: Windows 10 Pro.

3.3 Software

For this project, we used a set of development tools such as: The programming language Python

3.9, The computer vision library OpenCV 4.5.5, and PyCharm IDE.

3.3.1 Python

Python is a widely used high-level programming language for general-purpose programming, cre-

ated by Guido van Rossum and first released in 1991 [49]. the language is named after the

BBC show “Monty Python’s Flying Circus”. Python 3.x is the current version and is under active

development, the latest version of it is 3.10.4 was released in March 2022 [50].

Python is a popular and in-demand skill to learn. Python can be used for many areas such as:

AI and machine learning, data analytics, Programming applications, Web development, and many

other fields.

Chapter 3: Simulation and results

46 | P a g e

3.3.1.1 Python features [51]:

- Python is open source.

- Python is simple and lovely:

Python has a very simple and elegant syntax. It's much easier to read and write Python

programs compared to other languages like: C++, Java, C#.

- Python is portable:

Python scripts can be used on different operating systems such as: Windows, Linux, UNIX,

Amigo, Mac OS, etc. You can move Python programs from one platform to another, and

run it without any changes.

- A high-level, interpreted language:

Unlike C/C++, you don't have to worry about daunting tasks like memory management,

garbage collection and so on. Likewise, when you run Python code, it automatically con-

verts your code to the language your computer understands. You don't need to worry about

any lower-level operations.

- Large standard libraries to solve common tasks:

Python has a number of standard libraries which makes life of a programmer much easier

since you don't have to write all the code yourself.

- Python supports other technologies:

It can support COM, .Net, etc objects.

- Large standard libraries to solve common tasks

- Extensible and Embeddable

- Object-oriented

However, there are few drawbacks with python:

- Not Easy to Maintain:

Because Python is a dynamically typed language, the same thing can easily mean some-

thing different depending on the context.

- Slow:

As a dynamically typed language, Python is slow because it is too flexible and the machine

would need to do a lot of referencing to make sure what the definition of something is, and

this slows Python performance down.

Chapter 3: Simulation and results

47 | P a g e

Here, in (figure 3.1) we can see how Python is the most in-demand programming language of

2022.

Figure 3.1: Comparing python to other languages.

3.3.2 OpenCV

OpenCV (Open Source Computer Vision Library) is an open source computer vision and machine

learning software library. OpenCV was built to provide a common infrastructure for computer

vision applications and to accelerate the use of machine perception in commercial products [5].

For more information about the OpenCV library, you can review (section 2.2) in this work.

3.3.3 PyCharm

PyCharm is the most popular IDE (Integrated Development Environment) for Python scripting

language, and includes great features such as excellent code completion and inspection with

advanced debugger and support for web programming and various frameworks such as Django

and Flask. PyCharm is created by Czech company, Jet brains which focusses on creating

integrated development environment for various web development languages like JavaScript and

PHP [52].

Chapter 3: Simulation and results

48 | P a g e

3.3.3.1 PyCharm features

Besides, a developer will find PyCharm comfortable to work with because of the features men-

tioned below:

- Code Completion:

PyCharm enables smoother code completion whether it is for built in or for an external

package.

- SQLAlchemy as Debugger

You can set a breakpoint, pause in the debugger and can see the SQL representation of the

user expression for SQL Language code.

- Git Visualization in Editor

When coding in Python, queries are normal for a developer. You can check the last commit

easily in PyCharm as it has the blue sections that can define the difference between the last

commit and the current one.

- Code Coverage in Editor

You can run .py files outside PyCharm Editor as well marking it as code coverage details

elsewhere in the project tree, in the summary section etc.

- Package Management

All the installed packages are displayed with proper visual representation. This includes

list of installed packages and the ability to search and add new packages.

- Local History

Local History is always keeping track of the changes in a way that complements like Git.

Local history in PyCharm gives complete details of what is needed to rollback and what is

to be added.

- Refactoring

Refactoring is the process of renaming one or more files at a time and PyCharm includes

various shortcuts for a smooth refactoring process.

- User Interface of PyCharm Editor

The user interface of PyCharm editor includes various features to create a new project or

import from an existing project.

Chapter 3: Simulation and results

49 | P a g e

3.3.4 The installation of the software and the packages

• Python

As we see above Python is a widely used high-level programming language.so how you can in-

stall it on your machine.

Unlike most Linux distributions, Windows does not come with the Python programming

language by default. However, you can install Python on your Windows server or local machine

in just a few easy steps.

Open your web browser and navigate to the downloads for Windows section of the Python.org

website.

• OpenCV

In this section, I am going to show How to Install OpenCV on Windows with Python. As we see

above OpenCV is Open Source and free.

To install OpenCV Via PIP give the following command:

Pip is a package management system used to install and manage software packages written in

Python. You can also install opencv-contrib-python package to avoid issues during the tracker

initialization via the following command:

pip install opencv-contrib-python

When installing OpenCV you will observe one more thing which is NumPy packages are

automatically installed with the OpenCV Python package.

To Test OpenCV Installation use the following command in python: import cv2

And if you want to check the version use the following command in python: cv2.__version__

• PyCharm

This Python IDE from JetBrains has a built-in editor, you have the option of getting the

professional edition for free if you are a university student by simply register with your university

email address or you can use the free Community Edition.

https://www.python.org/downloads/windows/
https://www.python.org/
https://www.python.org/

Chapter 3: Simulation and results

50 | P a g e

You can download and install the latest version (2022.1.1) as of May 2022 from the PyCharm

download page, for your operating system.

❖ Configure PyCharm with Python3

After you have the software installed in the default location, you must configure PyCharm to

work with Python 3. Follow these steps:

1. Launch PyCharm from the program you downloaded/installed.

2. On the welcome screen, go to Create New Project. Choose The correct interpreter that

you will be using for your project (e.g. python3.6). Enter the full path under Location

and select the Create button in the lower right.

3. Now we will create a new file. Right click on the OpenCV folder in the project view

and select New -> Python File. In the dialog window under Name, enter object_track-

ing.py. This will open the new file in an editor to the right. Now you can enter your

code.

Figure 3.2: Create a Python file in PyCharm.

https://www.jetbrains.com/pycharm/download/#section=windows
https://www.jetbrains.com/pycharm/download/#section=windows

Chapter 3: Simulation and results

51 | P a g e

3.4 Algorithm structure

In order to implement single object tracking in OpenCV, the steps of the algorithm are shown in

(Figure 3.3):

Figure 3.3: Block diagram of object tracking algorithm in OpenCV

3.5 Single object tracking in video by OpenCV with MOSSE, KCF, CSRT

As mentioned in Chapter 2 (see Table 2.1). The OpenCV library provides 8 different ways to track

objects. In this part, we are going to implement tracking algorithms based on a correlation filter in

OpenCV (MOSSE, KCF, and CSRT algorithms).

First of all, make sure that your environment is ready to work by ensuring that you have OpenCV

installed (we recommend OpenCV 3.4+).

We begin by importing our required packages:

Figure 3.4: Import libraries.

Chapter 3: Simulation and results

52 | P a g e

Now that our packages are imported, we are going to check the OpenCV version:

Figure 3.5: Checking the OpenCV version.

The cv2.__version__ function returns the version numbers of the OpenCV library installed in your

environment. This check is necessary to do before creating the tracker object. This is because any

version of OpenCV lower than 3 has a different module to create a specific type of tracker.

3.5.1 Create the Object tracker

We first save the name of the three trackers that we will implement in this project in a list. Then

we check for the version of OpenCV we are working on and then create the tracker object based

on the version number (see figure 3.6).

Figure 3. 6: Create the object tracker.

For OpenCV 3.3+, each tracker can be created with its own respective function call such as:

cv2.TrackerKCF_create (). Note, that several tracking algorithms have been removed from the

official OpenCV release and moved to the “legacy” section. Therefore, the word “legacy” must be

added to some trackers when they are created in order for the tracker to function.

Chapter 3: Simulation and results

53 | P a g e

3.5.2 Reading the first frame of the video

After Setting up the trackers, The VideoCapture class can be used to capture a video file from

either the webcam integrated with our machine or a video file saved in our local device. We give

the path to our video in the argument of VideoCapture with the following command.

Figure 3.7: The video path command.

If you want to use the webcam for tracking, comment on the pervious line of the video path com-

mand, and write the following command.

Figure 3.8: The command for using the webcam

We further do a couple of checks to see if the video file is properly working or not.

And then we used the ‘read()’ function to read the first frame of the video (see figure 3.9).

Figure 3. 9: Reading the first frame of the video

3.5.3 Select an object in the first frame with the bounding box

In this part, we first define an initial bounding box in the video (see Figure 3.10), Knowing that

the bounding box's coordinates indicate (X, Y, width, height).

Figure 3.10: Define an initial bounding box.

Or we can select a bounding box of our own choice by using cv2.selectROI function you will see

the window for manual selection (see figure 3.11). This bounding box will contain the object we

want to track.

Chapter 3: Simulation and results

54 | P a g e

 Figure 3. 11: Select an object in the first frame with the bounding box.

3.5.4 Initialize the object tracker

Now, we will initialize the tracker with first frame and bounding box.

Figure 3.12: Initialize the object tracker

3.5.5 Updating the Object tracker and see the output

In order to update the location of the object, we call the .update() function to update our frame.

Figure 3.13: Update the object tracker

the tracker "update" function provides us with the up-to-date bounding box. It returns two varia-

bles, first is a flag parameter that informs if the tracking process was successful or not and the

second returns the position of the tracked object in the frame if and only if the first parameter was

true.

Chapter 3: Simulation and results

55 | P a g e

Next, in the loop, we start by reading each frame of the video being played. We start the timer with

the cv2.gerTickCount() function and use the tracker to estimate the trajectory of the object in the

video. We use the tracker’s estimated trajectory to draw the bounding box around the object of

interest. The program continues forever and waits for the 'q’ key to be pressed; as soon as the 'q’

key is pressed, the while loop breaks, and the tracking stops. We used the OpenCV cv2.destroy-

AllWindows() function to close all lingering windows if there are any.

The output of tracking with the CSRT tracker is shown in (figure 3.14).

Figure 3.14: The CSRT tracker output

3.6 Performance measurement of a tracking system

The performance evaluation of tracking systems requires a comparison of the results of the algo-

rithms with “optimal” ground truth results. The main performance metrics in object tracking are

[18] [71]: Center location error and overlap ratio.

3.6.1 Center location error (CLE)

The center location error (Figure 3.15(a)) is a common measure of measuring the average distance

between the centers of the predicted boxes {𝑝𝑖}𝑖=1
𝑀 and the ground truth {𝑔𝑖}𝑖=1

𝑀 :

Chapter 3: Simulation and results

56 | P a g e

𝐶𝐿𝐸 =
1

𝑀
∑  

𝑀

𝑖=1

∥∥𝑝𝑖 − 𝑔𝑖∥∥

This measure does not account for the size accuracy of the predicted boxes. The usual threshold

for comparing accuracy between different trackers is 20 pixels.

3.6.2 Overlap ratio (VOR)

The overlap rate (Figure 3.15(b)) between the predicted box B and the ground truth B' is defined

as the ratio of the areas of intersection and union of the boxes:

VOR (𝐵, 𝐵′) =
|𝐵 ∩ 𝐵′|

|𝐵 ∪ 𝐵′|

VOR, is a more accurate error measure than center location error since it considers the size of the

boxes. The average overlap rate then consists in averaging VOR over all the images in the data-

base. We count the number of successful frames whose Overlap rate (VOR) is above the given

threshold 𝜏 (The threshold is often used for tracking performance evaluation is 0.5).

(a) Center location error

(b) Overlap rate of predicted (red) and

ground truth (green) boxes

Figure 3.15: Performance metrics: (a) Center location error, (b) Overlap rate.

3.7 Experimental results and discussions

In this work, we used four image sequences to present the results of OpenCV single object tracking

algorithms based on correlation filter: MOSSE, KCF, and CSRT. These sequences contain several

tracking challenges. A rectangle represents the target object in the image sequences. The target is

selected in the first frame by initializing the bounding box coordinates of the object we will track

based on the results obtained in the field. The experimental results are expressed on two levels,

quantitative (Center location error and Overlap rate) and qualitative (visually).

Chapter 3: Simulation and results

57 | P a g e

3.7.1 Datasets

The image sequences used to evaluate the performance of the OpenCV single object tracking al-

gorithms based on the correlation filter exist in the OTB datasets which are available at:

http://cvlab.hanyang.ac.kr/tracker benchmark/benchmark v10.html. Each of the video sequences

is associated with a ground truth that captures the true interpretation of the scene in terms of objects

to follow and is linked to a TXT file describing the position of the target in each image (X, Y,

width, height). Table (3.1) illustrates the image sequences used:

Table 3.2:The image sequences used

Image se-

quence
1st image

Number of

frames
Image size Challenges

Car4

659 360x240 IV, SV

Skiing_ce

1511 1280x720
SV, MB, FM, IPR,

OPR

Trellis

569 320x240
IV, SV, IPR, OPR,

BC

CarScale

252 640x272
SV, OCC, FM, IPR,

OPR

- OCC: Occlusion - MB: Motion Blur - OPR: Out-of-Plane Rotation

- IV: Illumination Variation - FM: Fast Motion - BC: Background Clutters

- SV: Scale Variation - IPR: In-Plane Rotation.

http://cvlab.hanyang.ac.kr/tracker%20benchmark/benchmark%20v10.html

Chapter 3: Simulation and results

58 | P a g e

3.7.2 Comparison between MOSSE and KCF and CSRT trackers in OpenCV

3.7.2.1 Quantitative results

➢ The comparison between the Center Location Error averages and the Overlap rate

for the MOSSE, KCF, and CSRT:

The table below summarizes the comparison between the three MOSSE, KCF and CSRT trackers,

using the CLE and VOR metrics for each sequence tested. We can clearly see that the minimum

center localization error and the maximum overlap rate in all sequences tested are obtained by

CSRT (12.9131/ 0.577675), especially in the Skiing_ce sequence (15.4868/ 0.7128). This means

that CSRT has achieved better performance compared to other trackers. With these results, we can

say that the CSRT tracker can track the target object more robustly and more accurately than the

MOSSE and KCF.

Table 3.3: The averages of the results obtained for the center localization error and the over-

lap rate.

Center location error

Overlap rate

Se-

quences

MOSSE KFC CSRT MOSSE KFC CSRT

Car4

4.2572 178.1341 6.3692 0.4736 0.2125 0.4770

Skiing_ce

52.9608 39.8926 15.4868 0.4367 0.6295 0.7128

Trellis

5.7726 127.8408 3.0546 0.5587 0.3133 0.6236

CarScale

111.7034 115.1554 26.7418 0.4172 0.4009 0.4973

Averages

43.6735 115.255725 12.9131 0.47155 0.38905 0.577675

Chapter 3: Simulation and results

59 | P a g e

3.7.2.2 Qualitative results

➢ Car4 Sequence:

In the Car 4 sequence, the object to track is a car. And the challenges present in this sequence are

Illumination Variation and Scale Variation. Figure (3.16) shows the tracking results by MOSSE,

KCF, and CSRT for frames 66, 190, 230, and 488. We can see that, the three trackers can follow

the object with precision in the first frames (frame 66), in frame 190, the KCF tracker lost the

object due to the illumination in the target area changing significantly. The KCF tracker box

reappears in frame 230, but its accuracy has decreased due to the presence of another similar object,

while MOSSE and CSRT continue to track the object accurately and robustly. In frame 488,

MOSSE and CSRT trackers continued tracking the car until the sequence ended, while the KCF

tracker lost the object again.

Frame 66

Frame 190

Frame 230

Frame 488

Figure 3.16: Tracking results on the Car4 sequence with MOSSE (blue rectangle), KCF

(red rectangle), and CSRT (green rectangle).

Chapter 3: Simulation and results

60 | P a g e

➢ Skiing_ce Sequence:

The Skiing_ce sequence represents a girl skiing and the challenges in this sequence are SV, MB,

FM, IPR, and OPR. Figure (3.17) shows the tracking results by MOSSE, KCF, and CSRT for

frames 23, 64, 224, and 471. At the beginning of the test (frame 23), the three trackers tracked the

object with high precision. In the other frames, we can see that the 3 trackers can track the object

throughout the sequence, but CSRT is the most accurate and robust, especially in frames 64 and

224 when there is significant scale variation and fast motion.

Frame 23

Frame 64

Frame 224

Frame 471

Figure 3.17: Tracking results on the Skiing_ce sequence with MOSSE (blue rectangle),

KCF (red rectangle), and CSRT (green rectangle).

Chapter 3: Simulation and results

61 | P a g e

➢ Trellis Sequence:

In the Trellis sequence, the object we are going to track is a man's face. and the challenges in this

sequence are IV, SV, IPR, OPR, BC. Figure (3.18) shows the tracking results by MOSSE, KCF, and

CSRT for frames 5, 95, 285, and 515. We can see that the three trackers can track the object with

precision in the first frames (frame 68). However, because of the variations in scale and

illumination in frame 95, accuracy decreased. In frame 285 of the sequence, the KCF tracker

completely loses the object due to Out-of-Plane Rotation. The two trackers MOSSE and CSRT

continue to track the object in frame 515, however the CSRT was more accurate to the target “face”

and robust against sequence problems.

Frame 5

Frame 95

Frame 285

Frame 515

Figure 3.18: Tracking results on the Trellis sequence with MOSSE (blue rectangle), KCF

(red rectangle), and CSRT (green rectangle).

Chapter 3: Simulation and results

62 | P a g e

➢ CarScale Sequence:

The thing we are going to track in CarScale sequence is a car. And the challenges present in this

sequence are SV, OCC, FM, IPR, OPR. Figure (3.19) shows the tracking results by MOSSE, KCF,

and CSRT for frames 26, 150, 165, and 235. Despite the challenges it faced that affected its

tracking accuracy as indicated in the shown frames, CSRT was able to track the target object to

the end of the sequence. In contrast to MOSSE and KCF, they completely lost the object between

frames 150 and 165 due to the occlusion of the tree and our target. In frame 235, we can see that

the CSRT continued to track the car until the sequence ended but with low precision because of

the scale variation and the fast motion in these frames.

Frame 26 Frame 150

Frame 165 Frame 235

Figure 3.19: Tracking results on the CarScale sequence with MOSSE (blue rectangle), KCF

(red rectangle), and CSRT (green rectangle).

Chapter 3: Simulation and results

63 | P a g e

3.8 Conclusion

In this chapter, we implemented and compared MOSSE, KCF, CSRT algorithms for single object

tracking in OpenCV library. We saw first the hardware and the software that are used in this project

along with the installations, then we viewed the steps to tracking a single object in video and

webcam with OpenCV. Then we started to test our algorithms on image sequences, we find dif-

ferent challenges that oppose object tracking (Occlusion, scale and Illumination Variation, Back-

ground Clutters, fast motion, and motion blur...). Then we presented the results obtained for each

sequence for the MOSSE, KCF and CSRT algorithms and we compared the three trackers by the

two metrics: center location error and overlap rate. The obtained results showed that CSRT tracker

is more accurate and more robust in dealing with various of difficulties than MOSSE and KCF in

single object tracking by OpenCV.

General Con-
clusion

General Conclusion

65 | P a g e

General conclusion

One of the main goals of computer vision is to enable computers to replicate the basic functions

of human vision such as motion perception and scene understanding. To achieve the goal of intel-

ligent motion perception, much effort has been spent on visual object tracking, which is one of the

most important and challenging research topics in computer vision. Essentially, the core of visual

object tracking is to robustly estimate the motion state (i.e., location, orientation, size, etc.) of a

target object in each frame of an input image sequence [20].

Despite extensive studies during the past several decades, tracking objects under unconstrained

scenarios is still a complex and difficult task due to many practical challenges, including illumi-

nation change, occlusion, deformable objects, noise corruption, viewpoint variations, and motion

blur. Furthermore, the proliferation of video data and new data-acquisition devices has stimulated

a great deal of interest in building more intelligent tracking algorithms [21].

The OpenCV library provides 8 different object tracking methods using online learning classifiers

[5], [33]. The term online refers to algorithms that are trained using very few examples at run time,

in contrast to an offline classifier, which may need thousands of examples to train. Most modern

solutions to the object tracking problem assume the presence of a pre-trained classifier (an offline

classifier), that allows us to accurately determine the object we track, whether it is a car, person,

animal, etc. But, what if the user can’t find a suitable classifier or train their own? In this case,

OpenCV offers a number of pre-built algorithms developed explicitly for the purpose of object

tracking[33], [34].

The aim of our work was to track a single object by pre-implemented tracking algorithms available

in the OpenCV library. From the eight algorithms in the OpenCV library, we focused on the

MOSSE, KCF, and CSRT algorithms, which are based on the correlation filter technique. We

chose these algorithms to implement based on our research because they are the most recom-

mended tracking algorithms in OpenCV; we tested them and compared their results.

In this thesis, we have implemented the MOSSE, KCF, and CSRT algorithms on OTB database

image sequences which contain several challenges (Occlusion, scale Variation, Background Clut-

ters, fast motion, Illumination Variation, and motion blur...), and we made a comparative study

General Conclusion

66 | P a g e

between the three methods from a qualitative point of view (visual) and from a quantitative (center

location error and overlap rate).

The results obtained show that the CSRT tracker is more accurate and more robust than MOSSE

and KCF in dealing with various of difficulties in single object tracking by OpenCV.

In perspective, we propose the possibility of extending this work by further experimenting with

the different object tracking algorithms in OpenCV to find effective solutions for different use

cases.

Bibliography

Bibliography

68 | P a g e

Bibliography

[1] D. Dzigal, A. Akagic, E. Buza, A. Brdjanin, and N. Dardagan, “Forest Fire Detection based

on Color Spaces Combination,” in ELECO 2019 - 11th International Conference on Elec-

trical and Electronics Engineering, Nov. 2019, pp. 595–599. doi:

10.23919/ELECO47770.2019.8990608.

[2] J. J. Titano et al., “Automated deep-neural-network surveillance of cranial images for acute

neurologic events,” Nature Medicine, vol. 24, no. 9, pp. 1337–1341, Sep. 2018, doi:

10.1038/s41591-018-0147-y.

[3] S. Stabinger, A. Rodríguez-Sánchez, and J. Piater, “25 years of CNNS: Can we compare to

human abstraction capabilities?,” in Lecture Notes in Computer Science (including subse-

ries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2016, vol.

9887 LNCS, pp. 380–387. doi: 10.1007/978-3-319-44781-0_45.

[4] Y. Wu, J. Lim, and M. H. Yang, “Object tracking benchmark,” IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, vol. 37, no. 9, pp. 1834–1848, Sep. 2015, doi:

10.1109/TPAMI.2014.2388226.

[5] A. Brdjanin, N. Dardagan, D. Dzigal, and A. Akagic, “Single object trackers in opencv: A

benchmark,” in 2020 International Conference on INnovations in Intelligent SysTems and

Applications (INISTA). IEEE, 2020, pp. 1–6.

[6] P. Janku, K. Koplik, T. Dulik, and I. Szabo, “Comparison of tracking algorithms imple-

mented in OpenCV”, doi: 10.1051/04.

[7] A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A survey,” ACM Computing Surveys,

vol. 38, no. 4. Dec. 25, 2006. doi: 10.1145/1177352.1177355.

[8] Y. Wu, J. Lim, and M. H. Yang, “Online object tracking: A benchmark,” in Proceedings of

the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,

2013, pp. 2411–2418. doi: 10.1109/CVPR.2013.312.

[9] S. Liu, D. Liu, G. Srivastava, D. Połap, and M. Woźniak, “Overview and methods of corre-

lation filter algorithms in object tracking,” Complex & Intelligent Systems, vol. 7, no. 4, pp.

1895–1917, Aug. 2021, doi: 10.1007/s40747-020-00161-4.

[10] S. Medouakh. “ Détection et suivi d’objets.’’Thèse de doctorat. Université de Biskra, 2019.

[11] I. LAMARI. “ Suivi d’objets avec Mean shift en utilisant BWH et CBWH.’’Thèse de

Master, université de Mohamed Khider Biskra.

[12] W, Bouchir. “Suivi d’objet par caractéristique locales encadrant la structure ’’Thèse de

Doctorat, Université Montréal, 2014.

[13] N. Dardagan, A. Brđanin, D. Džigal, and A. Akagic, “Multiple Object Trackers in OpenCV:

A Benchmark,” Oct. 2021, [Online]. Available: http://arxiv.org/abs/2110.05102

Bibliography

69 | P a g e

[14] Brulin, Mathieu. “Analyse sémantique d'un trafic routier dans un contexte de vidéo

surveillance.’’Diss. Bordeaux 1, 2012.

[15] S. Avidan, “Support vector tracking, IEEE Transactions on Pattern Analysis and Machine

Intelligence,’’ PAMI, 26(8):1064-1072 (2004).

[16] F. Porikli, A. Yilmaz, F. Porikli, and A. Yilmaz, “Object Detection & Tracking,” 2012.

[Online]. Available: http://www.merl.com

[17] Mirmehdi, M., Xie, X., Suri, J. (eds.): Handbook of Texture Analysis. Imperial College

Press (2008).

[18] D. Sun, S. Roth, and M. J. Black, “Secrets of optical flow estimation and their principles,”

in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, 2010, pp. 2432–2439. doi: 10.1109/CVPR.2010.5539939.

[19] S. He, Q. Yang, R. W. H. Lau, J. Wang, and M. H. Yang, “Visual tracking via locality

sensitive histograms,” in Proceedings of the IEEE Computer Society Conference on Com-

puter Vision and Pattern Recognition, 2013, pp. 2427–2434. doi: 10.1109/CVPR.2013.314.

[20] X. Li, W. Hu, C. Shen, Z. Zhang, A. Dick, and A. van den Hengel, “A Survey of Appearance

Models in Visual Object Tracking,” Mar. 2013, [Online]. Available: http://ar-

xiv.org/abs/1303.4803

[21] Yang. H. : Vers un suivi robuste d’objets visuels : sélection de propositions et traitement

des occlusions. (2016).

[22] D. Riahi, Suivi multi-objets par la détection : « Application à la vidéo surveillance.

Diss ». Ecole Polytechnique, Montréal (Canada), 2016.

[23] X. Mei, H. Ling: « Robust visual tracking using l1 minimization ». In IEEE 12th

International Conference on Computer Vision, pp. 1436–1443 (2009).”

[24] D. A. Ross, J. Lim, R. S. Lin, and M. H. Yang, “Incremental learning for robust visual

tracking,” International Journal of Computer Vision, vol. 77, no. 1–3, pp. 125–141, May

2008, doi: 10.1007/s11263-007-0075-7.

[25] H. Grabner, M. Grabner, and H. Bischof, “Real-time tracking via on-line boosting,” in

BMVC 2006 - Proceedings of the British Machine Vision Conference 2006, 2006, pp. 47–

56. doi: 10.5244/c.20.6.

[26] B. Babenko, M.-H. Yang, and S. Belongie, “Visual tracking with online multiple instance

learning,” in 2009 IEEE Conference on computer vision and Pattern Recognition. IEEE,

2009, pp. 983–990.

[27] Z. Kalal, K. Mikolajczyk, and J. Matas, “Tracking-learning-detection,” IEEE transactions

on pattern analysis and machine intelligence, vol. 34, no. 7, pp. 1409–1422, 2011.

Bibliography

70 | P a g e

[28] Z. Kalal, K. Mikolajczyk, and J. Matas, “Forward-backward error: Automatic detection of

tracking failures,” in 2010 20th International Conference on Pattern Recognition. IEEE,

2010, pp. 2756–2759.

[29] B. D. Lucas, T. Kanade, et al. (1981). “An iterative image registration technique with an

1pplication to stereo vision.’’In IJCAI, volume 81, pages 674–679

[30] D. Comaniciu, V. Ramesh, and P. Meer, “Real-Time Tracking of Non-Rigid Objects using

Mean Shift.” In Computer Vision and Pattern Recognition, 2000. Proceedings. IEEE

Conference on, volume 2, pages 142–149. IEEE.

[31] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui, “Visual object tracking using

adaptive correlation filters,” in 2010 IEEE Computer Society Conference on Computer Vi-

sion and Pattern Recognition. IEEE, 2010, pp. 2544–2550.

[32] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-speed tracking with kernelized

correlation filters,” IEEE transactions on pattern analysis and machine intelligence, vol. 37,

no. 3, pp. 583–596, 2014.

[33] Satya Mallick, “Object Tracking using OpenCV (C++/Python),” Feb. 17, 2017. https://lear-

nopencv.com/object-tracking-using-opencv-cpp-python/ (accessed Jun. 14, 2022).

[34] brouton lap, “A Complete Review of the OpenCV Object Tracking Algorithms [Blog

post].” https://broutonlab.com/blog/opencv-object-tracking (accessed Jun. 14, 2022).

[35] A. Lukezic, T. Vojir, L. Cehovin Zajc, J. Matas, and M. Kristan, “Discriminative correlation

filter with channel and spatial reliability,” in Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, 2017, pp. 6309–6318.

[36] D. Held, S. Thrun, and S. Savarese, “Learning to Track at 100 FPS with Deep Regression

Networks,” in European Conference on Computer Vision. Springer, 2016, pp. 749–765.

[37] S. P. Singh, A. Mittal, M. Gupta, S. Ghosh, and A. Lakhanpal, “Comparing Various Track-

ing Algorithms In OpenCV,” 2021.

[38] I. Culjak, D. Abram, T. Pribanic, H. Dzapo, and M. Cifrek, “A brief introduction to

OpenCV,” in 2012 proceedings of the 35th international convention MIPRO. IEEE, 2012,

pp. 1725–1730.

[39] OpenCV team. (2020). OpenCV [Blog post]. Retrieved from https://opencv.org/about/

[40] Z. bin Shafi, “Real Time Object detection and Tracking Using Open-CV,” International

Journal of Scientific Research & Engineering Trends Volume 8, Issue 2, Mar-Apr-2022,

ISSN (Online): 2395-566X.

[41] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “Exploiting the Circulant Structure

of Tracking-by-detection with Kernels.”

[42] M. Danelljan, G. Häger, F. S. Khan, and M. Felsberg, “Discriminative Scale Space Track-

ing,” Sep. 2016, [Online]. Available: http://arxiv.org/abs/1609.06141

Bibliography

71 | P a g e

[43] M. Danelljan, G. Häger, S. Khan, and M. Felsberg, “Accurate Scale Estimation for Robust

Visual Tracking Ours ASLA SCM Struck LSHT.” In: British machine vision conference,

pp 1–5.

[44] Danelljan M, Robinson A, Khan F S, Felsberg M (2016) Beyond correlation filters: Learn-

ing continuous convolution operators for visual tracking. In: European conference on com-

puter vision, pp 472–488

[45] “Learn Object Tracking in OpenCV Python with Code Examples - MLK - Machine Learn-

ing Knowledge.” [Online]. Available: https://machinelearningknowledge.ai/learn-object-

tracking-in-opencv-python-with-code-examples/ (accessed Jun. 15, 2022).

[46] F. Gong, H. Yue, X. Yuan, W. Gong, and T. Song, “Discriminative correlation filter for

long-time tracking,” Computer Journal, vol. 63, no. 3, pp. 461–468, Mar. 2020, doi:

10.1093/comjnl/bxz049.

[47] Stack Overflow Documentation. (n.d.). Python® Notes for Professionals [e-book]. Re-

trieved from https://goalkicker.com/PythonBook/

[48] Guido van Rossum and the Python development team, “Python Tutorial Release 3.6.4,”

2018.

[49] Srinath, K. R. (2017). Python–The Fastest Growing Programming Language. International

Research Journal of Engineering and Technology (IRJET), 4(12), 354-357.

[50] Tutorials Point (I) Pvt. Ltd., pycharm_tutorial [e-book]. 2018. Accessed: Jun. 15, 2022.

[Online]. Available: https://www.tutorialspoint.com/pycharm/pycharm_tutorial.pdf

