

Université Mohamed Khider de Biskra

Faculté des Sciences et de la Technologie

Département de Génie Electrique

MÉMOIREDEMASTER
SciencesetTechnologies

Télécommunications

Réseauxettélécommunications

Présenté et soutenupar:

ElguerriKaouthar

KamiriNihal

Le: 26 Juin 2022

Metaheuristic optimization algorithms

(genetic, simulated annealing)

Jury:

Mme. OUARHLENT Saloua MAA UniversitédeBiskra Président

Mme. HENDAOUI Mounira MCB UniversitédeBiskra Encadreur

Mme. ATAMENA Noura MAA UniversitédeBiskra Examinateur

Academic year:2021-2022

Mohamed Khider University of Biskra
Faculty of Sciences and Technology
Department of Electrical Engineering

MASTER’STHESIS
ElectricalEngineeringTelecom

municationsNetworksandcom

munications

Presented and supportedby:

ElguerriKaouthar

Kamiri Nihal

On: June 26, 2022

Metaheuristic optimization algorithms
(genetic, simulated annealing)

Jury Members:

Mrs. OUARHLENT Saloua MAA University ofBiskra President

 Mrs. HENDAOUI Mounira MCB University ofBiskra Supervisor

 Mrs. ATAMENA Noura MAA University ofBiskra Examiner

Mohamed Khider University of Biskra
Faculty of Sciences and Technology
Department of ElectricalEngineering

MASTER’STHESIS

Electrical Engineering

Telecommunications

Networks and communications

Presented and supportedby:

ElguerriKaouthar

Kamiri Nihal

On: June 26, 2022

Metaheuristic optimization algorithms
(genetic, simulated annealing)

Presentedby: Favorableopinionofthesupervisor:

ElguerriKaouthar Mrs.HinndaouiMounira

Kamiri Nihal

Favorable opinion of the President of Jury:

Mrs.OUARHLENT Saloua

Stamp and signature

Content

List of content

List of figures

Abbreviations

Dedication 1

Acknowledgement 1

Dedication 2

Acknowledgement 2

Abstract

General introduction .. 1

ChapterI : Optimization algorithms

I.1 INTRODUCTION: ... 2

I.2 MACHINE LEARNING: ... 2

I.2.1 Definition .. 2

I.2.2 Types of Machine Learning: .. 3

I.2.2.1 The difference between supervised and unsupervised learning 4

I.2.3 Why Is Machine Learning Important? ... 4

I.2.4 Machine Learning vs. Deep Learning vs. Neural Networks: 5

I.3 OPTIMIZATION ALGORITHMS .. 6

I.3.1 Optimization ... 6

I.3.2 Optimization algorithms: .. 6

I.3.3 Differentiable Objective Function .. 7

I.3.3.1 First-Order Derivative .. 7

I.3.3.2 Gradient ... 7

I.3.3.3 Partial Derivative ... 7

I.3.3.4 Second-Order Derivative ... 8

I.3.3.5 Hessian matrix .. 8

I.3.3.5.1 Bracketing Algorithms... 8

I.3.3.5.2 Local Descent Algorithms .. 9

I.3.3.5.3 First-Order Algorithms .. 9

I.3.3.5.4 Second-Order Algorithms ... 10

I.3.4 Non-Differential Objective Function ... 11

I.3.4.1 Direct Algorithms .. 12

I.3.4.2 Stochastic Algorithms .. 12

I.3.4.3 Population Algorithms ... 13

I.4 CONCLUSION .. 14

Chapter II :Meta-heuristic algorithms

II.1 INTRODUCTION ... 16

II.2 DEFINITION ... 16

II.3 METAHEURISTIC OPTIMIZATION .. 16

II.3.1Properties ... 17

II.3.2Classification ... 17

II.3.2.1 Globalsearch ... 17

II.3.2.1.1 Population-based metaheuristics ... 18

II.3.2.2 Local search ... 18

II.3.3Single-solution vs. population-based .. 19

II.4 SIMULATEDANNEALING .. 20

II.4.1Definition .. 20

II.4.2Advantages of Simulated Annealing ... 20

II.4.3Disadvantages of Simulated Annealing .. 20

II.5 TRAVELLING SALESMAN PROBLEM .. 21

II.6 CONCLUSION ... 22

Chapter III :Genetic algorithms

III.1INTRODUCTION .. 24

III.2GENETIC ALGORITHM OVERVIEW ... 24

III.3DEFINITION OF GENETIC ALGORITHM .. 24

III.4THE REASONS TO USE GAS... 25

III.4.1Solving Difficult Problems .. 25

III.4.2Getting a Good Solution Fast ... 25

III.4.3Failure of Gradient Based Methods ... 25

III.5IMPORTANT TERMS AND CONCEPTS .. 26

III.6CHARACTERISTICS OF THE GENETIC SEARCH ... 28

III.7PRINCIPLES AND FUNCTIONING .. 28

III.7.1Initialization of Population .. 29

III.7.2Fitness Function (evaluation) ... 29

III.7.3Selection ... 29

III.7.3.1 Roulette wheel Selection .. 30

III.7.3.2 Rank selection .. 30

III.7.4Reproduction .. 31

III.7.4.1 Crossover Operators .. 31

III.7.4.1.1 One Point Crossover .. 31

III.7.4.1.2 Multi Point Crossover ... 32

III.7.4.1.3 Uniform Crossover .. 32

III.7.4.2 Mutation operators: ... 32

III.7.4.2.1 Bit Flip Mutation .. 32

III.7.4.2.2 Random Resetting .. 33

III.7.4.2.3 Swap Mutation .. 33

III.7.4.2.4 Scramble Mutation ... 33

III.7.4.2.5 Inversion Mutation ... 33

III.7.5Termination (Convergence): .. 34

III.8APPLICATION AREAS OF GA: ... 34

III.8.1Neural networks: .. 34

III.8.2Medical science:... 34

III.8.3Mechanical engineering design: .. 34

III.8.4Image processing: .. 35

III.8.5Wireless sensor networks:.. 35

III.8.6Transport: ... 35

III.9ADVANTAGES OF GAS ... 36

III.10LIMITATIONS OF GAS .. 36

III.11 MATHEMICAL FORMULATION………………………………………………......32

III .12CONCLUSION ... 38

Chapter IV :Implementation

IV.1INTRODUCTION .. 40

IV.2DEVELOPMENT ENVIRONMENT AND TOOLS .. 40

IV.2.1Google Colaboratory ... 40

IV.2.2Language used ... 41

IV.2.2.1 Python... 41

IV.2.3Library uses: .. 41

IV.2.3.1 Random .. 41

IV.2.3.2 Signal .. 42

IV.2.3.3 Copy.. 42

IV.2.3.4 Time .. 43

IV.3PROGRAM ARCHITECTURE ... 43

IV.3.1Genetic algorithm: ... 43

IV.3.2Simulated annealing algorithm: ... 45

IV.3.3Data declaration phase: .. 46

IV.4FINAL PHASE (EXECUTION AND PROBLEM RESULT): ... 46

IV.5RESULTS : .. 47

IV.6 CONCLUSION ... 47

General conclusion: ... 50

References

List of figures

Chapter I: Optimization algorithms

Figure I 1: the applications of machine learning ... 3

Figure I 2: Machine learning and Deep learning ... 5

Figure I 3: Artificial Intelligence ... 6

Chapter II : Metaheuristic algorithms

Figure II 1 : classification of metaheuristics ... 19

Chapter III : Genetic algorithms

Figure III 1: local and global optima ... 26

Figure III 2: Terminology of the data structures representing a population of solutions 26

Figure III 3: phenotype and genotype ... 27

Figure III 4: Functioning of GA algorithm .. 29

Figure III 5: Roulette wheel selection method .. 30

Figure III 6: Rank selection ... 31

Figure III 7: One Point Crossover ... 31

Figure III 8: Multi Point Crossover ... 32

Figure III 9: Uniform Crossover .. 32

Figure III 10: Bit Flip Mutation... 33

Figure III 11: Swap Mutation .. 33

Figure III 12: Scramble Mutation .. 33

Figure III 13: Inversion Mutation .. 33

Chapter IV : Implementation

Figure IV 1: Logo Google Colab ... 40

Figure IV 2: logo of python ... 41

Figure IV 3: algorithm of gentic algorithm ... 44

Figure IV 4: simulated annealing algorithme .. 46

Abbreviations

GA Genetic algorithm

TSP Traveling Salesman Problem

WSN Wireless Sensor Networks

SA Simulated Annealing

Optima Optimum

Dedication 1

I always thought of doing or giving something to my parents as a sign of

gratitude for all their efforts, just to see me succeed, and now, the opportunity has

come.

To those who gave me life, symbol of beauty, pride and wisdom and patience:

my dear dad and my sweet mom.

To my brothers and sisters:

“Ishak, Bouthaina, Salsabil, Tasnim, Mohamed Yakoub”.

To my supervisor.

To all my teachers each with his name.

All my friends .

To my colleagues from the class of 2022.

To the readers of this memory.

Acknowledgement 1

I would first like to thank my god “Allah” who gave me the courage to do this

work. First ofall, I would like to express my thanks and my deep gratitude to my

supervisor Dr.MouniraHendaoui for his requirement of clarity and rigor which

brought me a lot, for the Confidence he showed me during decisive moments.As well

as for his support throughout this memory.

My gratitude goes as much to the members of the jury: and, for having done me

the honor of examining this thesis. May they find here the expression of my deep

respect.

I would like to thank the teachers, librarians and administrators of the Faculty of

Electrical Engineering.

Dedication 2

I dedicate this thesis to:

A special dedication to my heroes of life my father and my mother who gave me

love and hope for encouraging me in my education.

To my soul my sister “Lina”, and my brothers “Ilyes and Hamada” and my

lovely Rita.

To my supervisor.

To all my teachers.

To all my friends .

To my colleagues from the class of 2022.

To the readers of this memory.

Acknowledgement 2

I would first like to thank my god "Allah" who gave me the courage

to do this work.

I wish to thank my supervisor Dr. MouniraHendaoui who was more than

generous with his expertise and precious time, and for guiding me and encouraging

me to do thiswork. A special thanks to the jury member for criticizing my thesis.

I would like to express my sincere gratitude to Mohamed Khider University and

all the teachers in the electrical engineering department for all the considerate

guidance.

Abstract

I am sure you already heard about the traveling salesman problem or TSP. that belong

to NP-hard optimization problems which are difficult to solve using classical

mathematical methods. There are many applications for this problem and also many

solutions with different performances to find the optimal solution in shortest possible

time. Meta-Heuristic algorithms are one of the proposed solutions which are

successful in finding the solutions that are very near to the optimal. In this work we

applied the genetic algorithm then the simulated annealing then we have compared

between them to get the faster and the optimum

The results show that the faster is the genetic algorithm and the the optimum is

simulated annealing

Keywords: TSP problem, genetic algorithm, metaheuristic, optimia, optimization

algorithm, simulated annealing

 ملخص

. التي تنتمي إلى TSPأنا متأكد من أنك سمعت بالفعل عن مشكلة البائع المتجول أو

والتي يصعب حلها باستخدام الطرق الرياضية التقليدية. NP-hardمشك/.ت تحسين

هناك العديد من التطبيقات لهذه المشكلة وأيضًا العديد من الحلول ذات اEFداء المختلف

UFيجاد الحل اEFمثل في أقQR وقت ممكن. تعد الخوارزميات الفوقية من الحلول المقترحة

ل اEFمثل. في هذا العمل قمنا بتطبيق الناجحة في إيجاد الحلول القريبة جدًا من الح

الخوارزمية الجينية ثم التلدين المحاكى ثم قمنا بالمقارنة بينهما للحصول على اQYEFع

 واEFفضل

 أظهرت النتائج أنه كلما كانت الخوارزمية الجينية أQYع واEFمثل هو التلدين

، اEFمثل ، خوارزمية metatheuristic، الخوارزمية الجينية ، TSPمشكلة :مفتاحيةالكلمات ال

 التحسين ، محاكاة التلدين

General

Introduction

General Introduction

1

General introduction

Solving an optimization problem consists of exploring a search space in order to

maximize (or minimize) a given function.The relative complexities (in size or

structure) of the search space and the function to be optimized lead to the use of

radically different resolution methods. As a first approximation, we can say that a

deterministic method is suitable for a small and complex search space and that a large

search space rather requires a stochastic search method (simulated annealing, genetic

algorithm ...). In most cases, an optimization problem is naturally divided into two

phases: search for acceptable solutions and then search for the cost-optimal solution

among them.

 The travelling salesman problem (TSP) is one of the most signifi-cant problems

in combinatorial optimization. It is important both as a separate problem and as a part

of more complex optimization problems. Also, since it is strongly NP-complete, in

practical applications for large-scale problem instances it is only possible to use

heuristic optimization algorithms which give approximate solutions. Some of the most

successful heuristic algorithms that have been used to solve the TSP and its variants

include genetic algorithms, simulated annealing.

In this memory, we compare two metaheuristic optimization algorithms

appliedto solving the travelling salesman problem. We focus on two methods: genetic

algorithms and simulated annealing and we compare between the results of these two

methods.

Chapter

Optimization

algorithms

Chapter I Optimization algorithms

2

I.1 Introduction:

Optimization is the process of finding the best solution to a problem. For

example, finding the shortest route to the destination, scheduling the hospital staff in

the most efficient manner possible, or planning the day's activities to best utilize the

available time. In order to solve the real-world optimization problems, the problems

are formulated as mathematical functions and optimization deals with

minimizing/maximizing the output of that function to find the best solution.

I.2 Machine Learning:

I.2.1 Definition

Since their evolution, humans have been using many types of tools to

accomplish various tasks in a simpler way. The creativity of the human brain led to

the invention of different machines. These machines made the human life easy by

enabling people to meet various life needs, including travelling, industries, and

computing. Moreover, Machine learning is the one among them. According to Arthur

Samuel Machine learning is defined as the field of study that gives computers the

ability to learn without being explicitly programmed. Arthur Samuel was famous for

his checkers-playing program. Machine learning (ML) is used to teach machines how

to handle the data more efficiently.

Machine Learning relies on different algorithms to solve data problems. The

kind of algorithm employed depends on the kind of problem you wish to solve, the

number of variables, the kind of model that would suit it best and so on.(1)

The basic concept of machine learning in data science involves using statistical

learning and optimization methods that let computers analyze datasets and identify

patterns. The typical supervised machine learning algorithm consists of (roughly)

three components

1. A decision process: A recipe of calculations or other steps that takes in the

data and returns a “guess” at the kind of pattern in the data your algorithm is

looking to find.

2. An error function: A method of measuring how good the guess was by

comparing it to known examples (when they are available). Did the decision

Chapter I Optimization algorithms

3

process get it right? If not, how do you quantify “how bad” the miss was?

3. An updating or optimization process: Where the algorithm looks at the miss

and then updates how the decision process comes to the final decision so that

the next time the miss won’t be as great.

Figure I 1: the applications of machine learning

I.2.2 Types of Machine Learning:

Many machine learning models are defined by the presence or absence of human

influence on raw data whether a reward is offered, specific feedback is given or labels

are used

• Supervised learning: The dataset being used has been pre-labeled and

classified by users to allow the algorithm to see how accurate its performance

is.

• Unsupervised learning: The raw dataset being used is unlabeled and an

algorithm identifies patterns and relationships within the data without help

from users.

• Semi supervised learning: The dataset contains structured and unstructured

data, which guide the algorithm on its way to making independent

conclusions. The combination of the two data types in one training dataset

allows machine learning algorithms to learn to label unlabeled data.

• Reinforcement learning: The dataset uses a “rewards/punishments” system,

offering feedback to the algorithm to learn from its own experiences by trial

and error

Chapter I Optimization algorithms

4

I.2.2.1 The difference between supervised and unsupervised learning

The main difference between supervised and unsupervised learning: Labeled

data

The main distinction between the two approaches is the use of labeled datasets.

To put it simply, supervised learning uses labeled input and output data, while an

unsupervised learning algorithm does not.

In supervised learning, the algorithm “learns” from the training dataset by

iteratively making predictions on the data and adjusting for the correct answer. While

supervised learning models tend to be more accurate than unsupervised learning

models, they require upfront human intervention to label the data appropriately. For

example, a supervised learning model can predict how long your commute will be

based on the time of day, weather conditions and so on. But first, you’ll have to train

it to know that rainy weather extends the driving time.

Unsupervised learning models, in contrast, work on their own to discover the

inherent structure of unlabeled data. Note that they still require some human

intervention for validating output variables. For example, an unsupervised learning

model can identify that online shopper often purchase groups of products at the same

time.

I.2.3 Why Is Machine Learning Important?

Machine learning and data mining, a component of machine learning, are crucial

tools in the process to glean insights from massive datasets held by companies and

researchers today. There are two main reasons for this:

Scale of data: Companies are faced with massive volumes and varieties of data

that need to be processed. Processing power is more efficient and readily available.

Models that can be programmed to process data on their own, determine conclusions,

and identify patterns are invaluable.

Unexpected findings: Since machine learning algorithms update autonomously,

the analytical accuracy improves with each run as it teaches itself from the datasets it

analyzes. This iterative nature of learning is unique and valuable because it occurs

without human intervention, providing the ability to uncover hidden insights without

being specifically programmed to do so.(2)

Chapter I Optimization algorithms

5

I.2.4 Machine Learning vs. Deep Learning vs. Neural Networks:

Since deep learning and machine learning tend to be used interchangeably, it is

worth noting the nuances between the two. Machine learning, deep learning, and

neural networks are all sub-fields of artificial intelligence. However, deep learning is

actually a sub-field of machine learning, and neural networks is a sub-field of deep

learning.

The way in which deep learning and machine learning differ is in how each

algorithm learns. Deep learning automates much of the feature extraction piece of the

process, eliminating some of the manual human intervention required and enabling

the use of larger data sets.

Classical, or "non-deep", machine learning is more dependent on human

intervention to learn. Human experts determine the set of features to understand the

differences between data inputs, usually requiring more structured data to learn.

Figure I 2: Machine learning and Deep learning

Neural networks, or artificial neural networks (ANNs), are comprised of a node

layer, containing an input layer, one or more hidden layers, and an output layer. Each

node, or artificial neuron, connects to another and has an associated weight and

threshold. If the output of any individual node is above the specified threshold value,

that node is activated, sending data to the next layer of the network. Otherwise, no

data is passed along to the next layer of the network. The “deep” in deep learning is

just referring to the depth of layers in a neural network. A neural network that consists

of more than three layers—which would be inclusive of the inputs and the output—

can be considered a deep learning algorithm or a deep neural network. A neural

network that only has two or three layers is just a basic neural network. /IBM (3)

Chapter I Optimization algorithms

6

Figure I 3: Artificial Intelligence

I.3 Optimization algorithms

I.3.1 Optimization

Optimization is a branch of mathematics seeking to model, analyze and solve

analytically or numerically a given problem with the aim of finding the solution that

maximizes or minimizes a function to be optimized.

It is the challenging problem that underlies many machine learning algorithms,

from fitting logistic regression models to training artificial neural networks. There are

perhaps hundreds of popular optimization algorithms, and perhaps tens of algorithms

to choose from in popular scientific code libraries. This can make it challenging to

know which algorithms to consider for a given optimization problem.(4)

I.3.2 Optimization algorithms:

Optimization refers to a procedure for finding the input parameters or arguments

to a function that result in the minimum or maximum output of the function. The most

common type of optimization problems encountered in machine learning are

continuous function optimization, where the input arguments to the function are real-

valued numeric values, e.g. floating point values. The output from the function is also

a real-valued evaluation of the input values. We might refer to problems of this type

as continuous function optimization, to distinguish from functions that take discrete

variables and are referred to as combinatorial optimization problems. There are many

different types of optimization algorithms that can be used for continuous function

Chapter I Optimization algorithms

7

optimization problems, and perhaps just as many ways to group and summarize them.

One approach to grouping optimization algorithms is based on the amount of

information available about the target function that is being optimized that, in turn,

can be used and harnessed by the optimization algorithm. Generally, the more

information that is available about the target function, the easier the function is to

optimize if the information can effectively be used in the search. Perhaps the major

division in optimization algorithms is whether the objective function can be

differentiated at a point or not. That is, whether the first derivative (gradient or slope)

of the function can be calculated for a given candidate solution or not. This partitions

algorithms into those that can make use of the calculated gradient information and

those that do not.Algorithms that use derivative information.(4)

I.3.3 Differentiable Objective Function

A differentiable function is a function where the derivative can be calculated for

any given point in the input space.

The derivative of a function for a value is the rate or amount of change in the function

at that point. It is often called the slope.

I.3.3.1 First-Order Derivative

 Slope or rate of change of an objective function at a given point.

The derivative of the function with more than one input variable (e.g.

multivariate inputs) is commonly referred to as the gradient.

I.3.3.2 Gradient

Derivative of a multivariate continuous objective function.

A derivative for a multivariate objective function is a vector, and each element

in the vector is called a partial derivative or the rate of change for a given variable at

the point assuming all other variables are held constant.

I.3.3.3 Partial Derivative

 Element of a derivative of a multivariate objective function.

We can calculate the derivative of the derivative of the objective function that is

the rate of change of the rate of change in the objective function. This is called the

Chapter I Optimization algorithms

8

second derivative.

I.3.3.4 Second-Order Derivative

Rate at which the derivative of the objective function changes.

For a function that takes multiple input variables, this is a matrix and is referred

to as the Hessian matrix.

I.3.3.5 Hessian matrix

Second derivative of a function with two or more input variables, Simple

differentiable functions can be optimized analytically using calculus. Typically, the

objective functions that we are interested in cannot be solved analytically.

Optimization is significantly easier if the gradient of the objective function can

be calculated, and as such, there has been a lot more research into optimization

algorithms that use the derivative than those that do not.

Some groups of algorithms that use gradient information include:

• Bracketing Algorithms

• Local Descent Algorithms

• First-Order Algorithms

• Second-Order Algorithms

I.3.3.5.1 Bracketing Algorithms

Algorithms are intended for optimization problems with one input variable

where the optima is known to exist within a specific range.

Bracketing algorithms are able to efficiently navigate the known range and

locate the optima, although they assume only single optima is present (referred to as

unimodal objective functions).

Some bracketing algorithms may be able to be used without derivative

information if it is not available.

Examples of bracketing algorithms include:

•Fibonacci Search

•Golden Section Search

Chapter I Optimization algorithms

9

•Bisection Method

I.3.3.5.2 Local Descent Algorithms

Local descent optimization algorithms are intended for optimization problems

with more than one input variable and single global optima (e.g. unimodal objective

function).

Perhaps the most common example of a local descent algorithm is the line search

algorithm.

•Line Search

There are many variations of the line search (e.g. the Brent-Dekker algorithm),

but the procedure generally involves choosing a direction to move in the search space,

then performing a bracketing type search in a line or hyperplane in the chosen

direction.

This process is repeated until no further improvements can be made.

The limitation is that it is computationally expensive to optimize each

directional move in the search space.

I.3.3.5.3 First-Order Algorithms

First-order optimization algorithms explicitly involve using the first derivative

(gradient) to choose the direction to move in the search space

The procedures involve first calculating the gradient of the function, then following

the gradient in the opposite direction (e.g. downhill to the minimum for minimization

problems) using a step size (also called the learning rate).

The step size is a hyperparameter that controls how far to move in the search

space, unlike “local descent algorithms” that perform a full line search for each

directional move.A step size that is too small results in a search that takes a long time

and can get stuck, whereas a step size that is too large will result in zig-zagging or

bouncing around the search space, missing the optima completely.

First-order algorithms are generally referred to as gradient descent, with more

specific names referring to minor extensions to the procedure, e.g.:

•Gradient Descent

Chapter I Optimization algorithms

10

•Momentum

•Adagrad

•RMSProp

•Adam

The gradient descent algorithm also provides the template for the popular

stochastic version of the algorithm, named Stochastic Gradient Descent (SGD) that is

used to train artificial neural networks (deep learning) models.

The important difference is that the gradient is appropriated rather than

calculated directly, using prediction error on training data, such as one sample

(stochastic), all examples (batch), or a small subset of training data (mini-batch).

The extensions designed to accelerate the gradient descent algorithm

(momentum, etc.) can be and are commonly used with SGD.

•Stochastic Gradient Descent

•Batch Gradient Descent

•Mini-Batch Gradient Descent

I.3.3.5.4 Second-Order Algorithms

Second-order optimization algorithms explicitly involve using the second

derivative (Hessian) to choose the direction to move in the search space.

These algorithms are only appropriate for those objective functions where the

Hessian matrix can be calculated or approximated.

Examples of second-order optimization algorithms for univariate objective

functions include:

•Newton’s Method

•Secant Method

Second-order methods for multivariate objective functions are referred to as

Quasi-Newton Methods.

•Quasi-Newton Method

Chapter I Optimization algorithms

11

There are many Quasi-Newton Methods, and they are typically named for the

developers of the algorithm, such as:

•Davidson-Fletcher-Powell

•Broyden-Fletcher-Goldfarb-Shanno (BFGS)

•Limited-memory BFGS (L-BFGS)

Now that we are familiar with the so-called classical optimization algorithms,

let’s look at algorithms used when the objective function is not differentiable.

Algorithms that do not use derivative information:

I.3.4 Non-Differential Objective Function

Optimization algorithms that make use of the derivative of the objective

function are fast and efficient.

Nevertheless, there are objective functions where the derivative cannot be

calculated, typically because the function is complex for a variety of real-world

reasons. Or the derivative can be calculated in some regions of the domain, but not all,

or is not a good guide.

Some difficulties on objective functions for the classical algorithms described in

the previous section include:

•No analytical description of the function (e.g. simulation).

•Multiple global optima (e.g. multimodal).

•Stochastic function evaluation (e.g. noisy).

•Discontinuous objective function (e.g. regions with invalid solutions).

As such, there are optimization algorithms that do not expect first- or second-

order derivatives to be available.

These algorithms are sometimes referred to as black-box optimization

algorithms as they assume little or nothing (relative to the classical methods) about

the objective function.

A grouping of these algorithms includes:

Chapter I Optimization algorithms

12

•Direct Algorithms

•Stochastic Algorithms

•Population Algorithms (4)

I.3.4.1 Direct Algorithms

Direct optimization algorithms are for objective functions for which derivatives

cannot be calculated.

The algorithms are deterministic procedures and often assume the objective

function has single global optima, e.g. unimodal.

Direct search methods are also typically referred to as a “pattern search” as they

may navigate the search space using geometric shapes or decisions, e.g. patterns.

Gradient information is approximated directly (hence the name) from the result

of the objective function comparing the relative difference between scores for points

in the search space. These direct estimates are then used to choose a direction to move

in the search space and triangulate the region of the optima.

Examples of direct search algorithms include:

•Cyclic Coordinate Search

•Powell’s Method

•Hooke-Jeeves Method

•Nelder-Mead Simplex Search

I.3.4.2 Stochastic Algorithms

Stochastic optimization algorithms are algorithms that make use of randomness

in the search procedure for objective functions for which derivatives cannot be

calculated.

Unlike the deterministic direct search methods, stochastic algorithms typically

involve a lot more sampling of the objective function, but are able to handle problems

with deceptive local optima.

Stochastic optimization algorithms include:

Chapter I Optimization algorithms

13

•Simulated Annealing

•Evolution Strategy

•Cross-Entropy Method

I.3.4.3 Population Algorithms

Population optimization algorithms are stochastic optimization algorithms that

maintain a pool (a population) of candidate solutions that together are used to sample,

explore, and hone in on an optimum.

Algorithms of this type are intended for more challenging objective problems

that may have noisy function evaluations and many global optima (multimodal), and

finding a good or good enough solution is challenging or infeasible using other

methods.

The pool of candidate solutions adds robustness to the search, increasing the

likelihood of overcoming local optima.

Examples of population optimization algorithms include:

•Genetic Algorithm

•Differential Evolution

•Particle Swarm Optimization (4)

Chapter I Optimization algorithms

14

I.4 Conclusion

This chapter introduces and summarizes the frequently used optimization

methods from the applications of machine learning, and studies their applications in

various fields of machine learning. Firstly, we described the machine learning and

why we use it then the difference between the machine learning and the Deep

Learning and the Neural Networks. Then we described the optimization algorithm.

Finally, we discussed about types of optimization algorithm.

Chapter

Meta-heuristic

Chapter II Meta-heuristic algorithms

16

II.1 Introduction

Meta-heuristics are the most recent development in approximate search methods

for solving complex optimizationvproblems that arise in business, commerce,

engineering, industry, and many other areas. The kinds of the metaheuristic method

are various. A meta-heuristic guide a subordinate heuristic using concepts derived

from artificial intelligence, biological, mathematical, natural and physical sciences to

improve their performance. Metaheuristics can be an efficient way to produce

acceptable solutions by trial and error to a complex problem in a reasonably practical

time. Metaheuristic algorithms are computational intelligence paradigms especially

used for sophisticated solving optimization problems

II.2 Definition

A Meta-heuristic is formally defined as an iterative generation process which

guides a subordinate heuristic by combining intelligently different concepts for

exploring and exploiting the search space, learning strategies are used to structure

information in order to find efficiently near-optimal solutions. Meta-heuristic

algorithms are among these approximate techniques which can be used to solve

complex problems. Meta-heuristic algorithms have been proposed by researchers to

find optimal or near optimal solutions, The Metaheuristic approaches are not

guaranteed to find the optimal solution since they evaluate only a subset of the

feasible solutions, but they try to explore different areas in the search space in a smart

way to get a near-optimal solution in less cost and time. Notable examples of

metaheuristics include genetic/evolutionary algorithms, tabu search, simulated

annealing, variable neighborhood search, (adaptive) large neighborhood search, and

ant colony optimization, although many more exist. (5)

II.3 Metaheuristic optimization

Metaheuristic optimization is the best approach to optimizing such non-convex

functions. These algorithms are the best choice because they make no assumptions

about how many hills and valleys the function contains. Although this approach aids

in finding minimum and maximum values, these correspond to what are called local

maxima (near a high hill) and minima (near a low valley). When using metaheuristic

optimization to optimize non-convex functions, therefore, remember that these

algorithms do not guarantee finding a global maximum (the highest hill) or minimum

Chapter II Meta-heuristic algorithms

17

(lowest valley) because when optimizing non-convex functions, with many hills and

valleys, finding the lowest valley or the highest hill is usually not computationally

feasible. Despite this, metaheuristic optimization is often the only recourse for real

life applications because convex optimization makes the strong assumption of a single

hill and/or valley being present in the function. These algorithms often provide

solutions that are near a low enough valley or high enough hills. This process is

important for optimizing the output of a machine learning model. For example, if you

build a model that predicts cement strength for a cement manufacturer, you can use

metaheuristic optimization to find the optimal input values that maximize strength. A

model like this takes input values corresponding to ingredient quantities in the cement

mixture. The optimizer would then be able to find the quantities for each ingredient

that maximizes strength. (6)

II.3.1 Properties

• Metaheuristics are strategies that guide the search process.

• The goal is to efficiently explore the search space in order to find near–

optimal solutions.

• Techniques which constitute metaheuristic algorithms range from simple local

search procedures to complex learning processes.

• Metaheuristic algorithms are approximate and usually non-deterministic.

• Metaheuristics are not problem-specific (7)

II.3.2 Classification

There are a wide variety of metaheuristics and a number of properties with

respect to which to classify them.

II.3.2.1 Globalsearch

Other global search metaheuristic that are not local search-based are usually

population-based metaheuristics. Such metaheuristics include ant colony

optimization, evolutionary computation, particle swarm optimization, genetic

algorithm, and rider optimization algorithm.(7)

Chapter II Meta-heuristic algorithms

18

II.3.2.1.1 Population-based metaheuristics

Population-based metaheuristics find good solutions by iteratively selecting and

then combining existing solutions from a set, usually called the population. The most

important members of this class are evolutionary algorithms (EA) because they

mimick the principles of natural evolution. We use the term evolutionary algorithms

as an umbrella term to encompass the wide range of metaheuristics based on

evolution. This includes genetic algorithms (GA) genetic/evolutionary programming

• Evolutionary algorithms:

Evolutionary algorithms operate on a set or population of solutions and use two

mechanisms to search for good solutions: the selection of predominantly high-quality

solutions from the population and the recombination of those solutions into new ones,

using specialized operators that combine the attributes of two or more solutions. After

recombination, new solutions are reinserted into the population, possibly requiring

them to satisfy conditions such as feasibility or minimum quality demands, to replace

other (usually low-quality) solutions. Operators used in evolutionary algorithms

(selection, recombination and reinsertion) almost without exception make heavy use

of randomness. A mutation operator that randomly makes a (small) change to a

solution after it has been recombined, is also frequently applied. Most evolutionary

algorithms iterate the selection, recombination, mutation, and reinsertion phases a

number of times, and report the best solution in the population. Evolutionary

algorithms generally require some form of "population management" to ensure that

the best solutions survive through the various iterations, while at the same time

diversity is maintained in the population (8)

II.3.2.2 Local search

Local search algorithm is the hill climbing method which is used to find local

optimums. However, hill climbing does not guarantee finding global optimum

solutions. Many metaheuristic ideas were proposed to improve local search heuristic

in order to find better solutions. Such metaheuristics include simulated annealing,

tabu search, iterated local search, variable neighborhood search, and GRASP. These

metaheuristics can both be classified as local search-based or global search

metaheuristics.(7)

Chapter II Meta-heuristic algorithms

19

Figure II 1 : classification of metaheuristics

II.3.3 Single-solution vs. population-based

Single solution approaches focus on modifying and improving a single

candidate solution; single solution metaheuristics include simulated annealing,

iterated local search, variable neighborhood search, and guided local search.

 Population-based approaches maintain and improve multiple candidate solutions,

often using population characteristics to guide the search; population-based

metaheuristics include evolutionary computation, genetic algorithms, and particle

swarm optimization.(7)

Chapter II Meta-heuristic algorithms

20

II.4 Simulatedannealing

II.4.1 Definition

Simulated annealing is a metaheuristic algorithm which processes only a single

solution. In order to use this approach, we must first define the neighborhood of a

solution. We de-fined the neighborhood of a current solution as all the solutions that

can be reached from the current solution by exactly one application ofthe swap

operator. Simulated annealing works as follows. In each iteration a solution from the

neighbor-hood of the current solution is randomly chosen. If the new solution is better

than the cur-rent one, the current solution is replaced by the new one. If not, it is

replaced by the new one with a certain probability which is a function of the number

of iterations which passed since the beginning of the optimization and of the

difference in objective function values between the two considered solutions.

Probability of accepting a solution which is worse than the current one decreases as

the algorithm proceeds. In the first stages of optimization simulated annealing

behaves more like a random search procedure, and thenit’s biased toward accepting

only better solutions increases and in the final stages of optimization it operates

according to the greedy search principle. (9)

II.4.2 Advantages of Simulated Annealing

• Simulated annealing is easy to code and use.

• It does not rely on restrictive properties of the model and hence is versatile.

• It can deal with noisy data and highly non-linear models.

• Provides optimal solution for many problems and is robust. (10)

II.4.3 Disadvantages of Simulated Annealing

A lot of parameters have to be tuned as it is metaheuristic.

The precision of the numbers used in its implementation has a significant effect on the

quality of results.

There is a tradeoff between the quality of result and the time taken for the algorithm

to run.(10)

Chapter II Meta-heuristic algorithms

21

II.5 Travelling Salesman Problem

The Traveling Salesman Problem (TSP) is a classical combinatorial

optimization problem, which is simple to state but very difficult to solve. The problem

is to find the shortest tour through a set of N vertices so that each vertex is visited

exactly once. This problem is known to be NP-hard, and cannot be solved exactly in

polynomial time. TSP can be described as: Given a finite set of n cities and a cost

matrix that n It indicates the cost (e.g., distance, money, time) to travel from city i to

city i. TSP aims to find the perfect tour to visit each one Exactly once and then

eventually return to the starting city. We present an improved hybrid genetic

algorithm to solve the two-dimensional Euclidean traveling salesman problem (TSP),

in which the crossover operator is enhanced with a local search. The proposed

algorithm is expected to obtain higher quality solutions within a reasonable

computational time for TSP by perfectly integrating GA and the local search. The

elitist choice strategy, the local search crossover operator and the double-bridge

random mutation are highlighted, to enhance the convergence and the possibility of

escaping from the local optima.

The Simulated Annealing (SA) approach can be practically useful to solve the

TSP by using the following steps:

• Step One: We need to make the opening list of cities by castling the input list

(that is make theorder of visit unsystematic).

• Step Two: At all iterations, two cities are exchanged in the list. The cost value

is the distancetravelled by the Salesperson for all the tours.

• Step Three: If the new length (distance) calculated after the modification, is

smaller than thecurrent length (distance), it is preserved.

• Step Four: If the new length is longer than the current length, it is preserved

with a positiveprobability.

• Step Five: We need to bring up-to-date the temperature at every iteration by

gradually coolingit down(11)

Chapter II Meta-heuristic algorithms

22

II.6 Conclusion

Metaheuristic algorithms are computational intelligence paradigms especially used for

Sophisticated solving optimization problems. This chapter aims to review of

metaheuristics

algorithms and methods .

We present also the method the simulated annealing and how it works and our main

problem

the Travelling salesman.

Chapter

Genetic algorithm

Chapter III Genetic algorithm

24

III.1 Introduction

Genetic algorithms are one of the most prominent global search techniques and

are widely used for combinatorial problems based on imitation of processes observed

during natural evolution. Genetic algorithms offer a wide range of solutions compared

to other accurate algorithms. -Many variations of genetic algorithms have been

developed and applied to a wide range of optimization problems, from graph coloring

to pattern recognition, discrete systems (such as the traveling salesman problem) to

continuous systems and from financial markets to multi-objective engineering

optimization, Genetic Algorithms have the ability to deliver a “good-enough” solution

“fast-enough”. This makes genetic algorithms attractive for use in solving

optimization problems

III.2 Genetic algorithm overview

 The genetic algorithms (GAs)belong to the family of evolutionary algorithms,

developed by John Holland and his collaborators in the 1960s and 1970s (Holland,

1975; De Jong, 1975), is a model or abstraction of biological evolution based on the

genetic processes of biological organisms. Over many generations, natural

populations evolve according to the principles of natural selection and ‘survival of the

fittest", first clearly stated by Charles Darwin in The Origin of Species. By mimicking

this process, genetic algorithms are able to “evolve” solutions to real world problems,

if they have been suitably encoded(12)Sometime later. Goldberg released a book in

which he summarized the various fields of applications of GAs such as research,

optimization and machine learning [Goldberg 1989]. This publication marks the

beginning of a growing scientific interest in this new optimization technique. Gen and

Cheng [1997] then develop a little more the application of these algorithms to

optimization problems. In the same period, a C++ library called Ghalib was

developed to serve as support for AG-based programming. This library contains a

variety of tools designed to solve optimization problems using GAs.(13)

III.3 Definition of Genetic algorithm

 Genetic Algorithm is a Meta-heuristic algorithm that aims to find solutions to

NP-hard problems. The basic idea of Genetic Algorithms is to first generate an initial

population randomly which consist of individual solution to the problem called

Chapter III Genetic algorithm

25

Chromosomes, and then evolve this population after a number of iterations

called Generations. During each generation, each chromosome is evaluated, using

some measure of fitness. To create the next generation, new chromosomes, called

offspring, are formed by either merging two chromosomes from current generation

using a crossover operator or modifying a chromosome using a mutation operator. A

new generation is formed by selection, according to the fitness values, some of the

parents and offspring, and rejecting others so as to keep the population size constant.

Fitter chromosomes have higher probabilities of being selected. After several

generations, the algorithms converge to the best chromosome, which hopefully

represents the optimum or suboptimal solution to the problem.(5)

III.4 The reasons to use GAs

Genetic Algorithms have the ability to deliver a “good-enough” solution “fast-

enough”. This makes genetic algorithms attractive for use in solving optimization

problems.

III.4.1 Solving Difficult Problems

 In computer science, there is a large set of problems, which are NP-Hard. What

this essentially means is that, even the most powerful computing systems take a very

long time (even years!) to solve that problem. In such a scenario, GAs proves to be an

efficient tool to provide usable near-optimal solutions in a short amount of time

III.4.2 Getting a Good Solution Fast

Some difficult problems like our problem Travelling Salesman Problem (TSP),

have real-world applications like path finding and VLSI Design. Now imagine that

you are using your GPS Navigation system, and it takes a few minutes (or even a few

hours) to compute the “optimal” path from the source to destination. Delay in such

real-world applications is not acceptable and therefore a “good-enough” solution,

which is delivered “fast” is what is required

III.4.3 Failure of Gradient Based Methods

Traditional calculus-based methods work by starting at a random point and by

moving in the direction of the gradient, till we reach the top of the hill. This technique

is efficient and works very well for single-peaked objective functions like the cost

function in linear regression. But, in most real-world situations, we have a very

Chapter III Genetic algorithm

26

complex problem called as landscapes, which are made of many peaks and many

valleys, which causes such methods to fail, as they suffer from an inherent tendency

of getting stuck at the local optima as shown in the following figure. (14)

Figure III 1: local and global optima

III.5 Important terms and concepts

Are some of the basic terminologies that can help us to understand genetic

algorithms?

• Population: It is a subset of all the possible (encoded) solutions to the given

problem.

• Chromosomes: A chromosome is one such solution to the given problem.

• Gene: A gene is one element position of a chromosome.

• Allele: It is the value a gene takes for a particular chromosome.

Figure III 2: Terminology of the data structures representing a population of solutions

Chapter III Genetic algorithm

27

• Genotype: Genotype is the population in the computation space. In the

computation space, the solutions are represented in a way which can be easily

understood and manipulated using a computing system

• Phenotype: Phenotype is the population in the actual real world solution space

in which solutions are represented in a way they are represented in real world

situations

• Decoding and Encoding: For simple problems, the phenotype and genotype

spaces are the same. However, in most of the cases, the phenotype and

genotype spaces are different. Decoding is a process of transforming a solution

from the genotype to the phenotype space, while encoding is a process of

transforming from the phenotype to genotype space. Decoding should be fast

as it is carried out repeatedly in a GA during the fitness value calculation (14)

Figure III 3: phenotype and genotype

• Objective function: It is also called a fitness function. Whenever an

optimization problem is solved, it is first formulated as a mathematical

function that evaluates the quality/fitness of the candidate solution. We usually

pass a solution to this function and this function returns the fitness of that

solution. Once the fittest/optimal solution is found the process is stopped.

• Genetic operators: genetic operators in genetic algorithms, the best

individual’s mate to reproduce an offspring that is better than the parents.

Genetic operators are used for changing the genetic composition of this next

generation. These include crossover, mutation, selection, etc.

Chapter III Genetic algorithm

28

III.6 Characteristics of the genetic Search

Broadly speaking, the search performed by a genetic algorithm can be characterized

in the following way

• Genetic algorithms manipulate bit strings or chromosomes encoding useful

information about the problem, but they do not manipulate the information as

such (no decoding or interpretation).

• Genetic algorithms use the evaluation of a chromosome, as returned by the

fitness function, to guide the search. They do not use any other information

about the fitness function or the application domain.

• The search is run in parallel from a population of chromosomes.

• The transition from one chromosome to another in the search space is done

stochastically(15)

III.7 Principles and Functioning

Since genetic algorithms are designed to simulate a biological process, much of

the relevantterminology is borrowed from biology.However, the entities that this

terminology refersto in genetic algorithms are much simpler than their biological

counterparts [8]. The basiccomponents common to almost all genetic algorithms are:

• A fitness function for optimization

• A population of chromosomes

• Selection of which chromosomes will reproduce

• Crossover to produce next generation of chromosomes

• Random mutation of chromosomes in new generation

Otherwise, the final result is the best chromosome created during the search.

Chapter III Genetic algorithm

29

Figure III 4: Functioning of GA algorithm

III.7.1 Initialization of Population

A set of “individuals” is called a population, where each individual is

characterized by a set of Genes represented in binary (i.e. as 0 or 1). A set of

genes represented by a string/sequence is known as a Chromosome. The

population with which we start is called the Initial Population.(16)

III.7.2 Fitness Function (evaluation)

A Fitness function is a system that determines how fit (the ability of an

individual to compete with other individuals) an individual is. It gives a fitness score

to each individual which helps quantify the performance.This function helps to select

the individuals who will be used for reproduction.

A fitness function should possess the following characteristics the fitness

function should be sufficiently fast to compute. It must quantitatively measure how fit

a given solution is or how fit individuals can be produced from the given solution.(16)

III.7.3 Selection

The selection function takes the population and the results of the fitness function

to determine who should reproduce. Then selects good chromosomes on the basis of

their fitness values and produces a temporary population, namely, the mating pool.

This can be achieved by many different schemes, but the most common methods are

roulette wheel, ranking, and stochastic binary tournament selection. The selection

Chapter III Genetic algorithm

30

operator is responsible for the convergence of the algorithm.

III.7.3.1 Roulette wheel Selection

The roulette wheel selection (also known as fitness proportionate selection) is a function used

by genetic algorithms for selecting potentially useful solutions for recombination.

The crossover individual probability is computed based on the individual’s fitness divided by

the sum of all population fitness. The followingis the formula for it:

Where pi is the probability of each chromosome equals the chromosome

frequency divided by the sum of all fitness.(17)

Figure III 5: Roulette wheel selection method

III.7.3.2 Rank selection

Rank selection first ranks the population and then every chromosome receives

fitness from this ranking. The worst will have fitness 1, second worst 2 etc. and the

best will have fitness N (number of chromosomes in population).

After this all the chromosomes have a chance to be selected. Rank-based

selection schemes can avoid premature convergence. But can be computationally

expensive because it sorts the populations based on fitness value. But this method can

lead to slower convergence, because the best chromosomes do not differ so much

from other ones.(18)

Chapter III Genetic algorithm

31

Figure III 6: Rank selection

III.7.4 Reproduction

Generation of offspring happen in 2 ways:

III.7.4.1 Crossover Operators

The process of mixing the genes of the pair of individuals chosen to produce a

new pair of individuals is called Crossover or Genetic operation. This process is

continued to create a new population. Crossover can be performed in different

methods

There are 3 major types of crossovers:

III.7.4.1.1 One Point Crossover

In this one-point crossover, a random crossover point is selected and the tails of

its two parents are swapped to get new off-springs

Figure III 7: One Point Crossover

Chapter III Genetic algorithm

32

III.7.4.1.2 Multi Point Crossover

Multi point crossover is a generalization of the one-point crossover wherein

alternating segments are swapped to get new off-springs.

Figure III 8: Multi Point Crossover

III.7.4.1.3 Uniform Crossover

In a uniform crossover, we don’t divide the chromosome into segments rather

we treat each gene separately. In this, we essentially flip a coin for each chromosome

to decide whether or not it’ll be included in the off-spring. We can also bias the coin

to one parent, to have more genetic material in the child from that parent.(14)

Figure III 9: Uniform Crossover

III.7.4.2 Mutation operators:

This operator adds new genetic information to the new child population. This is

achieved by flipping some bits in the chromosome. Mutation solves the problem of

local minimum and enhances diversification. The following image shows how

mutation is done. (19)There is some of the most commonly used mutation operator:

III.7.4.2.1 Bit Flip Mutation

In this bit flip mutation, we select one or more random bits and flip them. This

isused for binaryencodedGAs.

Chapter III Genetic algorithm

33

Figure III 10: Bit Flip Mutation

III.7.4.2.2 Random Resetting

Random Resetting is an extension of the bit flip for the integer representation. In

this, a random value from the set of permissible values is assigned to a randomly

chosen gene.

III.7.4.2.3 Swap Mutation

In swap mutation, we select two positions on the chromosome at random, and

interchange the values. This iscommon in permutation-basedencodings.

Figure III 11: Swap Mutation

III.7.4.2.4 Scramble Mutation

Scramble mutation is also popular with permutation representations. In this,

from the entire chromosome, a subset of genes is chosen and their values are

scrambled or shuffled randomly.

Figure III 12: Scramble Mutation

III.7.4.2.5 Inversion Mutation

In inversion mutation, we select a subset of genes like in scramble mutation, but

instead of shuffling the subset, we merely invert the entire string in the subset.(14)

Figure III 13: Inversion Mutation

Chapter III Genetic algorithm

34

III.7.5 Termination (Convergence):

The algorithm terminates when a population converges. Convergence here

denotes that the individuals no longer have significant difference in their genetic

structure. Termination can also occur after a set number of cycles; this normally leads

to multiple convergence points.

III.8 Application areas of GA:

Genetic algorithms have a variety of applications, and one of the basic

applications of genetic algorithms can be the optimization of problems and solutions.

We use optimization for finding the best solution to any problem. Optimization using

genetic algorithms can be considered genetic optimization, and there are several

benefits of performing optimization using genetic algorithms.

Genetic algorithms are applied in the following fields:

III.8.1 Neural networks:

Neural networks in machine learning are one of the biggest areas where genetic

algorithms have been used for optimization. One of the simplest examples of use

cases of genetic optimization in neural networks is finding the best fit set of

parameters for a neural network. Instead of these, we can find the use of genetic

algorithms in neural network pipeline optimization, inheriting qualities of neurons,

etc.(20)

III.8.2 Medical science:

In medical science, we can find many examples of use cases of genetic

optimization. The generation of a drug to diagnose any disease in the body can have

the application of genetic algorithms. In various examples, we find the use of genetic

optimization in predictive analysis like RNA structure prediction, operon prediction,

and protein prediction, etc. also there are some use cases of genetic optimization in

process alignment such as Bioinformatics Multiple Sequence Alignment, Gene

expression profiling analysis, Protein folding, etc.

III.8.3 Mechanical engineering design:

In many designing procedures of mechanical components, we can also find the

Chapter III Genetic algorithm

35

application of genetic optimization. They are used to develop parametric aircraft

designs. The parameters of the aircraft are modified and upgraded to provide better

designs. We can take aircraft wing design as an example where we are required to

improve the ratio of lift to drag for a complex wing. This kind of designing problem

can be considered as a multidisciplinary problem, the fitness function in genetic

optimization can be altered by considering some specific requirement of the

design.(20)

III.8.4 Image processing:

There are various works and researches which show the use cases of genetic

optimization in various image processing tasks. One of the major tasks related to

genetic approach in image processing is image segmentation.Although these genetic

optimizations can be utilized in various areas of image analysis to solve complex

optimization problems. Using genetic optimization in an integrated manner with

image segmentation techniques can make the whole procedure an optimization

problem.

III.8.5 Wireless sensor networks:

The wireless sensor network is a network that includes spatially dispersed and

dedicated centers to maintain the records about the physical conditions of the

environment and pass the record to a central storage system. Some notable parameters

are the lifetime of the network and energy consumption for routing which plays key

roles in every application. Using the genetic algorithms in WSN we can simulate the

sensors and also a fitness function from GA can be used to optimize, and customize

all the operational stages of WSNs. (20)

III.8.6 Transport

Genetic algorithms are used in the traveling salesman. This is one of the most

common combinatorial optimization problems in real life that can be solved using

genetic optimization. The main motive of this problem is to find an optimal way to be

covered by the salesman, in a given map with the routes and distance between two

points. If genetic algorithms are used in finding the best route structure, we don’t get

Chapter III Genetic algorithm

36

the solution only once after each iteration, we can generate offspring solutions that

can inherit the qualities of parent solutions. TSP has a variety of applications like

planning, logistics, and manufacturing.

III.9 Advantages of Gas

GAs has various advantages which have made them immensely popular:

• Is faster and more efficient as compared to the traditional methods.

• Have very good parallel capabilities.

• It can optimize various problems such as discrete functions, multi-objective

problems, and continuous functions

• Always gets an answer to the problem, which gets better over the time.

• A genetic algorithm does not need derivative information.

• Useful when the search space is very large and there are a large number of

parameters involved. (19)

III.10 Limitations of Gas

Like any technique, GAs also suffers from a few limitations.Theseinclude:

• GA is not suited for all problems, especially problems which are simple and

for which derivative information is available.

• Fitness value is calculated repeatedly which might be computationally

expensive for some problems.

• Being stochastic, there are no guarantees on the optimality or the quality of

the solution.

• If not implemented properly, the GA may not converge to the optimal

solution.

Chapter III Genetic algorithm

37

III.11 Mathemical formulation

The traveling salesman problem consists in finding the shortest path connecting �

given points and passing once and only once by each point and it returns to the

starting point. The dot can represent a city, a country, or a warehouse, etc. For a set of

� points, there exists in total �! possible paths. The starting point does not change the

length of the path, we can choose it arbitrarily, so we have (− 1)! different paths.

Finally, each path can be traversed in both directions and the two possibilities have

the same length, so we can divide this number by two. For example, if we call the

points, �, �, �, �, the paths ����, ����, ����, ���� ����, ����, ����, ���� all

have the same length, only the starting point and the direction of the course changes.

So we have (−1)! 2 candidate paths to consider.

Let � = (,
) be a graph such that 	 = { 1, … , � �} the set of vertices, � = |	| the

number of vertices of the graph �, each vertex modeling a city where �� characterized

by the coordinates and � and � the distance matrix of size (� × �), such that �(�, �)

defines the distance between the two vertices �� and ��. (�) The set of arcs, models

the cost of travel between two cities.

 The objective is to find a tour of the minimum total length, the length of which is the

sum of the costs of each arc in the tour.

The search space for the TSP is a set of permutations of � cities and the optimal

solution is a permutation that gives the minimum cost of the tour.

The concept of calculating distances between cities � �� (� + 1) is calculated under the

Euclidean distance rule using the following equation:

�(�[�], �[� + 1]) = √((� − �+1)2 + (�� − ��+1)2)

 Such that, [�] is a permutation on the set {1, 2, . . . , �}

 � = (�[1], �[2] , �[3], … , �[�], �[1])

Then, � the objective function to calculate the cost of each solution of the problem

given by the following formula:

 � = �(�[�], �[1]) + ∑ �(�[�], �[� + 1]) �−1 �=1

Chapter III Genetic algorithm

38

From (1), (2) �� (3) the simple mathematical formula of the traveling salesman

problem is given by:

 ��� { (�) , � = (�[1], �[2], �[3] … , �[�], �[1])}

III.12 Conclusion

The GA is a probabilistic solution to optimize the problems that are modeled on

a genetic evaluation process in biologically and are focused as an effective algorithm

to finda global optimum solution for many types of problems. The GA is used in

different

Artificial intelligence applications like object-oriented systems, robotics, and

futuristicemerging technologies.

We began this chapter by introducing what a genetic algorithm is, which have

the ability to deliver a “good-enough” solution “fast-enough” and how it works, We

also mentioned the basic components of this algorithm,and the application areas of

GA which is TSP and the adventages then the inconvinients of the GA.

Chapter

Implementation

Chapter IV Implementation

40

IV.1 Introduction

The objective of this chapter is to present the tools (software, languages,

libraries and data used in my system).in our work is based on the comparison of two

programs that aim to solve the problem of salesman. In the first program we have

integrated genetic algorithm to solve the problem. The second one has integrated

Meta heuristic algorithm giving each of these two programs a result with the aim of

having better traffic with a reduced distance.

IV.2 Development environment and tools

IV.2.1 Google Colaboratory

Colaboratory, shortened to "Colab", allows us to write and run Python code in

your browser. Colaboratory is a Google research project created to help spread

machine learning education and research. It is a Jupyter notebook environment that

requires no configuration to use and runs entirely on the cloud.

It offers the following advantages:

• No configuration required

• Free access to GPUs

• Easy sharing

Figure IV 1: Logo Google Colab

Chapter IV Implementation

41

IV.2.2 Language used

 In our project we used the Python language.

IV.2.2.1 Python

Is an interpreted, cross-paradigm, cross-platform programming language. It

promotes structured, functional and object-oriented imperative programming. It has

strong dynamic typing, automatic memory management by garbage collection and an

exception handling system; it is thus similar to Perl, Ruby, Scheme, Small talk and

Tcl. The Python language is placed under a free license close to the BSD 5 license

and works on most computer platforms, from smartphones to central computers, from

Windows to Unix with in particular GNU/Linux via macOS, or even Android, iOS,

and can also be translated into Java or .NET. It is designed to optimize programmer

productivity by offering high-level tools and an easy-to-use syntax.

Figure IV 2: logo of python

IV.2.3 Library uses:

IV.2.3.1 Random

This module implements pseudo-random number generators for different

distributions. Forintegers; there is a uniform selection from a range. For sequences,

there is a uniform selection of a random element, a function to generate a random

permutation of a list in place, and a function for random sampling without

replacement.

Some uses of random :

Chapter IV Implementation

42

Math,it provides access to math functions arithmetic and logarithmic and

exponential…etc. Whatever uses the math library:

IV.2.3.2 Signal

The signal.signal () function allows defining custom handlers to be executed

when a signal is received. A small number of default handlers are installed: SIGPIPE

is ignored (so write errors on pipes and sockets can be reported as ordinary Python

exceptions) and SIGINT is translated into a KeyboardInterrupt exception if the parent

process has not changed it.

A handler for a particular signal, once set, remains installed until it is explicitly

reset (Python emulates the BSD style interface regardless of the underlying

implementation), with the exception of the handler for SIGCHLD, which follows the

underlying implementation.

IV.2.3.3 Copy

Assignment statements in Python do not copy objects, they create links between

the target and the object. For collections that are mutable or contain mutable elements,

sometimes a copy is needed, so that you can modify one copy without modifying the

Chapter IV Implementation

43

other.

Whatever use

IV.2.3.4 Time

This module provides various time-related functions. We used the library for

the function time.time () which returns the time in seconds since epoch as a floating

point number. The specific epoch date and treatment of leap seconds depends on the

platform.

IV.3 Program architecture

IV.3.1 Genetic algorithm :

The first is a population-based approach that deals with several solutions at

once. They maintain and improve several solutions, and choose the best result.

The methodconsists of:

Chapter IV Implementation

44

Figure IV 3: algorithm of gentic algorithm

• Creation of an initial population

• Evaluation of the "fitness" (quality) of individuals

• Selection of parents

• Creation of new individuals: crossover + mutation

• Addition of new individuals in the population

• Return to the second step the parameters chosen for the resolution of the TSP with

AG

• After having the number of cities and population.

• A chromosome of N genes a solution = path taken: coding used is a real coding

(each gene of the chromosome=city number).

• Evaluation function: minimization of the distance traveled.

• Crossover operator.

• Mutation operator.

• Stop test number of generations.

Chapter IV Implementation

45

• Last adds an item to the end of the list or array.

IV.3.2 Simulated annealing algorithm:

The second method is based on local search.

It consists of:

• Simulated annealing is an iterative algorithm that uses the Metropolis criterion exp

(-ΔE/T)

• We have 2 nested loops.

• The first loop to lower the temperature (thermodynamic stability): change the value

of the temperature whose goal is to converge towards the global optimum (global

minima for the case of the minimization problem).

• The second loop to choose the best neighbor of the current solution, using the

Metropolis criterion.

• The stopping criterion will depend on the time (the number of iterations) and the

degradation of the solution (Δf), evaluated as the difference of the cost function of the

previous solution and of the new selected solution.

• At each degradation, the algorithm stops with a probability depending on this

degradation and on the time (number of iterations) of the algorithm.

• The greater the degradation, the lower the probability of continuing.

• The higher this number, the lower the probability of continuing.

• PThe temperature makes it possible to control the acceptance of the solutions or not

by the calculation of the criterion of Métropolis exp (-Δf/T).

• The value of the temperature parameter varies during the search for iterations.

• At the beginning Temperature is large.

• It gradually decreases to reach the value 0.

• Test of the probability of accepting the solution or not.

• Choose a Stop Test. arameters of the simulated annealing algorithm

Chapter IV Implementation

46

Figure IV 4: simulated annealing algorithme

IV.3.3 Data declaration phase:

This phase consists of;

• Declaration the list of cities that are defined as the capture, longitudes and latitudes

are from Google Maps.

• Calculates distance for each 2 city.

• Selected distances.

IV.4 Final phase (execution and problem result)

This phase consists of:

• Import time for calculation of execution time and comparison of the two phases.

• Import of methods and display of results.

Chapter IV Implementation

47

IV.5 Results :

Capture shows the final display obtained that we see:

• The list of cities is ordered for each method.

• Distance from traffic.

• The duration of execution.

From the summary results we conclude that simulated annealing

IV.6 Conclusion

In this chapter we present language python and the google

collabotoryenvironment where we had implemented the execution of TSP with the

genetic algorithm and the SA method.

We found that the GA is the faster but the SA is the optimum.

Chapter IV Implementation

48

General

Conclusion

General Conclusion

50

General conclusion:

In this thesis, we studied a combinatorial optimization problem: the problem of

traveling salesman (TSP) we solved this problem with using two algorithms of

metaheuristic (genetic algorithms, simulated annealing) we have compared the results

of this two to know who is faster and optima and inorder to get better results.

We started by studying the basic concepts of machine learning and its types then we

presented Optimization algorithms.

We also presented metaheuristic algorithms, its classification, applications ...etc.

After looking at the problem and solving it using the genetic algorithm andthe

simulated annealing in the fourth chapter, wefound that simulated annealing is better

than genetic algorithm.

For future work, we suggest that new students try to find new models to solve the

problem of the traveling salesman, so that they are easy and fast and give better

results than the models mentioned in this thesis.

References

1. Mahesh, Batta. Machine Learning Algorithms - A Review. (2018).

2. What Is Machine Learning (ML)? s.l. : Berkeley School of Information, June 26,

2020.

3. Machine Learning. s.l. : IBM Cloud Education, 15 jan 2020.

4. Brownlee, Jason. machine learning mastery. December 23, 2020.

5. Gamal Abd El-Nasser A. Said, Abeer M. Mahmoud,El-Sayed M. El-Horbaty. A

Comparative Study of Meta-heuristic Algorithms. s.l. : International Journal of

Advanced Computer Science and Applications, 1, 2014.

6. A guide to metaheuristic optimization for machine learning models in python .

pierre, sadrach. s.l. : buit in , 2022.

7. Christian blum, Andrea Roli . Metaheuristics in Combinatorial Optimization:

Overviewand Conceptual Comparison. s.l. : ACM Computing Surveys, 2003.

8. Metaheuristics. s.l. : Scholarpedia, 2015.

9.

(https://www.researchgate.net/publication/312889331_Choice_of_best_possible_meta

heuristic_algorithm_for_the_travelling_salesman_problem_with_limited_computatio

nal_time_Quality_uncertainty_and_speed). Marek Antosiewicz, Grzegorz Koloch,

Bogumił Kamiński. s.l. : Journal of Theoretical and Applied Computer Science,

January 2013.

10. Simulated Annealing. Babu, Sanjana. s.l. : OpenGenus IQ © 2022 All rights

reserved .

11. . Solution to the travelling salesperson problem using simulated annealing

algorithm .M.A Rufai ,R.M. Alabison .A.Abidemi and E.J.Dansu . s.l. : Electronic

Journal of Mathematical Analysis and Applications, 2017.

12. An Overview of Genetic Algorithms. David Beasley, David R. Bully, Ralph R.

Martin.

13. / A closer look at AI: Genetic algorithms January . s.l. : brightrion , 5th, 2017.

14. Genetic Algorithms - Quick Guide. s.l. : tutorialspoint., 2022.

15. Genetic algorithms for the traveling salesman problem. Potvin, Jean-Yves. s.l. :

Centre de Recherche sur les Transports,Universitd de Montrgal.

16. Reinforcement Learning vs Genetic Algorithm — AI for Simulations. Neelarghya.

jul 26, 2021.

17. Roulette wheel selection in paython s.l. : rocreguant.

18. How to perform rank based selection in a genetic algorithm? s.l. : Stack Overflow

.

19. The Basics of Genetic Algorithms in Machine Learning. Muthee, Arthur. s.l. :

EngEd Community, 26 may 2021.

20. 10 real-life applications of Genetic Optimization. Verma, Yugesh. s.l. : developers

corner , JANUARY 21, 2022.

21. Gamal Abd El-Nasser A. Said, Abeer M. Mahmoud,El-Sayed M. El-Horbaty. A

Comparative Study of Meta-heuristic Algorithmsfor Solving Quadratic Assignment

Problem. s.l. : International Journal of Advanced Computer Science and Application,

2014.

22. Choice of best possible metaheuristic algorithm for the travelling salesman

problem with limited computational time: quality, uncertainty and speed . Marek

Antosiewicz, Grzegorz Koloch, Bogumił Kamiński. s.l. : Journal of Theoretical and

Applied Computer Science , 2013.

23. simulated annealing applied to the traveling salesman problem . P.Karlsson. 2002.

