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Abstract 

I am sure you already heard about the traveling salesman problem or TSP. that belong 

to NP-hard optimization problems which are difficult to solve using classical 

mathematical methods. There are many applications for this problem and also many 

solutions with different performances to find the optimal solution in shortest possible 

time.   Meta-Heuristic    algorithms are one of the proposed solutions which are 

successful in finding the solutions that are very near to the optimal. In this work we 

applied the genetic algorithm then the simulated annealing then we have compared 

between them to get the faster and the optimum   

The results show that the faster is the genetic algorithm and the the optimum is 

simulated annealing  

Keywords: TSP problem, genetic algorithm, metaheuristic, optimia, optimization 

algorithm, simulated annealing 

  ملخص

. التي تنتمي إلى TSPأنا متأكد من أنك سمعت بالفعل عن مشكلة البائع المتجول أو 

والتي يصعب حلها باستخدام الطرق الرياضية التقليدية.  NP-hardمشك/.ت تحسين 

هناك العديد من التطبيقات لهذه المشكلة وأيضًا العديد من الحلول ذات اEFداء المختلف 

UFيجاد الحل اEFمثل في أقQR وقت ممكن. تعد الخوارزميات الفوقية من الحلول المقترحة 

ل اEFمثل. في هذا العمل قمنا بتطبيق الناجحة في إيجاد الحلول القريبة جدًا من الح

الخوارزمية الجينية ثم التلدين المحاكى ثم قمنا بالمقارنة بينهما للحصول على اQYEFع 

 واEFفضل

 أظهرت النتائج أنه كلما كانت الخوارزمية الجينية أQYع واEFمثل هو التلدين

 

، اEFمثل ، خوارزمية  metatheuristic، الخوارزمية الجينية ،  TSPمشكلة  :مفتاحيةالكلمات ال

  التحسين ، محاكاة التلدين
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General introduction 

Solving an optimization problem consists of exploring a search space in order to 

maximize (or minimize) a given function.The relative complexities (in size or 

structure) of the search space and the function to be optimized lead to the use of 

radically different resolution methods. As a first approximation, we can say that a 

deterministic method is suitable for a small and complex search space and that a large 

search space rather requires a stochastic search method (simulated annealing, genetic 

algorithm ...). In most cases, an optimization problem is naturally divided into two 

phases: search for acceptable solutions and then search for the cost-optimal solution 

among them. 

 The travelling salesman problem (TSP) is one of the most signifi-cant problems 

in combinatorial optimization. It is important both as a separate problem and as a part 

of more complex optimization problems. Also, since it is strongly NP-complete, in 

practical applications for large-scale problem instances it is only possible to use 

heuristic optimization algorithms which give approximate solutions. Some of the most 

successful heuristic algorithms that have been used to solve the TSP and its variants 

include genetic algorithms, simulated annealing. 

In this memory, we compare two metaheuristic optimization algorithms 

appliedto solving the travelling salesman problem. We focus on two methods: genetic 

algorithms and simulated annealing and we compare between the results of these two 

methods. 
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I.1 Introduction: 

Optimization is the process of finding the best solution to a problem. For 

example, finding the shortest route to the destination, scheduling the hospital staff in 

the most efficient manner possible, or planning the day's activities to best utilize the 

available time. In order to solve the real-world optimization problems, the problems 

are formulated as mathematical functions and optimization deals with 

minimizing/maximizing the output of that function to find the best solution. 

I.2 Machine Learning: 

I.2.1 Definition 

Since their evolution, humans have been using many types of tools to 

accomplish various tasks in a simpler way. The creativity of the human brain led to 

the invention of different machines. These machines made the human life easy by 

enabling people to meet various life needs, including travelling, industries, and 

computing. Moreover, Machine learning is the one among them. According to Arthur 

Samuel Machine learning is defined as the field of study that gives computers the 

ability to learn without being explicitly programmed. Arthur Samuel was famous for 

his checkers-playing program. Machine learning (ML) is used to teach machines how 

to handle the data more efficiently. 

Machine Learning relies on different algorithms to solve data problems. The 

kind of algorithm employed depends on the kind of problem you wish to solve, the 

number of variables, the kind of model that would suit it best and so on.(1) 

The basic concept of machine learning in data science involves using statistical 

learning and optimization methods that let computers analyze datasets and identify 

patterns. The typical supervised machine learning algorithm consists of (roughly) 

three components 

1. A decision process: A recipe of calculations or other steps that takes in the 

data and returns a “guess” at the kind of pattern in the data your algorithm is 

looking to find. 

2. An error function: A method of measuring how good the guess was by 

comparing it to known examples (when they are available). Did the decision 
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process get it right? If not, how do you quantify “how bad” the miss was? 

3. An updating or optimization process: Where the algorithm looks at the miss 

and then updates how the decision process comes to the final decision so that 

the next time the miss won’t be as great.  

 

Figure I 1: the applications of machine learning 

I.2.2 Types of Machine Learning: 

Many machine learning models are defined by the presence or absence of human 

influence on raw data whether a reward is offered, specific feedback is given or labels 

are used 

• Supervised learning: The dataset being used has been pre-labeled and 

classified by users to allow the algorithm to see how accurate its performance 

is. 

• Unsupervised learning: The raw dataset being used is unlabeled and an 

algorithm identifies patterns and relationships within the data without help 

from users. 

• Semi supervised learning: The dataset contains structured and unstructured 

data, which guide the algorithm on its way to making independent 

conclusions. The combination of the two data types in one training dataset 

allows machine learning algorithms to learn to label unlabeled data. 

• Reinforcement learning: The dataset uses a “rewards/punishments” system, 

offering feedback to the algorithm to learn from its own experiences by trial 

and error 
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I.2.2.1 The difference between supervised and unsupervised learning 

The main difference between supervised and unsupervised learning: Labeled 

data 

The main distinction between the two approaches is the use of labeled datasets. 

To put it simply, supervised learning uses labeled input and output data, while an 

unsupervised learning algorithm does not. 

In supervised learning, the algorithm “learns” from the training dataset by 

iteratively making predictions on the data and adjusting for the correct answer. While 

supervised learning models tend to be more accurate than unsupervised learning 

models, they require upfront human intervention to label the data appropriately. For 

example, a supervised learning model can predict how long your commute will be 

based on the time of day, weather conditions and so on. But first, you’ll have to train 

it to know that rainy weather extends the driving time. 

Unsupervised learning models, in contrast, work on their own to discover the 

inherent structure of unlabeled data. Note that they still require some human 

intervention for validating output variables. For example, an unsupervised learning 

model can identify that online shopper often purchase groups of products at the same 

time. 

I.2.3 Why Is Machine Learning Important? 

Machine learning and data mining, a component of machine learning, are crucial 

tools in the process to glean insights from massive datasets held by companies and 

researchers today. There are two main reasons for this: 

Scale of data: Companies are faced with massive volumes and varieties of data 

that need to be processed. Processing power is more efficient and readily available. 

Models that can be programmed to process data on their own, determine conclusions, 

and identify patterns are invaluable. 

Unexpected findings: Since machine learning algorithms update autonomously, 

the analytical accuracy improves with each run as it teaches itself from the datasets it 

analyzes. This iterative nature of learning is unique and valuable because it occurs 

without human intervention, providing the ability to uncover hidden insights without 

being specifically programmed to do so.(2) 
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I.2.4 Machine Learning vs. Deep Learning vs. Neural Networks: 

Since deep learning and machine learning tend to be used interchangeably, it is 

worth noting the nuances between the two. Machine learning, deep learning, and 

neural networks are all sub-fields of artificial intelligence. However, deep learning is 

actually a sub-field of machine learning, and neural networks is a sub-field of deep 

learning. 

The way in which deep learning and machine learning differ is in how each 

algorithm learns. Deep learning automates much of the feature extraction piece of the 

process, eliminating some of the manual human intervention required and enabling 

the use of larger data sets. 

Classical, or "non-deep", machine learning is more dependent on human 

intervention to learn. Human experts determine the set of features to understand the 

differences between data inputs, usually requiring more structured data to learn. 

 
Figure I 2: Machine learning and Deep learning 

Neural networks, or artificial neural networks (ANNs), are comprised of a node 

layer, containing an input layer, one or more hidden layers, and an output layer. Each 

node, or artificial neuron, connects to another and has an associated weight and 

threshold. If the output of any individual node is above the specified threshold value, 

that node is activated, sending data to the next layer of the network. Otherwise, no 

data is passed along to the next layer of the network. The “deep” in deep learning is 

just referring to the depth of layers in a neural network. A neural network that consists 

of more than three layers—which would be inclusive of the inputs and the output—

can be considered a deep learning algorithm or a deep neural network. A neural 

network that only has two or three layers is just a basic neural network. /IBM (3) 
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Figure I 3: Artificial Intelligence 

I.3 Optimization algorithms 

I.3.1 Optimization 

Optimization is a branch of mathematics seeking to model, analyze and solve 

analytically or numerically a given problem with the aim of finding the solution that 

maximizes or minimizes a function to be optimized.  

It is the challenging problem that underlies many machine learning algorithms, 

from fitting logistic regression models to training artificial neural networks. There are 

perhaps hundreds of popular optimization algorithms, and perhaps tens of algorithms 

to choose from in popular scientific code libraries. This can make it challenging to 

know which algorithms to consider for a given optimization problem.(4) 

I.3.2 Optimization algorithms: 

Optimization refers to a procedure for finding the input parameters or arguments 

to a function that result in the minimum or maximum output of the function. The most 

common type of optimization problems encountered in machine learning are 

continuous function optimization, where the input arguments to the function are real-

valued numeric values, e.g. floating point values. The output from the function is also 

a real-valued evaluation of the input values. We might refer to problems of this type 

as continuous function optimization, to distinguish from functions that take discrete 

variables and are referred to as combinatorial optimization problems. There are many 

different types of optimization algorithms that can be used for continuous function 
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optimization problems, and perhaps just as many ways to group and summarize them. 

One approach to grouping optimization algorithms is based on the amount of 

information available about the target function that is being optimized that, in turn, 

can be used and harnessed by the optimization algorithm. Generally, the more 

information that is available about the target function, the easier the function is to 

optimize if the information can effectively be used in the search. Perhaps the major 

division in optimization algorithms is whether the objective function can be 

differentiated at a point or not. That is, whether the first derivative (gradient or slope) 

of the function can be calculated for a given candidate solution or not. This partitions 

algorithms into those that can make use of the calculated gradient information and 

those that do not.Algorithms that use derivative information.(4) 

I.3.3 Differentiable Objective Function 

A differentiable function is a function where the derivative can be calculated for 

any given point in the input space. 

The derivative of a function for a value is the rate or amount of change in the function 

at that point. It is often called the slope. 

I.3.3.1 First-Order Derivative 

 Slope or rate of change of an objective function at a given point. 

The derivative of the function with more than one input variable (e.g. 

multivariate inputs) is commonly referred to as the gradient. 

I.3.3.2 Gradient 

Derivative of a multivariate continuous objective function. 

A derivative for a multivariate objective function is a vector, and each element 

in the vector is called a partial derivative or the rate of change for a given variable at 

the point assuming all other variables are held constant. 

I.3.3.3 Partial Derivative 

 Element of a derivative of a multivariate objective function. 

We can calculate the derivative of the derivative of the objective function that is 

the rate of change of the rate of change in the objective function. This is called the 
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second derivative. 

I.3.3.4 Second-Order Derivative 

Rate at which the derivative of the objective function changes. 

For a function that takes multiple input variables, this is a matrix and is referred 

to as the Hessian matrix. 

I.3.3.5 Hessian matrix 

Second derivative of a function with two or more input variables, Simple 

differentiable functions can be optimized analytically using calculus. Typically, the 

objective functions that we are interested in cannot be solved analytically. 

Optimization is significantly easier if the gradient of the objective function can 

be calculated, and as such, there has been a lot more research into optimization 

algorithms that use the derivative than those that do not. 

Some groups of algorithms that use gradient information include: 

• Bracketing Algorithms 

• Local Descent Algorithms 

• First-Order Algorithms 

• Second-Order Algorithms 

I.3.3.5.1 Bracketing Algorithms 

Algorithms are intended for optimization problems with one input variable 

where the optima is known to exist within a specific range. 

Bracketing algorithms are able to efficiently navigate the known range and 

locate the optima, although they assume only single optima is present (referred to as 

unimodal objective functions). 

Some bracketing algorithms may be able to be used without derivative 

information if it is not available. 

Examples of bracketing algorithms include: 

•Fibonacci Search 

•Golden Section Search 



Chapter I                                                     Optimization algorithms 

9 

 

•Bisection Method 

I.3.3.5.2 Local Descent Algorithms 

Local descent optimization algorithms are intended for optimization problems 

with more than one input variable and single global optima (e.g. unimodal objective 

function). 

Perhaps the most common example of a local descent algorithm is the line search 

algorithm. 

•Line Search 

There are many variations of the line search (e.g. the Brent-Dekker algorithm), 

but the procedure generally involves choosing a direction to move in the search space, 

then performing a bracketing type search in a line or hyperplane in the chosen 

direction. 

This process is repeated until no further improvements can be made. 

The limitation is that it is computationally expensive to optimize each 

directional move in the search space. 

I.3.3.5.3 First-Order Algorithms 

First-order optimization algorithms explicitly involve using the first derivative 

(gradient) to choose the direction to move in the search space 

The procedures involve first calculating the gradient of the function, then following 

the gradient in the opposite direction (e.g. downhill to the minimum for minimization 

problems) using a step size (also called the learning rate). 

The step size is a hyperparameter that controls how far to move in the search 

space, unlike “local descent algorithms” that perform a full line search for each 

directional move.A step size that is too small results in a search that takes a long time 

and can get stuck, whereas a step size that is too large will result in zig-zagging or 

bouncing around the search space, missing the optima completely. 

First-order algorithms are generally referred to as gradient descent, with more 

specific names referring to minor extensions to the procedure, e.g.: 

•Gradient Descent 
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•Momentum 

•Adagrad 

•RMSProp 

•Adam 

The gradient descent algorithm also provides the template for the popular 

stochastic version of the algorithm, named Stochastic Gradient Descent (SGD) that is 

used to train artificial neural networks (deep learning) models. 

The important difference is that the gradient is appropriated rather than 

calculated directly, using prediction error on training data, such as one sample 

(stochastic), all examples (batch), or a small subset of training data (mini-batch). 

The extensions designed to accelerate the gradient descent algorithm 

(momentum, etc.) can be and are commonly used with SGD. 

•Stochastic Gradient Descent 

•Batch Gradient Descent 

•Mini-Batch Gradient Descent 

I.3.3.5.4 Second-Order Algorithms 

Second-order optimization algorithms explicitly involve using the second 

derivative (Hessian) to choose the direction to move in the search space. 

These algorithms are only appropriate for those objective functions where the 

Hessian matrix can be calculated or approximated. 

Examples of second-order optimization algorithms for univariate objective 

functions include: 

•Newton’s Method 

•Secant Method 

Second-order methods for multivariate objective functions are referred to as 

Quasi-Newton Methods. 

•Quasi-Newton Method 
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There are many Quasi-Newton Methods, and they are typically named for the 

developers of the algorithm, such as: 

•Davidson-Fletcher-Powell 

•Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

•Limited-memory BFGS (L-BFGS) 

Now that we are familiar with the so-called classical optimization algorithms, 

let’s look at algorithms used when the objective function is not differentiable. 

Algorithms that do not use derivative information: 

I.3.4 Non-Differential Objective Function 

Optimization algorithms that make use of the derivative of the objective 

function are fast and efficient. 

Nevertheless, there are objective functions where the derivative cannot be 

calculated, typically because the function is complex for a variety of real-world 

reasons. Or the derivative can be calculated in some regions of the domain, but not all, 

or is not a good guide. 

Some difficulties on objective functions for the classical algorithms described in 

the previous section include: 

•No analytical description of the function (e.g. simulation). 

•Multiple global optima (e.g. multimodal). 

•Stochastic function evaluation (e.g. noisy). 

•Discontinuous objective function (e.g. regions with invalid solutions). 

As such, there are optimization algorithms that do not expect first- or second-

order derivatives to be available. 

These algorithms are sometimes referred to as black-box optimization 

algorithms as they assume little or nothing (relative to the classical methods) about 

the objective function. 

A grouping of these algorithms includes: 
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•Direct Algorithms 

•Stochastic Algorithms 

•Population Algorithms (4) 

I.3.4.1 Direct Algorithms 

Direct optimization algorithms are for objective functions for which derivatives 

cannot be calculated. 

The algorithms are deterministic procedures and often assume the objective 

function has single global optima, e.g. unimodal. 

Direct search methods are also typically referred to as a “pattern search” as they 

may navigate the search space using geometric shapes or decisions, e.g. patterns. 

Gradient information is approximated directly (hence the name) from the result 

of the objective function comparing the relative difference between scores for points 

in the search space. These direct estimates are then used to choose a direction to move 

in the search space and triangulate the region of the optima. 

Examples of direct search algorithms include: 

•Cyclic Coordinate Search 

•Powell’s Method 

•Hooke-Jeeves Method 

•Nelder-Mead Simplex Search 

I.3.4.2 Stochastic Algorithms 

Stochastic optimization algorithms are algorithms that make use of randomness 

in the search procedure for objective functions for which derivatives cannot be 

calculated. 

Unlike the deterministic direct search methods, stochastic algorithms typically 

involve a lot more sampling of the objective function, but are able to handle problems 

with deceptive local optima. 

Stochastic optimization algorithms include: 
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•Simulated Annealing 

•Evolution Strategy 

•Cross-Entropy Method 

I.3.4.3 Population Algorithms 

Population optimization algorithms are stochastic optimization algorithms that 

maintain a pool (a population) of candidate solutions that together are used to sample, 

explore, and hone in on an optimum. 

Algorithms of this type are intended for more challenging objective problems 

that may have noisy function evaluations and many global optima (multimodal), and 

finding a good or good enough solution is challenging or infeasible using other 

methods. 

The pool of candidate solutions adds robustness to the search, increasing the 

likelihood of overcoming local optima. 

Examples of population optimization algorithms include: 

•Genetic Algorithm 

•Differential Evolution 

•Particle Swarm Optimization (4) 
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I.4 Conclusion 

This chapter introduces and summarizes the frequently used optimization 

methods from the applications of machine learning, and studies their applications in 

various fields of machine learning. Firstly, we described the machine learning and 

why we use it then the difference between the machine learning and the Deep 

Learning and the Neural Networks. Then we described the optimization algorithm. 

Finally, we discussed about types of optimization algorithm. 
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II.1 Introduction 

Meta-heuristics are the most recent development in approximate search methods 

for solving complex optimizationvproblems that arise in business, commerce, 

engineering, industry, and many other areas. The kinds of the metaheuristic method 

are various. A meta-heuristic guide a subordinate heuristic using concepts derived 

from artificial intelligence, biological, mathematical, natural and physical sciences to 

improve their performance. Metaheuristics can be an efficient way to produce 

acceptable solutions by trial and error to a complex problem in a reasonably practical 

time. Metaheuristic algorithms are computational intelligence paradigms especially 

used for sophisticated solving optimization problems 

II.2 Definition 

A Meta-heuristic is formally defined as an iterative generation process which 

guides a subordinate heuristic by combining intelligently different concepts for 

exploring and exploiting the search space, learning strategies are used to structure 

information in order to find efficiently near-optimal solutions. Meta-heuristic 

algorithms are among these approximate techniques which can be used to solve 

complex problems. Meta-heuristic algorithms have been proposed by researchers to 

find optimal or near optimal solutions, The Metaheuristic approaches are not 

guaranteed to find the optimal solution since they evaluate only a subset of the 

feasible solutions, but they try to explore different areas in the search space in a smart 

way to get a near-optimal solution in less cost and time.  Notable examples of 

metaheuristics include genetic/evolutionary algorithms, tabu search, simulated 

annealing, variable neighborhood search, (adaptive) large neighborhood search, and 

ant colony optimization, although many more exist. (5) 

II.3 Metaheuristic optimization 

Metaheuristic optimization is the best approach to optimizing such non-convex 

functions. These algorithms are the best choice because they make no assumptions 

about how many hills and valleys the function contains. Although this approach aids 

in finding minimum and maximum values, these correspond to what are called local 

maxima (near a high hill) and minima (near a low valley). When using metaheuristic 

optimization to optimize non-convex functions, therefore, remember that these 

algorithms do not guarantee finding a global maximum (the highest hill) or minimum 
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(lowest valley) because when optimizing non-convex functions, with many hills and 

valleys, finding the lowest valley or the highest hill is usually not computationally 

feasible. Despite this, metaheuristic optimization is often the only recourse for real 

life applications because convex optimization makes the strong assumption of a single 

hill and/or valley being present in the function. These algorithms often provide 

solutions that are near a low enough valley or high enough hills. This process is 

important for optimizing the output of a machine learning model. For example, if you 

build a model that predicts cement strength for a cement manufacturer, you can use 

metaheuristic optimization to find the optimal input values that maximize strength. A 

model like this takes input values corresponding to ingredient quantities in the cement 

mixture. The optimizer would then be able to find the quantities for each ingredient 

that maximizes strength.  (6) 

II.3.1 Properties 

• Metaheuristics are strategies that guide the search process. 

• The goal is to efficiently explore the search space in order to find near–

optimal solutions. 

• Techniques which constitute metaheuristic algorithms range from simple local 

search procedures to complex learning processes. 

• Metaheuristic algorithms are approximate and usually non-deterministic. 

• Metaheuristics are not problem-specific (7) 

II.3.2 Classification 

There are a wide variety of metaheuristics and a number of properties with 

respect to which to classify them.  

II.3.2.1 Globalsearch 

Other global search metaheuristic that are not local search-based are usually 

population-based metaheuristics. Such metaheuristics include ant colony 

optimization, evolutionary computation, particle swarm optimization, genetic 

algorithm, and rider optimization algorithm.(7) 
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II.3.2.1.1 Population-based metaheuristics 

Population-based metaheuristics find good solutions by iteratively selecting and 

then combining existing solutions from a set, usually called the population. The most 

important members of this class are evolutionary algorithms (EA) because they 

mimick the principles of natural evolution. We use the term evolutionary algorithms 

as an umbrella term to encompass the wide range of metaheuristics based on 

evolution. This includes genetic algorithms (GA) genetic/evolutionary programming 

• Evolutionary algorithms:  

Evolutionary algorithms operate on a set or population of solutions and use two 

mechanisms to search for good solutions: the selection of predominantly high-quality 

solutions from the population and the recombination of those solutions into new ones, 

using specialized operators that combine the attributes of two or more solutions. After 

recombination, new solutions are reinserted into the population, possibly requiring 

them to satisfy conditions such as feasibility or minimum quality demands, to replace 

other (usually low-quality) solutions. Operators used in evolutionary algorithms 

(selection, recombination and reinsertion) almost without exception make heavy use 

of randomness. A mutation operator that randomly makes a (small) change to a 

solution after it has been recombined, is also frequently applied. Most evolutionary 

algorithms iterate the selection, recombination, mutation, and reinsertion phases a 

number of times, and report the best solution in the population. Evolutionary 

algorithms generally require some form of "population management" to ensure that 

the best solutions survive through the various iterations, while at the same time 

diversity is maintained in the population (8) 

II.3.2.2 Local search 

Local search algorithm is the hill climbing method which is used to find local 

optimums. However, hill climbing does not guarantee finding global optimum 

solutions. Many metaheuristic ideas were proposed to improve local search heuristic 

in order to find better solutions. Such metaheuristics include simulated annealing, 

tabu search, iterated local search, variable neighborhood search, and GRASP. These 

metaheuristics can both be classified as local search-based or global search 

metaheuristics.(7) 
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Figure II 1 : classification of metaheuristics 

II.3.3 Single-solution vs. population-based 

Single solution approaches focus on modifying and improving a single 

candidate solution; single solution metaheuristics include simulated annealing, 

iterated local search, variable neighborhood search, and guided local search. 

 Population-based approaches maintain and improve multiple candidate solutions, 

often using population characteristics to guide the search; population-based 

metaheuristics include evolutionary computation, genetic algorithms, and particle 

swarm optimization.(7) 
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II.4 Simulatedannealing 

II.4.1 Definition 

Simulated annealing is a metaheuristic algorithm which processes only a single 

solution. In order to use this approach, we must first define the neighborhood of a 

solution. We de-fined the neighborhood of a current solution as all the solutions that 

can be reached from the current solution by exactly one application ofthe swap 

operator. Simulated annealing works as follows. In each iteration a solution from the 

neighbor-hood of the current solution is randomly chosen. If the new solution is better 

than the cur-rent one, the current solution is replaced by the new one. If not, it is 

replaced by the new one with a certain probability which is a function of the number 

of iterations which passed since the beginning of the optimization and of the 

difference in objective function values between the two considered solutions. 

Probability of accepting a solution which is worse than the current one decreases as 

the algorithm proceeds. In the first stages of optimization simulated annealing 

behaves more like a random search procedure, and thenit’s biased toward accepting 

only better solutions increases and in the final stages of optimization it operates 

according to the greedy search principle. (9) 

II.4.2 Advantages of Simulated Annealing 

• Simulated annealing is easy to code and use. 

• It does not rely on restrictive properties of the model and hence is versatile. 

• It can deal with noisy data and highly non-linear models. 

• Provides optimal solution for many problems and is robust. (10) 

II.4.3 Disadvantages of Simulated Annealing 

A lot of parameters have to be tuned as it is metaheuristic. 

The precision of the numbers used in its implementation has a significant effect on the 

quality of results. 

There is a tradeoff between the quality of result and the time taken for the algorithm 

to run.(10) 
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II.5 Travelling Salesman Problem 

The Traveling Salesman Problem (TSP) is a classical combinatorial 

optimization problem, which is simple to state but very difficult to solve. The problem 

is to find the shortest tour through a set of N vertices so that each vertex is visited 

exactly once. This problem is known to be NP-hard, and cannot be solved exactly in 

polynomial time. TSP can be described as: Given a finite set of n cities and a cost 

matrix that n It indicates the cost (e.g., distance, money, time) to travel from city i to 

city i. TSP aims to find the perfect tour to visit each one Exactly once and then 

eventually return to the starting city. We present an improved hybrid genetic 

algorithm to solve the two-dimensional Euclidean traveling salesman problem (TSP), 

in which the crossover operator is enhanced with a local search. The proposed 

algorithm is expected to obtain higher quality solutions within a reasonable 

computational time for TSP by perfectly integrating GA and the local search. The 

elitist choice strategy, the local search crossover operator and the double-bridge 

random mutation are highlighted, to enhance the convergence and the possibility of 

escaping from the local optima. 

The Simulated Annealing (SA) approach can be practically useful to solve the 

TSP by using the following steps: 

• Step One: We need to make the opening list of cities by castling the input list 

(that is make theorder of visit unsystematic). 

• Step Two: At all iterations, two cities are exchanged in the list. The cost value 

is the distancetravelled by the Salesperson for all the tours. 

• Step Three: If the new length (distance) calculated after the modification, is 

smaller than thecurrent length (distance), it is preserved. 

• Step Four: If the new length is longer than the current length, it is preserved 

with a positiveprobability. 

• Step Five: We need to bring up-to-date the temperature at every iteration by 

gradually coolingit down(11) 
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II.6 Conclusion 

Metaheuristic algorithms are computational intelligence paradigms especially used for 

Sophisticated solving optimization problems. This chapter aims to review of 

metaheuristics 

algorithms and methods . 

We present also the method the simulated annealing and how it works and our main 

problem 

the Travelling salesman. 
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III.1 Introduction 

Genetic algorithms are one of the most prominent global search techniques and 

are widely used for combinatorial problems based on imitation of processes observed 

during natural evolution. Genetic algorithms offer a wide range of solutions compared 

to other accurate algorithms. -Many variations of genetic algorithms have been 

developed and applied to a wide range of optimization problems, from graph coloring 

to pattern recognition, discrete systems (such as the traveling salesman problem) to 

continuous systems and from financial markets to multi-objective engineering 

optimization, Genetic Algorithms have the ability to deliver a “good-enough” solution 

“fast-enough”. This makes genetic algorithms attractive for use in solving 

optimization problems 

III.2 Genetic algorithm overview 

 The genetic algorithms (GAs)belong to the family of evolutionary algorithms, 

developed by John Holland and his collaborators in the 1960s and 1970s (Holland, 

1975; De Jong, 1975), is a model or abstraction of biological evolution based on the 

genetic processes of biological organisms. Over many generations, natural 

populations evolve according to the principles of natural selection and ‘survival of the 

fittest", first clearly stated by Charles Darwin in The Origin of Species. By mimicking 

this process, genetic algorithms are able to “evolve” solutions to real world problems, 

if they have been suitably encoded(12)Sometime later. Goldberg released a book in 

which he summarized the various fields of applications of GAs such as research, 

optimization and machine learning [Goldberg 1989]. This publication marks the 

beginning of a growing scientific interest in this new optimization technique. Gen and 

Cheng [1997] then develop a little more the application of these algorithms to 

optimization problems. In the same period, a C++ library called Ghalib was 

developed to serve as support for AG-based programming. This library contains a 

variety of tools designed to solve optimization problems using GAs.(13) 

III.3 Definition of Genetic algorithm 

 Genetic Algorithm is a Meta-heuristic algorithm that aims to find solutions to 

NP-hard problems. The basic idea of Genetic Algorithms is to first generate an initial 

population randomly which consist of individual solution to the problem called 
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Chromosomes, and then evolve this population after a number of iterations 

called Generations. During each generation, each chromosome is evaluated, using 

some measure of fitness. To create the next generation, new chromosomes, called 

offspring, are formed by either merging two chromosomes from current generation 

using a crossover operator or modifying a chromosome using a mutation operator. A 

new generation is formed by selection, according to the fitness values, some of the 

parents and offspring, and rejecting others so as to keep the population size constant. 

Fitter chromosomes have higher probabilities of being selected. After several 

generations, the algorithms converge to the best chromosome, which hopefully 

represents the optimum or suboptimal solution to the problem.(5) 

III.4 The reasons to use GAs 

Genetic Algorithms have the ability to deliver a “good-enough” solution “fast-

enough”. This makes genetic algorithms attractive for use in solving optimization 

problems.  

III.4.1 Solving Difficult Problems 

 In computer science, there is a large set of problems, which are NP-Hard. What 

this essentially means is that, even the most powerful computing systems take a very 

long time (even years!) to solve that problem. In such a scenario, GAs proves to be an 

efficient tool to provide usable near-optimal solutions in a short amount of time 

III.4.2 Getting a Good Solution Fast 

Some difficult problems like our problem Travelling Salesman Problem (TSP), 

have real-world applications like path finding and VLSI Design. Now imagine that 

you are using your GPS Navigation system, and it takes a few minutes (or even a few 

hours) to compute the “optimal” path from the source to destination. Delay in such 

real-world applications is not acceptable and therefore a “good-enough” solution, 

which is delivered “fast” is what is required 

III.4.3 Failure of Gradient Based Methods 

Traditional calculus-based methods work by starting at a random point and by 

moving in the direction of the gradient, till we reach the top of the hill. This technique 

is efficient and works very well for single-peaked objective functions like the cost 

function in linear regression. But, in most real-world situations, we have a very 
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complex problem called as landscapes, which are made of many peaks and many 

valleys, which causes such methods to fail, as they suffer from an inherent tendency 

of getting stuck at the local optima as shown in the following figure. (14) 

 

Figure III 1: local and global optima 

III.5 Important terms and concepts 

Are some of the basic terminologies that can help us to understand genetic 

algorithms? 

• Population: It is a subset of all the possible (encoded) solutions to the given 

problem. 

• Chromosomes: A chromosome is one such solution to the given problem. 

• Gene: A gene is one element position of a chromosome. 

• Allele: It is the value a gene takes for a particular chromosome. 

 

Figure III 2: Terminology of the data structures representing a population of solutions 
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• Genotype: Genotype is the population in the computation space. In the 

computation space, the solutions are represented in a way which can be easily 

understood and manipulated using a computing system 

• Phenotype: Phenotype is the population in the actual real world solution space 

in which solutions are represented in a way they are represented in real world 

situations 

• Decoding and Encoding: For simple problems, the phenotype and genotype 

spaces are the same. However, in most of the cases, the phenotype and 

genotype spaces are different. Decoding is a process of transforming a solution 

from the genotype to the phenotype space, while encoding is a process of 

transforming from the phenotype to genotype space. Decoding should be fast 

as it is carried out repeatedly in a GA during the fitness value calculation (14) 

 

Figure III 3: phenotype and genotype 

• Objective function: It is also called a fitness function. Whenever an 

optimization problem is solved, it is first formulated as a mathematical 

function that evaluates the quality/fitness of the candidate solution. We usually 

pass a solution to this function and this function returns the fitness of that 

solution. Once the fittest/optimal solution is found the process is stopped. 

• Genetic operators: genetic operators in genetic algorithms, the best 

individual’s mate to reproduce an offspring that is better than the parents. 

Genetic operators are used for changing the genetic composition of this next 

generation. These include crossover, mutation, selection, etc. 
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III.6 Characteristics of the genetic Search 

 

Broadly speaking, the search performed by a genetic algorithm can be characterized 

in the following way  

• Genetic algorithms manipulate bit strings or chromosomes encoding useful 

information about the problem, but they do not manipulate the information as 

such (no decoding or interpretation). 

• Genetic algorithms use the evaluation of a chromosome, as returned by the 

fitness function, to guide the search. They do not use any other information 

about the fitness function or the application domain. 

• The search is run in parallel from a population of chromosomes. 

• The transition from one chromosome to another in the search space is done 

stochastically(15) 

III.7 Principles and Functioning 

Since genetic algorithms are designed to simulate a biological process, much of 

the relevantterminology is borrowed from biology.However, the entities that this 

terminology refersto in genetic algorithms are much simpler than their biological 

counterparts [8]. The basiccomponents common to almost all genetic algorithms are: 

• A fitness function for optimization 

• A population of chromosomes 

• Selection of which chromosomes will reproduce 

• Crossover to produce next generation of chromosomes 

• Random mutation of chromosomes in new generation 

Otherwise, the final result is the best chromosome created during the search. 
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Figure III 4: Functioning of GA algorithm 

III.7.1 Initialization of Population                                                          

A set of “individuals” is called a population, where each individual is 

characterized by a set of Genes represented in binary (i.e. as 0 or 1). A set of 

genes represented by a string/sequence is known as a Chromosome. The 

population with which we start is called the Initial Population.(16) 

III.7.2 Fitness Function (evaluation) 

 

A Fitness function is a system that determines how fit (the ability of an 

individual to compete with other individuals) an individual is. It gives a fitness score 

to each individual which helps quantify the performance.This function helps to select 

the individuals who will be used for reproduction. 

A fitness function should possess the following characteristics the fitness 

function should be sufficiently fast to compute. It must quantitatively measure how fit 

a given solution is or how fit individuals can be produced from the given solution.(16) 

III.7.3 Selection 

The selection function takes the population and the results of the fitness function 

to determine who should reproduce. Then selects good chromosomes on the basis of 

their fitness values and produces a temporary population, namely, the mating pool. 

This can be achieved by many different schemes, but the most common methods are 

roulette wheel, ranking, and stochastic binary tournament selection. The selection 
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operator is responsible for the convergence of the algorithm. 

III.7.3.1 Roulette wheel Selection 

The roulette wheel selection (also known as fitness proportionate selection) is a function used 

by genetic algorithms for selecting potentially useful solutions for recombination. 

The crossover individual probability is computed based on the individual’s fitness divided by 

the sum of all population fitness. The followingis the formula for it: 

 

Where pi is the probability of each chromosome equals the chromosome 

frequency divided by the sum of all fitness.(17) 

 

Figure III 5: Roulette wheel selection method 

III.7.3.2 Rank selection 

Rank selection first ranks the population and then every chromosome receives 

fitness from this ranking. The worst will have fitness 1, second worst 2 etc. and the 

best will have fitness N (number of chromosomes in population). 

After this all the chromosomes have a chance to be selected. Rank-based 

selection schemes can avoid premature convergence. But can be computationally 

expensive because it sorts the populations based on fitness value. But this method can 

lead to slower convergence, because the best chromosomes do not differ so much 

from other ones.(18) 
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Figure III 6: Rank selection 

III.7.4 Reproduction 

Generation of offspring happen in 2 ways: 

III.7.4.1 Crossover Operators 

The process of mixing the genes of the pair of individuals chosen to produce a 

new pair of individuals is called Crossover or Genetic operation. This process is 

continued to create a new population. Crossover can be performed in different 

methods 

There are 3 major types of crossovers: 

III.7.4.1.1 One Point Crossover 

In this one-point crossover, a random crossover point is selected and the tails of 

its two parents are swapped to get new off-springs 

 

 

Figure III 7: One Point Crossover 
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III.7.4.1.2 Multi Point Crossover 

Multi point crossover is a generalization of the one-point crossover wherein 

alternating segments are swapped to get new off-springs. 

 

Figure III 8: Multi Point Crossover 

III.7.4.1.3 Uniform Crossover 

In a uniform crossover, we don’t divide the chromosome into segments rather 

we treat each gene separately. In this, we essentially flip a coin for each chromosome 

to decide whether or not it’ll be included in the off-spring. We can also bias the coin 

to one parent, to have more genetic material in the child from that parent.(14) 

 

Figure III 9: Uniform Crossover 

III.7.4.2 Mutation operators: 

This operator adds new genetic information to the new child population. This is 

achieved by flipping some bits in the chromosome. Mutation solves the problem of 

local minimum and enhances diversification. The following image shows how 

mutation is done. (19)There is some of the most commonly used mutation operator: 

III.7.4.2.1 Bit Flip Mutation 

In this bit flip mutation, we select one or more random bits and flip them. This 

isused for binaryencodedGAs. 
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Figure III 10: Bit Flip Mutation 

III.7.4.2.2 Random Resetting 

Random Resetting is an extension of the bit flip for the integer representation. In 

this, a random value from the set of permissible values is assigned to a randomly 

chosen gene. 

III.7.4.2.3 Swap Mutation 

In swap mutation, we select two positions on the chromosome at random, and 

interchange the values. This iscommon in permutation-basedencodings. 

 

Figure III 11: Swap Mutation  

III.7.4.2.4 Scramble Mutation 

Scramble mutation is also popular with permutation representations. In this, 

from the entire chromosome, a subset of genes is chosen and their values are 

scrambled or shuffled randomly. 

 

Figure III 12: Scramble Mutation 

 

III.7.4.2.5 Inversion Mutation 

In inversion mutation, we select a subset of genes like in scramble mutation, but 

instead of shuffling the subset, we merely invert the entire string in the subset.(14) 

 

Figure III 13: Inversion Mutation 
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III.7.5 Termination (Convergence): 

The algorithm terminates when a population converges. Convergence here 

denotes that the individuals no longer have significant difference in their genetic 

structure. Termination can also occur after a set number of cycles; this normally leads 

to multiple convergence points. 

III.8 Application areas of GA: 

Genetic algorithms have a variety of applications, and one of the basic 

applications of genetic algorithms can be the optimization of problems and solutions. 

We use optimization for finding the best solution to any problem. Optimization using 

genetic algorithms can be considered genetic optimization, and there are several 

benefits of performing optimization using genetic algorithms. 

Genetic algorithms are applied in the following fields: 

III.8.1 Neural networks: 

Neural networks in machine learning are one of the biggest areas where genetic 

algorithms have been used for optimization. One of the simplest examples of use 

cases of genetic optimization in neural networks is finding the best fit set of 

parameters for a neural network. Instead of these, we can find the use of genetic 

algorithms in neural network pipeline optimization, inheriting qualities of neurons, 

etc.(20) 

III.8.2 Medical science: 

In medical science, we can find many examples of use cases of genetic 

optimization. The generation of a drug to diagnose any disease in the body can have 

the application of genetic algorithms. In various examples, we find the use of genetic 

optimization in predictive analysis like RNA structure prediction, operon prediction, 

and protein prediction, etc. also there are some use cases of genetic optimization in 

process alignment such as Bioinformatics Multiple Sequence Alignment, Gene 

expression profiling analysis, Protein folding, etc. 

III.8.3 Mechanical engineering design: 

 

In many designing procedures of mechanical components, we can also find the 
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application of genetic optimization. They are used to develop parametric aircraft 

designs. The parameters of the aircraft are modified and upgraded to provide better 

designs. We can take aircraft wing design as an example where we are required to 

improve the ratio of lift to drag for a complex wing. This kind of designing problem 

can be considered as a multidisciplinary problem, the fitness function in genetic 

optimization can be altered by considering some specific requirement of the 

design.(20) 

 

III.8.4 Image processing: 

There are various works and researches which show the use cases of genetic 

optimization in various image processing tasks. One of the major tasks related to 

genetic approach in image processing is image segmentation.Although these genetic 

optimizations can be utilized in various areas of image analysis to solve complex 

optimization problems. Using genetic optimization in an integrated manner with 

image segmentation techniques can make the whole procedure an optimization 

problem. 

III.8.5 Wireless sensor networks: 

The wireless sensor network is a network that includes spatially dispersed and 

dedicated centers to maintain the records about the physical conditions of the 

environment and pass the record to a central storage system. Some notable parameters 

are the lifetime of the network and energy consumption for routing which plays key 

roles in every application. Using the genetic algorithms in WSN we can simulate the 

sensors and also a fitness function from GA can be used to optimize, and customize 

all the operational stages of WSNs. (20) 

 

III.8.6 Transport 

Genetic algorithms are used in the traveling salesman. This is one of the most 

common combinatorial optimization problems in real life that can be solved using 

genetic optimization. The main motive of this problem is to find an optimal way to be 

covered by the salesman, in a given map with the routes and distance between two 

points. If genetic algorithms are used in finding the best route structure, we don’t get 
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the solution only once after each iteration, we can generate offspring solutions that 

can inherit the qualities of parent solutions. TSP has a variety of applications like 

planning, logistics, and manufacturing. 

 

 

III.9 Advantages of Gas 

 

GAs has various advantages which have made them immensely popular: 

• Is faster and more efficient as compared to the traditional methods. 

• Have very good parallel capabilities. 

• It can optimize various problems such as discrete functions, multi-objective 

problems, and continuous functions 

• Always gets an answer to the problem, which gets better over the time. 

• A genetic algorithm does not need derivative information. 

• Useful when the search space is very large and there are a large number of 

parameters involved. (19) 

III.10 Limitations of Gas 

 

Like any technique, GAs also suffers from a few limitations.Theseinclude: 

• GA is not suited for all problems, especially problems which are simple and 

for which derivative information is available. 

• Fitness value is calculated repeatedly which might be computationally 

expensive for some problems. 

• Being stochastic, there are no guarantees on the optimality or the quality of 

the solution. 

• If not implemented properly, the GA may not converge to the optimal 

solution. 
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III.11 Mathemical formulation 

The traveling salesman problem consists in finding the shortest path connecting � 

given points and passing once and only once by each point and it returns to the 

starting point. The dot can represent a city, a country, or a warehouse, etc. For a set of 

� points, there exists in total �! possible paths. The starting point does not change the 

length of the path, we can choose it arbitrarily, so we have (  − 1)! different paths. 

Finally, each path can be traversed in both directions and the two possibilities have 

the same length, so we can divide this number by two. For example, if we call the 

points, �, �, �, �, the paths ����, ����, ����, ���� ����, ����, ����, ���� all 

have the same length, only the starting point and the direction of the course changes. 

So we have ( −1)! 2 candidate paths to consider. 

Let � = (	, 
) be a graph such that 	 = { 1, … , � �} the set of vertices, � = |	| the 

number of vertices of the graph �, each vertex modeling a city where �� characterized 

by the coordinates  and � and � the distance matrix of size ( � × �), such that �(�, �) 

defines the distance between the two vertices �� and ��. (�) The set of arcs, models 

the cost of travel between two cities. 

 The objective is to find a tour of the minimum total length, the length of which is the 

sum of the costs of each arc in the tour. 

The search space for the TSP is a set of permutations of � cities and the optimal 

solution is a permutation that gives the minimum cost of the tour. 

The concept of calculating distances between cities � �� (� + 1) is calculated under the 

Euclidean distance rule using the following equation: 

�( �[ � ], �[ � + 1]) = √( ( � − �+1)2 + ( �� − ��+1)2 ) 

 Such that, [�] is a permutation on the set {1, 2, . . . , �} 

 � = ( �[1], �[2] , �[3], … , �[�], �[1] ) 

Then, � the objective function to calculate the cost of each solution of the problem 

given by the following formula: 

 � = �( �[ �], �[1] ) + ∑ �( �[ �], �[ � + 1] ) �−1 �=1 
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From (1), (2) �� (3) the simple mathematical formula of the traveling salesman 

problem is given by: 

 ��� {  (�) , � = ( �[1], �[2], �[3] … , �[�], �[1])} 

 

 

III.12 Conclusion 

The GA is a probabilistic solution to optimize the problems that are modeled on 

a genetic evaluation process in biologically and are focused as an effective algorithm 

to finda global optimum solution for many types of problems. The GA is used in 

different 

Artificial intelligence applications like object-oriented systems, robotics, and 

futuristicemerging technologies. 

We began this chapter by introducing what a genetic algorithm is, which have 

the ability to deliver a “good-enough” solution “fast-enough” and how it works, We 

also mentioned the basic components of this algorithm,and the application areas of 

GA which is TSP and the adventages then the inconvinients of the GA.  
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IV.1 Introduction 

The objective of this chapter is to present the tools (software, languages, 

libraries and data used in my system).in our work is based on the comparison of two 

programs that aim to solve the problem of salesman. In the first program we have 

integrated genetic algorithm to solve the problem. The second one has integrated 

Meta heuristic algorithm giving each of these two programs a result with the aim of 

having better traffic with a reduced distance. 

IV.2 Development environment and tools 

IV.2.1 Google Colaboratory 

Colaboratory, shortened to "Colab", allows us to write and run Python code in 

your browser. Colaboratory is a Google research project created to help spread 

machine learning education and research. It is a Jupyter notebook environment that 

requires no configuration to use and runs entirely on the cloud. 

It offers the following advantages: 

• No configuration required 

• Free access to GPUs 

• Easy sharing 

 

 

Figure IV 1: Logo Google Colab 
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IV.2.2 Language used 

     In our project we used the Python language. 

IV.2.2.1 Python 

Is an interpreted, cross-paradigm, cross-platform programming language. It 

promotes structured, functional and object-oriented imperative programming. It has 

strong dynamic typing, automatic memory management by garbage collection and an 

exception handling system; it is thus similar to Perl, Ruby, Scheme, Small talk and 

Tcl. The Python language is placed under a free license close to the BSD 5 license 

and works on most computer platforms, from smartphones to central computers, from 

Windows to Unix with in particular GNU/Linux via macOS, or even Android, iOS, 

and can also be translated into Java or .NET. It is designed to optimize programmer 

productivity by offering high-level tools and an easy-to-use syntax. 

 

 

Figure IV 2: logo of python 

IV.2.3 Library uses: 

IV.2.3.1 Random 

This module implements pseudo-random number generators for different 

distributions. Forintegers; there is a uniform selection from a range. For sequences, 

there is a uniform selection of a random element, a function to generate a random 

permutation of a list in place, and a function for random sampling without 

replacement. 

Some uses of random : 
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Math,it provides access to math functions arithmetic and logarithmic and 

exponential…etc. Whatever uses the math library: 

 

 

IV.2.3.2 Signal 

The signal.signal () function allows defining custom handlers to be executed 

when a signal is received. A small number of default handlers are installed: SIGPIPE 

is ignored (so write errors on pipes and sockets can be reported as ordinary Python 

exceptions) and SIGINT is translated into a KeyboardInterrupt exception if the parent 

process has not changed it. 

A handler for a particular signal, once set, remains installed until it is explicitly 

reset (Python emulates the BSD style interface regardless of the underlying 

implementation), with the exception of the handler for SIGCHLD, which follows the 

underlying implementation. 

 

IV.2.3.3 Copy 

Assignment statements in Python do not copy objects, they create links between 

the target and the object. For collections that are mutable or contain mutable elements, 

sometimes a copy is needed, so that you can modify one copy without modifying the 
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other. 

Whatever use 

 

 

IV.2.3.4 Time 

This module provides various time-related functions. We used the library for 

the function time.time () which returns the time in seconds since epoch as a floating 

point number. The specific epoch date and treatment of leap seconds depends on the 

platform. 

 

IV.3 Program architecture 

IV.3.1 Genetic algorithm : 

The first is a population-based approach that deals with several solutions at 

once. They maintain and improve several solutions, and choose the best result. 

The methodconsists of: 
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Figure IV 3: algorithm of gentic algorithm 

• Creation of an initial population 

• Evaluation of the "fitness" (quality) of individuals 

• Selection of parents 

• Creation of new individuals: crossover + mutation 

• Addition of new individuals in the population 

• Return to the second step the parameters chosen for the resolution of the TSP with 

AG 

• After having the number of cities and population. 

• A chromosome of N genes a solution = path taken: coding used is a real coding 

(each gene of the chromosome=city number). 

• Evaluation function: minimization of the distance traveled. 

• Crossover operator. 

• Mutation operator. 

• Stop test number of generations. 
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• Last adds an item to the end of the list or array. 

IV.3.2 Simulated annealing algorithm: 

 

The second method is based on local search. 

It consists of: 

• Simulated annealing is an iterative algorithm that uses the Metropolis criterion exp 

(-ΔE/T) 

• We have 2 nested loops. 

• The first loop to lower the temperature (thermodynamic stability): change the value 

of the temperature whose goal is to converge towards the global optimum (global 

minima for the case of the minimization problem). 

• The second loop to choose the best neighbor of the current solution, using the 

Metropolis criterion. 

• The stopping criterion will depend on the time (the number of iterations) and the 

degradation of the solution (Δf), evaluated as the difference of the cost function of the 

previous solution and of the new selected solution. 

• At each degradation, the algorithm stops with a probability depending on this 

degradation and on the time (number of iterations) of the algorithm. 

• The greater the degradation, the lower the probability of continuing. 

• The higher this number, the lower the probability of continuing. 

• PThe temperature makes it possible to control the acceptance of the solutions or not 

by the calculation of the criterion of Métropolis exp (-Δf/T). 

• The value of the temperature parameter varies during the search for iterations. 

• At the beginning Temperature is large. 

• It gradually decreases to reach the value 0. 

• Test of the probability of accepting the solution or not. 

• Choose a Stop Test. arameters of the simulated annealing algorithm 
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Figure IV 4: simulated annealing algorithme 

IV.3.3 Data declaration phase: 

 

This phase consists of; 

• Declaration the list of cities that are defined as the capture, longitudes and latitudes 

are from Google Maps. 

• Calculates distance for each 2 city. 

• Selected distances. 

IV.4  Final phase (execution and problem result) 

 

This phase consists of: 

• Import time for calculation of execution time and comparison of the two phases. 

• Import of methods and display of results. 
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IV.5 Results : 

 

Capture shows the final display obtained that we see: 

• The list of cities is ordered for each method. 

• Distance from traffic. 

• The duration of execution. 

From the summary results we conclude that simulated annealing    

 

IV.6 Conclusion 

In this chapter we present language python and the google 

collabotoryenvironment where we had implemented the execution of TSP with the 

genetic algorithm and the SA method. 

We found that the GA is the faster but the SA is the optimum. 
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General conclusion: 

In this thesis, we studied a combinatorial optimization problem: the problem of 

traveling salesman (TSP) we solved this problem with using two algorithms of 

metaheuristic (genetic algorithms, simulated annealing) we have compared the results 

of this two to know who is faster and optima and inorder to get better results. 

We started by studying the basic concepts of machine learning and its types then we 

presented Optimization algorithms. 

We also presented metaheuristic algorithms, its classification, applications ...etc. 

After looking at the problem and solving it using the genetic algorithm andthe 

simulated annealing in the fourth chapter, wefound that simulated annealing is better 

than genetic algorithm. 

For future work, we suggest that new students try to find new models to solve the 

problem of the traveling salesman, so that they are easy and fast and give better 

results than the models mentioned in this thesis. 
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