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1. Introduction

Risk measures or premium calculation principles are functionals Π : F → [0,+∞]

from the set F of all ‘loss’ cumulative distribution functions (cdfs) F to the extended

non-negative real line [0,+∞] (e.g., Denuit et al. 2005). The corresponding random

variablesX ∼ F are called ‘loss’ random variables, and we assume them to be non-negative

throughout this paper. We also assume that the variables X follow, or are modeled with,

continuous cdfs. Given a cdf F , the corresponding quantile function Q : (0, 1) → [0,∞)

is defined by

Q(t) = inf{x : F (x) ≥ t}.

The quantile function Q plays a pivotal role in defining numerous risk measures, and is

a well known risk measure itself, called the value at risk and denoted by VaR[t, F ] (e.g.,

Denuit et al. 2005). Other illustrative examples of risk measures follow next.

Example 1.1. Let g : [0, 1] → [0, 1] be a distortion function, that is, a non-decreasing

function such that g(0) = 0 and g(1) = 1. The distortion risk measure (Denneberg, 1994;

Wang, 1995, 1998) is defined by the formula

Πd[F ] =

∫ ∞

0

g(1− F (x))dx,

which can be rewritten in terms of the quantile function Q as follows:

Πd[F ] =

∫ 1

0

Q(s)dΨ(s), (1.1)

where Ψ(s) = −g(1 − s). Assuming that g is left-continuous, the function Ψ is right-

continuous, and Note 1.1 below will clarify our reason for imposing this type of continuity.

Hence, Πd[F ] is an L-functional, a property that was highlighted and utilized by Jones

and Zitikis (2003) and subsequently used by many researchers for developing statistical

inferential results for distortion risk measures in light- and heavy-tailed settings.

Note 1.1. To make this paper less cumbersome, we always write integrals as
∫ b

a
g(x)dh(x)

irrespectively of whether integrators h are right- or left-continuous functions. What we

have in mind behind such integrals is
∫
(a,b]

g(x)dh(x) in the case of right-continuous h and∫
[a,b)

g(x)dh(x) in the case of left-continuous h. For example, the integral
∫ 1

0
Q(s)dΨ(s) on

the right-hand side of equation (1.1) means
∫
(0,1]

Q(s)dΨ(s) because Ψ is right-continuous

as noted below equation (1.1).
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Example 1.2 (Continuation of Example 1.1). Since g is non-decreasing, the function Ψ

is also non-decreasing. In the special case when

Ψ(s) = −(1− s)1/ρ (1.2)

with parameter ρ ≥ 1, the distortion risk measure Πd[F ] is called the proportional hazards

transform and frequently denoted by PHT[ρ, F ]. When

Ψ(s) =
(s− t)+
1− t

(1.3)

with parameter t ∈ [0, 1), then the risk measure Πd[F ] is known as the tail value at risk

and frequently denoted by TVaR[t, F ]. (We have used the classical notation (s − t)+

for the positive part of s − t.) Since the cdf F is continuous throughout this paper by

assumption, the risk measure TVaR[t, F ] coincides with the conditional tail expectation

CTE[t, F ] = E[X|X > Q(t)]. For details on these and other risk measures, we refer to,

e.g., Denuit et al. (2005) and references therein. This concludes Example 1.1.

Example 1.3. The relative distortion risk measure (Wang, 1998) is given by the formula

Πrd[F ] =
Πd[F ]

E[X]
.

The measure can be expressed (see equations of Example 1.1) in terms of the quantile

function Q as follows:

Πrd[F ] =

∫ 1

0
Q(s)dΨ(s)∫ 1

0
Q(s)ds

. (1.4)

This is a ratio of L-functionals. With this note, we conclude Example 1.3.

Example 1.4. Let w : [0,∞) → [0,∞) be a non-decreasing function, called weight

function. The weighted risk measure, or the weighted premium calculation principle

(Furman and Zitikis, 2008), is given by the formula

Πw[F ] =
E[Xw(X)]

E[w(X)]
.

For details on Πw[F ] and its extensions, we refer to Furman and Zitikis (2009). With

U denoting a uniform on [0, 1] random variable, the variables X and Q(U) are equal in

distribution, and so we can rewrite Πw[F ] in terms of the quantile function Q as follows:

Πw[F ] =

∫ 1

0
H1 ◦Q(s)ds∫ 1

0
H2 ◦Q(s)ds

, (1.5)



4

whereH1(x) = xw(x) andH2(x) = w(x) withHi◦Q(s) denoting the compositionHi(Q(s))

of the two functions Hi and Q. This concludes Example 1.4.

All of the aforementioned risk measures are special cases of the risk measure

Πr[F ] =

∫ 1

0
H1 ◦Q(s)dΨ1(s)∫ 1

0
H2 ◦Q(s)dΨ2(s)

, (1.6)

where Hi : [0,∞) → [0,∞), i = 1, 2, are two non-decreasing and left-continuous functions,

and Ψi : [0, 1] → R, i = 1, 2, are two non-decreasing and right-continuous functions. In

addition to the aforementioned (absolute) PHT and CTE/TVaR risk measures, the ratio

risk measure Πr[F ] also includes the relative PHT risk measure
∫∞
0
(1−F (x))1/ρdx/E[X]

and the relative CTE/TVaR risk measure E[X|X > Q(t)]/E[X]. Many indices of eco-

nomic inequality are also of form (1.6), as elucidated by Greselin et al. (2009). Another

example of Πr[F ] will follow after a note.

Note 1.2. Some applications might lead to non-monotonic functions H◦
i . In this case

we need to assume that the functions are of bounded variation, and to also require that

each of the two non-decreasing components H∗
i and H∗∗

i in the decomposition H◦
i =

H∗
i − H∗∗

i satisfies the conditions to be imposed on Hi in our following considerations.

Same arguments apply to non-monotonic functions Ψi, assuming in particular that they

are of bounded variation.

Example 1.5. The risk measure Πr[F ] includes, as a special case, the ratio

RF (p) =
E[X|X ≤ Q(p)]

E[X|X > Q(p)]
,

which defines the Zenga curve ZF (p), 0 ≤ p ≤ 1, via the equation ZF (p) = 1−RF (p). We

refer to the original papers by Zenga (1987, 2007) for interpretations and other details

related to ZF , and to Greselin et al. (2010) for statistical inferential results when (income)

distributions are light-tailed. It is useful to rewrite RF (p) in terms of the aforementioned

CTE/TVaR and PHT risk measures, which is accomplished by the equation

E[X|X ≤ Q(p)] =

(
1− 1

p

)
E[X|X > Q(p)] +

1

p
E[X].

Hence,

RF (p) = Hp

(
E[X|X > Q(p)],E[X]

)
,
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where the coupling function Hp : [0,∞)× [0,∞) → [0,∞) is given by the formula

Hp(x, y) = 1− 1

p
+

1

p

(
y

x

)
.

This concludes Example 1.5.

Hence, the class of interesting and useful coupling functions spans beyond ratios x/y.

This suggests considering a most general ‘coupled risk measure,’ defined as follows: Let

H : [0,∞) × [0,∞) → [0,∞) be a ‘coupling’ function, which couples two basic risk

measures

Li[F ] =

∫ 1

0

Hi ◦Q(s)dΨi(s), i = 1, 2,

into one

Π[F ] = H(L1[F ], L2[F ]),

which we call the coupled risk measure. Our task in this paper is to develop a statistical in-

ferential theory for this risk measure when loss variables follow heavy-tailed distributions.

The corresponding theory in the case of light-tailed distributions is already available in

the literature, and we refer to Brazauskas et al. (2007, 2009) and references therein for

details.

The rest of this paper is organized as follows. In Section 2 we introduce an empirical

estimator, denoted by Π̂n, of the coupled risk measure Π[F ] when losses are heavy-tailed.

In Section 3 we establish weak approximations and thus asymptotic normality of the

estimator Π̂n under several sets of conditions. In Section 4 we give illustrative examples

of the aforementioned weak approximations. Proofs are given in Section 5.

2. Constructing an estimator for Π[F ]

The cdf F is unknown, and thus the risk measure Π[F ] is unknown. Estimating Π[F ]

crucially relies on estimating Li[F ]. To work out our initial intuition on the topic, we

start with a brief discussion of what happens within the classical CLT-like framework,

and why we need to depart from it.

It is natural to construct an estimator for Li[F ] by simply replacing the (unknown)

population cdf F by its empirical counterpart Fn, which gives the weighted sum

L̃i,n =
n∑

j=1

ci,j,nHi(Xj:n)
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of the (observable) random variables Hi(Xj:n), 1 ≤ j ≤ n, with the coefficients

ci,j,n = Ψi

(
j

n

)
−Ψi

(
j − 1

n

)
.

It is known from the theory of L-statistics (e.g., Shorack and Wellner, 1986) that under

some assumptions on Hi, Ψi, and Q, the following asymptotic-normality result holds:

√
n (L̃i,n − Li[F ]) →d N (0, σ2

F ), (2.1)

provided that the variance

σ2
F =

∫ 1

0

∫ 1

0

(Hi ◦Q)′(s)(Hi ◦Q)′(t)(min(s, t)− st)dΨi(s)dΨi(t)

is finite. In the case of the CTE/TVaR risk measure, this scenario has been thoroughly in-

vestigated by Brazauskas et al. (2008), and for general L-type risk measures by Brazauskas

et al. (2007, 2009). The finiteness of the variance σ2
F is, however, often violated by heavy-

tailed distributions. Hence, we need to develop another approach for deriving statistical

inferential results in the case of such distributions, and we shall do so next.

We note at the outset that a number of special cases that are covered by the coupled risk

measure Π[F ] have been investigated in the literature within the heavy-tailed framework.

For example, Peng (2001) has established a ground-breaking statistical inferential theory

for the net premium. Necir et al. (2007), Necir and Meraghni (2009) have developed

an analogous theory for the proportional hazards transform. Necir et al. (2010) have

tackled the conditional tail expectation. Necir and Meraghni (2010) have devoted their

research to general L-functionals. All of these risk measures are special cases of the above

introduced coupled risk measure Π[F ], and thus our inferential theory developed in the

following sections will cover all these special cases.

Thus, our task now is to modify the classical estimator L̃i,n in such a way that it

would work in the heavy-tailed setting. For this, keeping in mind that high quantiles

are estimated differently from the intermediate ones of the (observable) random variables

Hi(X1), . . . , Hi(Xn), we introduce integers k = kn, which depend on n and are such that

k → ∞ and k/n → 0, (2.2)

with further assumptions specified later in this paper. Next we write the decomposition

Li[F ] = Li,n(1) + Li,n(2) with

Li,n(1) =

∫ 1−k/n

0

Hi ◦Q(s)dΨi(s)
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and

Li,n(2) =

∫ 1

1−k/n

Hi ◦Q(s)dΨi(s).

Finally, we replace the quantile function Q in the definition of Li,n(1) by the classical non-

parametric estimator Qn, and then replace Hi ◦Q in the definition of Li,n(2) by any of the

many high-quantile estimators available in the literature (see, e.g., Beirlant et al., 2004;

Castillo et al. 2005; and references therein), which we denote by Ĥi ◦Q. Throughout the

present paper we work with the Weissman (1978) estimator

Ĥi ◦Q(s) =

(
k

n

)γ̂i

Hi(Xn−k:n)(1− s)−γ̂i , s ∈
(
1− k/n, 1

)
,

where γ̂i is the Hill (1975) estimator of the tail index γi ∈ (1/2, 1) defined by the formula

γ̂i =
1

k

k∑
j=1

log

(
Hi(Xn−j+1:n)

Hi(Xn−k:n)

)
.

In summary, we have arrived at the estimator

L̂i,n = L̂i,n(1) + L̂i,n(2), (2.3)

where

L̂i,n(1) =
n−k∑
j=1

ci,j,nHi (Xj:n)

and

L̂i,n(2) = ci,△,nHi(Xn−k:n)

with

ci,△,n =

(
k

n

)γ̂i ∫ 1

1−k/n

(1− s)−γ̂idΨi(s).

Note the similarity between L̂i,n(1) and the ‘classical’ estimator L̃i,n, but L̂i,n(2) and

L̃i,n are quite different. Replacing L1[F ] and L2[F ] in H(L1[F ], L2[F ]) by the above

constructed L̂1,n and L̂2,n, we obtain the estimator

Π̂n = H(L̂1,n, L̂2,n)

of Π[F ]. In the next section we shall establish the asymptotic distribution of Π̂n.

For developing statistical inferential results (e.g., confidence intervals and hypothesis

tests) for Π[F ], we need to derive asymptotic distributions of L̂1,n and L̂2,n, which we do

in the next section. The following regular variation condition plays a decisive role in the
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derivations. Namely, let the function Hi ◦Q be regularly varying at 1 with index −γi < 0,

that is,

lim
ϵ↓0

Hi ◦Q(1− ϵs)

Hi ◦Q(1− ϵ)
= s−γi (2.4)

for every s > 0. This is the so-called first-order condition, which is sufficient for proving

consistency of the estimator Π̂n. For establishing the asymptotic distribution of the

estimator, we need a second-order condition, which specifies the rate of convergence in

the first-order condition. Namely, assume that, for every s > 0,

lim
ϵ↓0

1

Ai(1/ϵ)

(
Hi ◦Q(1− ϵs)

Hi ◦Q(1− ϵ)
− s−γi

)
= s−γi

s−ωi − 1

ωi

, (2.5)

where ωi ≤ 0 is the so-called second-order parameter and x 7→ Ai(x) is a function that

does not change its sign for all sufficiently large x and converges to 0 when x ↑ ∞. When

ωi = 0, then the ratio on the right-hand side of equation (2.5) is interpreted as log s.

3. Establishing the asymptotic distribution of Π̂n

We assume that the first partial derivatives of the functional H are continuous at the

point (L1[F ], L2[F ]), and not both of them are zero at the point. By H(1)
x (L1[F ], L2[F ])

and H(1)
y (L1[F ], L2[F ]) we denote the first partial derivatives of H(x, y) with respect to

x and y, respectively, both evaluated at the point (x, y) = (L1[F ], L2[F ]). The following

lemma plays a fundamental role in our considerations.

Lemma 3.1. Assume that there are standard Brownian bridges Bn defined on a possibly

different probability space than the original one, and also assume that, for each i = 1 and

i = 2, there are constants bi,n and λi, and linear functionals ℓi,n defined on the space of

all functions such that

bi,n
(
L̂i,n − Li[F ]

)
= λi + ℓi,n(Bn) + oP(1) (3.1)

when n → ∞. Furthermore, let the constants bi,n be such that

b2,n
b1,n + b2,n

→ δ (3.2)

for some δ ∈ [0, 1]. Then, when n → ∞,

b1,nb2,n
b1,n + b2,n

(
Π̂n − Π[F ]

)
= λ+ ℓn(Bn) + oP(1) (3.3)

with the bias term

λ = δH(1)
x (L1[F ], L2[F ])λ1 + (1− δ)H(1)

y (L1[F ], L2[F ])λ2
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and the linear functional

ℓn = δH(1)
x (L1[F ], L2[F ])ℓ1,n + (1− δ)H(1)

y (L1[F ], L2[F ])ℓ2,n.

Lemma 3.1 reduces our task of deriving the asymptotic distribution of the coupled risk

measure Π[F ] to establishing statement (3.1) for both i = 1 and i = 2. Recall that

Li = Li,n(1) + Li,n(2) and L̂i,n = L̂i,n(1) + L̂i,n(2). These two equations further reduce

our task to showing that, with the above defined constants bi,n and Brownian bridges Bn,

for each ∆ = 1 and ∆ = 2 there are constants λi(∆) and linear functionals ℓi,n(∆; •) such

that, when n → ∞,

bi,n
(
L̂i,n(∆)− Li,n(∆)

)
= λi(∆) + ℓi,n(∆;Bn) + oP(1). (3.4)

In view of this assumption, the earlier noted constants λi and linear functionals ℓi are the

sums

λi = λi(1) + λi(2) (3.5)

and

ℓi,n = ℓi,n(1; •) + ℓi,n(2; •). (3.6)

In various generalities, statement (3.4) when ∆ = 1 will be established in Theorems 3.1

and 3.2 below, whereas Theorem 3.3 and Corollary 3.1 will deal with the case ∆ = 2.

Note 3.1. In all of the following results, the Brownian bridges Bn and the probability

space on which they are defined can be chosen same, and this is a crucial property as it

allows us to combine various asymptotic results into one.

In what follows we use the notation

Di,n = Hi ◦Q(1− k/n)

(
k

n

)γi ∫ 1

1−k/n

(1− s)−γidΨi(s)

and assume that, when n → ∞, √
n

k
Di,n → ∞. (3.7)

The next theorem establishes statement (3.4) when ∆ = 1 under a very weak assump-

tion on the function F ◦ H−1
i , assuming only that it is continuous, but this generality

is achieved at the expense of requiring Ψi(s) = s for all s ∈ [0, 1], which is indeed a

restriction though luckily satisfied by a number of important examples.
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Theorem 3.1. Let the function F ◦ H−1
i be continuous and Ψi(s) = s for all s ∈ [0, 1].

Then there are Brownian bridges Bn (on a possibly different probability space) such that
√
n(L̂i,n(1)− Li,n(1)

(n/k)1/2Di,n

= ℓi,n(1;Bn) + oP(1) (3.8)

with

ℓi,n(1;Bn) =
−1

(n/k)1/2Di,n

∫ 1−k/n

0

Bn(s)dHi ◦Q(s).

The following theorem allows for a general class of functions Ψi but imposes a require-

ment that Hi ◦Q is continuously differentiable.

Theorem 3.2. Let Hi ◦ Q be continuously differentiable on [0, 1). Furthermore, let
√
n (Ψi(1/n) − Ψi(0)) = O(1) when n → ∞, and let s →

∫ 1

s
(1 − t)−γidΨi(t) be regu-

larly varying at 1 with an index κ ∈ (0, 1/2). Then there are Brownian bridges Bn (on a

possibly different probability space) such that statement (3.8) holds with

ℓi,n(1;Bn) =
−1

(n/k)1/2Di,n

∫ 1−k/n

0

(Hi ◦Q)′(s)Bn(s)dΨi(s).

The previous two theorems deal with low and moderate quantiles. The next theorem

and its corollary deal with high quantiles.

Theorem 3.3. Let the following three limits exist and be finite:

bi = lim
n→∞

√
k Ai(n/k), (3.9)

ci = lim
n→∞

∫ 1

0
s−γi log(s)dΨi(1− ks/n)∫ 1

0
s−γidΨi(1− ks/n)

, (3.10)

di = lim
n→∞

∫ 1

0
s−γi(s−ωi − 1)dΨi (1− ks/n)∫ 1

0
s−γidΨi (1− ks/n)

. (3.11)

Furthermore, assume that, for some δ > 0 and when n → ∞,∫ 1

0
s−γi−ωi−δdΨi(1− ks/n)∫ 1

0
s−γidΨi(1− ks/n)

= O(1). (3.12)

Then there are Brownian bridges Bn (on a possibly different probability space) such that
√
n(L̂i,n(2)− Li,n(2))

(n/k)1/2Di,n

=
−bidi
ωi

+ ℓi,n(2;Bn) + oP(1), (3.13)

where

ℓi,n(2;Bn) = −γi(1 + ci)

√
n

k
Bn(1− k/n) + ciγi

√
n

k

∫ 1

1−k/n

Bn(s)

1− s
ds.
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The following corollary is a special case of Theorem 3.3 when Ψi(s) = s.

Corollary 3.1. Let Ψi(s) = s for all s ∈ [0, 1], and let the limit bi defined in (3.9) exist

and be finite. Furthermore, let γi + ωi < 1. Then there are Brownian bridges Bn (on a

possibly different probability space) such that

√
n(L̂i,n(2)− Li,n(2))

(n/k)1/2Di,n

=
−bidi
ωi

+ ℓi,n(2;Bn) + oP(1), (3.14)

where ci in the definition of ℓi,n(2;Bn) and the constant di are given by the formulas

ci =
−1

1− γi
and di =

ωi

1− γi − ωi

.

We have noted above that the Brownian bridges Bn and the probability space are same

in all our results. This allows us to pair, for example, Theorem 3.1 with Corollary 3.3,

and Theorem 3.2 with Theorem 3.3. Two results of this pairing are given next.

Corollary 3.2. Assume that one of the following two requirements is satisfied:

(1) Ψi(x) = s for all s ∈ [0, 1], and let the conditions of Theorem 3.1 and Corollary

3.3 be satisfied.

(2) The conditions of Theorems 3.2 and 3.3 are satisfied.

Then there are Brownian bridges Bn (on a possibly different probability space) such that

√
n(L̂i,n − Li)

(n/k)1/2Di,n

=
−bidi
ωi

+ ℓi,n(Bn) + oP(1), (3.15)

where ℓi,n = ℓi,n(1; •) + ℓi,n(2; •).

Corollary 3.2 together with Lemma 3.1 imply the following theorem, which we view as

the main result of the present paper.

Theorem 3.4. Assume that when i = 1, and also when i = 2, one of the following two

requirements is satisfied:

(1) Ψi(x) = s for all s ∈ [0, 1], and let the conditions of Theorem 3.1 and Corollary

3.3 be satisfied.

(2) The conditions of Theorems 3.2 and 3.3 are satisfied.

Furthermore, let there exist a constant δ ∈ [0, 1] such that, when n → ∞,

D1,n

D1,n +D2,n

→ δ. (3.16)
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Then there are Brownian bridges Bn (on a possibly different probability space) such that

√
n
(
Π̂n − Π[F ]

)
(n/k)1/2(D1,n +D2,n)

= λ+ ℓn(Bn) + oP(1) (3.17)

with the bias term

λ = δH(1)
x (L1[F ], L2[F ])

−b1d1
ω1

+ (1− δ)H(1)
y (L1[F ], L2[F ])

−b2d2
ω2

and the leading Gaussian term

ℓn = δH(1)
x (L1[F ], L2[F ])ℓ1,n + (1− δ)H(1)

y (L1[F ], L2[F ])ℓ2,n,

where ℓi,n = ℓi,n(1; •) + ℓi,n(2; •).

We can use Theorem 3.4 to derive asymptotic distributions of various special cases of

Π̂n and thus obtain statistical inferential results for the corresponding Π[F ]. Naturally,

one of the most challenging tasks that inevitably arises is obtaining explicit expressions

for ℓn(Bn). To illustrate how this can be done, in the next section we present detailed

examples tackling the PHT and CTE/TVaR risk measures.

4. Brownian bridge approximations: illustrative examples

Our illustrative examples in Section 1 were based on three risk measures: the pro-

portional hazards transform PHT[ρ, F ], the conditional tail expectation CTE[t, F ], and

the net premium E[X], which can be viewed, for example, as the proportional hazards

transform PHT[ρ, F ] with the parameter ρ = 1. Hence, in order to develop a statis-

tical inferential theory for Π[F ] = H(L1[F ], L2[F ]) with L1[F ] and L2[F ] being two of

the aforementioned three risk measures, we need to establish asymptotic representations

(3.15) for the proportional hazards transform (PHT) and the conditional tail expectation

(CTE). This we do next. Since we work individually with each of the two risk measures,

we shall drop the subindex i from the rest of this section.

PHT. In the case of the proportional hazards transform PHT[ρ, F ], we have Ψ(s) =

−(1 − s)1/ρ and H(x) = x (Example 1.1). Using decomposition (2.3), the estimator

P̂HT n can be expressed as

P̂HT n =
n−k∑
j=1

{(
1− j − 1

n

)1/ρ

−
(
1− j

n

)1/ρ}
Xj:n +

(
k

n

)1/ρ
Xn−k:n

1− ργ̂
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with

γ̂ =
1

k

k∑
j=1

log

(
Xn−j+1:n

Xn−k:n

)
. (4.1)

Brownian bridge approximations for P̂HT n can be established using Corollary 3.2 under

the conditions of Theorems 3.2 and 3.3. For this, we first calculate

Dn =

(
k

n

)1/ρ
Q(1− k/n)

1− ργ

and easily check that (n/k)1/2Dn → ∞ when n → ∞. Assuming that the quantile

function Q is continuously differentiable on [0, 1), with other conditions of Theorem 3.2

satisfied automatically, we have that

ℓn(1;Bn) =
−(1/ρ− γ)

(k/n)1/ρ−1/2Q(1− k/n)

∫ 1−k/n

0

(1− s)1/ρ−1Bn(s)dQ(s). (4.2)

Assume that limn→∞
√
k A1(n/k) = 0. Limits (3.10) and (3.11) are

c =
−1

1/ρ− γ
and d =

ω

1/ρ− γ − ω
, (4.3)

provided that 1/ρ − γ − ω > 0. The ratio on the right hand side of equation (3.12)

is equal to (1/ρ − γ)/(1/ρ − γ − ω − δ) under the assumption that δ > 0 is so small

that δ < 1/ρ − γ − ω. (We can always choose such δ > 0 because 1/ρ − γ − ω > 0 by

assumption.) We can now conclude from Theorem 3.3 that

ℓn(2;Bn) = −γ

(
1− 1

1/ρ− γ

)√
n

k
Bn(1− k/n)− γ

1

1/ρ− γ

√
n

k

∫ 1

1−k/n

Bn(s)

1− s
ds. (4.4)

Hence, ℓn(Bn) is the sum of the right-hand sides of equations (4.2) and (4.4). The sum is

asymptotically Gaussian with the mean zero and the variance (cf. Necir and Meraghni,

2009)

γ2(γ2ρ2 − 2γ2ρ3 + 4γρ2 − 2γρ+ ρ2 − 2ρ+ 1)

(γρ− 1)2
+

2γ2(ρ+ γρ− 1)

ρ+ 2γρ− 2
. (4.5)

An interlude. We note that it is not the variance expression (4.5) that is important for

us – unless we consider the proportional hazards transform PHT[ρ, F ] as a stand alone

risk measure – but the above derived expression for ℓn(Bn) as it allows us to combine the

expression with the corresponding one of the other risk measure making up the coupled

risk measure under consideration. This explains our interest in deriving expressions of

ℓn(Bn) for various risk measures. For example, if the second risk measure is the mean,

which is the net premium, then an expression for the corresponding ℓn(Bn) follows from
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the formulas of the previous subsection by setting ρ = 1. If the second risk measure is

the CTE/TVaR, then we refer to our next subsection.

CTE/TVaR. In the case of the conditional tail expectation CTE[t, F ], we have Ψ(s) =

(s− t)+/(1− t) and H(x) = x (Example 1.1). Using decomposition (2.3), we express the

estimator ĈTEn by the formula

ĈTEn =
1

1− t

n−k∑
j=1

((
j

n
− t

)
+

−
(
j − 1

n
− t

)
+

)
Xj:n +

kXn−k:n

n (1− t) (1− γ̂)

for any fixed 0 < t < 1 and for all sufficiently large n, where γ̂ is same as in (4.1). Assume

that limn→∞
√
k A1(n/k) = 0. Limits (3.10) and (3.11) are

c =
−1

1− γ
and d =

ω

1− γ − ω
,

provided that γ + ω < 1. (Same as in (4.3) but with ρ = 1.) The ratio on the right hand

side of equation (3.12) is equal to 1/(1− γ − ω− δ), assuming that δ > 0 is so small that

δ < 1− γ − ω. From Theorems 3.2 and 3.3 we have Brownian bridges Bn such that

ℓn(1;Bn) =
−(1− γ)

(k/n)1/2Q(1− k/n)

∫ 1−k/n

0

Bn(s)dQ(s) (4.6)

and

ℓn(2;Bn) =
γ2

1− γ

√
n

k
Bn(1− k/n)− γ

1− γ

√
n

k

∫ 1

1−k/n

Bn(s)

1− s
ds. (4.7)

Hence, ℓn(Bn) is equal to the sum of the right-hand sides of equations (4.6) and (4.7).

This sum is asymptotically Gaussian with the mean zero and the variance (cf. Necir et

al., 2010)

γ4

(1− γ)2(2γ − 1)
. (4.8)

We highlight again that it is not the latter variance but the above derived formula for

ℓn(Bn) that is of our primary interest in the present paper.

Useful formulas. Calculating the second moments or, equivalently, the variances of the

functionals ℓn(Bn) in our above examples reduces to calculating the second and mixed
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moments of the following three random variables:

W1,n =
1

(k/n)1/ρ−1/2Q(1− k/n)

∫ 1−k/n

0

(1− s)1/ρ−1Bn(s)dQ(s),

W2,n =

√
n

k
Bn(1− k/n),

W3,n =

√
n

k

∫ 1

1−k/n

Bn(s)

1− s
ds.

We next give formulas that make such calculations straightforward. Namely, when n →

∞, we have the limits:

E[W 2
1,n] →

γ2

(1/ρ− γ − 1)(1/ρ− γ − 1/2)
,

E[W 2
2,n] → 1,

E[W 2
3,n] → 2,

E[W1,nW2,n] →
γρ

1/ρ− γ − 1
,

E[W1,nW3,n] →
−γ

1/ρ− γ − 1
,

E[W2,nW3,n] → 1.

Using these limits, we can now easily check, for example, that E[ℓ2n(Bn)] is asymptotically

(when n → ∞) equal to quantity (4.5) in the PHT case and to (4.8) in the CTE/TVaR

case.

5. Proofs

We begin with a proof of Theorem 3.2, which is then followed by a proof of Theorem

3.1. This sequence of proofs is natural since Theorem 3.1 assumes Ψi(s) = s and thus

allows us to employ an additional technical tool, called the Vervaat process, which enables

us to relax the differentiability of F ◦H−1
i to only continuity.

Proof of Theorem 3.2. We first show that

√
n

(n/k)1/2Di,n

∫ 1/n

0

(Hi ◦Qn(s)−Hi ◦Q(s)) dΨi(s) = oP(1). (5.1)

Since Qn(s) = X1:n when s ∈ (0, 1/n] and X1:n = Op(1), and since the function Hi is

non-decreasing, we have that sups∈(0,1/n]Hi ◦Qn(s) = Op(1). Consequently, the quantity
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√
n
∫ 1/n

0
Hi ◦Qn(s)ds is of the order Op(1/

√
n) and thus, in particular, converges to zero

in probability. Furthermore, since the function Hi ◦Q is non-decreasing, we have that

√
n

∫ 1/n

0

Hi ◦Q(s)dΨi(s) ≤
√
n(Ψi(1/n)−Ψi(0))Hi ◦Q(1/n). (5.2)

By assumption,
√
n(Ψi(1/n)−Ψi(0)) is bounded, and so the left-hand side of inequality

(5.2) is asymptotically bounded. This proves statement (5.1) because (n/k)1/2Di,n → ∞

when n → ∞ by assumption (3.7).

In view of statement (5.1), the proof of Theorem 3.2 reduces to showing that

√
n

(n/k)1/2Di,n

∫ 1−k/n

1/n

(Hi ◦Qn(s)−Hi ◦Q(s)) dΨi(s) = ℓi,n(1;Bn) + oP(1). (5.3)

Before doing so, we introduce additional notation. Let E−1
n denote the uniform quantile

function based on the uniform on [0, 1] random variables F (X1), . . . , F (Xn) (recall that

the cdf F is continuous by assumption). Hence, Qn(s) = Q(E−1
n (s)). With the notation

ϑn(s) = E−1
n (s)− s, (5.4)

and using the assumed differentiability of the function Hi ◦Q, we have that

√
n

(n/k)1/2Di,n

∫ 1−k/n

1/n

(Hi ◦Q(s+ ϑn(s))−Hi ◦Q(s)) dΨi(s)

=

√
n

(n/k)1/2Di,n

∫ 1−k/n

1/n

Eτ [(Hi ◦Q)′(s+ τϑn(s))]ϑn(s)dΨi(s)

=

√
n

(n/k)1/2Di,n

∫ 1−k/n

1/n

(
Eτ [(Hi ◦Q)′(s+ τϑn(s))]− (Hi ◦Q)′(s)

)
ϑn(s)dΨi(s)

+

√
n

(n/k)1/2Di,n

∫ 1−k/n

1/n

(Hi ◦Q)′(s)ϑn(s)dΨi(s) (5.5)

where τ is a uniform on [0, 1] random variable, independent of all other random variables,

and Eτ denotes the expectation with respect to τ , with all other random variables being

fixed.

We shall next prove that

√
n

(n/k)1/2Di,n

∫ 1−k/n

1/n

(
Eτ [(Hi ◦Q)′(s+ τϑn(s))]− (Hi ◦Q)′(s)

)
ϑn(s)dΨi(s) = oP(1).

(5.6)

For this we first fix any ϵ ∈ (0, 1) and establish statement (5.6) with the integral
∫ 1−k/n

1/n

replaced by
∫ 1−ϵ

1/n
. The function (Hi ◦Q)′ is uniformly continuous on the interval [0, 1− ϵ]
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and the process ϑn converges to 0 uniformly on [0, 1]. Moreover, sup0<s<1 |
√
nϑn(s)| =

OP(1). Since (n/k)1/2Di,n → ∞, we therefore have that

√
n

(n/k)1/2Di,n

∫ 1−ϵ

1/n

|ϑn(s)|dΨi(s) = OP(1). (5.7)

To complete the proof of statement (5.6), we are left to verify statement (5.6) with the

integral
∫ 1−k/n

1/n
replaced by

∫ 1−k/n

1−ϵ
, that is, we need to prove that

√
n

(n/k)1/2Di,n

∫ 1−k/n

1−ϵ

(
Eτ [(Hi ◦Q)′(s+ τϑn(s))]− (Hi ◦Q)′(s)

)
ϑn(s)dΨi(s) = oP(1).

(5.8)

To this end, we first use the fact that sup1−ϵ<s<1−k/n |
√
nϑn(s)|/(1− s)1/2 = OP(1), which

follows from statement (2.2) on page 40 of Csörgő et al. (1986) and the proof of statement

(2.39) on page 49 of Csörgő et al. (1986). Then we use the fact that

sup
1−ϵ≤s≤1−k/n

∣∣∣∣Eτ [(Hi ◦Q)′(s+ τϑn(s))]

(Hi ◦Q)′(s)
− 1

∣∣∣∣ = oP(1), (5.9)

which is a consequence of Lemma 3 in Necir and Meraghni (2009). Hence, statement (5.8)

holds if

1

(n/k)1/2Di,n

∫ 1−k/n

1−ϵ

(Hi ◦Q)′(s)1/2dΨi(s) = O(1). (5.10)

To verify statement (5.10), we use the fact that (1 − s)(Hi ◦ Q)′(s)/Hi ◦ Q(s) is asymp-

totically bounded when s ↑ 1. This allows us to replace the derivative (Hi ◦ Q)′(s) by

(1− s)Hi ◦Q(s) and reduces the proof of statement (5.10) to showing that, when n → ∞,

1

a(1− k/n)b(1− k/n)

∫ 1−k/n

1−ϵ

a(s)db(s) = O(1), (5.11)

where a(s) = Hi ◦ Q(s)(1 − s)γi−1/2 and b(s) =
∫ 1

s
(1 − t)−γidΨi(t). We shall establish

statement (5.11) in Lemma 5.1 below, taking now the validity of the statement for granted.

This concludes the proof of statement (5.10).

In summary, we have prove that

√
n

(n/k)1/2Di,n

∫ 1−k/n

1/n

(Hi ◦Qn(s)−Hi ◦Q(s)) dΨi(s)

=

√
n

(n/k)1/2Di,n

∫ 1−k/n

1/n

(Hi ◦Q)′(s)ϑn(s)dΨi(s) + oP(1). (5.12)
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Our next task is to establish a weak approximation for the main term on the right-hand

side of equation (5.12). Namely, we shall show that

√
n

(n/k)1/2Di,n

∫ 1−k/n

1/n

(Hi ◦Q)′(s)ϑn(s)dΨi(s)

=
−1

(n/k)1/2Di,n

∫ 1−k/n

1/n

(Hi ◦Q)′(s)Bn(s)dΨi(s) + oP(1), (5.13)

where, defined on a possibly different probability space, Bn are Brownian bridges such

that (see statement (2.2) on page 40 of Csörgő et al., 1986) for any 0 ≤ ν < 1/2 we have

sup
1/n≤s≤(n−1)/n

nν |
√
nϑn(s) +Bn(s)|

s1/2−ν(1− s)1/2−ν
= OP(1) (5.14)

when n → ∞.

Note 5.1. The need to change the original probability space into a new one does not

affect our results. In fact, we can start working on the probability space of Csörgő et al.

(1986) right at the very outset since all our results are ‘in probability.’

In view of (5.14), statement (5.13) follows if

n−νi

(n/k)1/2Di,n

∫ 1−k/n

1/n

(Hi ◦Q)′(s)1/2−νidΨi(s) → 0, (5.15)

where νi ∈ [0, 1/2) can be any, even though our arguments below will require νi to be

strictly positive, though no matter how small it could be.

To prove statement (5.15), we employ the earlier noted fact that (1−s)(Hi◦Q)′(s)/Hi◦

Q(s) = O(1) when s ↑ 1, and reduce the proof to showing that

1

kνi

( ∫ 1−k/n

1/n
Hi ◦Q(s)(1− s)γi−1/2−νi(1− s)−γidΨi(s)

Hi ◦Q(1− k/n)(k/n)γi−1/2−νi
∫ 1

1−k/n
(1− s)−γidΨi(s)

)
→ 0. (5.16)

In view of statement (5.11), but now with the function a(s) = Hi◦Q(s)(1−s)γi−1/2−νi (see

Lemma 5.1 below), we have that the ratio in the parentheses is asymptotically bounded.

Since νi > 0 and k = kn → ∞, statement (5.16) holds and thus statement (5.15) follows.

We conclude the proof of Theorem 3.2 by noting that the integral on the right-hand

side of equation (5.13) can be made into ℓi,n(1;Bn). For this we need to check that

−1

(n/k)1/2Di,n

∫ 1/n

0

(Hi ◦Q)′(s)Bn(s)dΨi(s) = oP(1),

but latter statement holds because the integral is asymptotically bounded in probability

and (n/k)1/2Di,n → ∞ when n → ∞. This concludes the proof of Theorem 3.2. �
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Lemma 5.1. Statement (5.11) holds with the functions a(s) = Hi ◦ Q(s)(1 − s)γi−1/2−νi

and b(s) =
∫ 1

s
(1 − t)−γidΨi(t) assuming that the parameter νi is either zero or (strictly)

positive but sufficiently small.

Proof. To prove the lemma, we show that the limit

lim
ϵ↓0

1

α(ϵ)β(ϵ)

∫ 1/2

ϵ

α(s)dβ(s) (5.17)

is finite, where α(s) = Hi ◦ Q(1 − s)sγi−1/2−νi and β(s) =
∫ 1

1−s
(1 − t)−γidΨi(t). This

reformulation of the problem helps us to connect the current proof with that of Lemma 1

in Necir and Meraghni (2010). SinceHi◦Q is differentiable and regularly varying at 1 with

the index −γi < 0, the function s 7→ α(s) is differentiable and regularly varying at 0 with

the index−γi+(γi−1/2−νi). Since the function s 7→ b(s) is regularly varying at 1 with the

index κ > 0 by an assumption of Theorem 3.2, the function s 7→ β(s) is regularly varying

at 0 with the index κ. Consequently, the product function s 7→ α(s)β(s) is regularly

varying at 0 with the index κ−1/2−νi, which is strictly negative for all sufficiently small

νi, and thus the product function converges to +∞ when s ↓ 0. This fact and integration

by parts formula imply that limit (5.17) is finite when the limit

lim
ϵ↓0

1

α(ϵ)β(ϵ)

∫ 1/2

ϵ

α′(s)β(s)ds (5.18)

is such. Since ϵα′(ϵ) = (−1/2)α(ϵ)(1 + o(1)) when ϵ ↓ 0 by Karamata’s representation

(e.g., Proposition B.1.9 (11) on page 367 of de Hann and Ferreira, 2006), limit (5.18) is

finite when the limit

lim
ϵ↓0

1

ϵα′(ϵ)β(ϵ)

∫ 1/2

ϵ

α′(s)β(s)ds (5.19)

is such. The function s 7→ α′(s)β(s) is regularly varying at 0 with the index (−1/2)− 1+

κ < 0, and thus Theorem B.1.5 on page 363 of de Haan and Ferreira (2006) implies the

finiteness of limit (5.19). This proves the asymptotic boundedness of the right-hand side

of equation (5.19) and completes the proof of Lemma 5.1. �

Proof of Theorem 3.1. We have
√
n(L̂i,n(1)− Li,n(1)

(n/k)1/2Di,n

=

√
n

(n/k)1/2Di,n

∫ 1−k/n

0

(Hi ◦Qn(s)−Hi ◦Q(s)) ds.

=

√
n

(n/k)1/2Di,n

∫ 1−k/n

1/n

(Hi ◦Qn(s)−Hi ◦Q(s)) ds+ oP(1),

(5.20)
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where the second equality follows from statement (5.1). Our next step is based on the

Vervaat process

Vn(t) =

∫ t

0

(Hi ◦Qn(s)−Hi ◦Q(s)) ds+

∫ Hi◦Q(t)

−∞

(
Fn ◦H−1

i (x)− F ◦H−1
i (x)

)
dx.

We write the integral on the right-hand side of equation (5.20) as follows:∫ 1−k/n

1/n

(Hi ◦Qn(s)−Hi ◦Q(s)) ds

= −
∫ Hi◦Q(1−k/n)

Hi◦Q(1/n)

(
Fn ◦H−1

i (x)− F ◦H−1
i (x)

)
dx+ Vn(1− k/n)− Vn(1/n)

= −
∫ Hi◦Q(1−k/n)

Hi◦Q(1/n)

en(F ◦H−1
i (x))dx+ Vn(1− k/n)− Vn(1/n), (5.21)

where en(t) =
√
n (Fn ◦Q(t)− t) is the uniform empirical process. It is known (see Zitikis,

1998; Davydov and Zitikis, 2003, 2004) that Vn(t) is non-negative and does not exceed

−(Fn ◦ H−1
i ◦ Hi ◦ Q(t)) − t)(Hi ◦ Qn(t) − Hi ◦ Q(t)). Since F ◦ H−1

i is continuous by

assumption, we therefore have the bound

√
nVn(t) ≤ |en(t)||Hi ◦Qn(t)−Hi ◦Q(t)|. (5.22)

Consequently,

√
n(L̂i,n(1)− Li,n(1)

(n/k)1/2Di,n

=
−1

(n/k)1/2Di,n

∫ Hi◦Q(1−k/n)

Hi◦Q(1/n)

en(F ◦H−1
i (x))dx+OP(r

∗
n + r∗∗n ),

(5.23)

where

r∗n =
|en(1− k/n)||Hi ◦Qn(1− k/n)−Hi ◦Q(1− k/n)|

(n/k)1/2Di,n

and

r∗∗n =
|en(1/n)||Hi ◦Qn(1/n)−Hi ◦Q(1/n)|

(n/k)1/2Di,n

.

We have r∗∗n = oP(1) because |en(1/n)||Hi ◦ Qn(1/n) − Hi ◦ Q(1/n)| = OP(1) and

(n/k)1/2Di,n → ∞. To show that r∗n = oP(1), we shall next check that

|en(1− k/n)|
(k/n)1/2

∣∣∣∣Hi ◦Qn(1− k/n)

Hi ◦Q(1− k/n)
− 1

∣∣∣∣ = oP(1). (5.24)

For this, we write the bound

|en(1− k/n)|
(k/n)1/2

≤ |en(1− k/n)−Bn(1− k/n)|
(k/n)1/2

+
|Bn(1− k/n)|

(k/n)1/2
. (5.25)
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The first summand on the right-hand side of bound (5.25) is of the order OP(1) due to

Corollary 2.1 on page 48 of Csörgő et al. (1986), which states that on an appropriate

probability space and for any 0 ≤ ν < 1/4, we have that

sup
1/n≤s≤1−1/n

nν |en(s)−Bn(s)|
s1/2−ν(1− s)1/2−ν

= OP(1). (5.26)

Statement (5.26) with ν = 0 implies that the first summand on the right-hand side of

bound (5.25) is of the order OP(1).

Note 5.2. Compare statements (5.26) and (5.14): both of them use same Brownian

bridges Bn and probability spaces as specified in Csörgő et al. (1986).

The second summand on the right-hand side of bound (5.25) is also of the order OP(1)

due to a statement on page 49 of Csörgő et al. (1986): see the displayed bound there just

below statement (2.39). Hence, statement (5.24) follows from

Hi ◦Qn(1− k/n)

Hi ◦Q(1− k/n)
= 1 + oP(1), (5.27)

which we shall establish in Lemma 5.2 below. In summary, we have proved that

√
n(L̂i,n(1)− Li,n(1)

(n/k)1/2Di,n

=
−1

(n/k)1/2Di,n

∫ Hi◦Q(1−k/n)

Hi◦Q(1/n)

en(F ◦H−1
i (x))dx+ oP(1). (5.28)

We next replace the empirical process en n the right-hand side of equation (5.28) by an

appropriate Brownian bridge Bn with an error term of the order oP(1). Statement (5.26)

implies that the replacement of en by Bn is possible with an error oP(1), provided that

the quantity

1

nν(n/k)1/2Di,n

∫ Hi◦Q(1−k/n)

Hi◦Q(1/n)

F ◦H−1
i (x)1/2−ν(1− F ◦H−1

i (x))1/2−νdx

converges to 0 when n → ∞. To show this, we first change the variable of integration,

then integrate by parts, and in this way reduce our task to showing that, when n → ∞,

1

nν(n/k)1/2Di,n

s1/2−ν(1− s)1/2−νHi ◦Q(s)|1−k/n
1/n → 0 (5.29)

and

1

nν(n/k)1/2Di,n

∫ 1−k/n

1/n

s−1/2−ν(1− s)−1/2−νHi ◦Q(s)ds → 0. (5.30)
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To prove statement (5.29), we first recall that we are currently dealing with the case

Ψi(s) = s, and then replace Di,n by (k/n)Hi ◦Q(1−k/n) since, up to a constant, the two

quantities are asymptotically equivalent. We have that

1

nν(k/n)1/2Hi ◦Q(1− k/n)
s1/2−ν(1− s)1/2−νHi ◦Q(s)|1−k/n

1/n

= O

(
1

kν

)
+O

(
Hi ◦Q(1/n)

n1/2(n/k)1/2Di,n

)
, (5.31)

which converges to 0 because k = kn → ∞ and (n/k)1/2Di,n → ∞ when n → ∞.

To prove statement (5.30), we use the notation ϕ(u) = Hi ◦Q(1− u)/u1/2+ν and write

1

nν(k/n)1/2Hi ◦Q(1− k/n)

∫ 1−k/n

1/n

(1− s)−1/2−νHi ◦Q(s)ds =
1

kν

∫ 1−1/n

k/n
ϕ(s)ds

(k/n)ϕ(k/n)
. (5.32)

The right-hand side converges to 0 when n → ∞ as seen from Result 1 in Appendix of

Necir and Meraghni (2009).

In summary, we have proved that

√
n(L̂i,n(1)− Li,n(1)

(n/k)1/2Di,n

=
−1

(n/k)1/2Di,n

∫ Hi◦Q(1−k/n)

Hi◦Q(1/n)

Bn ◦ F ◦H−1
i (x)dx+ oP(1)

=
−1

(n/k)1/2Di,n

∫ 1−k/n

1/n

Bn(s)dHi ◦Q(s) + oP(1)

=
−1

(n/k)1/2Di,n

∫ 1−k/n

0

Bn(s)dHi ◦Q(s) + oP(1). (5.33)

Upon noticing that the right-hand side of equation (5.33) is equal to ℓi,n(1;Bn) + oP(1),

we complete the proof of Theorem 3.1. �

Lemma 5.2. Statement (5.27) holds.

Proof. The distribution of Hi ◦ Qn(1 − k/n) is same as that of Hi ◦ Q (E−1
n (1− k/n)),

where E−1
n is the uniform empirical quantile function. Furthermore, the two processes

{1− E−1
n (1− s), 0 ≤ s ≤ 1} and {E−1

n (s), 0 ≤ s ≤ 1} are equal in distribution. Hence,

statement (5.27) is equivalent to

Hi ◦Q (1− E−1
n (k/n))

Hi ◦Q(1− k/n)
= 1 + oP(1). (5.34)

From the Glivenko-Cantelli theorem, E−1
n (k/n)−k/n → 0 almost surely. This also implies

that E−1
n (k/n) → 0 since k/n → 0. Moreover, by Theorem 0 and Remark 1 of Wellner
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(1978), we have sup1/n≤s≤1 s
−1 |E−1

n (s)− s| = oP(1). Hence,

(n/k)E−1
n (k/n) = 1 + oP(1). (5.35)

Since s 7→ Hi ◦Q (1− s) is slowly varying at zero, using Potter’s inequality (see, e.g., the

5th assertion of Proposition B.1.9 on page 367 of de Haan and Ferreira (2006)) we have

Hi ◦Q (1− E−1
n (k/n))

Hi ◦Q(1− k/n)
= (1 + oP(1))

(
(n/k)E−1

n (k/n)
)−γi±θ

(5.36)

for any θ ∈ (0, γi). In view of (5.35), the right-hand side of equation (5.36) is equal to

1 + oP(1). This implies statement (5.34) and thus, in turn, statement (5.27). �

Proof of Theorem 3.3. Let Y be a random variable with the cdf G(z) = 1−1/z, z ≥ 1.

Furthermore, let Ui(z) = Hi ◦Q(1−1/z). Since G(Y ) is uniform on the interval [0, 1], the

random variables Hi(X) and Ui(Y ) are equal in distribution. We have the representations

L̂i,n(2) = Ui(Yn−k:n)

(
k

n

)γ̂i ∫ 1

1−k/n

(1− s)−γ̂idΨi(s)

and

Di,n = Ui(n/k)

(
k

n

)γi ∫ 1

1−k/n

(1− s)−γidΨi(s).

Consequently,

√
n (L̂i,n(2)− Li,n(2))

(n/k)1/2Di,n

=
√
k

(
Ui(Yn−k:n)

Ui(n/k)
−

∫ 1

0
Hi ◦Q(1− ks/n)dΨi(1− ks/n)

Hi ◦Q(1− k/n)
∫ 1

0
s−γidΨi(1− ks/n)

)

=
√
k

(
Ui(Yn−k:n)

Ui(n/k)
−
(
Yn−k:n

n/k

)γi) (k/n)γ̂i
∫ 1

1−k/n
(1− s)−γ̂idΨi(s)

(k/n)γi
∫ 1

1−k/n
(1− s)−γidΨi(s)

+
√
k

((
Yn−k:n

n/k

)γi

− 1

)
(k/n)γ̂i

∫ 1

1−k/n
(1− s)−γ̂idΨi(s)

(k/n)γi
∫ 1

1−k/n
(1− s)−γidΨi(s)

+
√
k

(
(k/n)γ̂i

∫ 1

1−k/n
(1− s)−γ̂idΨi(s)

(k/n)γi
∫ 1

1−k/n
(1− s)−γidΨi(s)

− 1

)

+
√
k

(
1−

∫ 1

0
Hi ◦Q(1− ks/n)dΨi(1− ks/n)

Hi ◦Q(1− k/n)
∫ 1

0
s−γidΨi(1− ks/n)

)
. (5.37)

We shall next investigate the asymptotic behaviour of the four terms on the right-hand

side of equation (5.37).
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First term on the RHS of equation (5.37). We shall show that this term is of the order

oP(1), which follows from the two statements:

√
k

(
Ui(Yn−k:n)

Ui(n/k)
−
(
Yn−k:n

n/k

)γi)
= oP(1) (5.38)

and

(k/n)γ̂i
∫ 1

1−k/n
(1− s)−γ̂idΨi(s)

(k/n)γi
∫ 1

1−k/n
(1− s)−γidΨi(s)

= 1 + oP(1). (5.39)

To prove statement (5.38), we note that since Hi ◦ Q is regularly varying at 1 with the

index (−γi), the statement can be verified using analogous arguments as those used for

proving statement Tn1 = oP(1) by Necir et al. (2007). To check statement (5.39), we note

that we shall later establish a non-degenerate limiting distribution of the third term on

the right-hand side of equation (5.37), which is a stronger statement than (5.39). With

these notes we conclude our proof that the first term on the right-hand side of equation

(5.37) is of the order oP(1).

Second term on the RHS of equation (5.37). Following the arguments on page 158 of

Necir et al. (2007) and making notational adjustments, we have that

√
k

((
Yn−k:n

n/k

)γi

− 1

)
= γi

√
n

k

√
nϑn(1− k/n) + oP(1), (5.40)

where the (un-normalized) uniform quantile process ϑn is defined by equation (5.4). Uti-

lizing weak approximation results of Csörgő et al. (1986), we have Brownian bridges Bn

on an appropriate probability space such that

√
k

((
Yn−k:n

n/k

)γi

− 1

)
= −γi

√
n

k
Bn(1− k/n) + oP(1). (5.41)

This and also statement (5.39) imply that the second term on the right-hand side of

equation (5.37) has the same asymptotic behaviour as the right-hand side of equation

(5.41).

Third term on the RHS of equation (5.37). We rewrite the term as follows:

√
k

(
(k/n)γ̂i

∫ 1

1−k/n
(1− s)−γ̂idΨi(s)

(k/n)γi
∫ 1

1−k/n
(1− s)−γidΨi(s)

− 1

)
=

√
k

(∫ 1

0
s−γ̂idΨi(1− ks/n)∫ 1

0
s−γidΨi(1− ks/n)

− 1

)

=
√
k

∫ 1

0
(s−γ̂i − s−γi)dΨi(1− ks/n)∫ 1

0
s−γidΨi(1− ks/n)

. (5.42)
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Theorems 2.3 and 2.4 of Csörgő and Mason (1985) imply that there are Brownian bridges

Bn on a probability space specified by Csörgő et al. (1986) such that

√
k (γ̂i − γi)

γi
=

√
n

k
Bn(1− k/n)−

√
n

k

∫ 1

1−k/n

Bn(s)

1− s
ds+ oP(1). (5.43)

Hence, in particular, γ̂ is a consistent estimator of γ, and so we have

∫ 1

0

(
s−γ̂i − s−γi

)
dΨi(1− ks/n) = − (γ̂i − γi)

∫ 1

0

s−γi log(s)dΨi(1− ks/n)

+ oP(1) |γ̂i − γi|
∫ 1

0

s−γi−δdΨi(1− ks/n), (5.44)

where δ > 0 can be any fixed number. Furthermore, in view of statement (5.43) we

have that
√
k(γ̂i − γ) = OP(1). This result, assumptions (3.10) and (3.12), and asymp-

totic representation (5.44) imply that the right-hand side of equation (5.42) is equal to

−ci
√
k(γ̂i − γi) + oP(1). Utilizing result (5.43) in its full generality, we conclude that

√
k

(
(k/n)γ̂i

∫ 1

1−k/n
(1− s)−γ̂idΨi(s)

(k/n)γi
∫ 1

1−k/n
(1− s)−γidΨi(s)

− 1

)
= −γici

√
n

k
Bn(1− k/n)

+ γici

√
n

k

∫ 1

1−k/n

Bn(s)

1− s
ds+ oP(1). (5.45)

This determines the asymptotic behaviour of the third term on the right-hand side of

equation (5.37) and also establishes the earlier noted statement (5.39).

Fourth term on the RHS of equation (5.37). We rewrite the term as follows:

√
k

(
1−

∫ 1

0
Hi ◦Q(1− ks/n)dΨi(1− ks/n)

Hi ◦Q(1− k/n)
∫ 1

0
s−γidΨi(1− ks/n)

)

=
−
√
k∫ 1

0
s−γidΨi(1− ks/n)

∫ 1

0

(
Hi ◦Q(1− ks/n)

Hi ◦Q(1− k/n)
− s−γi

)
dΨi(1− ks/n). (5.46)

From Theorem 2.3.9 on page 48 of de Haan and Ferreira (2006) we have a function Ãi with

the property Ãi(x) ∼ Ai(x) when x → ∞ such that for any δ > 0 there exists ϵ0,i ∈ (0, 1)

such that, whenever ϵs ≤ ϵ0,i,∣∣∣∣∣ 1

Ãi(1/ϵ)

(
Hi ◦Q(1− ϵs)

Hi ◦Q(1− ϵ)
− s−γi

)
− s−γi

s−ωi − 1

ωi

∣∣∣∣∣ ≤ δs−γi−ωi−δ. (5.47)



26

Upon recalling condition (3.9), we have
√
k Ãi(n/k) → bi. Inequality (5.47) implies that

for all sufficiently large n the right-hand side of equation (5.46) is equal to(
−bi
ωi

)∫ 1

0
s−γi(s−ωi − 1)dΨi(1− ks/n)∫ 1

0
s−γidΨi(1− ks/n)

+ o(1)

∫ 1

0
s−γi−ωi−δdΨi(1− ks/n)∫ 1

0
s−γidΨi(1− ks/n)

. (5.48)

In view of assumptions (3.11) and (3.12), we conclude that quantity (5.48) and thus the

fourth term on the right-hand side of equation (5.37) are of the order −bidi/ωi + o(1).

Collecting the above established asymptotic properties of the four terms on the right-

hand side of equation (5.37), we finish the proof of Theorem 3.3. �
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