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 م��ص
 

�� أيامنا المعاصرة، أصبحت العديد من أنظمة �حداث المنفصلة معقدة �ش�ل م��ايد و ذات ب�ية ديناميكية وم��ابطة �ش�ل 

، ، عن طر�ق إضافة أو إزالة �عض �جزاء، �� وقت ال�شغيلفلقد تم تصميم �ذه �نظمة لتتمكن من �غي�� ب�ي��ا. متغاير

، استخدام شب�ات ب��ي �� دراسة مثل �ذه �نظمة �أداة رسمية. لمتطلبات ا��ديدةلتمكي��ا من التكيف مع الظروف وا

 .يجذب العديد من الباحث�ن

 

، إلا أ��ا غ�� قادرة ع�� التحديد و التحقق بطر�قة سلسة من �نظمة المتقدمة ع�� الرغم من أن شب�ات ب��ي تمثل أداة قو�ة

، وال�يا�ل القابلة لإعادة ال�شكيل ، والتغ��ات المستمرةنظمة ال�� تدعم الب�ئات المتقلبة، � �� الواقع. ذات الب�ية الديناميكية

ومع ذلك، فإن . ، أثرى العديد من الباحث�ن شب�ات ب��ي بخاصية إعادة ال�شكيلللتغلب ع�� �ذه المش�لة. معقدة للغاية

 .ا��صائص تصبح غ�� قابلة للتق��� ، العديد من�� الواقع. ز�ادة قوة النمذجة يقلل من قوة القرار

، تحاول �ضافات المق��حة ال�� تدخل إعادة ال�شكيل إ�� شب�ات ب��ي إيجاد حل وسط ب�ن مستو�ات النمذجة لذلك

  .والتحقق

 

  - ، سنقوم بتقديم ثلاثة طرق �� �ذه �طروحة
ً
�ي للنمذجة والتحقق من إعادة الت�و�ن �� شب�ات بي� -تم تطو�ر�ا تدر�جيا

، مع ا��فاظ ع�� إم�انية التحقق من العديد من ، �ل م��ا لھ مزاياه وحدوده واتجا�ھ (GSPNs)العشوائية المعممة

 .ا��صائص مع �عقيد أقل

 

 
ً
، وال�� �سمح بنمذجة طو�ولوجيا (GSPNs-RT) مع طبولوجيا قابلة لإعادة الكتابة GSPNs ، �س��، نق��ح ش�ليةأولا

 .، من أجل �ستفادة ال�املة من أدوات التحقق ا��ا�زةم�افئة GSPNs إ�� GSPNs-RT ديناميكية وتحو�ل

، وال�� �سمح بالنمذجة والتحقق من ال�يا�ل  (D-GSPNs)الديناميكية GSPNs ، �س��، نق��ح ش�لية أخرى �عد ذلك

يمكن ل�ذه . م�افئة GSPNs ��إ D-GSPNs و�تحو�ل) حيث أن مجموعات �ماكن و�نتقالات ديناميكية(الديناميكية 

 .التحو�لات أن تحدث عندما تمتلك النماذج �صلية عددا محددا من الت�و�نات

، وال�� تدعم  (RecGSPNs)القابلة لإعادة الت�و�ن GSPNs ، �س��إ�� ش�لية قابلة لإعادة ال�شكيل GSPNs ، تطور أخ�ً�ا

قابلة للت�و�ن  GSPN ، �سمح لأي، وكذلكبھ �� �ساليب ا��اليةمجموعة أك�� من التغي��ات ال�ي�لية بما �و مسموح 

 .با��صول ع�� عدد لا حصر لھ من الت�و�نات مع ا��فاظ ع�� قابلية التحقق من العديد من ا��صائص ال�امة

 

شب�ات ب��ي  -نماذج أنظمة تحو�ل ال -النماذج و ال�يا�ل الديناميكية   - شب�ات ب��ي العشوائية المعممة : ال�لمات المفتاحية

 .تقييم �داء  -النمذجة و التحقق الشك��   -القالبة لإعادة ال�يلكة 

 



Abstract

Nowadays, many discrete event systems (DESs) are becoming increasingly complex, struc-
turally dynamic and variably interconnected. These systems are designed to be able to change
their structure and/or topology, at run-time, to accommodate new circumstances/require-
ments. As a formal tool, the use of Petri nets (PNs) in the study of such systems attracts
many researchers.

Although PNs (low or high) are a powerful and expressive tool, they are unable to spec-
ify/verify, in a natural way, advanced systems having dynamic structures. Indeed, systems
supporting volatile environments, continuous variations, and reconfigurable structures are
expected to be extremely complex. To overcome this issue, researchers enrich PNs with
reconfigurability. Nevertheless, increasing the modeling power of a formalism decreases its
decision power. In fact, several properties become undecidable. Therefore, extensions pro-
posed in the literature introducing reconfigurability to PNs try to find a compromise between
the modeling and the verification levels.

In this thesis, we describe three approaches – incrementally developed – for the model-
ing and verification of reconfiguration in generalized stochastic Petri nets (GSPNs), while
maintaining verifiability of several properties with reduced complexity.

First, we propose a formalism, called GSPNs with rewritable topology (GSPNs-RT),
that extends GSPNs by allowing modeling dynamic topologies and transforming GSPNs-
RT to equivalent GSPNs, to take full advantages of off-the-shelf tools proposed for GSPNs
verification.

Then, we propose another formalism, called dynamic GSPNs (D-GSPNs), that allows
modeling and verifying dynamic structures (sets of places and transitions are dynamic) and
transforms D-GSPNs to equivalent GSPNs. This transformation can take place when the
original model disposes of a finite number of configurations.

Finally, GSPNs are extended to a reconfigurable formalism, called reconfigurable GSPNs
(RecGSPNs), that supports a wider range of possible structural changes than allowed in
existing approaches, as well as, allows to any RecGSPN to have an infinite number of con-
figurations while preserving the decidability of several important properties.

Keywords: Generalized stochastic Petri nets; Dynamic model and structure; Graph
transformation systems; Formal modeling and verification; Performance evaluation.



Résumé

De nos jours, de nombreux systèmes à événements discrets deviennent de plus en plus com-
plexes, structurellement dynamiques et interconnectés de manière variable. Ces systèmes
sont conçus pour pouvoir modifier leur structure et/ou leur topologie, au moment de l’exé-
cution, afin de s’adapter à des nouvelles circonstances/exigences. En tant qu’outil formel,
l’utilisation de réseaux de Petri dans l’étude de tels systèmes attire de nombreux chercheurs.

Bien que les réseaux de Petri (bas ou haut niveau) constituent un outil puissant et ex-
pressif, ils ne sont pas en mesure de spécifier/vérifier, de manière naturelle, des systèmes
avancés dotés de structures dynamiques. En effet, les systèmes prenant en charge des en-
vironnements volatils, des variations continues et des structures reconfigurables devraient
être extrêmement complexes. Pour surmonter ce problème, les chercheurs enrichissent les
réseaux de Petri avec la reconfigurabilité. Néanmoins, augmenter le pouvoir de modélisation
d’un formalisme diminue son pouvoir de décision. En fait, plusieurs propriétés deviennent
indécidables. Par conséquent, les extensions proposées dans la littérature introduisant la
reconfigurabilité dans les réseaux de Petri tentent de trouver un compromis entre les niveaux
de modélisation et de vérification.

Dans cette thèse, on définit trois approches – développées incrémentalement – pour la
modélisation et la vérification des réseaux de Petri stochastiques généralisés (GSPNs) re-
configurables, tout en maintenant la vérifiabilité de plusieurs propriétés avec une complexité
réduite.

En premier lieu, on propose un formalisme, appelé GSPNs avec topologie modifiable
(GSPNs-RT), qui étend les GSPNs en permettant la modélisation de topologies dynamiques
et la transformation de GSPNs-RT en GSPNs équivalents, afin de tirer pleinement d’avan-
tages des outils standard proposés pour la vérification des GSPNs.

Ensuite, on propose un autre formalisme, appelé GSPNs dynamiques (D-GSPNs), qui
permet de modéliser des structures dynamiques (les ensembles de places et de transitions
sont dynamiques) et transforme les D-GSPNs en GSPNs équivalents. Cette transformation
peut avoir lieu lorsque le modèle original disposent d’un nombre fini de configurations.

Enfin, on étend les GSPNs à un formalisme reconfigurable, appelé GSPNs reconfigurable
(RecGSPNs), qui prend en charge une plus large gamme de changements structurels possi-
bles que ce qui est autorisé dans les approches existantes, ainsi que, permet à tout GSPN
reconfigurable d’avoir un nombre infini de configurations tout en préservant la décidabilité
de plusieurs propriétés importantes.

Mot-clés : Réseaux de Petri stochastiques généralisés ; Modèle et structure dynamiques;
Système de transformation de graphes ; Modélisation et vérification formelles ; Évaluation
de performance.
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Introduction
I

n this introduction, we start by presenting the background of this thesis, namely
the formal modeling and verification based on dynamic-structure stochastic Petri nets.

Then, we focus on the motivations of this work, specify the problem and the objectives,
and highlight our contributions. Finally, we end with the description of the manuscript
organization.

Background

The major advancements in computing power, connectivity, sensors, storage capacity, and
software development have motivated companies as well as individuals to adopt and integrate
IT solutions into their daily tasks (from a small device at the house to gigantic infrastructure).

As the list of advantages and benefits resulting from this orientation continues to grow, so
do the risks of failure and malfunctioning that may threaten companies as well as individuals.

Therefore, it is absolutely mandatory to ensure the proper functioning of computer sys-
tems according to customers’ and designers’ expectations. This concern had been identified
since the late 60s that marked the birth of software engineering. One of the main goals
of the latter is enabling developers to implement complex systems that work properly. In
this regard, several approaches have emerged to meet this crucial requirement in the various
stages of the software life cycle [Woo+09].

Approaches in which the syntax, semantics, and manipulation rules of specification lan-
guage are explicitly defined by mathematics, are called formal approaches. These approaches
include: Petri nets[Mur89], sequential process communication (SPC) [BHR84], LOTOS [BB87],
B-method [Abr05], etc.

Actually, formal approaches allow a complete verification of the whole system behavior
and proving the presence of certain desired properties for all possible inputs. By formal
methods, one can write a formal specification of a system on which different properties can
be proved, and thereafter one can mathematically prove that a system implementation meets
this specification [CGR93, Hax10, GG13, RK15]. However, the use of formal methods does
not guarantee a priori the accuracy of developed systems. Indeed, their use enhances our un-
derstanding of a system under construction while revealing its shortcomings, inconsistencies
and ambiguities that might otherwise go unnoticed [CW96].
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Chapter 1: Introduction

Among the most widespread formalisms, we find Petri nets (PNs) [Pet77, Mur89]. They
are characterized by three major advantages [Pet81, KV86]:

1. Modeling level: They have a powerful mathematical foundation, as well as, an in-
tuitive graphical representation. The graphical representation gives a flat view to PN
models, making it possible to have simple and very explicit models. As well, their
graphic modeling enables easy visualization of complex systems,

2. Verification level: Their mathematical foundation is at the origin of all the analysis
techniques that were proposed in order to verify the modeled systems. Indeed, they
dispose of a well-developed qualitative/quantitative analysis panoply,

3. Coupling modeling and verification: They offer a careful balance of modeling and
decision power. In fact, Petri nets have been used in the modeling of a wide variety
of systems. As for their decision power, the reachability problem is decidable in Petri
nets (note that most problems can be converted into reachability problems).

The model, in its origin proposed by “Adam Petri” in [Pet62] was initially concerned with
describing the causal relationships between events that can be occurred in a computer system,
has known significant evolution and adaptation to meet several requirements imposed by the
appearance of new complicated systems. The most notable extensions can be found in four
main categories:

• Colored PNs [Jen13]: Each token becomes rather a distinguishable value from other
tokens. The weights on the arcs are no longer constants, but rather mathematical
functions that can be complicated. This model makes it possible to have models of
reasonable size for complicated systems,

• Temporal PNs [Ram73]: The time introduced in PNs allows to put explicit constraints
on the dynamics of the model which reflect the real temporal constraints imposed on
the system,

• Stochastic PNs [Mar+94]: Stochastic PNs are a response to another missing realistic
aspect in previous models, which is the aspect of hazard, randomness, and non-absolute
events. The random events in their arrivals will be explicitly considered and modeled,
allowing the model to get closer to the real system and thus to have a good represen-
tation of the studied system,

• Reconfigurable PNs [LO04b, EP04, PK18]: This last category groups formalisms al-
lowing the modeling of structure flexibility.
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The purpose of this last variant is to provide a formal model for dynamic-structure sys-
tems, e.g., flexible manufacturing systems (FMSs) [BS80], reconfigurable manufacturing sys-
tems (RMSs) [Kor+99], production in cloud [Xu12], Industry 4.0 [Las+14], etc.

In fact, many discrete event systems (DESs) are becoming increasingly complex, struc-
turally dynamic and variably interconnected. These systems are designed to be able to change
their structure and/or topology, at run-time, by adding/removing interconnections, objects,
or even subsystems, to accommodate new circumstances/requirements.

Ongoing studies on this class of systems focus on their key feature, namely, the recon-
figurability [Bre+14] that must occur at run-time (i.e., dynamic reconfigurability) [JEB16].
Dynamic reconfigurability is a critical activity that influences the performance, security and
cost of such systems. To overcome the previous challenges, the designer must dispose of a
rigorous approach and a set of appropriate tools.

The use of PNs in the study of such systems attracts many researchers [SV90, Mar+94,
Rec+04, Che+17, LZB17, Lat+18, Liu+18, You+18]. In the literature, many classes of PNs
have been proposed and applied to specify/verify reconfigurable systems. The chosen PN
class is often motivated by the aspects to be specified and the properties to be verified. In
fact, we can distinguish three classes of work: that uses basic PNs, that uses temporal or
stochastic PNs, and finally, that applies reconfigurable PNs.

Stochastic PNs (SPNs) and generalized SPNs (GSPNs) represent an extension of PNs
[Mar+94] used to model and evaluate stochastic systems. These formalisms allow the analysis
of performance metrics such as productivity, energy consumption, machine utilization, etc.

Marsan et al. [Mar+94] strongly emphasize the importance of GSPNs and SPNs as
versatile design tools that fit well with the behavior of DESs at different stages of development
[LZB15, Čap17, Sim+18, Lat+18].

Although PNs (low or high) are a powerful and expressive tool, they are unable to speci-
fy/verify, in a natural way, advanced dynamic-structure systems [CC18]. Systems supporting
volatile environments, continuous variations, and reconfigurable structures are expected to
be extremely complex [Chr+13]. The design of such systems is an increasingly complex
and omnipresent challenge. Therefore, designers must dispose of the necessary approaches,
models, and tools to handle this complexity [Möl16]. To overcome this issue, researchers
introduce dynamic structures into PNs, thus expanding the standard formalism [PK18].

On the other hand, rule-based graph transformations [EP04] offer a mathematically-
based graphical framework for modeling the reconfigurations in PN structures. Nevertheless,
increasing the modeling power of a formalism decreases its decision power. Therefore, exten-
sions proposed in the literature introducing reconfigurability to PNs try to find a compromise
between the modeling and the verification levels. From this perspective, we can distinguish
three main directions.
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On one hand, researchers develop pre-processing techniques that encode, unfold or compile
graphs and transformation rules into existing formalisms in order to exploit the panoply of
their tools [LO04b, CC18, CBC18]. Although they can naturally model the reconfigurations,
these approaches did not increase the modeling power comparing to existing ones, since
they depend on target formalisms expressiveness and in particular do not allow modeling
infinite graphs [RSV04]. For instance, classical model-checkers [BK08] use a fixed number of
propositions, which prevents the modeling of infinite-structure systems [Ren08].

On the other hand, some techniques execute graph transformation systems and compute
the reachability graph, nevertheless an upper artificial threshold is still needed [KR06]. To
mitigate this issue, some approaches compute either under-approximations of a system’s
behavior, so that any property that holds in an under-approximated model is satisfied in its
original system, or over-approximations including all system behaviors, and possibly more
[CR12]. Nevertheless, a property that does not hold in an under-estimated model may holds
in its original system and a property that holds in an over-estimated model may not be
satisfied in its original system [BCK08].

A promising approach described in [Li+09], called improved net rewriting system (INRS),
preserves particular properties, namely, liveness, boundedness, and reversibility of PNs after
each reconfiguration. These properties are therefore decidable regardless of the number of
obtained configurations. However, INRSs are limited to (i) ordinary, live, bounded and
reversible PNs, and (ii) particular forms of reconfiguration.

Motivation and Objectives

Exception for few work [MD97] and [Cap17], reconfigurability in either SPNs or GSPNs has
not received much attention. Existing approaches in the literature often focus on performance
evaluation of reconfigurable systems using SPNs (which are not reconfigurable formalisms)
or on reconfigurability simulation and verification using reconfigurable PNs (which do not
consider stochastic aspects).

Our goal in this thesis is to introduce reconfigurability into the well-known GSPNs for-
malism using graph transformation systems. The objective of this thesis is doubled:

• Integration of the dynamic aspect in GSPNs: this requires a formal definition of a new
formalism combining the stochastic and the dynamic aspects in a single formalism,

• Study of this hybridization consequences on GSPNs analysis: introducing reconfigura-
bility into GSPNs requires adapting the classical algorithms towards the new formalisms
and/or proposing new analysis techniques.
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Contributions

The present thesis falls within the field of reconfigurable system modeling and verifica-
tion based on GSPNs, hence the need for a GSPNs-based formalism supporting dynamic
structures. However, increasing the modeling power of a formalism involves straightforward
increasing the verification complexity. Faced with these challenges, we have defined five
approaches – incrementally developed – for the modeling and the verification of dynamic-
structure GSPNs, each of which has its advantages, limits and orientation.

Orientation 1: Transforming dynamic GSPNs into GSPNs

In the first place, we were interested in the modeling and the verification of reconfigurable
systems using (non-stochastic) reconfigurable Petri nets. With this in mind, our first intention
was to propose an extension for one of these reconfiguration approaches to the stochastic ones.

Our primary contributions in this direction were reconfigurable SPNs [TKB17b] and
GSPNs with rewritable topology [TKB17a], extending formalism presented in [LO04b], to
cope with reconfigurability in SPNs and GSPNs, respectively.

However, both proposed formalisms allow only dynamic topology, i.e., sets of places and
transitions cannot be changed. By fixing both sets of places and transitions, we can transform
SPNs and GSPNs having dynamic topologies into basic SPNs and GSPNs, respectively, by
encompassing all topologies in one model. In the latter, the switching between configurations
and appearing/disappearing/reappearing of topologies are modeled via the token game.

The transformation into basic SPNs or GSPNs straightforwardly allows exploiting the
methods and techniques proposed in the literature for SPNs and/or GSPNs to verify the
properties of dynamic ones. However, allowing only dynamic topologies limits severely the
modeling power of both formalisms.

To overcome this shortcoming, we propose a new formalism, called dynamic generalized
stochastic Petri nets (D-GSPNs), that allows to model dynamic sets of places and transitions,
as well as, keeping the possibility to transform D-GSPNs into GSPNs for verification purposes.
The obtained GSPNs preserve the stochastic behaviors of dynamic GSPNs, allowing the use
of the panoply of verification methods and tools proposed for GSPNs in D-GSPNs analysis.

Orientation 2: Preserving properties in reconfigurable generalized
stochastic Petri nets (RecGSPNs)

Although D-GSPNs allow natural modeling and verification of dynamic structure, they do
not increase the modeling power of GSPNs. In fact, the dynamic structure of any D-GSPN
must be finite, otherwise transforming D-GSPNs towards GSPNs may become infinite.
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To consider infinite structures, we extended INRSs [Li+09] to model reconfiguration in
GSPNs and could publish two papers [TKB17c, TKB16]. In these two extensions, each
reconfiguration is expressed by a rule having left- and right-hand sides. The application of a
rule implies the substitution of its left-hand side image, in a given GSPN to be reconfigured,
by its right-hand side. These two sides must belong to particular sets in order to allow
developers to reconfigure a live, bounded and reversible GSPN while preserving these three
essential properties in the resulting model.

However, these formalisms suffer from three major drawbacks: (i) system states are not
considered (reconfigurations are done in an off-line mode), (ii) only three qualitative prop-
erties, namely liveness, boundedness and reversibility are decidable, and finally, (iii) the
quantitative aspect of GSPNs is not studied.

To remedy these problems, we have proposed a new formalism, called INRSs-GSPNs
[Tig+18], which takes into account, inter alia, system states in the reconfiguration application
and provides an algorithm for both qualitative and quantitative verifications.

At the modeling level, designers will be able to model a reconfigurable system and its
dynamic structure using GSPNs and rewriting rules that are controlled by the system state.
Unlike our extensions described in [TKB17c, TKB16] which limit rule application to an initial
marking, we associate each reconfiguration rule with a marking controlling its activation,
that is, if the net has not yet reached a marking then the rule is not yet applicable. As for
the verification level, an algorithm computing from the dynamic model the Markov chain
describing the stochastic behavior of the system is proposed. As a result, the designers can
evaluate the system performance.

Nevertheless, the reconfiguration remains too limited in INRSs-GSPNs formalism. On the
one hand, only live, bounded and reversible GSPNs are concerned which limits its application
field. On the other hand, left- and right-hand sides of rules must belong imperatively to a
particular set which can only further limit the formalism applicability.

The need to (i) relax the constraints imposed by INRSs-GSPNSs formalism, (ii) address
all types of GSPNs (not only live, bounded and reversible GSPNs), and (iii) enrich the set
of nets used in reconfiguration, led us to propose reconfigurable generalized stochastic Petri
nets (RecGSPNs) [Tig+19].

Actually, RecGSPNs formalism allows designers to model a wider range of structural
changes where both sides of any rule are no longer defined by their structure. Instead,
they are defined by their behaviors. The use of RecGSPNs based reconfiguration allows
preserving five important properties, namely, liveness, boundedness, reversibility, deadlock-
freedom and home state. Moreover, many properties expressed by linear time logic [BK08] can
be preserved after a system reconfiguration. Thus, these properties are decidable whatever
the number of obtained configurations that can be infinite.
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This practice enjoys double advantages, such that:

1. Temporal and spatial complexity are reduced since these properties are verified only at
the first configuration, hence no need to compute and explore the whole set of reachable
states of all reachable configurations,

2. Often, applying rules to graphs leads to structurally infinite models, and hence proper-
ties are not decidable based on classical verification techniques. In RecGSPNs approach,
several properties are still decidable since applying any rule preserve them.

Thesis Organization

This chapter has introduced the thesis topic, stated research motivation and objectives, and
given an overview of our contributions. The remainder of this thesis is organized as follows.

Chapter 2 presents the background theory of Petri nets, model checking, Markov chains
and generalized stochastic Petri nets. In order to introduce generalized stochastic Petri net,
we describe Petri nets in their basic form, as well as, both model checking and Markov chains
basic definitions are provided. Finally, the extension of Petri nets toward GSPNs is presented.

Chapter 3 introduces the graph transformation field and its use in PNs context. Ini-
tially, graph transformation systems are outlined. Then, we focus on graph transformation
applications to PNs in the literature. As for verification aspects, we discuss some proposed
verification algorithms obtained by either developing new ones or updating and transferring
existing ones to graph transformation systems. Finally, we conclude by showing the ad-
vantages/disadvantages of today’s formalisms and their verification techniques proposed for
dynamic structure PNs.

Chapter 4 describes one of our primary contributions, namely GSPNs-RT [TKB17a],
in which we present a trivial approach that introduces dynamic topologies into GSPNs, as
well as, transforms GSPNs with dynamic topologies into equivalent basic GSPNs. These
equivalent GSPNs are exploited in the verification of dynamic nets using classical analysis
approaches.

Chapter 5 develop an extension of GSPNs-RT, namely D-GSPNs, in which the sets
of places and transitions are dynamic and can be transformed using transformation rules
formalized by DPO-approach. As well, this formalism is equipped by an algorithm that
transforms D-GSPNs into equivalent GSPNs.

Chapter 6 consists of our major contribution in this thesis. It describes a new ap-
proach, called reconfigurable GSPNs [Tig+19]. Similarly to graph transformation systems,
it formalizes system configuration as GSPNs, as well as, it describes structure evolution as
transformation rules. The chapter concludes with a discussion about the decidability of some
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properties of dynamic systems even if they can be structurally infinite, i.e., the reachable con-
figuration set is infinite.

In Chapter 7, we compare the proposed approaches with the current state-of-the-art.
We start showing new qualitative modeling aspects provided by RecGSPNs and D-GSPNs
formalisms. Then, a quantitative comparison that shows how the proposed approaches opti-
mize time and memory consumption in the verification phase is provided.

Finally, in Conclusion we summarize this thesis and discuss possible directions in future
work.
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Chapter 2: Stochastic Petri Nets

2.1 Introduction

Petri nets (PNs) [Mur89] present a well-known and versatile paradigm for the modeling and
verification of various discrete-event systems [ST96]. Mainly, PNs have been used to model
systems in which some events can occur concurrently with some constraints on the concur-
rence, precedence, or frequency of their occurrences [Pet77]. In fact, their graphical nature
allows intuitive modeling of parallelism, synchronization, conflicts, concurrency, etc. in com-
plex systems, while their formal semantics and mathematics foundation allow unambiguous
descriptions, as well as, formal verification.

PNs can be analyzed through either computing all reachable states or using methods in
discrete mathematics such as matrix equations. PNs properties are used to detect deadlocks,
overflow, irreversible situations, etc. Using stochastic and timed PNs, performance evaluation
is also possible.

PNs enjoy numerous advantages that can be summarized in the following [Pet81, KV86,
GV01]:

1. They have a powerful mathematical foundation, as well as, an intuitive graphical rep-
resentation. The graphical representation gives a flat view to PN models, making it
possible to have simple and very explicit models. As well, their graphic modeling en-
ables easy visualization of complex systems. Usually, in many similar techniques, only
either graphical or mathematical side is well developed,

2. They provide well-integrated abstraction and refinement mechanisms that enable an
effective design of large scale and complex systems,

3. They have been used in a wide range of application areas. Hence, there is a high degree
of expertise in the modeling field,

4. There are many extensions of Petri nets such as colored, timed, stochastic, high-level,
object-oriented Petri nets, etc. that fit well with specific requirements of a wide range
of applications areas,

5. Their mathematical foundation is at the origin of all the analysis techniques proposed
in order to verify the modeled systems. Indeed, they dispose of a well-developed qual-
itative/quantitative analysis panoply,

6. The state space can be given in a compact representation of the state. It is not required
to explicitly enumerate all possible reachable states, instead, only the state evolution
is provided,

7. They offer a careful balance of modeling power and decision power. In fact, Petri nets
have been used in the modeling of a wide variety of systems. As for their decision

11



Chapter 2: Stochastic Petri Nets

power, the reachability problem is decidable in Petri nets (note that most problems
can be converted into reachability problems).

However, PNs have some disadvantages [Pet81]:

• State space explosion: As systems become more and more complex, their state
spaces increase more and more, which can lead to state space explosion problem,

• A delicate modeling and verification coupling: Subclasses of PNs increase the
decision power, however, a large number of systems can no longer be modeled. On the
other hand, extensions of PNs may increase the modeling power, but at the expense of
property decidability.

The remainder of this chapter starts by introducing some intuitive aspects of Petri nets in
Section 2.2. Then, their formal aspects such that structure, behavior, qualitative properties
and analysis methods are presented in Sections 2.3–2.5. After providing Petri nets basics, a
major class of Petri nets that considers time and quantitative properties, called stochastic
Petri nets, is described in Sections 2.6 and 2.7. Finally, this chapter ends with a conclusion.

2.2 Modeling with Petri nets

Discrete event systems are defined as systems of which their states are described by discrete
variables and their state evolution depends on the occurrence of discrete events [CL09]. In
discrete event systems’ modeling process, two important concepts are considered, namely,
events and conditions, and the relationships among them.

Conditions are descriptions of system states in terms of values of some variables, while
events are actions taking place in the system. The occurrence of these events is controlled
by system states, i.e., conditions. As such, at a given time, the condition may hold which
implies the occurrence of certain events. The conditions cause such occurrence are called
pre-conditions. As well, the occurrence of these events may give new conditions. Such new
conditions are called post-conditions.

This view can be intuitively modeled by Petri nets [Pet81]. In fact, conditions are modeled
by places, depicted as circles, considered as variables. The values of these variables are given
in terms of tokens, depicted as black dots, inside their corresponding places, which models
the truth values of conditions. Events are modeled by transitions, depicted as bars. The pre-
conditions of an event are the input places, connected by direct arcs, of the corresponding
transition. Analogously, the post-conditions are the output places. The occurrence of an
event is modeled by firing the corresponding transition. The state evolution after an event
occurrence (i.e., firing a transition) is modeled by (i) consuming tokens from pre-conditions

12



Chapter 2: Stochastic Petri Nets

(i.e., places) of the corresponding transition, and (ii) producing new tokens in its post-
conditions.

Consider PN H shown in Fig. 2.1. It models two processes p1 and p2 trying access a
critical resource. Initial marking (i.e., state) M0 is modeled by one token in place idle1, one
token in place idle2, one token in place res, and zero token in the other places. This initial
state, called initial marking, is denoted by M0(CS1, CS2, idle1, idle2, res, wait1, wait2) =

(0, 0, 1, 1, 1, 0, 0).
A token in places idlei, waiti and CSi means that process pi is idle, waiting to access

a critical resource, and in a critical section, respectively. Transitions requesti, enteri, and
freei are fired when process pi requests a critical resource, enters a critical section, and frees
a critical resource, respectively.

wait1 enter1

CS1

free1idle1

request1

res

enter2 wait2

CS2

free2 idle2

request2

Figure 2.1: A PN models mutual exclusion.

2.3 Petri Net Structure

A Petri net is a bipartite directed graph that consists of places, depicted as circles, transitions,
depicted as bars, and arcs connecting either place to transition or transition to place.

Definition 2.1. Petri Net. A Petri net is a 4-tuple N = 〈P ,T ,F ,M0〉 where

• P is a finite and non-empty set of places,

• T is a finite and non-empty set of transitions disjoint from P ,

• F : (P × T ) ∪ (T × P ) −→ N is a flow relation for a set of arcs,

• M0 : P −→ N is an initial marking.

Some authors refer to the unmarked net N = 〈P ,T ,F 〉 as the Petri net structure and
refer to the marked net N ′ = 〈P ,T ,F ,M0〉 as the system. Furthermore, if the net marking
is partially provided, then the Petri net is called a family [CDF91].
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Example: Consider PN H shown in Fig. 2.1. Its formal definition is given by H =

〈P ,T ,F ,M0〉 where

• P = {idle1, wait1, CS1, idle2, wait2, CS2, res},

• T = {request1, enter1, free1, request2, enter2, free2},

• F (idle1, request1) = 1,F (request1, wait1) = 1, etc.

• M0(CS1, CS2, idle1, idle2, res, wait1, wait2) = (0, 0, 1, 1, 1, 0, 0).

Definition 2.2. Preset and Postset. The inputs and outputs, called also preset and
postset respectively, of places and transitions can be defined formally as follows.

• The preset of place p, denoted by •p, is given by •p = {t ∈ T |F (t, p) > 0}.

• The postset of place p, denoted by p•, is given by p• = {t ∈ T |F (p, t) > 0}.

• The preset of transition t, denoted by •t, is given by •t = {p ∈ P |F (p, t) > 0}.

• The postset of transition t, denoted by t•, is given by t• = {p ∈ P |F (t, p) > 0}.

Example: Considering PN H shown in Fig. 2.1, we have, for instance,

1. •idle1 = {free1} and idle1• = {request1}.

2. •enter1 = {wait1, res} and enter1• = {CS1}.

2.4 Dynamic Behavior of Petri Nets

Previously, we have considered the static part of PNs. In the present section, we deal with the
dynamic evolution of PN marking controlled by two rules called “enabling rule” and “firing
rule”. Both enabling and firing rules are specified through arc multiplicities (weights) and
place markings. As for arcs, the enabling rule depends on input arcs of a transition, while
the firing rule considers both input and output arcs.

Firing a transition in PN models an occurrence of its corresponding event. Before firing
any transition, we check if its pre-conditions hold, in such case, the transition is said to be
enabled.

A transition t is enabled if each place in its preset contains tokens, at least, as many as
the multiplicity of the arc connecting both of them.

Definition 2.3. Enabling Rule. Transition t is enabled at marking M , denoted by M [t〉,
iff

M(p) ≥ F (p, t),∀ p ∈ •t.
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Example: Consider PN H shown in Fig. 2.1. Transition request1 is enabled since we
have •request1 = {idle1}, M(wait1) = 1, (i.e., place idle1 contains one token), and
M(wait1) ≥ F (idle1, request1).

Definition 2.4. Firing Rule. The firing of transition t enabled at marking M yields new
marking M ′, denoted by M [t〉M ′, such that

M ′(p) = M(p) + F (t, p)− F (p, t), ∀ p ∈ P .

Firing transition t (i) removes from each place in its preset as many tokens as the multi-
plicity of the arc connecting both of them, and produces to each place in its postset as many
tokens as the multiplicity of the arc connecting both of them.
Example: Consider PN H shown in Fig. 2.1. At initial marking M0, transitions request1

and request2 are fireable. In fact, the direct arc from idle1 to transition request1 means
that the pre-condition of transition request1 is place idle1. This place contains one token,
that is, the pre-conditions of request1 hold, hence it can fire (i.e., the corresponding event
can occur). Firing request1 removes a token from idle1 and puts one token inside wait1,
since we have an arc from request1 to wait1, which models the post-conditions of firing
request1. Similarly to transition request2 with respect to places idle2 and wait2.

PN H after firing request1 is shown in Fig. 2.2a. Firing request1 at M0 causes enabling
of transition enter1 at new marking M1. Firing the latter transition at M1 leads to new
marking illustrated in Fig. 2.2b. In Fig. 2.2c, transition enter2 cannot fire, since its pre-
conditions are wait2 and res such that res does not contain any token which means that
pre-conditions of enter2 do not hold. After firing free1 at marking depicted in Fig. 2.2c,
the obtained marking is depicted in Fig. 2.2d in which enter2 becomes enabled.

Definition 2.5. Transition Sequence. A transition sequence σ = t1, t2, . . . , tn is fireable
starting from marking M1 iff there exists a sequence of markings M1,M2, . . . ,Mn such that
Mi[ti〉,∀ i ∈ {1, 2, . . . ,n}.

M1[σ〉Mn+1 denotes the firing of transition sequence σ starting from M1 and Mn+1 is
reachable from M1 by firing σ.
Example: Consider Table 2.1, where the initial marking is denoted by s0. Firing se-
quence σ = request1, enter1, request2, free1, enter2, free2 is fireable starting from s0,
since there exists a marking sequence s0, s2, s5, s7, s1, s3, such that s0[request1〉s2[enter1〉
s5[request2〉s7[free1〉s1[enter2〉s3[free2〉.

Since PNs structure is static and firing transitions changes only the marking, which is
considered as the dynamic part of PNs, the state evolution can be modeled as a graph where
its nodes correspond to reachable markings, and its edges correspond to fired transitions.
Such a graph is called the reachability graph. Fig. 2.3 shows the reachability graph of PN H

depicted in Fig. 2.1, and their corresponding values are listed in Table 2.1.
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Figure 2.2: Firing transitions in PN H at M0.

Definition 2.6. Reachability Set. The Reachability set of a PN having initial marking
M0, denoted by RS(M0), is defined as follows RS(M0) = {M |M0[σ〉M ∧ σ is a fireable
sequence}.

Note that (i) σ can be empty, that is, M0 ∈ RS(M0), (ii) RS(M0) can be infinite, and
(iii) an initial marking must be completely provided in order to compute the reachability set,
that is, this computation is not possible neither for PN structure nor for PN family [CDF91,
Mar+94].
Example: Consider PN H depicted in Fig. 2.1. Its reachability set is shown in Table 2.1,
that is, RS(M0) = {s0, s1, . . . , s7}.

Definition 2.7. Reachability Graph. The Reachability graph of a PNN = 〈P ,T ,F ,M0〉,
denoted by RG(M0) = 〈V ,E〉, is a labeled directed graph, where

i) V = RS(M0), and

ii) E = {(Mi, t,Mj)|Mi ∈ RS(M0) ∧Mj ∈ RS(M0) ∧ t ∈ T}.

Example: Consider PN H depicted in Fig. 2.1. Its reachability graph is shown in Fig. 2.3,
that is, RG(M0) = 〈V ,E〉 where:

i) V = {s0, s1, s2, s3, s4, s5, s6, s7}, and

ii) E = {(s0, request2, s1), (s0, request1, s2), (s1, enter2, s4), (s1, request1, s3), . . . }.
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Figure 2.3: Reachability graph of H.

CS1 CS2 idle1 idle2 res wait1 wait2

s0 0 0 1 1 1 0 0
s1 0 0 1 0 1 0 1
s2 0 0 0 1 1 1 0
s3 0 0 0 0 1 1 1
s4 0 1 1 0 0 0 0
s5 1 0 0 1 0 0 0
s6 0 1 0 0 0 1 0
s7 1 0 0 0 0 0 1

Table 2.1: Reachable markings of H.

2.5 Petri Net Analysis

Besides its modeling power, a major reason for using Petri nets is its decision power. Nu-
merous analysis techniques have been developed for PNs verification. Indeed, Petri nets
support the analysis of many properties and problems associated with concurrent systems
[Mur89]. The properties can be analyzed either based on reachability graph, called behavioral
properties, or independently from reachability graph, called structural properties.

In this section, we discuss only important properties and their analysis problems. For
further reading about properties analysis, the reader is referred to [Pet81, Mur89, Mar+94,
EN94, GV01, Rei12].

2.5.1 Petri Net Properties

Reachability

The reachability problem for Petri nets consists of deciding if a marking M is reachable from
the initial marking. It has been proven that this problem is decidable [Kos82, May84, Reu90,
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Figure 2.4: Different levels of liveness.

Lam92]. The reachability problem is a central concept in Petri nets since most problems can
be converted into reachability problems.

Liveness and Deadlock-freedom

A Petri net is said to be live if every transition can always fire again in the future at any
reachable marking. It has been shown that the liveness problem is decidable since it is
recursively equivalent to the reachability problem [AK76].

This kind of liveness is a strong property. Thus, it is relaxed to different levels of liveness
[Mur89, Pet77]. A transition in a Petri net having initial marking M0 is

• L0-live (or dead) if it can never be enabled at any reachable marking.

• L1-live if it can be enabled at least once in certain firing sequence starting from M0.

• L2-live if it can fire, at least, k times in certain firing sequence starting from M0, where
k is a positive integer number.

• L3-live if it appears infinitely often in certain firing sequence starting from M0.

• L4-live (or live) if it is L1-live for any reachable marking from M0.

A Petri net is Lk-live if all transitions are Lk-live, such that k ∈ 0, 1, 2, 3, 4.

Example: Petri nets in Fig. 2.4 shows different levels of liveness, where t0 in Fig. 2.4a is
dead; and transitions t1, t2, t3 and t4 in Fig. 2.4b are L1-, L2-, L3- and L4-live, respectively.

Boundedness

A Petri net is bounded if its reachable set is finite. It has been proved that boundedness is
decidable [KM69]. In fact, a Petri net is unbounded iff there exists a reachable marking M

and transition sequence σ such that M [σ〉M + L, where L is a non-zero marking [EN94].
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A Petri net is k-bounded if, for any reachable marking, there is at most k tokens in any
place. A Petri net is safe if it is 1-bounded.

If a place in a Petri net represents a buffer, it would be interesting to verify whether this
place is bounded or safe to guarantee that there will be no overflows in the buffer.
Example: PNs shown in Figs.2.4a and 2.4b are safe and non-bounded, respectively.

Home state and Reversibility

A marking of a Petri net is a home state if it can be reached from all reachable markings.
Authors of [Fru86, BE16] have shown that home state problem is decidable. A Petri net is
said to be reversible if its initial marking is a home state.
Example: Marking M(p0, p1, p2) = (0, 0, 1) is a home state for Petri net shown in Fig. 2.4b,
such that is can be reached by firing t1 once, and firing t2 until it becomes no longer enabled.
Petri net in Fig. 2.1 is reversible as shown in its reachability graph depicted in Fig. 2.3.

Conservation

A Petri net is said to be conservative iff the number of tokens in any reachable marking
remains constant, i.e., after any transition firing the number of consumed tokens equals
the number of produced tokens. This property would be useful to show that the resources
(modeled by tokens) are neither created nor destroyed during the state evolution of the
system.
Example: Reachable markings of Petri net depicted in Fig. 2.5a are (1, 1, 0, 0), (0, 0, 1, 1),
(1, 0, 0, 1), and (0, 1, 1, 0) (the marking of p0, p1, p2 and p3).

Persistence

A Petri net is persistent if any two different transitions t1 and t2 are enable at any reachable
marking M , then firing of t1 will not disable t2, and vice-versa. Authors of [Gra80, May81,
Mül81] have proved that this problem is decidable.
Example: Consider Petri net shown in Fig. 2.5a. At initial marking only transition t0 is
enabled. Firing this transition leads to new marking M1(p0, p1, p2, p3) = (0, 0, 1, 1) at which
both transitions t1 and t2 are enabled. Firing t1 at M1 will not disable t2, and vice-versa.

Fairness

There are two types of fairness: bounded-fairness and unconditional fairness. Two transitions
are in a bounded-fair relation if the occurrence number of one is bounded while the other
does not yet fire. A PN is bounded-fair if any two transitions are in a bounded-fair relation.
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A firing sequence is unconditionally fair if it is either finite or all transitions appear
infinitely often in it. A PN is unconditionally fair if all fireable sequences from its initial
marking are unconditionally fair.

p0 p1

t0

p2 p3

t1 t2

(a) Conservative, persistent
and bounded-fair Petri net.

t0 t1

p0

t2 t3

p1 p2

(b) Unfair Petri net.

p0 p1

t0

p2 p3

t1 t2

p3

t3

(c) Uncontionally fair Petri
net.

Figure 2.5: Conservation, persistence and fairness.

Example: Consider Petri net shown in Fig. 2.5a. All firing sequences starting from initial
marking are words generated from the following regular expression (t0(t1t2|t2t1))

∗, i.e., are
concatenations of t0 t1 t2 and/or t0 t2 t1. Thus, this Petri net is bounded-fair.

Petri net depicted in Fig. 2.5b is unfair. In fact, both transitions t0 and t2 can fire,
sequentially, infinitely without any firing of neither t1 nor t3. As for PN illustrated in
Fig. 2.5c, it is unconditionally fair but not bounded-fair since place p3 is an unbounded place
making the occurrence number of t3, without firing other transition, unbounded as well.

Mutual exclusion

There are two types of mutual exclusion dealing with the impossibility of simultaneous sub-
markings or firing concurrency. Two places p and q are mutually exclusive if both of them
cannot be marked at the same marking, i.e., places p and q are mutually exclusive iff ∀M ∈
RS(M0),M(p) ×M(q) = 0. Two transitions are mutually exclusive if they cannot be both
enabled at any reachable marking.
Example: Consider Petri net shown in Fig. 2.5b. Its reachable markings are (1, 0, 0), (0, 1, 0)
and (0, 0, 1) (the values in each vector are the markings of places p0, p1 and p2, respectively).
Hence, each two places in this Petri net are mutually exclusive.

Furthermore, at any reachable marking listed above, there exists one and only one fireable
transition. Thus, each two transitions in this Petri net are mutually exclusive.
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2.5.2 Temporal Logic

To consider a large set of properties in Petri nets, researchers have studied decidability issues
using model checking [BK08].

Model-checking refers to a wide range of techniques that check whether a given property
formalized by a temporal logic is verified by a given system modeled, often, by a transition
system. The model checker confirms that either the system satisfies the property or violates
it. In the latter case, a counter-example is provided.

Among the properties that can be checked by model checking, there are two important
types of properties, namely, the liveness and safety properties [GV01]. Roughly speaking, a
liveness property (eventually) must be satisfied in the future by all future executions, i.e.,
“good things” do happen. For instance, if a process asks for a critical resource, it will access
to it in the future. A safety property (always) must be satisfied in each reachable state in the
future, i.e., “bad things” do not happen. For instance, a critical resource will never be used
by two processes or more at the same time. It has been shown in [AS87] that any property
can be decomposed as a conjunction of safety and liveness properties.

Aforementioned, usually model checker requires formalizing properties as formulae of
temporal logic and describing systems as transition systems. In the following, we present
briefly transition systems and temporal logic.

Definition 2.8. Transition System. A transition system TS is a tuple 〈S,T ,E, I,A,L〉,
where:

• S is a set of states and T is a set of actions,

• E ⊆ S × T × S is a transition relation on S,

• I ⊆ S is a set of initial states,

• A is a set of atomic propositions,

• L : S −→ 2A is a labeling function that assigns truth value to atomic propositions at
each state, that is, a ∈ A is true at s ∈ S iff a ∈ L(s).

In PNs context, S,T and E are obtained from the reachability graph, I contains a single
initial marking, and the atomic propositions are conditions on place markings.
Example: Consider transition system TS depicted in Fig. 2.6 of Petri net H shown in
Fig.2.1. TS is defined as follows. TS = 〈S,T ,E, I,A,L〉, where:

• S is the set of reachable states of H, that is S = {s0, s1, s2, s3, s4, s5, s6, s7},

• T = {request1, request2, enter1, enter2, free1, free2},
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Figure 2.6: Transition system of H shown in Fig. 2.1, where Ii, Wi and Ci denote (idlei = 1),
(waiti = 1) and (CSi = 1) for each i ∈ {1, 2}, respectively.

• E = {(s0, request2, s1), (s0, request1, s2), (s1, enter2, s4), (s1, request1, s3), . . . },

• I = {s0},

• A = {(idle1 = 1), (idle2 = 1), (wait1 = 1), (wait2 = 1), (CS1 = 1), (CS2 = 1)}, such
that (idle1 = 1) means idle1 is marked by one token. Similarly to the other places,

• L is the labeling function such that L(s0) = {(idle1 = 1), (idle2 = 1)}, L(s1) =

{(idle1 = 1), (wait2 = 1)}, L(s2) = {(wait1 = 1), (idle2 = 1)}, etc.

Definition 2.9. Finite Path, Maximal Path, and Path. A finite path is a state sequence
s0s1 . . . sn, where ∃ (si−1, t, si) ∈ E, such that t ∈ T , for all i ∈ {1, 2, . . . ,n}. A maximal path
π of a transition system with no terminal state is an infinite sequence of states s0s1s2 . . . ,
such that ∀ i,∃ t ∈ T , (si, t, si+1) ∈ E. A maximal path π = s0 s1 s2 . . . is a path, if s0 ∈ I.

Example: Consider transition system TS depicted in Fig. 2.6. s0s2s5s7 is a finite path,
s2s5s7s1s4s0 s1 . . . is a maximal path, and s0s2s5s7s1s4s0 . . . is a path.

Definition 2.10. Trace. The trace of a maximal path π = s0s1s2 . . . is defined as trace(π) =
L(s0)L(s1)L(s2) . . . . That is, the trace registers the valid propositions in each state of π.

Example: The trace of s0s2s5s7s1s4s0 . . . is {I1, I2}{W1, I2}{C1, I2}{C1, W2}{I1, W2}{I1, C2}
{I1, I2} . . . .
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As for temporal logics, there are two categories, namely, linear time logic (LTL) and
branching time logic (CTL). In this dissertation, we will restrict our attention to the linear
temporal logic. A comprehensive formal description of model checking can be found in
[BK08].

Definition 2.11. LTL Formula. An LTL formula is inductively defined as follows.

Φ ::= true | a | ¬Φ | Φ1 ∨ Φ2 | XΦ | Φ1 U Φ2

where a ∈ A is an atomic proposition.

Example: All the following formulae are LTL formulae.

• Φ1 ::= (CS1 = 1),

• Φ2 ::= ¬(CS1 = 1) ∨ ¬(CS1 = 1),

• Φ3 ::=X(¬(CS1 = 1) ∨ ¬(CS1 = 1)),

• Φ4 ::= (wait2 = 1)U(CS2 = 1).

Informally, formula XΦ holds for a maximal path π if its second state satisfies Φ. For
instance, consider path π0 = s0s2s5s7s1s4s0 . . . . Formula Φ3 holds for π0 since (¬(CS1 =

1) ∨ ¬(CS1 = 1)) is satisfied in s2.
As for formula Φ1UΦ2, it holds for a maximal path π if there exists a state s satisfies

Φ2, such that each prior state thereof satisfies Φ1. For instance, consider maximal path
π1 = s7s1s4s0 . . . . Formula Φ4 holds for π1, since formula (wait2 = 1) holds for s7 and s1;
and formula (CS2 = 1) is satisfied in s4. As for maximal path π2 = s7s1s3s7s1s3s7 . . . , formula
Φ4 does not hold.

Operators eventually (denoted by F) and always (denoted by G) can be expressed via
operator U, such that (FΦ ≡ trueUΦ) and (GΦ ≡ ¬F¬Φ).

2.5.3 Analysis Methods

In literature, Petri net analysis methods can be categorized as: enumeration or net-driven.
The first category consists on the computation of the reachability graph (totally or par-

tially). If the reachability graph is finite, it can be used for a proof system or for decision
procedures, where the most important properties are decidable. On the other hand, we
can use the coverability tree for unbounded systems, however, important properties such as
liveness and reachability are not decidable [Pet81]. Basically, enumeration based methods
are applicable to any Petri net class, however due to computational complexity, their use is
limited to small nets [Mur89].
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To overcome state space explosion problem, net-driven approaches reason on the net
structure to extract useful information about the net behavior.

Two different approaches are: structure theory and net transformations. The former is
based on graph theory and/or linear algebra. The latter transforms Petri net to another one
(typically by reduction) while preserving the properties to be analyzed. The resulting models
are expected to be easier to analyze [GV01].

Analysis by transformation transforms a net system S into a net system S ′ preserving a
set of properties Π in such a way that verifying set Π in S ′ becomes easier than in S such
that S ′ may belong to a Petri net subclass for which state enumeration can be avoided.

A special class of transformation methods is reduction methods in which a net system S
is transformed into a net system S ′ (eventually using a reduction sequence) in such a way
that S ′ is smaller than S preserving a set of properties Π of S.

In structural analysis techniques, the net behavior is reasoned from its structure, and its
initial marking is considered as a parameter. We can find two subcategories of structural
analysis:

1. Linear algebra: Using matrix equations, they allow fast verification without the neces-
sity of enumeration in certain cases.

2. Graph-based techniques: They are effective in analyzing some subclasses of Petri nets.

Although net-driven techniques are powerful, in many cases they are applicable only
to special subclasses of Petri nets [Mur89]. For further information about these analysis
techniques, the reader is referred to [Pet81, Mur89, GV01].

2.6 Stochastic Petri Nets

In this section, we present a class of Petri net enriched by temporal concepts, namely stochas-
tic Petri nets (SPNs). Indeed, Petri nets, in their basic definition, do not involve any concept
of time quantification. The notion of time is abstract in basic Petri nets, i.e., only logical
relationships in terms of time such as transition t1 fires before transition t2, transition t3 fires
after transition t4, etc. are allowed. Thus, performance evaluation of systems using basic
Petri nets is not possible.

On the other hand, the time concept is viral in certain real applications whose efficiency
is a crucial aspect. Hence, time-augmented Petri nets are introduced. In general, there are
two possible ways to do this [BK02]:

• Timed places Petri nets (TPPNs): In this class of Petri nets, tokens fired onto a
place p are unavailable to all its output transitions for a certain time. Once this time
has elapsed the tokens become available.
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• Timed transitions Petri nets (TTPNs): In this class of Petri nets, once a transition
becomes enabled it does not fire immediately, instead, it fires after a certain time.

Time-augmented Petri nets are classified also depending upon time nature. In fact, if
time is deterministic, then such Petri nets are called “timed Petri nets”. On the other hand,
if the firing time is a random variable following a certain distribution law, then they are
called “stochastic Petri nets”. Different families of stochastic Petri nets can be defined based
on their distribution laws of the firing time.

Moreover, the nature of stochastic Petri nets depends also on other firing characteristics
[Mic01], namely:
Selection policy: Given a set of enabled transitions at a certain marking, there are two
policies concerned with how tokens are reserved until the transition firing:

1. Preselection policy. First, (i) an enabled transition reserves all tokens it needs so that
these tokens are not available for other transitions. Then, (ii) it waits for its firing time
to elapse. Finally, (iii) it fires immediately according to the firing rule of Petri nets.

2. Race policy. First, (i) an enabled transition waits until its firing time interval has
elapsed. Then, (ii) it fires immediately according to the firing rule of Petri nets provided
it is still enabled at that time, i.e., the required tokens are not already consumed by
another transition.

Service policy: Given an enabled transition at a certain marking at which it can fire k

times, there are three policies concerned with how many times should the transition be fired
when its firing time has elapsed:

1. Single-server. One single firing is performed. It means that transition can only offer
one service at time,

2. Infinite-server. k firings are performed. It means that transition can ensure any number
of simultaneous services,

3. Multiple-server. Min(k, deg(t)) firings are performed. It means that transition t can
ensure deg(t) simultaneous services at maximum.

Memory policy: Assume that each timed transition is associated with a timer. When a
timed transition becomes enabled, its corresponding times is set to an initial value and then
starts to decrement. When the timer reaches the value zero, the corresponding transition fires.
Given a set of enabled transitions at a certain marking, there are three policies concerned
with how should firing a transition influence the timers of the other transitions:

1. Resampling. At each firing, the timers of all the timed transitions are discarded (restart
mechanism),
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2. Enabling memory. At each firing, the timers of all the disabled timed transitions are
restarted. As for timed transitions that are still enabled, their corresponding timers
hold their present value (continue mechanism),

3. Age memory. At each firing, the timers of all the timed transitions hold their present
values (continue mechanism).

In the following, we start by providing a brief introduction of stochastic processes. Then,
the basic concepts of Markov chains are presented. Finally, we consider two major classes
of stochastic Petri nets, namely, stochastic Petri nets having exponential law, generalized
stochastic Petri nets, and their quantitative properties.

2.6.1 Stochastic Process

Stochastic processes are used to model the evolution of systems that exhibit probabilistic
behaviors. They are defined by enumerating possible reachable states by the modeled systems
and the probabilities upon time of transitions between these states.

Mathematically, a stochastic process is a family of random variables X (t) defined over
the same probability space taking values in a set S, where parameter t denotes time and used
to index each random variable and S is the state space of the process [BK02]. Stochastic
processes can be classified according to the state space or the nature of time.

If the state space is discrete then the process is called discrete-state process or chain,
whereas if the state space is continuous, then it is called continuous-space process. Analogi-
cally, if the time is continuous then the process is called continuous-time process, otherwise,
it is called discrete-time process.

2.6.2 Markov Process

A particular class of stochastic processes, called Markov process, has found a wide range
of applications in the research community. A Markov process is a stochastic process whose
evolution depends only on the present, without being concerned with its evolution history.
This is known as Markov property, as well as, “memoryless”.

Let P [X (t) = x] denote the probability that the stochastic process will have value x at
time t and P [X (t) = x|X (tn) = xn] denote the probability that the stochastic process will
have value x at time t such that it had value xn at time tn. Formally, a Markov process is a
stochastic process {X (t)} whose conditional probability density function is such that

P [X (t) = x|X (tn) = xn,X (tn−1) = xn−1, . . . ,X (t0) = x0] = P [X (t) = x|X (tn) = xn]. (2.1)

where t > tn > tn−1 > · · · > t0.
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If the state space of a Markov process is discrete, then it is called Markov chain (MC). If
the time is continuous (discrete), then is called continuous time MC (CTMC) (respectively,
discrete time MC (DTMC)).

Furthermore, if the future evolution of a Markov process is independent of particular
instant tn in Eq. 2.1 so that is completely determined by knowing the present state, then
Markov process is said to be time-homogeneous. That is, the Markov process is invariant to
shifts in time. For a time-homogeneous Markov process, the following condition holds:

P [X (t+ s) = x|X (tn + s) = xn] = P [X (t) = x|X (tn) = xn]. (2.2)

In CTMCs (either time-homogeneous or not) the probabilities of transitions between
states are given as functions of time. The amount of time for which the process stays
in a state before moving to another one is called the sojourn time or holding time which
is exponentially distributed. Indeed, the exponential distribution is the only continuous
distribution that satisfies the property of memoryless [BK02].

For the remainder of this thesis, we consider only discrete-state space, time-homogeneous
Markov processes.

2.6.3 Stochastic Petri Nets having Exponential Law

A stochastic Petri net having exponential law N is a Petri net augmented by a function Λ

that assigns to each transition ti in N a firing delay λi which is exponentially distributed.
The distribution of random variable Xi of the firing delay of transition ti is given by

FXi
(x) = 1− e−λix. (2.3)

In this dissertation, we refer to timed transitions Petri nets with race, single server and
resampling mode; and exponentially distributed stochastic firing time by simply stochastic
Petri nets (SPNs).

Definition 2.12. Stochastic Petri Net. An SPN is a 5-tuple N = 〈P ,T ,F ,M0, Λ〉 where

• P is a finite and non-empty set of places,

• T is a finite and non-empty set of transitions disjoint from P ,

• F : (P × T ) ∪ (T × P ) −→ N is a flow relation for a set of arcs,

• M0 : P −→ N is an initial marking,

• Λ : T −→ R+ is a function that associates to each transition ti ∈ T an exponentially
distributed firing time λi.

27



Chapter 2: Stochastic Petri Nets

Example. Consider SPN N shown in Fig. 2.7. Both transitions request1 and request2 are
enabled at initial marking M0(CS1, CS2, idle1, idle2, res, wait1, wait2) = (0, 0, 1, 1, 1, 0, 0).
Before firing, request1 waits until a certain time has elapsed. This time is exponentially
distributed with rate λ0, i.e., the average time for request1 to fire is 1

λ0
. Similarly to transition

request2 with respect to rate λ3.

wait1 enter1(λ1)

CS1

free1(λ2)idle1

request1(λ0)
res

enter2(λ4) wait2

CS2

free2(λ5) idle2

request2(λ3)

Figure 2.7: SPN N models mutual exclusion.

The nature of SPNs does not modify the basic behavior of the underlying non-timed
model. This is useful since it is possible to study this class of SPNs using the basic model
properties as well as the available theoretical results [Mar+94]. Indeed, the enabling and
firing rules of basic Petri nets are preserved in SPNs. That is, once request1 has fired,
N marking becomes M2(CS1, CS2, idle1, idle2, res, wait1, wait2) = (0, 0, 0, 1, 1, 1, 0). As
well, firing request2 at M0 leads to marking M2(CS1, CS2, idle1, idle2, res, wait1, wait2) =

(0, 0, 1, 0, 1, 0, 1).
Considering probabilistic aspects of SPNs, the next marking depends on which transition

fires first. Given n enabled transitions t1, t2, . . . , tn having rates λ1,λ2, . . . ,λn at marking M ,
the probability that ti fires first is given by

P [ti fires first at M ] =
λi

λ1 + λ2 + · · ·+ λn

. (2.4)

Using Eq. 2.4, the probability that request1 fires first at M0 equals λ0

λ0+λ3
provided that

only transitions request1 and request2 are enabled at M0.
Given the following:

1. the next marking of an SPN depends only on its current marking,

2. the state space of SPNs is discrete,

3. the probabilities of transitions between markings are given as a function exponentially
distributed time,
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4. and the probability of changing from a marking M to some other marking is indepen-
dent of the sojourn time spent in M .

Then, an SPN describes a time-homogeneous CTMC that is isomorphic to its reachability
graph. Thus, quantitative analysis of SPNs can be carried out by analyzing the corresponding
CTMC. The latter is obtained straightforwardly by computing the reachability graph of a
given SPN based on the same algorithm used for underlying PN where the transition rate
between two markings (states) is the rate of the corresponding fired transition in SPN.
Example. Consider CTMC illustrated in Fig. 2.8.

s1

s4

λ1

s6
λ
0

s2

λ
5

s5

λ1

s7

λ
3

λ
2

s0

λ
3

λ
0

λ5

λ
2

s3

λ4

λ1

λ
0

λ
3

Figure 2.8: Corresponding CTMC of SPN N shown in Fig. 2.7, where states s0, . . . , s7 are
listed in Table 2.1.

This CTMC can be obtained by computing the reachability graph of SPN N depicted
in Fig. 2.7 where the label of any transition between two markings is the rate of the corre-
sponding fired transition. For instance, marking s1 is obtained from s0 by firing transition
request2, thus the rate of going from s0 to s1 is the rate of transition request2, i.e., λ3.

The next step in quantitative analysis of SPNs is to compute a matrix of transition rates
Q=(qij) of order n = |RS(SPN)|, i.e., its order is the number of reachable markings. The
element qij is the transition rate between corresponding marking Mi and Mj, i.e., the rate
fired transition tk such that Mi[tk〉Mj. The element qii is computed such that

∑j=1
n qij = 0,

that is, qii = −
∑j=1

n qij,i 6=j.
Example. Consider CTMC depicted in Fig. 2.8. Its matrix of transition rates Q is given as
follows.
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Q =



−(λ3 + λ0) λ3 λ0 0 0 0 0 0

0 −(λ0 + λ1) 0 λ0 λ1 0 0 0

0 0 −(λ3 + λ1) λ3 0 λ1 0 0

0 0 0 −(λ4 + λ1) 0 0λ4 λ1

λ5 0 0 0 −(λ5 + λ0) 0 λ0 0

λ2 0 0 0 0 −(λ2 + λ3) 0 λ3

0 0 λ5 0 0 0 −λ5 0

0 λ2 0 0 0 0 0 −λ2


.

Given a matrix of transition rates, the following step is computing the steady-state distri-
bution Π = [π1, π2, . . . , πn], i.e., the probability of being in reachable markings (s1, s2, . . . , sn),
respectively. To this end, we resolve the following equation system

Π×Q = 0, such that
i=1∑
n

(πi) = 1. (2.5)

Example. Consider CTMC depicted in Fig. 2.8. Its steady-state distribution Π = [π0, . . . , π7]

is given as follows.

[π0, π1, . . . , π7] ×


q00 · · · q07
... . . . ...
q70 · · · q77

 = [0, 0, 0, 0, 0, 0, 0], such that
i=0∑
7

(πi) = 1.

2.6.4 Quantitative Properties

After computing the steady-state distribution Π = [π1, π2, . . . , πn], we can then evaluate the
following quantitative properties [BK02, Mar+94].

Probability of being in a subset of markings: Let B ⊆ RS(SPN) be some markings
of interest. Then, the probability of being in a state of the corresponding subset is given by:

P [B] =
∑
si∈B

πi. (2.6)

Mean number of tokens: Let B(p,n) denote the subset of RS(N ) for which the number
of tokens in place p is n, and mp denote the maximum number of tokens that can present on
place p. Then, the average number of tokens in place p is given by:

m̄ =
n=1∑
mp

(nP [B(p,n)]). (2.7)
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Probability of firing transition tj: Let ENt denote the subset of RS(N ) in which a given
transition t is enabled. Then, the probability r that an observer, who looks randomly into
the SPN, sees transition t firing next is given by:

r =
∑

si∈ENt

πi

(
λt

−qii

)
=
∑

si∈ENt

πiP [t fires first at si]. (2.8)

Throughput at a transition t: The throughput at a transition t is given by:

d =
∑

si∈ENt

πiλt. (2.9)

2.7 Generalized Stochastic Petri Nets

Aforementioned, the firing delay of any transition in SPNs is stochastic and exponentially
distributed to model time-consuming activities. Nevertheless, not all activities in real sys-
tems are so. For instance, the verification of a logical condition can be proceeded in no time.
Hence, the second type of transition, called immediate, is introduced into SPNs, in order to
separate the two aspects in the modeling paradigm. Moreover, the introduction of immedi-
ate transitions in SPNs does not increase, significantly, the analysis complexity [Mar+94].
Stochastic Petri nets in which transitions are either immediate or timed are called generalized
SPNs (GSPNs).

In GSPNs, immediate transitions (depicted as filled bars) fire with priority over timed
transitions (depicted as unfilled bars), in zero time, as soon as they become enabled. In fact,
enabling an immediate transition disables all timed transitions, i.e., timed transitions in a
GSPN are disabled if there exists an enabled immediate transition. Considering firing rule,
GSPNs follow the same firing rule of basic Petri nets.

Consider GSPN G with marking M depicted in Fig. 2.9. Transitions enter1 and enter2

are immediate transitions, and the other transitions are timed. In fact, transition enter1

models the verification of a logical condition (if process p1 is waiting for critical resource
and the critical resource is free). This action is not a time-consuming activity, therefore it is
natural to model it by an immediate transition that fires in zero time. Similarly to transition
enter2 with respect to process p2. At marking M , only transition enter1 is enabled (which
disables all timed transitions including request2). Firing enter1 consumes one token from
place res and one token from place wait1; and produces one token into place CS1. After
firing enter1, transition request2 becomes enabled.

GSPNs represent an extension of SPNs, where transitions are divided into two sets: a set
T1 of timed transitions and a set T2 of immediate transitions.
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wait1 enter1(w0)

CS1

free1(λ1)idle1

request1(λ0)
res

enter2(w1) wait2

CS2

free2(λ3) idle2

request2(λ2)

Figure 2.9: GSPN G models mutual exclusion.

Definition 2.13. Generalized Stochastic Petri Net. A generalized stochastic Petri net
is 7-tuple G = 〈P ,T ,F ,M0,T1,T2, Λ〉 where:

1. P is a finite and non-empty set of places,

2. T is a finite and non-empty set of transitions disjoint from P ,

3. F : (P × T ) ∪ (T × P ) −→ N is a flow relation for a set of arcs,

4. M0 : P −→ N is an initial marking,

5. T1 ⊆ T is a set of timed transitions,

6. T2 ⊂ T is a set of immediate transitions, such that T1 6= ∅,T1 ∩ T2 = ∅,T1 ∪ T2 = T ,

7. Λ : T → R+, where Λ(ti) is a firing rate/weight of ti.

In GSPNs, firing an immediate transition t at a marking Mv yielding a marking M ′
v is

performed in zero time, hence, if an observer that looks to the net marking will not see
Mv since the latter will be vanished instantaneously. In other words, when the net reaches
marking Mv in any instant d, transition t fires immediately and the new net marking becomes
M ′

v in same instant d, thus the sojourn time in marking Mv is null. Such markings are called
vanishing markings. A vanishing marking is a marking that enables an immediate transition.

On the other hand, a tangible marking is a marking that either enables a timed transition
or is a dead-end marking. The stochastic process sojourns in such markings are exponentially
distributed. Therefore, these markings are not left immediately.

Another concept raises from introducing immediate transition which is timeless trap. A
GSPN is said to have a timeless trap if it can reach a marking that enables an infinite fireable
sequence of immediate transitions. Indeed, when a GSPN is in a timeless trap, it means that
no timed transition can be fired in the future.
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Consider stochastic process illustrated in Fig. 2.10, where its states are listed in Table 2.2.
Marking s1 and s2 are vanishing markings. Indeed, both of them enable immediate transi-
tions. Since s1 and s2 are the only vanishing markings and the only markings that describe
states in which a process is waiting to access a free critical resource, then the probability
that a random observer sees such situation is null.

s6

s4

request 2
(λ2)

s2

en
te

r 1
(w

0
)

s5

free
2 (λ

3 )

s3

request 1
(λ0)

s1
enter

2 (w
1 )

free
1 (λ

1 )

s0
request 2

(λ2)

request 1
(λ0)

free
2 (λ

3 )

free
1 (λ

1 )

Figure 2.10: Corresponding stochastic process of GSPN G shown in Fig. 2.9.

CS1 CS2 idle1 idle2 res wait1 wait2

s0 0 0 1 1 1 0 0
s1 0 0 1 0 1 0 1
s2 0 0 0 1 1 1 0
s3 0 1 1 0 0 0 0
s4 1 0 0 1 0 0 0
s5 0 1 0 0 0 1 0
s6 1 0 0 0 0 0 1

Table 2.2: Reachable markings of G.

2.7.1 Embedded Markov Chain

GSPNs do not describe a continuous-time Markov process. Indeed, sojourn time in vanishing
marking is null and in tangible markings is exponentially distributed, hence we do not use
sojourn time to analyze GSPNs, instead we consider the probability of going from a marking
M (either vanishing or tangible) to marking M ′. These probabilities are given by

P [M −→M ′] =

∑
ti∈{M [ti〉M ′} Λ(ti)∑
tj∈EN(M) Λ(tj)

. (2.10)

where EN(M) denotes the set of enabled transitions at marking M .
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These probabilities are independent of the sojourn time in marking M . Therefore, we
analyze the embedded Markov chain of the corresponding stochastic process of GSPNs.

Let T̂ denote tangible state set, V̂ vanishing state set, m = |V̂ |, and n = |T̂ |. Using
embedded Markov chain, the transition probability matrix is given as follows [BK02]:

P =



c11 · · · c1m d11 · · · d1n
... . . . ... ... . . . ...

cm1 · · · cmm dm1 · · · dmn

e11 · · · e1m f11 · · · f1n
... . . . ... ... . . . ...

en1 · · · enm fn1 · · · fnn


. (2.11)

where

cij = P [Mi −→Mj|Mi ∈ V̂ ∧Mj ∈ V̂ ], dij = P [Mi −→Mj|Mi ∈ V̂ ∧Mj ∈ T̂ ],

eij = P [Mi −→Mj|Mi ∈ T̂ ∧Mj ∈ V̂ ], fij = P [Mi −→Mj|Mi ∈ T̂ ∧Mj ∈ T̂ ].

That is, the upper left side describes the transition probabilities between vanishing states,
the upper right side describes transition probabilities from vanishing states to tangibles one,
the bottom left side describes transition probabilities from tangibles states to vanishing ones,
and finally, the bottom right side describes the transition probabilities between tangibles
states.
Example: Assume mean firing rates λ0 = 6,w0 = 300,λ1 = 3,λ2 = 2,w1 = 300 and λ3 = 1.
Solving the equation system we obtain the following steady-state distribution:

s1 s2 s0 s3 s4 s5 s6

Vanishing states

{

Tangible states



s1

s2

s0

s3

s4

s5

s6



0 0 0 1 0 0 0

0 0 0 0 1 0 0

2
8

6
8 0 1 0 0 0

0 0 1
7 0 0 6

7 0

0 0 3
5 0 0 0 2

5

0 1 0 0 0 0 0

1 0 0 0 0 0 0


.

The steady-state distribution Π̃ = [π̃1, π̃2, . . . , π̃m+n] – of being in states (either vanishing
or tangible) s1, s2, . . . , sm+n, respectively – of the embedded Markov chain is given by

Π̃× P = Π̃, such that
i=1∑
m+n

(π̃i) = 1. (2.12)
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From this steady-state distribution, we can compute the steady-state distribution of the
original stochastic process as follows:

πi =



π̃i ×
( ∑

tj∈ET (Mi)

wj

)−1
∑

Mk∈T̂
π̃k ×

( ∑
tj∈ET (Mk)

wj

)−1 if Mi ∈ T̂

0 otherwise.

(2.13)

Given the steady-state distribution of tangible states, we can compute quantitative prop-
erties presented in Section 2.6.4. Note that throughput and firing probability concern only
timed transitions.
Example: Consider GSPN G illustrated in Fig. 2.9.

The steady-state distribution Π̃ = [π̃1, π̃2, π̃0, π̃3, π̃4, π̃5, π̃6] of its embedded Markov chain
is calculated by resolving the following equation system

[π̃1, π̃2, π̃0, π̃3, π̃4, π̃5, π̃6] ×



0 0 0 1 0 0 0

0 0 0 0 1 0 0
2
8

6
8

0 1 0 0 0

0 0 1
7

0 0 6
7

0

0 0 3
5

0 0 0 2
5

0 1 0 0 0 0 0

1 0 0 0 0 0 0


= [π̃1, π̃2, π̃0, π̃3, π̃4, π̃5, π̃6].

such that
∑i=0

6 (π̃i) = 1.
That is,

[π̃1, π̃2, π̃0, π̃3, π̃4, π̃5, π̃6] ×



0 0 0 1 0 0 0 1

0 0 0 0 1 0 0 1
2
8

6
8

0 1 0 0 0 1

0 0 1
7

0 0 6
7

0 1

0 0 3
5

0 0 0 2
5

1

0 1 0 0 0 0 0 1

1 0 0 0 0 0 0 1


= [π̃1, π̃2, π̃0, π̃3, π̃4, π̃5, π̃6, 1].

Solving the equation system, we obtain the following steady-state distribution of the
embedded Markov chain:
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π̃1 = P [(0, 0, 1, 0, 1, 0, 1)] = 0.1450,

π̃2 = P [(0, 0, 0, 1, 1, 1, 0)] = 0.1884,

π̃0 = P [(0, 0, 1, 1, 1, 0, 0)] = 0.0960,

π̃3 = P [(0, 1, 1, 0, 0, 0, 0)] = 0.1450,

π̃4 = P [(1, 0, 0, 1, 0, 0, 0)] = 0.1884,

π̃5 = P [(0, 1, 0, 0, 0, 1, 0)] = 0.1242,

π̃6 = P [(1, 0, 0, 0, 0, 0, 1)] = 0.1130.

Using Eq.2.13, we obtain the following steady-state distribution [π0, π1, π2, π3, π4], prob-
abilities of being in tangible states s0, s3, s4, s5 and s6 respectively, of the original stochastic
process:

π0 = P [(0, 0, 1, 1, 1, 0, 0)] = 0.0427,

π1 = P [(0, 1, 1, 0, 0, 0, 0)] = 0.0830,

π2 = P [(1, 0, 0, 1, 0, 0, 0)] = 0.1507,

π3 = P [(0, 1, 0, 0, 0, 1, 0)] = 0.4975,

π4 = P [(1, 0, 0, 0, 0, 0, 1)] = 0.2261.

2.8 Conclusion

In this chapter, we have presented Petri nets that constitute the basic form of other classes
of Petri nets. Their intuitive aspects of modeling have been discussed. As well, the formal
modeling and verification based on Petri net are presented.

Stochastic Petri nets that provide a common extension of Petri nets combining qualitative
and quantitative verification are introduced. Finally, several of their underlying concepts such
as Markov chains, steady-state distribution, etc. are illustrated via certain examples.

In spite of their modeling and decision power, Petri nets face several shortcomings in the
design and analysis of dynamic-structure systems. Hence, it is required to introduce dynamic
structures to Petri nets in order to model/verify such systems in a natural way. In the next
chapter, we are interested in the extension of Petri nets onto dynamic-structure formalisms.
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3.1 Introduction

Nowadays, many discrete-event systems (DESs) are becoming increasingly complex, struc-
turally dynamic and variably interconnected. These systems are designed to be able to change
their structure and/or topology, at run-time, by adding/removing interconnections, objects,
or even subsystems, to accommodate new circumstances/requirements. Ongoing studies on
this class of systems focus on their key feature, namely, the reconfigurability [Bre+14] that
must be performed at run-time (i.e., dynamic reconfigurability) [JEB16].

In fact, many researchers have used Petri nets to study such systems [Mar+94, Lat+18].
In the literature, PNs have been extended to several classes that are proposed and applied
to model and verify reconfigurable systems.

GSPNs and SPNs, presenting common extensions of PNs, are important and versatile
tools [Mar+94] that fit well with the behavior of DESs at different stages of development
[LZB15, Čap17, Sim+18, Lat+18]. However, PNs (low- or high-level) are not suitable in
the modeling and verification of advanced systems having dynamic structures [CC18]. In-
deed, systems supporting volatile environments, continuous variations, and reconfigurable
structures are expected to be extremely complex [Chr+13].

In fact, modeling reconfigurable systems with basic PNs (i.e., non-reconfigurable) makes
the designer’s tasks even more complicated and thus the resulting models will often be very
large, complicated and difficult to assimilate. The analysis of such models can only be
more complicated too. Indeed, basic PNs are characterized by their rigid structure impeding
modeling, verification, simulation and visualization of the dynamic structure of this class of
systems. To overcome this issue, researchers introduce dynamic structures into PNs, thus
expanding the standard formalism [PK18].

On the other hand, rule-based graph transformations [EP04] offer an intuitive and math-
ematically based graphical framework for modeling the reconfigurations of PN structures.
Nevertheless, increasing the modeling power of a formalism decreases its decision power.
Therefore, extensions proposed in the literature on reconfigurability in PNs try to find a
trade-off between modeling and verification levels.

The idea behind reconfigurable PNs is to get closer to real dynamic systems and to offer
realistic models reflecting the inherent aspects of these systems. However, these gains in
modeling are to the expense of analysis level such that some, or even all, properties become
undecidable. This last gap has not prevented the development of this category of formalisms
and considerable research is being conducted at the analysis level.

In the following, we introduce graph transformation systems in Section 3.2. Then, we
present the common reconfigurable extensions of PNs in Sections 3.3–3.8. Different choices
and properties of these extensions are discussed in Section 3.9. Finally, we conclude by
classifying these extensions according to their modeling/verification limits in Section 3.10.
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3.2 Graph Transformation Systems

Graph transformation systems (GTSs) offer an intuitive framework for the modeling of
dynamic-structure systems. GTSs consist of a start graph G0 that models an initial con-
figuration, i.e. initial structure, of a system G and a set of rewriting rules R that expresses
the structure evolution, i.e., a system reconfiguration. Each transformation rule consists of
a left-hand side (LHS) and a right-hand side (RHS).

Assume that a graph G is the current configuration of G, roughly speaking a rule is
applicable when an occurrence of its LHS is located in G. This occurrence is located by a
graph morphism that maps the LHS of a rule into a sub-graph of G. Applying a rule removes
the occurrence of its LHS from G and adds its RHS to G. In some GTSs, an interface graph
is provided to describe some parts to be preserved and to specify the attachment of RHS to
the remaining part of the reconfigured graph [Kön04].

Definition 3.1. Graph Transformation System. A graph transformation system (GTS)
G = 〈G0,R〉 consists of a start graph G0 and a set of rewriting rules R. A graph G is
generated by G if G is obtained by applying a set of rules in R to G0.

In the following, we present briefly two graph transformation approaches, namely double-
pushout (DPO) and net rewriting system (NRS).

3.3 Double-Pushout Approach for Petri Nets

In the field of graph transformation, the double-pushout (DPO) approach is considered as the
most prominent technique which offers a theoretically founded and tool-supported framework
in a rigorous way [KL18].

DPO approach uses graph morphisms that map transitions to transitions and places to
places, so that if place p is mapped to place p′, then a mapping between their preset and
postset must exist (similarly to transitions).

Definition 3.2. PN morphism. Let G = 〈PG,TG,FG,M
0
G〉 and H = 〈PH ,TH , FH ,M

0
H〉

be two PNs. A Petri net morphism ϕ : G → H is a pair of mappings ϕP : PG → PH ,ϕT :

TG → TH , where ∀ t ∈ TG and ∀ p ∈ PG, it holds the following [HEM05, EHP06]:

• FG(p, t) = FH(ϕP (p),ϕT (t)),

• FG(t, p) = FH(ϕT (t),ϕP (p)),

• M0
G(p) ≤M0

H(ϕP (p)).
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Example. Consider PNs shown in Fig. 3.1.
An occurrence of PN L0 is located in H0 such that p′0, t′1, p′1 and t′2 in L0 are mapped to

p0, t1, p1 and t2 in H0, respectively. On the other hand, place p′0 in L1 cannot be mapped to
p0 in H1, since ML1(p

′
0) 6≤MH1(p0). As well, place p′1 and transition of L2 cannot be mapped

to place p1 and transition t2 of H2, since FL2(p
′
1, t
′
2) 6= FH2(p1, t2).

p′0 t′1 p′1 t′2

L0

t0 p0 t1 p1 t2

H0

m
(p
′0 )

m
(t
′1 )

m
(p
′1 )

m
(t
′2 )

(a) A valide PN morphism.

p′0 t′1 p′1 t′2

L1

t0 p0 t1 p1 t2

H1

X

(b) An invalide PN morphism.

p′0 t′1 p′1 t′2

L2

t0 p0 t1 p1 t2

H2

X X

(c) An invalide PN morphism.

Figure 3.1: PN morphisms.

Definition 3.3. Transformation Rule. In DPO, transformations are rule-based where
each graph transformation rule ω consists of three graphs L, I, R (ω = 〈L ϕl←− I

ϕr−→ R〉); and
two PN morphisms ϕl and ϕr, such that:

• L is called the left-hand side (a structure to be deleted),

• I is called the common interface,

• R is called the right-hand side (a structure to be inserted),

• ϕl : I → L is a PN morphism that maps I to L,

• ϕr : I → R is a PN morphism that maps I to R.
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Given a rule ω = 〈L ϕl←− I
ϕr−→ R〉, all elements in LHS not belonging to image of ϕl are

called obsolete and all elements in RHS side not belonging to image of ϕr are called fresh.
Informally, applying a rule ω = 〈L ϕl←− I

ϕr−→ R〉 to a PN G means to substitute some
elements of its left-hand side L by some elements of its right-hand side R. The first step in
applying ω is to find a match of L in G by a morphism m. If PN morphisms m, ϕl and ϕr

are injective, then, we remove the images of obsolete nodes of L (resulting in a net called
context) and insert fresh elements of R, this transformation is denoted by G

ω,m
==⇒ H, such

that H is the resulting PN. The removed elements are called obsolete and the inserted ones
are called fresh. In this thesis, we limit our attention to injective PN morphisms.

A DPO transformation can be presented graphically by a diagram. Fig. 3.2 depicts an
example of a DPO-based PN transformation.

p0 t1 p1 t2
L

ϕl
p0 p1

I

ϕr
p0 t3 p1

R

ϕi (2)

p0 p1t0
C

t0 p0 t1 p1 t2
G

m (1)

ϕc
t0 p0 t3 p1

H
ϕh

Figure 3.2: DPO diagram.

In fact, a DPO transformation consists of two graph gluing constructions (conventionally
called pushout). Intuitively, the first pushout (as depicted by Box (1) in Fig. 3.2) determines
the existing of a (unknown) PN C (called context) that can be glued with L over common
interface I, where resulting PN is G, denoted by G = C +I L. If such PN exists, then such
a rule can be applied to G. The second pushout (as highlighted by Box (2) in Fig. 3.2)
determines resulting PN H by gluing C with R over common interface I, denoted by H =

C +I R.
PN H = 〈PH ,TH ,FH ,M

0
H〉 obtained by a graph gluing is given as follows.

1. PH = PC ] (PR \ PI).

2. TH = TC ] (TR \ TI).

3. FH and M0
H are given by Eqs.(3.1) and (3.2), respectively.

FH(v,w) =


FC(v,w) iff v,w ∈ PC ∪ TC

FR(v,w) iff v,w ∈ PR ∪ TR

0 otherwise
. (3.1)
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M0
H(p) =


M0

C(p) iff p ∈ PC \ PR

M0
R(p) iff p ∈ PR \ PC

M0
C(p) +M0

R(p)−M0
I (p) otherwise

. (3.2)

Let us consider the rule shown in Fig. 3.2. An occurrence of L is located in G by a PN
morphism m, where m(p0) = p0,m(t1) = t1,m(p1) = p1, and m(t2) = t2. Then, a context
net C is defined by deleting images of obsolete nodes of L (which are {t1, t2}) from net G.
Afterward, we insert fresh nodes of R (which are {t3}) and nodes of C into H.

Finally, flow function and net marking of new net H are computed according to Eqs.(3.1)
and (3.2), respectively. For instance, (i) the connection between t0 and p0 in H is equal to
the connection between them in C, since both t0 and p0 belong to net C, (ii) the connection
between t3 and p1 in H is equal to the connection between them in R, since both t3 and p1

belong to net R, (iii) M0
H(p0) = M0

C(p0) +M0
R(p0)−M0

I (p0) = 1, etc.

3.4 Net Rewriting Systems

In order to improve the expressiveness of the basic PNs formalism, net rewriting systems
(NRSs) are introduced in [LO04a, LO04b] by merging Petri nets with GTSs. NRS formalism
is similar to DPO for PNs except that (i) LHS and RHS must be unmarked Petri nets, (ii) all
nodes in LHS are obsolete, (iii) all nodes in RHS are fresh, and (iv) the interface is modeled
as transfer relations rather than a PN.

Definition 3.4. Net Rewriting System. A net rewriting system (NRS) N = 〈G0,M0,R〉
consists of a start unmarked PN G0, an initial marking M0, and a set of rewriting rules R.

Definition 3.5. Rewriting Rule. A rewriting rule r ∈ R is a structure r = 〈L,R, I,O〉,
such that:

• L = 〈PL,TL,FL〉 is an unmarked PN called left-hand side,

• R = 〈PR,TR,FR〉 is an unmarked PN called right-hand side,

• IR ⊆ (PL × PR) ∪ (TL × TR) is a binary relation called interface relation,

• I ⊆ (PL × PR) ∪ (TL × TR) is a binary relation called input interface relation,

• O ⊆ (PL × PR) ∪ (TL × TR) is a binary relation called output interface relation.

Example. Consider NRS rule r0 depicted in Fig. 3.3. Their LHS and RHS are unmarked
PN shown in Figs 3.3a and 3.3b, respectively. Its interface relations relates transition t′0 to
transitions cA, cB and cC; transition t′1 to transitions pA, pB and pC; and place p′0 to places
pa, pb and pc.
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t′0 p′0 t′1

(a) LHS L0.

cA pa pA

cB pb pB

cC pc pC

(b) RHS R0.

I =
{
(t′0, cA), (t

′
0, cB), (t′0, cC)

}
.

IR =
{
(t′0, cA), (t

′
0, cB), (t′0, cC),

(p′0, pa), (p
′
0, pb), (p

′
0, pc),

(t′1, pA), (t
′
1, pB), (t′1, pC)

}
.

O =
{
(t′1, pA), (t

′
1, pB), (t′1, pC)

}
.

(c) Interface relations.

Figure 3.3: NRS rule r0.

Similarly to DPO, applying a rule r = 〈L,R, I,O〉 to a PN G removes the image of left-
hand side L and add the right-hand side R. To apply r, first we find a matchM of L in G by
a morphism m without considering the marking since L is an unmarked PN. The node of G
not belonging to M constitute the context graph. Then, we check the following conditions,
(i) a node n of matchM may belong to postset of a node in the context graph iff n belongs
to I, and (ii) a node n′ of match M may belong to preset of a node in the context graph iff
n′ belongs to O. After replacing the match M by R, the marking MH and the flow function
FH of the obtained net H is defined by the following equations.

Applying rewriting rule r = 〈L,R, , I,O〉 on PN G with marking M leads to new PN
H = 〈PH ,TH ,FH ,M

0
H〉. Marking M0

H of H is given by

M0
H(p) =


M(p) if p /∈ PR

∑
p′∈π(p)

M(m(p′)) if p ∈ PR

. (3.3)

where π(p) = {p′|∃(p′, p) ∈ I ∪O} and m is the morphism that maps L to M.
For each couple of nodes (v,w) ∈ (PH × TH)∪ (TH × PH), FH(v,w) is defined as follows.

FH(v,w) =



FG(v,w) if v /∈ NR ∧ w /∈ NR

FG(v,w) if v ∈ NR ∧ w ∈ NR

∑
w′∈πI(w)

FG(v,m(w′)) if v /∈ NR ∧ w ∈ NR

∑
v′∈πO(v)

FG(m(v),w) if v ∈ NR ∧ w /∈ NR

. (3.4)

where NR = PR ∪ TR, πI(p) = {p′|∃(p′, p) ∈ I} and πO(p) = {p′|∃(p′, p) ∈ O}.
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Example. Consider r0 application depicted in Fig. 3.4 to G0 shown in Fig. 3.4a.

trin p1

ld p2 cA pa pA p3 uld

mf

p4 trout

tf

(a) Source PN G0.

trin p1

ld p2 p3 uld

mf

p4 trout

tf

(b) Intermediate PN G′0 after removing image of L0.

trin p1

ld p2

cA

cB

cC

pa

pb

pc

pA

pB

pC

p3 uld

mf

p4 trout

tf

(c) Target PN H.

Figure 3.4: An application of NRS rule r0 to G0.

First, a morphism m matches L0 depicted in Fig. 3.3a to a sub-graph m(L0) in G0 such
that m(t′0) = cA,m(p′0) = pa and m(t′1) = pA. Then, this match is removed from G0 yielding
to the intermediate graph shown in Fig. 3.4b. Finally, we add and connect R0 depicted in
Fig. 3.3b to the intermediate graph.

Consider the connection FH(p2, cB) from place p2 to transition cB. According to, Eq.(3.4),
FH(p2, cB) =

∑
w′∈πI(cB) FG(p2,m(w′)), since p2 does not belong to R0, whereas cB does it.

We have πI(cB) = {t′0}, hence FH(p2, cB) = FG(p2,m(t′0)) = FH(p2, cB) = FG(p2, cA) = 1.
As for the marking of place pc, it is computed according to Eq.(3.3) as follows. M0

H(pc) =∑
p′∈π(pc) M(m(p′)), since pc ∈ PR0 . We have, π(pc) = {p′0}, hence M0

H(pc) = M(m(p′0)) =

M(pa) = 0.
Note that r0 can be applied differently to G0. Indeed, L0 can be matched to other sub-

graphs in G0. For instance, there is another morphism m′ matching t′0, p
′
0 and t′1 in L0 to

trin, p1, and ld, respectively.
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3.5 Self-Modifying Nets

In [Val78b, Val78a], Valk introduced Self-Modifying nets (SM-nets) in order to increase the
modeling power of Petri nets and discussed their decidability issues. SM-nets are considered
as the first extension that introduced reconfigurability to Petri nets. In fact, SM-nets are
able to modify their own enabling and firing rules by allowing to arcs to be weighted either
by a natural number or in terms of the marking of a place belonging to the net.

Consider SM-net depicted in Fig. 3.5a in which the weight of the arc ongoing from place
v to transition t1, as well as the arc from transition t1 to place w, equals the marking of
place u. Hence, firing t1 consumes three tokens (the current marking of place u) from place
v and deposits, as well, three tokens at place w. Consider Fig. 3.5b, firing t0 yields a new
marking in which u is marked by two tokens. Hence, firing t1 consumes two tokens from v

and deposits two tokens at w.
Therefore, the enabling and firing rules of transition t1 are modified after the firing t0.

Note that if the marking of place u is zero, transition t1 is enabled, since the weight of the
arc from v to t1 becomes zero, that is, t1 becomes a source transition (a source transition is
a transition whose preset is an empty set).

u t0 v t1 w
u u

After firing t1

u t0 v t1 w
u u

(a) Firing t1.

u t0 v t1 w
u u

After firing t0

u t0 v t1 w
u u

After firing t1

u t0 v t1 w
u u

(b) Firing t0 then t1.

Figure 3.5: Self-modifying nets.

Definition 3.6. Self-Modifying Nets . A Self-Modifying net is a 4-tuple SM = 〈P ,T ,F ,M0〉
where

• P is a finite and non-empty set of places,

• T is a finite and non-empty set of transitions disjoint from P ,
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• F : (P × P1 × T ) ∪ (T × P1 × P ) −→ N is a flow relation for a set of arcs, where
P1 = P ∪ {1} and 1 /∈ P ,

• F (x, 1, z) = m means that the multiplicity (weight) of the arc from x to z is m, and
F (x, y, z) = n means that the multiplicity of the arc from x to z is n ·M(y), where
M(y) is the current marking of place y,

• M0 : P −→ N is an initial marking.

Example. Consider the SM-net depicted in Fig. 3.5. Its formal definition SM = 〈P ,T ,F ,M0〉
can be given as follows.

• P = {u, v,w},

• T = {t0, t1},

• F (u, 1, t0) = 1,F (t0, 1, v) = 1,F (v,u, t1) = 1,F (t1,u,w) = 1, otherwise equals zero,

• M0(u) = 3,M0(v) = 5 and M0(w) = 0.

Dufourd et al. have presented several sub-classes of SM-nets in [DFS98] and discussed
the decidability issues of their properties. As well, they have shown that reachability, place-
boundedness, boundedness, coverability, etc. are undecidable for SM-nets.

3.6 Reconfigurable Petri Nets

Reconfigurable Petri nets (RPNs), a subclass of NRSs, are proposed in [BLO03, LO04a,
LO04b] which have the same modeling and decision power of PNs. They have proposed to
explicitly the reconfiguration in structurally dynamic systems.

The reconfigurations in RPNs are expressed via a set of rewriting rules that can only
modify the flow relations (i.e., sets of places and transitions are still unchanged after applying
any rule) depending on net marking. In fact, RPNs can be seen as a merging of PNs with
SM-nets.

Definition 3.7. Reconfigurable Petri Nets. An RPN is a structure N = 〈P ,T ,R, γ0〉
where :

1. P = {p0, . . . , pn} is a non-empty and finite set of places,

2. T = {t0, . . . , tm} is a non-empty and finite set of transitions, such that P ∩ T = ∅,

3. R = {r0, . . . , rk} is a finite set of rewriting rules,

4. γ0 is an initial configuration of net N .
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Definition 3.8. Rules in RPNs. A rule r is a structure r = 〈D,• r, r•,C,M〉, such that:

1. D ⊆ P , such that D is the set of places whose connections will be changed by rule
application,

2. •r : (D× T )∪ (T ×D)→ N describes the flow relations of places in D before applying
r,

3. r• : (D×T )∪ (T ×D)→ N describes the flow relations of places in D after applying r,

4. C ⊆ D , is the set of control places, and M is the required minimum marking of places
of C so that the rule can be applied.

A rule r is applicable to N iff:

• The flow relations in N of places in D must be identical to •r,

• ∀p ∈ C ,M(p) ≥M(p), such that M is the current marking of N .

Example. Fig. 3.6a shows an example of an RPN N . This RPN is defined as N =

〈P ,T ,R, γ0〉, where:

1. P = {p0, p1}, T = {t0, t1, t2}, and γ0 shown in Fig. 3.6a,

2. R = {r = 〈D,• r, r•,C,M〉}, such that:

• D = P , C = {p0}, M(p0) ≥ 3,

• •r(ti, pi) = 1 for i = 0, 1, •r(pj, tj+1) = 1 for j = 0, 1 and, otherwise, •r(·, ·) = 0,

• r•(t0, p0) = 1, r•(p0, t2) = 1 and, otherwise, r•(·, ·) = 0.

Both functions •r and r• can be denoted simply by: p0(t0− t1)+ p1(t1− t2) . p0(t0− t2)+

p1(∅). Fig. 3.6b depicts the obtained configuration after applying rule r.

t0 p0 t1 p1 t2

(a) Before reconfiguration.

t0 p0 t1 p1 t2

(b) After reconfiguration.

Figure 3.6: Reconfiguration after applying r.

In fact, the reconfigurations in RPNs are restricted to the topology level in order to be
able to transform RPNs to equivalent basic PNs. Actually, the PNs are equipped with a
set of algorithms and methods used to verify their qualitative properties either based on
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its structure (i.e., structural analysis) or based on its reachability graph (i.e., behavioral
analysis). Hence, RPNs are transformed into equivalent PNs, so that their analysis can be
performed through analyzing their equivalent PNs.

Assume an RPN N = 〈P ,T ,R,C0〉. RPN N can be reconfigured by adding and/or re-
moving arcs. These transformations take place in order to enable, disable and/or modify
conditions/effects (resp. pre/postconditions) of some actions (resp. transitions) in the re-
configurable system (resp. model). Hence, its equivalent Ge must be able to model these
transformations and their effects, as well, the switching between configurations. The scratch
of the transformation algorithm is given in the following. For further information, the reader
is referred to [LO04a, LO04b].

Let C0,C1, . . . ,Cn be a set of configurations, such that C0 is an initial configuration and
C1, . . . ,Cn the configurations obtained by applying rules in R to C0.

To create an equivalent PN Ge, we clone all places in P with their initial marking in Ge.
We associate to each configuration Ci a place p̊i. A token in place p̊i signifies that the current
configuration is Ci.

Considering the transitions. For each couple “transition t and configuration Ci”, we
add a transition ti representing transition t as well as we preserve its flow relations in Ci.
It is indispensable to connect ti to p̊i with a self-loop in order to make ti enable only if
the current configuration is Ci. The purpose of duplicating t is to model the change in its
pre/postconditions through reconfigurations.

Finally, each rule r is represented by a transition rji , where Ci and Cj are their source and
target configurations, respectively. The preconditions of transition rji are: (i) the required
marking for applying rule r, and one token in place p̊i (corresponding to source configuration
Ci). The postconditions of transition rji are: (i) the required marking for applying rule r, and
one token in place p̊j (corresponding to target configuration Cj). In fact, firing transition
rji does not change the marking of places except those corresponding to source and target
configurations.
Example. Consider PN shown in Fig. 3.7 obtained by transforming RPN N to a PN.

This PN is constructed such that

1. It contains all places in P of RPN N such that P = {p0, p1},

2. Two places p̊0 and p̊1 corresponding to two configurations C0 and C1 depicted in
Figs. 3.6a and 3.6b, respectively, are added such that initial marking of p̊0 is one,
since C0 is the initial configuration,

3. A copy tij of each transition tj in each configuration Ci, is added such that tij is con-
nected to places according to the connections of tj in Ci. For instance, t01 models t1 at
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t00 p0 t01 p1 t02

t10 t11t12

p̊0

p̊1

r10 3

Figure 3.7: Equivalent PN to RPN N .

configuration C0, hence, t01 is connected by an arc ongoing from place p0 to it, and an
arc ongoing from it to place p1,

4. Each transition tij is connected to place p̊i by a self-loop in order to enable it only when
the current configuration is Ci. For instance, transition t01 is connected by a self-loop
to place p̊0 which enables it only when the current configuration is C0,

5. Transition r10 models rule r, such that a self-loop connecting r10 with place p0 that
models the required marking of place p0 to apply rule r. Furthermore, the arc from p̊0

to r10 means that its source configuration is C0, and the arc from r10 to p̊1 means that
its target configuration is C1.

3.7 Improved Net Rewriting Systems

Aforementioned, net rewriting systems (NRSs) is an extension of PNs allowing modeling
dynamic structures. Nevertheless, it does not consider the verification aspects. Hence, im-
proved net rewriting systems (INRSs) are proposed in [LDM05, LDM08, Li+08, LDM09,
Li+09] to allow reconfiguring live, bounded and reversible (LBR) PNs while preserving their
LBR properties, i.e., the obtained PN after any reconfiguration is as well an LBR PN. Hence,
it is no more required to re-verify these properties in the obtained PN after each reconfig-
uration. INRSs combine (i) NRSs as underlying formalism, (ii) well-behaved nets (WBNs)
[SM83] to describe interface relations between left- and right hand sides, and (iii) certain
subclasses of PNs to define left- and right-hand sides of rules.
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In fact, WBNs were proposed to abstract or refine PNs (replace a transition by a subnet
or vice-versa), while preserving certain properties such as liveness and boundedness. This
approach is extended in INRSs to consider reconfiguration by replacing a subnet by another
one while preserving LBR properties. Any subnet used in reconfiguration must belong to a
set called net block type library. This set consists of certain subclasses of PNs [Mur89] such
as state machines, marked graphs, etc. Some examples of net blocks are shown in Fig. 3.8.
As for rule application, it is performed as specified in NRS approach.

inda p0 onda

(a) Open Marked Graph.

indb p0 t0 p1 ondb

pr
(b) Close Marked Graph.

indc

p0 t0 p1 t1

pr0

p2

ondc

pr1

(c) Sequential Close Marked Graph.

ind1d

p0 t0 p1

ond1d

pr0

(d) Parallel Close Marked Graph.

ind2d
p2 t1 p3 ond2d

pr1

ind1e

ind2e

t0
p0

t1

ond1e

ond2e

(e) A Variant of Open State Machine.

indf t0 ondf

(f) Open State Machine.

indg

t0

ondg

t1

(g) Close State Machine.

Figure 3.8: Net block library.

Definition 3.9. Improved Net Rewriting System. An INRS is triple-tuple N =

〈G0,R,L〉, such that

• G0 = 〈P ,T ,F ,M0〉 is a PN modeling an initial configuration,

• R is a finite set of rewriting rules,

• L is a net block type library for constraining the types of left- and right-hand sides of
rewriting rules.
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Definition 3.10. Rules in INRSs. A rule is a 4-tuple r = 〈L,R, I,O〉, such that

1. L and R (left- and right-hand side, respectively, of r) are two PNs belonging to L,

2. I and O are input and output interface relations as defined in NRS formalism,

3. I and O are sets of either places or transitions.

Let m(IL) be a set of images of nodes in input interface of left-hand side of rule r and
m(OL) be a set of images of nodes in output interface of right-hand side of rule r. A rule r

is applicable to a given PN, in addition to conditions specified in NRS formalism, iff:

• If a node in the context graph belongs to the preset of a node in m(IL), then it must
belong to the preset of each node in m(IL),

• If a node in the context graph belongs to the postset of a node in m(OL), then it must
belong to the postset of each node in m(OL).

3.8 Other Extensions

Reconfigurable Object Nets. Reconfigurable object nets (RONs) are introduced in
[HEM05] as high-level nets with “nets and rules as tokens”. Actually, RONs extend the
paradigm “nets as tokens” presented in [Val98, Val01, Val04]. RONs formalism distinguishes
two classes of tokens (token-nets and token-rules).

As well, RONs formalism distinguishes between two net levels, namely, the system level
and the token level. The system level is given by a high-level net and rule system. In system
level, a place may contain token-nets or token-rules. The marking of the system level shows
the distribution of nets and rules at different places. The firing behavior of the system level
describes the movement of token-nets from place to place, as well as, structure changes of
token-nets.

Obviously, a token-net can fire autonomously without being moved or transformed in
order to describe a marking change at the token-level. A token-net firing can be synchronized
with the occurrence of system transition, i.e., the token-net is moved or transformed iff some
token-net transition occurs.
Evolving Petri Nets. The authors in [CC18] develop an emulator that encodes Petri nets
and transformations as symmetric nets (SNs) [Chi+93]. Places and transitions are encoded
as colors and arcs are represented by markings of specific places in SNs. Therefore, the
changes in PN structure can be modeled by changing the marking of these specific places.
However, the change in the set of places and transitions is not allowed since they are encoded
as colors (in SNs, the color set is unchangeable).
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Reconfigurable Discrete-Event Control Systems. Reconfigurable discrete-event con-
trol systems (R-DECSs) formalism is introduced in [Zha+13] to model reconfigurability in
PNs. In this formalism, an R-DECS encompasses all possible reconfigurations in which a
reconfigurable system can be. That is an R-DECS is a union of discrete-event control sys-
tem models each of which describes a possible reconfiguration of the modeled system. The
reconfiguration is emulated via transferring the system state from a source configuration to
a target configuration.

Considering the verification level, an optimized analysis method is proposed in such a
way that only modified parts are analyzed which allows avoiding the verification of the whole
system after each reconfiguration.

3.9 Trade-off between Expressiveness and Calculability
in PN-based Reconfigurable Formalisms

Although enriching Petri net by reconfigurability increases their modeling power, it decreases
their decision power. Hence, the proposed extensions in literature dealing with reconfigurabil-
ity in PNs try to find a trade-off between modeling and decision power. From this perspective,
we can distinguish two main directions. On the one hand, researchers develop preprocessing
techniques that encode or unfold graphs and transformation rules into existing formalisms
in order to take advantage of off-the-shelf tools [CC18, LO04a, Zha+13]. Although they can
model reconfigurations in a natural way, actually these approaches do not increase the mod-
eling power, since they depend on the expressiveness of underlying formalisms and especially
do not allow structurally unbounded graphs [RSV04]. For instance, classical model check-
ers use a fixed number of propositions, which impedes modeling infinite-structure systems
[Ren08].

On the other hand, certain techniques execute graph rewriting systems and compute
the state-space for model checking, yet an upper artificial bound is still needed [KR06].
To mitigate this issue, some approaches compute either (under) approximations of system
behaviors, so that any property that holds in under-approximated model is satisfied in its
original system, or (over) approximations which include all system behaviors, and eventually
additional behaviors not belonging to the original system [CR12]. Nevertheless, a property
that does not hold in an under-approximated model may hold in its original system and a
property that holds in an over-approximated model may do not hold in its original system
[BCK08].

Finally, in another direction INRSs enforce particular properties such as liveness, bound-
edness and reversibility after each reconfiguration. Hence, these properties are decidable
whatever the number of obtained configurations (even infinite). However, INRSs are re-
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stricted to (i) ordinary, live, bounded and reversible PNs and (ii) restricted forms of recon-
figurations, which decreases severely their expressiveness.

A recap of this discussion is illustrated in Fig. 3.9.
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Figure 3.9: Compromise between modeling and decidability.

3.10 Conclusion

In this chapter, we have presented some formal methods proposed to enrich Petri nets with
reconfigurability. These methods can be divided into three categories:

1. The first category considers only the reconfigurability modeling by allowing any re-
configuration form, such as DPO and NRS, in the expensive of decidability issues. In
this category, the properties are decidable if the reachability graph is bounded. Yet,
the spatial and temporal complexities are a very challenging issue due to behavioral
method (based on reachability graph) complexity combined with graph transformation
complexity,

2. The second category consists of formalisms that have the same modeling power of
Petri nets, such as RPN and evolving Petri nets. They are used in the modeling of
systems that can only have dynamic topologies without modifying the sets of places
and transitions. This restriction intends to allow encoding or transforming graphs and
transformation rules into existing formalisms in order to preserve decision power, as
well as, to take advantages of off-the-shelf tools,

3. Finally, the last category tries to find a trade-off between modeling and decision power,
such as INRSs. In this category, the reconfiguration forms are restricted in order to
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preserve the original properties of a reconfigurable net. Hence, two advantages arise: (i)
it is not required to verify these properties after each reconfiguration which decreases
largely the verification complexity, and (ii) these properties are decidable even if the
number of obtained configurations is infinite.

In this thesis, we are interested in the second and the third categories. In fact, we propose
the following.

1. In Chapters 4 and 5, we propose two formalisms, called GSPNs with rewritable topol-
ogy (GSPNs-RT) and dynamic GSPNs (D-GSPNs) respectively, that extend GSPNs by
allowing modeling reconfiguration forms and transforming GSPNs-RT and D-GSPNs,
respectively, to equivalent GSPNs. These transformations can take place when the
original models dispose of a finite number of configurations, in order to preserve the
decision power of GSPNs, as well as, to take full advantages of off-the-shelf tools pro-
posed to GSPNs verification (e.g., GreatSPN [Baa+09], PIPE [DKS09]),

2. In Chapter 6, we extend GSPNs to a reconfigurable formalism, called reconfigurable
GSPNs (RecGSPNs), that supports a wider range of possible structural changes than
allowed in INRSs, as well as, allows to any reconfigurable GSPN to dispose of an
infinite number of configurations while preserving the decidability of several important
properties.
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Chapter 4: GSPNs with Rewritable Topology

4.1 Introduction

New developed software/hardware systems are open, dynamic, and flexible (as the case of
reconfigurable wireless sensor networks, data centers, etc.). Often, the reliability is indis-
pensable in these kinds of systems. Formal methods (as GSPNs) are used to formally verify
the reliability in critical systems. Nevertheless, the rigid structure of GSPNs restricts their
use in the study of reconfigurable systems.

In this chapter, we present our earlier work, called GSPNs with rewritable topology
(GSPNs-RT), that extends the formalism provided in [LO04b] (c.f. Section 3.6) to consider
reconfigurability in GSPNs and to offer a suitable tool for the formal modeling and verification
of reconfigurable systems. The new GSPNs-RT formalism combines GSPNs formalism, a
set of transformation rules, and an algorithm used to transform a given GSPN-RT into an
equivalent GSPN. Hence, we can apply the classical verification methods proposed for GSPNs
to the obtained equivalent net in the verification phase.

The rest of this chapter is organized as follows. In Section 4.2, we provide the formal
definition of the proposed formalism and we present an algorithm that transforms GSPNs-
RT to GSPNs. In Section 4.3, we prove the equivalence between a given GSPN-RT and its
equivalent GSPN obtained by the transformation. In Section 4.4, the feasibility of the new
proposed formalism is demonstrated through an illustrative example. Finally, we conclude
the chapter by a conclusion.

4.2 GSPNs with rewritable topology

Consider the following straightforward application of reconfigurable Petri nets (RPNs) (cf.
Section 3.6) to GSPNs. Fig. 4.1a shows an example of RPN N to be reconfigured, and Fig.
4.1b depicts the obtained configuration after applying reconfiguration. RPN N is defined as
follows. N = 〈P ,T ,R, γ0〉, where:

1. P = {p0, p1, p2}, T = {t0, t1, t2, t3, t4}, γ0 = Γ highlighted in Fig 4.1a,

2. R = {r = 〈D,• r, r•,C,M〉}, such that: D = {p1, p2}, C = {p0}, M(p0) ≥ 3,
•r(p1, t3) =

• r(t3, p2) = 1, and r(p1, t3)
• = r(t3, p2)

• = 0.

This reconfiguration intends to neutralize transition t3 in the second configuration, since
the firing of t3 does not update the net marking.

Although transition t3 is neutralized, its presence affects the quantitative properties of
the obtained net. Consider GSPNs Γ1 and Γ′1 depicted in Fig. 4.2, they do not have the same
quantitative properties. Actually, Γ1 contains a “timeless trap” [Mar+94], since immediate
transition t3 is consistently enabled (therefore all timed transitions in Γ1 are consistently
disabled).
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t0 p0 t1

t2 p1 t3

p2 t4

(a) Before reconfiguration

t0 p0 t1

t2 p1 t3

p2 t4

(b) After reconfiguration

Figure 4.1: Reconfiguration of RPN N .

t0 p0 t1

t2 p1 t3

p2 t4

(a) Γ1

t0 p0 t1

t2 p1

p2 t4

(b) Γ′1

Figure 4.2: Counterexample 1.

Furthermore, let us consider two GSPNs Γ2 and Γ′2 shown in Fig. 4.3, they do not have
the same quantitative properties, as well. For example, the probability that t0 fires first at
M0(p0, p1) = (0, 0) equals λ0/(λ0 + λ1) in Γ2, and equals λ0/λ0 = 1 in Γ′2, where λ0 and λ1

are the firing delays of t0 and t1, respectively.
Hence, these two situations must be considered in the reconfiguration of GSPNs.

t0 p0 t1 p1 t2

(a) Γ2

t0

p0 p1 t2

(b) Γ′2

Figure 4.3: Counterexample 2.

4.2.1 Formal definition

We define a GSPN-RT as a tuple N = 〈P ,T ,R, γ0〉, where

1. P = {p0, . . . , pn} is a non-empty and finite set of places,

2. T = {t0, . . . , tm} is a non-empty and finite set of transitions, P ∩ T = ∅,

3. R = {r0, . . . , rk} is a finite set of rewriting rules,

4. γ0 is an initial configuration of N modeled by a GSPN.
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Rule r ∈ R is a tuple r = 〈D,• r, r•,C,M,V 〉, such that

1. D ⊆ P ,

2. •r : (D × T ) ∪ (T ×D)→ N is a flow function of places in D at N before applying r,

3. r• : (D × T ) ∪ (T ×D)→ N is a flow function of places in D at N after applying r,

4. C ⊆ D is a set of control places,

5. M is a required minimum marking of places of C so that rule r can be applied,

6. V is the firing weight of rule r.

Actually, GSPNs formalism is equipped with a set of algorithms and methods used to
verify its qualitative/quantitative properties based on either its structure (i.e., structural
analysis) or its reachability marking graph (i.e., behavioral analysis). Motivated by these
advantages, we propose to unfold GSPNs-RT to equivalent GSPNs in order to analyze them
using the well-known verification methods proposed for GSPNs. In the proposed method, we
adapt the unfolding algorithm proposed in RPNs [LO04b] to deal with GSPNs-RT.

In fact, GSPN-RT N can be reconfigured by adding and/or removing arcs. These trans-
formations take place in order to enable, disable and/or modify conditions/effects (resp.
pre/postconditions) of some actions (resp. transitions) in the system. Hence, equivalent
Ge must be able to model these transformations and their effects. Moreover, the switching
between configurations must be modeled. In this scope, we reuse the algorithm proposed in
RPNs and adapt it to consider the cases discussed above in Fig. 4.2 and Fig. 4.3. The steps
of the algorithm are given as follows.

Let G = {C0,C1, . . . ,Cn} be the configurations set of GSPN-RT N (to be transformed),
such that C0 = γ0 is an initial configuration and C1, . . . ,Cn are configurations obtained by
applying reconfiguration rules to C0.

Let P̊ = {p̊0, p̊1, . . . , p̊n} be a set of places corresponding to C0,C1, . . . ,Cn, respectively.
Let M̊0 = (1, 0, . . . , 0) be an initial making of p̊0, p̊1, . . . , p̊n, respectively.
Let Ge = (Pe,Te,Fe,Me0 ,Te1 ,Te2 , Λe) be an equivalent GSPN of GSPN-RT N .
We consider the following notations:

• X_Y : denotes the concatenation of two vectors X and Y .

• Me = M_M̊ i: denotes a reachable marking of Ge, where M is the marking of places
in P , M̊ is the marking of places in P̊ corresponding to configurations in G, and
Me(p̊0) = 1.

• ṫi: denotes the representation of transition t ∈ T in equivalent GSPN Ge with the same
flow relations in Ci.
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• FCi
(n, ·): denotes the post-conditions of node n in Ci.

• FCi
(·,n): denotes the pre-conditions of n in Ci.

• Fe(P , t): denotes the sub-pre-conditions of t with nodes in P in equivalent GSPN Ge.

• Fe(t,P ): denotes the sub-post-conditions of t with nodes in P in equivalent GSPN Ge.

• •tC : denotes the pre-set of t in configuration C.

• t•C : denotes the post-set of t in configuration C.

• [M0

0

〉t0[M1

0

〉t1 . . . [Mx〉ri0[My

i

〉tq . . . [Mz

j

〉tp denotes a fireable sequence of transitions and

rules in a GSPN-RT N , where [M0

i

〉t0[M1

i

〉t1 . . . [Mx denotes a fireable sequence of transi-
tions in configuration Ci, and [Mx〉rjk[Mj denotes an applicable rule r from configuration
Ck at marking Mx to configuration Cj.

To create equivalent GSPN Ge, firstly we clone all places in P with their initial marking
in set of places Pe of GSPN Ge. Secondly, places in P̊ corresponding to configurations are
appended to Pe. We note that a token in p̊i means that the current reconfiguration of the
system is Ci, such that Σn

i=0Me(p̊i) = 1, since the system can not be in two configurations or
more, simultaneously.

Considering the unfolding of transitions, two cases are considered. First, for all couple
“transition t and configuration Ci”, if (•tCi

6= ∅)∨(t•Ci
6= ∅) (i.e., t is not neutralized), then we

add transition ṫi representing t to set Te, as well as, preserving its flow relations with p ∈ P

in Ci. It is indispensable to connect ṫi to p̊i with a self-loop in order to make ṫi enabled only
if the current reconfiguration is Ci. The purpose of duplicating t is to model the change in
its pre/postconditions via reconfiguration. Second, if •tCi

= t•Ci
= ∅ (i.e., t is neutralized at

Ci), then we omit t which means that there is no representation of t ∈ TCi
in Ge.

Finally, each reconfiguration rule r = 〈D,• r, r•,C,M,V 〉 in GSPN-RT N = 〈P ,T ,R, γ0〉
is represented by transition rji , where Ci and Cj are the source and target configurations,
respectively. In GSPN-RT N , reconfiguration rule r can be applied when the flow relations
in the current configuration Ci of places in D is identical to •r and M(p) ≥ M(p),∀p ∈ C
(here M is the current marking of Ci). Accordingly, the preconditions of transition rji in
Ge = (Pe,Te,Fe,Me0 ,Te1 ,Te2 , Λe) are: (i) Me(p) ≥ M(p),∀p ∈ C and (ii) Me(p̊i) = 1, where
Me is the current marking of Ge. Hence, the unfolding of rule r requires the following

• Add a self-loop between transition rji and each place p ∈ C, such that Fe(p, r
j
i ) =

Fe(r
j
i , p) = M(p).

• Add an arc from p̊i to rji and an arc from rji to p̊j (i.e., Fe(p̊i, r
j
i ) = Fe(r

j
i , p̊j) = 1) to

model the switching from configuration Ci to configuration Cj.
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4.3 Proofs

The aim of this section is to prove the equivalence between GSPN-RT N and GSPN Ge

obtained by the application of the algorithm described above. To prove the equivalence, we
consider the following lemmas and theorem.

Lemma 1. If the current configuration is Ci (i.e., Me(p̊i) = 1) and transition t in Ci is
fireable at M (in net N), then ṫi (the representation of t at configuration Ci in Ge) is fireable
at M_M̊ i in equivalent net Ge.

Lemma 2. If the current configuration is Ci (i.e., Me(p̊i) = 1) and reconfiguration rule r is
applicable from Ci at M (in net N), then transition ti is fireable at M_M̊ i, where ti is the
corresponding transition to r (in equivalent net Ge).

Proof. First, we prove Lemma 1. Let T i be a set of transitions tij ∈ Te which are the
unfolding of transitions tj ∈ TCi

. If the current configuration is Ci (i.e., Me(p̊i) = 1),
then t is disabled if t /∈ T i, since it is connected by a self-loop with p̊j 6=i which its current
marking Me(p̊j) = 0. Also, if ṫi is the representation of t ∈ TCi

, then we have by definition
(Fe(ṫ

i,P ) = FCi
(t, ·)) ∧ (Fe(P , ṫi) = FCi

(·, t)) ∧ (Fe(p̊j,j 6=i, ṫ
i) = 0) ∧ (Fe(p̊i, ṫ

i) = 1), which
means that if t in Ci is fireable at M , then ṫi is fireable at M_M̊ i.

The proof of Lemma 2 is given as follows. If transition t ∈ Te is not a representation
of any transition in Ci, does not model any reconfiguration rule from Ci, and the current
configuration is Ci, then t is disabled since it is connected by self-loop with p̊j,j 6=i which its
current marking is Me(p̊j) = 0. Also, if transition r∗i ∈ Te models reconfiguration rule r

from configuration Ci at marking M, then we have by definition the preconditions of r∗i are
Me(p) ≥ M(p),∀p ∈ C and Me(p̊i) = 1, which means that if r is applicable from Ci at M,
then r∗i is fireable at M_M̊ i, where M(p) ≥M(p),∀p ∈ C.

Theorem 4.1: Equivalence

Any fireable sequence of transitions (which are not neutralized) and rules in GSPN-RT
N is a fireable sequence in equivalent Ge obtained by the unfolding algorithm, and vice
versa.

Proof. From the previous proof, it is obvious to deduct that if [M0

0

〉t0[M1

0

〉t1 . . . [Mx〉ri0[My

i

〉tq
. . . [Mz

j

〉tp is a fireable sequence in GSPN-RT N , then [M0_M̊0〉t00[M1_M̊0〉t01 . . .Mx_M̊0〉ri0
[My_M̊ i〉tiq . . . [Mz_M̊ j〉tjp is a fireable sequence in Ge, where tij is the representation of
transition tj ∈ TCi

in Ge, and vice-versa.
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Figure 4.4: First configuration.

4.4 Illustrative Example

In this section, we demonstrate the application of the proposed formalism on a server in
a data center. Firstly, we describe the structure and behavior of the system, then we ap-
ply the proposed transformation algorithm to obtain the equivalent GSPN and evaluate its
performance. Finally, we conclude by a discussion about the obtained results.

Let us consider a server composed of two virtual machines VM1, VM2, a buffer bufh with
capacity of 25 spaces for jobs with high priority, a buffer bufn with a capacity of 50 spaces
for jobs with normal priority, and an exit zone EXZ in which the results are deposited to be
send to the corresponding clients. Virtual machine VM1 (resp. VM2) loads a job from buffer
bufh (resp. from bufn) once it is idle, it processes the job, and it puts the results into the
exit zone EXZ.

The server has two configurations: C0 and C1. In both configurations C0 and C1, virtual
machine VM1 processes high-priority jobs. As for virtual machine VM2, it processes normal-
priority jobs if the current reconfiguration is C0. If the number of high-priority waiting
jobs exceeds 15, the system switches to configuration C1, such that the receiving of normal-
priority jobs is stopped, virtual machine VM2 stops treating normal-priority jobs and it starts
processing high-priority jobs. At first, the system’s configuration is C0 depicted in Fig. 4.4.

The interpretation of places and transitions of C0 are given as follows.

1. Places:

(a) B_H (resp. B_N): The number of tokens, inside this place, models the number of
available spaces in buffer bufh (resp. bufn).

(b) H_J (resp. N_J): The number of tokens in H_J (resp.N_J) models the number of
high-priority (resp. normal-priority) waiting jobs.
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(c) VM_1 (resp. VM_1'): A token in VM_1 (resp. VM_1') means that virtual machine
VM1 has begun (resp. finished) processing a job.

(d) VM_2 (resp. VM_2'): A token in VM_2 (resp. VM_2') means that virtual machine
VM2 has begun (resp. finished) processing a job.

(e) VM_1_F (resp. VM_2_F ): A token in VM_1_F (resp. VM_2_F ) means that VM1 (resp.
VM2 ) is idle.

(f) EX_Z: The number of tokens in EX_Z models the number of waiting finished jobs
in exit zone EXZ.

2. Transitions:

(a) H_A (rate=λha): A high-priority job is loaded in buffer bufh.

(b) N_A (rate=λna): A normal-priority job is loaded in buffer bufn.

(c) L_1 (resp. U_1): Virtual machine VM1 loads (resp. unloads) a job from buffer bufh

(resp. to exit zone EXZ).

(d) L_2 (resp. U_2): Virtual machine VM2 loads (resp. unloads) a job from buffer bufn

(resp. to exit zone EXZ).

(e) VM_1_p (rate=λvm1p) (resp. VM_2_p (rate=λvm2p)): Virtual machine VM1 (resp.
VM2) is processing a job.

(f) DEP (rate=λdep): A finished job leaves the exit zone.

When the number of high-priority waiting jobs exceeds 15 (i.e., M(H_J) ≥ 15), the server
switches to configuration C1 depicted in Fig. 4.5, thus the receiving of normal-priority jobs
is stopped and virtual machine VM2 starts processing high-priority jobs. C1 is obtained by
applying rule r0 = 〈D0,

• r0, r
•
0,C0,M0,V0〉 to C0, where:

1. D0 = {B_H, B_N, H_J, N_J}.

2. •r0: B_H(L_1− H_A) + H_J(H_A− L_1) + B_N(L_2− N_A) + N_J(N_A− L_2).

3. r•0: B_H(L_1 + L_2− H_A) + H_J(H_A− L_1− L_2) + B_N(∅) + N_J(∅).

4. M0(H_J) = 15.

5. V0 is a firing weight of r0.

Once the number of high-priority waiting jobs is less than five, the processing and the
receiving of normal-priority jobs can be restarted. The configuration C1 is reconfigured to
C0 by applying rule r1 = 〈D1,

• r1, r
•
1,C1,M1,V1〉, where:
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Figure 4.5: GSPN model for configuration C1.

1. D1 = {B_H, B_N, H_J, N_J}.

2. •r1 : B_H(L_1 + L_2− H_A) + H_J(H_A− L_1− L_2) + B_N(∅) + N_J(∅).

3. r•1 : B_H(L_1− H_A) + H_J(H_A− L_1) + B_N(L_2− N_A) + N_J(N_A− L_2).

4. C1 = {B_H}.

5. M1(B_H) = 20.

6. V1 is a firing weight of r1.

Now, we consider the verification aspect. To analyze the system properties, first we create
equivalent GSPN Ge of GSPN-RT N = 〈P ,T ,R,C0〉 described above, where:

1. P = {B_H, B_N, H_J, N_J, VM_1, VM_1', VM_1_F, VM_2, VM_2', VM_2_F, EX_Z}.

2. T = {H_A, N_A, L_1, VM_1_p, U_1, L_2, VM_2_p, U_2, DEP}.

3. C0 is an initial configuration shown in Fig. 4.4.

4. R = {r0, r1} is a set of reconfiguration rules given above.

Applying rules in R to N yields G = {C0,C1} the finite configurations set, where C0

(resp. C1) is depicted in Fig. 4.4 (resp. Fig. 4.5).
Equivalent Ge = (Pe,Te,Fe,Me0,Te1 ,Te2 , Λe) can be constructed using the algorithm de-

scribed previously. To obtain Pe = P ∪ P̊ , we create P̊ = {p̊0, p̊1} where p̊0 and p̊1 are corre-
sponding to C0 and C1, respectively. The initial marking of places in P̊ is Me0(p̊0, p̊1) = (1, 0).
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As for transitions, we give two examples of N_A and L_2, the other transitions can be
added and connected by the same way. Transition N_A is connected by no arc in C1 which
means that transition N_A is neutralized at this configuration. Therefore, transition N_A
has a unique representation in Ge (Te ←− Te ∪ {N_A0}) and the connections between N_A
and p ∈ P is the same as in C0, so Fe(N_A0, N_J) = Fe(B_N, N_A0) = 1, otherwise is 0.
As for connections between N_A and p ∈ P̊ , we have Fe(N_A0, p̊0) = Fe(p̊0, N_A0) = 1 and
Fe(N_A0, p̊1) = Fe(p̊1, N_A0) = 0 which deactivates transition N_A0 when there is no token
marking place p̊0, indicating that the current configuration is C1.

Taking into account transition L_2, it has no empty pre/postconditions in C0 and C1.
Accordingly, transition L_2 has two representations in Ge as follows: (i) L_20 (Te ←−
Te ∪ {L_20}) which its flow relations are Fe(L_20, B_N) = Fe(L_20, VM_2) = Fe(N_J, L_20) =

Fe(VM_2_F, L_20) = Fe(L_20, p̊0) = Fe(p̊0, L_20) = 1, otherwise is 0, and (ii) L_21 (Te ←−
Te ∪ {L_21}) which its flow relations are Fe(L_21, B_H) = Fe(L_21, VM_2) = Fe(H_J, L_21) =

Fe(VM_2_F, L_21) = Fe(L_21, p̊1) = Fe(p̊1, L_21) = 1, otherwise is 0.
Finally, we add two transitions r10 and r01 to model the reconfiguration from C0 to C1 and

from C1 to C0, respectively. As an example, we consider r10 which models the switching to
C1 when the number of high-priority waiting jobs exceeds 15 and the current configuration
is C0. Therefore, Fe(r

1
0, H_J) = Fe(H_J, r10) = 15 and Fe(p̊0, r

1
0) = Fe(r

1
0, p̊1) = 1.

Obtained equivalent GSPN Ge is illustrated in Fig. 4.6.
To verify the qualitative/quantitative properties, we used tool PIPE2 [DKS09]. Ge is

live, bounded and reversible, other qualitative properties can be investigated using either
behavioral or structural analysis. Given the different rates illustrated in Table 4.1, the
simulation of the server is performed. The obtained results are shown in Figs. 4.7 and 4.8.

Fig. 4.7 depicts the probability that the current configuration of the server is C0 or C1

under different cases. In the second case, the probability that the current configuration is
C1, is the highest among other cases. The high rate of receiving high-priority jobs in Case
2 increases the probability that buffer bufh contains more than 15 jobs. Consequently, the
server switches to configuration C1 more frequently.

As shown in Fig. 4.8, virtual machine VM2 utilization is higher than that of virtual machine
VM1 in Case 1. This is caused by (i) the high arrival rate of normal-priority jobs (which are
treated only by VM2) which increases virtual machine VM2 utilization, and (ii) the low arrival
rate of high-priority jobs which decreases virtual machine VM1 utilization.

Cases λha λvm1p λvm2p λna

Case (1) 3 3 3 3
Case (2) 7 3 3 3
Case (3) 5 4 3 1

Table 4.1: Entry of the different evaluations.
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Figure 4.6: Equivalent GSPN Ge.
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Figure 4.7: Probability that the current configuration is C0 or C1.
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Figure 4.8: Probability that VM1/VM2 is working.

4.5 Conclusion

In this chapter, we have proposed an extension of GSPNs that allows the reconfiguration of
GSPNs. The proposed approach extends reconfigurable Petri nets proposed in [LO04a] to
deal with GSPNs, where qualitative and quantitative properties can be investigated.

The new GSPNs-RT formalism combines the GSPNs formalism, a set of transformation
rules, and an algorithm used to transform a given GSPN-RT into an equivalent GSPN.

In the following chapter, instead of considering only dynamic topologies, we extend
GSPNs-RT approach to consider more reconfiguration forms, namely, dynamic sets of places
and transitions.
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Chapter 5: Dynamic Generalized Stochastic Petri Nets

5.1 Introduction

Enriching PNs with reconfigurability at the modeling level requires developing new analysis
methods. On the other hand, PNs already enjoy a rich panoply of well-established and
optimized verification algorithms. To take full advantage of this characteristic, researchers
have proposed extensions enriching PNs with reconfigurability that can be either encoded or
transformed into basic PNs [LO04a, CC18, CBC18].

However, to the best of our knowledge, proposed formalisms in the literature allow only
dynamic topology, i.e., sets of places and transitions cannot be changed. This last restriction
was motivated by the need to allow verification of dynamic-structure nets through their
encoding or transformation into basic Petri nets. However, this restriction limits severely the
modeling power of these formalisms.

Our primary contributions in this line of research were reconfigurable SPNs [TKB17b]
and GSPNs with rewritable topology [TKB17a] extending formalism presented in [LO04a]
(c.f. Section 3.6) to cope with reconfigurability in SPNs and GSPNs, respectively. However,
the reconfiguration is still limited to the topology level.

In this chapter, we propose a new formalism, called dynamic generalized stochastic Petri
nets (D-GSPNs), that allows to model dynamic sets of places and transitions, as well as,
keeping the possibility to transform D-GSPNs into GSPNs, for verification purposes. The
obtained GSPNs preserve the stochastic behaviors of dynamic ones, allowing the use of the
panoply of verification methods and tools proposed for GSPNs in D-GSPNs analysis.

In this regard, the reconfiguration in our proposed formalism is modeled via the well-
known double-pushout (DPO) approach [Kön+18] which offers a theoretically founded and
tool-supported framework for graph transformation.

As well, this chapter provides a new algorithm (inspired from [LO04a]), which transforms
D-GSPNs into equivalent GSPNs. This algorithm computes the set of reachable configura-
tions of a given D-GSPN, and if this set is finite, then transforms it into an equivalent GSPN
preserving the stochastic behavior of the original D-GSPN. Therefore, qualitative/quantita-
tive properties of D-GSPNs can be analyzed by applying analysis methods, supported by
off-the-shelf tools [Amp14, BMS16], to their equivalent GSPNs.

The rest of this chapter is organized as follows. In Section 5.2, D-GSPNs formalism is
proposed and its formal definition is exposed. The transformation of D-GSPNs into GSPNs
is described in Section 5.3. Then, we present the qualitative/quantitative verifications, and
we detail the proofs in Sections 5.4 and 5.5, respectively. Section 5.6 demonstrates the
applicability of the proposed formalism to a reconfigurable system. Finally, the chapter is
concluded in Section 5.7.
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5.2 Dynamic GSPNs

In this section, first we present the formal definition of D-GSPNs formalism. Thereafter, we
develop an algorithm that transforms D-GSPNs into GSPNs, then we describe its qualita-
tive/quantitative verification. Finally, we prove the equivalence between D-GSPNs and their
transformations into GSPNs.

5.2.1 Formal definition

To model reconfiguration rules in D-GSPNs via DPO approach, we extend the definition of
PN morphism given in Section 3.3 to GSPN morphism as follows.

Definition 5.1. (GSPN morphism) A GSPN morphism from G to H is a pair of mappings
ϕP : PG → PH ,ϕT : TG → TH , such that ∀ p ∈ PG and ∀ t ∈ TG, it holds that:

1. FG(p, t) = FH(ϕP (p),ϕT (t)) and FG(t, p) = FH(ϕT (t),ϕP (p)),

2. MG(p) ≤MH(ϕP (p)), and ΛG(t) = ΛH(ϕT (t)),

3. If t is timed, then so is ϕT (t), and vice-versa.

Definition 5.2. (Dynamic GSPN) We define a D-GSPN as a pair D = 〈G0,R〉, where:

• G0 is a GSPN modeling an initial configuration,

• R = {ω0, . . . ,ωm} is a set of rules.

Definition 5.3. (Transformation rule) A transformation rule ω is written as a couple
〈L ϕl←− I

ϕr−→ R,λ〉, such that:

1. L is a left-hand side, I is a common interface, and R is a right-hand side,

2. ϕl : I → L is a GSPN morphism that maps I to L,

3. ϕr : I → R is a GSPN morphism that maps I to R,

4. If a place p belongs to L and R, then it must belong to I,

5. λi is an exponentially distributed application rate of rule ω.

Let G be a configuration of D-GSPN D, a rule ω = 〈L ϕl←− I
ϕr−→ R,λ〉 is applicable to G

at marking M , iff:

1. there exists a matching of left-hand side L in G,

2. all immediate transitions in G are disabled at M .
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As for rule application, we proceed as usual with respect to DPO approach.
Let us consider a D-GSPN D0 = 〈H0,R0〉, such that:

1. H0 is depicted in Fig. 5.1, where its initial marking M0(p0, p1) = (0, 3),

2. R0 = {ω1,ω2}, such that ω1 and ω2 are shown in Figs. 5.1 and 5.2, respectively.

p0 t1 p1

L1

ϕl1
p0 p1

I1

ϕr1
p0 t2 p2 t1 p1

R1

p0 p1t0

C1

t0 p0 t1 p1

H0
m1

t0 p0 t2 p2 t1 p1

H1

Figure 5.1: Rule ω1.

p0 t2 p2 t1 p1

L2

ϕl2
p0 p1

I2

ϕr2
p0 t1 p1

R2

p0 p1t0

C2

t0 p0 t2 p2 t1 p1

H1
m2

t0 p0 t1 p1

H0

Figure 5.2: Rule ω2.

Rule ω1 is applicable to configuration H0 of D0 at marking M ′(p0, p1) = (3, 0), since:

1. an occurrence of L1 is located by morphism m1 in H0,

2. all immediate transitions are disabled at marking M ′.

After applying ω1, D0 changes its configuration towards GSPN H1 depicted in Fig. 5.1.
Similarly, rule ω2, illustrated in Fig. 5.2, is applicable to H1 shown in the bottom-left of
Fig. 5.2 and the obtained configuration is H0.

5.3 D-GSPNs transformation towards GSPNs

Generalized stochastic Petri nets are equipped with a panoply of algorithms, methods and
tools used to analyze their qualitative/quantitative properties. To take full advantages of
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35
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Figure 5.3: Equivalent GSPN H0 to D-GSPN D0.

this characteristic, we transform D-GSPNs into equivalent GSPNs, so that the off-the-shelf
verification methods proposed for GSPNs can be still used for the D-GSPNs analysis.

Actually, a D-GSPN D is reconfigured by adding/removing nodes (places/transitions)
and/or arcs. These transformations take place in order to introduce new behaviors/structures
to D. For this purpose, it is required that GSPN H obtained by transforming net D can
emulate these transformations and preserves the stochastic behaviors of D.

In this scope, we provide an algorithm that computes an equivalent GSPNH for any given
D-GSPN D having a finite number of configurations. We start by providing the necessary
explanations for the reader to understand how the transformation works. To make the steps
more understandable, we apply each step to dynamic net D0 = 〈H0, {ω1,ω2}〉, presented in
Figs. 5.1 and 5.2. The equivalent GSPN H0 obtained via the transformation is shown in
Fig. 5.3.

For a given configuration Gi, let us consider the following:

1. PGi
denotes its set of places.

2. TGi
denotes its set of transitions.

3. FGi
denotes its flow function.

4. M0
Gi

denotes its initial marking.

5. ΛGi
denotes a function associating firing delay/weight to transitions of Gi.

For a given D-GSPN D = 〈G0,R〉, let us consider the following.

1. G0 is an initial configuration of D.
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2. R = {ω0, . . . ,ωm} is a finite set of rules.

3. G = {G0, . . . ,Gn} is a finite set of GSPNs (the set of all possible configurations of D)
obtained by applying rules to G0.

4. A = {(Gi,ω,Gj)|Gi,Gj ∈ G and Gi
ω
=⇒ Gj} is a set of applicable transformations to D,

such that ω belongs to R.

5. P denotes the set of all places of all configurations of G, formally P =
⋃

Gi∈G PGi
.

6. T denotes the set of all transitions of all configurations of G, formally T =
⋃

Gi∈G TGi
.

In order to preserve behaviors of a given D-GSPN D, its transformation towards H =

〈P ,T ,F , M0,T1,T2, Λ〉 uses a set of morphisms {F0, . . . ,Fn}, which map configurations of
D into H. A morphism Fi: PGi

∪ TGi
→ P ∪ T maps places and transitions of configuration

Gi into places and transitions of H, such that following condition holds: for any pair of nodes
(x, y) ∈ (PGi

× TGi
)∪ (TGi

× PGi
), FGi

(x, y) = F (Fi(x),Fi(y)). Thus, each Fi preserves flow
function FGi

in H.
To create an equivalent GSPN H to a D-GSPN D, we proceed as follows.
Step 1 (adding equivalent places): for each place p ∈ P , insert an equivalent place,

denoted by E(p), in P (initially empty), such that if p ∈ PG0 , then M0(E(p)) = M0
G0
(p);

otherwise, M0(E(p)) = 0. Consider D-GSPN D0, we have: P = {p0, p1, p2}, set of equiva-
lent places, denoted by E(P), becomes E(P) = {E(p0), E(p1), E(p2)} and initial marking of
equivalent places is M0(E(p0), E(p1), E(p2)) = (0, 3, 0).

Step 2 (adding places to emulate configurations): Create P̊ a set of places
{p̊0, . . . , p̊n} associated with a set of configurations G = {G0, . . . ,Gn}. Hence, each place
p̊i ∈ P̊ is associated with configuration Gi, respectively. A token in p̊i means that current
configuration of D is Gi, thus Σn

i=0M(p̊i) = 1, since D cannot be in two configurations at
same time. Considering again D0, it has two possible configurations H0 and H1 (illustrated in
Fig. 5.1), which are associated with places p̊0 and p̊1, respectively. Accordingly, P̊ = {p̊0, p̊1},
M0(p̊0, p̊1) = (1, 0) and P = {E(p0), E(p1), E(p2)} ∪ P̊ .

Step 3 (adding equivalent transitions): We consider two cases:
Case (1): For each transition t that does not change its parameters (preset, postset,

rate and/or type) in any configuration, we insert an equivalent transition E(t) of t into T

having identical rate/type. As well, we preserve its preset and postset, so that for all place
p of G0, if there exists an arc from t to p (from p to t), then we add an arc from E(t) to E(p)
(from E(p) to E(t)). Formally, F (E(t), E(p)) = FG0(t, p) and F (E(p), E(t)) = FG0(p, t), for all
p ∈ PG0 . Let E(t) = Fi(t),∀ i ∈ {0, . . . ,n}. Consider transition t0 in (Fig. 5.1), it does not
change its parameters either in H0 or H1, therefore we insert a transition E(t0) in T , such
that F (E(t0), E(p0)) = FH0(t0, p0) and F (E(p1), E(t0)) = FH0(p1, t0).
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Case (2): In order to model the change in the structure of D-GSPN D with respect to
transitions, we duplicate each transition as often as it appears in configurations of D. This
duplication of transitions means to model its various parameters (type, rates, presets and/or
postsets).

For each transition tj of each configuration Gi, we insert an equivalent transition Fi(tj)

of tj into T having identical rate/type. As well, we preserve its preset and postset, so that
for all place p of Gi, if there exists an arc from tj to p (from p to tj), then we add an
arc from Fi(tj) to E(p) (from E(p) to Fi(tj)). Formally, F (Fi(tj), E(p)) = FGi

(tj, p) and
F (E(p),Fi(tj)) = FGi

(p, tj), for all p ∈ PGi
. Finally, we connect Fi(tj) with p̊i by a self-

loop, thus Fi(tj) is disabled if the current configuration is not Gi. Consider transition t1 of
H0 (Fig. 5.1), we insert a transition F0(t1) in T , such that F (F0(t1), E(p1)) = FH0(t1, p1),
F (E(p0),F0(t1)) = FH0(p0, t1), and F (F0(t1), p̊0) = F (p̊0,F0(t1)) = 1.

Step 4 (adding transitions emulating rules): Each possible application (Gi,ω,Gj) ∈
A of rule ω is modeled by a transition denoted by E(ωi

j), such that:

1. insert timed transition E(ωi
j) into T . Formally, T ←− T ∪ {E(ωi

j)},

2. F (p̊i, E(ωi
j)) = F (E(ωi

j), p̊j) = 1. That is, firing E(ωi
j) removes a token from p̊i (associ-

ated with configuration Gi) and adds a token to p̊j (associated with configuration Gj),
which models switching from Gi to Gj,

3. for each fresh place p ∈ PR \ PI , let F (E(ωi
j), E(p)) = M0

R(p). That is, firing E(ωi
j)

initializes E(p), which emulates an addition of p,

4. for each obsolete place p ∈ PL \ PI , let F (E(p), E(ωi
j)) = M0

L(p), which models pre-
conditions of applying rule ω. As well, add an immediate transition em that empties
E(p) from tokens to emulate deletion of p as follows: (i) add an arc from E(p) to em,
i.e., F (E(p), em) = 1, and (ii) connect em with p̊j by a self-loop, which allows em to
start emptying E(p) when current configuration becomes Gj which does not contain
place p,

5. for each interface place p ∈ PI , let F (E(p), E(ωi
j)) = M0

L(p) and F (E(ωi
j), E(p)) =

M0
R(p),

6. Λ(E(ωi
j)) = λ, where λ is an application rate of ω.

Note that, any timed transition emulating a rule application is disabled, if an immediate
transition emptying a place is enabled, due to GSPN nature. Hence, any emulation of
reconfiguration is not allowed until each transition that empties an obsolete place image is
no longer enabled. This is an indispensable behavior. In fact, the latter guarantees that the
equivalent net does never emulate adding a place with additional tokens than specified by
rule ω. That is, if
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1. previous configuration of the dynamic net was Gi which contains place p,

2. current configuration is Gj which does not contain p,

3. and dynamic net is reconfigured towards a configuration Gk that may contain place p

(as a fresh place), such that its marking n is computed by Eq. 3.2.

Then, equivalent net H must remove all tokens from place p, before emulating a reconfigu-
ration from Gj towards Gk (otherwise, if p still contain tokens, then its marking will not be
equal to n). This behavior is guaranteed by Step (4).

For instance, application (H1,ω2,H0) of rule ω2 is modeled by transition E10 (ω2) shown in
Fig. 5.3, such that:

1. F (p̊1, E10 (ω2)) = F (E10 (ω2), p̊0) = 1, to model the switching from H1 to H0,

2. as for interface place p1, we have: F (E(p1), E10 (ω2)) = M0
L2
(p1) = 5 and F (E10 (ω2), E(p1)) =

M0
R2
(p1) = 3,

3. as for obsolete place p2, we have: F (E(p2), em) = 1 to model its deletion, such that em is
an immediate transition and it is connected with place p̊0 (associated with configuration
H0) with a self-loop.

As for application (H0,ω1,H1) of rule ω1, it is modeled by transition E01 (ω1) shown in
Fig. 5.3, such that:

1. F (p̊0, E01 (ω1)) = F (E01 (ω1), p̊1) = 1, to model switching from H0 to H1,

2. as for fresh place p2, we have: F (E01 (ω1), E(p2)) = M0
R1
(p2) = 2,

3. as for interface place p0, we have: F (E(p0), E01 (ω1)) = M0
L1
(p0) = 3 and F (E01 (ω1), E(p0)) =

M0
R1
(p1) = 3.

5.4 Qualitative/Quantitative Analysis of D-GSPNs

This section develops qualitative/quantitative verification of a given D-GSPN D. This anal-
ysis is derived from that of equivalent GSPN H of D .

We consider only some important properties. We have the following.

• a transition t of D is live, iff there exists an equivalent live transition thereof.

• a rule r ∈ R is live, iff there exists a live transition E(ωi
j) that models ω.

• a place p of D is k-bounded, iff E(p) is k-bounded.
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• D is k-bounded (respectively, safe), iff H is k-bounded (respectively, safe).

• there exists a timeless trap in D, iff there exists a timeless trap in H.

• Probability of having n tokens at a place: The probability of having n tokens at
place p of D is equal to the probability of having n tokens at its equivalent place E(p)
of H.

• Mean number of tokens: Average number of tokens at place pi equals average
number of tokens at its equivalent place E(pi).

• Probability of firing transition: Probability prt, that transition t of D fires next is
given by

prt =
∑
t∈TGi

pr(Fi(t)). (5.1)

where pr(Fi(t)) is a probability that transition Fi(t) fires next in H.

• Throughput: Throughput dt at transition t of D is given by

dt =
∑
t∈TGi

d(Fi(t)). (5.2)

where d(Fi(t)) is throughput at transition Fi(t) in GSPN H.

5.5 Proofs

In this section, we prove the equivalence between any given D-GSPN D and GSPN H ob-
tained by applying the transformation algorithm presented above. We prove that if a se-
quence of transitions and rules σ = t0 t1 . . . tn ω is fireable at markingM(p0, p1, . . . , (pm)) =

(w0,w1, . . . ,wm) in configuration Gi inD, then transition sequence σ′ = Fi(t0) Fi(t1) . . . Fi(tn)

E i(ω) is fireable at marking M(E(p0), E(p1), . . . , E(pm), p̊i) = (w0,w1, . . . ,wm, 1) in H, and
vice versa. That is, GSPN H preserves the behaviors of D.

As shown in Figs. 5.4 and 5.5 depicting reachability graphs of GSPN H0 and D-GSPN
D0, respectively, if state sj is reached from si by Fk(t), then state ej is reached from ei by t,
such that ei(pl) = si(pl), for all pl ∈ Gk (similarly to sj and ej). Consider switching from H1

to H0 modeled by transition from s14 to s0 listed in Table 5.1 as well as by transition from
e14 to e0 listed in Table 5.2, that deletes place p2. In fact, marking of p2 at s14 is equal to
zero. Hence, there is no token to be consumed by transition em (the role of em is removing
all tokens from place p2, when the current configuration becomes H0). Consequently, in this
specific case, both reachability graphs have the same number of states and shape.
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Figure 5.4: Reachability graph of equivalent GSPN H0 to D0, where marking of p̊0 (resp. p̊1)
equals one in dashed (resp. solid) states.

By Step (1) of the proposed algorithm, sub-initial marking M(E(p0), E(p1), . . . , E(pm))
equals M0

G0
(p0, p1, . . . , pm), where m = |PG0|. Furthermore, for any transition t ∈ TG0 ,

F (E(pi),F0(t)) = FG0(pi, t), for all i ∈ {0, . . . ,m}, hence if t is fireable at M0
G0

, then F0(t)

is fireable at M. Moreover, for any transition t ∈ TG0 , F (F0(t), E(pi)) = FG0(t, pi), for all
i ∈ {0, . . . ,m}, hence if firing t at M0

G0
yields M ′, then firing F0(t) at M yields M′, such

that M′(E(p0), E(p1), . . . , E(pm)) equals M ′(p0, p1, . . . , pm). As for transformation rules, by
Step (3), if a rule ω is applicable to configuration G0 at marking M yielding a configuration
Gi, where M(pj) ≥M0

L(pj), for all pj ∈ PL, then the transformation algorithm creates an arc
from each equivalent place to pj of PL to transition E(ω0

i ), such that arc weight is M0
L(pj),

to model pre-conditions of ω. Consequently, if a transition sequence t0 t1 . . . tn is fireable
at marking M(p0, p1, . . . , pm) = (w0,w1, . . . ,wm) of configuration G0 and followed by an
application of a rule ω, then transition sequence F0(t0) F0(t1) . . . F0(tn) E0i (ω) is fireable at
marking M(E(p0), E(p1), . . . , E(pm), p̊0) = (w0,w1, . . . ,wm, 1) in G, and vice versa.

Besides, the transformation algorithm creates an arc from E(ω0
i ) to each equivalent place

to pj of PR to model post-conditions of ω. Firing E(ω0
i ) removes a token from p̊0 and adds

a token to p̊i (initially empty). If there exists some obsolete place, the algorithm adds an
immediate transition to remove all tokens from its equivalent places.
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Figure 5.5: Reachability graph of D-GSPN D0, where dashed (resp. solid) states correspon-
dent to H0 (resp. H1).

p̊0 p̊1 p0 p1 p2 p̊0 p̊1 p0 p1 p2
s0 1 0 0 3 0 s8 0 1 0 1 4
s1 1 0 1 2 0 s9 0 1 0 2 3
s2 1 0 2 1 0 s10 0 1 0 3 2
s3 1 0 3 0 0 s11 0 1 1 1 3
s4 0 1 3 0 2 s12 0 1 0 4 1
s5 0 1 2 0 3 s13 0 1 1 2 2
s6 0 1 1 0 4 s14 0 1 0 5 0
s7 0 1 0 0 5 s15 0 1 1 3 1

s16 0 1 1 4 0

Table 5.1: Reachability set of H0.

p0 p1 p2 p0 p1 p2
e0 0 3 // e8 0 1 4
e1 1 2 // e9 0 2 3
e2 2 1 // e10 0 3 2
e3 3 0 // e11 1 1 3
e4 3 0 2 e12 0 4 1
e5 2 0 3 e13 1 2 2
e6 1 0 4 e14 0 5 0
e7 0 0 5 e15 1 3 1

e16 1 4 0

Table 5.2: Reachability set of D0.
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Similarly to the previous proof, we can prove that if sequences of transitions are fireable
and rules are applicable in/to configuration Gi of D-GSPN D at marking M , then sequences
of their equivalent transitions are fireable in GSPN H at markingM, such thatM(E(pj)) =
M(pj), for all places of PGi

, after emptying equivalent places of obsolete ones, and vice versa.
Hence, GSPN H is equivalent to D-GSPN D.

5.6 Illustrative example

To illustrate the use of the proposed approach, we consider a reconfigurable manufacturing
system (RMS) composed of three machines M1, M2 and M3; and three buffers bufA, bufB and
bufI. This RMS produces two product types, namely, A and B. Machines M1 and M2 can
process items of type A and B, whereas machine M3 can only process product of type A.

This RMS has three possible configurations: initial, alternative 1 and alternative 2. In
the initial configuration each product, either A or B, is processed first by M1 and then by M2.
To produce a part A, a raw material is loaded in buffer bufA having capacity of ten spaces.
Then, when machine M1 is idle, it loads a waiting material from bufA, processes it and unloads
it in buffer bufI having capacity of five spaces. Finally, when machine M2 is idle, it loads an
unfinished part A from bufI and finishes its processing. Analogically, product B is processed,
such that machine M1 loads raw materials from buffer bufB having capacity of five spaces.

The rates of processing a product A (resp. B) by M1 and M2 are α1 (resp. β1) and α2 (resp.
β2), respectively. The initial configuration, called C0, is shown in Fig. 5.6, and the meaning
of places and transitions is given in Table 5.3.

Machine M3 is activated when there is a strong demand on A. There are two possible alter-
natives of activating this machine such that it performs either (i) the first step of processing
A with rate α3, or (ii) the second one with rate α′3.

The activation of M3 according to the first alternative is modeled by applying rule r1

depicted in Fig. 5.7 to C0. Obtained GSPN C1 is illustrated in Fig. 5.8.

10

BA rA WA ld1
A P1

A pr1
A IA ld2

A P2
A pr2

A

M1
f

BI M2
f

BB rB WB ld1
B P1

B pr1
B

IB ld2
B P2

B pr2
B

Figure 5.6: Initial configuration C0.
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Place Description
BA Its number of tokens models the number of available spaces in bufA

BB Its number of tokens models the number of available spaces in bufB

WA Its number of tokens models the number of waiting materials in bufA

WB Its number of tokens models the number of waiting materials in bufB

BI Its number of tokens models the number of waiting parts in bufI

Pi
A A token inside this place means that Mi is treating a product A

Pi
B A token inside this place means that Mi is treating a product B

IA Its marking models the number of unfinished products A in bufI

IB Its marking models the number of unfinished products B in bufI

Mi
f A token in Mi

f means that Mi is idle
Transition Description
rA (resp. rB) Loading a raw material in bufA (resp. bufB)
ld1

A (resp. ld1
B) M1 loads an item from buffer bufA (resp. bufB)

ld2
A (resp. ld2

B) M2 loads an unfinished A (resp. B) from buffer bufI

pr1
A (resp. pr1

B) M1 processes a product A (resp. B)
pr2

A (resp. pr2
B) M2 processes a product A (resp. B)

Table 5.3: Meaning of places and transitions in configuration C0.

BA rA
10

WA ld1
A P1

A pr1
A IA

BI

L1

ϕl1

BA WA P1
A IA

BI

I1

ϕr1 BA rA
10

WA

ld1
A

ld3
A

P1
A

P3
A

pr1
A

pr3
A

IA

M3
f

BI

R1

Figure 5.7: Rule r1.

Rule r1 is applied to C0, in addition, when the marking of place WA is ten, that is, bufA is
full. The meanings of new places/transitions ld3

A, M3
F, P3

A and pr3
A is analogue to ld1

A, M1
F, P1

A

and pr1
A w.r.t. machine M3. Once machine M3 is idle and there is no waiting raw material in

bufA (modeled by ten tokens in BA), machine M3 is deactivated. This deactivation is modeled
by applying rule r2 illustrated in Fig.5.9 to GSPN C1. The obtained GSPN is C0.

The activation of M3 according to the second alternative is modeled by applying r3 depicted
in Fig. 5.10 to C0. Obtained GSPN C2 is illustrated in Fig. 5.12. The meaning of new
places/transitions ld3

A, M3
F, P3

A and pr3
A is analogue to ld2

A, M2
F, P2

A and pr2
A w.r.t. M3. Once M3 is

idle and there is no waiting raw material in bufA, then M3 is deactivated. This deactivation
is modeled by applying r4 illustrated in Fig.5.11 to C2. The obtained GSPN is C0.

To choose an operating mode (either alternative 1 or alternative 2) of machine M3, we
define the two following D-GSPNs. D-GSPN D1 models the RMS having two configurations
C0 and C1, whereas D-GSPN D2 models the RMS having two configurations C0 and C2.
Formally, D1 = 〈C0, {r1, r2}〉 and D2 = 〈C0, {r3, r4}〉.
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10

BA rA WA ld1
A

ld3
A

P1
A

P3
A

pr1
A

pr3
A

IA ld2
A P2

A pr2
A

M1
f

M3
f

BI M2
f

BB rB WB ld1
B P1

B pr1
B

IB ld2
B P2

B pr2
B

Figure 5.8: Configuration C1 (Alternative 1).

10

BA rA WA

ld1
A

ld3
A

P1
A

P3
A

pr1
A

pr3
A

IA

M3
f

BI

L2

ϕl2

BA WA P1
A IA

BI

I2

ϕr2 10

BA rA WA ld1
A P1

A pr1
A IA

BI

R2

Figure 5.9: Rule r2.

BA rA
10

WA ld1
A P1

A pr1
A IA

BI

L3

ϕl3

BA WA P1
A IA

BI

I3

ϕr3

BA rA
10

WA

ld1
A P1

A

pr1
A IA ld3

A P3
A pr3

A

M3
f

BI

R3

Figure 5.10: Rule r3.

10

BA rA WA

ld1
A P1

A

pr1
A IA ld3

A P3
A pr3

A

M3
f

BI

L4

ϕl4

BA WA P1
A IA

BI

I4

ϕr2 10

BA rA WA ld1
A P1

A pr1
A IA

BI

R4

Figure 5.11: Rule r4.
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10

BA rA WA ld1
A P1

A pr1
A IA ld2

A

ld3
A

P2
A

P3
A

pr2
A

pr3
A

M1
f

M3
f

BI M2
f

BB rB WB ld1
B P1

B pr1
B

IB ld2
B P2

B
pr2

B

Figure 5.12: Configuration C2.

We apply the proposed transformation algorithm to both D1 and D2, where the obtained
GSPNs are H1 and H2 shown in Figs.5.13 and 5.14, respectively.

Given the rates shown in Table 5.4, we evaluate the performances ofH1 andH2. Through-
put of producing A and B products are depicted in Fig 5.15. The throughput of producing A
in the first case is the throughput of transition pr2

A; and in the second case is the sum of pr2
A

and pr3
A throughput. As for the throughput of producing B in both cases is the throughput

of transition pr2
B.

The results show that the throughput of A production is higher in the first case than the
second, however, the throughput of B production is higher in the second case than the first.

Indeed, in the first case both machines M1 and M3 load raw materials from buffer bufA,
perform the first step of processing products of type A and put them in the intermediate
buffer bufI. This behavior puts more unfinished parts of type A in bufI to the detriment of
unfinished parts of type B, which decreases its production throughput.

10

BA rA WA ld1
A

ld3
A

P1
A

P3
A

pr1
A

pr3
A

IA ld2
A P2

A pr2
A

M1
f

M3
f

BI M2
f

BB rB WB ld1
B P1

B pr1
B

IB ld2
B P2

B pr2
B

C1
C0

r110r2

10

em1

em2

Figure 5.13: The transformation of D1.
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10

BA rA WA ld1
A P1

A pr1
A IA ld2

A

ld3
A

P2
A

P3
A

pr2
A

pr3
A

M1
f

M3
f

BI M2
f

BB rB WB ld1
B P1

B pr1
B

IB ld2
B P2

B
pr2

B

C1
C0

r1

10

r2

10

em1

em2

Figure 5.14: The transformation of D2.

Transition Rate Transition Rate
rA 3 pr2

B β2=6
rB 2 pr3

A (Alter. 1) α3=20
pr1

A α1=10 pr3
A (Alter. 2) α′3=10

pr1
B β1=2 r1 100

pr2
A α2=3 r2 200

Table 5.4: Transition rates in both alternatives.

Alter 1 Alter 2
0

1

2

3

T
hr

ou
gh

pu
t

Producing A Producing B

Figure 5.15: Throughput of A and B productions.
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5.7 Conclusion

In this chapter, we proposed an extension of generalized stochastic Petri nets, called dy-
namic generalized stochastic Petri nets, that allows unrestricted reconfiguration forms while
preserving generalized stochastic Petri nets decision power. Indeed, we propose to trans-
form dynamic generalized stochastic Petri nets into generalized stochastic Petri nets, such
that both qualitative and quantitative properties are still decidable using analysis methods
proposed for generalized stochastic Petri nets.

However, the proposed transformation towards GSPNs can only take place when the
obtained configuration set by graph transformations is finite, otherwise, transforming D-
GSPNs into GSPNs may become infinite. To deal with infinite structures, we propose a new
formalism in the next chapter that enables preserving several important properties after each
reconfiguration which makes these preserved properties decidable whatever the number of
configurations obtained by graph transformations.
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Chapter 6: Reconfigurable Generalized Stochastic Petri Nets

6.1 Introduction

In the previous chapter, we have presented our formalism, called D-GSPNs, that allows mod-
eling reconfigurability in GSPNs, as well as, transforming D-GSPNs into equivalent (basic)
GSPNs for verification purpose. However, the major limitation of D-GSPNs resides in the
fact that the number of configurations obtained by graph transformations must be finite.
Yet, often applying transformation rules to graphs leads to structurally infinite models, and
hence properties are not decidable based on classical verification techniques.

To consider infinite structure, initially, we were interested in extending INRSs [Li+09]
(c.f. Section 3.7) to GSPNs and we could publish two papers [TKB17c, TKB16]. In these
two extensions, each reconfiguration is expressed by a rule having left- and right-hand sides.
The application of a rule implies the substitution of its left-hand side image in a given GSPN
to be reconfigured by its right-hand side. These two sides must belong to particular sets in
order to allow developers to reconfigure a live, bounded and reversible GSPN while preserving
these three essential properties in the resulting model.

However, these reconfigurations have three major drawbacks: (i) system states are not
considered (reconfigurations are done in an off-line mode), (ii) only three qualitative prop-
erties, namely liveness, boundedness and reversibility are decidable, and finally, (iii) the
quantitative aspect of GSPNs is not studied.

To remedy these problems, we have proposed a new formalism, called the INRSs for
GSPNs (INRSs-GSPNs) [Tig+18], which takes into account, inter alia, system states in the
reconfiguration application and provides an algorithm for the property verification either
qualitative or quantitative.

Using INRSs-GSPNs, designers can model reconfigurable systems using GSPNs and rewrit-
ing rules controlled by system state. Unlike our extensions described in [TKB17c, TKB16]
which limit rule application to an initial marking, we associate to each reconfiguration a
controller marking, that is, if the current marking of the net is less than a controller marking
then the rule is not applicable. As for the verification level, an algorithm computing from
the dynamic model a semi-Markov chain describing the stochastic behavior of the system is
proposed. As a result, the designers can evaluate the system performance.

Nevertheless, the reconfiguration remains too limited in the INRSs-GSPNs formalism.
On the one hand, only live, bounded and reversible GSPNs are concerned which limits its
application field. On the other hand, left- and right-hand sides of any rule imperatively
belong to a particular structure set, which can only further limit the formalism applicability.

The need to (i) relax the constraints imposed by INRSs-GSPNSs formalism, (ii) address
all types of GSPNs (not only live, bounded and reversible GSPNs), and (iii) enrich the set
of nets used in reconfiguration, led us to propose reconfigurable generalized stochastic Petri
nets (RecGSPNs) [Tig+19].
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Actually, RecGSPNs allow designers to model a wider range of possible structural changes
where both sides of any rule are no longer defined by their structure, instead, they must show
some behaviors allowing to use them in the reconfiguration process. Using RecGSPNs-based
reconfiguration allows preserving five important properties such that liveness, boundedness,
reversibility, deadlock-freedom and home state. Moreover, many properties expressed by
linear time logic can be preserved after a system reconfiguration. Thus, these properties are
decidable whatever the number of resulting configurations that can be infinite. This practice
enjoys double advantages

1. Temporal and spatial complexity are reduced since these properties are verified only at
the first configuration, hence no need to compute and explore the whole set of reachable
states of all reachable configurations,

2. Often, applying transformation rules to graphs leads to structurally infinite models,
and hence properties are not decidable based on classical verification techniques. In
our approach, the properties mentioned above are still decidable since applying any
rule will preserve them.

The remainder of this chapter is organized as follows. Section 6.2 presents the formal
definition of RecGSPNs formalism. Then, properties preservation with necessary proofs
and qualitative analysis are shown in Section 6.3 and Section 6.4, respectively. Section 6.5
demonstrates the use of the proposed formalism on a running example. Finally, Section 6.6
concludes the chapter.

6.2 Reconfigurable Generalized Stochastic Petri Nets

RecGSPNs introduce three major advantages: (i) any GSPN can be reconfigured at run-time
while preserving several properties, such as: liveness, deadlock-free, boundedness, reversibil-
ity and home state, (ii) a wider range of possible structural changes are allowed, and (iii)
RecGSPNs formalism is equipped by an algorithm that computes an isomorphic semi-Markov
chain for quantitative verification.

6.2.1 Definition of RecGSPNs

A RecGSPN is composed of a GSPN, modeling an initial system configuration, and a set of
rewriting rules describing possible changes in the structure of this system. Each rule r is com-
posed of Left-hand Side (LHS), Right-hand Side (RHS) and input/output (interface) nodes,
where LHS and RHS are Properties Preserving Nets (PPNs). We write r = 〈LHS,RHS〉.
In the following, we present rule structure and PPN behavior by which a user can define its
own rules used in a reconfiguration process.
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In fact, imposing that LHS and RHS must be PPNs preserves certain behaviors of the
system after a reconfiguration where LHS is replaced by RHS. Therefore, if some properties
hold in the previous configuration, then they are still satisfied in the next configuration.

Intuitively, the application of rule r = 〈LHS,RHS〉 to G acts as follows. (i) r matches
its LHS to a subnet of G, (ii) then it deletes this matching from G, (iii) and finally, it inserts
and connects RHS to the rest of G, depending on input/output nodes.

To match LHS to a subnet of G, a morphism is used. It preserves a GSPN structure by
mapping places to places and transitions to transitions so that if a transition t is mapped to
a transition t′, then a mapping between the preset and postset of both transitions t and t′

must exist (similarly to places considering their marking) [HEM05].
Let us consider G = 〈PG, TG, T1G , T2G , ΛG〉 as a GSPN, such that PG denotes a set of

places, TG denotes a set of transitions, T1G denotes a set of timed transitions, T2G denotes a
set of immediate transitions, and ΛG denotes a firing rate/weight function.

Definition 6.1. (GSPNs-morphism). If G and H are to GSPNs, then a GSPNs-morphism
from G to H is mapping f : G → H composed of a pair of mappings (fP , fT ), such that
fP : PG → PH , fT : TG → TH . fP and fT must satisfy the following conditions. ∀ p ∈ PG

and ∀ t ∈ TG:

• FG(p, t) = FH(fP (p), fT (t)) and FG(t, p) = FH(fT (t), fP (p)).

• MG(p) = MH(fP (p)) and ΛG(t) = ΛH(fT (t)).

• If t ∈ T1G , then fT (t) ∈ T1H , otherwise fT (t) ∈ T2H .

In addition to the well-known conditions of PNs-morphisms, a GSPNs-morphism requires
mapped places to have identical marking and mapped transition to have identical rate/weight
and type.

p

t

q

(a) g.

p0

t0

q0

(b) h0.

p1

t1

q1

(c) h1.

p2

t2

q2

(d) h2.

Figure 6.1: Morphism.

Let us consider both GSPNs g and h0 depicted in Figs. 6.1a and 6.1b, respectively. There
exists a GSPNs-morphism f from g to h0 that maps p, t and q in g to p0, t0 and q0 in
h0, respectively. On the other hand, g cannot be matched to either h1 or h2 shown in
Figs. 6.1c and 6.1d, respectively, since (i) marking of p1 in h1 does not equal marking of p in
g, and (2) transition t in g is timed, while transition t2 in h2 is immediate.
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Let us consider GSPN G0 and rule r = 〈lhs, rhs〉 shown in Fig. 6.2. We apply rule r to
GSPN G0, as follows. Firstly, a match of lhs (LHS of r depicted in Fig. 6.2b) must be found
in G0. This match is located by morphism f that maps p1, t1 and q1 in lhs to p1, t1 and p2

in G0, respectively. Secondly, we remove this match from G0, the obtained net, called G′0,
is illustrated in Fig. 6.2d. Then, we insert rhs (RHS in r depicted in Fig. 6.2c) to G′0, the
obtained net, called G′1, is highlighted in Fig. 6.2e. Finally, we connect rhs to G′0. Actually,
this last step depends on input/output nodes of both lhs and rhs. Given that sets of input
nodes in lhs and rhs are {p1} and {p1, p′1}, respectively; and sets of output nodes in lhs and
rhs are {q1} and {q1, q′1}, respectively, then each input node in rhs is connected to nodes of
G′0 identically as each input node in lhs is connected to nodes in G0. Idem for output nodes.

In fact, all input nodes, as well as output nodes, must be identically connected to the rest
of the net. The other nodes in rhs (i.e., which are neither input nor output nodes) are not
connected directly, to G′0. The resulting GSPN is G1 depicted in Fig. 6.2f.

t0 p1 t1 p2 t2

p0

(a) G0.

p1 t1 q1

(b) lhs.

p1 t1 q1

p′1 t′1 q′1

(c) rhs.

t0 t2

p0

(d) G′0.

t0

p1 t1 q1

t2

p0

p′1 t′1 q′1

(e) G′1.

t0

p1 t1 q1

t2

p0

p′1 t′1 q′1

(f) G1.

Figure 6.2: Steps of applying a rewriting rule.

Additional nets can be used to forbid a rule application if certain structures are present be-
fore applying thereof. This notion is called Negative Application Conditions (NACs) [LEO06].
A NAC(q) on LHS L is considered to be satisfied iff there does not exist a GSPNs-morphism
that maps q in G.

Definition 6.2. (RecGSPNs). Formally, a RecGSPN is a tuple Ψ = 〈G0,R〉, where

1. G0 = 〈P ,T ,F ,M0,T1,T2, Λ〉 is an initial configuration.

2. R = {r0, r1, . . . , rm} is a finite set of rewriting rules.
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A rule ri = 〈Li,Ri,NACi, Ii,Oi,Vi,mi〉 ∈ R is defined as follows.

1. LHS Li and RHS Ri are two Properties Preserving Nets (PPNs).

2. NACi = {NAC(q0), . . . ,NAC(qn)} is a set of NACs on L.

3. Ii = (ILi
, IRi

) (Oi = (OLi
,ORi

), respectively) are input nodes (output nodes, respec-
tively) of Li and Ri, where (i) interface nodes in both sides are either timed transitions,
immediate transitions, or places, and (ii) non-interface transitions in both sides are ei-
ther timed or immediate.

4. If LHS does not contain timed transition, so does RHS, and vice versa.

5. Vi ∈ R+ is an application weight of ri.

6. mi is a marking that controls the application of rule ri.

7. If one side (either LHS or RHS) is a single immediate transition, then the other side
must not contain a timed transition.

Assume a GSPN G. Let NG denote the set of nodes in G, •v = {w|F (w, v) ≥ 1} denote
preset of node v, and v• = {w|F (v,w) ≥ 1} denote its postset, and Θ(L) denote set of inner
nodes in L that are neither input nor output nodes.

A rule r = 〈L,R,NAC, I,O,V ,m〉 is applicable to G with marking M iff

1. An occurrence g of L is located in G by a GSPNs-morphism f .

2. ∀ NAC(qi) ∈ NAC, NAC(qi) is satisfied.

3. Preset and postset of each image of any inner node v of L are subsets of g. Formally,
∀ v ∈ f(Θ(L)),• v ∪ v• ⊆ f(L).

4. Input nodes images of L are connected identically to nodes not belonging to g, i.e.,
∀ v ∈ NG \ Ng, ∀ w,w′ ∈ IL,F (v, f(w)) = F (v, f(w′)) and F (f(w), v) = F (f(w′), v).
Idem for output nodes images.

5. M is greater than or equal to m. Formally, M(p) ≥ m(p),∀ p ∈ PG.

6. If one side (either LHS or RHS) is a single place, then the other side and G must not
contain an immediate transition.

Applying rewriting rule r = 〈L,R,NAC, I,O,V ,m〉 to GSPN G with marking M leads to
new GSPN G′. Let F ′ be the flow function of G′. For each couple of nodes (v,w) ∈ NG′×NG′ ,
F ′(v,w) is defined as follows.
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F ′(v,w) =



FG(v,w) if v /∈ NR ∧ w /∈ NR

FR(v,w) if v ∈ NR ∧ w ∈ NR

FG(v, f(u)) if v /∈ NR ∧ w ∈ IR

FG(f(u),w) if v ∈ IR ∧ w /∈ NR

FG(f(u
′),w) if v ∈ OR ∧ w /∈ NR

FG(v, f(u
′)) if v /∈ NR ∧ w ∈ OR

0 otherwise

. (6.1)

where u ∈ IL, u′ ∈ OL and f is a GSPNs-morphism that maps L into G.
Marking M ′ of G′ is given by

M ′(p) =

{
M(p) if p ∈ PG

M0R(p) if p ∈ PR

. (6.2)

where M0R is an initial marking of R.
Let us consider RecGSPN shown in Fig. 6.3, where its initial configuration C0 is depicted

in Fig. 6.3a. The net switches to configuration C1 illustrated in Fig. 6.3f when the marking
of place p0 of C0 is three. Once the marking of place p1 of C1 becomes three, this latter
switches again to C0.

t0 p0 t1

p1

(a) Configuration C0.

p

(b) L0.

p0

t′

p′0

(c) R0.

p

t

p′

(d) L1.

p0

(e) R1.

t0 p0 t′ p′0 t1

p1

(f) Configuration C1.

Figure 6.3: Reconfiguration in RecGSPNs.

Rule r0 = 〈L0,R0,NAC0, I0,O0,V0,m0〉 models the switching from C0 to C1, where (i)
L0 and R0 are shown in Figs. 6.3b and 6.3c, (ii) I0 = ({p}, {p0}), (iii) O0 = ({p}, {p′0}), (iv)
NAC0 = ∅, (v) V0 = 1, and (vi) m0(p0) = 3.

Rule r1 = 〈L1,R1,NAC1, I1,O1,V1,m1〉 models the switching from C1 to C0, where (i) L1

and R1 are shown in Figs. 6.3d and 6.3e, (ii) I1 = ({p}, {p0}), (iii) O1 = ({p′}, {p0}), (iv)
NAC1 = ∅, (v) V1 = 1, and (vi) m1(p1) = 3.

Rule r1 can be applied to C1 when p1 marking becomes three, since:

• There exists an occurrence g of L1 mapped by GSPNs-morphism f1 in C1, where
f1(p) = p0, f1(t) = t′ and f1(p

′) = p′0.

• Condition (2) (applicability of rules) holds, since NAC1 is empty.
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• Preset and postset of inner transition t′ are subsets of g.

• Condition (4) holds, since there is one input node and one output node.

• Condition (5) holds, since MC1(p0) ≥ m(p0).

• Condition (6) holds, since C1 and L1 contain only timed transition.

6.2.2 Properties Preserving Nets

In this subsection, we describe Properties Preserving Nets (PPNs) that are used to reconfigure
GSPNs while preserving certain of their properties. Therefore, it is no more required to verify
the preserved properties after each reconfiguration. Consequently, they are decidable even if
the number of obtained configurations is infinite.

We determine whether a net N is a PPN by constructing a GSPN G, called container
net, that contains N in a particular way described below. We show that if G is LBR (live,
bounded, and reversible), then N is a PPN.

Definition 6.3. (Preserving Properties Nets with transition interface). A net N having
transition interface (IN ,ON) is a PPN, if its container net G is an LBR GSPN, where:

• A timed transition t, a marked place p by one token, a not marked place p′ and N are
inserted into G (initially empty).

• Preset and postset of t are {p′} and {p}, respectively.

• An arc from place p to each input transition of N is inserted, formally p• = IN =

{t1in, . . . , tnin}. {t1in, . . . , tnin} is the set of input transitions in N .

• An arc from each output transition of N to place p′ is inserted, formally •p′ = ON =

{t1out, . . . , tmout}. {t1out, . . . , tmout} is the set of output transitions in N .

• If p and p′ are initially not marked, then G is in a deadlock state.

• Transition t fires infinitely often.

ind p0

t0 p1 t1

p3

p2 ond

p4

(a) N1.

ind1

ind2

t0
p0

t1

ond1

ond2

(b) N2.

ind p0

t0 p1 t1

p3

p2 ond

p4

p

t

p′

(c) LBR G1 contains N1.

ind1

ind2

t0
p0

t1

ond1

ond2

pt t′

(d) LBR G′
1 contains N2.

Figure 6.4: Properties preserving nets examples.
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Fig. 6.4a illustrates PPN N1, where its interface is ({ind}, {ond}). Fig. 6.4c highlights
its container net G1, which is an LBR GSPN. GSPN G1 is constructed as follows. We insert
timed transition t, and two places p (marked by one token) and p′ (not marked) into N1. We
add an arc from t to p and from p′ to t. We add an arc from p to each input node, and an
arc from each output node to p′. Note that in G1, t fires infinitely often and when p and p′

are initially not marked, G1 is deadlocked.

Definition 6.4. (Properties Preserving Nets with place interface). A net N having place
interface (IN ,ON) is a PPN, if container net G of N is an LBR GSPN, where:

• A marked place p by one token, two timed transitions t, t′ and N are inserted into G

(initially empty).

• Preset and postset of p are {t′} and {t}, respectively.

• An arc from transition t to each input place of N is inserted, formally t• = IN =

{p1in, . . . , pnin}. {p1in, . . . , pnin} is the set of input places of N .

• An arc from each output place of N to transition t′ is inserted, formally •t′ = ON =

{p1out, . . . , pmout}. {p1out, . . . , pmout} is the set of output places of N .

• If p is initially not marked, then G is deadlocked.

• Transitions t and t′ fire infinitely often.

Fig. 6.4b depicts PPN N2 having interface ({ind1, ind2}, {ond1, ond2}) and Fig. 6.4d shows
its container net G′1 which is an LBR GSPN.

6.3 Preservation of properties in RecGSPNs

In this section, we prove that the reconfiguration based on RecGSPNs preserves some prop-
erties such as LBR (i.e., liveness, boundedness, and reversibility), home state, deadlock-free,
and other temporal linear properties.

6.3.1 Preservation of LBR, home state, and deadlock-free

Let r = 〈L,R,NAC, I,O,V ,m〉 be a rule, G = 〈P ,T ,F ,M0,T1,T2, Λ〉 be its host GSPN,
G′ = 〈P ′,T ′,F ′,M ′

0,T
′
1,T

′
2, Λ

′〉 be its target GSPN, and LG be the occurrence of L in G

mapped by a morphism f .
In fact, applying rule r to G is performed through two steps. Firstly, we locate and delete

nodes of LG from G (deleted nodes are called obsolete), then we insert and connect nodes of
R to the rest of G (inserted nodes are called fresh). All nodes which are not in occurrence
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LG are preserved in target GSPN G′. These nodes are called preserved nodes and denoted
by N = T ∪ P , where T is the set of preserved transitions and P is the set of preserved
places. Connections between preserved nodes are preserved as well. Each node connected to
the image of an input node in L preserves its preset and each node connected to the image
of an output node in L preserves its postset (see Eq. 6.1).

In the sequel, we consider the following notations:

• X.Y =(x1,x2, . . . ,xn, y1, y2, . . . , ym) denotes a concatenation of two vectors X = (x1,x2,

. . . ,xn) and Y = (y1, y2, . . . , ym).

• RM(G) denotes the reachable markings set of G.

• M [σ(G)〉 denotes fireable sequence σ = t1t2 . . . tn in G at marking M , such that
M [t1〉M1[t2〉 . . . Mn−1[tn〉.

• M [σ1 . . . σn(G)〉 denotes a concatenation of fireable sequences in G at M .

• T (σ) denotes that all transitions in sequence σ are preserved after reconfiguration.

• X.Y [σ(G)〉 denotes a fireable sequence, such that σ = t1 t2 ... tn and X.Y [t1〉X1.Y [t2〉 . . .
Xn−1.Y [tn〉. Hence, X1, X2 , ..., Xn−1 are respectively the sequence of sub-markings
obtained by firing sequence σ from sub-marking X. Here, Y is still not modified.

• G(•n) (G(n•), respectively) denotes preset (postset, respectively) of node n in G.

Denotation 1. Let r be a rule, R be its RHS, G be its source GSPN, G′ be its target GSPN,
and P be a set of preserved places. If M ′ is a reachable marking in G′, then M ′ can be written
as a concatenation M ′ = M.MR, such that M is the marking of preserved places (where
dimension(M) = |P| and M(p) = M ′(p), ∀p ∈ P) and MR is the marking of subnet R.

Example. Fig. 6.5b shows the reachability graph of C1 shown in Fig. 6.3f. Set of preserved
places P is {p1} and marking M = (3, 0, 0) of p0, p1 and p′0 can be written as a concatenation
M =M.MR, where M = (0) is the marking of preserved place {p1} and MR = (3, 0) is the
marking of p0 and p′0.

Denotation 2. Let r be a reconfiguration rule, L be its left-hand side, and G be its source
GSPN. If M is a reachable marking in G, then M can be written as a concatenation M =

M.ML such that M is the marking of preserved places and ML is the marking of subnet LG

(the occurrence of L in G).

Example. Fig. 6.5a shows the reachability graph of C0 shown in Fig. 6.3a. Marking M ′ =

(0, 3) of p0 and p1 can be written as M ′ =M′.M ′L, whereM′ = (0) is the marking of p1 and
M ′L = (3) is the marking of p0.
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(0, 3) (1, 2)
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(a) Reachability graph of C0.

(3, 0, 0)

(2, 0, 1)(2, 1, 0)

t′t0
t1

(1, 1, 1) (1, 0, 2)(1, 2, 0)

(0, 2, 1)(0, 3, 0) (0, 1, 2) (0, 0, 3)

t′

t′

t′

t′t′t0

t0

t0

t0

t0

t1t1t1

t1t1

(b) Reachability graph of C1.

Figure 6.5: Reachability graphs of both configurations C0 and C1, where M0(p0, p1) = (0, 3)
is the initial marking of C0, and M ′

0(p0, p1, p
′
0) = (3, 0, 0) is the initial marking of C1.

If the input and output nodes of RHS R are transitions, then ∀ t ∈ T , G(•t) = G′(•t)

and G(t•) = G′(t•) (i.e., the preset and postset of t are preserved in G′), due to Eq. (6.1).
Hence, if exists t ∈ T such thatM.ML[t〉M′.ML in G, then t is fireable in G′ atM.MR and
the obtained marking is M′.MR. Therefore, we have the following lemma.

Lemma 3. If the input and output nodes of RHS R are transitions, then each fireable sequence
of preserved transitions in source GSPN G at M.ML is a fireable sequence in target GSPN
G′ at M.MR.

Proof. If the input and output nodes of R are transitions, then each preserved transition after
reconfiguration preserves its preset and postset. Subsequently, if a preserved transition fires
atM.ML in G and yieldsM′.ML, then t fires atM.MR in G′ and yields markingM′.MR.
Thus, if t0, t1, . . . , tn are preserved andM.ML[t0〉M1.M

L[t1〉 . . .Mn.M
L[tn〉 is fireable in G,

then M.MR[t0〉M1.M
R[t1〉 . . .Mn.M

R[tn〉 is fireable in G′.

By Lemma 3, we mean that each fireable sequence σ in G at M.ML containing only
preserved transitions is also a fireable sequence in G′ at M.MR.

In order to prove the reversibility of reconfigured nets, we divide set RM(G′) into two
distinguishable subsets RM1(G

′) and RM2(G
′). The former contains reachable markings,

where the marking of each place in RHS R equals its initial marking and the latter contains
the rest of markings. We prove the reversibility for the markings of two subsets RM1(G

′)

and RM2(G
′) in the two following lemmas.

Lemma 4. If G is reversible, then the initial marking of G′ is reachable from any marking
M =M.MR

0 ∈ RM1(G
′).
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Example. In Fig. 6.5b, the initial marking (3, 0, 0) of C1 is reachable from each marking in
RM1(C1) = {(3, 0, 0)}.

Proof. Since G is reversible, then ∀M ∈ RM(G), there exists a sequence σ such that
M [σ(G)〉M0. After reconfiguring G towards G′, two cases are possible: either T (σ) (i.e.,
σ contains only preserved transitions) or ¬T (σ).
Case 1: If T (σ), then M [σ(G)〉M0 can be written as M.ML

0 [σ(G)〉M0.M
L
0 , such that

M0.M
L
0 is the initial marking of G. Thus, by Lemma 3, we deduct thatM.MR

0 [σ(G
′)〉M0.M

R
0 ,

where M0.M
R
0 is the initial marking of G′.

Case 2: If ¬T (σ), then according to RecGSPNs, only the interface nodes in f(L) (the
image of net L inside G) can be connected to preserved nodes belonging to G (i.e., non-
interface nodes in f(L) can never be connected to other nodes outside f(L) due to Condition
(2)). Thus, sequence σ = t1...tn can be divided into three sub-sequences σ1 = t1...ti−1,
σ2 = ti...tj, and σ3 = tj+1...tn, where 0 ≤ i, j ≤ n, {t1,...,ti−1,tj+1,...,tn} ⊂ T and tk 6∈ T ,
k ∈ {i, i+ 1, ..., j}.
M.ML

0 [σ(G)〉M0.M
L
0 can be written as M.ML

0 [σ1.σ2.σ3(G)〉M0.M
L
0 where:

• σ1 does not update marking ML
0 : M.ML

0 [t1〉M1.M
L
0 . . . Mi−2.M

L
0 [ti−1〉 Mi−1.M

L
0 .

• σ2 updates two markingsM and ML: Mi−1.M
L
0 [ti〉Mi.M

L
1 . . . Mi.M

L
j−1 [tj〉Mj.M

L
0 ,

such that ti and tj are respectively input and output nodes in f(L).

• σ3 updates marking Mj,Mj+1, . . . ,Mn−1: Mj.M
L
0 [tj+1〉Mj+1.M

L
0 . . . Mn−1.M

L
0 [tn〉

M0.M
L
0 .

Since we haveM.ML
0 [σ1(G)〉Mi−1.M

L
0 and T (σ1), we apply Lemma 3 to deduct thatM.MR

0

[σ1(G
′)〉 Mi−1.M

R
0 . Similarly to σ3.

Let us consider σ2. Using Eq. (6.1), ifMi−1.M
L
0 [ti〉Mi.M

L
1 , then Mi−1.M

R
0 [tin〉Mi.M

R
1 ,

∀tin ∈ IR. On the other hand, the firing of any fireable sequence t′1 . . . t
′
m at Mi.M

R
1 in G′

(where t′k∈{1,...,m} is neither input nor output node) does not affect the marking of preserved
places, thus Mi.M

R
0 [tin〉Mi.M

R
1 [t
′
1〉 . . . Mm−1.M

R
m[tm〉 Mi.M

R
m[tout〉, such that tout is an

output node. Based on Eq. (6.1), we deduct that Mi.M
R
m[tout〉Mj.M

R
0 .

Lemma 5. If G is reversible, then the initial marking of G′ is reachable from any marking
M ∈ RM2(G

′).

Example. In Fig. 6.5b, initial marking (3, 0, 0) of C1 is reachable from each marking in
RM2(C1) = {(0, 2, 1), (0, 1, 2), (0, 0, 3), (1, 1, 1), (1, 0, 2), (2, 0, 1), (2, 1, 0), (1, 2, 0), (0, 3, 0)}.

Proof. Markings in RM2(G
′) have the form M.MR. Due to the reversibility property of

PPNs, for each reachable marking M.MR there exists σ where M.MR[σ(G′)〉M′.MR
0 . By

Lemma 4, it is proved that initial marking of G′ is reachable from any marking M.MR
0 .
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Theorem 6.1: Reversibility

If GSPN G′ is obtained by applying r to reversible GSPN G, then G′ is reversible.

Proof. Previously, it is proved that the initial marking of G′ is reachable from any marking
in RM1(G

′) and RM2(G
′). Hence G′ is reversible since its reachable marking set RM(G′) is

the union of subsets RM1(G
′) and RM2(G

′).

Remarque. Note that preserving reversibility property means that any reachable configu-
ration of a given RecGSPN N is reversible. However, RecGSPN N may become irreversible
to an initial marking of an initial configuration. As well, we note that if a given RecGSPN N

can infinitely often return to a reversible initial configuration, then RecGSPN N is reversible.

Theorem 6.2: Home state

If GSPN G′ is obtained by applying r to GSPN G having a home state, then G′ has a
home state.

Proof. If Mh is a home state of G, then ∀ M ∈ RM(G), ∃ σ, M [σ(G)〉Mh. Based on
reversibility proof, we deduct that G′ has a home state.

Theorem 6.3: Boundedness

If GSPN G′ is obtained by applying r to bounded GSPN G, then G′ is bounded.

Proof. According to PPNs behavior, places in R are bounded. Preserved places that preserve
their preset and postset are bounded. According to Eq. 6.1, each preserved place that does not
preserve its preset and/or postset is connected to images of input and/or output transitions.
For each input transition tin and output transition tout in R, we have (i) tin in G′ consumes
the same number of tokens consumed by t ∈ f(IL) in G and produces in preserved places
of G′ the same number of tokens produced by t in G, and (ii) tout in G′ produces the same
number of tokens produced by t ∈ f(OL) in G and consumes from preserved places of G′

the same number of tokens consumed by t in G. Hence, places in G′ are bounded.

Remarque. Note that in the case of infinite-structure RecGSPNs, the preservation of bound-
edness property means that each place remains bounded, however, the reachability graph may
become infinite. In fact, if the application of transformation rules infinitely keeps adding new
places to the net, then the reachability graph keeps growing, as well.

Theorem 6.4: Liveness

If GSPN G′ is obtained by applying r to live GSPN G, then G′ is live.
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Proof. If G is live, then ∀ t ∈ T , M ∈ RM(G), ∃ σ, M [σ(G)〉M ′[t〉. Based on reversibility
proof, we deduct that G′ is live.

Theorem 6.5: Deadlock-free

If GSPN G′ is obtained by applying r to deadlock-free GSPN G, then G′ is deadlock-
free.

Proof. If G is deadlock-free, then ∀ M ∈ RM(G), ∃ t ∈ T , such that M [t〉M ′. Based on
previous proofs, we deduct that G′ is deadlock-free.

6.3.2 Preservation of linear temporal properties

In the following, we describe a subset of LTL formulae that are still satisfied after a reconfig-
uration, if these formulae fulfill specific conditions. Four cases are discussed in the following:
(i) preservation of propositional formulae satisfied, for a state, in the source GSPN, (ii) preser-
vation of “Until” satisfied for a path in the source GSPN, (iii) preservation of LTL formulae
satisfied for a path in the source GSPN, (iv) and preservation of LTL formulae satisfied for a
state in the source GSPN. These preservations require that the formulae involve only specific
places, called “Strongly Preserved places” (SP-places). This section starts by presenting the
concept of strongly preserved nodes (i.e., places or transitions), before detailing properties
preservation theorems and their proofs.

Definition 6.5. (Strongly preserved nodes). Let G and G′ be source and target GSPNs of
rule r, respectively. Sets P̂ and T̂ containing preserved places and transitions having pre-
served presets and postsets, are called Strongly Preserved places (SP-places) and transitions,
respectively.

Example. Considering GSPN H ′ in Fig. 6.6b which is obtained from H (Fig. 6.6a) by
replacing transition need2 by subnet in dashed box (start2, work2, and need′2). Places idle2

and req2 are not strongly preserved since their preset and/or presets are not preserved. On
the other hand, places CS1, CS2, wait1, wait2, . . . are strongly preserved.

Definition 6.6. (Prompt of a path). In transition system TS, an infinite transition sequence
σ = t0 t1 . . . is called prompt of a maximal path π = s0 s1 . . . , if ∀ i, (si, ti, si+1) ∈ E.

Example. GSPN H in Fig. 6.6a models two processes p1 and p2 trying access a critical re-
source. A token in idlei, reqi, waiti and CSi means that process pi is idle, requesting access,
waiting to access a critical resource, or in a critical section, respectively. Transitions needi,
reqi, regi, enteri, and freei are fired when process pi needs a critical resource, requests it,
starts waiting for it, enters a critical section, or frees a critical resource, respectively. Path
π0 = s0s1s3s6s0 . . . in Fig. 6.7a has prompt σ0 = need2 reg2 enter2 free2 . . . .
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Definition 6.7. (Projection of a sequence). By Lemma 3, for each fireable sequence σ in G,
there exist fireable sequence σ′ in G′, called projection of σ, such that obsolete transitions
are removed and sequence of fresh ones are added, and vice versa.

Example. For instance, σ′0 = start2 need'2 reg2 enter2 free2 starting from state c0 in
Fig. 6.7b is obtained from σ0 = need2 reg2 enter2 free2 starting from state s0 in Fig. 6.7a
by removing occurrences of obsolete need2 in σ0 and adding start2 need'2 (which are fresh).

Definition 6.8. (Projection of a maximal path). Let G be a GSPN and G′ the GSPN
obtained by reconfiguring G, let TS = 〈S,T ,E, I,A,L〉 and TS ′ = 〈S ′,T ′,E ′, I ′,A′,L′〉 be
transition systems with respect to G and G′. A maximal path τ = c0c1 . . . of TS ′ having
trace σ′ is called a projection of a maximal path π = s0s1 . . . of TS having trace σ, if σ′ is a
projection of σ and c0(p) = s0(p),∀ p ∈ P .
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need1

list

res

req2reg2
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(a) GSPN H models mutual exclusion.
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(b) GSPN H′ models mutual exclusion.

Figure 6.6: Mutual exclusion.
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Figure 6.7: Transition systems of GSPNs H and H ′, where Ci and W1 denote (CSi = 1) and
(waiti = 1), for each i ∈ {1, 2}, respectively.
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Example. In Fig. 6.7b, τ0 = c0c13c1c3c6c0 is a projection of π0 = s0s1s3s6s0 in Fig. 6.7a.
Next, we show that if a propositional formula involving only SP-places is satisfied for a

state in the source GSPN, then it is satisfied in the target GSPN for some state.

Lemma 6. Let Φ be a propositional formula involving only strongly preserved places. If there
is a state s in TS such that Φ holds for s, then for all states c in TS ′ such that c(p) = s(p),
∀p ∈ P̂ (i.e., SP-places), Φ holds for c.

Example. Assume set of atomic propositions Â0 = {C1, C2, W1, W2}, where Ci and Wi denote
(CSi = 1) and (waiti = 1), for i ∈ {1, 2}, respectively. Atomic proposition W2 holds for state
s3 as well for states c3 and c15. This is because wait2 is a SP-place in both nets H and H ′.

Proof. Let Â be a set of atomic propositions involving only SP-places. Let s and c be states
two belonging to transition systems TS and TS ′, respectively, such that s(p) = c(p),∀ p ∈ P̂ .
Then, each atomic proposition a in Â that holds for s, holds for c, and vice-versa, since each
SP-place has identical marking at both states s and c. Therefore, if s satisfies a propositional
formula Φ, then so does c.

In the rest of this section, atomic propositions and propositional formulae involve only
strongly preserved places. Example in Fig. 6.7 is still used to clarify each theorem and lemma.

In the following, we consider the satisfaction preservation of formulae of the from Φ1UΦ2,
where Φ1 and Φ2 are two propositional formulae, in the target GSPN for some path.

Lemma 7. Let Φ1 and Φ2 be propositional formulae. If Φ1UΦ2 holds for a path π, then it
holds for its projection.

Proof. Let Φ1 and Φ2 be two propositional formulae. Let π = s0s1 . . . be a path and τ =

c0c1 . . . be its projection. Let sn be the state in which Φ2 holds and Φ1 holds for each state
si, for all i ∈ {0, . . . ,n − 1}. Path τ is a projection of π if its prompt σ′ is a projection of
prompt σ of π and s0(p) = c0(p),∀ p ∈ P (i.e., preserved places). Hence, if Φ1 holds for s0

then it holds for c0. If states s1, s2, . . . , si are reached from s0 by firing strongly preserved
transition sequence σ̂, then states c1, c2, . . . , ci are reached from c0 by firing σ̂ too, such that
sj(p) = cj(p),∀ p ∈ P ,∀ j ∈ {1, . . . , i} (see Lemma 3). Thus, if Φ1 holds for s1, s2, . . . , si,
then it holds for c1, c2, . . . , ci. If si+1si+2 . . . sk−1 is a state sequence reached from si by firing
non-strongly preserved transition sequence and sk is reached from sk−1 by firing a strongly
preserved transition t, then, we have the following in the target GSPN.

• ci+1ci+2 . . . cl−1cl is a state sequence, where ci+1, . . . , cl−1 is reached from ci by firing non-
strongly preserved transition sequence and cl is reached from cl−1 by firing a strongly
preserved transition t, where sk(p) = cl(p),∀ p ∈ P̂ (see Lemma 3).

• and Φ1 holds for states ci+1, . . . , cl−1.
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As a result, if propositional formula Φ1 holds for state sequence s0 s1 . . . sn−1 having prompt
%, then it holds for state sequence c0 c1 . . . cm−1 having prompt %′, where %′ is a projection
of %. By Lemma 3, if sn is reached from s0 by firing transition sequence ς = t0 t1 . . . tn in
G, where tn is a strongly preserved transition, then cm is reached from c0 by firing transition
sequence ς ′ = t′0 t′1 . . . t

′
m in G′, where ∀ p ∈ P , c0(p) = s0(p), cm(p) = sn(p), tn = t′m, and ς ′

is a projection of ς. As a recap, if Φ1UΦ2 holds for a path π, then Φ1UΦ2 holds for a path
τ , such that τ is a projection of π. Note that tn must be a strongly preserved transition,
otherwise, its firing does not affect the truth value of Φ2.

Example. In Fig. 6.7, path π0 = s0s1s3s6s0 . . . and its projection τ0 = c0c13c1c3c6c0 . . . have
traces {∅}{∅}{W2}{C2}{∅} . . . and {∅}{∅}{∅}{W2}{C2}{∅} . . . , respectively. Considering
formula (true U C2), it holds for both π0 and τ0.

In the rest of this chapter, we exclude operator X (i.e., next) from the definition of LTL
formulae. By following Theorems 6.6, 6.7 and 6.8, we show that if a formula is satisfied for
a path, a state, and transition system TS derived from the source GSPN, then it is satisfied
for some path, some state, and transition TS ′ derived from the target GSPN, respectively.

Theorem 6.6: Paths

Let Φ be an LTL formula inductively defined as follows

Φ ::= true | a | ¬Φ | Φ1 ∨ Φ2 | Φ1 U Φ2

where a ∈ Â. If Φ holds for a path π, then Φ holds for its projection τ .

Proof. Let Φ1, Φ2 and Φ3 be propositional formulae. Previously, it is proved that if Φ1

involving only strongly preserved places holds for a path π of GSPN G, then it holds for
path τ of GSPN G′, where τ is a projection of π. Obviously, if ¬Φ1 (as well as Φ1 ∨ Φ2)
holds for π, then it holds for τ . Besides, it is proved that if Φ1UΦ2 holds for path π, then
it holds for τ . Obviously, if Φ1UΦ2UΦ3 holds for path π, it holds for τ . Therefore, if Φ is
inductively defined by Φ ::= true | a | ¬Φ | Φ1 ∨ Φ2 | Φ1 U Φ2, where a ∈ Â is an atomic
proposition involving only strong preserved places, and Φ holds for a path π, then Φ holds
for τ . Furthermore, if GΦ (as well as FΦ) holds for π, then it holds for τ .

Example. Considering the previous example again, where π0 is a path in source GSPN and
its projection is τ0. Formula (GF W2)→ (GF C2) (starvation freedom) holds for both π0 and
τ0. Note that Boolean connectives such as → can be derived from ¬ and ∨.

Theorem 6.7: States

Let Φ be an LTL formula. If Φ holds for a state s of G, then Φ holds for state c of G′,
such that s(p) = c(p),∀ p ∈ P .
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Proof. Recall that a formula holds for a state iff it holds for all paths starting from this state
[BK08].

Let s0 and c0 be two states of G and G′, respectively, where s0(p) = c0(p),∀ p ∈ P (i.e.,
preserved places). If Φ is a propositional formula that holds for s0, then it was proved that
Φ holds for c0.

Let Φ1 and Φ2 be propositional formulae, where Φ1 U Φ2 holds for s0. Let τ = c0c1 . . .

be a path starting from c0 of TS ′. If c1 is reached from c0 by firing a strongly-preserved
transition t, then there exists a path π = s0s1 . . . of TS where s1 is reached from s0 by
firing t and s1(p) = c1(p),∀ p ∈ P̂ , and vice versa. Thus, the truth value of Φ1 and Φ2 are
preserved. If c1 is reached from c0 by firing a non-strongly-preserved transition t′, then the
truth value of Φ1 and Φ2 are preserved (since firing non-strongly preserved transition does
not affect the truth value of propositional formulae involving only strongly preserved places),
and vice versa.

That is, if there exists a path τ = c0c1 . . . of TS ′, where Φ1 does not hold for ck and Φ2

does not hold for each state ci, for all i ∈ {0, . . . , k − 1}, then there exists a path of TS,
where Φ1 U Φ2 does not hold. Such a path does not exist since Φ1 U Φ2 holds for s0.

Hence, if there exists a path starting from s0 where Φ1 U Φ2 does not hold, then it
means that a state for which Φ2 holds can be never reached. Such a path is of the form
τ = c0c1 . . . cn−1(cn . . . cm)

ω (ω denotes infinite repetition) such that Φ2 does not hold for
each state ci, for all i ∈ {0, . . . ,m}.

By Lemma 3, if cn is reached from cm by firing a preserved transition t (interface transition
t′, respectively), then there exists a path π = s0s1 . . . si−1(si . . . sj)

ω of TS, such that si is
reached from sj by firing t (t′′, respectively) and Φ2 does not hold for each state sl, for all
l ∈ {0, . . . , j}. Such a path does not exist since Φ1 U Φ2 holds for s0.

On the other hand, cn cannot be reached from cm by firing an inner transition t of right-
hand side (see definition of properties preserving nets). As a result, if Φ1 U Φ2 holds for s0,
then it holds for c0. The rest of proof can be continued as in the proof of Theorem 6.6.

Example. Formula ((GF W1) → (GF C1) ∧ (GF W1) → (GF C1)) holds for both states c0

and s0 shown in Figs. 6.7a and 6.7b.

Theorem 6.8: Transition System

Let Φ be an LTL formula. If Φ holds for a state s of G, then Φ holds for transition
system TS ′ having initial state c0 with respect to G′, such that s(p) = c0(p),∀ p ∈ P .

Proof. Recall that a formula holds for a transition system TS iff it holds for all its initial
states[BK08]. We have already proved that if Φ holds for s then it holds for c0, such that
s(p) = c0(p),∀ p ∈ P .
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6.4 Quantitative Analysis

In this section, quantitative analysis of RecGSPNs is discussed. Similarly to GSPNs, the pro-
posed quantitative analysis uses a semi-Markov chain that describes the stochastic behavior
of the reconfigurable system. Thus, we propose a method that builds a semi-Markov chain
for a given RecGSPN Ψ = 〈G0,R〉, such that the number of configurations is finite.

Let sij = (Gi,Mj) be the state isomorphic to marking Mj of GSPN Gi obtained by
applying a rule sequence to G0. Let S be the set of states in semi-Markov chain, and E be
its set of arrows.

The semi-Markov chain for a given RecGSPN Ψ is computed as follows.

1. Insert into S state s00 = (G0,M0) isomorphic to initial marking M0 of initial configura-
tion G0 of RecGSPN Ψ.

2. Apply or fire each applicable rule or enabled immediate transition at s00. For each
obtained state s′, add s′ in S and an arrow (s00, a, s

′) in E .

3. If there is neither an applicable rule nor an enabled immediate transition, then fire each
enabled timed transition in s00 and insert the obtained states and arrows, similarly to
the previous step.

4. Repeat Steps (2) and (3) on each newly obtained state. Otherwise, semi-Markov chain
is completely computed.

The detailed algorithm is described in Algorithm 1.
We apply this algorithm to Ψ0 of Fig. 6.3. The obtained semi-Markov chain is shown in

Fig. 6.8 and Table 6.1 lists its state space.

s0 s1λ0

λ1

s2λ0

λ1

s3λ0

λ1

s4V0

s5s6

λ′λ0
λ1

s8
s7s10

s12s13 s11 s9

λ′

λ′

λ′

λ′λ′

λ0

λ0

λ0

λ0

λ1λ1λ1

λ1λ1V1

Figure 6.8: semi-Markov chain of Ψ0, where λ0, λ1 and λ′ are the firing rates of t0, t1 and t′,
respectively; and V0 and V1 are application weights of r0 and r1, respectively.

According to Algorithm 1, the first step consists of creating a state s0 that represents
initial marking M0 of initial configuration C0. In s0 rules and immediate transitions are
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Algorithm 1 Computing semi-Markov chain for a given RecGSPN
Require: Ψ = 〈G0,R〉: RecGSPN
Ensure: C = (S, E): semi-Markov chain

1: Step 1 - Initialization:
2: Create state s = (G0,M0)
3: Mark s as non-visited
4: S ←− {s}
5: E ←− ∅
6: Step 2 - Applying rules and firing immediate transi-

tions:
7: for all NV s ∈ S, A(s) ∪ EI(s) 6= ∅ do
8: Mark s = (G,M) as visited
9: for all AR r to G at M do

10: Apply r to obtain G′ with marking M ′

11: if s′ = (G′,M ′) /∈ S then
12: S ←− S ∪ {s′}
13: end if
14: if (s, r, s′) /∈ E then
15: E ←− E ∪ {(s, r, s′)}
16: end if
17: end for
18: for all EI t in G at M do
19: Fire t to obtain new marking M ′

20: if s′ = (G,M ′) /∈ S then
21: S ←− S ∪ {s′}
22: end if
23: if (s, t, s′) /∈ E then

24: E ←− E ∪ {(s, t, s′)}
25: end if
26: end for
27: end for
28: Step 3 - Firing timed transitions:
29: for all NV s = (G,M) ∈ S, ET (s) 6= ∅ do
30: Mark s as visited
31: for all ET t in G at M do
32: Fire t to obtain new marking M ′

33: if s′ = (G,M ′) /∈ S then
34: S ←− S ∪ {s′}
35: end if
36: if (s, t, s′) /∈ E then
37: E ←− E ∪ {(s, t, s′)}
38: end if
39: end for
40: end for
41: if ∃ s ∈ S, s is NV and A(s) ∪ EI(s) 6= ∅ then
42: goto Step 2
43: else
44: if ∃ s ∈ S, s is NV and ET (s) 6= ∅ then
45: goto Step 3
46: else
47: semi-Markov chain is completely computed
48: end if
49: end if

NV, AR, ET and EI stand for: non-visited, applicable rule, enabled timed transition, and enabled immediate
transition, respectively.

not enabled, and hence we jump to Step 3 in which t0 is fired and obtained marking M1 is
represented by s1, and so on. Once Ψ0 reaches state s13, rule r1 becomes applicable, by which
Ψ0 returns to its initial configuration C0 (transition from s13 to s0 models r1 application).

State Config. Marking State Config. Marking
s0 C0 (0, 3) s1 C0 (1, 2)
s2 C0 (2, 1) s3 C0 (3, 0)
s4 C1 (3, 0, 0) s5 C1 (2, 0, 1)
s6 C1 (2, 1, 0) s7 C1 (1, 0, 2)
s8 C1 (1, 1, 1) s9 C1 (0, 0, 3)
s10 C1 (1, 2, 0) s11 C1 (0, 1, 2)
s12 C1 (0, 2, 1) s13 C1 (0, 3, 0)

Table 6.1: State space of semi-Markov chain depicted in Fig. 6.8.

Given state probability distribution κ0, . . . ,κm of states s0, . . . , sm, respectively, we can
compute the following.

• Probability of having n tokens in place pi [Mar+94]: Let B(pi,n) be the subset
of S in which the number of tokens in a place pi is n. Then, the probability of having
n tokens in place pi is given by:

P [B(pi,n)] =
∑

sj∈B(pi,n)

κj. (6.3)
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• Mean number of tokens [Mar+94]: The average number of tokens in pi is given
by:

µi =
∞∑
n=1

(nP [B(κi,n)]). (6.4)

• Probability of firing transition tj [Mar+94]: Let ENj be the subset of S in which
transition tj is enabled. Then, the probability rj that tj fires next is given by:

rj =
∑

si∈ENj

κiP [tj fires first at si]. (6.5)

• Throughput at transition tj [Mar+94]: Throughput dj at tj is given by

dj =
∑

si∈ENj

πiλj. (6.6)

6.5 Using RecGSPNs in Practice

In this section, we show the usage of RecGSPNs to model/verify the behavior of a running
example, introduced below. The results described in this section have been obtained by
using our prototypal implementation. The web page of the tool contains a technical report
explaining how the tool can be used.

In this section, we describe a Reconfigurable Manufacturing System (RMS) used to il-
lustrate and evaluate our modeling formalism. The considered RMS is composed of four
machines (M1, M2, M3 and M4), and a central buffer with a capacity of 50 raw product
pieces. In this RMS, an activated machine can: (i) load raw material from the central buffer
when it is idle, (ii) process raw material, and (iii) unload worked product. The four machines
produce the same type of product.

The RMS has three modes: high, middle, and low production mode. In high produc-
tion mode (HM), machines M1, M2 and M4 are activated. As for middle production mode
(MM), machines M1, M2 and M3 are activated. Whereas in low production mode (LM),
only machines M1 and M2 are activated. M1 is the fastest machine in this RMS, however,
it fails when it produces 50 products without enough rest, and α the cost of its repairing
is highly expensive. Therefore, M3 and M4 are activated, mutually exclusive, so that M1

can get enough rest. M3 works, with cost β, if the number of raw materials in the central
buffer exceeds threshold s, whereas M4 works, with cost θ, when M1 has produced n products
without rest.

The initial configuration of this RMS is LM modeled by GSPN G0 depicted in Fig. 6.9.
The interpretation of places and transitions of G0 is given as follows.
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Figure 6.9: GSPN model of LM.

1. as: Its marking models the number of free spaces in the central buffer.

2. rm: Its marking models the number of raw materials in the central buffer.

3. mi: A token in mi means that machine Mi has begun processing.

4. m′i: A token in m′i means that machine Mi has finished processing.

5. mif : A token in mif means that machine Mi is idle.

6. m1d: A token in m1d means that machine M1 is down.

7. pp: The number of tokens inside pp represents the number of products produced by M1

without rest.

8. 2p: The number of tokens in 2p represents the number of products that can be produced
by M1 before it fails, if it does not get enough rest.

9. ra (Λ(ra) = 5): Raw material is loaded in the central buffer.

10. ldi (W (ldi) = 1): Mi loads an item from the central buffer.

11. mip (Λ(m1p) = 5 and Λ(m2p) = 1): Machine Mi is processing.

12. uldi (W (uldi) = 1): Mi unloads a product.

13. failure (W (failure) = 1): M1 fails.

14. m1m (Λ(m1m) = 0.2): M1 is under repair.

15. rec (Λ(rec) = 0.5): M1 has got enough rest.

First, we reconfigure G0 to G1 shown in Fig. 6.10c which models the RMS in its middle pro-
duction mode (MM). G1 is obtained by applying rule r1 = 〈L1,R1,NAC1, I1,O1,V1,mark1〉
(see Fig. 6.10), to G0 as follows. First, an occurrence g, subnet in dashed box in Fig. 6.9,
of its LHS L1 depicted in Fig. 6.10a is mapped by a morphism f1, where NAC1 = ∅, input
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(output, respectively) nodes of L1 and R1 are depicted by ( , respectively), V1 = 1 and
mark1(rm) = s. Then, g is substituted by RHS R1 depicted in Fig. 6.10b. The interpretation
of new added places and transitions m3, ld3, m3p, etc. is analog to the meaning of m1, ld1,
m1p, etc. respectively, where W (ld3) = 1, Λ(m3p) = 2 and W (uld3) = 1.

ld2

m2m2pm
′
2

uld2

m2f

(a) L1 (R2)

ld3

m3m3pm
′
3

uld3

m3f

ld2
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m2f

(b) R1 (L2)
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ld2 m2 m2p m′2 uld2

m2f

uld3

m3f

ld1

m1 m1p m′1

uld1

m1f

rec

m1d
m1m failure

n pp50-n2p
5050

(c) G1: GSPN model of MM.

Figure 6.10: Left and right-hand sides of r1.

Once there are (55− s) available spaces in the central buffer and M3 is idle, M3 is deacti-
vated. This reconfiguration is obtained by applying rule r2 = 〈L2,R2,NAC2, I2,O2,V2,mark2〉
to G1 (Fig. 6.10c) and the resulting GSPN is G0, where L2 and R2 are shown in Figs. 6.10b
and 6.10a, respectively, occurrence g′ of L2 in G1 is subnet in dashed ellipse in Fig. 6.10c,
NAC2 = ∅, input (output, respectively) nodes of L2 and R2 are depicted by ( , respec-
tively), V2 = 1 and mark2(as,m3f) = (55− s, 1).

In the following, we consider RMS HM. This production mode is activated when the
current configuration is G1 and M1 has produced n products without enough rest. This
reconfiguration is modeled by G2 depicted in Fig. 6.11c. G2 is obtained by applying rule r3 =

〈L3,R3,NAC3, I3,O3,V3,mark3〉 to G1, which models M4 activation and M3 deactivation,
where L3 and R3 are shown in Figs. 6.11a and 6.11b, respectively, occurrence of L3 in G1 is the
bottom-most subnet in dashed ellipse in Fig. 6.10c, NAC3 = ∅, input (output, respectively)
nodes of L3 and R3 are depicted by ( , respectively), V3 = 1 and mark3(m3f , pp) = (1,n).

The interpretation of new added places and transitions m4, ld4, m4p, etc. are analog
to the meaning of m1, ld1, m1p, etc. respectively, where W (ld4) = 1, Λ(m4p) = 3 and
W (uld4) = 1.

Once M1 has got enough rest (modeled by (55−n) tokens at 2p) and M4 is idle, M4 is deac-
tivated. This reconfiguration is obtained by applying r4 = 〈L4,R4,NAC4, I4,O4,V4,mark4〉
to G2 and the resulting GSPN is G1, where L4 and R4 are shown in Figs. 6.11b and 6.11a,
respectively, occurrence of L4 in G2 is the subnet in dashed box in Fig. 6.11c, NAC4 = ∅,
input (output, respectively) nodes of L4 and R4 are depicted by ( , respectively), V4 = 1

and mark4(m4f , 2p) = (1, 55− n).
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(c) G2: GSPN model of HM.

Figure 6.11: Left and right-hand sides of r3.

Considering performance evaluation, we studied the values of thresholds s and n that
minimize C the total cost of repairing machine M1 and the utilization of machines M3 and
M4. We measured this cost under different values of s and n such that s,n ∈ {5, 10, . . . , 45}.

We have developed a basic tool that has as inputs a GSPN model and a set of rules.
This tool is used to simulate the system described above. Given the different values of s and
n, many semi-Markov chains are generated. The probabilities that M1 is down (probability
that place m1d contains a token), M3 is working (probability that place m3 contains a token)
and M4 is working (probability that place m4 contains a token) are computed according to
Eq. 6.3 and shown in Fig. 6.12.

As depicted in Fig.6.12b, at couple (s,n) = (5, 45) the probability that M3 is working is
the highest. Indeed, M3 is deactivated when the number of raw materials is less than 55− s

or machine M1 has produced n products without enough rest, which means that increasing
s and decreasing n decreases the probability that M3 is working, as well.

At (s,n) = (5, 5) in Fig. 6.12c, the probability that M4 is working is the highest. Actually,
M4 is activated when M3 is active and machine M1 has produced n products without enough
rest. Hence, increasing s and n decreases the probability that M4 is working, also.

As illustrated in Fig. 6.12a, the probability that M1 is down is more influenced by n

than s. In fact, M1 fails when it has produced n products without enough rest, whatever the
number of raw materials, thus increasing or decreasing s does not affect really the probability
that M1 is down.

Given these probabilities, we compute total cost C = α × P [m1d = 1] + β × P [m3 =

1] + θ × P [m4 = 1], where P [m1d = 1], P [m3 = 1] and P [m4 = 1] are the probabilities
that M1 is down, M3 is working and M4 is working, respectively. The obtained results are
illustrated in Fig. 6.12d, where (s,n) = (35, 45) is the couple of values that minimizes cost C
such that α = 60, β = 9 and θ = 20.
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(b) Probabilities that M3 is working.
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(c) Probabilities that M4 is working.
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(d) Total cost C, where α = 60, β = 9 and
θ = 20.

Figure 6.12: Performance evaluation of the RMS.

6.6 Conclusion

In this chapter, we tackled the problem of reconfiguration in GSPNs. We have presented a
formalism that defines particular nets and rules that are exploited to transform reconfigurable
nets while preserving several interesting properties after each reconfiguration, hence these
properties are decidable whatever the number, even infinite, of obtained configurations. In
addition to this, several LTL (after reconfiguration) properties are preserved which may
decrease the effort required during formal verification activities.

Furthermore, we have presented an algorithm that computes semi-Markov chain describ-
ing stochastic behavior of a given reconfigurable GSPN.
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7.1 Introduction

Several extensions have been proposed for enriching Petri nets with reconfigurability to get
closer to real dynamic systems and to offer realistic models that reflect the inherent aspects
of these systems. However, these gains in modeling are to the expense of analysis level where
the techniques are often limited and some properties become undecidable. This last gap has
not prevented the development of this category of formalisms and considerable research is
being conducted at the analysis level.

In this chapter, we compare the proposed approaches with the current state-of-the-art.
We start showing new qualitative modeling aspects provided by RecGSPNs and D-GSPNs
formalisms. Then, a quantitative comparison shows how the proposed approaches optimize
time and memory consumption in the verification phase.

7.2 Qualitative Aspects

The net rewriting system (NRS) presented in [LO04b] is a formalism for the modeling of
dynamic changes in the structure of Petri nets. In NRSs approach, a configuration is modeled
by a PN and a reconfiguration is described as a graph rewriting rule. However, no method is
given to verify the basic properties of Petri nets. Analyzing such a rewriting system requires
computing the corresponding transition system by executing the underlying GTS and using
model-checking techniques in case that the obtained transition system is bounded.

Reconfigurable Petri nets (RPNs) [LO04a] represent a subclass of NRSs where a recon-
figuration is restricted to the flow function (i.e., there is no change in the sets of places and
transitions), thus properties of Petri nets are decidable in the RPNs. The verification process
is based on an algorithm that converts RPNs to equivalent basic Petri nets such that one
can apply the well-known verification methods of Petri nets. The equivalent basic Petri nets
are generated via the duplication of the transitions as many as the number of configura-
tions, which increases considerably the model size. As well, some transformation rules may
yield graphs having isolated transitions (their both preset and postset are empty) in order to
model the deactivation of the corresponding actions (see Fig. 3.6b). The transformation of
these isolated transitions appear in equivalent nets as superfluous transitions (see transition
t11 in Fig. 3.7) whose firing does not have any signification. Furthermore, the transformation
algorithm connects all transitions of each configuration Ci by self-loops with single place
(corresponding ti Ci) that can only contain at most one token (see Fig. 3.7). Hence, obtained
model cannot model concurrency between transitions although they are maybe concurrent
in the original RPN. Using read arcs [Vog97] may improve such situation.

INRSs approach [Li+09] is a subclass of NRSs restricting NRS reconfiguration forms to
preserve specific properties after each net reconfiguration. In INRS, three basic properties
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hold: liveness, boundedness, and reversibility (LBR). This practice yields two advantages.
First, preserving net properties allows avoiding their verification after each reconfiguration
which reduces significantly the space and time complexity of the verification process. Second,
LBR properties are still decidable even the modeled system is structurally unbounded, i.e.,
the number of obtained configurations is infinite. However, PNs considered by INRSs must
be ordinary, live, bounded and reversible which is a strong constraint. Moreover, the recon-
figuration forms are too restricted which as well restricts the applicability of this approach.

Considering time in Petri nets, reconfigurable timed net condition/event systems (R-
TNCESs) [Zha+13] and generalized R-TNCESs (GR-TNCESs) [Khl+15] are proposed to deal
with the formal modeling and verification of reconfigurable discrete event control systems.
In both former formalisms, a reconfigurable system is modeled by the union of multi timed
net condition/event systems (TNCESs) in one R-TNCES, where each TNCES represents one
system configuration. An R-TNCES (as well as a GR-TNCES) is not reconfigurable but
the reconfiguration is emulated by (i) switching from one TNCES sub-model (corresponding
to source configuration) to another one (corresponding to target configuration), and (ii)
transferring the system state of the previous configuration to the target configuration. The
verification process, based on model checking, of R-TNCES avoids the repetitive verification
of unchanged system parts after a reconfiguration. However, encompassing all configurations
in one net yields complex models that can only complicate the verification process.

The authors in [CC18] develop an emulator that encodes PNs and their transformations
in symmetric nets (SNs) [Chi+93]. Places and transitions are encoded as colors and arcs are
represented as markings of specific places in SNs. Therefore, the changes in PN structure can
be modeled by changing the marking of these specific places. However, the change in the set
of places and transitions is not allowed since they are encoded as colors (in SNs, the color set
is unchangeable). Although this formalism has the same modeling power of SNs, it allows (i)
modeling reconfigurability in a natural way, and (ii) using the existing tools in verification.
Nevertheless, the used emulator contains a high number of immediate transitions leading
to an explosion of vanishing markings which makes the verification phase based on existing
tools more complicated [CC18].

Reconfigurable SPNs (R-SPNs) [TKB17b] and GSPNs with Rewritable Topology (GSPNs-
RT) [TKB17a] extend RPNs to deal with reconfigurability in SPNs and GSPNs, respectively.
Yet, the reconfiguration remains limited to arcs (places and transitions cannot be modified).
As well, the obtained nets (via transformation towards basic SPNs or GSPNs) may not
preserve the concurrency modeled in the original reconfigurable nets.

The authors in [Tig+18] use INRS-based approach to deal with the reconfiguration of
live, bounded and reversible (LBR) GSPNs, however, the reconfiguration is too restricted
since it uses specific reconfigurations and considers only ordinary LBR GSPNs.
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Although several extensions tackle reconfigurability in GSPNs, RecGSPNs formalism dif-
fers in two main aspects: (i) more reconfiguration behaviors are allowed instead of those
proposed in [CC18, TKB17a, Tig+18], and (ii) thanks to RecGSPNs, several basic proper-
ties (e.g., boundedness, reversibility, etc.) can be preserved after reconfiguration, under some
conditions, hence these properties are decidable even if the number of obtained configurations
is infinite.

As for D-GSPNs, they allow modeling any reconfiguration form while transforming D-
GSPNs toward GSPNs is still possible when the number of obtained configurations is finite.
However, the transformation algorithm computes conventional GSPNs (i.e., do not contain
either inhibitor, read, transfer, or reset arcs [DFS98]) leading to the same shortcomings
discussed above concerning R-SPNs and GSPNs-RTs. Another modeling issue is that recon-
figuration can be only timed (i.e., immediate reconfigurations modeling immediate switchings
are not allowed). Adding immediate reconfigurations to D-GSPNs formalism brings the same
interests of adding immediate transitions to SPNs models. In fact, immediate reconfigura-
tions are not allowed in D-GSPNs formalism in order to be able to erase all tokens of place
that models an obsolete place before switching to another configuration (see proofs in Subsec-
tion 5.5). Adding immediate reconfiguration to D-GSPNs formalism requires as well adding
reset arcs to the target nets, thus obtained GSPNs become no longer conventional.

A comparison of modeling/verification features is given in Table 7.1 and Fig. 7.1.
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NRS [LO04b] 4 6 4 6 6 6 6 6

RPN [LO04a] 6 6 4 6 6 4 6 6

R-TNCES [Zha+13] 6 6 6 6 6 4 6 4

INRS [Li+09] 4 4 4 6 4 4 6 6

Evolving PN [CC18] 6 6 4 4 6 4 6 4

R-SPNs [TKB17b] 6 6 4 6 6 4 6 4

GSPNs-RT [TKB17a] 6 6 4 4 6 4 6 4

D-GSPNs 6 4 4 4 6 4 6 4

RecGSPNs 4 4 4 4 4 4 6 4

where +/-, SUS, SBS, P/T, QLV and QNT stand for adding/removing, structurally-
unbounded systems, structurally-bounded systems, places/transitions, qualitative ver-
ification, and quantitative verification, respectively.

Table 7.1: A comparison of modeling/verification features.
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Figure 7.1: Modeling versus Decidability

7.3 Quantitative Aspects

Here, we provide a quantitative comparison between our proposals and existing approaches.
In order to show the efficiency of D-GSPNs and RecGSPNs, we consider three factors, namely,
the model size, spatial complexity and computation time.

To the best of our knowledge, there is no method that allows computing quantitative prop-
erties of infinite-structure reconfigurable systems using neither SPNs nor GSPNs. Therefore,
this quantitative comparison considers only finite-structure reconfigurable systems.

First, we elaborate the required models describing a reconfigurable system based on: (i)
non-reconfigurable formalism, (ii) an approach that transforms dynamic GSPNs to GSPNs,
and (iii) a formalism that computes Markov chain while executing graph transformations,
namely, basic GSPNs, D-GSPN, and RecGSPNs, respectively. Then, we compare the size
of obtained models (i.e., transitions, places, arcs, etc.). Finally, we compute Markov chains
isomorphic to obtained models and discuss their spatial/temporal complexity.

This comparison is conducted on a reconfigurable system composed of machine M1 per-
manently active and n − 1 machines each of which denoted by Mi, i ∈ {2, . . . ,n}. Machine
Mi is activated when the number of raw materials in the buffer exceeds a threshold. Each
machine Mi is modeled by qi nodes (i.e., places and transitions).

The initial configuration containing M1 is illustrated in Fig. 7.2a, and the second config-
uration containing M1 and M2 is depicted in Fig. 7.2b.
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Figure 7.2: GSPN models of initial and second configurations.

7.3.1 Factor 1: Model size

To model reconfigurable systems, classical approaches use basic GSPNs without explicit re-
configuration (e.g., GreatSPN [Baa+09]). Indeed, the classical tools simulate the reconfig-
uration by establishing a complete model that encompasses all possible configurations. The
complete model contains a set of sub-models (SMs) each of which represents one possible
configuration. Hence, the complexity of models increases considerably. RecGSPNs approach
avoids the construction of such complex models since the reconfiguration is expressed via a
set of rules.

In a classical approach, if initial configuration C0 is modeled by a sub-model composed
of k nodes, then sub-model of second configuration C1 (composed of M1 and M2) contains
(k + q2) nodes. Hence, the sub-model of jth configuration contains (k + q2 + · · ·+ qj) nodes.
Consequently, the entire model contains (k + (k + q2) + (k + q2 + q3) + · · · + (k + Σn

i=2

qi) + Qn) nodes, where Qn is the number of nodes connecting n sub-models. Moreover, a
reconfiguration from Ci to Cj is modeled by the state migration from subnet modeling Ci to
subnet modeling Cj. This practice enlarges the model size since it duplicates original nodes
as many as they appear in each configuration.

Fig. 7.3 depicts a configuration containing two machines according to classical approach,
such that (i) places c0 and c1 are associated with C0 and C1, respectively, (ii) a token inside c0
(c1, respectively) means that the current configuration is C0 (C1, respectively), (iii) transitions
r0 and r1 model the switching from C0 to C1 and from C1 to C0, respectively, and (iv)
transitions depicted by ( , respectively) reconfigure the net state from C0 to C1 (from C1

to C0, respectively).
Based on D-GSPNs formalism, the equivalent model used to analyze this reconfigurable

system contains ((
∑nc

i=1 |TCi
| + |PCi

|) + nc + |R|) + |EM | nodes, where PCi
and TCi

are the
sets of places and transitions of configuration Ci, respectively, R is the set of rules, EM is
the set of emptying transitions, and nc is the number of configurations. Fig. 7.4 shows a
configuration containing two machines according to D-GSPNs approach.
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Figure 7.3: Model of the reconfigurable system having two machines based on classical ap-
proaches.
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In RecGSPNs, any configuration used in the analysis contains at most (k + Σn
i=2 qi)

nodes, where k is the number of nodes in the initial configuration, qi is the number of nodes
in configuration Ci, and n is the number of configurations. Fig. 7.5 depicts a comparison
between RecGSPNs versus existing approaches according to the model size of the described
reconfigurable system having n machines, for all n ∈ {2, . . . , 10}.
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Figure 7.5: Model size.

7.3.2 Factor 2: Markov chain spatial complexity

Now, we consider spatial complexity of Markov chains isomorphic to models elaborated above.
Let NS be the number of reachable states and NM be the number of states modeling

the state migration, then we have (i) in case of classical approaches, Markov chain contains
NS states, (ii) in RecGSPNs approach, it contains (NS − NM) states. It means that the
size of Markov chain in terms of states obtained by RecGSPNs approach is less than or equal
to that in existing approaches. Therefore, the spatial complexity of quantitative verification
is reduced.

In order to illustrate the advantage of RecGSPNs at this level, we compare the size of
Markov chains obtained by the three approaches on four cases of the reconfigurable system
presented previously, where the buffer contains ten spaces. In each case, various numbers of
machines are used.

Note that D-GSPNs formalism does not allow modeling immediate reconfigurations, that
is any reconfiguration is modeled as a timed transition. Thus, immediate transitions in the
original models are replaced by timed ones in order to allow firing the transitions that model
reconfiguration rules when it is necessary, which enlarges the state space. Recall that using
immediate transitions reduces the state space [Mar+94].
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As for models obtained by classical approaches, we use PIPE [DKS09] to compute the
Markov chains. The obtained results are given in Table. 7.2. In the third case where the
reconfigurable system contains four machines, PIPE cannot compute the Markov chain due
to the state explosion problem.

# of Mach. RecGSPNs D-GSPNs Classical approach
2 100 states 133 states 1963 states
3 220 states 435 states 11340 states
4 421 states 1432 states //
5 743 states 9226 states //

Table 7.2: Number of states in Markov chains obtained according to the number of machines,
where # stands for number.

7.3.3 Factor 3: Markov chain time complexity

Finally, we consider the time required to compute Markov chains discussed above. We run
experiments on Intel Core i5-8500 processor with 16 GB of memory, where Java Virtual
Machine (the tool is developed in Java) was started with a maximum size of 2 GB. We took
measurements several times to compute the (average) required computing time. Fig. 7.6
shows the required computing time of Markov chains according to different approaches.
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Figure 7.6: Time to compute Markov chain.

Changing hardware/software specifications (e.g., programming language, processor or
memory size) may change the obtained results. Yet, the gap between RecGSPNs and the
other approaches in terms of computation time will remain in favor of RecGSPNs.

In fact, for classical approaches, the temporal complexity is very high due to the state
migration (from configuration to another which adds additional states to Markov chains) and
the large size of the model (which requires extra time to be explored). As for D-GSPNs, the
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need to replace immediate transitions in the original models by timed ones increases the time
complexity as well.

Considering RecGSPNs, their temporal complexity is much lower than that in classical
approaches. Indeed, RecGSPNs do not use additional states (state migration) to emulate the
reconfigurations, since RecGSPNs approach computes Markov chains directly from executing
the graph transformations and firing enabled transitions.

Nevertheless, the gap between classical approaches and RecGSPNs in terms of computa-
tion time could be reduced by a modeling trick. In fact, state migration is modeled by firing
transitions that transfer tokens (one token at time) from a sub-model to another one. This
kind of transfer, which increases computation time of state space, can be modeled by transfer
arcs [DFS98] by which each transition transfers all tokens in a single firing step. However,
the use of transfer arcs decreases the model decidability [DFS98].

Moreover, this gap depends, as reported in [RSV04], as well on problem dynamic. Indeed,
classical approaches give better results when system dynamic is too limited, whereas for
problems having highly dynamic structures, RecGSPNs formalism is a promising approach.

Finally, we note that several properties (e.g., that involving only strongly preserved places,
reversibility, liveness, etc.) are preserved after reconfiguration based on RecGSPNs, therefore
no time is required to verify them. Hence, the temporal complexity of both qualitative and
quantitative verifications (as presented above) are decreased.

7.4 Conclusion

In this chapter, a comparison of the proposed approaches with the existing tools has been
conducted. This comparison shows the efficiency of the proposed approaches in this thesis at
modeling and verification compared with classical formalisms. We have shown new qualitative
modeling aspects provided by RecGSPNs formalism. As well, we have shown how RecGSPNs
formalism optimizes time and memory consumption in the verification phase.

Although we have carried out a comparison through a small RMS, the spatial/temporal
complexity of the verification phase based on either D-GSPNs or classical approaches was
enormous. One of the reasons for this high complexity is due to graph transformations.

In fact, model checking and behavioral analysis require the computation of a transition
system (reachability graph) in order to check a set of desired properties. To this end, they
enumerate each reachable pair of state/configuration. Reachable configurations are computed
via graph transformations that search for a match of an LHS, and eventually NACs, of each
rule in each reachable configuration (graph). This searching is called graph matching problem
[ZBV08] which is inherently more complex [RSV04], as well as, increases subsequently the
verification process complexity.
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RecGSPNs formalism based on transformations preserving some desired qualitative prop-
erties is a promising approach. Indeed, it is not required to verify a set of properties after
any RecGSPNs-based reconfiguration leading to two major advantages. First, the verification
complexity is largely reduced and some desired qualitative properties are still decidable even
if the system is structurally unbounded.
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M

odern discrete-event systems are becoming increasingly complex, structurally dy-
namic and variably interconnected. These systems are designed to be able to change

their structure and/or topology, at run-time, by adding/removing interconnections, objects,
or even subsystems, to accommodate new circumstances/requirements.

Using (non-reconfigurable) Petri nets in modeling/analyzing of reconfigurable systems is
no more sufficient. Indeed, they are unable to specify/verify, in a natural way, advanced sys-
tems having dynamic structures. Hence, several researchers have enriched PNs with dynamic
structures in order to offer suitable modeling/verification approaches of dynamic systems.

In this thesis, we have presented the main reconfigurable PNs extensions. These exten-
sions can be classified into three categories.

1. Extensions allowing modeling reconfiguration without any restriction. Yet, the ver-
ification of obtained models is based on model checking. The complexity of graph
transformations along with model checking make the verification process a hard task
even for bounded systems.

2. Approaches restricting the possible reconfigurations in such a way that the number
of obtained models are finite. Then, they transform, encode or unfold these models
into equivalent (non-reconfigurable) Petri nets. Although the PNs properties are still
decidable, the modeling power is not increased.

3. Finally, approaches applying reconfigurations that preserve desired properties. Such
practice avoids the verification of desired properties after each reconfiguration, hence
their verification process complexity is reduced. Moreover, these properties are still
decidable even if the modeled system is structurally unbounded.

Our goal in this dissertation was to introduce reconfigurability into the well-known GSPNs
formalism that remedies the shortcomings in the other formalisms. The need to relax the
constraints imposed by existing formalisms either on modeling or verification level led us to
propose our first contribution, called GSPNs with rewritable topology (GSPNs-RT). In the
latter, the sets of places and transitions are fixed, whereas the topology is dynamic. GSPNs-
RT can be transformed into basic equivalent GSPNs that will be used later on to verify the
GSPNs-RT properties using classical verification methods proposed for GSPNs.
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As a second contribution, to take full advantage of GSPNs characteristics (i.e., model-
ing/decision power, analysis methods supported by off-the-shelf tools, etc.), we have proposed
a new formalism that transforms dynamic GSPNs to basic GSPNs. This transformation al-
lows us to straightforwardly exploit the methods and techniques proposed in the literature
for GSPNs in dynamic GSPNs verification. This transformation can take place only when
the set of reachable configurations obtained by transformation rules is finite.

To consider infinite structure, we have proposed reconfigurable generalized stochastic
Petri nets (RecGSPNs). Actually, RecGSPNs offer to designers a wider range of possible
structural changes where both sides of any rule are no longer defined by their structure,
instead, they must show some behaviors allowing to use them in the reconfiguration process.
The use of RecGSPNs-based reconfiguration preserves five important properties, namely, live-
ness, boundedness, reversibility, deadlock-freedom and home state. Moreover, many proper-
ties expressed by linear time logic can be preserved after each system reconfiguration. Thus,
these properties are decidable whatever the number of obtained configurations that can be
infinite. This practice enjoys double advantages

1. Temporal and spatial complexity are reduced since these properties are verified only at
the first configuration, hence no need to compute and explore the whole set of reachable
states of all reachable configurations,

2. Often, applying transformation rules to graphs leads to structurally infinite models,
and hence properties are not decidable based on classical verification techniques. In
our approach, several properties are still decidable since applying any rule will preserve
them.

Finally, we have conducted a comparison which showed quite good characteristics of
proposed formalisms in this thesis compared with existing ones. However, several issues
remain to be investigated such as:

• Enriching the set of possible reconfiguration forms of RecGSPNs. Although the restric-
tions on reconfiguration forms in RecGSPNs are relaxed compared with either INRSs
or INRSs-GSPNs, it is useful to consider reconfiguration forms that can preserve one
property without considering the others. For instance, a designer may be interested in
preserving the boundedness of a given system, rather than preserving other properties.

• The quantitative verification of reconfigurable systems based on RecGSPNs is still
conducted in an old-fashioned manner. Indeed, it is required to compute the state
space of a given reconfigurable system for performance evaluation, which is highly
complex (yet, less complex than existing approaches). Knowing that a reconfiguration
will increase, decrease or preserve a metric, based on the properties of the corresponding
rule may avoid the computation of the state space.
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• Consider the quantitative properties of structurally unbounded systems. Although we
have considered the qualitative properties of such systems, their quantitative properties
cannot be analyzed based on RecGSPNs.

• Consider the reconfiguration in other stochastic Petri net classes that involve other
kinds of law distributions.
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Appendix A: A Prototype for RecGSPNs

A.1 Introduction

We aim at developing a tool that deals with reconfigurable generalized stochastic Petri nets.
To this end, we have developed a basic tool1 that has as inputs a GSPN that models an initial
configuration and a set of rules each of which models a possible change in the structure of the
reconfigurable net. Then, our tool applies these rules to a reconfigurable net and computes
its isomorphic Markov chain. Once the latter is completely constructed, the tool computes
the quantitative properties such as: throughput of a transition, mean number of tokens in a
place, the mean sojourn time at a marking, etc.

A.2 Description

Here, we give a basic description of developed classes, their important fields and methods.

A.2.1 Place

Place class allows to create an instance of a place.
Fields

public String IP; //This is a place label.

public int MP; //This is a place marking.

Methods

public Place(String p,int m);

This method is used to create an instance of a place, where p is a label and m is a marking.

public boolean equals(Place p);

This method is used to compare two places, where p is the place to be compared with. It
returns true if two places are having same label and marking.

A.2.2 Transition

Transition class allows to create an instance of a transition.
Fields

public String IT;

//This is a transition label.

public Transition.Type type;

1https://kahloul2006.wixsite.com/laid-kahloul/reconfigurable-gspns
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//This is a transition type: timed or immediate.

public double rate;

//This is a transition rate/weight.

Methods

public Transition(String l, Transition.Type t, double r);

This method is used to create an instance of a transition, where l is a transition label, t is
a transition type: timed or immediate, and r is a transition rate/weight.

public boolean equals(Transition t);

This method is used to compare two transitions, where t is a transition to be compared with.
This method returns true if two transitions have same label, rate and type.

A.2.3 Rule

Rule class allows to create an instance of a rule.
Fields

public GSPN L;

//This is a left-hand side.

public GSPN R;

//This is a right-hand side.

public ArrayList<GSPN> NAC;

//This is a list of negative application conditions.

public String[] IL;

//This is an input interface of left-hand side.

public String[] OL;

//This is an output interface of left-hand side.

public String[] IR;

//This is an input interface of right-hand side.

public String[] OR;

//This is an output interface of right-hand side.

public double weight;

//This is a weight application of rule.

public String ID;

//This is an identificator of rule.

public Place[] activatingMarking;

//This is an activator marking that controls rule application.
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Methods

public Rule(String ID, GSPN L, GSPN R, ArrayList<GSPN> NAC, String[] IL, String[]

OL, String[] IR, String[] OR, double weight, Place[] AM);

This method is used to create an instance of a rule, where ID is an identification of rule, L is
a left-hand side, R is a right-hand side, NAC is a list of negative application conditions, IL is
an input interface of left-hand side, OL is an output interface of left-hand side, IR is an input
interface of right-hand side, OR is an output interface of right-hand side, weight is a weight
application of rule, and AM is an activator marking that controls rule application.

public boolean isInIL(String n);

This method is used to check whether a node belongs to input nodes of left-hand side of a
rule, where n is a label node. It returns true if node n belongs to input nodes of left-hand
side of the rule.

public boolean isInOL(String n);

This method is used to check whether a node belongs to output nodes of left-hand side of a
rule, where n is a label node. It returns true if node n belongs to output nodes of left-hand
side of the rule. Analogously to methods isInIR and isInOR with respect to right-hand side.

A.2.4 GSPN

GSPN class allows to (i) create an instance of a GSPN from a PNML file describing its struc-
ture and (ii) compute its reachability graph. As well, it allows to compute its quantitative
properties, such as: mean number of tokens, token probability density, throughput, etc.
Methods

public GSPN(Place[] setOfP, Transition[] setOfT, int[][] pr, int[][] po);

This method is used to create an instance of a GSPN, where setOfP is a set of places, setOfT
is a set of transitions, pr is presets of transitions and po is postsets of transitions.

public GSPN(String xFile);

This method is used to create an instance of a GSPN, where xFile is the path of PNML file
containing the description of a GSPN created by a third-party.

public int getNumberOfTangibleStates();

This method is used to get the number of tangible states in reachability graph.
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public int getNumberOfStates();

This method is used to get the number of states in reachability graph.

public boolean isFireable(String t, Place[] M);

This method is used to check whether a transition t is fireable at a marking M.

public void fire(String t);

This method is used to fire a transition t at the current marking of a GSPN.

public Place[] getMarkingAfterFiring(String t, Place[] M);

This method is used to compute the obtained marking after firing a transition t at marking
M.

public JSONArray getReachabilityGraph();

This method is used to get a reachability graph as a JSON object.

public .JSONArray getMarkingsDistProba();

This method is used to get a marking distribution probability.

public JSONArray getMeanNumberOfTokens();

This method is used to get mean number of tokens.

public JSONArray getTokenProbabilityDensity();

This method is used to get token probability density.

public JSONArray getProbabilitiesFiringTransition();

This method is used to get firing transition probability density.

public JSONArray getThroughputOfTransitions();

This method is used to get throughput of transitions.

public org.json.simple.JSONArray getMeanSojournTime();

This method is used to get mean sojourn time.
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A.2.5 RecGSPN

RecGSPN class allows to create an instance of a reconfigurable generalized stochastic Petri
net describing its dynamic structure. As well, it allows to apply rules to reconfigurable nets
and compute their quantitative properties, such as: mean number of tokens, token probability
density, throughput, etc.
Methods

public RecGSPN(GSPN G0, ArrayList<Rule> setOfRules);

This method is used to create an instance of RecGSPN, where G0 is an initial configuration,
and setOfRules is a set of rules.

public boolean isApplicable(Rule r, GSPN G, Place[] M);

This method is used to check whether a rule r is applicable to a GSPN G at a marking M.

public GSPN getGSPNAfterApplayingRule(Rule r, GSPN G, Place[] M);

This method is used to compute obtained GSPN after applying r to GSPN G at marking M.

public int getNumberOfTangibleStates();

This method is used to get the number of tangible states in the reachability graph.

public JSONArray getReachabilityGraph();

This method is used to get reachability graph.

public JSONArray getMarkingsDistProba();

This method is used to get marking distribution probability.

public JSONArray getMeanNumberOfTokens();

This method is used to get mean number of tokens.

public String[][] getMeanNumberOfTokensAsMatrix();

This method is used to get mean number of tokens as matrix.

public JSONArray getTokenProbabilityDensity();

This method is used to get token probability density.

public String[][] getTokenProbabilityDensityAsMatrix();
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This method is used to get token probability density as matrix.

public JSONArray getProbabilitiesFiringTransition();

This method is used to get firing transition probability density.

public String[][] getTransitionsStat();

This method is used to get firing transition probability density and throughputs as matrix.

public JSONArray getThroughputOfTransitions();

This method is used to get throughput of transitions.

public JSONArray getMeanSojournTime();

This method is used to get mean sojourn time.

A.3 Demonstration

In this section, we demonstrate how to model/verify (quantitatively) a reconfigurable net.
First, the user can use a third-party tool to create a GSPN that models the initial config-
uration of the reconfigurable net. Note that the GSPN must be described by the standard
format PNML as used by PIPE tool [DKS09]. As well, left- and right-hand sides of each
rule are GSPNs that can be created by a third-party.

Let us consider a reconfigurable system composed of machine M1 permanently active and
machine M2 which is activated when the number of raw materials in the buffer exceeds five.
The initial configuration containing M1 is highlighted in Fig. A.1. The interpretation of
places and transitions is given as follows.

1. as (resp. rm): Its marking represents the number of free spaces (resp. raw materials)
in the central buffer.

2. m1 (resp. m′1): A token in m1 (resp. m′1) means that machine M1 has begun (resp.
has finished) processing.

3. m1f : A token in m1f means that machine M1 is idle.

4. ra: Raw material is loaded in the central buffer.

5. ld1 (resp. uld1): M1 loads an item (resp. unloads a product).

6. m1p: Machine M1 is processing.
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Figure A.1: Initial configuration.

Once the number of raw materials in the buffer exceeds five, machine M2 is activated
and the system switches to its second configuration. This reconfiguration is modeled by rule
r1, where its left- and right-hand sides are shown in Figs. A.2 and A.3, its input nodes are
({ld1}, {ld1, ld2}), and its output nodes are ({uld1}, {uld1, uld2}).

Figure A.2: Left-hand side of rule r1 and right-hand side of rule r2.

Figure A.3: Right-hand side of rule r1 and left-hand side of rule r2.
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Consider the following code.

1 import java.util.ArrayList;

2 public class Main {

3 public static void main(String[] args) {

4 GSPN G= new GSPN("C_0.xml"),

5 L1=new GSPN("L_1.xml"),

6 R1=new GSPN("R_1.xml"),

7 L2=new GSPN("L_2.xml"),

8 R2=new GSPN("R_2.xml");

9

10 String[]IL1={"ld1"};

11 String[]OL1={"uld1"};

12 String[]IR1={"ld1","ld2"};

13 String[]OR1={"uld1","uld2"};

14 Place[] am1=new Place[5];

15 am1[0]=new Place("as",0);

16 am1[1]=new Place("rm",6);

17 am1[2]=new Place("m1",0);

18 am1[3]=new Place("m1'",0);

19 am1[4]=new Place("m1f",1);

20 ArrayList<GSPN> NAC1=new ArrayList();

21 NAC2.add(L2);

22

23 Rule r1 = new Rule("r1", L1, R1, NAC1, IL1, OL1, IR1, OR1, 2, am1);

24

25 String[]IL2={"ld1","ld2"};

26 String[]OL2={"uld1","uld2"};

27 String[]IR2={"ld1"};

28 String[]OR2={"uld1"};

29 Place[] am2=new Place[8];

30 am2[0]=new Place("as",10);

31 am2[1]=new Place("rm",0);

32 am2[2]=new Place("m1",0);

33 am2[3]=new Place("m1'",0);

34 am2[4]=new Place("m1f",1);

35 am2[5]=new Place("m2",0);

36 am2[6]=new Place("m2'",0);

37 am2[7]=new Place("m2f",1);

38 Rule r2 = new Rule("r2", L2, R2, null, IL2, OL2, IR2, OR2, 2, am2);
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39

40 ArrayList<Rule> lr= new ArrayList<>();

41 lr.add(r1);

42 lr.add(r2);

43

44 RecGSPN rgspn = new RecGSPN(G,lr);

45 System.out.println(rgspn.getNumberOfGSPNs());

46 System.out.println(rgspn.getNumberOfStates());

47 System.out.println(rgspn.getMeanNumberOfTokens());

48 System.out.println(rgspn.getProbabilitiesFiringTransition());

49 System.out.println(rgspn.getThroughputOfTransitions());

50 }

51

52 }

L1 (left-hand side) and R1 (right-hand side) of r1 are instantiated at Lines (5) and (6),
respectively. Input and output nodes of L1 are defined as arrays of String at Lines (10) and
(11). As well, input and output nodes of R1 are defined at Lines (12) and (13). Afore-
mentioned, rule r1 is applicable to initial configuration when the number of raw materials
in the buffer exceeds five. The activator marking of rule r1 is defined as array of Place at
Lines (14)–(19). The instruction at Line (16) states that the marking of place rm (its mark-
ing modeling the number of raw materials in the buffer) is six. Finally, rule r1 is instantiated
at Line (23), where its set of negative application conditions contains L2 (Fig. A.3). Indeed,
r1 is not applicable if machine M2 is already activated.

Once the buffer is empty, the system switches to its initial configuration. This switching
is modeled by rule r2, where its left- and right-hand sides are depicted in Figs. A.3 and A.2,
respectively.

L2 (left-hand side) and R2 (right-hand side) of r2 are instantiated at Lines (7) and (8),
respectively. Input and output nodes of L2 are defined as arrays of String at Lines (25) and
(26). As well, input and output nodes of R2 are defined at Lines (27) and (28). Rule r2 is
applicable to second configuration when the buffer is empty. The activator marking of rule
r2 is defined as array of Place at Lines (29)–(37). The instruction at Line (30) states that
the marking of place as (its marking modeling the number of available spaces in the buffer)
is ten. Finally, rule r2 is instantiated at Line (38), where its set of negative application
conditions is empty.

Rule r1 and r2 are inserted into list lr at Lines (41) and (42) to create a set of rules.
The reconfigurable net is instantiated at Line (44), where its set of rules is lr and its

initial configuration is G instantiated at Line (4).

135



Appendix A: A Prototype for RecGSPNs

Finally, we can compute different parameters, such as the number of obtained GSPNs after
applying the set of rules to the initial configuration, the number of states in the isomorphic
Markov chain, the mean number of tokens at each place, etc.

The result of execution of the above code is the following, where the weights/rates of all
transitions are equal to one.

2//The number of obtained GSPNs.

96//The number of states in the isomorphic Markov chain

//The mean number of tokens at each place

[{"values":8.163158068311944,"id":"as"},

{"values":0.8025364509473432,"id":"m1"},

{"values":0.0,"id":"m1'"},

{"values":0.19746354905265673,"id":"m1f"},

{"values":1.8368419316880582,"id":"rm"},

{"values":0.1929087837708813,"id":"m2"},

{"values":0.0,"id":"m2'"},

{"values":0.012781191714198437,"id":"m2f"}]

//Firing transition probability

[{"values":0.37306141543396915,"id":"m1p"},

{"values":0.5602739943546192,"id":"ra"},

{"values":0.06666459021141184,"id":"m2p"}]

//Transition throughput

[{"values":0.8025364509473432,"id":"m1p"},

{"values":0.9954452347188375,"id":"ra"},

{"values":0.1929087837708813,"id":"m2p"}]

A.4 Conclusion

In this appendix, we have presented a tool that implements several classes used to model/ver-
ify reconfigurability in GSPNs. This tool allows to define a set of rules each of which has left-
and right-hand sides. These rules are applied to an initial configuration of a reconfigurable
net, and therefor an isomorphic Markov chain is computed. Once the latter is completely
constructed, we can compute several quantitative properties.

In future version of this tool, we are interested to develop an integrated tool that allows
to users to model GSPNs, left- and right-hand sides of rules and plot charts of different
quantitative properties.
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