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Abstract. We consider a stochastic control problem in the case where the set of control
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1. Introduction

The backward stochastic differential equation (BSDE) related to the stochastic maximum
principle of Pontryagin was introduced in 1965 and 1972 by Kushner [4, 5] and by J. M
Bismut [2] for the case when the generator f is linear with respect to the variables Y and Z. A
stochastic maximum principle of BSDE systems was studied by El-Karoui et al [6], where the
linear case is solved and some applications in finance are treated. Dokuchaev and Zhou [10]
established necessary as well as sufficient optimality conditions for nonlinear controlled BSDE
systems, where the control domain is not necessary convex. Bahlali et al [11], proved the
existence of optimal strict control systems governed by linear BSDEs. The control domain and
the cost functional are assumed convex and they established in this paper necessary as well as
sufficient conditions of optimality, satisfied by an optimal control, in the form of Pontryagin
stochastic maximum principle. The proof of this result is based on the convex optimization
principle.

Peng et al developed in [8] and [9] a new type of PDE which are formulated through a
classical BSDE in which the terminal values and the generators are allowed to be general
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2 A. CHALA

functions of Brownian paths. For more information on this subject, the reader is directed to
[8].

In this work, we study the maximum principle in a non-Markovian framework, using the
approach developed by Bensoussan [1], to get the necessary conditions for optimality of
control. Hence we assume that the control domain is convex. Apparently, an argument of
convex perturbation can be used to derive the maximum principle.

Our objective here is to study a stochastic control problem where the system is governed by
a nonlinear BSDE of non-Markovian type. We shall establish necessary and sufficient
optimality conditions, in the form of a stochastic maximum principle, for this kind of systems.

The non-Markovians ystem under consideration is governed by a BSDE of the type

dYt
v t  fs,Bs

t ,Yt
v s,Zt

v s,vsdt − Zt
v sdBs,

Yt
v T  ,

where f is given map, B  BtT≥t≥0 is a standard Brownian motion, defined on a probability
space ,F,P, and with values respectively in R.The control variable v  vt is a
Ft-adapted process with values in a set U of Rn. We denote by U the set of all admissible
controls. The criterion to be minimized, over the set U of controls, has the form

Jv  E gBtt,Yt
v t  

t

T
hs,Bs

t ,Yt
v s,Zt

v s,vsds ,

where g and h are given functions, and ,Yt
v ,Zt

v  is the trajectory of the system controlled by
v.

The paper is organized as follows. In section 2 we introduce some preliminary background
and definitions about our new kind of BSDEs of a non-Markovian type. In Section 3, we
formulate the problem and give various assumptions used throughout the paper. Section 4 is
devoted to some preliminary results, which will be used in the sequel. In Section 5, we derive
necessary as well as sufficient optimality conditions in the form of a stochastic maximum
principle.

2. Definitions and Assumptions

The following notations are mainly from Dupire [3]. Let T  0 be fixed. For each
t ∈ 0,T, we denote by t the set of càdlàg Rd −valued functions on 0, t.

For each  ∈ T the value of  at time s ∈ 0,T is denoted by s. Thus   s0≤s≤T is
a càdlàg process on 0,T and its value at time s is s. The path of  up to time t is denoted
by t, i.e., t  s0≤s≤t ∈ t. We use the notation    t∈0,T

t, and sometimes also
specifically write
t  s0≤s≤t  s0≤s≤t,t,

to indicate the terminal position t of t, which often plays a special role in this framework.
For each  ∈  and x ∈ Rd we denote t

x  s0≤s≤t,t  x, which is also an element in
t.
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Our interest here is in a function f of path, i.e., f :   R. This function f  ft, t ∈ 
can also be regarded as a family of real-valued function:
ft  ft,s0≤s≤t  ft,s0≤s≤t,t : t ∈ t, t ∈ 0,T.

We also use the notation ft
x : ft,s0≤s≤t,t  x for t ∈ t, x ∈ Rd, t ∈ 0,T.

Remark 2.1. It is very important to conceive ft
x as a function of t, ft,s0≤s≤t,t and x.

A typical case is ft  ft,s0≤s≤t  ft,t−,t  x : t ∈ t, t ∈ 0,T, where
t−  lim

s↑t
s.

We now introduce a distance on . Let 〈.  and |. | denote respectively the inner product and
norm in Rd. Moreover, for each 0 ≤ t ≤ t ≤ T and t,t ∈ , let
‖t‖ :

r∈0,t
sup |r|, and

dt,t : max
r∈0,t
sup |t − t |,

r∈0,t
sup |t − t |  |t − t| .

It is obvious then that t is a Banach space with respect to ‖. ‖, and since  is not a linear
space, d is not a norm.

Definition 2.1. (Continuity) A function f :  → R is said  −continuous at t ∈ , if for any
  0 there exists   0, such that for each t ∈  satisfying dt,t  , we have
|ft − ft|  . f is said to be  −continuous if it is  −continuous at each t ∈ .

3. Formulation of the Problem

Let   C0,T,Rd and P the standard Wiener measure defined on ,B, and
consider the canonical process Bt  Bt,w  wt, t ∈ 0,T,w ∈ . Then Bt0≤t≤T is
d −dimensional Brownian motion defined on the probability space ,B,P. Let N be the
collection of all P −null set in . For any 0 ≤ t ≤ r ≤ T, Fr

t denotes the completion of
 Bs − Bt; t ≤ s ≤ r , i.e., Fr

t   Bs − Bt; t ≤ s ≤ r ∨ N . We also write Fr

for Fr
0 and Ft for FT

t .
For any 0 ≤ t ≤ T, we denote by L2Ft the set of all square integrable Ft −measurable

random variables, M2t,T;Rd the space of all Fs
t − adapted, Rd −valued processes

Xss∈t,T with E 
0

T
|Xs|2dt   , and S2t,T;Rd the space of all Fs

t − adapted,

Rd −valued continuous processes Xss∈t,T with E sup
s∈t,T

|Xs|2  .

Consider then a deterministic function f : 0,T    m  md → m, which will be, in
the following, the generator of our BSDEs. For this f, we will make the following assumptions:
 ft,y, z is a given continuous function on   m  md.
  There exists constants C ≥ 0 and q ≥ 0 such that: for t,t ∈ ,y,y ∈ m, z, z ∈ md,
|ft,y, z − ft,y, z| ≤ C1  ‖t‖q  ‖t‖

q‖t  t‖|y − y|  |z − z|.
The following result on Backward stochastic differential equation  BSDEs is now well
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known, and for its proof the reader is referred to Pardoux-Peng [7].

Lemma 3.1. Let f satisfy the above conditions, then for each  ∈ L2,FT,P;Rn, the BSDE

dYt    
t

T
fs,Bs,Ys,Zsdt − 

t

T
ZsdBs, 0 ≤ t ≤ T,

has a unique adapted solutionYt,Zt0≤t≤T ∈ S20,T;Rd  M20,T;Rd.

Let T be a positive real number, U be a nonempty set of Rd and B  Btt∈0,T is standard
Brownian motion, defined on a complete probability space ,F,P and with values in Rd.
Let L2,FT,P;Rn denote the space of all FT-measurable, one-valued, random variable
satisfying E||2  .

Definition 3.1. An admissible control v is Ft −adapted process with values in U such that
E sup

0≤t≤T
|vt |2  , where U is the set of all admissible controls.

Given  ∈ L2,FT,P;Rn and for any v ∈ U, we consider the following controlled BSDE
non-Markovian system

dYt
v t  −fs,Bs

t ,Yt
v s,Zt

v s,vsdt  Zt
v sdBs,

Yt
v T  ,

1

where f : 0,T    n  nd  U → , and Bs
tu : tI0,tu  tt  Bu − Bt

It,Tu.
The functional cost to be minimized, is defined from U into R by

Jv  E gBtt,Yt
v t  

t

T
hs,Bs

t ,Yt
v s,Zt

v s,vsds , 2

where g :   n → , h : 0,T    n  nd  U → , t ∈ 0,T,x ∈ , ∈ ,v ∈ U.
The control problem is to minimize the functional J over U. If u ∈ U is an optimal solution,
that is
Ju  infv∈U Jv. 3

Now let us assume, as A1, that
∙ f is Ft-progressively measurable and satisfies bw, t, 0, 0,0 ∈ M20,T;Rn;
∙ f, and h are continuous and continuously differentiable with respect to y, z,v;
∙ All the derivatives of f and h are bounded by c  0.
Under the above assumptions, for every v ∈ U, equation 1 has an unique strong solution
Yt

v ,Zt
v  ∈ S20,T;Rd M20,T;Rd (see Pardoux-Peng [7]) and the functional cost J is

well defined from U into .
We remark that assumptions (A1) imply in particular that there exist constants c  0, such that
for any y1, z1,v1, y2, z2,v2 ∈ n  nd  U, we have
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|ft,y1, z1,v1 − ft,y2, z2,v2|2 ≤ c |y1 − y2 |2  ‖z1 − z2‖2  |v1 − v2 |2 ,

|ht,y1, z1,v1 − ht,y2, z2,v2|2 ≤ c |y1 − y2 |2  ‖z1 − z2‖2  |v1 − v2 |2 ,

|gt,y1 − gt,y2|2 ≤ c|y1 − y2 |2.

4. Preliminary Results

Since the set U is convex, the classical way to derive necessary optimality conditions is to
use the convex perturbation method. More precisely, let u be an optimal control and let
Yt

u ,Zt
u  be the corresponding trajectory. Then, for each s ∈ t,T, we can define a perturbed

control by
u  ut  vs − us,

where   0 is sufficiently small and v is an arbitrary element of U. Denote then by Yt
 ,Zt

 
the solution of 1 controlled by u.

Since u is optimal, the variational inequality will be derived from the fact that
0 ≤ Ju − Ju.

Towards this end, we need the following lemmata.

Lemma 4.1.[9] Let s ∈ M20,T;Rn,s ∈ M2t,T;Rn, be such that

Ytt  0  
t

T
sds − 

t

T
sdBs, t ∈ 0,T.

Then

|Ytt|
2  

t

T
|s|2  |0 |2  2 

t

T
〈Yts,sds

− 2 
t

T
〈Yts,sdBs,

E|Ytt|
2  E 

t

T
|s|2 ≤ E|0 |2  2E 

t

T
〈Ytt,sds.

Lemma 4.2. Under the assumptions A1, there holds

→0
lim E

t≤s≤T
sup |Yt

 s − Yt
u s|2  0, 4

→0
lim E 

t

T
‖Zt

 s − Zt
u s‖2ds  0. 5

Proof. Applying the generalized Itô formula (Lemma 4.1) to |Yt
 s − Yt

u s|2, we get

E|Yt
 s − Yt

u s|2  E 
t

T
‖Zt

 s − Zt
u s‖2ds

≤ 2E 
t

T
〈Yt

 s − Yt
u s,

fs,Bs
t ,Yt

 s,Zt
 s,us − fs,Bs

t ,Yt
u s,Zt

u s,us ds. 6
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Then apply Young’s formula, 2ab ≤ 2c
1 − 

a2  1 − 
2c b2, to the term in the right hand

side to obtain

E|Yt
 s − Yt

u s|2  E 
t

T
‖Zt

 s − Zt
u s‖2ds

≤ 2c
1− E  t

T
|Yt
 s − Yt

u s|2ds

 1−
2c E 

t

T
|fs,Bs

t ,Yt
 s,Zt

 s,us − fs,Bs
t ,Yt

u s,Zt
u s,us|2ds.

By the Lipschitz conditions for f , we have

E 
t

T
|fs,Bs

t ,Yt
 s,Zt

 s,us − fs,Bs
t ,Yt

u s,Zt
u s,us|2ds

≤ 3E 
t

T
|fs,Bs

t ,Yt
 s,Zt

 s,us − fs,Bs
t ,Yt

u s,Zt
 s,us|2ds

3E 
t

T
|fs,Bs

t ,Yt
u s,Zt

 s,us − fs,Bs
t ,Yt

u s,Zt
u s,us|2ds

3E 
t

T
|fs,Bs

t ,Yt
u s,Zt

u s,us − fs,Bs
t ,Yt

u s,Zt
u s,us|2ds.

The use of the definition of u leads to

E 
t

T
|fs,Bs

t ,Yt
 s,Zt

 s,us − fs,Bs
t ,Yt

u s,Zt
u s,us|2ds

≤ 3ME 
t

T
|Yt
 s − Yt

u s|2ds  3ME 
t

T
|Zt
 s − Zt

u s|2ds

32ME 
t

T
|vs − us|2ds.

Then we can rewrite 6 as follows

E|Yt
 t − Yt

u t|2  E 
t

T
‖Zt

 s − Zt
u s‖2ds

≤ 2c
1−  3M 1−

2c E 
t

T
|Yt
 s − Yt

u s|2ds

 3M 1−
2c E 

t

T
|Zt
 s − Zt

u s|2ds

 31−
2c 2M E 

t

T
|vs − us|2ds,

where

M  31−
c

−1
. 7

From the above inequality, we derive the following two inequalities

E|Yt
 t − Yt

u t|2 ≤ c2E  t
T
|Yt
 s − Yt

u s|2ds  c32, 8

E 
t

T
‖Zt

 s − Zt
u s‖2ds ≤ 2c2E  t

T
|Yt
 s − Yt

u s|2ds  2c32. 9

Consideration of 8,Gronwall’s lemma and the Bukholder–Davis–Gundy inequality yields
4. Finally, 5 is deduced from 9 and 4. 
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Lemma 4.3. Let ỹ, z̃ be the solution of the following linear equation (called variational
equation):
d ỹs  −fys,Bs

t ,Yt
u s,Zt

u s,usỹs

 fzs,Bs
t ,Yt

u s,Zt
u s,usz̃s ds

− fvs,Bs
t ,Yt

u s,Zt
u s,usvs − usds  z̃sdBs,

ỹT  0, 10
then

→0
lim E

t≤s≤T
sup

Yt
 s − Yt

u s
 − ys

2

 0, 11

→0
lim E 

t

T Zt
 s − Zt

u s
 − zs

2

ds  0. 12

Proof. For the sake of simplicity, let us use the notation

Y
s 

Yt
 s − Yt

u s
 − ys,


Z
s 

Zt
 s − Zt

u s
 − zs,

Γs  s,Yt
u s  


Y
s  ys ,Zt

u s  

Z
s  zs ,

us  vs − us,
and write

d

Y
s  − 

0

1
fyΓs


Y
sd  

0

1
fzΓs


Z
sd  s ds



Z
sdBs,

ỹT  0,

where

t
  fys,Bs

t ,Yt
u s,Zt

u s,us − 
0

1 fyΓsd ys

 fzs,Bs
t ,Yt

u s,Zt
u s,us − 

0

1
fzΓsd zs

 fvs,Bs
t ,Yt

u s,Zt
u s,us − 

0

1 fvΓsd

 vs − us. 13
By applying the generalized Itô formula to


Yt
 2, we get
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E

Y
s 2

 E 
t

T 
Z
s 2ds

≤ 2E 
t

T 
Y
s  

0

1
fyΓs


Y
sd  

0

1
fzΓs


Z
sd  s ds,

and by using Young’s formula in the term in the right hand side, for every 1  0, we have

E

Yt
 2

 E 
t

T 
Zs
 2ds

≤ 1
1
E 

t

T 
Y
s 2ds

1E  t
T 

0

1
fyΓs


Y
sd  

0

1
fzΓs


Z
sd  s

2
ds.

According to A1, fy, fz are bounded by c  0, and this allows for

E

Y
s 2

 E 
t

T 
Z
s 2ds

≤ 1
1

 3c1 E 
t

T 
Y
s 2ds  3c1E  t

T 
Z
s 2 ds

3c1E  t
T
|s

 |2ds.

A further choice of 1  1
6c in the previous inequality reduces it to

E

Y
s 2

 1
2 E  t

T 
Z
s 2ds ≤ C1E  t

T 
Ys
 2

ds  C2E  t
T
|s

 |2ds.

From this result we deduce the following two inequalities

E

Y
s 2 ≤ C1E  t

T 
Ys
 2

ds  C2E  t
T
|s

 |2ds, 14

E 
t

T 
Z
s 2ds ≤ 2C1E  t

T 
Ys
 2

ds  2C2E  t
T
|s

 |2ds. 15

Now, since fy, fz and bv are continuous and bounded, then by using the Cauchy-Schwartz
inequality, we may show that

→0
lim E 

t

T
|s

 |2ds  0. 16

This relation is obtained by applying Gronwall’s lemma and letting  go to 0 in 13. Finally,
11 and 12 are deduced from 14, 15 and 16. 

Since u is an optimal control, then
1
 Jus  vs − Jus ≥ 0. 17

And equipped with 17 and Lemma 4.3, we can state the lemma that follows.

Lemma 4.4. Let u be an optimal control minimizing the cost J over U, and assume the validity
of A1, then the following variational inequality holds.



Condition for Optimality of a Backward Non-Markovian System 9

0 ≤ EgyBtt,Yt
u tỹt 

 E 
t

T hys,Bs
t ,Yt

u s,Zt
u s,usysds

 E 
t

T
hzs,Bs

t ,Yt
u s,Zt

u s,uszsds

 E 
t

T hvs,Bs
t ,Yt

u s,Zt
u s,usvs − usds. 18

Proof. Starting from (17), since u is optimal, we have
0 ≤ 1

 EgB
tt,Yt

 t − gBtt,Yt
u t

 1
 E t

T
hs,Bs

t ,Yt
 s,Zt

 s,us − hs,Bs
t ,Yt

u s,Zt
u s,usds

≤ E 
0

1
gy Yt

u t  

Y
t  yt


Y
t  yt d

 E 
t

T 
0

1
fyΓs


Y
s  ys dds

 E 
t

T 
0

1
fzΓs


Y
s  ys dds

 E 
t

T 
0

1
fvΓsvs − usdds  t.

then
0 ≤ 1

 EgB
tt,Yt

 t − gBtt,Yt
u t

 1
 E t

T
hs,Bs

t ,Yt
 s,Zt

 s,us

−hs,Bs
t ,Yt

u s,Zt
u s,us

≤ E 
0

1
gy Yt

u t  

Y
t  yt ytd

 E 
t

T 
0

1
fyΓsysdds  E 

t

T 
0

1
fzΓsysdds

 E 
t

T 
0

1
fvΓsvs − usdds  t, 19

where t is given by

t  E 
0

1
gy Yt

u t  

Y
t  yt


Y
t d

 E 
t

T 
0

1
fyΓs


Y
s dds

 E 
t

T 
0

1
fzΓs


Y
s dds.

Apply then the Cauchy Schwartz inequality, the fact that gy, fy and fz are bounded, and use
12 with 13 to show that

→0
lim t  0. Finally, by letting  go to 0 in 19, the proof is

completed. 
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5. Adjoint Equation and Maximum Principle

In this section, we derive the variational inequality from 18. For this end, we introduce
the following adjoint equation

−dps  fys,Bs
t ,Yt

u s,Zt
u s,usps

 hys,Bs
t ,Yt

u s,Zt
u s,usds

 fzs,Bs
t ,Yt

u s,Zt
u s,usps

 hzs,Bs
t ,Yt

u s,Zt
u s,usdBs,

pt  gyBtt,Yt
u t, t ≤ s ≤ T,

20

with
p ∈ LF2 0,T;n.

By applying Itô’s formula to psys and invoking the expectation, we have

Eptyt  EpTyT − E 
t

T hys,Bs
t ,Yt

u s,Zt
u s,usysds

− E 
t

T hzs,Bs
t ,Yt

u s,Zt
u s,uszsds

 E 
t

T
psfvs,Bs

t ,Yt
u s,Zt

u s,usvs − usds. 21

We remark that YT  0, and pt  gyBtt,Yt
u t. Then 21 becomes

EgyBtt,Yt
u tyt

 −E 
t

T hys,Bs
t ,Yt

u s,Zt
u s,usysds

− E 
t

T hzs,Bs
t ,Yt

u s,Zt
u s,uszsds

 E 
t

T
psfvs,Bs

t ,Yt
u s,Zt

u s,usvs − usds.

Finally, we can rewrite 18 as

0 ≤ E 
t

T
Hvs,Bs

t ,Yt
u s,Zt

u s,ps,usvs − usds, 22

where the Hamiltonian H is defined from 0,T    n Mmd  n  U into  by
Hs,Bs

t ,Yt
u s,Zt

u s,ps,us

 fs,Bs
t ,Yt

u s,Zt
u s,usps

 hs,Bs
t ,Yt

u s,Zt
u s,us. 23

From the above variational inequality, we can straightforwardly derive the necessary
conditions for optimality.
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Theorem 5.1. (The necessary condition of optimality) Let u be an optimal control minimizing
the functional J over U and Yt

u s,Zt
u s denotes corresponding optimal trajectory. Then

there are two unique adapted processes p ∈ LF2 0,T;n, which are respectively solutions of
the stochastic differential equation 20 such that a.e., a.s., we have

0 ≤ E 
t

T Hvs,Bs
t ,Yt

u s,Zt
u s,ps,usvs − usds.

Proof. The prove flows directly from 22. 

5.1. Sufficient optimality conditions

In this subsection, we study when the necessary optimality conditions 22 become
sufficient. For any v ∈ U, we denote by Yt

v s,Zt
v s the solution of equation 1 controlled

by v, to state the following result.

Theorem 5.2. (Sufficient optimality conditions) Assume that the functions g,y, and
Yt

v s,Zt
v s  Hs,,Yt

v s,Zt
v s,ps,vs are convex, and for any v ∈ U, yvT  0

is an m −dimensional Ft −measurable random variable such that E||2  . Then, u is an
optimal solution of the control problem 1, 2, 3, if it satisfies 22.

Proof. Let u2 be an arbitrary element of U ( candidate to be optimal). For any u1 ∈ U, we have
Ju1 − Ju2

 EgBtt,Yt
u1t − gBtt,Yt

u2t

 E 
t

T
hs,Bs

t ,Yt
u1s,Zt

u1s,u1s − hs,Bs
t ,Yt

u2s,Zt
u2s,u2sds.

Since g,y is convex with respect to y, then
gBtt,Yt

u1t − gBtt,Yt
u2t ≥ gBtt,Yt

u2tYt
u1t − Yt

u2t.
Thus
Ju1 − Ju2

 EgBtt,Yt
u2tYt

u1t − Yt
u2t

 E 
t

T
hs,Bs

t ,Yt
u1s,Zt

u1s,u1s − hs,Bs
t ,Yt

u2s,Zt
u2s,u2sds.

It follows from 20 that pt  gyBtt,Yt
u t. Then we have

Ju1 − Ju2

≥ EptYt
u1t − Yt

u2t

 E 
t

T
hs,Bs

t ,Yt
u1s,Zt

u1s,u1s − hs,Bs
t ,Yt

u2s,Zt
u2s,u2sds.

Applying Itô’s formula to psYt
u1s − Yt

u2s leads to
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EptYt
u1t − Yt

u2t
 EpTYt

u1T − Yt
u2T

−E 
t

T Hys,Bs
t ,Yt

u s,Zt
u s,ps,u2sYt

u1t − Yt
u2tdt

−E 
t

T Hzs,Bs
t ,Yt

u s,Zt
u s,ps,u2sZt

u1t − Zt
u2tdt

E 
t

T psfs,Bs
t ,Yt

u1s,Zt
u1s,u1s − fs,Bs

t ,Yt
u2s,Zt

u2s,u2sds.

Then

Ju1 − Ju2 ≥ E 0
T
Hs,Bs

t ,Yt
u s,Zt

u s,ps,u1s

−Hs,Bs
t ,Yt

u s,Zt
u s,ps,u2sds

−E 
t

T Hys,Bs
t ,Yt

u s,Zt
u s,ps,u2sYt

u1s − Yt
u2sds

−E 
t

T Hzs,Bs
t ,Yt

u s,Zt
u s,ps,u2sZt

u1s − Zt
u2sds. 24

Since H is convex in Yts,Zts, then by using the Clarke generalized gradient of H
evaluated at Yt

u1s,Zt
u1s,u and the necessary optimality conditions we arrive at

Hs,Bs
t ,Yt

u s,Zt
u s,ps,u1s

−Hs,Bs
t ,Yt

u s,Zt
u s,ps,u2sds

≥ Hys,Bs
t ,Yt

u s,Zt
u s,ps,u2sYt

u1s − Yt
u2sds

Hzs,Bs
t ,Yt

u s,Zt
u s,ps,u2sZt

u1s − Zt
u2sds,

or equivalently

0 ≤ E 
0

T
Hs,Bs

t ,Yt
u s,Zt

u s,ps,u1s

− Hs,Bs
t ,Yt

u s,Zt
u s,ps,u2s ds

− E 
t

T Hys,Bs
t ,Yt

u s,Zt
u s,ps,u2sYt

u1s − Yt
u2sds

− E 
t

T Hzs,Bs
t ,Yt

u s,Zt
u s,ps,u2sZt

u1s − Zt
u2sds.

Then from 24, we get Ju1 − Ju2 ≥ 0. Here the proof completes. 
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