
 

Order number: ................... 

Serial number : ……………….. 

THESIS 

In Candidacy for the Degree of  

DOCTOR 3rd CYCLE  IN COMPUTER SCIENCE  

Option : Artificial Intelligence 

Title 

 Formal Modelling and Verification of Security 

Policies in Cloud Computing 

By  

 

Board of Examiners 

Chairman:            Pr. Okba KAZAR, Professor, Biskra university.    

Supervisor:           Dr. Laid KAHLOUL, M.C.A, Biskra university. 

Co- Supervisor:   Dr. Saber BENHARZALLAH, M.C.A, Batna 2 university. 

Examinator :        Dr. Hammadi BENNOUI, M.C. A, Biskra university. 

Examinator :        Dr. Khaled REZEG, M.C. A, Biskra university. 

Examinator :        Pr. Allaoua CHAOUI, Professor, Constantine 2 university. 

 
Biskra, Algeria 

24.02.2019 

Hasiba BEN ATTIA 

PEOPLE’S DEMOCRATIC REPUBLIC OF ALGERIA  

MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC RESEARCH  

UNIVERSITY  Mohamed Khider of Biskra 

  الشعبية الجزائرية الديمقراطية  الجمهورية

 وزارة التعلـــيم العالـــي و البــحث العلمـــي
 جامعة محمد خيضر بسكرة  

Faculty of Exact Sciences, Science of Nature and Life. 
Computer science department 



 



 

 

 

 الملخص
 

 

إشكالية نمذجة السياسات الأمنية في الحوسبة السحابية و  تعالج الأطروحة

المشكل المعالج في البحث المطروح هو نمذجة  ،بشكل أدق. لتحقق من صحتهاا

 .سياسات التحكم في الوصول والتحقق من صحتها باستخدام شبكات بتري الملونة

 

 أهماحد  (RBAC)يعتبر نموذج التحكم في الوصول الذي يعتمد على الدور 

ساسها قدرة هذا أهمية هذه الأ. مةظنلأا معظمالمعتمدة في  الأمنيةالسياسات 

  ،ومع ذلك. النموذج على تسهيل تسير المستخدمين و تقليص تعقيد هذه المهمة

RBAC المهمة الأحداثلا يعالج بعض  الأساسي. RBAC مني  الز(TRBAC ) أهمهو احد 

  TRBACتتمحور مساهمتنا الأولى في نمذجة نموذج , لذلك. RBAC امتدادات

و التحقق من النماذج  HTCPN))باستعمال شبكات بتري ملونة هرمية و زمنية 

تسهل  HTCPNالخاصية الزمنبة لل .CPN-toolالناتجة وتحليلها باستخدام وسيلة 

الجانب الهرمي  أما. والتحقق منها TRBAC القيود الزمنية المعرفة في  نمذجة

 .  TRBACفيسهل عملية التحكم في النموذج رغم تعقيد عملية وصف سياسة ال

 

نموذج التحكم بالوصول  أنرغم . من بعض السلبيات RBACيعاني  ،أخرىمن جهة 

ايجابيات  إلىه يفتقر ان إلا ،عالج هذه السلبيات (ABAC)القائم على السمات 

RBAC للتحكم قي  اجديد انموذج الأطروحةتقدم  ،لهذا كمساهمة ثانية. نفسها

السحايبة من حيث  الحوسبة طبيعةمع  FRABACيتلاءم . FRABACالوصول باسم 

هو دمج  FRABAC. وكثرة التفاصيل والتفرعات ،قابلية الامتداد ،المرونة

قمنا  ،ايجابيات النموذج المقترح هارظلإ. ABACو  RBACوامتداد للنموذجين 

مع النماذج  FRABACفي هذه الدراسة تمت مقارنة . دراسة تجريبية جراءإب

النموذج  أن أظهرتنتائج الدراسة . الموجودة بالاعتماد على مقاييس معينة

 .واسعة النطاقفي الشبكات  من النماذج السابقة وفاعلية أكثر ملاءمةالمقترح 

المقدمة تحقق رسمي  الأطروحةو كمساهمة ثالثة نعرض في  ،سبق كل ما إلى إضافة

 HTCPNجية الرسمية للتحقق تم استخدام هفي المن. المقترح للنموذجو كامل 

 .لتحليل النتائج CPN-toolوسيلة و  TRBACسياسة  لوصف

 

 

 الرسمية، النمذجة الأمن، سياسة الوصول، في التحكم: الكلمات المفتاحية

  RBAC،ABAC ، .FRABAC ،السحابية الحوسبة الرسمي، التحليل



Summary

This thesis tackles the problem of formal modelling and verification of security poli-
cies in cloud computing. Indeed, our research focuses on the modelling and the verifica-
tion of access control policies using Coloured Petri Nets (CPNs).

Due to its ability to reduce complexity, Role Based Access Control (RBAC) model
was one of the predominant models for access control and the specification of security
policies. In its original version, RBAC does not consider several important events, thus,
TRBAC (Temporal RBAC) was proposed as an RBAC extension. This thesis provides
three basic contributions. In the first contribution, HTCPNs (Hierarchical Timed Col-
ored Petri Nets) formalism is used to model the TRBAC (Temporal Role Based Access
Control) policy, and then the CPN-tool is exploited to analyse the obtained models. In-
deed, the timed aspect in HTCPN allows us to deal with temporal constraints in TRBAC.
The hierarchical aspect of HTCPN makes the TRBAC model “manageable”, despite the
complexity of the policy.

RBAC as well as TRBAC suffer from several drawbacks in large scale networks as
the case of cloud environment. Although Attribute Based Access Control (ABAC) model
handles some RBAC drawbacks, ABAC misses RBAC advantages. Hence, as a second
contribution, we propose an access control model FRABAC (Fine-Grained Role Attribute
Based Access Control) that provides scalability, flexibility, and fine granularity in the
cloud environment. FRABAC combines and extends, basically, two models RBAC and
ABAC. In order to demonstrate the advantages of the new proposed model, an empirical
study is realised. In this study, the new proposed model is compared versus three existing
models, using specific metrics. The results demonstrate that the new proposed model is
more suitable than existing ones. As a third contribution, we provide a formal specifica-
tion/verification of FRABAC using HTCPN formalism and CPN-tool.

Key words: Access Control, Security Policy, RBAC, ABCA, FRABAC, Formal Modelling,
Formal Analysing, Petri nets, Cloud Computing.



Résumé

Cette thèse aborde le problème de la modélisation/vérification formelles des politiques
de sécurité dans le cloud computing. En effet, nos recherches portent sur la modélisation
et la vérification des politiques de contrôle d’accès à l’aide de réseaux de Petri colorés
(RdPCs). En raison de sa capacité à réduire la complexité, le modèle de contrôle d’accès
basé sur le rôle (RBAC) était l’un des modèles prédominants pour le contrôle d’accès et
la spécification de politiques de sécurité. Dans sa version originale, RBAC ne prend pas
en compte plusieurs événements importants; par conséquent, TRBAC (Temporal RBAC)
a été proposé comme une extension de RBAC.

Cette thèse fournit trois contributions de base. Dans la première contribution, le for-
malisme HTCPNs (Réseaux de Petri Colorés Temporisés et Hiérarchiques) est utilisé pour
modéliser les politiques TRBAC (Timed RBAC), puis l’outil CPN est exploité pour anal-
yser les modèles obtenus. En effet, l’aspect temporisé dans HTCPN nous permet de gérer
les contraintes temporelles dans TRBAC, et l’aspect hiérarchique du formalisme rend le
modèle TRBAC “gérable”, malgré la complexité de la politique.

Les systèmes RBAC et TRBAC présentent plusieurs inconvénients dans les réseaux
à grande échelle, comme dans le cas de could computing. Bien que le modèle de con-
trôle d’accès basé sur les attributs (ABAC) gère certains inconvénients du RBAC, celui-ci
manque les avantages du RBAC. Par consequence et comme une deuxième contribution,
nous proposons un nouveau modèle de contrôle d’accès dit FRABAC (Contrôle d’accès
basé sur les attributs et les rôles) qui offre une évolutivité, une flexibilité et une gran-
ularité fine dans l’environnement cloud. FRABAC combine et étend les deux modèles
RBAC et ABAC. Afin de démontrer les avantages du nouveau modèle proposé, une étude
empirique est réalisée. Dans cette étude, le nouveau modèle proposé est comparé à trois
autres modèles existants, en utilisant des métriques spécifiques. Les résultats démontrent
que le nouveau modèle FRABAC est plus approprié que les modèles existants. Enfin
et comme une troisième contribution, nous avons réalisé une spécification/vérification
formelle de FRABAC à l’aide du formalisme HTCPN et de l’outil CPN-tool.

Mots clés: Contrôle d’accès, Politique de Sécurité, RBAC, ABAC, FRABAC, Modéli-
sation Formelle, Vérification Formelle, Réseaux de Petri, Cloud Computing.



Dedication

To my beloved mother, FATIMA ZOHRA
To the greatest man in my life, my father MOKHTAR

To my brothers, HAMZA, YOUNES, AHMED and MOHAMED
To my biological sisters, WAFA, HOURIA and OUARDA

To my soul sisters, SIHAM, SARA, SAMAH, KANZA, YAMINA, SOUMIA,
IMAN,SIHAM, and AMINA

To the memory of my paternal grandparents, AISHA and AHMED
To my maternal grandparents, SADIA and SAID

To my aunts and uncles
To my cousins, HANAN and her siblings, JOHINA and her siblings, AFAF and her

siblings, NESRINE and her siblings
To all my sweet neighbours in pavilion 10

To all my teachers form the primary school to the university
To my beloved teachers, madam Zohra HMIDI and madam Amira MOHAMMEDI

To all my colleague in LINFI laboratory



Acknowledgements

First and foremost, heartfelt gratitude and praises go to the Almighty Allah who guided
me through and through.

I would like to extend my sincere thanks and appreciations to my honorable supervisor
Dr. Laid KAHLOUL. He has painstakingly corrected and recorrected draft after draft.
Moreover, This work could not have reached fruition without his unflagging assistance
and his participation. I would never thank him enough for the huge contribution that

made this work what it is now. Once again, I would like to express my deep gratitude to
my supervisor because I owe thanks to him.

Many thanks go to Dr. Saber BENHARZALLAH for his advice.
Most warm gratitude goes to Prof. Okba KAZAR, head of the Intelligent Computer

Science Laboratory.
My sincere appreciation needs to be addressed to the honourable board of examiners,

Prof. Hammadi BENNOUI, Dr. Khaled REZEG and Prof. Allaoua CHAOUI, whose
insightful remarks during the viva will certainly enrich this work.

Last but not least, I wish to thank Prof. Med Chaouki Babahenini, head of the
Computer Science department.



Contents

General Introduction 10

I Security, Security Policies and Formal Methods (Coloured Petri Nets) 14
I.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
I.2 Security Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
I.3 Security Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
I.4 History of access control policies . . . . . . . . . . . . . . . . . . . . . . 16
I.5 Access Control policies . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

I.5.1 Mandatory Access Control (MAC) . . . . . . . . . . . . . . . . . 18
I.5.2 Discretionary Access Control Policies (DAC) . . . . . . . . . . . 19
I.5.3 Role Based Access Control (RBAC) . . . . . . . . . . . . . . . . 20
I.5.4 Attribute-Based Access Control (ABAC) . . . . . . . . . . . . . 24

I.6 Formal Analysing and Verification methods . . . . . . . . . . . . . . . . 24
I.6.1 Hierarchical Timed Coloured Petri Nets . . . . . . . . . . . . . . 25

I.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

II First Contribution: Using Hierarchical Timed Coloured Petri Nets
in the Formal Study of TRBAC Security Policies 31
II.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
II.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
II.3 Modelling and Analysis of TRBAC policy using Hierarchical Timed-CPN 35

II.3.1 The Illustrative example: The Algerian justice information sys-
tem policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

II.3.2 The global TRBAC model . . . . . . . . . . . . . . . . . . . . . 40
II.3.3 Modelling of role-enabling and role-disabling events . . . . . . . 41
II.3.4 Modelling of role-“assignment/deassignment” events and

role-“activation/deactivation” events . . . . . . . . . . . . . . . . 44
II.3.5 Formalisation and verification of properties . . . . . . . . . . . . 50

II.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

III Second Contribution: Fine-grained Role-Attribute based Access Control model
(FRABAC ): A New Hybrid Access Control Model 59
III.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
III.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
III.3 A new hybrid access control model . . . . . . . . . . . . . . . . . . . . . 61

III.3.1 Requirements for a suitable access control model . . . . . . . . . 61
III.3.2 Principle of the proposed model . . . . . . . . . . . . . . . . . . 62
III.3.3 Collaborative Cloud Services case in the proposed model . . . . . 63
III.3.4 The security policy under the proposed model . . . . . . . . . . . 65

6



CONTENTS CONTENTS

III.4 Evaluation of the new proposed model: empirical comparison with exist-
ing models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
III.4.1 Metrics used in the empirical comparison approach . . . . . . . . 70
III.4.2 The illustrative example . . . . . . . . . . . . . . . . . . . . . . 70
III.4.3 RBAC configuration evaluation . . . . . . . . . . . . . . . . . . 71
III.4.4 ABAC configuration evaluation . . . . . . . . . . . . . . . . . . 74
III.4.5 AERBAC configuration evaluation . . . . . . . . . . . . . . . . . 76
III.4.6 Evaluation of the new proposed model . . . . . . . . . . . . . . . 77

III.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

IV Third Contribution: Using Hierarchical Coloured Petri Nets
in the Formal Study of FRABAC Security Policies 80
IV.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
IV.2 Specification of the request evaluation process . . . . . . . . . . . . . . . 81

IV.2.1 Required types for the HCPN model . . . . . . . . . . . . . . . . 82
IV.2.2 Modelling the identification process . . . . . . . . . . . . . . . . 83
IV.2.3 Modelling the evaluation process . . . . . . . . . . . . . . . . . 84

IV.3 Formal verification using CPN-tool of the HCPN models . . . . . . . . . 89
IV.3.1 Formalization and verification of properties on the request identi-

fication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
IV.3.2 Formalization and verification of properties on the request evalu-

ation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
IV.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

General Conclusion 93

7



List of Figures

I.1 A simple example of a CPN: before firing the transition . . . . . . . . . . 29
I.2 A simple example of a CPN: after firing the transition . . . . . . . . . . . 30

II.1 An abstract view of the multi-domain tree of the Justice Information sys-
tem in Algeria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

II.2 HTCPN abstract model for TRBAC . . . . . . . . . . . . . . . . . . . . 40
II.3 Hierarchical Timed-CPN model for enabling/disabling roles . . . . . . . 42
II.4 Hierarchical Timed CPN model for triggers . . . . . . . . . . . . . . . . 44
II.5 HTCPN model for role-assignment event . . . . . . . . . . . . . . . . . 48
II.6 HTCPN model for role-activation event . . . . . . . . . . . . . . . . . . 50
II.7 marking of P3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
II.8 marking of P4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
II.9 marking of P1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
II.10 marking of P2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
II.11 marking of P5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
II.12 Simulation report step 63 . . . . . . . . . . . . . . . . . . . . . . . . . . 54
II.13 Simulation report step 76 . . . . . . . . . . . . . . . . . . . . . . . . . . 55
II.14 Simulation report step 122 . . . . . . . . . . . . . . . . . . . . . . . . . 55
II.15 Simulation report step 19 . . . . . . . . . . . . . . . . . . . . . . . . . . 55
II.16 Simulation report step 119 . . . . . . . . . . . . . . . . . . . . . . . . . 55

III.1 Principle of the proposed model . . . . . . . . . . . . . . . . . . . . . . 63
III.2 Collaborative cloud services example. . . . . . . . . . . . . . . . . . . . 64
III.3 Mechanism of access decision when the user requires access to a specific

resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
III.4 Mechanism of the access decision for multiple resources sharing the same

attributes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
III.5 Experimental Results in RBAC . . . . . . . . . . . . . . . . . . . . . . . 72
III.6 Experimental Results in ABAC . . . . . . . . . . . . . . . . . . . . . . . 75
III.7 Experimental Results in AERBAC . . . . . . . . . . . . . . . . . . . . . 77
III.8 Experimental Results In The Proposed Model . . . . . . . . . . . . . . . 79

IV.1 Hierarchical CPN model for the identification process . . . . . . . . . . . 83
IV.2 Hierarchical CPN model for Get precondition step . . . . . . . . . . . . . 84
IV.3 Hierarchical CPN model for Take_Pre phase . . . . . . . . . . . . . . . . 85
IV.4 Hierarchical CPN model for Sample_Format phase . . . . . . . . . . . . 86
IV.5 Hierarchical CPN model for Attributes_Eval sub-model . . . . . . . . . . 87
IV.6 Hierarchical CPN model for Error sub-model . . . . . . . . . . . . . . . 88
IV.7 Hierarchical CPN model for Decision step . . . . . . . . . . . . . . . . . 89

8



List of Tables

II.1 TRBAC security analysis related works. . . . . . . . . . . . . . . . . . . 36
II.2 Roles, tasks, and permissions . . . . . . . . . . . . . . . . . . . . . . . . 39
II.3 Mapping from users to roles . . . . . . . . . . . . . . . . . . . . . . . . 40
II.4 An overview table with all important places and their meaning and use. . 41

III.1 The input parameters values for the evaluation of RBAC . . . . . . . . . 73
III.2 AERBAC configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

9



INTRODUCTION

10



General Introduction

Context and aims
The notion of security is omnipresent in the daily concerns of individuals. It affects

every aspect of life as the safety of individuals, national security, social security, aviation
safety, road safety, food security, etc. Security is a state in which risks and conditions that
can cause physical, psychological or material harm are controlled in a manner that pre-
serves the health and well-being of individuals and the community. It is an indispensable
resource in everyday life that enables the individual and the community to realize their
aspirations.

Thereby, security means allowing things the system owner does want, while stopping
things which he doesn’t want from happening. However, in computer science, and in
every information system, the data security (protection) and privacy are considered as
one of the critical challenges. Currently, people are getting used to having access to
whatever information that they need, at any time, from anywhere and by using any device
on a wide range of computing devices. In addition to this, new technologies as cloud
computing and internet of things (IoT) has expanded the range of applications. Moreover,
with open/distributed systems and the growth of networks, computer security threats are
becoming more widespread and increasingly complex. Thus, the system administrator
has to use a robust security policy which is used for preventing unauthorized access, use,
disclosure, disruption, modification, inspection, recording or destruction of information.
Indeed, these facts are the cause which makes the administration of security in large-scale
networks remains a major challenge.

Consequently, a variety of access control models have been developed to address dif-
ferent aspects of security problems. Because of its ability to reduce complexity, the Role
Based Access Control (RBAC) [1] model is one of the predominant models for specify-
ing security policies and access control. RBAC model has been unified and standardized
under the ANSI/INCITS standard in [2]. This standardization has motivated most infor-
mation technology providers to integrate RBAC into their product lines. This model is
implemented in various cloud services like Microsoft Azure and OpenStack and it has
been widely adopted by various information systems (such as Windows/Active Directory
RBAC, HP-UX, AIX, Oracle).

However, in its basic version, RBAC does not model explicitly the different states of
a role. The basic RBAC does not consider various events that are typical of an RBAC
system. To overcome these limits, some extensions of RBAC have been proposed. One
of the most used extension is TRBAC (Temporal RBAC) [3], proposed to deal with tem-
poral aspects. TRBAC defines necessary temporal constraints which capture the dynamic
behaviour of systems that use RBAC, and allow the analysis of these constraints;

First Problematic
Hence, RBAC is the most common security policy for access control. A security

policy is a set of rules that define the behaviour of a secure system. The system using
such a policy must satisfy this set of rules in all its possible states. A state where one
of the rules is not satisfied is considered as an inconsistent state. An inconsistent state
may appear either because the policy itself is contradictory (i.e., containing conflicts) or
it is incomplete. When the RBAC is used to define the policy, the set of security rules
are specified using the basic concepts, i.e., Users, Roles, Permissions and Sessions. On
the other hand, the consistency of the policy can be specified in terms of constraints

11



General Introduction

which are classified into three categories, (i) cardinality constraints, (ii) Separation of
duties (SoD) constraints, (iii) and Inheritance constraint. In other extensions of RBAC,
new concepts are introduced and therefore other constraints appear. For example, in the
case of TRBAC, we consider the time constraints on the activation/deactivation of roles.
In a formal specification of the RBAC policy, one must specify all the constraints that
the system must satisfy to guarantee its security; Then the formal verification consists
in proving that these constraints are satisfied by the behaviour of the system in all its
states (No inconsistency). Thus, formal modelling/analysis approach of TRBAC policies
is needed to prove its consistency within a system.

The proposed solution to deal with the first problematic
As a formal tool, Petri Nets [4] are well suitable to describe discrete processes and

to analyse the system concurrency and synchronisation. A Petri Net has a graphical rep-
resentation and a rigorous semantics. These characteristics make Petri nets a good for-
malism to specify and to analyse the access control policies. Coloured Petri Nets (CPNs)
[5] represent an extension of Petri Nets; CPNs are more suitable to describe complex and
typed data. Timed CPNs (TCPNs) extends CPNs with a set of time stamps. Hierarchi-
cal CPNs and Hierarchical Timed CPNs (HTCPNs) are extensions for CPN and TCPN,
where the structure of the model can be organized hierarchically.

The use of formal methods allows us to prove that the designed policy is consistent.
For that reason, we present a formal modelling/analysis approach of TRBAC policies.
This approach uses Hierarchical Timed Coloured Petri Nets (HTCPN) formalism to model
the TRBAC policy, and the CPN-tool [6] to analyse the generated models. The timed
aspect, in HTCPN, facilitates the consideration of temporal constraints, introduced with
TRBAC. The hierarchical aspect of HTCPNs makes the model “manageable”, despite
the complexity of TRBAC policy specification. In the HTCPNs model, we define the
events that can occur in the system and their preconditions and post-conditions. These
preconditions and post-conditions specify the TRBAC constraints that should be satisfied.
After the specification by using the Hierarchical Timed CPNs formalism, the CPN-tool
will be used to analyse the policies and to verify specific properties

Second Problematic: new challenges with Cloud
Although RBAC and TRBAC are predominant models, they do not incorporate envi-

ronment attributes (contextual information), thus they are not suitable for systems involv-
ing frequently changing attributes (as the case of Cloud environments). To resolve these
disadvantages, Attribute-Based Access Control (ABAC) [7] [8] was proposed. ABAC in-
troduces the concept of the attribute, so that, an ABAC system is composed of three sets
of entities, (i) the set of users, (ii) the set of resources, (iii) and the environment. Each
of these three entities has specific attributes. The permissions of users under ABAC de-
pend on their attributes. Indeed, even the ABAC was proposed to facilitate the security
management, proposed solutions by ABAC can be as complicated as that of RBAC in
some cases and so that ABAC does not benefit from the role’s characteristic. In ABAC,
role names are still associated with users, but they are no more considered as collections
of permissions. Both models RBAC and ABAC have their specific features and they can
complement each other. The idea to merge RBAC and ABAC in one model has become
an important research topic, in order to combine their advantages. However, the proposed

12



General Introduction

solutions for merging both models are still insufficient.

The proposed solution to deal with the second problematic
In this thesis, we propose a new hybrid, flexible, scalable and fine-grained model

(FRABAC)[9, 10] that combines the advantages of both models: RBAC and ABAC. The
new proposed model overcomes the shortcomings of both models RBAC and ABAC (i.e.,
combinatorial explosion in rules and roles) when the security policy becomes compli-
cated. Besides avoiding the combinatorial explosion, the new proposed model provides a
Role Permission Agreement (APA) to handle the inter organizational access decision in
collaborative cloud services cases. To illustrate these advantages, an empirical method
is applied to compare the new proposed model versus three existing models: RBAC,
ABAC, and the hybrid model Attribute Enhanced RBAC (AERBAC) [11]. This empirical
comparison is based on four metrics that are inspired from the limitations of RBAC and
ABAC.

On the other hand, the consistency and the correctness of the FRABAC policy is anal-
ysed through a formal modelling/analysis approach [12]. This formal approach uses Hi-
erarchical Coloured Petri Nets (HCPNs) to model the policy and the CPN-tools to analyse
the generated models.

Thesis structure
This thesis organized as follows:

• Chapter 1 introduces basic definitions of security, access control policies, and the
types of access control policies. In the same chapter, we present the informal/formal
definition and some necessary concepts of the Hierarchical Timed CPNs. More-
over, we discuss the choice of HTCPNs as a formal method to prove access control
policies consistency.

• Chapter 2 details the first problematic and our proposed solution.

• Chapter 3 details the second problematic and our proposed solution.

• Chapter 4 presents a formal approach using HCPNs to prove the consistency of the
proposed model in the chapter 3.

The thesis is concluded with a general conclusion which summarises the work, discuss
its contributions and prospects future works.

13



Chapter I

Security, Security Policies and Formal
Methods (Coloured Petri Nets)

14



Chapter I Security Policies and Formal Methods

I.1 Introduction
In computer science, and in every information system, the data security (protection)

and privacy are considered as one of the critical challenges and has become an important
research topic. Access control is a security technique of a comprehensive computer se-
curity system that minimizes the information security risks. However, the complexity of
access control policies makes the assurance of their consistency and correctness a chal-
lenging problem. Moreover, security analysis is performed during the development of an
access control policy. The use of formal methods has proved their efficiency to ensure
such analysis, in access control policies. As a formal method, Petri Nets are well suitable
to prove the consistency and the correctness of access control policies.

Hence, what is a security policy? What are its objectives? What is an access control
and how it responses with the security objectives? Why Petri Nets are well suitable to
describe and to analyse an access control policies within a system? This chapter answers
all of these questions in sections I.2, I.3, I.4, I.5 and I.6 respectively. Finally, the section
I.7 gives a brief deduction from what this chapter presents.

I.2 Security Definition
The ITSEC [13] (Information Technology Security Evaluation Criteria ) glossary

defines security as: “the combination of confidentiality, the prevention of unauthorized
disclosure of information, integrity, the prevention of the unauthorized amendment or
deletion of information, and availability, the prevention of the unauthorized withholding
of information”. Hence, Confidentiality, integrity and availability (CIA triad) are consid-
ered the three most crucial components of security and privacy. Moreover, CIA triad are
the categories of information security risks and they are defined as follows.

• Confidentiality: this category means that only authorized users to access informa-
tion will access them (keep information private).

• Integrity: this category means that the information is not made modifiable in an
unauthorized manner and is protecting from being impropriety altered by unautho-
rized users.

• Availability: when the information is needed, it should be available to use.

I.3 Security Policy
Every single system has security needs and objectives. Hence, the security policy

within a system must correspond with the description of those needs. According to [14]
the system security policy specifies the set of laws, rules and practices that regulate how
sensitive information and other resources are managed, protected and distributed within
a specific system. This last definition means that every single security policy within a
system defines two elements which are:

• Security Objectives: i.e. CIA properties expected of the system.

• Security Rules: rules that are applied to activities which can modify the system
security state, in order to ensure that the security objectives are respected.

15



Chapter I Security Policies and Formal Methods

A secure system requires the establishment of a secure access management process.
This last requires the establishment of Identification, Authentication, and Authorization
(access control) Policies. Where:

• Identification: in the information system, the process that allows the user to iden-
tify or introduce himself (enters his identity (username, Card_Number)), it named
the Identification process.

• Authentication: in the information security system, if the user wants to log in then
he must prove that he is whom he says he is. This process is called “Authentication
process”. Most systems use a static password as the first factor in the authentication
process. Different types of authentication methods are used as a second factor (PIN-
code; magnetic stripe cards, smart cards, certificates with a digital signature and
biometric factors as voice, retina, fingerprints, etc.)

• Authorization:when a user proves his authenticity to the system (successful au-
thentication) then the process of authorization occurs based on his identity. Autho-
rization process constrains what users (person or programs executing on behalf of
the persons) can do directly or what they are allowed to do (his privileges or per-
missions). Hence, authorization process controls the user permissions. This access
control is based on the following three principals:

1. Need to know principal – the user will be granted access to resources that are
necessary to fulfil his tasks and responsibilities.

2. Least privilege principal – to protect the objects from an undesired action, the
user will be provided with the minimum privileges that are required to perform
his job.

3. Separation of Duty principal – is used to formulate multi-person control poli-
cies, requiring that two or more different people be responsible for the com-
pletion of a task or a set of related tasks [15]. This guarantees that no user has
the ability to perform a fraudulent action and then cover up that action.

An authorization (access control) policy may include identification and authentication
policies. The search of this thesis focuses on the access control policies, their history,
their types and the mechanism of some access control policies. Hence, the next section
introduces the history of access control policies.

I.4 History of access control policies
Computer security began to progress rapidly in the early of 1970s [16] when Lampson

[17] proposed an abstract formal model of access control policy which is called Access
Control Matrix (ACM). The policy defines who can access what. The matrix abstracts
the state relevant to access control. The columns represent entities to which access is
to be controlled (each column corresponds to a resource or object that needs to be pro-
tected within the system) and rows represent entities that access current objects (each row
corresponds to a user or subject or group within the system). The entry for a particular
subject-object pair determines the access right (read, write, delete) that the subject is per-
mitted to exercise on the object. According to [18], the Access Control Matrix does not

16



Chapter I Security Policies and Formal Methods

define the granularity of protection mechanisms. Due to this last, ACM can be used as a
model of the static access permissions, in any type of access control system. The contents
of the access matrix reflect the current state of the privileges of protection in the system.
Hence, the ACM must be changed if there is a new privilege has been granted to a certain
subject or in case of revoke privilege that existed before. Therefore, the authors of [19]
put a set of rules (commands) to update the access matrix. These commands allow rights
to pass from one user to another user and allow users to create or delete an object. The
work of [20] proposed a formal ACM model and specified the set of commands. However,
the system cannot control the passage of rights. This means that after a chain of rights
delegation, the system will not guarantee that a user will not receive unauthorized access.
Indeed, the system will not guarantee the least privilege principle. For example, there are
three users in a system (Ahmed, Sam and Amir) and one resource (file ah.txt). Ahmed
who is the owner of file ah.txt decides to give the permission read-only to Sam. Although
Amir cannot access this file, Sam can recopy the content of ah.txt in sam.txt and gives
to Amir the privilege to read it. In this case, Amir can read the content of file sam.txt.
Consequently, he can read the content of the file ah.txt. According to [20] and as a re-
sult of the previous scenario, the safety problem for protection systems is an undecidable
problem.

The concept of the matrix is a static concept. Indeed, implementing an access matrix
using table or two-dimensional array is not practical and in general, it leads to using a
large size of an array. In fact, adding a new object is an adding of entries for every subject
in the system. Indeed, adding a new subject is an adding of entries for every object in the
system. Moreover, it will be difficult to take advantages of special groupings, such as an
object that can access by all subjects. To deal with the issues, two common approaches
were used for implementing the access matrix, which are:

• Access Control List (ACL): list for each object. This list consists of access rights
(permissions) that are assigned to each subject for that object. Each Object list
corresponds with a column of the matrix without taken subjects that have no access
rights to the object.

• Capability lists (CL): list for each subject. This list consists of subject privileges
over all the objects. Each subject list corresponds with the rows of the matrix with-
out taken the objects which this subject has no rights to access them.

Even although ACM is the simplest abstraction mechanism to describe precisely a
protection state within a system, it has several shortcomings and weaknesses as follows:

1. It is difficult to provide Need to know, Least Privilege and Separation of Duty prin-
cipals without associating access rights with a subject’s credentials when perform-
ing an operation.

2. Access rights in ACM cannot be related to content (contextual information).

3. It is difficult to determine all the subject’s access rights in ACL based systems. In
fact, this needs to check the ACL of every object within the system.

4. It is difficult to determine all the allowed users to access a specific object in Capa-
bility lists based systems. In fact, this needs to check the CL of every subject within
the system.

Several access control policies or strategies are proposed. Indeed, several models are
proposed in each policy. Hence, the next section introduces these strategies briefly.

17



Chapter I Security Policies and Formal Methods

I.5 Access Control policies
To specify how accesses are controlled and how access decisions are determined, dif-

ferent policies have emerged.

I.5.1 Mandatory Access Control (MAC)
Mandatory access control (MAC) is an access control strategy that its access criteria

are defined by the system administrator and an individual subject cannot alter those access
criteria. The original definition of MAC was introduced in the TCSEC [21] as “a means
of restricting access to objects based on the sensitivity (as represented by a label) of
the information contained in the objects and the formal authorization (i.e., clearance) of
subjects to access information of such sensitivity”. Hence, MAC works by assigning a
classification label to every single object within the system. Moreover, the administrator
assigns a similar classification to every single subject within the system; this classification
is named clearance level. According to the user’s clearance level, his access to objects is
determined. MAC policies are appropriate for multilevel secure military applications.
The following elements present some MAC policies.

I.5.1.1 Multi-level security policy

According to [22], there was in the military a need for multiple levels of security on
a single computer. To describe this need [ware] discussed the policies in the Depart-
ment of Defense (DoD). These last put objects or documents at the corresponding level
of sensitivity. A level of sensitivity is determined from different levels of classification
(Unclassified< Confidential< Secret< Top Secret), to represent the danger that can be con-
stituted if the file’s information is disclosed. The access to an object is granted if: (i) the
user clearance (privilege reflects the trust given to him) is on the same level of the object
classification; and (ii) this object is required to perform the task of this user (need to know
principle). This policy is named a Multi-level security policy. To formalize access control
rules of this policy Bell and LaPadula in 1973 proposed a state machine model [23].

I.5.1.2 Bell-LaPadula security model

According to [23], the system consists of:

1. A set S: represents the set of subjects.

2. A set O: represents the set of objects.

3. A set A: represents the set of permissions (reading and writing).

4. A set I: represents the set of classification (access classes).

At a given time, the state of a system is expressed by a set of three components which
are:

1. The set b: represents the set of all current rights that a subject has it to access
an object. A current access right represented by a triple (s, o, a) to mean that the
subject s has the access a on the object o, in a system status.

18



Chapter I Security Policies and Formal Methods

2. The function λ : S ∪O→ I: the function is applied to subjects and objects in order
to return their own classifications.

3. The access matrix M : is formed of i rows and j columns. Each cell Mij contains
all the access modes that the subject Si can apply them on the object Oj .

The model aims to ensure the confidentiality and it is characterized by “no read up,
no write down” phrase. It is based on the following three security properties that prevent
any leakage of information:

1. The Simple Security Property: it is not permitted to subject at a certain security
level to read an object at a higher security level (no read-up).

∀ s ∈ S, o ∈ O : (s, o, read) ∈ b λ (s) >= λ (o)

This property protects the confidentiality of those more secure objects.

2. The ∗ “Star or Confinement” Property: it is not permitted to writing in an object
at a security level from an untrusted subject at a higher sensitivity level of it (no
write-down).

∀ s ∈ S, o ∈ O : (s, o, write) ∈ b λ (o) >= λ (s).

This property prevents the copies of a high-level object into a low-level object.

3. The Discretionary Security Property – the system specifies the permissions of ac-
cess by using an access matrix. However, if according to this matrix the subject has
a permission to access an object at a security level higher than his clearance level,
then this subject cannot exercise this right.

∀ (Si, Oi, a) ∈ b a ∈Mij ( with a ∈ A).

The model only addresses confidentiality; neither integrity policy nor availability pol-
icy are provided.

I.5.2 Discretionary Access Control Policies (DAC)
In Discretionary Access Control policy, each object within the system has an owner,

and each original object owner is the subject that causes its creation. Thus, an object’s
access permissions are determined by its owner. The original definition of DAC was
introduced in the TCSEC [21] as “a means of restricting access to objects based on the
identity of subjects and/or groups to which they belong. The controls are discretionary
in the sense that a subject with a certain access permission is capable of passing that
permission (perhaps indirectly) on to any other subject (unless restrained by mandatory
access control)”. Hence, the policy is based on the identity of the requestor and on access
rules to stating what requestors are allowed to do. According to [24], DAC models are
characterized often by one or more of the next properties.

1. The Data Owner can assign the object’s ownership to another user.

2. The Data Owner can determine the access type of other users (read, write, copy,
etc.).

3. After several tries, authorization failures to the same resource generate an alarm
and/or restrict the user’s access.

19



Chapter I Security Policies and Formal Methods

4. Unauthorized users should not be able to determine the object’s characteristics (file
size, file name, directory path, etc.).

As a drawback, the administrator in the DAC model cannot centrally manage the
access permissions on files stored within his system. Moreover, the DAC policy has the
same disadvantage and drawbacks of ACM.

I.5.3 Role Based Access Control (RBAC)
Role Based Access Control (RBAC) is one of the most used models in designing and

implementation of security policies, in large networking systems. The RBAC [1] model
defines four basic components: Users, Roles, Permissions, and Sessions. A user is a
human or a process within a system. A role is a collection of permissions associated with
a certain job function. Permission is an access mode that can be exercised on a particular
object in the system. A session relates a user to possibly many roles. Hence, in RBAC,
permissions are associated with roles assigned to users as a part of an organization. Based
on the user’s role, his access to resources is decided. Thus, a role can be considered as
a collection of users that have the same set of permissions. A role is considered as an
active role if there is a subject using it currently. In RBAC, each session associated with
a single user and it is a mapping of one user to possibly many roles. Moreover, a user
may have multiple sessions open at the same time and each session may have a different
combination of active roles. The following definition formalizes the above discussion and
resumes the basic RBAC model (RBAC0).

Definition: RBAC0 model has the following components:

• Set of users U , set of roles R, set of permissions P , and set of sessions S.

• Permission-to-role assignment relation: PA⊆ P ∗R a many-to-many relation.

• User to role assignment relation: UA ⊆ U ∗R, a many-to-many relation.

Moreover, RBAC0 model has the following function that restrict the mapping of
entities :

• Function assigned− users(r) = R→ P (U) it is the mapping of role r onto a
set of users where u ∈ U | (u, r) ∈ UA.

• Function assigned− permissions(r) = R→ P (P ) it is the mapping of role
r onto a set of permissions where p ∈ P | (p, r) ∈ PA.

• user: S −→ U , a function mapping each session Si to the single user Uj (a
user can be assigned to many sessions but a session can be only assigned to a
user)

• roles: S → R, a function mapping each session Si to a set of roles.

RBAC0 has Cardinality constraints and Separation of duty constraints as follow-
ings:

• User Static Cardinality constraint: At most, k roles can be assigned to the user
Ui.

• Role Static Cardinality constraint: At most, k users can be assigned to the role
Ri.

20



Chapter I Security Policies and Formal Methods

• User Dynamic Cardinality constraint: At most, k roles can be activated by the
user Ui.

• Role Static Cardinality constraint: At most, k users can activate the the role
Ri.

• Conflicting roles cannot be assigned to the same user.

• Conflicting users cannot be assigned to the same role.

• Conflicting roles cannot be activated in the same session.

• Conflicting users cannot activate the same role.

Thus, RBAC approach has two principal advantages. The first advantage is that users will
access only to the resources that they require to achieve their tasks, under the suitable
mode. The second advantage is to make easier the system administration (The adminis-
trator is not obliged to redefine permissions for each user separately. Thus, all changes
are at the role level and are reflected immediately on the permissions of users [25]). As
an example, in a system composed of 500 users as students, it will be practical to define
a role student, define its permissions, and then to enclose the 500 users in this role. In
the basic RBAC, the access decision can be complex [26] and not adequate [27] when
the contextual attributes (information of a user, environment attributes, etc) are required
to grant the access. In the above example, if the students are divided into 100 specialities
then RBAC should define 100 student roles one per speciality. Moreover, the permissions
are referring to individual objects, which leads to role-permission explosion problem in
situations including a large number of objects. However, RBAC has several extensions
which were proposed to deal with some contextual information. This thesis discusses
the most common extension of RBAC which is TRBAC [3] that is proposed to handle
temporal contexts.

I.5.3.1 Temporal RBAC (TRBAC)

The RBAC classical model doesn’t consider temporal aspects which are so important
in access control policies. Temporal RBAC (TRBAC) is proposed to deal with these tem-
poral aspects. In the TRBAC, another class of constraints is considered:(i) temporal con-
straints on the events of roles activation/deactivation, (ii) periodic role enabling/disabling
and (iii) temporal dependencies among such actions. Periodic-events and roles-triggers
are the temporal constraints that specify the enabling and disabling role events.
• A periodic-event is expressed as a triple: < I, P, pr : E >, where: I is an interval,

P : a periodic expression, pr a priority, and E an event (which can be: to enable a role or
to disable a role). For example, the periodic event <[01/01/2016,∞], Night_time, V H:
disable R1 > means that the role “Procurator (R1)” must be disabled with a very high
(VH) priority at night time, from the date 01/01/2016 and forever.

In TRBAC policy, when two concurrent events arrive, the event with the highest pri-
ority (the greatest number) occurs. For example, if we have the two concurrent events:
“event 1= enable nurse on day” with a priority equals to 1 and “event 2= disable nurse on
day” with a priority equals to 2, then the second event occurs and the first one is ignored.
The priority is used to deal with an emergency case, an exceptional case, or to make a
decision in conflict cases.

21



Chapter I Security Policies and Formal Methods

• A role-trigger is expressed as a tuple:
< E1, ..., En, C1, ..., Cm → pr : E after 4t >, whereE1, ..., En are a set of events;
C1, ..., Cm are a set of statuses; pr is a priority; E : is an event; and 4t is a duration of
time. These triggers means that once the set of events E1, ..., En occur, and if the system
contains the set of statusesC1, ..., Cm, then the eventE will occur with a priority pr, after
a duration4t. For example, the trigger: < enable nurse_on_day_duty → H : disable
nurse_on_training after 2 days > means that the event: “disable nurse_on_training”
will occur with a High priority after 2 days of the occurrence of the event: “enable
nurse_on_day_duty”.

TRBAC was, then, extended to General Temporal RBAC (or GTRBAC) [28]. GTR-
BAC defines more specific temporal constraints such as temporal constraints on user-role
and role-permission assignments/de-assignments, role activation-time constraints, etc.

I.5.3.2 RBAC extensions

Besides TRBAC, OrBAC (Organization Based Access Control) model is another ex-
tension of RBAC which includes the temporal aspect. Orbac assigns at the level of each
organization org: (i) user u to role r, (ii) action (i.e., operation) op to activity act, (iii)
object o to view v. Hence, to give user u the permission to perform an operation op on
object o, the system must check complexly all permissions one by one until finding per-
mission (org, r, act, v) where: r is one of roles which are assigned to user u, act is one of
the activities that are assigned to action op, and v is one of the views that are assigned to
object o. Indeed, Orbac allows the historical restrictions (for example, role r can access
only one time to view v) and context restrictions. However, the authors of [29] argue that
OrBAC is a complex model (it gives more details about permissions, it handles historical
and organization aspects) and it uses an incorrect multiplicity relationships (for exam-
ple, in the Consider(org, a, act) relationship that assigns the action a to activity act, it
uses (0,n) multiplicity at both side of action and activity. This last means that an activity
can have no action and an action may not belong to any activity. The authors of [30]
enrich OrBAC with integrity mechanisms and means of differentiation to preserve Crit-
ical Infrastructures Integrity (CIIs). By presentation of Integrity-OrBAC (I-OrBAC), the
authors define a new proactive, multi-integrity level model that enables quantifying the
integrity needs of each CII element, in term of credibility or criticality, to take optimal
access control decisions.

Some other RBAC extensions dedicated to specific applications are also proposed.
To use RBAC in ubiquitous collaboration systems, the authors of [31] proposed “XGSP-
RBAC” (XML based General Session Protocol). In “XGSP-RBAC”, authors deal with the
protecting secured resources from unauthorized users, which become a complicated task
in ubiquitous computing systems. The “H-RBA” (hierarchical RBAC) [32], is proposed to
design security policies in SaaS (Software as a Service). In the SaaS approach, software
is deployed as a hosted service and accessed over the Internet. Customers don’t need
to maintain the software code and data on their own servers. Another recent extension
is Tie-RBAC [33], dedicated to implementing social networks security policies. In this
model, a tie (or a link) is composed of a relation, a sender and a receiver. A tie involves
the sender’s assignation of the receiver to a role with permissions.

Recently, some works tried to extend RBAC to deal with cloud environments [34],
[35], [36], [37], [38]. In [34], the authors propose a Contract-RBAC model extending
RBAC model in cloud computing with continuous services for the user to access various

22



Chapter I Security Policies and Formal Methods

source services provided by different providers. Contract-RBAC model can provide con-
tinuous services with more secure flexible management to meet the application require-
ments including Intra-cross cloud service and Inter-cross cloud service. The authors of
[36] aim to decide about the best authorization technique for deployment in Cloud. They
present a systematic analysis of the existing authorization solutions in Cloud and evaluate
their effectiveness against well-established industrial standards that conform to the unique
access control requirements in the domain. On another hand and to construct flexible data
access control for cloud storage service, the authors of [35] addressed how to construct an
RBAC-compatible secure cloud storage service with a user-friendly and easy-to-manage
attribute-based access control (ABAC) mechanism. The ABAC scheme enhances the ex-
pressiveness of access policies, decreases the computational overheads, and reduces the
size of ciphertexts and private-keys for attribute-based encryption. The authors of [37]
present a generalization of RBAC model called Temporal Defeasible Logic (TDL) which
allows to specify temporal policies and to handle conflicts to provide a formalism for
specifying authorization. Finally, the authors of [38] propose SAT-RBAC (Security and
Availability Based Trust Relationship RBAC) model as a Novel Role-based Access Con-
trol Model in cloud environments. To assign a role to a user, the SAT-RBAC computes
the trust degree of their relationship based on three elements: the host’s security situation,
the host’s network availability and how the server is protected. The value of the degree
computed can be in three possible zones (unbelievable, probable believable and believ-
able). The role is authorized for the user if the value is in the third zone, unauthorized if
it is in the first zone. If the value is in the probable believable zone then the model uses a
Bayesian Probability Distribution (BPD) to decide if the role is authorized or not.

I.5.3.3 Application arias of RBAC

Initially, designed as a model to mainstream commerce systems, RBAC has found
applications in several areas: health care [39], work-flow systems [40], education [41],
distributed applications security [42], web services and their architecture [43], [44], social
networks [45], wireless networks [46], [47], cloud computing [38], etc. In [39], authors
used RBAC model to implement a secure access policy in electronic health information
systems. This system is designed to offer better health care services for patients and to
help doctors and other health care workers to treat and diagnose diseases. In such a sys-
tem, RBAC access policies ensure high information security and stringent access control
for patient’s health data. This will protect the patient’s privacy and prevent a harmful
or illegal use of data. In [40], RBAC model was applied to secure Web-based workflow
systems. In this work, RBAC facilitates the access control management (without hinder-
ing the process). In [41], RBAC has been applied in an office automation system, used
in several colleges. In this last work, the authors proved that web applications based
on the RBAC model have excellent safety and stability. Authors, in [42], analyse the
level of support for RBAC components and functional specification in Microsoft COM+
(Component Object Model) [48] middle-ware. They concluded that COM+ architecture
prevents the support for session management and role activation, as specified in ANSI
RBAC. In [49], authentication and authorization concepts, defined in Parametrized Role
Based Access Control (PRBAC), are used to design a new secure architecture for the Java
RMI (Remote Method Invocation). This new architecture can be used to build secure
distributed applications. In [43], authors present a case study where RBAC is used for
designing Security Architectures for “web services” and the authors of [44] tackle with
security in SOA (Service-Oriented Architecture). In SOA, protection of the client’s data,

23



Chapter I Security Policies and Formal Methods

from unauthorized access by services is a hard task because the services interact and share
the client’s data dynamically to fulfil the client’s request. The authors of [44] use Active
Bundle (AB) which contains the client’s data and the rules restricting service access to
this data (policy). Instead of sending all client’s data in the query, one sends just the AB,
and when the services interact to fulfil the request, each service interacts with the AB and
gets access to the appropriate information based on its type (role) and the restriction of
the client policy. In SOA policies, services are considered as users that are assigned to
roles in order to access client’s data. The authors of [45] apply RBAC to social networks.
In facebook-style social network, relationship based access control models are used to
control the user’s access. These models exploit the relationship between the user and the
owner of the resource. This kind of access control suffers from several limits (a user can-
not tag users which live in a particular place, or work in a particular company, etc). To
avoid these limits, the new access control scheme proposed in [45] exploits the attributes,
activities and the common interests of users to group them and to control their access.
In [46], the RBAC model was applied in wireless networks to authenticate RFID (Radio
frequency identification) readers embedded on mobile devices to read tag embedded on
objects. A proposed protocol uses RBAC server which recognizes the reader’s identity in
role classes and according to the role class of the reader the database defines its security
certificate and permissions.

I.5.4 Attribute-Based Access Control (ABAC)
To resolve RBAC’s disadvantages, Attribute-Based Access Control (ABAC)[7] [8]

was proposed. The ABAC introduces the concept of the attribute, so that an ABAC sys-
tem is composed of three sets of entities: the set of users, the set of resources and the
environment. Each of these three entities has specific attributes. An attribute consists
of a pair (key, value) (in the example of students, a user will have the attribute <role
value, speciality value> like the couple <student, AI>). The permissions of users un-
der ABAC depend on their attributes. For example, the administrator can define a rule
as (true, role=student and Speciality=AI, read, download , Type=Courses and Special-
ity=AI) which means that if the user is a student in AI speciality and he requests to read
or to download AI courses then he has the permission. Even the ABAC was proposed
to facilitate the management of security by introducing the concept of the attribute, the
proposed solution by ABAC can be as complicated as that of RBAC in some cases [11]
and so that does not benefit from the role’s characteristic. According to [50], in ABAC the
Role names are still associated with users, but they are no more considered as collections
of permissions.

I.6 Formal Analysing and Verification methods
Formal methods allow us to prove or disprove the correctness of a system with respect

to a certain formal specification or property. Thus, they are naturally based on formal and
mathematical roots. The NASA Langley Formal Methods Group [51] given the definition
of formal methods as mathematically rigorous techniques and tools for the specification,
design and verification of software and hardware systems. The phrase “mathematically
rigorous” means that the specifications used in formal methods are well-formed state-
ments in a mathematical logic and that the formal verifications are rigorous deductions in
that logic (i.e. each step follows from a rule of inference and hence can be checked by a

24



Chapter I Security Policies and Formal Methods

mechanical process.). Hence, there is a need for a formal specification and verification in
order to analyse and verify an access control policy. In a formal specification of an access
control policy, one must specify the policy constraints to be satisfied in all states of the
system. After the specification is done, the formal verification consists on proving that
all reachable states during the execution of the system are consistent with respect to the
set of predefined constraints. As a formal method, Petri Nets are well suitable to describe
discrete processes and to analyse the system concurrency and synchronism. A Petri Net
has a graphical representation and a rigorous semantics. These characteristics make Petri
nets a good formalism to specify and analyse the access control policies. In the literature,
one can find some works which have applied Petri net and its extension Coloured Petri
net to model/analyse access control policies. In [52, 53, 54, 55, 56], Petri Nets are used to
specify access control policies in work-flow systems. [57] uses coverability graph to anal-
yse policies. In [58], security attributes in mandatory access control are analysed using
reach-ability in Petri Nets. In [59], a formal security model based on Coloured Petri Net
(CPN) is proposed and used to show the analysis and construction methods to information
flow security. To identify the Petri net and its extension hierarchical colored Petri net, the
following subsections give an informal and a formal definition of them.

I.6.1 Hierarchical Timed Coloured Petri Nets
Informally, a Petri Nets (PN) [4] is a graph composed of two kinds of nodes places and

transitions. A set of arcs link places to transitions and transitions to places. The places
can be marked with tokens (modelling non-typed data). These tokens are called marking
of the PN. Transitions can be enabled, and if this is the case they can be fired. Firing a
transition update the marking of the places in the net.

Coloured Petri Nets (CPN) [5] is an extension of Petri Nets. In CPN, each place
has a type (a colour). So the tokens can be more complex and typed data. The arcs are
labelled by expressions that belong to the types of their incoming places. The transition
can have some guards. A guard is a Boolean expression. In a guard expression, we can
use variables that are used in the input arcs or the output arcs of the transition.

Timed CPN extends CPN with a set of stamps of time. These stamps can be associated
with tokens or to transitions. A stamp s associated with a token will make this token ready
to be used only after that the time of the system will be more than s. When a stamp s is
associated with a transition, all the stamps associated with tokens that are generated, when
this transition is fired, are incremented with the stamp s. The following definition that we
present in the following paragraphs is inspired by the definition of CPN [5]. Our definition
of Timed CPN updated the definition of CPN with the concept of stamps, as implemented
in the CPN-tool [6].

Hierarchical CPN and Hierarchical TCPN are extensions for CPN and TCPN, where
the structure of the model can be organized hierarchically. A hierarchical representation
of the specification is a modular representation of the model. In this modular representa-
tion, the model is composed of a set of sub-models composed together to build one big
model. Therefore, the specification is represented as an abstract principal model that can
be refined towards an elaborated model, at any times. Hierarchical Timed CPN uses hyper
transitions in the abstract model to hold in the sub-models. The refinement of the abstract
model passes through the unfolding of these hyper-transitions.

In this section, we present the formal definition of a Hierarchical Timed CPN, and we
show the dynamic behaviour of this formalism.

25



Chapter I Security Policies and Formal Methods

I.6.1.1 Formal Definition

Firstly, we present some necessary concepts (timed sets and timed multi-sets) which
will be used in the formal definition of the Hierarchical Timed CPN. Let N denote the set
of non-negative integers. These definitions are extensions for sets and multi-sets concepts,
used in CPN [5].

Definition 1. A Time set Γ is a set of non-negative integers. Γ = {τ ∈ N}.

Definition 2. A time multi-set τm, over a non-empty set X , is a function τm ∈ [X →
N× Γ], for each x ∈ X , τm(x) = (O(x), S(x)),where O(x) ∈ [X → N], is the number
of occurrences of x and S(x) ∈ [X → T ] is a stamp (from a Time set, in our case a set
of positive integers). τm(x) is represented as a formal sum: Σx∈X(O(x)′x@ + S(x)). In
this expression, the symbol @ distinguishes between the O values and the S values.

By XτMS , we denote the set of all timed multi-sets over X . The non-negative inte-
gers {O(x)|x ∈ X} are the coefficients of the multi-set, and the non-negative integers
{S(x)|x ∈ X} are the stamps of the multiset.

For example, if we take the setX = {2, 5}. A time multi-set on this set can be (2′2@+
2)+ +(1′5@ + 4). This time multi-set represents the set that contains two occurrences of
2 stamped with the stamp 2 (each occurrence has the stamp=2) and one occurrence of 5
(with a stamp=4). {1, 2}MS is the set of all timed multi-sets of the set {1, 2}, which is an
infinite set.

In the following definitions, some notations are used to facilitate the presentation. We
use Type(E) to denote the type of the expression E. We use V ar(E) to extract the set of
variables used in the expression E.

Definition 3. A Timed CP-net is a tuple TCPN = (Σ, P, T, A,C,G,Exp, I, τ),
where:

1. Σ is a finite set of non-empty types, also called colour sets,

2. P is a finite set of places,

3. T is a finite set of transitions,

4. A is a finite set of arcs such that: A ⊆ (P × T ) ∪ (T × P ) and P ∩ T = P ∩ A =
T ∩ A = φ. If a = (p, t) is an arc in A, we say that p is an input place for t, we
denote this: p ∈◦t. If a = (t, p) is an arc in A, we say that p is an output place for
t, we denote this: p ∈ t◦.

5. C is a colour function (it defines the type of each place in the TCPN). It is defined
from P into Σ.

6. G is a guard function. It is defined from T into expressions such that:
if tr ∈ T then Type(G(tr)) = Boolean
and Type(V ar(G(tr)) ⊆ Σ

7. Exp is an arc expression function. It is defined from A into expressions such that:
a ∈ A : Type(Exp(a)) = C(p)τMS and
Type(V ar(Exp(a))) ∈ Σ, where p is the place component in a.

26



Chapter I Security Policies and Formal Methods

8. I is an initialisation function (or an initial marking of the set of places). It is de-
fined from P into closed expressions such that: for each p ∈ P : Type(I(p)) =
C(p)τMS .

9. τ : is a time function that associates with each transition a stamp. τ : T → Γ, (Γ is
a time set).

Definition 4. A Hierarchical TCPN is a finite set of netsH = {N1, N2, N3, . . . }. Each
net N in H is a tuple N = (Σ, P, T, A,C,G,Exp, I, τ, h), where:

1. Σ, A, C, Exp, I: are defined as in TCPN,

2. P = OP ∪ IP , where: OP is a set of ordinary places as defined in TCPN, and IP
is a set of interface places. An interface place is a place that is shared between more
than one net. An interface place is used in communication between nets in H .

3. T = OT ∪HT , where: OT is a set of ordinary transitions as defined in TCPN, and
HT : a set of hyper-transitions (can be empty).

4. G: is a guard function. It is defined from T into expressions such that:
if tr ∈ T then Type(G(tr)) ∈ Boolean
and Type(V ar(G(tr)) ⊆ Σ

5. τ : is a time function that associates with each ordinary transition a stamp. τ :
OT → Γ. (Γ is a time set).

6. h: is a function that maps each hyper transition to a net. h : HT → H . We require
that if ht is a hyper transition in N , so h(ht) must not be N and must not lead to N
indirectly. This means recursion is not allowed in the model. The input-places of
ht (◦ht) and the out-places of ht (ht◦) are places in the net h(ht).

I.6.1.2 Dynamic behaviour and semantics of Hierarchical Timed CPN

The dynamic behaviour of the net is obtained when the transitions are fired. A transi-
tion can be fired if it is enabled. To be enabled, a transition requires some preconditions.
These preconditions depend on the marking of its input places, the expressions labelling
its input arcs, and its associated guards. Once the transition is fired, some post-conditions
will be satisfied. Firing a transition will update the marking of its input and output places.
The new marking depends on the labels of the input-arcs and output-arcs of this transi-
tion. To present the preconditions of firing a transition and how the marking is updated,
we present firstly some necessary concepts.

We use the function V ar(tr) to extract the set of variables used in the guards associ-
ated with the transition tr, or used in the expressions labelling input-arcs or output-arcs
of tr.

Definition 5 (binding). A binding of a transition tr is a function b defined on V ar(tr),
such that:

(i) For each v ∈ V ar(tr): b(v) ∈ Type(v),
(ii) The binding of tr satisfies the guard function of tr. Formally, this is written:

G(tr)[b] = true, or G(tr)[b].

27



Chapter I Security Policies and Formal Methods

Definition 6 (timed-binding). A timed-binding of a transition tr is a couple < b, t >,
where b is a binding defined on V ar(tr), t is a time, and at the time t, we have :

(i) For each v ∈ V ar(tr) : b(v) ∈ Type(v),
(ii) G(tr)[b].

Definition 7 (binding element). A binding element be is a pair (tr, b), such that tr is
a transition and b is a binding of tr. The set of all binding elements of a transition tr is
denoted by BE(tr). The set BE denotes the set of all binding elements for a CPN.

Definition 8 (timed binding element). A timed binding element tbe is a pair (tr, <
b, t >), such that tr is a transition and < b, t > is a timed-binding of tr. The set of all
timed binding elements of a transition tr is denoted by tBE(tr). The set tBE denotes
the set of all timed binding elements for a Timed CPN.

Definition 9 (timed-marking). Let L be the set of tokens in the place p at the
time t. Then the timed-marking of the place p at the time t, denoted Mt(p), is de-
fined as the multi-set of tokens x in p with a stamp less than or equal to t: Mt(p) =
Σx∈L and S(x)≤t(O(x)′x@ + S(x)).

The initial timed-marking, denoted M0, is the timed-marking of the net at the time 0.

Definition 10 (time-enabled). A transition tr is time-enabled at time t in a mark-
ing M if and only if there is a timed-binding [b, t] which satisfies the property: for each
p ∈◦ tr : Exp(p, tr)[b] ≤Mt(p). Where ◦tr is the set of input-places of the transition tr.
We write that (tr, [b, t]) is time-enabled at the time t.

Definition 11 (stamped-expression). Let X be a timed multi-set, exp be an expres-
sion defined over X , and t be a stamp, the stamped-expression exp@ + t denotes the
expression exp in which the stamps of all its operands are incremented with t. for exam-
ple, if exp = (2′1@ + 2)++(1′2@ + 4), then exp@ + 2 = (2′1@ + 4)++(1′2@ + 6).

Definition 12 (firing precondition and reachable marking). When a transition tr is
time-enabled at time t (with a time-binding [b, t]), in a timed-marking Mt, it can be fired.
Firing tr is an event that can take a duration ∆t. Firing tr changes the marking Mt to
another marking Mt+4t, such that:

for each p ∈ P,Mt+∆t(p) = (Mt(p)˘Exp(p, tr)[b]) + (Exp(tr, p)[b]@ + (tr)).

We say that Mt+∆t is directly reachable from Mt, and this is written: Mt[tr > Mt+∆t.

Definition 13 (firing a hyper transition). Preconditions to fire a hyper transition ht
defined in a net N (in a HTCPN H), are the same as well as for an ordinary transition.
When ht is fired, ht is unfolded to the net h(ht). Firing ht changes the marking of N as
well as the marking of h(ht).

I.6.1.3 Reachability graph of a Timed CPN

The analysis of Timed CPN models can be done through computing reachability
graphs (called also occurrence graphs) [5]. A reachability graph is a graph with a node for
each timed reachable marking and an arc for each occurring timed binding element. Let

28



Chapter I Security Policies and Formal Methods

M1 andM2 be two reachable timed markings and tb is a timed binding element enabled in
M1. If the occurring of tb transforms M1 into M2, then we denote this by: M1[tb > M2.
The reachability graph is a directed graph considered as a couple (V,A), such that:

• V : a set of reachable timed markings. V = {M1,M2, . . . }.

• A: a set of arcs linking nodes of V . A ⊆ V × tBE × V .

Given a Timed CPN, one can use the algorithm proposed in [5], to construct the reacha-
bility graph. When using CPN-tool, this construction is semi-automatic.

I.6.1.4 An example of a Timed CPN

In order to clarify the previous formal definitions and aspects, related to timed CPN,
we consider a simple example. The example illustrates the concepts of marking, timed-
marking, timed-binding, timed-enabled and stamped-expression. The example is realised
using the CPN-tool. Let us consider a simple CPN (see Figure I.1) composed of three
places P1, P2, P3 and one transition T. Initial markings of places are shown next to each
place in green colour. Place P1 has the type: Timed_INT (i.e., timed integer), hence it
contains a timed-marking 1′1@2. This timed-marking means that place P1 contains an
integer token equals which will be ready at a time equals to 2 time-units. P2 has the type
INT (i.e., integer) and its initial marking is 2′2++1′4, which means that P2 contains three
integers (two occurrences of value 2 and a unique occurrence of value 4). 2′2++1′4 is an
element in the integer multi-set. Transition T has two input places P1 and P2, one output
place P3 and a guard [x > 2]. Arcs (P1, T) and (P2, T) are labelled with expressions y,
x which belong to the types Timed_INT and INT, respectively. P3 has the type INT timed
and its initial timed-marking is empty. Arc (T, P3) is labelled with a stamped-expression
x@+2, which means that firing transition T will add a stamped-token which value is x and
which stamp is 2. As shown in Figure I.1, transition T has a green colour, which means
that T is time-enabled at a time equals to 2 with timed-binding [y = 1, x = 2]. After firing
T, the marking of the CPN is updated as shown in Figure I.2. The new marking of P3 is
1′4@4, which means a token with value 4 and a stamp equals to 4. This new stamp is the
sum of the enabling time which was 2 and the stamp of the stamped-expression x@ + 2.

Figure I.1: A simple example of a CPN: before firing the transition

29



Chapter I Security Policies and Formal Methods

Figure I.2: A simple example of a CPN: after firing the transition

I.7 Conclusion
In large networks management, the complexity of security administration remains an

important challenge. Many models were proposed to deal with this complexity. Due
to their features, Role Based Access Control and Attribute Access Control are ones of
the predominant models for advanced access control. However, they suffer from several
problems when dealing with complicated security policies in complicated systems. These
previous models have several drawbacks such as: the explosion in the number of roles
and rules, problems with context-awareness, problems with the visualisation of policies
update, etc. Thus, handling These drawbacks make these models enable to provide scala-
bility, flexibility, and fine granularity in large-scale networks.

On the other hand, the complexity of access control policies makes the assurance
of their consistency and correctness a challenging problem. Moreover, security analysis
is performed during the development of an access control policy. The use of formal
methods has proved their efficiency to ensure such analysis, in access control policies. As
a formal method, Petri Nets are well suitable to describe discrete processes and to analyse
the system concurrency and synchronism. The analysis of Petri net models allows the
designer to prove the consistency of its policy. One can use the reachability graph of
Petri net model to analyse and to verify the policy. Coloured Petri Nets (CPNs) represent
an extension of Petri nets with more expressive power. The modelling of access control
policy using CPNs is more practical than using classical Petri Nets. The next chapter
presents a Formal Study of TRBAC Security Policies with the Using of the Hierarchical
Timed Coloured Petri Nets.

30



Chapter II

First Contribution: Using Hierarchical
Timed Coloured Petri Nets
in the Formal Study of TRBAC Security
Policies

31



Chapitre II Formal Study of TRBAC Security Policies

II.1 Introduction
Role Based Access Control (RBAC) is one of the most used models in designing

and implementation of security policies, in large networking systems. The RBAC clas-
sical model doesn’t consider temporal aspects which are so important in such policies.
Temporal RBAC (TRBAC) is proposed to deal with these temporal aspects. Despite the
elegance of these models, designing a security policy remains a challenge. One is obliged
to prove the consistency and the correctness of the policy. The use of formal methods
allows us to prove that the designed policy is consistent. In this chapter, we present a
formal modelling/analysis approach of TRBAC policies. This approach uses Hierarchi-
cal Timed Coloured Petri Nets (HTCPN) formalism to model the TRBAC policy, and the
CPN-tool to analyse the generated models. The timed aspect, in HTCPN, facilitates the
consideration of temporal constraints introduced in TRBAC. The hierarchical aspect of
HTCPN makes the model “manageable”, despite the complexity of TRBAC policy spec-
ification. In the HTCPN model, we define the events that can occur in the system and
their preconditions and post-conditions. These preconditions and post-conditions spec-
ify the TRBAC constraints that should be satisfied. After the specification by using the
Hierarchical Timed CPN formalism, the CPN-tool [6] will be used to ensure an analysis
of the policies and to verify some inherent properties. In this chapter, we use the Hi-
erarchical Timed Petri Nets (HTCPNs) in a down-top approach (from sub-models to an
abstract model) to model TRBAC. Besides the use of HTCPNs, the chapter presents the
analysis phase that focuses on the verification process of several temporal properties. The
modelling and verification processes are all showed on a realistic security policy.

The rest of the chapter is organized as follows: section two presents some related
works. Section three details the modelling/analysis process of TRBAC into HTCPN and
illustrates that on a real policy. Finally, section four concludes this chapter.

II.2 Related Work
A policy is a set of rules that define the behaviour of a system. The system that uses

this policy is expected to satisfy this set of rules in all its states. A state, where one of these
rules is not respected, is called an inconsistent state. An inconsistent state is reached if the
policy itself contains an inconsistency or because it is incomplete. When RBAC model
is used to define a policy, the set of rules are defined through the basic concepts used in
the RBAC model: Users, Roles, Permissions and Sessions. The consistency rules in a
policy are specified as a set of constraints in the RBAC model. In the basic RBAC, these
constraints are classified into three classes: (i) Cardinality constraints, (ii) Separation of
duties (SoD) constraints, (iii) Inheritance constraints. In the TRBAC, another class of
constraints is considered: Temporal constraints on enabling and disabling roles.

In a formal specification of an RBAC policy, one must specify the RBAC constraints
to be satisfied in all states of the system. After the specification is done, the formal verifi-
cation consists on proving that all reachable states during the execution of the system are
consistent with respect to the set of predefined constraints. In [60], the authors defined
the ConPN (Conflict Petri Nets) formalism based on CPN (Coloured Petri Nets). This
formalism is used to find all potential conflicts in an inheritance policy in RBAC: (i) role
inheritance conflicts (a role inherits permission that it should not have), (ii) separation of
duty (SoD) conflicts (a role accessed by two conflicting users at the same time), (iii) car-

32



Chapitre II Formal Study of TRBAC Security Policies

dinality conflicts (number of users doing a role greater than permitted), and (iv) temporal
restrictions conflicts (a user accesses a role in a non permitted time). In [61], authors use
CPN without guards to conflict detection in an inter-operation of RBAC policies. Despite
role inheritance conflict (studied in [60]), authors of [61] studied (i) cardinality conflicts
(on roles, on users, and on objects), (i) SoD conflicts (conflicting users on some roles, con-
flicting roles for some users), (iii) resources sharing conflicts (which can cause deadlock
in the interoperation). In [62], the authors use CPN with guards and inhibitor arcs. In this
last work, the four events (assignment, de-assignment, activation, and de-activation) in
an RBAC system are modelled as four transitions in the CPN. They considered the same
constraints about: cardinalities, SoD, and inheritance as in [41, 40]. The originality of
their work is the consideration of two temporal constraints (defined in the GTRBAC): de-
pendency and precedence constraints between the activation, and the assignment of roles.
In [63], the authors present a work similar to that presented in [62], where they use CPN
formalism to model the SA-RBAC (self authenticated RBAC). In SA-RBAC model, per-
missions are of two kinds (general or sensitive); and to access sensitive permission, users
must have a self authentication. In [64], the authors have presented a specification of
RBAC using CPN, and they have used the CPN-tool to analyse the specification. In [64],
The authors have not treated the temporal constraints. The authors of [65] use CPN to
verify some properties in Spatio-Temporal Role-Based Access Control Model. However,
in this last work, the CPN models are separated and do not represent the whole system,
the authors do not provide the inheritance of permission in assigned of roles, they do not
handle the concurrent query of the enabling and disabling event, and finally, the model
does not consider periodic events and trigger constraints.

Besides the use of Petri Nets, other formalisms were used in RBAC specifications.
In [66], authors present an automatic tool to analyse ARBAC (An Administrative RBAC
[67]) policies. An ARBAC policy specifies how each administrator may change the RBAC
policy. The analysis deals with six properties of RBAC and ARBAC policies, including
(1) reachability: e.g., can user u be assigned to role r (called a “goal”)? (2) availability:
e.g., is user u always a member of role r? (3) role-role containment: is every member
of role r1 also a member of role r2? (4) weakest precondition: what are the minimal
sets of initial roles that enable a user to get added to roles in the goal? (5) dead roles:
what roles cannot be assigned to any user? and (6) information flow: can information
flow from object o1 to object o2?. In their work, authors do not precise the formalism
used to specify the policies. The authors of [68], [69], and [70] apply first order logic to
formalise RBAC policies.In [68], authors describe logically RBAC models used in web
services design. Reachability problems in this logical description are resolved using an
automatic tool. The authors use a specific RBAC version:”RBAC4BPEL” [68])dedicated
to web services. This work concentrates on the decidability of properties and the time
necessary in the verification step. The authors of [69] present a methodology for per-
forming a security analysis of temporal RBAC (TRBAC) using the relations defined in
a recently proposed administrative model named AMTRAC (Administrative model for
temporal Role-based Access control). In [69], the authors use Alloy (a first order logic
based language) to formalise and verify the administrative relations in AMTRAC. A sim-
ilar work to [69] was proposed in [71]. However, authors do not precise the formalism
used to specify the policies and do not present the whole model. The author of [70]
uses the first order logic to define the set of roles, permission, users and express the two
relations “has-role” and “has-permission”. Hence, they illustrate the formalisation on a
fictive example and analyse the constraints of the example by using Prover9. However,

33



Chapitre II Formal Study of TRBAC Security Policies

the authors have not considered the dynamic SoD constraints, the cardinality constraints
and hierarchy constraints. The authors of [72] use a symbolic model checking technique
to analyse Administrative TRBAC systems. This last technique uses Bernays-Shonfinkel-
Ramsey (BSR) transition system and Satisfiability Modulo Theories (SMT) solvers. BSR
is used to represent ATRBAC system as a transition system and SMT solvers are used to
computing the set of reachable states. BSR is a fragment of first-order logic formulas and
SMT solvers are extensions of Boolean solvers that can determine whether a formula is
satisfiable ( in decidable fragments of first-order logic).

Besides first order logic, other classes of logics are used in [73], [74], [75] to specify
formally RBAC policies. The authors of [73] use modal logic to specify RBAC poli-
cies. They translate the RBAC concepts into a set of logical formula and introduce logical
rules for determinate whether the query of the user will grant or deny, these rules re-
spect hierarchy constraints. However, the authors do not consider the SoD constraints
and static/dynamic cardinality constraints. On another hand, the authors do not distin-
guish the authorized role from the assigned role. In [74], the authors formally specify and
implement a model for RBAC called Smatch (Secure Management of suiTCH) in which
authorized users can join, leave, reopen and reuse dynamic sessions. Smatch is specified
using situation calculus which deals with contextual access control. They discuss decid-
ability of three properties (decision: to grant or deny of access, prediction: if users will
have some privilege in the future, invariants: “SoD, DoD”), using automated induction-
based theorem prover. In [75], the authors propose an extension of Descriptive Logic
(DL) called Dynamic Descriptive Logic (DDL) to formalize the RBAC in Web services.
In this proposed model, services are considered as actions (or operations) which change
the states of resources. However, the use of DLL does not deal with all aspects tackled
in our current approach. The use of DLL was focused only on the assignment actions.
Thus, activation of roles, the relation between roles, and temporal aspects are not treated
or specified by DLL. The analysis of RBAC properties is not developed and the authors
are limited only to specify the proposed RBAC with the DDL.

Algebra is exploited in [76] to specify RBAC. The authors describe a formal speci-
fication, using an algebraic language. They specify users, roles, operations, objects, and
sessions. The hierarchical relation between roles is specified as a partial order relation.
Based on this language, they specify SOD (separation of duties) constraints. In another
work [77], the authors use UML-OCL (UML Object Constraint Language) as a frame-
work to model the policies and the constraints. UML class diagrams are used to model
relations between: sessions, users, roles and permissions. The OCL formal language is
used to specify some authorisations such as SoD constraints, context constraints depend-
ing on sessions, constraints over permissions, and cardinality constraints.

Finally, some works like [78] and [79] exploit model-checking and timed automata
to analyse RBAC policies. In [78], the authors propose an approach based on Timed au-
tomata (TA) to perform security analysis by analysing both safety and liveness properties
in GTRBAC model. Analysis of the RBAC model involves mapping it into a state tran-
sition system. To simplify the obtained model, different reduction rules are proposed de-
pending upon the constraints supported by the system. The authors propose a framework
in which a GTRBAC set of policies are described as a Timed Automaton and properties
as CTL properties, then a model checker is used to verify that the set of policies satisfy
or not the required properties. A similar work to[78] was proposed in [80] to analyze TR-
BAC model. However, authors considered only activation and deactivation events with
only one temporal constraint. Although the importance of this last approach, the num-

34



Chapitre II Formal Study of TRBAC Security Policies

ber of states in the model which describes the role behaviour grows with the number of
permissions (for each permission, three states are added which describe the access to that
permission and its denial). In [79], the authors defined and provided the formal defini-
tion of a model checking technique that can be used as a management service/tool for
the verification of multi-domain cloud policies. This model is based on NIST’s (National
Institute of Standards and Technology) generic model checking technique and has been
enriched with RBAC reasoning.

Although some of the previous works tried to model the temporal constraints and so
the GTRBAC model, we have observed that temporal aspects and temporal constraints
defined in TRBAC were not well studied (periodic events that enable or disable roles,
triggers that can also change the status of roles). The originality of the present work lies
in: (i) The use of CPN-tool [6] to analyse the policy, (ii) the specification of more con-
straints that are not all addressed in previous works (as temporal constraints on enabling
and disabling roles), and (iii) the use of the Hierarchical Petri nets formalism makes in
a down-top modelling approach. The choice of Hierarchical Timed Coloured Petri Nets
(HTCPNs) as a formalism to model TRBAC is motivated by several reasons as: (i) The
graphical notation of HTCPNs makes the model more readable and understandable; (ii)
The hierarchical aspect of HTCPNs makes the modelling process easier and overcomes
the complexity of the TRBAC policy. Indeed, the TRBAC model is composed of set
of sub-models (“enable/disable” events, “assigned/de-assigned” roles constraints, “acti-
vated/deactivated” roles, and “trigger” event); these sub-models are combined with each
other to construct the complete model; (iii) and Finally, thanks to CPN-tools which allow
the designer to create (edit), simulate, analyse, and validate the TRBAC model.

Table 1 summarizes works that have dealt with the formal analysis of temporal RBAC
or those works which have considered a temporal constraint in their analysis. Indeed,
most of these works have dealt with Administrative TRBAC. These works specify how
members of each administrative role can change the TRBAC policy. We have defined a set
of specific comparison criteria (i.e., verification tool, verified properties, security model,
specification language, application, and missed or ignored events which are not specified
or analysed). This table aims to illustrate the differences between our proposed work and
the other related work.

II.3 Modelling and Analysis of TRBAC policy using Hi-
erarchical Timed-CPN

Petri nets are considered as discrete event models. This nature of Petri nets guides the
modeller when using Petri nets. So that, the first step in a modelling process requires the
investigation of the set of events occurring in a system. When they occur, these events
change the state of the system. In our case (an access control policy using TRBAC model),
six major events are identified. These events modify the roles statuses defined in the sys-
tem. The events are: Enabling of a role, Disabling of a role, Assignment of a role to a
user, Activation of a role by a user, Deactivation of a role, and De-assignment of a role.
Each of these six events, require some preconditions (constraints in the TRBAC model)
to be satisfied. When these events occur, some post-conditions will be satisfied (which
are, also, a set of constraints in TRBAC model). In the Petri Net model, these events are
modelled by transitions. The pre-conditions are modelled by some input-places, some ex-
pressions on input-arcs, and some-associated guards. The post-conditions are modelled

35



Chapitre II Formal Study of TRBAC Security Policies

W
or

k
Ve

ri
fic

at
io

n
to

ol
Ve

ri
fie

d
Pr

op
er

tie
s

Se
cu

ri
ty

m
od

el
Sp

ec
ifi

ca
tio

n
fo

r-
m

al
is

m
A

pp
lic

at
io

n
Ig

no
re

d
ev

en
ts

an
d

Ig
-

no
re

d
co

ns
tr

ai
nt

s

[7
2]

A
SA

SP
T

IM
E

C
an

a
us

er
u

be
as

si
gn

ed
to

a
ro

le
r

at
tim

e
t?

A
T

R
B

A
C

fr
ag

m
en

t
of

fir
st

-
or

de
r

lo
gi

c
fo

rm
u-

la
s

T
he

ex
am

pl
e

pr
es

en
ts

as
an

in
iti

al
ca

se
:

an
em

pt
y

T
R

B
A

C
po

lic
y,

A
T

R
-

B
A

C
po

lic
y

an
d

th
e

go
al

th
at

w
ill

be
ch

ec
ke

d.
A

T
R

B
A

C
po

lic
y

is
ge

ne
ra

te
d

ra
nd

om
ly

by
us

in
g

a
fix

ed
nu

m
be

r
of

ro
le

s
an

d
ru

le
s

an
d

pe
ri

od
ic

-t
im

es
.

In
he

ri
ta

nc
e

of
pe

rm
is

si
on

.
C

on
cu

rr
en

t
qu

er
y

of
en

-
ab

le
an

d
di

sa
bl

e
ev

en
t.

Te
m

po
ra

l
ro

le
hi

er
ar

ch
y.

Tr
ig

ge
rc

on
st

ra
in

ts
.

[6
5]

C
PN

To
ol

C
an

a
us

er
u

ge
t

al
l

hi
s

au
-

th
or

iz
ed

pe
rm

is
si

on
s?

D
yn

am
ic

an
d

st
at

ic
SO

D
.

Sp
at

io
-T

em
po

ra
lR

B
A

C
C

PN
R

ea
lw

or
ld

ap
pl

ic
at

io
n.

In
he

ri
ta

nc
e

of
pe

rm
is

si
on

.
C

on
cu

rr
en

t
qu

er
y

of
en

-
ab

le
an

d
di

sa
bl

e
ev

en
t.

Pe
ri

od
ic

ev
en

ts
.

Tr
ig

ge
r

co
ns

tr
ai

nt
s.

[7
1]

la
ng

ua
ge

C

C
an

a
us

er
u

be
as

si
gn

ed
to

a
ro

le
r?

C
an

a
pe

rm
is

si
on

p
be

as
-

si
gn

ed
to

a
ro

le
r?

C
an

a
ro

le
r

be
th

e
se

ni
or

of
a

ro
le

r

A
T

R
B

A
C

T
he

sa
m

e
ex

am
pl

e
of

[7
2]

pl
us

a
fix

ed
nu

m
be

ro
fc

yc
le

s.

In
he

ri
ta

nc
e

of
pe

rm
is

-
si

on
.C

on
cu

rr
en

tq
ue

ry
of

en
ab

le
an

d
di

sa
bl

e
ev

en
t.

Tr
ig

ge
r

co
ns

tr
ai

nt
s.

A
ct

iv
at

io
n/

de
ac

tiv
at

io
n

ev
en

ts
.

[6
9]

Ja
va

(7
.0

.1
e1

7)
.

A
llo

y
A

na
-

ly
ze

r4
.2

Is
th

er
e

a
de

ad
st

at
e

or
a

de
ad

ro
le

?
C

an
pe

rm
is

si
on

p
be

as
-

si
gn

ed
to

us
er

u
at

tim
e

t?
C

an
ro

le
r 1

be
th

e
se

ni
or

of
ro

le
r 2

A
T

R
B

A
C

Fi
rs

to
rd

er
lo

gi
c

Sa
m

pl
e

ex
am

pl
e

co
m

po
se

d
by

4
us

er
s,

ro
le

s,
pe

rm
is

si
on

s
an

d
pe

ri
od

ic
-t

im
es

.

C
on

cu
rr

en
t

qu
er

y
of

en
ab

le
an

d
di

sa
bl

e
ev

en
t.

D
ea

ss
ig

n
of

pe
rm

is
si

on
or

us
er

ev
en

ts
(A

llo
y

do
es

no
t

su
pp

or
t

re
m

ov
al

of
fa

ct
s

du
ri

ng
an

al
ys

is
).

A
ct

iv
at

io
n/

de
ac

tiv
at

io
n

ro
le

ev
en

ts
.

[8
0]

U
pp

aa
l

If
ro

le
r 1

is
ac

tiv
e

th
en

r 2
is

al
-

re
ad

y
ac

tiv
e?

C
an

al
l

us
er

s
as

-
si

gn
ed

to
ro

le
r

ac
tiv

at
e

it
at

tim
e

t?
A

us
er

u
w

ill
ne

ve
r

ac
tiv

at
e

th
e

tw
o

ro
le

s
r 1

an
d
r 2

at
th

e
sa

m
e

tim
e?

.T
he

sy
st

em
is

de
ad

-
lo

ck
fr

ee
?

A
T

R
B

A
C

Ti
m

ed
A

ut
om

at
a

Sa
m

pl
e

ex
am

pl
e

of
2

ro
le

s
an

un
kn

ow
n

nu
m

be
ro

fu
se

rs
.

A
ll

th
e

ev
en

ts
an

d
co

n-
st

ra
in

ts
ex

ce
pt

ac
tiv

at
io

n
an

d
de

ac
tiv

at
io

n
of

ro
le

s
w

ith
no

n
pe

ri
od

ic
tim

e.

[6
2]

N
ot

m
en

-
tio

ne
d

D
yn

am
ic

se
pa

ra
tio

n
of

du
tie

s.
R

B
A

C
C

PN
Sa

m
pl

e
ex

am
pl

e.

Tr
ig

ge
r

co
ns

tr
ai

nt
s.

C
on

-
cu

rr
en

t
qu

er
y

of
en

ab
le

an
d

di
sa

bl
e

ev
en

ts
.

Pe
ri

-
od

ic
an

d
tim

e
co

ns
tr

ai
nt

s.
T

hi
s

w
or

k
C

PN
to

ol
A

ll
po

ss
ib

le
pr

op
er

tie
s

to
ve

ri
fy

a
T

R
B

A
C

po
lic

y.
T

R
B

A
C

C
PN

a
R

ea
lc

as
e

st
ud

y.

Ta
bl

e
II

.1
:T

R
B

A
C

se
cu

ri
ty

an
al

ys
is

re
la

te
d

w
or

ks
.

36



Chapitre II Formal Study of TRBAC Security Policies

by some output-places and some expressions on output-arcs. In the following paragraphs,
we will show by details the modelling/analysis process. All the CPN models are accessi-
ble in the link 1.

In order to demonstrate the feasibility of the approach, we will propose the formalisa-
tion and analysis of a realistic policy: the “Algerian justice information system policy” (to
be presented in subsection II.3.1). This policy will be used to build the concrete formal
model and to analyse several properties of the TRBAC policy. The modelling of the role-
enabling events is presented in subsection II.3.3. The modelling of the role-assignment
and role-activation events are presented in Subsection II.3.4. The same ideas are used to
model Deactivation, and De-assignment events. These two last models are not presented
in the thesis, but they can be found in the whole model accessible in 1. The subsection
II.3.2 presents the abstract model for a TRBAC model, based on the sub-models realised
in II.3.3 and II.3.4. Finally, the subsection II.3.5 presents the formulation and verification
of several properties on the proposed models. The verification is illustrated using some
concrete examples. In the following subsections, we use often the syntax of CPN-tool [6]
specification language. The CPN-tool represents an implementation of the Hierarchical
Timed CPNs. This tool allows the graphical representations of HTCPN models and their
analysis.

II.3.1 The Illustrative example: The Algerian justice information
system policy

We are interested in the access policy through the information system developed and
built in the justice domain, in Algeria. The system has hierarchical users, simple time
constraints and a conflict between roles. The justice domain is built upon a set of Justice
Palaces (JPs) and courthouses (CHs). Each department in the country has one JP and a
set of CHs dispatched on the area of the department according to the population num-
ber. The principal JP is in Algiers (the capital) and it manages all the justice process.
As an example, Biskra department http://www.courdebiskra.mjustice.dz/
contains one JP and three CHs. The information system which is being built is a multi-
domain system, where the principal node is in Algiers. The Figure II.1 shows an abstract
representation of these nodes.

1https://drive.google.com/drive/folders/15zYjyRcaZ25L98Mniqqq3VZU4AlC5vrz

37

http://www.courdebiskra.mjustice.dz/
https://drive.google.com/drive/folders/15zYjyRcaZ25L98Mniqqq3VZU4AlC5vrz


Chapitre II Formal Study of TRBAC Security Policies

Figure II.1: An abstract view of the multi-domain tree of the Justice Information system
in Algeria.

In case of our department (Biskra), the justice structure is composed of: (1) the Local
Justice Palace, (2) the principal courthouse (BPCH) located in the downtown, and (3) two
other courthouses (located in two suburban areas). This department is a sub-domain of
the principal domain (located in Algiers). As an example, we specify only the security
policy in the BPCH. The BPCH employs many persons who play different roles and have
different permissions on the access and the manipulation of information required in the
processed cases in the BPCH. Particularly, we will discuss the case’s recourse process.
When a recourse is made about some case’s decision, the case is transferred to the Palace
of justice. In the following, we will be interested in the users, roles, and permissions in
the justice palace. The justice palace is a big structure which contains a high number of
employees. The employees can be divided into a set of sections and subsections:

1. The procurator section: It is administrated by the procurator. It receives the most
recourses. This section contains: two procurator’s assistants, and two secretaries;

2. The administration of the Palace: a principal judge which administrate five other
judges. Each judge manages a specific room (real estate room, commercial room,
social room, civil room, and penal room). In each room, the judge has two con-
sultants (which are also judges). In total, the Palace exploits 5 judges with 10
consultants;

3. The clerk’s service: this section manages all the clerks employed in the Palace
(more than 100 clerks work in the palace). This service is supervised by the clerk’s
chief. The service is divided into a set of sub-services. Each one is specialized in
some tasks. Some important sub-services are: Editors sub-service, counter service,
planning service. We have cited only the sub-services required in the treatment of
a task which is: recourse request;

4. The information technology section: it is responsible for the information network
and on the software applications. This section employs two engineers.

In this system, we will be interested in the following set of roles: Secretary, Procu-
rator Assistant,
Procurator, Planner, Consultant, Administrator Judge, Room Judge, Editor, and
Citizen’s Delegate (which can make recourse on behalf the citizens). Each role has spe-
cific permissions on the information system used inside the Palace and connected to a

38



Chapitre II Formal Study of TRBAC Security Policies

more large system throughout the entire town. The good definition of the permissions
associated with each role and the verification of constraints is a mandatory task in this
system. As an example, we detail the roles, tasks, and permissions required in the sce-
nario of processing a recourse send to the office of the procurator. This scenario uses
four logical objects: the recourse, the case, the session, and the decision. Each of these
objects can be edited, viewed, modified, stamped, saved, sent, archived or deleted. These
operations require permission to be done. The table in Table II.2 shows roles, tasks and
their required permissions implied in this scenario. The table in Table II.3 presents the
mapping between users and roles.

Table II.2: Roles, tasks, and permissions

Role tasks and permissions

Secretary
Receive the recourse (Permission:P (1)), save the recourse(Permission:P (2)),
archive the recourse (Permission:P (3))

Procurator Assistant
Consult the recourse (Permission:P (4)), check the
recourse(Permission:P (5)), request details on the recourse(Permission:P (6)),
approve the recourse(Permission:P (7))

Procurator
Consult the approved recourse (Permission:P (8)), send the recourse to the
planing service (Permission:P (9)).

Planner
Save the recourse as a case (Permission:P (10)), send the case to con-
sultant (Permission:P (11)), invoke the concerned person by the case
(Permission:P (12)), inform the judge about the case (Permission:P (13)).

Consultant
Consult the case (Permission:P (14)), plan the session for this case
(Permission:P (15)), send the plan to the planing section (Permission:P (16)).

Administrator Judge
Consult the case (Permission:P (14)), select a room judge for the case
(Permission:P (17)).

Room Judge

Consult the case (Permission:P (14)), make the decision (Permission:P (18))
, consult the session report (Permission:P (19)), stamp the session re-
port (Permission:P (20)), consult the decision report(Permission:P (21)),
stamp the decision report (Permission:P (22)), archive the decision report
(Permission:P (23)).

Editor

Edit the session report (Permission:P (24), stamp the session re-
port (Permission:P (20)), archive the session report (Permission:P (25)),
edit the decision report (Permission:P (26)), print the decision report
(Permission:P (27)), archive the decision report (Permission:P (23)).

Citizen’s delegate
Edit a recourse (Permission:P (28)), send the recourse (Permission:P (29)),
withdraw a recourse before its approving (Permission:P (30)), consult the de-
cision report(Permission:P (21)).

In this system, there are two “Inheritance relations between roles”:

1. The procurator (R1) inherits permissions of Procurator assistant (R2);

2. and the administrator judge (R3) inherits permissions of room judges (R4).

On the other hand, the system defines the following “Static conflicts” between roles:

• The Procurator (R1) and the judge (R3). Hence, no user can have these two roles
assigned at the same time.

• The role citizen’s delegate (R9) is in conflict with all the roles in the system (R1,...,
R8).

39



Chapitre II Formal Study of TRBAC Security Policies

Table II.3: Mapping from users to roles

Users Allowed roles Role index Enable time
U1 Procurator R1 Day time
U2,U3 Procurator assistant R2 Day time
U4 Administrator Judge R3 Day time
U5, . . . ,U9 Room Judge R4 Day time
U10, . . . ,U30 Consultant R5 Day time
U31,U32 Secretary R6 Day time
U33, U34, U35 Editor R7 Day time
U36, U37, U38 Planner R8 Day time
U(i)∈{ U1, . . . ,U38 } Citizen’s delegate R9 Day time

II.3.2 The global TRBAC model
Now, using the hierarchical principle in HTCPN, we can construct the global model as

an abstract model. Figure II.2 shows this model. In this abstract model, the three events:
Assignment, Activation, and enabling/dis-
abling are represented as hyper transitions. The interaction between these events is mod-
elled through the interfaces places. This model gives us an overview of the TRBAC policy,
where all the events are modelled.

Figure II.2: HTCPN abstract model for TRBAC

In Figure II.2, transitions: trigger, Assign, Activate, and Enable_disable are hyper-
transitions. Each transition represents one of the former sub-models. Table II.4 is an
overview table presents all important places that are used in II.2, its meaning and its use.
On all the following models, we do not depict the guards on transitions, in order to keep
the models clear and legible.

40



Chapitre II Formal Study of TRBAC Security Policies

Table II.4: An overview table with all important places and their meaning and use.

Place Place’s meaning Place’s use

DPE Disabling Periodic Events
The set of periodic events that will disable
roles (each event with its priority and its
specific disabling time)

EPE Enabling Periodic Events
The set of periodic events that will enable
roles (each event with its priority and its
specific enabling time)

EE Enabling Events
The set of enabling periodic events with
their next arrival time in the system

DE Disabling Events
The set of disabling periodic events with
their next arrival time in the system

ER Enabling Roles The set of currently enabled roles
DR Disabling Roles The set of currently disabled roles

P1 Users
The set of users with their static and dy-
namic cardinalities

P2 Roles
The set of roles with their static and dy-
namic cardinalities

P4 Assigned Roles The set of assigned roles for each user

II.3.3 Modelling of role-enabling and role-disabling events
In the TRBAC model, the two events “role-enabling” and “role-disabling” can be pri-

oritized and temporized. The priority is an integer that is associated with an event, and
which is defined according to the other events that can occur in the system. In CPN model,
the transition that has the highest priority (i.e., the smallest number) occurs first. For ex-
ample, if there are two enabled transitions T1 and T2, the priority of T1 is “P_HIGH”
with “P_HIGH = 100”, the priority of T2 is
“P_NORMAL” with “P_NORMAL = 1000”, then the transition T1 will fire before
T2. We use this transition priority to ensure that if there are concurrent enabling and
disabling requests at the same time (i.e., enabling and disabling requests of a role r at
the same time respectively in places EPE and DPE, see Figure II.3), then the transition
Arrival_CRQ (i.e., Arrival of Concurrent Requests) has a high priority more than the two
transitions Arrival_EPE (Arrival of Enabling Periodic Event) and Arrival_DPE(Arrival
of Disabling Periodic Event). This high priority allows the model to resolve, firstly, the
conflicts between the two requests. The delay of role-enabling event and role-disabl-ing
event is specified using temporal constraints. These constraints are: periodic-events and
roles-triggers(they are mentioned in the last chapter.

II.3.3.1 Periodic events modelling

At runtime, roles can be enabled and disabled through requests. In TRBAC, a runtime
request expression has the form < pr : E after 4 t >, where pr is a priority, E is an
event, and4t a duration of time. For example, the request:
< h : enable nurse_on_day_duty after 2 hours > means to enable the role
“nurse_on_day_duty” after two hours. This request has as priority h (high). In periodic-
events, role-triggers, and runtime-request expressions, the value pr (priority) and4t can

41



Chapitre II Formal Study of TRBAC Security Policies

be omitted. If this is the case, pr is set to the low level priority, and4t to 0.

To specify periodic events, in the Hierarchical Timed CPN model, we define the fol-
lowing types:

• Role_Index: This type models the set of roles. A role is specified as an identifier of
type integer (INT in the specification). In the CPN-tool syntax specification, a role R1 is
expressed as R(1).

• Timed_Role_Index: This type is the product: Role_Index × Time, where: Time
is the type timed (defined in CPN-tool. It allows the declaration of a discrete temporal
variable). Tokens in the type Timed_Role_Index are stamped tokens.

• Periodic_Event: This type is the product: Interval × Prio × Role_Index × Time,
where: Interval is a product type INT×INT. For example: (2, 10) denotes the interval of
discrete numbers from 2 to 10. Prio is an integer type. Tokens in the type Periodic_Event
are stamped tokens which model periodic events in the system.

• Event: This type is the product: Prio × Role_Index × Time. Tokens in the type
Event are stamped tokens which model incoming request events due to periodic events.

Figure II.3: Hierarchical Timed-CPN model for enabling/disabling roles

42



Chapitre II Formal Study of TRBAC Security Policies

In Figure II.3, the places EPE and DPE will contain periodic (enabling or disabling)
events. The expression ((i, j), pr, r)@t models a periodic events that will enable (in case
of the arc (EPE, arrival_EPE)) or will disable (in case of the arc (DPE, arrival_DPE)) the
role r, with a priority pr. The validity of these events are limited in the interval of time
[i, j], and they occur iteratively after a specific period at the instant @t. Transitions ar-
rival_EPE, arrival_DPE, arrival_CRQ can be fired when some stamped tokens are present
in EPE or|and DPE and so generate role-enabling or role-disabling requests in the place
RQ (for a request). Due to the temporal aspect of HTCPN, periodic events that marked
places EPE and DPE, are available only if the current time of simulation is equal to their
stamp (@t). On the other hand, each one of these three transitions re-put the event in one
of the places EE or DE to update its stamp (for its next arrival in the system). The update
of the stamp of each periodic event is done by one of the two transitions ChangeDateE
(for enabling events) and ChangeDateD (for disabling events).

In the case of our illustrative examples, all the roles are enabled in the journey. If we
consider a day composed of two periods journey and night, and if the journey period starts
at the instant t = 1 then the journey periods will occur at the stamps: @1, @3, @5, etc
and the night periods will occur at the stamps: @2, @4, @6, etc. In Figure II.3, the two
transitions ChangeDateE and ChangeDateD are timed transitions with the label (@ + 2)
which means that all events stamped @t in the places EE or DE will be updated with a new
stamp (@t′ = @(t+ 2)) and will be re-put again in the places EPE or DPE, if these events
are yet valid (i.e. their intervals [i, j] are always valid (i 6 j)). This is verified by the two
conditional expressions labelling the arcs (ChangDateE, EPE) and (ChangeDateD, DPE).

The transition Arrival_EPE models incoming enabling requests, the transition Ar-
rival_DPE models incoming disabling requests, and the transition Arrival_CRQ models
incoming of concurrent events (enabling and disabling of the same role). The Transition
Arrival_CRQ has the property P_HIGH which means that it will be always fired first once
its preconditions are fulfilled. The transition Arrival_CRQ decides what kind of request
must be put into the place RQ. The decision is based on the priority of each event (i.e. the
attributes pr1 and pr2) and the expression:

if (r1 = r2) then
if (pr1 < pr2) then 1′(0, r1)
else if (pr1 > pr2) then 1′(1, r1)
else empty
else 1′(1, r1)+ +1′(0, r2)

The place RQ will contain the set of requests. A request is a time stamped token. This
token is a couple composed of a role r and an integer equals to “1” for enabling request
or equals to “0” for the disabling request. Finally, transitions disable_r and enable_r, will
enable or disable a role. To enable a role, this role must be disabled at the current time
(the role must be in the place DR), and to disable a role, this one must be enabled at the
current time (the role must be in the place ER). The marking of the places depends on the
scenario to be studied. In such scenario, we must identify: (i) periodic events represent-
ing the marking of places EPE and DPE, (ii) request events representing the marking of
the place RQ, and finally (iii) the set of enabled roles and disabled roles, representing the
marking of places ER and DR. As shown on models in Figure II.3 and Figure II.4, the
places ER, DR, EE, DE and RQ are interface places. These places are shared between
this model and the other models which will be presented below.

43



Chapitre II Formal Study of TRBAC Security Policies

II.3.3.2 Trigger modelling

Triggers can be modelled as a set of transitions. Each trigger< E1, ..., En, C1, ..., Cm
→ pr : E after ∆t > is modelled as a transition (time stamped with ∆t) that has as
inputs places DE, EE (for events: E1, ..., En), DR, ER (for roles status: C1, ..., Cm),
and as output place: EPE or DPE (for enabling or disabling roles in specific period). As
an example, the Figure II.4 shows an HTCPN model of the trigger:
< (1 : enable R1), (2 : disable R2), R3 is enabled, R4 is disabled,> → 3 :
disable R5 after 4 days.

Figure II.4: Hierarchical Timed CPN model for triggers

All the places EE, DE, DPE, ER, DR are interface places. These places are shared
with the model presented in Figure II.3.

II.3.4 Modelling of role-“assignment/deassignment” events and
role-“activation/deactivation” events

In this section, we present the modelling of the events: Assignment (Figure II.5) a
role to a user, Activation (Figure II.6) of a role by a user, Deactivation of a role, and
de-assignment of a role. These events have only non temporal constraints. As in the
previous section, we start by introducing the types used in the specification, and then we
present and we explain the model.

We define three basic types that will be used in this specification:

1. User: to model users. Each element in this type is a triple composed of three integer
elements: the user index, the static cardinality (the maximum number of roles that
can be assigned to this user), and the dynamic cardinality (the maximum number of
roles that this user can activate simultaneously). For example: (U(1), 3, 2) specifies
user U1, with a static cardinality equals to 3 and a dynamic cardinality equals to 2;

2. Role: to model roles. Each element in this type is a triple composed of three integer
elements: the role index (Role_Index presented in the subsection II.3.3.1), the static
cardinality (the maximum number of users for which this role can be assigned), and

44



Chapitre II Formal Study of TRBAC Security Policies

the dynamic cardinality (the maximum number of users that can activate simulta-
neously this role). For example: (R(4), 5, 5) models the role R4, with a static
cardinality equals to 5 and a dynamic cardinality equals 5.

3. Perm: (for permission): to model permission. A permission is modelled as an
integer index. For example: P(1) models the permission number 1;

Using the above three basic types, we define the new 8 following complex types.

1. UserIndexList, RoleIndexList, PermIndexList: three list types. An element in
UserIndexList is a list of indices of users. Idem for the two other types RoleIn-
dexList and PermIndexList. For example, a list of users can be [U(1), U(2), U(3)],
containing three users U1, U2, and U3. Idem for the list of roles and the list of
permissions. For example, [R(1), R(2)] is a list of two roles, and [P(1), P(2)] is a
list of two permissions. These three types (i.e., lists) will be used to define more
complex types in the specification. These complex types are products of the above
predefined types;

2. UserRoles=UserIndex × RoleIndexList. An element in this type is composed of a
user index joined to a list of roles. This type is used to specify the list of roles that
a user is allowed to play, is assigned to or it activates, currently. For example, the
element (U(1), [R(1), R(2)]), according to its location (place) species the following:
(i) in place P3, it specifies that user U1 can play role R1 and role R2; (ii) in place
P4, it specifies that roles R1 and R2 are assigned currently to user U1; (iii) and in
place P9, it specifies that user U1 has activated role R1 and role R2;

3. RoleUsers=RoleIndex × UserIndexList. An element in this type is composed of
a role index joined to a list of users. This type is used to specify either the list of
users for which this role is currently assigned, or the list of users activating this
role currently. For example, element (R(2), [U(1), U(2)]), according to its location
(place), species the following: (i) in place P5, it specifies that role R2 is assigned
simultaneously to users U1 and U2; (ii) in place P12, it specifies that role R1 is
activated simultaneously by two users U1 and U2;

4. RoleRoles = RoleIndex × RoleIndexList. An element in this type is composed of
a role index joined to a list of roles. This type is used to specify: (i) the inheritance
hierarchy relation or the activity hierarchy relation (the set of junior roles are au-
tomatically activated by a user, when this user activates their senior role) between
a senior role and the list of its junior roles; or (ii) the static or dynamic conflicts
relation between a role and a list of other roles. For example, element (R(1), [R(2),
R(3)]), according to its location (place), species the following: (i) in place P13, it
specifies that role R1 is the senior role for the two roles R2 and R3; (ii) in place P8,
it specifies that roles R2 and R3, which are junior roles of R1, will be automatically
activated by the user activating role R1; (iii) in place P6, it specifies that role R1 is
in static conflict with roles R2 and R3, which means that R1 could not be assigned
to the same users that have R2 or R3 as assigned role, currently; and (iv) in place
P10, it specifies that role R1 is in dynamic conflict with roles R2 and R3, which
means that R1 could not be activated by the same user that have activated R2 or R3,
currently.

45



Chapitre II Formal Study of TRBAC Security Policies

5. UserRoleUsers = UserIndex × RoleIndex × UserIndexList. An element in this
type is composed of a user index joined to a role index, joined to a list of users.
This type is used to specify the static or dynamic conflict relation between a user
and a list of other users, on a specific role. For example, an element (U(1), R(2),
[U(2), U(3)]), according to its location (place), species the following: (i) in place
P7, it specifies that user U1 is in static conflicts with two users U2 and U3 (on role
R2), which means that R2 must not be assigned to U1 if it is assigned, currently,
to user U2 or to user U3; (ii) in place P11, it specifies that user U1 is in dynamic
conflicts with users U2 and U3, which means that U1 could not activate R2 if it is
activated currently by user U2 or by user U3.

6. UserPerm = UserIndex × PermIndexList. An element in this type is composed of
a user index joined to a list of permissions. This type is used to specify the list of
permissions assigned to a user. For example, in this type, element (U(1),[P(1),P(2)])
specifies that user U1 has two permissions P1 and P2;

7. RolePerm = RoleIndex × PermIndexList. An element in this type is composed of
a role index joined to a list of permissions. This type is used to specify the list of
permissions assigned to a role. For example, in this type, the element (R(1), [P(1),
P(2)]) specifies that user R1 defines two permissions P1 and P2;

8. Role Hierarchy in Permission Conflict = RoleIndex × RoleIndex × PermIn-
dexList. In this type an element is composed of a first role index, a second role
index and a list of permissions. This means that the first role inherits all permis-
sions from the second role, except the permissions given in the list. For example
(R(1), R(2), [P(1), P(2)]) specifies that role R1 is the senior of the role R2 but R1
cannot inherit the permissions P1 and P2 from R2.

Besides this list of complex types, we add the four types (which are added only to
clarify the specification): StatCardUser, DynCardUser, StatCardRole, DynCardRole.
These four types are defined as integer types. An element in one of these types is an inte-
ger which specifies a static or a dynamic cardinality for a user or a role. It is clear that we
can use directly the integer type.

Based on the above types, the following paragraphs will present the modelling of two
events (role-assignment and role-activation) in a TRBAC policy, as HTCPN models.

II.3.4.1 Modelling the role-assignment event

To assign a role Ri to a user Ui (see Figure II.5), the following 8 conditions must be
satisfied.

1. In the system, we have a user Ui and a role Ri: this condition is satisfied by the
presence of a user token (Ui, SCU, DCU) in place P1 and the presence of a role
token (Ri, SCR, DCR) in place P2. SCU, SCR, DCU , and DCR are integers
that represent the static cardinality and the dynamic cardinality for user Ui and role
Ri, respectively;

2. User Ui is allowed to play role Ri: this condition is satisfied by the presence of
a token (Ui, ARL) in place P3. ARL is a list of allowed roles and Ri must be in

46



Chapitre II Formal Study of TRBAC Security Policies

the list ARL. We add a guard which implies that Ri is a member of ARL. In the
CPN-tool, this guard is written: [mem ARL Ri];

3. Role Ri is enabled: this condition is satisfied by the presence of role token Ri in
place ER;

4. Role Ri is not yet assigned to user Ui: this is satisfied by the existence of a token
(Ri, RL) in place P4 and roleRi is not in listRL (written as a guard: [memRLRi=
false]);

5. There is no static conflict between user Ui and users for which Ri is assigned
currently: this is satisfied by: (1) the presence of a token (Ri, UL) in place P5,
where UL is the list of users for which Ri is assigned, (2) the presence of a token
(Ui, Ri, USCL) in place P7 (defining users having static conflicts), where USCL
is a list of users that have conflicts with Ui, and finally (3) the intersection between
USCL and UL is empty (written as a guard:
[intersect USCL UL = nil]);

6. There is not a static conflict between role Ri and roles assigned currently to user
Ui: this is satisfied by:(1) the presence of a token (Ui, RL) in place P4, where
RL is the list of roles assigned to Ui, (2) the presence of a token (Ri, RSCL)
in place P6, where RSCL is a list of roles that have conflict with Ri, and fi-
nally (3) the intersection between RSCL and RL is empty (written as a guard:
[intersect RSCL RL = nil]);

7. The number of assigned roles to Ui is less than the static cardinality of user Ui:
this is satisfied by: (1) the presence of a token (Ui, USC, UDC) in P1, (2) the
presence of a token (Ui, RL) in place P4, where RL is the list of roles assigned to
Ui, and finally (3) the number of elements in RL is less than the static cardinality
USC (written as a guard: [length RL < USC]);

8. The number of users that have Ri in their assigned roles is less than the static car-
dinality of role Ri: this is satisfied by: (1) the presence of a token (Ri, SCR,
DCR) in P1, (2) the presence of a token (Ri, UL) in place P4, where UL is the
list of users for which Ri is currently assigned, and finally (3) the number of el-
ements in UL is less then RSC “Static Cardinality for R” (written as a guard:
[length UL < RSC]).

After the assignment of role Ri to user Ui, we will have:

1. Role Ri is assigned to user Ui: this is modelled by two effects: (1) An expression
labelling the arc that updates the marking of place P4 (where roles assigned to each
user are defined); This expression is written (Ui, ins RL Ri), which means to add
role Ri to the list of roles assigned currently to user Ui. (2) An expression labelling
the arc that updates the marking of place P5 (where users assigned to each role are
defined); This expression is written (Ri, ins UL Ui), which means to add user Ui
to the list of users assigned currently to role Ri;

2. All junior roles of role Ri become allowed to user Ui (according to Role AHierar-
chy relation): This is modelled by the updating of P3 marking, using the expres-
sion (Ui, union RL RAHL), such thatRL is the old list of roles allowed to Ui, and

47



Chapitre II Formal Study of TRBAC Security Policies

RAHL is the list of Ri junior roles (junior roles that are automatically activated by
a user, when this last one activates Ri). The “union RL RAHL” is the union of the
two lists. The list RAHL is obtained from an input expression (Ri, RAHL) from
place P8 (P8 contains for each role the set of its junior roles);

According to the above description, the HTCPN model of the role-assignment event
will be as depicted on the Figure II.5. In this Figure, types of places are near to places and
their identifiers are inside the circles. The expressions labelling arcs are written near each
arc. The guard associated with the transition “Assign” is [mem ARL Ri, mem RL Ri =
false, intersect ULSC UL = nil, intersect RLSC RL = nil, length RL < SCU,
length UL < SCR].

Figure II.5: HTCPN model for role-assignment event

In Figure II.5, places P1, P2, P4 and ER are interface places. ER is shared between
this model and models presented in Figure II.3 and Figure II.4. P1, P2, and P4 are shared
with the role-activation model (see Figure II.6, to be presented in the subsection II.3.4.2).

II.3.4.2 Modelling the role-activation event

The activation process of role Ri by user Ui is done through three steps (modelled by
four transitions in the HTCPN model). Firstly, we check that all the necessary conditions
to activate Ri by Ui are satisfied. If this is the case, role Ri is added to activated roles
of Ui, and a first transition (activate) is fired. Secondly, we check if role Ri has some
junior roles (with respect to the Inheritance Hierarchy relation); if this is the case then all
these junior roles of Ri must be identified. This identification is done by the two transi-
tions (inheriting_roles_1 and inheriting_roles_2). Thirdly, the set of permissions of role
Ri and all its junior roles are assigned to user Ui (using transition taking_permissions).
During these three steps, user Ui and role Ri must not be used by another transition (for
example transition “Assign”), and once these steps are finished, a fifth transition (restore)
restores Ui and Ri to their original places P1 and P2.

The subnet that models the activation process shares places P1 (representing the set
of users), P2 (representing the set of roles) and P4 (representing the assignment status)
with the subnet modelling the assignment. There are seven necessary conditions to fire
the transition “activate”.

48



Chapitre II Formal Study of TRBAC Security Policies

1. The system contains a user Ui and a role Ri: this is modelled by the presence of a
user token (Ui, SCU,
DCU) in place P1 and a role token (Ri, SCR,DCR) in place P2;

2. Role Ri is assigned to user Ui: this is modelled by a guard “Ri is a member in list
RL”, associated with transition activate and written as [mem RL Ri]. RL is the
list of assigned roles to user Ui, and it is defined in token (Ui, RL), in place P4;

3. Role Ri is not yet activated by Ui: this is modelled by guard “Ri is not a member
in the list ARL”, written as [mem ARL Ri = false]. ARL is the list of activated
roles by user Ui, and it is defined in token (Ui, ARL), in place P9;

4. Role Ri is not in a dynamic conflict with one of the currently activated roles by
Ui: this is modelled by the guard: “the intersection between the two lists ARL and
RDCL is empty”, written as [intersect ARL RDCL = nil]. RDCL (the list of
roles which are in dynamic conflicts with role Ri) is defined in token (Ri, RDCL)
in place P10. ARL (the list of activated roles by user Ui) is defined in token
(Ui, ARL), in place P9;

5. User Ui is not in a dynamic conflict with one of users activating role Ri, currently:
this is modelled by the guard: “the intersection between the two lists AUL and
UDCL is empty”, written as: [intersect AUL
UDCL = nil]. AUL (the list of users activating role Ri) is defined in token
(Ri, ULAct), in place P12. ULDC (the list of users which are in dynamic conflicts
with Ui) is defined in token (Ui, Ri, ULDC), in place P11;

6. The number of roles activated by user Ui is less than the dynamic cardinality of
user Ui: this is modelled by the guard: “the number of elements in the list ARL is
less than the value UDC”, written as: [length ARL < DCU ]. ARL (the list of
activated roles by Ui) is defined in the token (Ui, ARL), in place P9;

7. The number of users activating role Ri, currently, is less than the dynamic cardi-
nality of role Ri: this is modelled by the guard: “the number of elements in AUL
is less than RDC”, written as: [length AUL < RDC]. AUL (the list of users
activating role Ri) is defined in token (Ri, AUL), in place P10.

After the firing of transition “activate”, we will have the following.

1. Role Ri is added to the list of activated roles by user Ui: this is modelled by up-
dating the marking of place P9, with token (Ui, ins ARL Ri). The expression
“ins ARL Ri” adds role Ri to list of activated roles (ARL) by user Ui;

2. User Ui is added to the list of users activating role Ri: this is modelled by updating
the marking of place P12, with token (Ri, ins AUL Ui);

3. User Ui takes all permissions defined for role Ri and all its juniors roles. This is
modelled by: (i) firstly, extracting Ri juniors roles. This is done using transition
“inheriting_roles_1”. This transition requires a token (Ri, IHRL) from place P13,
where IHRL is the list of junior roles of role Ri. This list is then added into place
P16. (ii) Secondly, transition “inheriting_roles_2” is fired iteratively to extract all
roles from list IHRL. When “inheriting_roles_2” is fired, it puts a role in place

49



Chapitre II Formal Study of TRBAC Security Policies

P18. (iii) Transition “taking_permissions” checks place P18, and once a role Rj

is found in P18, this transition uses token (Rj, RPL) (where RPL is the list of
permissions defined in role Rj) from place P19 to update the marking of place P20,
with token (Ui, union UPL RPL). Expression
“union UPL RPL” is evaluated to the union of list RPL and list UPL (the per-
missions assigned previously to user Ui); (iv) Finally, when list IHRL is empty,
transition “restore” re-puts user Ui and role Ri into their places P1, P2, and ER
(enabled Roles).

According to the above description, the HTCPN model of the activation-event will be
as shown in FigureII.6.

Figure II.6: HTCPN model for role-activation event

II.3.5 Formalisation and verification of properties
The verification of the policy model is realized using the CPN-tool [6]. CPN-tool

allows the simulation of the model and the verification of several properties. In the case

50



Chapitre II Formal Study of TRBAC Security Policies

of the HTCPN model for a TRBAC policy, the initial marking of the model represents the
initial state of the system. This initial state can be also considered as a scenario example
of a TRBAC policy. The properties, which will be verified, depending on the chosen
scenario. In this section, we use the TRBAC policy presented above in the illustrative
example (Section II.3.1), and we will apply the analysis by reachability graph computed
by the CPN-tool. Based on this reachability graph, we build programs in the ML language
[? ] to prove several proprieties. The ML programs are executed by the CPN-tool, and
the results of the verification are presented. In the following subsections, we will present
three classes of properties concerning respectively (i)the role enabling/disabling model,
(ii)the role-assignment event model, and finally (iii)the role-activation event model.

II.3.5.1 Formalisation and verification of properties on the role
enabling/disabling model

Three temporal properties that a designer can be interested to verify on the model.

• Property 1: “A roleR(i) is enabled during its authorized period”. In the illustrative
example, all the roles must be enabled in the journey period. We have verified the
property for a short interval of time (two days: the journey of the first day t=1 and
the journey of the second day t=3). The marking of place ER (enabled roles) proves
that all roles can be enabled in each journey in the specified interval (i.e., 2 days).

• Property 2: “A roleR(i) will never be enabled except during its authorized period”.
This is formulated as: when the time of the system is t, every enabled role R(i) (in
the place ER) must be allowed to be enabled at this instant t (i.e., the stamped token
(([i, j], R(i))@t) exists in the place EE). In the illustrative example, all roles will
never be enabled in the night period. As an example, for an interval of two days
(the night of the first day t=2 and the night of the second day t=4), markings prove
that all enabled roles in ER are respecting the enabling constraints.

• Property 3: “A role R(i) will never be disabled in its authorized period”. This is
formulated as: When the time of the system is t, every disabled role R(i) (R(i)@t
(existing in DR) must be in place DE (i.e., DE contains the stamped token (((i, j),
R(i))@t)). In the illustrative example, all roles will never be disabled during the
journey period. In a short interval of 2 days, the marking of the place DR (disabled
roles) illustrates that all roles disabled are stamped with (t=2 or t=4) and proves
that all roles are disabled only in the night period.

II.3.5.2 Formalisation and verification of properties on the role-assignment event
model

The model in Figure II.5 is a template which can be used to verify any TRBAC policy.
The example illustrated in section II.3.1 is used to define the initial marking of the model.
We propose to add three anonymous users U(39), U(40) and U(41) which can be assigned
to citizen’s delegate role. The reachability graph report shows the markings of places.
Indeed, the simulation report (with binding option) shows the sequence of the executed
bindings (firing transitions), one by one with the time of each binding. Hence, the pro-
posed approach uses the markings of places to verify non-temporal properties. To verify
the temporal properties, the approach uses markings of places and executed bindings. In
the temporal properties verification, we use the illustrative example enriched with a new

51



Chapitre II Formal Study of TRBAC Security Policies

role R(10) (denoting a Night_Security_Agent). R(10) has an enable time which is “night
time” and it is allowed for a new user U(42). Once the model has its initial marking, one
can be interested to verify the following properties.

• Property 1: “Can a user U(i) play all its allowed roles?”. This is formulated as:
From each state where U(i) is allowed to play the set of roles {R(1), ..., R(n)} (i.e.,
a state where the marking of P3 contains
(U(i), [R(1), ..., R(n)])), and for each
R(i) in {R(1), ..., R(n)}, we must find some path in the reachability graph in which
there is at least one binding: < assign, Ui = U(i), Ri = R(i) > (a state where the
marking of P4 contains (U(i), [R(i)]))). Considering the policy (presented in sec-
tion: II.3.1), the reachability graph report shows the markings of places P3 (Figure
II.7) and P4 (Figure II.8);

Figure II.7: marking of P3

Figure II.8: marking of P4

The marking of P4 confirms that every role allowed to a user in P3 is assigned to
this user in P4. For example, the role Procurator (R(1)) is assigned to user U(1), the
two users U(2) and U(3) have the role Procurator Assistant (R(2)), etc.

• Property 2: “A user U(i) will never have a role R(i) which could not be assigned
to it”. This is formulated as: Every role R(i) assigned to user U(i) in place P4
(containing assigned roles for each user), must be an allowed role to user U(i) in
the place P3 (containing allowed roles for each user). Indeed, the marking of P3
and P4 in the previous figures show that every role assigned to a user is an allowed
role to it.

52



Chapitre II Formal Study of TRBAC Security Policies

• Property 3: Cardinality constraint 1: “A user will never have a number of assigned
roles greater than its SCU (static cardinality for a user)”. This is formulated as: In
place P4 (containing assigned roles for each user), each user U(i) must have in its
list of roles a number of roles less than or equal to its SCU (defined in place P1, see
Figure II.9). Indeed, in the marking of P1, all users have SCU=1. The marking of P4
proves that every user in the system has only one assigned role. For example, users
U(39), U(40) and U(41) must be assigned only to role R(9) (citizen’s delegate).

Figure II.9: marking of P1

• Property 4: Cardinality constraint 2: “A role will never be assigned to a number of
users greater than its SCR (static cardinality for a role)”. This is formulated as: In
place P5 (containing assigned users for each role), each role R(i) must have in its
list of users a number of users less than or equal to its SCR (defined in place P2).
In fact, the marking of P5 (Figure II.11) proves that the number of users assigned
to a role is equal to its SCR predefined in P2 (Figure II.10). For example, in place
P2, role R6 (Secretary) has a cardinality constraint equals to 2 and in place P5, role
R(6) has exactly two assigned users U(31) and U(32).

Figure II.10: marking of P2

Figure II.11: marking of P5

• SoD Constraints: We consider the two following properties.

53



Chapitre II Formal Study of TRBAC Security Policies

1. “A role must never be assigned to two conflicting users (Static Conflict be-
tween users)”. Let us consider LU1 = [U(1), ..., U(n)] the list of users as-
signed to roleR(i) in place P5 (containing assigned users for each role). Let us
considerLU2 = [U ′(1), ..., U ′(m)] the list of conflicting users on the roleR(i)
in place P7. The constraint is formulated as: for all roleR(i), LU2∩LU1 = φ.

2. “A user must never have two assigned conflicting roles (Static Conflict be-
tween roles)”. Let us consider LR1 = [R(1), ..., R(n)] the list of roles as-
signed to user U(i) in the place P4 (containing assigned roles for each user).
Let us consider LR2 = [R′(1), ..., R′(m)] the list of conflicting roles on user
U(i) defined in place P6. The constraint is formulated as: for all user U(i),
LR2 ∩ LR1 = φ.

In our illustrative example, we have considered one conflict between roles. It is a
static conflict between role “citizen’s delegate” (R9) and all the other roles. The
marking of place P4 proves that there is no role from (R1, R2, R3, R4, R5, R6, R7,
R8) assigned to a user which has R9 as an assigned role.

Besides the above properties, the designer can be interested to verify the two following
temporal properties.

• Temporal Property 1: “Can a user U(i) play all its allowed roles during their
authorized periods?”. This is formulated as: From each state where U(i) is al-
lowed to play the set of roles R(1), ..., R(n) (i.e., the marking of P3 contains
(U(i), [R(1), ..., R(n)])), and for each role R(i) in R(1), ..., R(n), and for each
period per which is an authorized period for R(i) (i.e., the marking of DPE con-
tains the stamped token ((I, J), R(i))@per), we must find a path in the reachability
graph in which there is a binding:
< assign, Ui = U(i), Ri = R(i), time = t >, such that t must coincide with
period per. In the illustrative example, the role Procurator R(1) is an allowed role
for user U(1), and the authorized period for it is the journey. Indeed, the role
Night_Security_Agent is an allowed role for the user U(42), and the authorized pe-
riod for it is the Night. In a short interval of 2 days, the verification proves that: (i)
Role R(1) is assigned to U(1) at two times t=0 and t=2; (ii) Role R(10) is assigned
to U(42) at one time t=1. Figures II.12,II.13 and II.14 are snapshots from the sim-
ulation report. The first line in figure II.12 shows that the step 63 is the firing of the
transition “Assign” at time 0. The rest is the binding of the transition’s variables.

Figure II.12: Simulation report step 63

• Temporal Property 2: “A user U(i) will never play its allowed role R(i) during
a non authorized period per”. This is formulated as: when the time of the system

54



Chapitre II Formal Study of TRBAC Security Policies

Figure II.13: Simulation report step 76

Figure II.14: Simulation report step 122

is t, every role R(i) assigned to a user U(i) (i.e., in place P4), must be an enabled
role in place ER at the same time t, such that t must coincide with period per. For
example, user U(1) plays R(1) at t = 0 and t = 2, hence role R(1) must be enable
at t = 0 and t = 2. Figures II.15 and II.16 are snapshots from the simulation report
which proves that the role R(1) is enabled at t = 0 and t = 2.

Figure II.15: Simulation report step 19

Figure II.16: Simulation report step 119

II.3.5.3 Formalisation and verification of properties on the role-activation event
model

Using the model in Figure II.6, one can be interested to verify the following properties:

• Property 1: “Can a user Ui activate all its assigned roles?”. This property is for-
mulated as: from each state where {R(1), ..., R(n)} are assigned to U(i) (which
means a state where the marking of P4 contains (U(i), [R(1), ..., R(n)])), and for
each R(i) in R(1), ..., R(n), we must find some path in the reachability graph in
which there is at least one binding: < activate, Ui = U(i), Ri = R(i) >”. To
prove this property, we select just users U1 and U2 to verify if a user can acti-
vate all its assigned roles. From place P4 we have assigned roles of U1 and U2:
1’(U(1),[R(1)])++ 1’(U(2),[R(2)]). So we should find that U1 and U2 can activated

55



Chapitre II Formal Study of TRBAC Security Policies

their roles. Indeed, the marking of place P9 (place of activated roles) is equal to
1’(U(1),[R(1)])++1’(U(2), [R(2)]). This marking proves that U1 and U2 can acti-
vate all their roles;

• Property 2: “A user will never activate a role which is not assigned to it”. This is
formulated as the following: every role R(i) activated by a user U(i) in the place
P9 (containing activated roles by each user), must be an assigned role to this user in
the place P4 (containing assigned roles for each user). Indeed, from the marking of
place P9, we see that every activated role by a user is an assigned role to this user
in marking of place P4.

• Property 3: Cardinality constraint 1: “A user will never activate a number of roles
more than its DCU (dynamic cardinality for a user)”. This is formulated as: in place
P9 (containing activated roles by each user), each user U(i) must have in its list of
roles a number of roles less than or equal to its DCU (defined in place P1). Indeed,
the marking of place P1 illustrates that the DCU for all the users is one, and the
marking of place P9 proves that every user activates just one role;

• Property 4: Cardinality constraint 2: “A role will never be activated by a number
of users greater than the DCR (dynamic cardinality for a role)”. This is formulated
as: in place P12 (containing users activating each role), each role R(i) must have
in its list of users a number of users less than or equal to its DCR (defined in place
P2). From the marking of P2, the DCR of R(1) is 1 and the DCR of R(2) is 2. The
marking of P12 is 1’(R(1),[U(1)]) + + 1’(R(2),[U(2)]). Thus, from the marking of
P12, R(1) and R(2) are activated by one user (≤ 2) and this proves that the DCR
constraint is respected;

• SoD constraints:
The three following constraints are considered.

– “A role must never be activated by two conflicting users (Dynamic Conflict
between users)”: Let LU1 = [U(1), ..., U(n)] be the list of users activating
role R(i) (i.e., in place P12). Let LU2 = [U ′(1), ..., U ′(m)] be the list of users
in conflicts with user U(i) on the role R(i) (defined in the place P11). The
constraint is formulated as: for all user U(i) in LU1: LU2 ∩ LU1 = φ;

– “A user must never activate two conflicting roles (Dynamic Conflict between
roles)”. Let LR1 = [R(1), ..., R(n)] be the list of activated roles by the user
U(i) (i.e., in place P9). Let LR2 = [R′(1), ..., R′(m)] be the list of roles
which can not be activated simultaneously by R(i) (i.e., in place P10). The
constraint is formulated as: for each user U(i): | LR2 ∩ LR1 = φ |≤ 1;

• Property 5: “A user has only permissions defined in its activated roles and their
junior roles (I-Hierarchy relations) even if these last ones are not activated by the
user”. This is formulated as follows: every permission assigned to user U(i) (i.e., in
place P20), must be a permission defined in a role R(j) (i.e., in place P19), and role
R(j) must be activated by user U(i) (i.e., in P9). Indeed, from the marking of place
P9, one can find that roles R(1) and R(2) are activated simultaneously by users U1

and U2, respectively. R(1) is a senior role of R(2), hence R(1) should inherit R(2)
permissions and all permissions of R(2) juniors. The marking of place P19 proves
this situation.

56



Chapitre II Formal Study of TRBAC Security Policies

Besides the above properties, the designer can be interested to verify the following
three temporal properties.

• Temporal Property 1: “Can a user U(i) activate all its assigned roles in their au-
thorized periods?”. This is formulated as: from each state where roles {R(1),
..., R(n)} are assigned toU(i) (i.e., the marking of P4 contains (U(i), [R(1), ..., R(n)
])), such that for all R(i) in {R(1), ..., R(n)}, R(i) is enabled in period per (i.e.,
EPE contains ((I, j), R(i))@per), we must find a path in the reachability graph in
which there is a binding: < activate, Ui = U(i), Ri = R(i), time = per >.

• Temporal Property 2: “A user U(i) will never activate a role R(i) during a unau-
thorized period?”. This is formulated as: when the time of the system is t, every
role R(i) activated by a user U(i) (i.e., in place P9) must be an assigned role to this
user (i.e., in the place P4), at a period which must coincide with t;

• Temporal Property 3: “A user has only permissions defined in its activated roles,
and in their authorized periods”. This is formulated as the following: when the time
of the system is t, every permission assigned to user U(i) (i.e., in place P20) must
be a permission defined in role R(j) (i.e., in the place P19) and role R(j) must be
activated by U(i) (i.e., in P9), at a period which must coincide with t.

II.4 Conclusion
The use of Petri nets to model RBAC (Role Based Access Control) [81] policies is

one of the ambitious axes to ensure the analysis and verification of RBAC security poli-
cies. Petri nets formalism is an event based formalism, thus specification with Petri nets
requires defining events from RBAC models. Most works consider enabling, disabling,
assignment, and activation of roles as the basic events that must be modelled and anal-
ysed. The analysis of Petri net models allows the designer to prove the consistency of
its policy. One can use the reachability graph of Petri net model to analyse and to verify
the policy. Coloured Petri Nets (CPNs) represent an extension of Petri nets with more
expressive power. The modelling of RBAC using CPNs [5] is more practical than using
classical Petri Nets. The CPN-tool [6] is an efficiency automatic tool that can be used to
model, simulate and verify CPN models.

Some extensions of RBAC (Temporal RBAC [3], General Temporal RBAC [28]) con-
sider temporal constraints on RBAC events. The use of a temporal formalism, like Timed
CPN, is more adequate to model these constraints. Besides the temporal aspect, the use
of hierarchical aspect allows the designer to have well organized models. The hierarchy
helps the designer to manage and to understand its model. In this chapter, we have pre-
sented an approach (down-top) to model and to analyse TRBAC policies. This approach
uses Hierarchical Timed CPNs formalism to construct models of different events. After
the construction of models, we have exploited CPN-tool to verify the consistency of mod-
els. Through this chapter, we have presented how to specify several TRBAC constraints,
we have presented a scenario example, and we have discussed the results of its analysis,
and what kinds of properties to be checked.

The current work can be extended through several levels. On a first level, we propose
to generalize the approach to deal with more extensions of RBAC as: GTRBAC, XGRP-
RBAC [31], H-RBAC [32], and Tie-RBAC [33]. Another important ambition concerns
the exploiting of CPN-tool abilities. The CPN-tool uses the XML (eXtended Markup

57



Chapitre II Formal Study of TRBAC Security Policies

Language) to save specifications. This quality can be used to exploit the current speci-
fication as a template where the scenario of RBAC written in XML can be injected and
verified. This last possibility is important because this work is a part of a project dedicated
to: (i) specify RBAC policies in XML, (ii) composition of policies, (iii) optimization of
their composition, and finally (iv) formal verification of policies. By using XML specifi-
cation language, this work can be integrated with the other parts of the project. Finally,
we propose to tackle with the verification optimisation. Indeed, we use a state transi-
tion based model as coloured Petri nets; therefore, the verification process is based on
the reachability graph using a model-checker (i.e., the CPN-tool). The major limit of the
model checking process is the explosion in state space when the models are complicated
and the process can be stopped due to a stack overflow in the memory. To overcome such
a limit, the CPN-tool implementation uses symbolic model-checking which reduces the
reachability graph based on symmetric properties in that graph. In our future work, we
aim to tackle this aspect in order to optimize the verification process of large policies.

58



Chapter III

Second Contribution: Fine-grained
Role-Attribute based Access Control
model (FRABAC ): A New Hybrid
Access Control Model

59



Chapitre III FRABAC : A New Hybrid Access Control Model

III.1 Introduction
New technologies as cloud computing and internet of things (IoT) has expanded the

range of applications. This expansion, in several computing and heterogeneous envi-
ronments, makes access control an important issue. Indeed, a variety of access control
models have been developed to address different aspects of security problems. The two
most popular basic models are: Role Based Access Control (RBAC) and Attribute Based
Access Control (ABAC). Both models RBAC and ABAC have their specific features and
they can complement each other. For that, providing a hybrid model which considers both
concepts “roles” as well as “attributes” has become an important research topic.

In this chapter, we propose a new access control model based principally on roles,
attributes, access modes and the type of resources. An empirical method is applied to
compare the new proposed model versus three existing models: RBAC, ABAC, and the
hybrid model Attribute Enhanced RBAC (AERBAC). This empirical comparison is based
on four metrics that are inspired from the limitations of RBAC and ABAC.

The rest of the chapter is organized as follows. Section III.2 exposes related work
dealing with RBAC, ABAC and hybrid models. Section III.3 starts by presenting the re-
quirements and needs for a new access control model, then it presents the principle and the
components of the new proposed access control model. Section III.4 details the principles
of the proposed empirical comparison approach, the proposed metrics, a demonstrative
example, and analyses the models RBAC, ABAC, AERBAC and the new proposed model
using the defined metrics. Finally, section III.5 concludes the proposed work.

III.2 Related work
In RBAC model, permissions are associated with roles that users have as a part of an

organization. Thus, the user’s access to resources is decided based on his role. Therefore,
a role can be considered as a collection of users that have the same set of permissions.
This approach has two principal advantages, on one hand, users will access only to the
resources that they require to achieve their tasks, under the suitable mode. On the other
hand, the system administration is made easy. However, in the basic RBAC, the access
decision will be complex [26] and not adequate [27] when the contextual attributes are
required to granting the access. Moreover, the permissions are referring to individual
objects. This kind of referring leads to role-permission explosion problem in situations
including a large number of objects. To resolve these disadvantages, ABAC [82] was pro-
posed. The ABAC model introduces the concept of the attribute, hence an ABAC system
is composed of three sets of entities: users, resources and the environment. Each of these
three entities has specific attributes. An attribute consists of a pair (key, value) and the
permissions of users depend on their attributes. Even the ABAC was proposed to facili-
tate the management of security, the proposed solution by ABAC can be as complicated
as that of RBAC in some cases [11]. According to [50], in ABAC the role names are still
associated with users, but they are no more considered as collections of permissions. In
most systems, there are private objects dedicated to a particular user and where the access
is qualified as “unique access” (for example, the report card of a student) versus “multi-
ple access” in the case of shared objects. To restrict the access to these private objects,
the two models resolve the situation differently. In fact, RBAC introduces a private role
for each student whereas ABAC introduces a private rule for each student. In this case,

60



Chapitre III FRABAC : A New Hybrid Access Control Model

the system does not benefit from the advantages of the role of RBAC and the attributes
of ABAC. Besides this problem, granting a request of a user in both models (RBAC or
ABAC) requires to check the user permissions one by one to make a decision to grant or
deny the access.

According to [83], RBAC and ABAC cannot be directly applied to IoT because of
their limitations. However, both models still have some advantages that can be exploited
in IoT applications. RBAC deals with the distribution problem of competencies where
time and location change, while ABAC deals with the dynamic propagation problems of
users. Both models RBAC and ABAC have their specific features and they can com-
plement each other. The idea to merge RBAC and ABAC in one model has become an
important research topic, in order to acquire advantages of these two models. However,
the proposed solutions for merging both models are still insufficient. Indeed, NIST orga-
nization has announced a challenging project to define a new security model [27] based
on the both existing models. Many researchers have adopted the idea and several propo-
sitions are developed. RABAC (Role-centric Attribute- Based Access Control) [84] is the
first formal hybrid model which proposes an assignment of roles avoiding role-explosion
problem. RABAC is an extension of RBAC with permission filtering policy (PFP) which
constrains the available set of permissions based on user and object attributes by using
Boolean expression (function). According to [11], the RABAC approach does not incor-
porate environment attributes and so that it is not suitable for systems involving frequently
changing attributes. The authors in [11] combine RBAC and ABAC in one new model
AERBAC (Attributes Enhanced Role-Based Access Control), by using contextual infor-
mation and exploiting the contents of the resources to provide fine-grained access control
mechanism. Several works as spatio-temporal RBAC [85] and context-aware RBAC [47]
focus on the merge of access context in RBAC. However, these models suffer from the
role-explosion problem (a big number of roles). To deal with this problem, a new spatio-
temporal RBAC [86] model was proposed by introducing the concept of spatio-temporal
zones to abstract location and time into one single entity. In this last model, using zones
prevents the creation of new roles when spatio-temporal constraints associated with them
change.

III.3 A new hybrid access control model
In this section, we present our proposed model which is a hybrid model based on both

models RBAC and ABAC. The proposed model integrates the multiple accesses as well
as the unique access. Before presenting the new proposed model, we start by listing a set
of requirements which must be fulfilled by a suitable access control model.

III.3.1 Requirements for a suitable access control model
To deal optimally with security policies, an access control model is expected to guar-

antee the following needs.

• Reduce the complexity of the security policy. This requires the reduction of two
metrics: Written Permissions Number (WPN) and the evaluated permissions num-
ber (EPN). TheWPN is the total number of the written permissions, by the admin-
istrator, to define what a user or a group can or can not do. The EPN is the number
of permissions which will be evaluated, by the system, to decide that a user has not

61



Chapitre III FRABAC : A New Hybrid Access Control Model

the requested permission. In fact, reducing WPN leads to reduce the EPN which
makes the auditing in the model easier.

• Use a suitable format of rules or permissions allowing to express the complex gran-
ularity of systems without any explosion.

• Use a suitable format of rules or permissions allowing to express the access to
private objects.

To achieve the above requirements, we need to consider the following basic ideas in
the new proposed model.

• Use the Role concept; thus, divide the users according to their functions.

• Each role has a set of permissions which are expressed in rules.

• In each rule, we express the object, user, and environment features.

• Divide the set of rules according to the access actions. Because there is one rule
for each access actions, in each role, the decision, if a user has not the requested
permission, needs to evaluate just one rule in each active role of this user. Hence,
the number EPN equals to number of Active Roles (AR): EPN = AR.

A model, which considers the above basic requirements, will be able to overcome all
access control models requirements and will provide the advantages of ABAC and RBAC.
In the next section, we establish a new model in order to meet these required features.

III.3.2 Principle of the proposed model
To benefit from RBAC, we define a set of roles and each role has its permissions, but

rather than considering permissions as a set of permissions referring to individual objects
and to one instance of the access action, we divide the permissions assigned to a role ac-
cording to its access actions. In the RBAC model, if the designer wants to express the fact
that a role “admin” can read papers and mails then he must define a set of permissions
assigned to this role as: (admin, read, paper1), ... , (admin, read, papern), (admin, read,
mail1), ... , (admin, read, mailm). However, in our proposed model, we propose to define
an assignment of permissions as: (admin, read, papers and mails). This last assignment is
used to express that all objects which the admin can read are: papers and mails; hence we
collect the objects into sets, according to the access type (read, write, etc) by the role. In
each set, we separate the objects dedicated to a particular user (i.e. unique access) from
the objects dedicated to multi users (i.e. multi-access) into two subsets. To benefit from
ABAC advantages, identification of permissions takes into consideration the different at-
tributes of objects, subjects (users) and the environment. By exploiting the attributes of
objects, users, environment, and the concept of ABAC rule, we assume that our model
overcomes the following problems which face other models: (i) the role permissions ex-
plosion, (ii) roles explosion, and (iii) the exponential augmentation of the groups when
the number of object categories increases. The use of private objects and shared objects
to integrate the multi access and the unique access, in the same model, makes the model
more “realistic|flexible” and respects the concept of the role in RBAC as well as the con-
cept of attribute in ABAC (i.e. to restrict the access of each user only to his data, we do

62



Chapitre III FRABAC : A New Hybrid Access Control Model

not need to define private role or specific rule to each user). The assignment of a role to a
set of users allows the designer controlling the separation of duties, list of privileges, con-
fidentiality and to use the principle of role inheritance. FigureIII.1 depicts the principle
of the proposed model. The constraints and the mechanisms required by the model will
be presented in the next section.

Figure III.1: Principle of the proposed model

The figure III.1 illustrates that the permissions of users are assigned to them according
to their roles (the same principle as RBAC). Each role has a set of rules defining its
permissions (read an object, write the object, delete an object, execute an object, etc.).
This set of rules is constructed by defining two rules for each access type (read access
rules, delete access rules, etc.). The first type of rules concerns the access to shared
objects and the second type of rules concerns the access to private objects. This separation
between rules makes the model more efficient. Instead of checking the user query using
a lot of rules, the model checks the user query using only one rule. Indeed, the syntax
of rules used in this model allows the designer to divide the permission according to the
access type for both object types and takes into consideration the different attributes of
objects, subjects (users) and environment.

III.3.3 Collaborative Cloud Services case in the proposed model
Collaborative Cloud Services is used to achieve collaboration projects or services in

a cloud environment, where there is a need to share some resources between services.
The sharing of resources must be secure in this dynamic distributed environment. We
distinguish between two cases of collaboration and we illustrate the principle of our policy
in these two cases.

III.3.3.1 Enterprises Collaboration

To finish some tasks in a collaboration project, certain employees of an enterprise need
access to some resources of another enterprise. The data owner of this last must give the
required accesses to the other enterprise employees. The owner gives the accesses accord-
ing to the role of employees, through his access policy. Hence, there is heterogeneity of
access policies and conflicting policies in this distributed environment. Even if the other

63



Chapitre III FRABAC : A New Hybrid Access Control Model

enterprise has the same access policy model, the owner can not have trust in the other’s
access restrictions.

For more explanation, we use collaborative cloud services example illustrated in fig-
ure 2, where there are three issuers using the same cloud storage service. These issuers
cooperate with each other to accomplish some tasks. The three issuers are the university
(UN), the Auditing company (AC) and the last one is the Insurance Company (IC). The
auditors in AC must be able to read-only financial reports of the (UN) (Stored in UN-
Base). Insurance staffs (in IC) can only execute the search function to check if the client
is a member of the UN or not.

Figure III.2: Collaborative cloud services example.

The data owner of UN cannot have trust in AC “admin” to define the auditor permis-
sions. Moreover, the admin of UN may give the auditor less permission than what he
needs. Hence, the main issue is how to merge access control policies of collaborating
organisations without any conflicts with their local policies? To address this last problem,
we propose the following.

• Role Permission Agreement: it is a contract between the data owner and the other
enterprise, which defines formally the following elements.

– The set of roles and their permissions,

– The constraints of each role access restriction (assignment constraints, activa-
tion constraints and permissions constraints),

– The set of enabled users to play this role.

This agreement is dynamic, where each element is elastic.

According to this agreement the data owner:

• Creates the roles and their permissions, then he adds the mentioned roles to the set
of roles,

• Add the mentioned users to the set of users,

• Restricts the roles assignment, roles activation and roles permissions.

Now, whatever happens on the second side (internal/external attacks), the owner of
data trusts that only the mentioned users in RPA can access its data through their men-
tioned roles. On the other side, the other organisation trusts that its employees have the
required permissions to do their tasks. The RPA contract is built by both organizations
and it defines clearly and safely the interactions between them. Hence, the organizations
collaborate through inter-organisational work-flow which is free of conflict.

64



Chapitre III FRABAC : A New Hybrid Access Control Model

III.3.3.2 Enterprise and service collaboration

Collaboration with the services case is less complex than in the case of enterprises.
It is enough that the data owner defines the role of the service and restricts its accesses.
Thus, the service is considered a usual user.

III.3.4 The security policy under the proposed model
A policy is a set of rules that define the behaviour of a system. The system that uses

this policy is expected to satisfy this set of rules in all its states. In this section, we
present the security policy under the proposed model. This policy requires determining
sets, functions, rules and constraints. In our proposed model, we have extended basic sets
and functions that are defined in ABAC model.

III.3.4.1 The Sets

We distinguish five entities in the system: user, object, role, rule, and permission.
Each of these entities yields to a specific set in the policy. Thus, the policy defines the
following sets.

• S: denotes the set of subjects (users) that can manipulate or access the resources or
objects in this system.

• O: denotes the set of objects. Both subjects and objects have their unique identifier
uid and rid respectively.

• At: denotes users, resources and the environment attributes. The attribute can have
a single value (atomic value) or multi-atomic value. The set At is composed of
several subsets denoted Aui, Arj and Ae. Aui is the set of useri attributes, Arj is
the set of resourcej attributes, and Ae is the set of environment attributes (such as
time and location). In the set Arj , we use the attribute Refer_To to define the owner
of the resourcej . The attribute Refer_To contains the value uid if the resourcej
belongs to the user (uid) otherwise it contains “null”.

• R: denotes the set of roles. The users interact with the system according to their
roles.

• Ac: denotes the set of access action (i.e. read, write, view, control, etc.).

• P : denotes the set of permissions.

• RL: denotes the set of rules which assign permissions to each role.

III.3.4.2 The Functions

Three functions are introduced as follows. (i) V u(u, a): returns the value of the
attribute a of the user u, otherwise it returns null if the user has not this attribute; (ii)
V r(rs, a): returns the value of attribute a for a resource rs, otherwise it returns null if the
resource has not this attribute; (iii) Dr(u): returns the set of rules dedicated to a user u
according to his active role.

65



Chapitre III FRABAC : A New Hybrid Access Control Model

III.3.4.3 The rules

We assume that the set of rules “RL” consists of all role rules subsets RLr, where
r ∈ R (R is the set of roles). For each role r, the set RLr is composed of subsets RLracc ,
such that acc ∈ A (A is the set of access actions). Lets consider Rm and Run the two sets
defined as follows.

• Rm: represents the set of rules which bind to the users the access acc to the multiple
access objects.

• Run: represents the set of rules which bind to the users the access acc to the unique
access objects.

Each set RLracc includes one rule from the set Rm and one rule from the set Run.
We use the tuple (acc, rs), containing a resource rs and an access mode acc, to express

that a user has the appropriate permission to perform the action acc on the resource rs.
The set UPu of tuples (acc, rs) denotes all the permissions assigned to the user u.

Finally, a rule is a tuple (t, r, acc, cst), such that:

• t: is the type of the rule (unique or multiple). The value of t can be Run or Rm.

• r ∈ R. r is a role.

• acc: access mode, acc ∈ A;

• cst: is a constraint. The constraint cst is a logical formula built upon the two
functions V u(u, att) and V r(rs, att), such that:

– V u(u, att) gives the attribute value of att for the user u.

– V r(rs, att) gives the attribute value of att for the resource rs.

The constraint cst can be written according to the following grammar.

cst := true
cst ::= cst and | or V u(u, att) = V r(rs, att)
cst ::= cst and | or V u(u, att1) = V r(rs, att2)
cst ::= cst and | or V u(u, att) = const
cst ::= cst and | or V r(rs, att) = const
cst ::= cst and | or V u(u, att) ⊇ V r(rs, att)

such that u is a user, rs is a resource, att, att1 and att2 are attributes, and const is a
constant value of an attribute. Besides the above elements, a constraint may include
another statements like the time or location (environment attributes). Moreover, if
we have tow rules that have the same constraint cst and role r with two different ac-
cess actions acc1 and acc1 then we write them in one rule as: (t, r, acc1oracc2, cst).

III.3.4.4 Constraints in the proposed model

We use the same constraints as defined in RBAC, which are: (i) Static and dynamic
separation of duties (SoD), (ii) Role hierarchy, (iii) the cardinality of roles, (iv) role au-
thorization and (v) role execution. After assigning a role to a user, we check the following
elements.

66



Chapitre III FRABAC : A New Hybrid Access Control Model

• The role authorization: is the role authorized for this user?

• The static separation of duties: this role is not already assigned to some users who
have static conflicts with the current user? this role is not in static conflicts with the
already assigned roles to the current user?

• The cardinality of role: is the number of users assigned to this role less than the
cardinality of the role?

After the verification of these constraints, we add the name of the role to the multi
atomic values of the user’s “Role-attribute”.

• Dynamic separation of duties: we use multi atomic value attribute “Active” to
express the activated roles by the user. To insert the name of a role into the “Active
attribute”, we should verify that the role and the user are not in dynamic conflicts.
This concerns two cases: (i) this role cannot be activated by the current user because
it is already activated by another user who has conflict with the current user, or (ii)
this role cannot be activated by the current user because the current user activated
already another role which is in conflict with the current role.

• Role hierarchy: to give the user a permission, we use the rules of the active role
(role execution). If the role r activated by a user contains another role r′ (r is a
senior role of r′) then this user will own the permissions assigned to r′ too.

III.3.4.5 The mechanism

In this section, we present the mechanism of the access decision. It is to decide if a
user u requesting access to a resource rs, through the access mode acc, is authorized or
not to access rs. The mechanism is implemented by two algorithms. The first algorithm
evaluates the access query of a user to a specific resource. The second algorithm evaluates
the access query of a user to a set of resources sharing the same attributes (for example,
three distinguished resources: “text document”, “video”, and “audio” which concerns all
the same resource). In the second algorithm (which is not presented in the chapter), the
request is denied if the user does not activate the role (role execution). The algorithm
decides if the permission is granted or denied by evaluating the specific rule which is
composed of the three following elements.

• The active role (role execution) or its juniors (Role hierarchy).

• The requested access mode.

• The type of the requested objects (unique or multiple).

The figure III.3 summarizes the mechanism of the access decision implemented in the
algorithm 1 (i.e., when the user requires access to a specific resource).

In the algorithm of multi-access, the request is denied if the user does not activate the
role (role execution). The algorithm decides if the permission is granted or denied, by
evaluating the tow rules (unique and multiple) which are composed of the following two
elements.

• The active role (role execution) or its juniors (Role hierarchy).

67



Chapitre III FRABAC : A New Hybrid Access Control Model

Algorithm 1 algo:1
Input: Access query (Rq < uid, acc, rid >) consisting of user identifier uid, access mode

acc and resource identifier rid ;
Output: Access; // Access = grant if the user has the permission else Access = deny;

List_Active_Role← ∅ // List of the user’s currents activated roles.
Access ← deny // The access is denied until we find that the user has the permission.
User_attributes← get_attributes(uid) // Gets all user’s attributes.
Active_Roles ← getvalue(User_attributes, Active) // From the user attributes, we get the
value of the attribute Active, which contains the user’s currents activated roles.
if Active_Roles = null then

return (Request denied: you not have active role)
else

Resource_attributes← get_attributes(rid); //Return the attributes set of the object rid
Type← getvalue(Resource_attributes, Refer_To); //Returns the value of the attribute

Refer_To if Type = null then
Type← shared;

else
Type← unique;

List_Active_Role.add(Active_Roles);
List_junior_roles ← get_junior_roles(Active_Role); //Returns juniors of all active
roles. List_Active_Role.add(List_junior_roles);
Environment_attributes ← get_att_Environment(); //Returns the set of Environment
attributes.
while (List_Active_Role 6= ∅) ∧ (Access = deny) do

Rule ← get_Rule(Role,Type,acc); // Returns the rule dedicated to restrict the ac-
cess (acc) of the role (Role) to (type) objects.
Access← evaluate( Rule, Environment_attributes, Resource_attributes,
User_attributes);//Matches the query with the rule and returns the result.

if Access = deny then
return (Request denied);

else
return (Request granted);

68



Chapitre III FRABAC : A New Hybrid Access Control Model

Figure III.3: Mechanism of access decision when the user requires access to a specific
resource

• The requested access mode.

The figure III.4 summarizes the mechanism of the access decision when the user re-
quires access to resources sharing the same attributes.

Figure III.4: Mechanism of the access decision for multiple resources sharing the same
attributes.

III.4 Evaluation of the new proposed model: empirical
comparison with existing models

In order to demonstrate the suitability of the new proposed model, this section pro-
vides an empirical comparison approach between this new proposed model and three
existing models (RBAC, ABAC and the hybrid model AERBAC).

69



Chapitre III FRABAC : A New Hybrid Access Control Model

III.4.1 Metrics used in the empirical comparison approach
The proposed comparison method is based on the following set of metrics, inspired

from [11].

• Written Permissions Number (WPN): the total number of the written permissions,
by the administrator, to define what a user or group of users can or can not do.

• Evaluated Permissions Number (EPN): it is the number of permissions which will
be evaluated, by the system, to decide that the user has not the requested permission.

• Policy Modification Visualization (PMV): it measures how it is hard or easy to vi-
sualize the consequences of the policy modification in the access control model.

• Context-aware Access (CaA): it measures if the access control model can handle
the dynamic changing of attributes or not.

These four metrics will be evaluated through the policies defined under four models
(the new proposed model, RBAC, ABAC and AERBAC), to show how the new proposed
model is more suitable than the existing ones. The new proposed model is proved to be
more able to handle efficiently security in a complicated situation where the number of
entities in each set (i.e., users, roles, objects and attributes) increases highly.

III.4.2 The illustrative example
To make the comparative method easier to understand, we use the following example.

In a college, students pass through three levels to get their graduate diploma. In the
second level (L2), students are divided into x specialities ({Si}i∈1...x). In the third level
(L3), students are divided into y specialities ({Si}i∈1...y). To manage students’ access, the
system encloses two kinds of objects: shared and private. Shared objects are dedicated
to a set of users and private objects are dedicated to one user. Two “access actions” are
proposed which are read and download.

The access to shared objects is managed using the following rules: (i) A student in L1

can access to all courses of his level, (ii) A student in L2 or L3 can access only the courses
of his speciality, (iii) Only premium users have access to paid courses, and (iv) Regular
users have access to paid courses only during promotional periods. The access to private
objects concerns the access to marks (i.e., marks are accessible only by the concerned
student).

Resources of the system include a set of courses defined in each level Li, for i =
1, 2, 3. These courses are of two kinds, regular courses and paid courses, denoted re-
spectively as RCLi

and PCLi
. In levels L2 and L3, courses are divided into specialities.

Courses of the speciality Si for i = 1 . . . k in levels L2 and L3 are denoted as RCL2Si
,

PCL2Si
, RCL3Si

, PCL3Si
, respectively.

Using the previous example, the following sections present a comparative evaluation
between the new proposed model and three existing models which are RBAC, ABAC and
hybrid model AERBAC. The policy is evaluated under each model to show the advantages
of the new proposed model vs the three existing ones.

70



Chapitre III FRABAC : A New Hybrid Access Control Model

III.4.3 RBAC configuration evaluation
The RBAC policy, for the illustrative example, is defined as a set of roles and access

permissions, as follows.

• Roles: In a regular users, 1 + x + y roles are required to express the conditions of
levels and specialities. These roles can be denoted as: R1 for regular students in L1,
{Ri}i∈2...x+1 for regular students in L2, and {Ri}i∈x+2...x+1+y for regular students
in L3.

• To express the conditions of premium users, the administrator creates for each reg-
ular role a premium role. Hence, the number of roles will be (1 + x+ y) ∗ 2 roles.

• To express the conditions of promotional periods, the administrator creates for each
regular role a promotional role. Hence, the number of roles will be (1 + x+ y) ∗ 3
roles. A promotional role would be available to users only during promotional
periods and it inherits the premium role permissions.

• Access permissions to read regular courses: we need respectively |RCL1|, |RCL2S1|,
... |RCL2Sx |, |RCL3S1|, ..., |RCL3Sy | permissions for roles R1, R2, ... Rx, Rx+1,
..., Rx+1+y. Each permission has the form (Ri, read, {Cj}j), such that Ri is a role
and {Cj}j is the set of regular courses accessed by role Ri.

• Access permissions to download regular courses: it is the same as for reading’s
permissions. However, a download permission has the form (Ri, download, {Cj}j),
such that Ri is a role and {Cj}j is the set of regular courses accessed by role Ri.

• Access permissions to read paid courses: we need respectively |PCL1|,
|PCL2S1 |,...|PCL2Sx|, |PCL3S1|,..., |PCL3Sy | permissions for rolesRx+2+y,Rx+
3 + y, ... R2 ∗x+ 1 + y, R2∗x+2+y... R2∗(x+1+y). Each permission has the form (Ri,
read, {Cj}j), such that Ri is a role and {Cj}j is the set of paid courses accessed by
role Ri.

• Access permissions to download paid courses: The same as for read permission of
paid courses. However, a permission has the form (Ri, download, {Cj}j), such that
Ri is a role and {Cj}j is the set of paid courses accessed by Ri.

• The RBAC does not support access to private objects because this kind of access
requires the definition of a new role for each user (i.e., which makes the role concept
without benefits).

In the following, we analyse each of the four metrics (WPN , EPN , PMV , CaA)
separately.

1. WPN metric: in RBAC, the configuration that grants permissions to roles is written
in the form of direct permissions. Each permission contains an access action and
the identifier of an object. We assume that Ri denotes the role identifier, where
1 ≤ i ≤ N/N is the number of roles (in the illustrative example N equals to
3 ∗ (1 + x + y)). The variable PNRi

denotes the permissions number of the role
and it is computed as: PNRi

=
∑j

acc=1NObacc, such that j is the number of access
actions belonging to the role Ri and NObacc is the number of accessible objects by
the role Ri through the access action acc.

71



Chapitre III FRABAC : A New Hybrid Access Control Model

In the illustrative example, the role R1 has two access actions (i.e., read (acc = 1)
and download (acc = 2)) and there isRL1 courses which can be read or downloaded
by role R1. Hence, j = 2 and NOb1 = RL1. The permissions number PNR1 for
role R1 is given as: PNR1 =

∑2
acc=1NObacc = NOb1 + NOb2 = RL1 + RL1.

The total number of written permissions WPN is equal to the PNRi
sum; hence,

WPN =
∑N

i=1 PNRi
. In fact, we will have: WPN = 2 ∗RL1 + x ∗ (2 ∗RL2) +

y ∗ (2 ∗RL3). To simplify the analysis, we suppose that the number of permissions
is the same for all roles, hence WPN is computed using the equation III.1.

WPN = N ∗ PNRi
(III.1)

We study the metric WPN and the number of roles according to five parameters:
(i) the number of users, (ii) the number of specialities, (iii) the number of objects in
each specialities, (iv) the number of actions in each specialities, (v) and the number
of conditions. In total, we have 21 cases. In the first case, all parameters have the
value 1. In each case from case 2 to case 21, four parameters are fixed to the value
1 and the fifth parameter is successively affected to the values 10, 100, 1000 and
10000. For example, case 2 affects to the number of users 10, case 3 affects to the
number of users 100, case 4 affects to the number of users 1000, case 5 affects to
the number of users 10000 (as depicted in III.5). The same thing is done for the
four other parameters. The value of WPN and the number of required roles in
each case are plotted in Figure III.1.

Figure III.5: Experimental Results in RBAC

From Figure III.5, we find that: (i) the number of users has no effect on the WPN
(case 2, .., case 5), (ii) There is a WPN explosion on the systems that have a large
number of objects and complex granularity (Specialities, Actions) (case 7, .., case
21). Hence, RBAC has a lack of expressiveness and does not provide fine-grained
access control, (iii) and finally, the roles number increases according to the number
of specialities (case 6, ..., case 9).

2. EPN metric: To decide that a user has not the requested permission, the RBAC
evaluates all the permissions of this user’s active roles (i.e., the set AR). So that,
the EPN is calculated using equation III.2.

EPN =
AR∑
i=1

PNRi (III.2)

72



Chapitre III FRABAC : A New Hybrid Access Control Model

Cases Users Specialities Objects in each Sp Actions in each Sp Conditions
1 1 1 1 1 1
2 10 1 1 1 1
3 100 1 1 1 1
4 1000 1 1 1 1
5 10000 1 1 1 1
6 1 10 1 1 1
7 1 100 1 1 1
8 1 1000 1 1 1
9 1 10000 1 1 1
10 1 1 10 1 1
11 1 1 100 1 1
12 1 1 1000 1 1
13 1 1 10000 1 1
14 1 1 1 10 1
15 1 1 1 100 1
16 1 1 1 1000 1
17 1 1 1 10000 1
18 1 1 1 1 10
19 1 1 1 1 100
20 1 1 1 1 1000
21 1 1 1 1 10000

Table III.1: The input parameters values for the evaluation of RBAC

73



Chapitre III FRABAC : A New Hybrid Access Control Model

Usually, a user is assigned to a small number of roles. This latter means that EPN
is not a very big number. In fact, this is correct only if RBAC is used in systems
without complex granularity. The previous metric demonstrates that RBAC is not
suitable for fine grained systems. The EPN in RBAC indicates that RBAC has not
complex auditing.

3. “Policy modification visualisation” metric: The policy is written at the role level;
hence, it is easy to visualize the consequences of policy modification. If the admin-
istrator adds a permission to a role then all users assigned to this role will have the
permission, automatically.

4. “Context-aware access” metric: The explosion of WPN in fine grained systems
is due to the fact that RBAC does not use the attributes. Models that do not use
attributes do not support the context-aware access as the case of RBAC.

III.4.4 ABAC configuration evaluation
The policy in ABAC is defined as a set of rules. According to [87], a rule is a tuple

(eu, er, O, c) such that eu is a user attribute expression, er is a resource-attribute expres-
sion, O is a set of operations and c is a constraint. Therefore, in te case of the illustrative
example, ABAC needs to define 2 ∗ (x+ 1 + y) rules. These rules are required to express
the conditions on levels, specialities and access permission, as follows.

• Rule1= (true, Role=student ∧ Level=L1, read or download, type=courses ∧
level=L1),

• Rule2=(true, Role=student ∧ Level=L2 ∧ S = 1, read or download, type =courses
∧ level=L2 ∧ Speciality=S1),
...

• Rulex+1=(Role=student ∧ Level=L2 ∧ S=x, read or download, type=courses ∧
Level=L2 ∧ Speciality=Sx),

• Rulex+1+1=(Role=student ∧ Level=L3 ∧ S=1, read or download, type=courses ∧
Level= L3 ∧ Speciality=S1),
...

• Rulex+1+y =(Role=student ∧ Level=L3 ∧ S=y, read or download, type=courses ∧
Level= L3 ∧ Speciality=Sy),

• Rulex+1+y+1=(true, Role=student ∧ Level=L1 ∧Type= premium∨ today ∈ Pro-
moDates, read or download, type=PaidCourses ∧ level=L1),
...

• Rule2∗(x+1+y)=(Role=student ∧ Level=L3 ∧ Sp=y Type= premium ∨ today ∈ Pro-
moDates, read or download, type=PaidCourses ∧ Level=L3 ∧ Speciality=Sy).

To access to a private object, the “administrator” should write a rule for each user
allowing him a unique access to that object. Therefore, if we have 1000 students then the
“administrator” needs to rewrite 1000 times the rule (true, Title = uid, read or download,
Type = Result and ReferTo = uid), such that uid is the identifier of a user.

74



Chapitre III FRABAC : A New Hybrid Access Control Model

In this case, the number of rules in ABAC is less than the number of roles in RBAC.
We are interested to explain this decrease in the number of rules. In the following para-
graphs, we study the four metrics (WPN , EPN , PMV , CaA) for ABAC model.

1. WPN metric: In ABAC, the configuration that grants permissions to users is written
in the form of rules. The number of rules depends on the number of object groups
(objects of the same group have the same attributes). As discussed above, there are
2 ∗ (x + 1 + y) object sets each of which contains courses of the same type, level
and speciality. We denote by NOG the number of object groups, hence the total
number of the written permission WPN will be equal to NOG: WPN = NOG.

We will evaluate the WPN according to six parameters: (i) the number of users,
(ii) the number of specialities, (iii) the number of objects in each specialities, (iv)
the number of actions in each specialities, (v) the number of object conditions, and
(vi) the number of environment conditions. We define 25 cases which are similar
to the previous section of RBAC. In the first case, all parameters have the value 1.
In the other cases, four parameters are fixed to the value 1 and the fifth parameter is
successively affected to the values 10, 100, 1000 and 10000. The metric WPN is
evaluated in two cases, with and without private access. The Figure III.6 plots the
values of WPN in the two cases.

Figure III.6: Experimental Results in ABAC

Figure III.6 shows that: (i) WPN (in the two cases, with or without private ob-
jects) increases when the number of specialities or the number of object conditions
increase (Case 9 and case 21). This is justified by the augmentation of NOG re-
quired to model the features of objects, (ii) WPN with private objects increases
when the users number increases (case 5), (iii) finally, the two factors objects num-
ber and access actions number have no impact on WPN . Hence, ABAC provides
fine-grained access but it still needs some adjustments to support the private objects
and to be more suitable for fine_grained systems.

2. EPN metric: to decide that the user has not the requested permission, the ABAC
will evaluate all the rules with an exhaustive enumeration of attributes, used in each
policy rule that we denoted by Ai. Hence, the number EPN is calculated using the
equation III.3.

EPN =
WPN∑
i=1

Ai (III.3)

Usually, EPN is a very big number which means that ABAC has a complex auditing.
75



Chapitre III FRABAC : A New Hybrid Access Control Model

3. “Policy modification visualization” metric: in ABAC, it is hard to visualise the
consequences of policy modification. If the administrator changes a rule then he
will not be able to know all the consequences.

4. “Context-aware access” metric: Unlike RBAC, ABAC supports the context-aware
access, thanks to the use of the attributes.

III.4.5 AERBAC configuration evaluation
According to [11], the AERBAC policy is defined as a set of roles. Applied to the

illustrative example, we require x + 1 + y roles each of which has two access permis-
sions: one with conditions and another without conditions (as described in Table III.2).
AERBAC does not support the access to private objects (e.g. marks in courses).

Table III.2: AERBAC configuration

Role Permissions Conditions
2*R1:Stud_L1 (read, (Type(o)=Paid_Course ∧ L(o)=1 )) Type(u)=premium ∨ today ∈ PromoDates

(read, (Type(o)=Course ∧ L(o)=1 )) none
....... ....... .......

2*R1+x+y:Stud_L3_Sy (read, (Type(o)=Paid_Course ∧ L(o)=3 ∧ S(o)=y,)) Type(u)=premium ∨ today ∈ PromoDates
(read, (Type(o)=Course ∧ L(o)=3 ∧ S(o)=y)) none

The four metrics are evaluated in the following.

1. WPN: The AERBAC creates N roles and each role Ri has a Permission Number
PNRi

as in the RBAC case. Hence, the total number of written permissions WPN
is equal to the sum of all PNRi

, for i = 1 . . . N . So that, WPN is computed as:
WPN =

∑N
i=1 PNRi

.

Figure III.7 plots WPN depending on the same set of parameters used in the case
of ABAC. Figure III.7 shows the following.

• The number of users, the number of objects and the number of environment’s
conditions have no impact on WPN (as in the case of ABAC).

• The number of access actions has an impact on WPN (as in the case of
RBAC).

• The number of specialities and the number of object conditions have an impact
on WPN (as in the case of ABAC).

As a conclusion, AERBAC provides fine grained access but it still needs some
adjustments to support private objects and be more suitable in fine grained systems.

2. EPN and “policy modification visualization” metrics: These two metrics are similar
to the case of RBAC,

3. Context-aware access metric: it is similar to the case of ABAC.

76



Chapitre III FRABAC : A New Hybrid Access Control Model

Figure III.7: Experimental Results in AERBAC

III.4.6 Evaluation of the new proposed model
In the new proposed model FRABAC, the policy will be defined as a set of roles and

a set of access permission rules, as follows.

• Roles: Actually, the student at all levels has always the same role which is called
“student”. So that, unlike RBAC case, the new proposed model requires only one
role to express the role “student”.

• Rules: According to the format of rules defined in section III.3.4, only two rules
are required to express all access conditions in the illustrative example. We define
Rule_1 to read or to download the shared objects(free courses and paid courses)
and Rule_2to read or download the private objects (i.e., marks of a course). Let’s
denote by PC paid courses, C regular courses and T the type of users (which can
be premium or normal) or the type of objects (which can be a mark or a course).
Using the previous notations, the model requires only the following two rules to
define the policy in the example.

– Rule_1:{true, student, [T (o) = C ∨ T (o) = PC ∧ (T (u) = premium ∨
today ∈ PromoDates) ∧ L(u) = L(o) ∧ S(u) = S(o)], readordownland}

– Rule_2: {true, student, T (o) = Note∧V r(o,Refer_to) = V u(u, id), read
or downland}

To demonstrate the efficiency of the new proposed model, we analyse the four metrics
in the following paragraphs.

1. WPN metric: in the proposed model, the configuration that grants permissions to
roles is written in the form of role rules. The number of role rules depends on the
number of access actions (in the example, there are 2 access actions). Hence, the
WPN is equal to the sum of all PNRi

, as presented in equation III.4.

WPN =
N∑
i=1

PNRi
= TRu. (III.4)

In equation III.4, we denote by TRu the total written rules number which represents
the WPN metric in the comparative method. PNRi

indicates the rules number of
the role and it is computed using equation III.5.

77



Chapitre III FRABAC : A New Hybrid Access Control Model

PNRi
=

NACRi∑
acc=1

NTActacc . (III.5)

In equation III.5, NACRi
is the number of access actions belonging to the role

Ri. When computing NACRi
, those access actions which have the same set of

accessible objects with the same access conditions are considered as one action.
For example, the role student has two access actions (read and download) which
have the same access conditions and the same objects; hence, these two actions are
considered as one action when computing PNRi

. NTActacc indicates the number of
“access action types” (this number can be either 1 or 2). In the example, the access
action (read/download) has two types (which are: shared and private).

Using the illustrative example, we will have the following.

PNR1 =
1∑

acc=1

NTAcacc = 2. (III.6)

WPN =
1∑
i=1

PNRi
= PNR1 = 2. (III.7)

WPN is computed depending on the same set of parameters used in the evaluation
of ABAC and AERBAC. To simplify the analysis, we suppose that the PNRi

of all
roles is the same, hence we will have: WPN = N ∗PNRi

. We distinguish between
two policy cases, case 1 (which is the middle case) and case 2 (which is the worst
case).

Case 1:
In this case, we propose that: (i) 50% of access actions have the same objects and
conditions sets, (ii) and 50% of access actions have the two access types and 50%
of access actions have just shared access. The equation that calculates the PNRi

will be as follows.

PNRi
=

(NACRi
/2)+1∑

acc=1

NTAcacc =

[(NACRi
/2)+1]/2∑

acc=1

2 +

[(NACRi
/2)+1]∑

acc=[(NACRi
/2)+1]/2+1

1.

(III.8)

Case 2:
In this case, we propose that: (i) All access actions have not the same objects
and conditions sets, (ii) and all access actions have the two access types. So that,
PNRi

=
∑NACRi

acc=1 2. The Figure III.8 plots the number of roles as well as values of
WPN in the two cases, depending on the proposed input parameters. The figure
III.8 shows that: (i) the number of users, objects or environment features have no
effect on the WPN neither on the roles number, (ii) the WPN number increases,
exponentially, in order to model the largest number of access actions in the worst

78



Chapitre III FRABAC : A New Hybrid Access Control Model

Figure III.8: Experimental Results In The Proposed Model

case. However, in reality, the access actions set is small, (iii) and finally, there is
no WPN explosion on the systems that have a large number of objects or complex
granularity (Specialities). Hence, the proposed model has a good expressiveness
and provides fine-grained access control.

2. EPN metric : To decide that the user has not the requested permission, the new
proposed model will evaluate at most two rules (one for shared access and one for
private access) for each role of this user’s active roles (AR). Hence, the number
EPN is calculated using: EPN =

∑AR
i=1 2. Usually, a user is assigned to a small

number of roles which means that EPN is not a large number, so that FRABAC
has not complex auditing even in high granularity systems.

3. “Policy modification visualization” metric: If the administrator adds a permission
to a role then all users assigned to this role will have the permission automatically.

4. “Context-aware access” metric: The model supports context-aware access.

III.5 Conclusion
Existing access control models (RBAC, ABAC and AERBAC) suffer from several

problems when dealing with complicated security policies in complicated systems. These
previous models have several drawbacks such as: the explosion in the number of roles
and rules, problems with context-awareness, problems with the visualisation of policies
update, etc. These drawbacks make these models enable to provide scalability, flexibility,
and fine granularity in the cloud and IoT environments. To handle these drawbacks, this
work has proposed a new access control model which combines and extends, basically,
the two models RBAC and ABAC. In order to demonstrate the advantages of the new
proposed model, an empirical study is realised. In this study, the new proposed model is
compared versus three existing models based on specific metrics. The results demonstrate
that the new proposed model is more suitable than existing ones. A complete validation
through simulation and formal verification is presented in the next chapter.

79



Chapter IV

Third Contribution: Using Hierarchical
Coloured Petri Nets
in the Formal Study of FRABAC
Security Policies

80



Chapitre IV Formal Study of FRABAC Security Policies

IV.1 Introduction
To ensure that the policy is consistent and that the system will never reach an incon-

sistent state, formal verification using Petri Nets can be applied. In a formal specification
of a FRABAC policy, we must specify the FRABAC constraints to be satisfied in all states
of the system. After the specification is done, the formal verification consists to prove that
all reachable states during the execution of the system are consistent with respect to the
set of predefined constraints.

The first step in a modelling process requires the investigation of the set of events
which change the state of the system. In our case (an access control policy using FRABAC
model), besides to “request evaluation” event, we have the same six major events, which
are identified in RBAC (Enabling of a role, Disabling of a role, Assignment of a role to
a user, Activation of a role by a user, De-activation of a role, and De-assignment of a
role). These six events modify the roles status. Each event in the system requires specific
preconditions (a set of constraints in the FRABAC model) to be satisfied. When the events
occur, specific post-conditions will be satisfied too (which are, also, a set of constraints
in FRABAC model). In the Petri Net model, these events are modelled by transitions.
The pre-conditions are modelled by some input-places, some expressions on input-arcs
and some associated guards to the transitions. The post-conditions are modelled by some
output-places and some expressions on output-arcs. The six events are modelled and
analysed in [64]. Hence, in this work, we are interested in request evaluation events.
In order to demonstrate the feasibility of the proposed model, we will show by details
in the following paragraphs the modelling/analysis process of the FRABAC requests’
evaluation.

The rest of the chapter is organized as follows: section two details the specification
and the modelling of FRABAC into HTCPN. Section three details the using of CPN-tool
to provide a formal verification of FRABAC. Finally, section four concludes this chapter.

IV.2 Specification of the request evaluation process
At runtime, users can access resources through requests. In the proposed access con-

trol model, a runtime request expression has the form < u, ob, ac >, where u is the user,
ob is an object and ac is an access action. To decide if u can access or not the object ob,
the proposed access control model proceeds through the two following steps.

1. Identify the type of the request and verify if the user has the right to make such
request. If the user has the right then the request is saved and it will be evaluated,
otherwise the request is ignored;

2. Evaluate the request.

In the following paragraphs, we present the modelling/verification of the request eval-
uation process using Hierarchical Coloured Petri Nets. The two previous steps (1) and
(2) are modelled as a set of transitions. These transitions have input/output places and
guards. To construct the model, a set of types (colours) are required.

81



Chapitre IV Formal Study of FRABAC Security Policies

IV.2.1 Required types for the HCPN model
We define the following four basic types, that will be used in the Hierarchical HCPN

model.

1. Object_Index: This type models the set of N objects (resources). Object_Index
= index Ob of 1..N . An object Ob1 is expressed as Ob(1).

2. User_Index: This type models the set ofN users (subjects). User_Index = index
U of 1..N . A user U1 is expressed as U(1).

3. Access_Index: This type models the set of N access actions. Access_Index =
index Acc of 1..N . An access action Acc1 is expressed as Acc(1).

4. Attribute_Index: This type models the set of N attributes. Attribute_Index =
index At of 1..N . An attribute At1 is expressed as At(1).

Using the above basic types, we define the new following complex types.

1. Requests: to model requests. A request is modelled as a triple composed of three
integer elements: the User_Index, Object_Index and the Access_Index. As an
example, the element (U(1), Ob(2), Acc(1)) in the type Requests specifies that the
user U(1) demands to operate on object Ob(2) the access action Acc(1).

2. Req_And_Type: specified as a product INT ∗Requests, where INT is an integer
which defines the type of the request (1: if the request is shared and 0: if the request
is private).

3. Attribute: specified as a couple of an integer (the attribute index) and a string
list (values of this attribute). For example, the element (At(1), [“Algocours”,
“DataBasecours” ]) specifies that the attribute At1 has two values: Algocours
and DataBasecours.

4. UserIndexList, RoleIndexList, ObjectIndexList, AttributeIndexList: four
list
types. An element in UserIndexList is a list of user indices, and it is the same
for the three other types RoleIndexList, ObjectIndexList, AttributeIndexList.
For example, the list [U(1), U(2), U(3)] contains two users, the list [Ob(1), Ob(2)]
contains two objects, the list [At(1), At(2)] contains two attributes, and finally the
list [R(1), R(2)] contains two roles;

5. Resources: specified as a tuple (Ob(i), U(j), Att_list) of the product Object
_Index * UserIndexList * Attributeslist, such that UserIndexList represents
the value of the refer_to attribute, and Attributeslist represents the other at-
tributes and their values. For example:(Ob(1), [], [(At(1), [“basic”]), (At(2),
[“dynamic”])]) specifies that the object Ob(1) is a shared object (because the value
of refer_to attribute is nil). Ob(1) has two attributes At(1) and At(2), such
that the value of At(1) is basic and the value of At(2) is dynamic. The token
(Ob(1), [U(1), U(2)], [(At(1), [“basic”]), (At(2), [“dynamic”] )]) specifies that the
object Ob(1) is dedicated only to two users U1 and U2.

82



Chapitre IV Formal Study of FRABAC Security Policies

6. Users: specified as a couple composed of User_Index and Attributeslist. At-
tributes list represents the attributes of this user and their values. For example,
(U(1), [(At(1), [“basic”]), (At(3), [“computer”]) ]) specifies that the user U(1) has
two attributes At(1) and At(3), such that the value of At(1) is basic and the value
of At(3) is computer.

IV.2.2 Modelling the identification process
The identification of the type of a request< U_i, Ob_i, Acc_i > is specified as a tran-

sition denoted Request_Type. As illustrated in Figure IV.1, this transition is connected
to the following places.

Figure IV.1: Hierarchical CPN model for the identification process

• An input place Requests which type is Requests. It must contain the request
< U_i, Ob_i, Acc_i >.

• An in/out-put place Users which type is Users. It must contain the user
(U_i, User_Attributeslist).

• An in/out-put place Resources which type is Resource. It must contain the object
(Ob_i, refer_To,Object_Attributes_list).

• An in/out-put place Accesses which type is Access_Index. It must contain the
access action (Acc_i).

• An output place Req_Tak_In_Ac which type is Req_And_Type. This place rep-
resents the requests to be evaluated. This place will contain a couple composed of
an integer (equals to 1 for shared request or equals to 0 for the private request)
and the request < U_i, Ob_i, Acc_i >. The transition Request_Type decides what
kind of request must be put into the place Req_Tak_In_Ac. The decision is based
on the value of the object refer_To attribute (the Obi UserIndexList ) and the
expression:

if ( List.null UserIndexList) then 1‘(1, (u, ob, ac))
else if (mem UserIndexList u) then 1‘(0, (u, ob, ac))
else Empty

The empty token means that the system will ignore the request if the object ob is a
private object which is not dedicated to the user u.

83



Chapitre IV Formal Study of FRABAC Security Policies

IV.2.3 Modelling the evaluation process
As we discussed above, to evaluate the user’s request and to make the decision (can

or cannot access), we need to know the attributes of the user, the attributes of the resource
and the access action’s rule (this rule is among the active role rules). Hence, we have in
the evaluation process three steps, which are: (i) get the preconditions, (ii) evaluate the
request and (iii) make the decision.

IV.2.3.1 The get-precondition step:

To specify this step in HCPN, we define the two following types:

• Activated_Role: specified as a tuple (U(i), R(j)) of the product User_Index *
Role_index where the first represents the user identifier and the second represents
the index of the currently activated role by this user. For example, the token
(U(1), R(1)) means that the role R1 is activated by the user U1.

• Rule: specified as a tuple (R(j), N,Acc(m), Att_Index_List, Att_User, Att_Res)
of the product Role_Index *INT* Access_Index* AttributeIndexList * AttributeList
* AttributeList. In this case, R(j) is the identifier of the role, N is an integer rep-
resenting the type of access (1: if the access type is shared and 0: if it is private),
Acc(m) is the access action identifier, Att_Index_List represents the attributes
that must have the same values in the resource and the user, Att_User introduces
the attributes and their values that the user must have, and the Att_Res represents
the attributes and their values that the resource must have.

As illustrated in Figure IV.2, the step “Get precondition” is divided into two phases. The
first phase (Take_Pre ) gets preconditions to evaluate a request < U_i, Ob_i, Acc_i >.
The second phase (Sample_Format ) simplifies some of these preconditions to use them
in the next step.

Figure IV.2: Hierarchical CPN model for Get precondition step

The phase Take_Pre is composed of one transition Take_Pre. This last is connected
to the following places (as depicted in Figure IV.3):

• The two in|out-put places Users and Resources, described previously;

• An in|out-put place UserActivatedRoles which has the type Activated_Role. It
must contain the user and his activated role (U_i, R_j);

84



Chapitre IV Formal Study of FRABAC Security Policies

• The in|out-put place Req_Tak_In_Ac described previously. It must contain the
request (N, (U_i, Ob_i, Acc_m));

• An in|out-put place Permission_Rule which has the type Rule. It must contain
the rule (R(j), N,Acc(m), Att_Index_List, Att_User, Att_Res);

• Output places UserInfo, ObjectInfo, User_RuleInfo and Object_RuleInfo
which have the type Attribute_list. These places will contain user’s list attributes
(User
_Attributes_list), object’s list attributes (Object_Attributes_list), the list of at-
tributes and their values that the user must have its (Att_User) and the list of at-
tributes and their values that the objects must have its (Att_Res), respectively;

• Output place ReqEvalu which has the type is Req_And_Type. This place will
contain the the selected request (N, (U_i, Ob_i, Acc_i)) to be evaluated;

• Output place Us_Res_At which type is ListAttributeIndex. This place will con-
tain the list of attributes that must have the same values on resource Ob_i and user
U_i (Att_Index_List).

The transition Take_Pre cannot fire if there is a request in place ReqEvalu.

Figure IV.3: Hierarchical CPN model for Take_Pre phase

Now we have the user and the resource information (attributes and its values), also the
constraints of the rule (list_ATT_User_Rule,AttListIndex_Rule and list_ATT_User
_Rule). The Figure IV.4 illustrates how we simplify the user/object/rule attributes list for-
mat into a set of couples of the form (AttributeIndex,AttributeV alues). For that raison,
we use four transitions T1, T2, T3 and T4, in Sapmle_Format phase. The transitions
T1, T2, T3 and T4 are connected respectively to:

• The in|out-put placesUserInfo,ObjectInfo, User_RuleInfo,Object_RuleInfo
are described previously. They contain attributes in complex format.

• The output places User_At, Object_At, Rule_U_At, Rule_O_At have the type
Attribute. They contain the attributes in a simple format that can be used in the
evaluation process.

85



Chapitre IV Formal Study of FRABAC Security Policies

Those four transitions have the priority P_THIGH to avoid the firing of any other
transition; before charging all attributes of the user U_i, the object Ob_i and the rule.

Figure IV.4: Hierarchical CPN model for Sample_Format phase

IV.2.3.2 The evaluation step:

To evaluate the request, we use the two following sub-models.

• Attributes_Eval sub-model: it contains three transitions to check that the user
request respects all the required constraints .

• Error sub-model: it contains three transitions to detect errors.

As illustrated in Figure IV.5, Attributes_Eval sub-model transitions are as follows.

1. The transition User_Res_Cons: it is used to check that the attributes in the re-
source Ob_i and the user U_i have the same values. This transition is connected to
the following places.

• The in|out-put place Us_Res_At described previously. This place must con-
tain the list of attributes.

• The in|out-put place User_attributes described previously. This place must
contain the attribute at and its values (couple_U_Att_V alue);

• The in|out-put place Object Attributes described previously. It must contain
the attribute at and its values (couple_O_Att_V alue);

• An output place V alues_Error which has the type integer. This place will be
marked (1′0) if there is an error otherwise it stays empty.

The guard [#1 couple_U_Att_V alue = at,#1 couple_O_Att_V alue = at] is
used to confirm that this transition fires only when the attribute at exists in the
attributes of both the resource and the user.

The transition User_Res_Cons does the following.

• Take the list of attributes (at :: AttListIndex) from the place Us_Res_At;

• Evaluate one of them (at the first attribute in the list);
86



Chapitre IV Formal Study of FRABAC Security Policies

• Compare the values of the selected attribute in user and resource;

• If the comparison result is negative then the transition puts an integer token
(1′0) in the place V alues_Error;

• Return the rest of attributes list in the place Us_Res_At;

• Fire repeatedly until it finishes handling all attributes.

2. The transition User_Cons: it checks if attributes in the user have the same values
as in the rule. This transition is connected to the following places.

• The in|output place User_attributes described previously. It must contain
the attribute at and its values ( couple_U_Att_V alue);

• The input placeRule_U_Attributes described previously. It must contain the
attribute at and its values( couple_U_Att_V alue);

The transition will fire repeatedly until it finishes handling all the couples in the
place Rule_U_Attributes. If it is the case then the user satisfies the second con-
straints because he has the same attributes and with the same values required in
Rule_U_Attributes.

3. The transitionObject_Cons: it checks that the attributes in the object have the same
values as those in the rule. This transition is connected to the following places.

• The in|out-put place Object_attributes described previously. It must contain
the attribute at and its values ( couple_U_Att_V alue);

• The input placeRule_O_Attributes described previously. It must contain the
attribute at and its values(couple_U_Att_V alue).

The transition will fire repeatedly until it finishes handling all the couples in the
place Rule_O_Attributes. If it is the case then the user satisfies the third con-
straints because the resource has the same attributes and values as required in
Rule_O_Attributes.

Figure IV.5: Hierarchical CPN model for Attributes_Eval sub-model

As illustrated in Figure IV.6, the transitions of the sub-model Error are:

87



Chapitre IV Formal Study of FRABAC Security Policies

1. The transition Attribute_Not_found: If the place Us_Res_At is not empty and
the transition User_Res_Cons cannot fire, then the transition Attribute_Not
_found will fire, and it takes the ListAttributeIndex as input. The priority of
this last transition is P_low and the priority of the transition User_Res_Cons is
Normal, hence Attribute_Not_found can fire only if User_Res_Cons transition
can not fire;

2. The transition User_couple_Not_Found: If the place Rule_U_Attributes is not
empty and the transition can not fire then the user does not have an attribute or
its correct values. Therefore, the transition User_couple_Not_Found will fire by
taking a token from the place Rule_U_Attributes as input. The priority of this last
transition is P_low and that of User_Cons is Normal, hence it can fire only if
User_Cons transition can fire;

3. The transition Object_couple_Not_Found: If the place Rule_O_Attributes is
not empty then this transition can not fire which means that the resource does not
have an attribute or the correct values. The transition Object_couple_Not_Found
will fire by taking a token from Rule_O_Attributes place as input. The priority
of this last transition is P_low and of that of Object_Cons is Normal, hence it can
fire only if Object_Cons cannot fire.

All of the previous transitions are connected to the same output place(Rejected_R)
which has the type integer. This place models the rejection of the request.

Figure IV.6: Hierarchical CPN model for Error sub-model

IV.2.3.3 Decision step

If the user satisfies all the constraints then he can access the resource, else he can not.

• CanAccess: As we modelled in the previous section, if the user satisfies all the
constraints then the places Us_Res_At, V alues_Error, Rule_U_Attributes and
Rule_O_Attributes will be empty. The transition can_access fires only if those
places are empty. This transition takes as input the request from the ReqEvalu
place and puts the request in the place Granted_Permission which contains all
granted permissions. Once the request is granted, the transition handled_Req will
remove it from the place Req_Tak_In_Ac;

• Can′taccess: If there is at least one constraint which is not satisfied then the eval-
uation of request stops. We model that as follows.

88



Chapitre IV Formal Study of FRABAC Security Policies

– If there is a token in V alues_Error then the transition V alues_Error fires
immediately, because it has the priority P_Hight and it puts an integer token
(1′0) in the place Rejected_Req.

– The transitions User_couple_Not_Found, Object_couple_Not_Found or
Attribute_Not_found (mentioned previously) put the integer token( 1′0) in
the place Rejected_Req;

– When there is a token in the placeRejected_Req, the transitionCan_notwill
fire before other enabled transitions, because its priority is P_V HIGH .

After their firing, both transitions Can_Access and Can_not will reset all places of
evaluation part (i.e., there is no request in progress). This step is illustrated in the Figure
IV.7.

Figure IV.7: Hierarchical CPN model for Decision step

IV.3 Formal verification using CPN-tool of the HCPN mod-
els

IV.3.1 Formalization and verification of properties on the request
identification

There are four properties which the designer can be interested to verify on the request
identification.

• Property 1: “A User U(i) can not access a private resource which is not dedicated
to him”. This is formulated as: for each input request < U_i, Ob_i, Acc_i >, such
that ob_i is a private resource and it does not include the U_i index in its list then
we must never reach a marking where (1,(U(i), Ob(i), Acc(i)))) or (0,(U(i), Ob(i),
Acc(i)))) are the place Req_Tak_In_Ac;

• Property 2: “A User U(i) can request to access all its private resources”. This is
formulated as: for each input request < U_i, Ob_i, Acc_i > such that ob_i is a
private resource and it includes the index U_iindex in its list UserIndexList then
we must reach a marking where token (0,(U(i), Ob(i), Acc(i)))) marks the place
Req_Tak_In_Ac;

89



Chapitre IV Formal Study of FRABAC Security Policies

• Property 3: “A User U(i) can access any shared resource in the system”. This is for-
mulated as: for each input request < U_i, Ob_i, Acc_i > such that ob_i is a shared
resource then we must reach a marking such that the token (1,(U(i), Ob(i), Acc(i))))
marks the place Req_Tak_In_Ac;

• Property 4: “ An object Ob(i) is accessed according to its type”. This is formulated
as: for each considered request < Type_i, U_i, Ob_i, Acc_i > the type of object
ob_imust be Type_i. In all marking, if (1,((U(i), Ob(i), Acc(i))) exists in the place
Req_Tak_In_Ac then the list UserIndexList of the resource ob_i must be nil;

In order to show the verification of these properties, we will consider a simple pol-
icy. A Service provider provides the service Service_1 (Ob(1)) for only two customers
Adam (U(1)) and Lina (U(2)), the service Service_2 (Ob(2)) for Adam and the service
Service_3 (Ob(2)) as a public service. The customers are U(1) . . .U(5). the accesses
are: storage denoted by (Acc(1)) and calculate denoted by (Acc(2))). As initial mar-
keting we have three requests in the input requests place: 1‘(U(1), Ob(1), Acc(2))) +
+1‘(U(4), Ob(1), Acc(2))) + +1‘(U(2), Ob(2), Acc(2))) + +1‘(U(3), Ob(3), Acc(2))) +
+1‘(U(2), Ob(3), Acc(2))). After the simulation, the marking of the place Req_Tak_In
_Ac is: 1‘(0, (U(1), Ob(1), Acc(2))) ++1‘(1, (U(3), Ob(3), Acc(2))++1‘(1, (U(2), Ob(3)
, Acc(2)), which illustrates that

• Adam (U(1)) can access Service_1 (Ob(1)) (proves the property 2);

• Lina(U(2)) can not access Service_2 (Ob(2)) and U(4) can not access Service_1
(proves the property 1);

• U(3) and Lina can access Service_3 (improve the property 3);

• Adam can access Service_2 service with private mode and U(3) and Lina can
access Service_3 with public (shared) mode (proves the property 4);

IV.3.2 Formalization and verification of properties on the request
evaluation

There are three properties which the designer can be interested to verify on the request
evaluation.

• Property 1: “Each evaluated request <(U(i), Ob(i), Acc(i))> is considered”. This
is formulated as: for each request <(U(i), Ob(i), Acc(i))> in the place ReqEvalu,
we must find some path in the reachability tree in which there is a binding:
<Request_Type, u=U(i),ob = Ob(i),ac = Acc(i)>.

• Property 2: “A request <(U(i), Ob(i), Acc(i)) > will never be evaluated except if the
user has an active role”. This is formulated as: for each request<(U(i), Ob(i), Acc(i))
> in the place ReqEvalu, we must find some path in the reachability tree in which
there is a binding: < TakePre, u = U(i),ob = Ob(i),ac = Acc(i),r >.

• Property 3: “A user has only permissions defined in its activated roles”. This is
formulated as the following: every permission (R_type,(U(i), Ob(i), Acc(i))) as-
signed to a user U(i) must be a permission (R_type, R(j), Acc(i), AttListIndex
_Rule, list_ATT _Rule ) defined in a role R(j) and the role R(j) must be acti-
vated by the user U(i).

90



Chapitre IV Formal Study of FRABAC Security Policies

To verify these properties, we use the previous collaborative cloud services example.
The UN data owner assigns to users, from both companies IC and AC, their roles as
auditor role (R(1)) or insurance role (R(2)). We have two users Lina (U(1)) and Bob
(U(2)). Lina is an auditor in AC and Bob is an insurance employee in IC. Any finan-
cial reports has two main attributes: its type denoted (At(1)) and its category denoted
(At(2)) with the values reports and financial, respectively. To give the auditor the per-
mission: read-only (Acc(1)) financial reports, the owner define the following rule: <
Shared(1), R(1), Acc(1), [], [], [(At(1), [“Report”]), (At(2), [“Financial”])] >. The func-
tion that searches for members Ob(1), in the UN is a shared resource and it has the
attribute name denoted (At(3)) with the value SearchMember. The owner defines the
following rule for the role R(2) to give him the right (Acc(2)) to execute the function
Ob(1): < Shared(1), R(2), Acc(2), [], [], [(At(3), [“SearchMember”])] >. We have two
other objects Ob(2) and Ob(3), such that Ob(2) is shared and it is a financial report
(< Ob(2), [], , [(At(1), [“Report”]), (At(2), [“Financial”])]) and Ob(3) is also shared and
it is a statistical report (< Ob(2), [], , [(At(1), [“Report”]), (At(2), [“Static”])] >). The
requests are: P1(< U(1), Acc(1), Ob(2) >), P2(< U(1), Acc(1), Ob(3) >), P3(<
U(1), Acc(2), Ob(1) >) and P4(< U(2), Acc(2), Ob(1) >). Initially, the role R(1) is
activated and the role R(2) is deactivated.

• Property 1: After the execution of the CPN model, we find in the reachability graph,
that the markings of place ReqEvalu is: 1′(U(1), Acc(1), Ob(2)), 1′(U(1), Acc(1),
Ob(3)) and 1′(U(1), Acc(2), Ob(1)) respectively. In the CPN Tools state space
report, we find the following bindings:
<Request_Type, u=U(1),ob = Ob(2),ac = Acc(1) >, < Request_Type, u=U(1),
ob = Ob(3),ac = Acc(1) >, < Request_Type, u=U(1),ob = Ob(1),ac = Acc(2) >
and < Request_Type, u=U(2),ob = Ob(1),ac = Acc(2) >. These bindings prove
that each evaluated request is considered.

• Property 2: From the CPN Tools state space report, we find the following binding:
<Take_Pre, u=U(1),ob = Ob(2),ac = Acc(1),r = R(1)>, <Take_Pre, u=U(1),
ob = Ob(3),ac = Acc(1),r = R(1)>, <Take_Pre, u=U(1),ob = Ob(1),ac =
Acc(2),r = R(1)>. These bindings prove that each evaluated request belong to an
active role.

• Property 3: After the execution of the CPN model, we find that the markings of
place Granted_Permission are: 1’( U(1), Acc(1), Ob(2)).These markings illus-
trate that:

– Lina can read the financial report, because there is a rule gives the auditors
this permission.

– Lina cannot read the statical report, because there is no rule gives the auditors
this permission.

– Lina cannot execute the search function, because there is no rule gives the
auditors this permission.

– Bob cannot execute the search function, because the role R2 is deactivated.

These markings prove that the user has only permissions defined in its activated roles.

91



Chapitre IV Formal Study of FRABAC Security Policies

IV.4 Conclusion
In this chapter, a formal approach using Hierarchical Coloured Petri Nets was ap-

plied to prove consistency and required properties in a security policy built on FRABAC.
Indeed, the use of hierarchical aspect allows the designer to have well organized mod-
els. The hierarchy helps the designer to manage and to understand its model. After the
construction of models, we have exploited CPN-tool to verify the consistency of mod-
els. Moreover, we have presented how to specify several FRABAC constraints, we have
presented a scenario example, and we have discussed the results of its analysis.

92



CONCLUSION

93



General Conclusion

Thesis aims
The design and implementation of security policies are crucial processes in the de-

velopment and maintenance of systems in the computer science field. The verification,
analysis and validation processes of security policies are indispensable components of
high-assurance systems in such field. These three steps are used to prove the consistency
of a security policy and to help the system administrators to understand the system be-
haviour that used a such policy. For those reasons, the main goal of this thesis was to
model, analyse and verify formally Temporal Role Based Access Control (TRBAC) [3]
policies.

In this thesis, we have chosen temporal RBAC model to be verified, because of the
fact that role-based access control is the most predominant model for specifying security
policies and access control. However, basic RBAC [1] does not model explicitly the dif-
ferent states of a role and does not take into account various events that are typical of an
RBAC system. TRBAC is one of the most important RBAC extension, which is proposed
to deal with temporal aspects and it defines necessary temporal constraints to capture the
dynamic behaviour of systems that use RBAC, and for their analysis. Moreover, the TR-
BAC verification approach can be used as a base for other RBAC extensions verification
and validation.

In order to provide a flexible, scalable and fine-grained access control model suitable
to large-scale networks needs and requirements, the second aim of this thesis was to pro-
vide: (i) a hybrid access model which is based on “role” concept as well as “attribute”
concept; and (ii) a formal approach to prove its consistency.

Finally, the formal approaches proposed in this thesis are an important action toward
leveraging a collection of techniques and tools that help with the design of security poli-
cies.

Thesis Contributions

First Contribution
The first contribution was the using of Hierarchical Timed Coloured Petri Nets [5](

HTCPNs) in the formal study of TRBAC security policies. This approach uses HTCPN
formalism to model the TRBAC policy, and the CPN-tool [6] to analyse the generated
models. The time aspect, in HTCPN, facilitates the consideration of temporal constraints
introduced in TRBAC. The hierarchical aspect of HTCPN makes the model “manage-
able”, despite the complexity of TRBAC policy specification. In the HTCPN model,
we defined the events that can occur in the system and their preconditions and post-
conditions. These preconditions and post-conditions specify the TRBAC constraints that
should be satisfied. After the specification by using the Hierarchical Timed CPN for-
malism, the CPN-tool was used to ensure an analysis of the policies and to verify some
inherent properties. We used the Hierarchical Timed Petri Nets (HTCPNs) in a down-top
approach (from an abstract model to sub-models) to model TRBAC. Besides the use of
HTCPNs, we presented the analysis phase that focuses on the verification process of sev-
eral temporal properties. The modelling and verification processes are all illustrated on a
realistic security policy.

94



General Conclusion

Second Contribution
The second contribution was the proposing of Fine-grained Role-Attribute based Ac-

cess Control model (FRABAC)[9, 10], as a new Hybrid Access Control Model. The
model provides scalability, flexibility, and fine granularity access control and it is suit-
able to large-scale networks (as cloud and IoT environments) requirements. FRABAC
combines the benefits ABAC [7] [8] and RBAC and overcomes the shortcomings of
both models known as the combinatorial explosion in rules and roles when the secu-
rity policy becomes complicated. Besides avoiding the combinatorial explosion, the new
proposed model provides a Role Permission Agreement (APA)[12] to handle the inter-
organizational access decision in collaborative cloud services cases. To illustrate these
advantages, an empirical study is realised. In this study, the new proposed model was
compared versus three existing models based on specific metrics. The results demon-
strate that the new proposed model is more suitable than existing ones.

Third Contribution
The third Contribution [12] was the use of Hierarchical Coloured Petri Nets in the

formal study of FRABAC security policies. A formal approach was applied to prove con-
sistency and required properties in a security policy built on FRABAC. In this approach,
we investigated the set of events which change the state of the system. Besides to “request
evaluation” event, we have the same six major events (i.e.,Enabling of a role, Disabling of
a role, Assignment of a role to a user, Activation of a role by a user, De-activation of a role,
and De-assignment of a role ), which are identified in RBAC. These six events modify the
roles status. Each event in the system requires specific preconditions (a set of constraints
in the FRABAC model) to be satisfied. When the events occur, specific post-conditions
will be satisfied too (which are, also, a set of constraints in FRABAC model). In the Petri
Net model, these events are modelled by transitions. The pre-conditions are modelled
by some input-places, some expressions on input-arcs and some associated guards to the
transitions. The post-conditions are modelled by some output-places and some expres-
sions on output-arcs. The six events are already modelled and analysed in [64]. Hence,
we were interested in request evaluation events.

Thesis drawbacks and future directions
To overcome the thesis’s drawbacks, the future aims and our suggestions for future

works are:

• Extending the formal verification approach of TRBAC to be suitable to General
TRBAC.

• Extending FRABAC: The drawback of FRABAC arises in public cloud where ser-
vice providers (CSPs) themselves would be able to access the stored data of their
clients. Using FRABAC, the data owner cannot prevent the service provider to
access his data. In this case, the FRABAC model needs to be enhanced by crypto-
graphic methods.

95



Bibliography

[1] David F Ferraiolo, Ravi Sandhu, Serban Gavrila, D Richard Kuhn, and Ramaswamy
Chandramouli. Proposed nist standard for role-based access control. ACM Transac-
tions on Information and System Security (TISSEC), 4(3):224–274, 2001.

[2] Ravi Sandhu, David Ferraiolo, Richard Kuhn, et al. The nist model for role-based
access control: towards a unified standard. In ACM workshop on Role-based access
control, volume 2000, pages 1–11, 2000.

[3] Elisa Bertino, Piero Andrea Bonatti, and Elena Ferrari. Trbac: A temporal role-
based access control model. ACM Trans. Inf. Syst. Secur., 4(3):191–233, August
2001.

[4] Tadao Murata. Petri Nets and their Application an Introduction, pages 351–368.
Springer US, Boston, MA, 1984.

[5] Kurt Jensen. An introduction to the theoretical aspects of Coloured Petri Nets, pages
230–272. Springer Berlin Heidelberg, Berlin, Heidelberg, 1994.

[6] Cpn-tool can be downloaded (free for academics) from:. http://wiki.daimi.
au.dk/cpntools/cpntools.wikim. Accessed: June 3rd 2017.

[7] Eric Yuan and Jin Tong. Attributed based access control (abac) for web services. In
Web Services, 2005. ICWS 2005. Proceedings. 2005 IEEE International Conference
on. IEEE, 2005.

[8] Xin Jin, Ram Krishnan, and Ravi Sandhu. A unified attribute-based access con-
trol model covering dac, mac and rbac. In IFIP Annual Conference on Data and
Applications Security and Privacy, pages 41–55. Springer, 2012.

[9] Ben Attia Hasiba, Laid Kahloul, and Saber Benharzallah. A new hybrid access con-
trol model for security policies in multimodal applications environments. Journal of
Universal Computer Science, 24(4):392–416, 2018.

[10] Ben Attia Hasiba, Laid Kahloul, and Saber Benharzallah. A new hybrid access
control model for multi-domain systems. In Control, Decision and Information
Technologies (CoDIT), 2017 4th International Conference on, pages 0766–0771.
IEEE, 2017.

[11] Qasim Mahmood Rajpoot, Christian Damsgaard Jensen, and Ram Krishnan. At-
tributes enhanced role-based access control model. In International Conference on
Trust and Privacy in Digital Business, pages 3–17. Springer, 2015.

96

http://wiki.daimi.au.dk/cpntools/cpntools.wikim
http://wiki.daimi.au.dk/cpntools/cpntools.wikim


Bibliography

[12] Ben Attia Hasiba, Laid Kahloul, and Saber Benharzallah. Frabac: a new hybrid
access control model for the heterogeneous multi-domain systems. International
Journal of Management and Decision Making, 17(3):245–278, 2018.

[13] Karl Rihaczek. The harmonized itsec evaluation criteria. Computers and Security,
10(2):101–110, 1991.

[14] Commission of the European Communities. Information technology security eval-
uation criteria (ITSEC): Provisional harmonised criteria. Office for Official Publi-
cations of the European Communities, 1991.

[15] Reinhardt A. Botha and Jan H. P. Eloff. Separation of duties for access control en-
forcement in workflow environments. IBM Systems Journal, 40(3):666–682, 2001.

[16] David F Ferraiolo, D Richard Kuhn, and Ramaswamy Chandramouli. Role-based
access control, artech house. Inc., Norwood, MA, 2003.

[17] Butler W Lampson. Protection. ACM SIGOPS Operating Systems Review, 8(1):18–
24, 1974.

[18] Rui Zhang. Relation based access control, volume 5. IOS Press, 2010.

[19] G Scott Graham and Peter J Denning. Protection: principles and practice. In Pro-
ceedings of the May 16-18, 1972, spring joint computer conference, pages 417–429.
ACM, 1972.

[20] Michael A Harrison, Walter L Ruzzo, and Jeffrey D Ullman. Protection in operating
systems. Communications of the ACM, 19(8):461–471, 1976.

[21] Donald C Latham. Department of defense trusted computer system evaluation cri-
teria. Department of Defense, 1986.

[22] O Sami Saydjari. Multilevel security: reprise. IEEE security & privacy, 2(5):64–67,
2004.

[23] D Elliott Bell and Leonard J LaPadula. Secure computer systems: Mathematical
foundations. Technical report, MITRE CORP BEDFORD MA, 1973.

[24] Mark Curphey, David Endler, William Hau, Steve Taylor, Tim Smith, Alex Russell,
Gene McKenna, Richard Parke, Kevin McLaughlin, Nigel Tranter, et al. A guide to
building secure web applications. The Open Web Application Security Project, 1(1),
2002.

[25] Alan C O ’Connor and Ross J Loomis. 2010 economic analysis of role-based access
control. NIST, Gaithersburg, MD, 20899, 2010.

[26] Michael J Covington and Manoj R Sastry. A contextual attribute-based access con-
trol model. In OTM Confederated International Conferences" On the Move to Mean-
ingful Internet Systems", pages 1996–2006. Springer, 2006.

[27] D Richard Kuhn, Edward J Coyne, and Timothy R Weil. Adding attributes to role-
based access control. Computer, 43(6):79–81, 2010.

97



Bibliography

[28] J. B. D. Joshi, E. Bertino, U. Latif, and A. Ghafoor. A generalized temporal role-
based access control model. IEEE Transactions on Knowledge and Data Engineer-
ing, 17(1):4–23, Jan 2005.

[29] A. Abou El Kalam and Y. Deswarte. Multi-orbac: A new access control model for
distributed, heterogeneous and collaborative systems. In In 8th IEEE International
Symposium on Systems and Information Security, 2006.

[30] Abdeljebar Ameziane El Hassani, Anas Abou El Kalam, Adel Bouhoula, Ryma
Abassi, and Abdellah Ait Ouahman. Integrity-orbac: A new model to preserve
critical infrastructures integrity. Int. J. Inf. Secur., 14(4):367–385, August 2015.

[31] Kangseok Kim and Geoffrey C. Fox. Xgsp-rbac: Access control mechanism based
on rbac model in ubiquitous collaboration system. 2009.

[32] Dancheng Li, Cheng Liu, and Binsheng Liu. H-rbac: A hierarchical access control
model for saas systems. I.J.Modern Education and Computer Science, 5:47–53,
2011.

[33] Antonio Tapiador, Diego Carrera, and Joaquín Salvachúa. Tie-rbac: An application
of RBAC to social networks. CoRR, abs/1205.5720, 2012.

[34] Hsing-Chung (Jack) Chen, Marsha Anjanette Violetta, and Cheng-Ying Yang. Con-
tract rbac in cloud computing. J. Supercomput., 66(2):1111–1131, November 2013.

[35] Y. Zhu, D. Huang, C. J. Hu, and X. Wang. From rbac to abac: Constructing flex-
ible data access control for cloud storage services. IEEE Transactions on Services
Computing, 8(4):601–616, July 2015.

[36] Rahat Masood, Muhammad Awais Shibli, Yumna Ghazi, Ayesha Kanwal, and Ar-
shad Ali. Cloud authorization: exploring techniques and approach towards effective
access control framework. Frontiers of Computer Science, 9(2):297–321, 2015.

[37] Khair Eddin Sabri and Nadim Obeid. A temporal defeasible logic for handling
access control policies. Applied Intelligence, 44(1):30–42, 2016.

[38] Jun Luo, Hongjun Wang, Xun Gong, and Tianrui Li. A novel role-based access
control model in cloud environments. International Journal of Computational Intel-
ligence Systems, 9(1):1–9, 2016.

[39] R. Steele and K. Min. Role-based access to portable personal health records. In
2009 International Conference on Management and Service Science, pages 1–4,
Sept 2009.

[40] Xiaoran Wang and C. Bayrak. Injecting a permission-based delegation model to
secure web-based workflow systems. In 2009 IEEE International Conference on
Intelligence and Security Informatics, pages 101–106, June 2009.

[41] A. Jie. The realization of rbac model in office automation system. In 2008 Inter-
national Seminar on Future Information Technology and Management Engineering,
pages 360–363, Nov 2008.

98



Bibliography

[42] Wesam Darwish and Konstantin Beznosov. Analysis of {ANSI} {RBAC} support
in com+. Computer Standards & Interfaces, 32(4):197 – 214, 2010.

[43] K.Venkateswar Rao, M.Srinivasa Rao, K.Mrunalini Devi, D.Sravan Kumar, and
M.Upendra Kumar. Web services security architectures using role-based access
control. International Journal of Computer Science and Information Technologies,
1(5):402–407, 2010.

[44] R. Ranchal, B. Bhargava, R. Fernando, H. Lei, and Z. Jin. Privacy preserving access
control in service-oriented architecture. In 2016 IEEE International Conference on
Web Services (ICWS), pages 412–419, June 2016.

[45] Jun Pang and Yang Zhang. A new access control scheme for facebook-style social
networks. Computers & Security, 54:44 – 59, 2015. Secure Information Reuse and
Integration &amp; Availability, Reliability and Security 2014.

[46] Bing-Chang Chen, Cheng-Ta Yang, Her-Tyan Yeh, and Ching-Chao Lin. Mutual
authentication protocol for role-based access control using mobile rfid. Applied
Sciences, 6(8), 2016.

[47] Nagarajan S and N P Gopalan. A dynamic context aware role based access control
secure user authentication algorithm for wireless networks. International Journal of
Applied Engineering Research, 11(6):4141–4143, 2016.

[48] Don Box. Essential COM. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1st edition, 1997.

[49] NEZAR NASSR and ERIC STEEGMANS. Security service design for the rmi
distributed system based on parameterized rbac. In In the Proceeding of the Inter-
national MultiConference of Engineers and Computer Scientists Vol I, pages 1–6,
2011.

[50] Ed Coyne and Timothy R Weil. Abac and rbac: scalable, flexible, and auditable
access management. IT Professional, 15(3):0014–16, 2013.

[51] Ricky W Butler. What is formal methods? NASA LaRC Formal Methods Program,
2001.

[52] K. Knorr. Dynamic access control through petri net workflows. In Computer Secu-
rity Applications, 2000. ACSAC ’00. 16th Annual Conference, pages 159–167, Dec
2000.

[53] Konstantin Knorr. Multilevel security and information flow in petri net workflows.
Technical report, In: Proceedings of the 9th International Conference on Telecom-
munication Systems - Modeling and Analysis, Special Session on Security Aspects
of Telecommunication Systems, 2001.

[54] Xin Dong, Gang Chen, Jianwei Yin, and Jinxiang Dong. Petri-net-based context-
related access control in workflow environment. In The 7th International Conference
on Computer Supported Cooperative Work in Design, pages 381–384, 2002.

99



Bibliography

[55] Yixin Jiang, Chuang Lin, Hao Yin, and Zhangxi Tan. Security analysis of mandatory
access control model. In 2004 IEEE International Conference on Systems, Man and
Cybernetics (IEEE Cat. No.04CH37583), volume 6, pages 5013–5018 vol.6, Oct
2004.

[56] Z. Liang and S. Bai. Role based workflow modeling. In 2006 IEEE International
Conference on Systems, Man and Cybernetics, volume 6, pages 4845–4849, Oct
2006.

[57] K. Juszczyszyn. Verifying enterprise’s mandatory access control policies with
coloured petri nets. In WET ICE 2003. Proceedings. Twelfth IEEE International
Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises,
2003., pages 184–189, June 2003.

[58] Z. l. Zhang, F. Hong, and H. j. Xiao. Verification of strict integrity policy via petri
nets. In Systems and Networks Communications, 2006. ICSNC ’06. International
Conference on, pages 23–23, Oct 2006.

[59] F. Feng, C. Lin, D. Peng, and J. Li. A trust and context based access control model
for distributed systems. In 2008 10th IEEE International Conference on High Per-
formance Computing and Communications, pages 629–634, Sept 2008.

[60] A. Walvekar, M. Smith, M. Kelkar, and R. Gamble. Using petri nets to detect access
control violations in a system of systems. In In the Joint Workshop on Foundations of
Computer Security and Automated Reasoning for Security Protocol Analysis, 2006.

[61] Hejiao Huang and Helene Kirchner. Secure Interoperation in Heterogeneous Sys-
tems based on Colored Petri Nets. working paper or preprint, June 2009.

[62] B. Shafiq, A. Masood, J. Joshi, and A. Ghafoor. A role-based access control policy
verification framework for real-time systems. In 10th IEEE International Workshop
on Object-Oriented Real-Time Dependable Systems, pages 13–20, Feb 2005.

[63] M. Song and Z. Pang. Specification of sa-rbac policy based on colored petri net. In
2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent
Agent Technology, volume 3, pages 207–210, Dec 2008.

[64] Laid Kahloul, Karim Djouani, Walid Tfaili, Allaoua Chaoui, and Yacine Amirat.
Modeling and Verification of RBAC Security Policies Using Colored Petri Nets and
CPN-Tool, pages 604–618. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[65] Manachai Toahchoodee and Indrakshi Ray. On the formalization and analysis of a
spatio-temporal role-based access control model. J. Comput. Secur., 19(3):399–452,
August 2011.

[66] Mikhail I. Gofman, Ruiqi Luo, Ayla C. Solomon, Yingbin Zhang, Ping Yang, and
Scott D. Stoller. RBAC-PAT: A Policy Analysis Tool for Role Based Access Control,
pages 46–49. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[67] Ravi Sandhu, Venkata Bhamidipati, and Qamar Munawer. The arbac97 model for
role-based administration of roles. ACM Trans. Inf. Syst. Secur., 2(1):105–135,
February 1999.

100



Bibliography

[68] Alberto Calvi, Silvio Ranise, and Luca Vigano. Automated validation of security-
sensitive web services specified in bpel and rbac. In Proceedings of the 2010 12th
International Symposium on Symbolic and Numeric Algorithms for Scientific Com-
puting, SYNASC ’10, pages 456–464, Washington, DC, USA, 2010. IEEE Com-
puter Society.

[69] Sadhana Jha, Shamik Sural, Jaideep Vaidya, and Vijayalakshmi Atluri. Security
analysis of temporal {RBAC} under an administrative model. Computers & Secu-
rity, 46:154 – 172, 2014.

[70] Khair Eddin Sabri. Automated verification of role-based access control policies
constraints using prover9. CoRR, abs/1503.07645, 2015.

[71] Emre Uzun, Vijayalakshmi Atluri, Jaideep Vaidya, Shamik Sural, Anna Lisa Ferrara,
Gennaro Parlato, and P Madhusudan. Security analysis for temporal role based
access control. Journal of Computer Security, 22(6):961–996, 2014.

[72] Silvio Ranise, Anh Truong, and Alessandro Armando. Scalable and precise auto-
mated analysis of administrative temporal role-based access control. In Proceedings
of the 19th ACM symposium on Access control models and technologies, pages 103–
114. ACM, 2014.

[73] Thumrongsak Kosiyatrakul, Susan Older, and Shiu-Kai Chin. A Modal Logic for
Role-Based Access Control, pages 179–193. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2005.

[74] Frédéric Cuppens, Nora Cuppens-Boulahia, Meriam Ben Ghorbel-Talbi, Stéphane
Morucci, and Nada Essaouni. Smatch: Formal dynamic session management model
for rbac. Journal of Information Security and Applications, 18(1):30 – 44, 2013.
SETOP’2012 and FPS’2012 Special Issue.

[75] Y. Zhou, L. Ma, and M. Wen. A multi-level dynamic access control model and its
formalization. In 2015 2nd International Conference on Information Science and
Control Engineering, pages 23–27, April 2015.

[76] Su Yu and Jon. J. Brewster. Formal specification and implementation of rbac model
with sod. Journal of Software, 7(4), 2012.

[77] K. Sohr, T. Mustafa, X. Bao, and G. J. Ahn. Enforcing role-based access control
policies in web services with uml and ocl. In 2008 Annual Computer Security Ap-
plications Conference (ACSAC), pages 257–266, Dec 2008.

[78] Samrat Mondal, Shamik Sural, and Vijayalakshmi Atluri. Security analysis of
{GTRBAC} and its variants using model checking. Computers & Security,
30(2–3):128 – 147, 2011. Special Issue on Access Control Methods and Technolo-
gies.

[79] Antonios Gouglidis, Ioannis Mavridis, and Vincent C. Hu. Security policy verifica-
tion for multi-domains in cloud systems. Int. J. Inf. Secur., 13(2).

[80] Samrat Mondal and Shamik Sural. Security analysis of temporal-rbac using timed
automata. In Information Assurance and Security, 2008. ISIAS’08. Fourth Interna-
tional Conference on, pages 37–40. IEEE, 2008.

101



Bibliography

[81] David Ferraiolo and Richard Kuhn. Role-based access control. In In 15th NIST-
NCSC National Computer Security Conference, pages 554–563, 1992.

[82] David Brossard, Gerry Gebel, and Mark Berg. A systematic approach to imple-
menting abac. In Proceedings of the 2nd ACM Workshop on Attribute-Based Access
Control, pages 53–59. ACM, 2017.

[83] Yunpeng Zhang and Xuqing Wu. Access control in internet of things: A survey.
arXiv preprint arXiv:1610.01065, 2016.

[84] Xin Jin, Ravi Sandhu, and Ram Krishnan. Rabac: role-centric attribute-based access
control. Computer Network Security, pages 84–96, 2012.

[85] Devdatta Kulkarni and Anand Tripathi. Context-aware role-based access control
in pervasive computing systems. In Proceedings of the 13th ACM symposium on
Access control models and technologies, pages 113–122. ACM, 2008.

[86] Ramadan Abdunabi, Wuliang Sun, and Indrakshi Ray. Enforcing spatio-temporal
access control in mobile applications. Computing, 96(4):313–353, 2014.

[87] Zhongyuan Xu and Scott D Stoller. Mining attribute-based access control policies.
IEEE Transactions on Dependable and Secure Computing, 12(5):533–545, 2015.

102


