
 
 

 REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE 

Ministère de l’Enseignement Supérieur et de la Recherche Scientifique 
Université Mohamed Khider – BISKRA 

Faculté des Sciences Exactes, des Sciences de la Nature et de la Vie  

Département d’Informatique 

 N° d’ordre:            

 N° Série: 

 

Thèse de Doctorat en Sciences en Informatique 

Thème  

Problèmes de Sécurité dans les 

Systèmes Embarqués 
 

(Security Problems in Embedded Systems) 
 

 

Présentée par : Chikouche Noureddine 

Date de soutenance:   17 mars 2016  

Devant le jury composé de: 

Djedi Noureddine Professeur, Université de Biskra Président 

Cherif Foudil Professeur, Université  de Biskra Rapporteur  

Benmohammed Mohamed Professeur, Université de Constantine 2 Co-Rapporteur  

Bilami Azeddine Professeur, Université de Batna Examinateur 

Chaoui Allaoua Professeur, Université de Constantine 2 Examinateur 

Babahenini Mohamed Chaouki Maître de Conférences A, Université  de Biskra Examinateur 

  

  



 
 

AAcckknnoowwlleeddggeemmeenntt  
 

My deep gratitude goes first to Allah Who helped me to fulfil this research 

I would like to thank my honourable advisor Pr. Foudil Cherif for his guidance, 

advice and encouragement. I also thank my honourable co-advisor Pr. Mohamed 

Benmohammed for his advice. I am grateful for the good times we had over the years. 

We had inspiring discussions, from which the ideas that solidified into this thesis 

emerged eventually.  

I wish to thank the board of examiners Pr. Djedi Noureddine, Pr. Bilami 

Azeddine, Pr. Chaoui Allaoua, and Dr. Babahenini Mohamed Chaouki for 

accepting to evaluate this thesis. 

Moreover, I’d like to thank Dr. Pierre-Louis Cayrel, Hubert-Curien Laboratory, 

Saint-Etienne, France for his advice, sharing his ideas, and collaborating with us, which 

lead to a significant part in this thesis.  My thanks also go to the staff of Applied 

Cryptography & Telecom group, Hubert-Curien laboratory especially Pr. Viktor 

Fischer and Mme Nathalie Bochar for their cooperation with me during the stays I 

spent in France.  

I wish to thank all my colleagues and the staff of the computer science 

department at both M’sila and Biskra Universities. 

To everyone who enlightened me with a kind word, I extend my sincere 

appreciation. 

Finally and most importantly, my biggest thanks go to my parents, my wife, my 

children, and my family, for their love and support during times of hardship. 



 
 

 

  الملخصالملخص

في السنوات أنظمة التعرف بترددات الراديو هي واحدة من أهم الأنظمة المشحونة والتي عرفت تطورا سريعا 

من ناحية أخرى، . مراقبة العبور إلخو  النقلو  الصحة مثل، التطبيقات العديد منستعمل في ت هذه الأنظمة. الأخيرة

  .ةوصيفي الأمن والخص دي إلى مشاكلاعتماد هذه التكنولوجيا على ترددات الراديو في التواصل، يؤ 

بروتوكولات المصادقة الخاصة بأنظمة التعرف بترددات الراديو  إنجازعلى مستوى الأبحاث التي تهتم بتصميم و 

التشفير المتماثل، (، نجد عدد معتبر من البروتوكولات التي تستعمل مختلف الأشكال الجبرية والتشفيرية )ر.ت.ت.أ(

لا تسمح و  الكلفةمنخفضة  محدودية الموارد في الرقاقة). معاملات البيتات، إلخ، التشفير غير المتماثل، دوال التقطيع

دوال التقطيع  نذكر ة المستعملة لتامين البروتوكولات،التشفيريمن بين أهم الأشكال . خوارزميات تشفيركل بتنفيذ 

الكوانتية ولا يحتاج إلى معالج  الهجماتبل ويقاوم  ،فحسب اهذا الأخير ليس سريع. والتشفير المعتمد على الأكواد

  .لتشفيرخاص با

ر موجه لتطبيقات .ت.ت.نقترح بروتوكول مصادقة أ. بتحليل عدد من البروتوكولات الحديثةفي أطروحتنا نقوم 

محسنين يعتمدان  بعد ذلك نقترح بروتوكولين. مراقبة العبور مستعملا دوال التقطيع التشفيرية و دوال التقطيع البيوميترية

والثاني هو خوارزم  ،العشوائي  خوارزم التشفير ماك إيليس الشكل الأول هو ،على شكلين لخوارزم التشفير ماك إيليس

  .(QC-MDPC) التشفير ماك إيليس المتجه نحو الحلقية مع تحقيق شبه كثافة معتدلة

البروتوكولات الموجودة والمعتمدة مقارنة بين البروتوكولات التي  إقترحناها مع مختلف على يحوي عملنا أيضا 

 (AVISPA) ت أفيسباطبيقاباستعمال ت منتحقق من خواص الأن. على أكواد تصحيح الخطأ من حيث الأمن والفعالية

ل فعالية البروتوكولات يحلنقوم بتكذلك . النموذج المقترح من وافي وفاناستعمال تحقق من خاصية الخصوصية بنو 

لا و  البروتوكولات التي اقترحناها فعالة .وتكلفة الحساب الاتصالتكلفة و  اللازمة في الذاكرةالمقترحة من حيث المساحة 

  .ويمكن للرقاقة تنفيذ العمليات التشفيرية قليلة التكلفة تحتاج إلى البحث الشامل

التشفير المعتمد على  ،مصادقةالبروتوكولات  ،أنظمة التعرف بترددات الراديو ،الأنظمة المشحونة :الكلمات المفتاحية

  .، الأمنالأكواد

  

  

  



 
 

AAbbssttrraacctt  

Radiofrequency identification (RFID) systems are among the most important 

embedded systems that saw fast evolutions during the last years. These systems are used in 

several applications, such as, health, transportation, access control, etc. However, the 

communication in this technology is based on radio waves, which poses problems in 

security and privacy.  

In the literature of design and implementation of authentication protocols on RFID 

systems, we can find many protocols developed using various algebraic and cryptographic 

primitives (asymmetric cryptosystems, symmetric cryptosystems, hash function, bitwise 

operators, etc.). The limitation of resources (e.g. memory, computation, etc.) on low-cost 

RFID tags does not permit the implementation of all the cryptosystems. Among 

cryptographic primitives used to secure the RFID authentication protocols, we cite code-

based cryptography. It is very fast, it resists quantum attacks, and does not require any 

crypto-processor. 

In our thesis, we analyse the security of several recent RFID authentication 

protocols. We propose a new RFID protocol oriented towards access control applications. 

It uses cryptographic hash function and Biometric hash function.  After that, we propose 

two improved protocols based on two variants of McEliece encryption scheme, the first is 

the randomized McEliece cryptosystem, and the second is Quasi Cyclic-Moderate Density 

Parity Check (QC-MDPC) McEliece cryptosystem.   

Our work also includes a comparison between our proposed protocols and different 

existing protocols based on error-correcting codes in terms of security and performance. 

Security properties are proved by AVISPA (Automated Verification Internet Protocol and 

its Applications) tools, and the privacy property is verified by Ouafi-Phan model. The 

Performance of proposed protocols is analysed in terms of storage requirement, 

communication cost and computational cost. The performance of our protocols are 

effective, don’t need to do exhaustive search, and the tag can perform lightweight 

cryptographic operations. 

 Keywords: Embedded systems, RFID, Authentication protocols, Code-based 

cryptography, Security    



 
 

RRééssuumméé  

Les systèmes d’identification par radiofréquence (RFID) sont des systèmes 

embarqués qui ont connu des développements rapides dans les dernières années. Ces 

systèmes sont utilisés dans plusieurs applications, telles que : santé, transport, contrôle 

d’accès, etc. Cependant, la communication dans cette technologie est basée sur les ondes 

radio, ce qui crée des problèmes de sécurité et de vie privée.  

Dans les travaux de recherche qui s'intéressent  à la conception et l’implémentation 

des protocoles d’authentification des systèmes RFID, on peut trouver plusieurs protocoles 

en utilisant différentes primitives cryptographiques et algébriques (telles que : 

cryptosystèmes symétriques, cryptosystèmes asymétriques, fonctions de hachage, 

opérateurs des bits, etc.). La limitation des ressources (e.g. mémoire, capacité de calcul, 

etc.) dans les tags bas coût ne permet pas d’implémenter tous les cryptosystèmes. Parmi les 

primitives utilisées pour sécuriser les protocoles d’authentification, on cite la cryptographie 

basée sur les codes. Elle est très rapide, résistante aux attaques quantiques, et n’exige pas 

de crypto-processeur.    

Dans notre thèse, on analyse la sécurité de plusieurs protocoles d’authentification 

RFID récents. On propose un nouveau protocole RFID pour les applications de contrôle 

d’accès. Celui–ci utilise la fonction de hachage cryptographique et la fonction de hachage 

biométrique. Ensuite, on propose deux protocoles améliorés qui sont basés sur deux 

variantes de cryptosystème McEliece, la première est le  cryptosystème McEliece aléatoire, 

et la deuxième est  le cryptosystème McEliece basé sur QC-MDPC  (Quasi Cyclic-

Moderate Density Parity Check). 

Notre travail consiste aussi à établir une comparaison entre nos deux protocoles et les 

différents protocoles existants basés sur les codes des correcteurs d’erreurs en termes de 

sécurité et de performance. Les propriétés de sécurité sont prouvées par les outils de 

AVISPA (Automated Verification Internet Protocol and its Applications), et la propriété de 

vie privée est vérifiée par le modèle de Ouafi-Phan. La performance des protocoles 

proposés est analysée en termes d’espace de stockage exigé et de coût de communication et 

de calcul. La performance de nos protocoles est effective, n’exige pas la recherche 

exhaustive, et le tag peut exécuter les opérations cryptographiques légères. 

Mots-clés : Systèmes embarqués, RFID, protocoles d’authentification, cryptographie 

basée sur les codes, sécurité.  
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�(. )  a polynomial-time decoding algorithm 

G1, G2 matrices with k1xn and k2xn, respectively, 

t, t' Two integer numbers 

rand, rand’ Secret random numbers 

�(.) decoding application (transform x into error vector e) 

e             Error vector of length n and weight t'<t where t=⌊(d−1)⌋/2 

Right(e,k1) Extract a substring from e, starting from the right-most bit, 
with length k1 

c
r
, c

r' Codewords, where c
r
=rG1and c

r'=r'G1 

c
id

 Codeword, where c
id

=idG2 

DID Dynamic ID, codeword with length n, where DID=cr ⊕ cid  
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Introduction 

In our modern life, we cannot find anything that does not use embedded devices.  

For example, we have a new type homes called smarthomes where all rooms, things (e.g. 

TV, light, mobile, etc.) and networks (e.g. gas, electricity, etc.) are connected and exploited 

by embedded systems (e.g. sensor, Wi-Fi, ultrared, Radio frequency identification, etc.) to 

carry out the services of the owner. The use of things is not limited to the home only, but 

one can execute any command by remote control. This is a new topic of research named 

Internet of things (IoT).  

The development of embedded systems is articulated around two sides: the 

performance and the security. Concerning the performance, the main aims of designers of 

embedded systems are to:  minimize the required memory (permanent and volatile), 

accelerate computation, optimize consummation of energy, and minimize communication 

cost between the entities of the system. The security is an important challenge in embedded 

systems and especially after the development of new cryptanalysis algorithms and the 

emergence of quantum computers. The study of security is depending on the system layers 

(application, communication, physic). 

In this work, we cannot study all the embedded systems and all the mechanisms of 

security as it is a very vast research domain. We interest ourselves in an important 

embedded system which is used in IoT and applied in different applications (access 

control, health, shopping, transportation, etc.), that is Radio Frequency Identification 

(RFID). In security, we study an important area of research; it is design, verification and 

implementation of authentication protocols. This area is considered to be very critical area.    

A typical RFID system consists of three components: the server, the reader, and the 

tag. The communication channel between the tag and the reader is based on radio 

frequency waves; it is unsecure, since it is open to attacks on authentication protocol. It is 

particularity the case of cryptographic protocol. In survey of RFID authentication 

protocols, there are an important number of authentication protocols which use different 

cryptographic primitives: private-key cryptosystems [FDW04, SOF05], hash functions 

[LAK06, Liu08, WHC11, JDTL12, Khe14], algebraic primitives [PCMA06, Chi07, 

Zen09], public-key cryptosystems (PKC) [MM12, Chien13, HKCL14, XPK14, LYL14, 

KGA15]. To design an authentication protocol, one chooses the required cryptographic and 
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algebraic primitives which are compatible with available resources of system’s 

components, and one specifies security and privacy properties. Before implementing this 

protocol, it must be proved by formal tools.    

Modern cryptosystems are divided into two classes, private-key cryptosystems and 

public-key cryptosystems. The first one is fast, but the major problem is the exchange key. 

In the second class, the problem of exchange key is not posed, because it uses a notion of 

pairs key: the public-key to encryption of plaintext and the private-key to decryption of 

ciphertext. The security of PKC is based on different building theory. We cite two 

categories of public-key cryptosystems, PKC based on number theory and PKC based on 

coding theory.  

The PKC based on number theory uses a hard arithmetic problem, such as 

factorisation problem and discreet logarithm problem. The performance of this class of 

cryptosystems is not compatible with available resources of RFID systems. In addition, it 

does not resist quantum attacks; here we cite that the first commercial quantum computer 

will be available for everyone in 2020 [Eva09], it's crucial to improve the security 

protocols and cryptosystems which are used to protect the information in communication.  

The second one is based on coding theory, is based on difficult problems NP-

complete (syndrome decoding, etc.) and it resists quantum attacks. It does high-speed 

encryption and decryption compared to other public-key cryptosystems. It does not require 

a crypto-processor, and it uses different schemes, such as, public-key encryption scheme, 

identification schemes, secret sharing and signature. The major problem has been the size 

of public key. Recently, code-based cryptosystems were presented with small key sizes, for 

example, we quote [BCGO09, MB09]. 

The use of cryptographic primitives in low-cost RFID tags is limited because the 

space memory available is restricted, and the computational capabilities are limited. The 

lowest cost RFID tags are assumed to have the capability of performing bitwise operations 

(e.g. xor, and, etc.), bit shifts (e.g. rotate, logical shift, etc.) and random number generator 

(PRNG). 

Contribution 

In this thesis, we investigate the issues of security and privacy in low-cost RFID 

systems using hash function and code-based public key cryptography. The design of our 
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proposed protocols is based on avoiding the weaknesses of existing RFID protocols, 

validating the security and privacy requirements, and minimizing the required resources. 

All proposed protocols are verified by formal model and automated tools. The required 

resources in our protocols are compatible with available resources in low-cost tags. Our 

contributions in this thesis are: 

− Describe in detail an important attack in RFID systems named Algebraic 

Replay Authentication Attack (ARAA). We analyse RFID authentication 

protocols where it does not resist to ARAA. We also propose a solution to 

avoid this attack.  

− Propose a new protocol oriented to access control applications. This protocol 

is used in combined systems between RFID system and biometric system. It 

requires pseudo-random number generator (PRNG), biometric hash function 

and cryptographic hash function. 

− Explain the disadvantage of the use hash function in RFID as it is need of 

exhaustive search in database of backend. To avoid this, we agree on the 

code-based cryptosystem. Then, we review different code-based RFID 

authentication protocols. Among these protocols, we discover weaknesses on 

two recent protocols.   

− Propose two improved protocols based on two variants of McEliece 

encryption scheme, the first is based on the randomized McEliece 

cryptosystem and the second is based on Quasi Cyclic-Moderate Density 

Parity Check (QC-MDPC) McEliece cryptosystem.  

− To verify security properties, all our proposed protocols are specified by 

HLPSL (High Level Language Specification Protocol) [Avi06] and proved by 

formal tools called AVISPA tools (Automated Verification Internet Protocol 

and its Applications) [ABBC+05]. 

− To prove the untraceability property, we use the privacy’s model, which is 

proposed by Ouafi and Phan [OP08]. 

Thesis organization 

This thesis contains a background and state-of-the-art study, a description of the 

proposed contributions, and some conclusions and perspectives.  
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This content is organized in 6 chapters as follows: 

In chapter 1, we begin by describing the principal concepts of cryptography and 

specially concepts of public-key cryptography. We also show the important notions of 

coding theory and its applications. Finally, we present different code-based encryption 

schemes and critical attacks on McEliece cryptosystem. 

In chapter 2, we show the RFID systems and their applications, we also describe 

different families of RFID systems and RFID authentication protocols. We portray security 

and privacy requirements, then explain different threats possible in these systems. 

In chapter 3, we verify two RFID protocols by automated tools.  The common 

characteristic between these protocols is that they do not resist Algebraic Replay Attacks 

on Authentication. We explain the main cause of this attack. Then, we describe how to 

avoid it. 

The chapter 4 proposes a new RFID authentication protocol. It is based on the 

combination of two systems, RFID and Biometric. Then, we verify it in terms of validation 

of security and privacy properties. After that, we do a comparative study with other RFID 

protocols and biometric protocols. 

In chapter 5, we show the different existing RFID authentication protocols based on 

errors-correcting codes. We prove the vulnerabilities of two recent RFID protocols. The 

first one is proposed by Malek and Miri [MM12] based on randomized McEliece 

cryptosystem. The second is proposed by Li et al. [LYL14] based on QC-MDPC (Quasi 

Cyclic-Moderate Density Parity Check) McEliece cryptosystem. 

In the chapter 6, we propose improved versions of two studied protocols (Malek-Miri 

and Li et al.). It includes a comparison between the improved protocols and different 

protocols based on error-correcting codes in terms of security and performance. Security 

and privacy properties are prove, and the performance of the proposed improved protocols 

are analysed in terms of storage requirement, communicational cost and computational 

cost. 

Finally, we end this thesis by a conclusion and perspectives, where we present our 

conclusive remarks and our suggestions for a future research.  

Related publications 

The results presented in this thesis were the subject of several publications in 

international journals, book chapters and in international conferences. Our scientific papers 

are listed hereafter in reverse chronological order. 
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Chapter 1  

 

Cryptography and Coding Theory 

 

1.1 Introduction  

The main aim of cryptography is realizing the security properties (e.g. secrecy, 

authentication, etc.) by agreeing cryptographic primitives in messages transmitted between 

persons, organizations or states via computing devices (PC, server, mobile, etc.). The use 

of cryptography is not limited to diplomatic or military domains as in past; it has become 

important in different applications in modern life. 

Among important cryptographic primitives are encryption schemes which comprise 

two main categories, private-key encryption schemes and public-key encryption schemes. 

The private-key encryption schemes date back from Caesar cryptosystem to AES 

(Advanced Encryption Scheme) cryptosystem. Concerning the second one, its first 

cryptosystem was proposed is RSA [RSA78]. The public-key encryption scheme is based 

on the hardness of number theoretic problems. However, P. Shor [Sho94] discovered that 

the quantum computers could solve the number theoretic problems, like factorization and 

discrete logarithm problems. 

In this chapter, we will present the fundamental concepts and primitives of 

cryptography, and show different schemes of public-key cryptography, encryption scheme 

and signature scheme. We will concentrate on the most important ones which is the coding 

theory and its application in cryptography. We will show the principle concepts of coding 

theory, and we will discuss in detail the code-based encryption schemes which are 

McEliece cryptosystem and its variants and Niederreiter cryptosystems and its variants.    
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1.2  Cryptography 

1.2.1 Private-key cryptography 

The private key cryptosystem (symmetric-key cryptosystem) is a very old 

cryptosystem, it is used since antique. Its principle is: the encryption of a plaintext and the 

decryption of a ciphertext using the same key that is shared between two communicating 

entities (e.g. client, server). Before sending the ciphertext, it requires exchanging the 

private key by a predefined algorithm. The recent private-key cryptosystems is fast, 

doesn’t require important space memory, it is implemented on hardware.  

The major disadvantage of this category of cryptosystems is that the key must remain 

secret for all persons another one must legitimate entities. Then, it requires another 

algorithm to guarantee the exchange of the new key. 

1.2.2 Public-Key cryptography 

In public-key cryptography (PKC), the key of encryption and the key of decryption 

are different. Every entity possesses two distinct keys (private-key, public-key). The 

knowledge of the public key doesn't permit some to deduce the private key. Besides, it is 

impossible to deduce the key deprived from the public key. The public-key cryptography 

(or asymmetric cryptography) is based on a complex problem, i.e. difficult to resolve the 

problem. We found three families of problems, which are based on the hardness of lattice 

problems, which are based on number theory, and which are based on coding theory (see 

Figure 1.1). In this chapter, we interest by the two last categories.  

In public-key cryptography based on number theory, the pair key is mathematically 

related. For example, the RSA cryptosystem [RSA78], which is proposed by Rivest, 

Shamir, and Adlmen in 1978, is based on the difficulty of factorization of two big 

numbers. Let p and q be two big prime numbers (e.g. with lengths 2048 bits), we can 

compute n=pq, but the problem is: if we know n we cannot find the value of p and q. Other 

example, the problem of discrete logarithm which is used in Diffie Hellman Exchange key 

protocol [DH76] and in Elgamal cryptosystem [ElG85], where the computation of xa
 mod n 

is simple, but it is extremely difficult in practice to recover the good x number. 

Among the disadvantages of this family, the computation of encryption/decryption is 

hard and doesn’t resist the quantum computing. In 1994, P. Shor [Sho94] found quantum 

algorithms for factoring and discrete logarithm, and these can be used to break the widely 
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used RSA cryptosystem and Diffie-Hellman key-exchange protocol using a quantum 

computer. 

 

 

 

 

 

 

 

 

 

Figure 1.1: Categories of PKC 

The public-key cryptosystem based on coding theory will be described in detail in 

section 1.4. 

1.2.2.1 Public-key encryption scheme 

This scheme permits to assure the confidential transmission of messages. If Alice 

wants to send encrypted message to Bob, she uses the public-key of Bob to encrypt the 

plaintext. In the other side, Bob uses his private-key to decrypt the received ciphertext. Bob 

is the only entity that can decrypt the ciphertext because he is only one to know the 

private-key.  

Definition 1.1 (Public-key encryption scheme) 

A public-key encryption scheme is a triple, (G, E, D), of probabilistic polynomial-

time algorithms which is as follows: 

Key generation algorithm (Gen) a probabilistic expected polynomial-time algorithm 

G, which, on input the security parameter 1
k
 calculates a pair of keys (SK; PK) 

where SK is called the private key, and PK is the associated public key.  

 

Public-Key Cryptography  

Number Theory Coding Theory 

- General decoding problem 
(e.g. McEliece [McE78]) 

- Syndrome decoding problem 
(e.g. Niederreiter [Nie86]) 

- Factorization of number 
(e.g. RSA [RSA78], 
Rabin) 

- Discrete Logarithm (e.g. 
ELGAMAL [ElG85], 
Diffie-Hellman) 

- Elliptic discrete logarithm 
(e.g. ECC [Mil07]) 

Lattice 

- Integral lattices (e.g. 
GGH [GGH97]) 

- Polynomial ring (e.g. 
NTRU [HPS98]) 
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An Encryption Algorithm (Enc) is a deterministic polynomial time algorithm E 

which takes as input security parameter 1
k
, a public-key PK and the plaintext m, and 

computes as output string c called the ciphertext. We use the notation c= EncPK(m). 

Decryption Algorithm (Dec) is a probabilistic polynomial time algorithm D that 

takes as inputs security parameter 1
k
, a private-key SK, and a ciphertext c from the 

range of EPK(m), and computes as output a string m. We use the notation m= 

DecSK(c). 

All algorithms should satisfy the completeness property, where for any pair of secret 

and public keys generated by key generation algorithm and any message m it holds that 

DSK(EPK(m))=m.  

1.2.2.2 Public-key Signature scheme  

The digital signature (sometimes named electronic) is a mechanism permitting to 

guarantee the integrity of a document (document cannot be modified but by the authorized 

entity) and to authenticate the author, and also the no-repudiation to the origin (to insure 

that a signatory won't be denied to have signature affixation to his document). Then, the 

digital signature has for goal to assure by computer tools means the same guarantees that a 

handwritten signature can provide. 

The sender signs the document or the message by his private-key. This key is used to 

achieve the authentication of the sender and the integrity. The verification of validation of 

the documents is made by the public-key of the signatory. This key is used to achieve the 

non-repudiation property.  

Definition 1.2 (Public-key signature scheme) 

A public-key signature scheme is a triple, (G, S, V), of probabilistic polynomial-time 

algorithms which is as follows: 

Key generation algorithm a probabilistic expected polynomial-time algorithm G, 

which, on input security parameter 1
k
 calculates a pair of keys (SK; PK) where SK is 

the private key of signature generation, and PK is the associated public key of 

signature verification.  

Signature Algorithm is a probabilistic polynomial time algorithm S which takes as 

input security parameter 1
k
, a private-key SK of signatory and the message m. It 
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returns the signature s of message m with private-key SK. We use the notation s= 

SSK(m). 

Verification Algorithm is a probabilistic polynomial time algorithm V that takes as 

inputs security parameter 1
k
, a public-key PK of signatory, message m’, and a 

signature s. It returns valid if s’ is valid signature of message m’ with the private-key 

corresponding PK and invalid else. We use the notation {valid, invalid} � VPK(s). 

1.2.3 Security model  

One of the most important objectives of an adversary is to obtain a simple 

information bit in plaintext correspondence of a given ciphertext.  The notion 

correspondence is called semantic security or indistinguishability [GM82], and is 

symbolised by IND.  

One considers that a cryptosystem is secure in terms of indistinguishability,  in case 

of no adversary �, given an encryption of a message randomly chosen from a two-element 

message space determined by the adversary, can identify the message choice with 

probability significantly better than that of random guessing (1/2). Therefore, this 

adversary is considered to have an advantage in distinguishing the ciphertext, if any 

intruder can succeed in distinguishing the chosen ciphertext with a probability significantly 

greater than 1/2. 

Definition 2.3 (IND-CPA) 

We say a public-key encryption scheme is ciphertext indistinguishable under chosen 

plaintext attacks (IND-CPA), if for every probabilistic polynomial time PPT-

adversary � has success-probability at most negligibly better than 1/2 in the 

experiment IND-CPA, i.e. Pr[IND-CPA(�) = 1] ≤ 



�
 + neg(�) . 

IND-CPA security is modeled as the following game between the adversary and an 

experiment. 

- The experiment generates a key pair, public and private keys (PK, SK).  

- The public key PK is given to the adversary �.  

- The adversary chooses two plaintexts m0 and m1 of some length and provides them 

to the experiment.  

- The experiment selects randomly a bit b�$ {0, 1} and encrypts mb. This ciphertext 

c* is given to the adversary.  

- The adversary has to guess whether the ciphertext contains m0 or m1.  



Chapter 1: Cryptography and Coding Theory 

 

11 
 

- The adversary returns its estimation b’∈{0,1}. � wins if it guesses correctly 

(b=b’). 

One can summarize this game as follows: 

Experiment IND-CPA 

(PK,SK)  � Gen(1�) 

(m0,m1, state) �  �
(��) 

b  � {0, 1} 

c* � EncPK(mb) 

b’ �   ��(�∗, �����) 

if b=b’ return 1 else return 0. 

For example, the RSA cryptosystem in not semantically secure, and the ElGamal 

cryptosystem is semantically secure. 

Naor and Yung [NY90] defined indistinguishability under (non-adaptive) chosen 

ciphertext attack (IND-CCA1) to model the capabilities of such stronger adversaries. The 

adversary is given access to a decryption oracle which decrypts arbitrary ciphertexts at the 

adversary's request, returning the plaintext. 

Rackoff and Simon [RS91] proposed the notion of adaptive chosen (IND-CCA2). In 

the adaptive definition, the adversary gets access to a decryption oracle even after it has 

received a challenge ciphertext, with the restriction that it cannot use it to decrypt the 

challenge ciphertext. The last definition is the strongest of these three definitions of 

security. 

For example, ElGamal cryptosystem is not CCA2 secure and RSA-OAEP (RSA with 

padding) is CCA2 secure in random oracle model. 

1.2.4 Hash Function 

Among the primitives used for data integrity and used in digital signature scheme, 

we cite the hash function or “one-way hash function”.  

Definition 1.4 (one-way function) 

We say a function is one-way if it is easy to compute f(x) from x, but it is difficult to 

find x from y such as y=f(x). 



Chapter 1: Cryptography and Coding Theory 

 

12 
 

A hash function takes like entry a non limited length value and sends back a value of 

n length fixed "hash value". For example, the length of SHA-1 is 160 bits and the length of 

MD-5 is 128 bits. The probability that a randomly chosen string gets mapped to a 

particular n-bit hash-value is   2-n. 

 Hash functions must achieve three properties: 

- First pre-image resistance A hash function is first pre-image resistant if, given 

a hash value y, where h(x) = y, it is hard to find any message x. 

- Second pre-image resistance A hash function is second pre-image resistant if 

given a message x, it is hard to calculate a different value x’ such that h(x) = 

h(x’). Sometimes called also weak collision-resistance. 

- Strong collision-resistance A hash function is strong collision resistant, it is 

hard to find distinct inputs x and x' such that h(x) = h(x'). 
 

1.2.5 Pseudo-Random Number Generator 

A pseudo-random number generator (PRNG) is an algorithm that generates a 

sequence of numbers presenting some properties of the luck. For example, the numbers are 

supposed to be sufficiently independent from the some of the others, and it is potentially 

difficult to mark groups of numbers that follow a certain rule (behaviors of group). 

Some pseudo-random number generators can be qualified as cryptographic when 

they show evidence of some necessary properties so that they can be used in cryptology. 

They must be capable of producing an exit sufficiently little discernible of an alea perfects 

and must resist attacks; for example the injection of forged data in order to produce some 

imperfections in the algorithm, or of the statistical analyses that would permit to predict the 

continuation. 

1.2.6 Cryptographic protocol 

The cryptographic protocol (or security protocol) is a set of exchange messages 

between the participants of a network, based on the cryptosystem notions that permit to 

secure the communications in a hostile environment by achieving certain security 

functionalities (secrecy, authentication, etc.).  

  We present the classes of protocols used with a limited number of participants and 

which assure specific goals. 
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Authentication protocol is a cryptographic protocol that assures the property of 

authenticity. The authentication is either unidirectional or mutual. We mention some 

protocols used extensively in the network communications: PGP (Pretty Good Privacy), 

Kerberos, and EAP (Expandable Authentication Protocol). 

Exchange key protocol assures the generated symmetrical key confidentiality, 

shared by several participants, such as: the IKE protocol (Internet Key Exchange) and TLS 

(Transportation Layer Security). 

Signature protocol The signatures of contract on Internet bring about two problems 

of security, no-repudiation and the fairness (i.e. to guarantee that no participant is 

penalized at the time of the signature of the contract). The objective of this protocol is to 

get to the signature of the contract distributed to an abuse free passage. An example of 

contract signature protocol is GJM [GJM99]. 

Zero-knowledge proof protocol The protocols of this class are destined to the proof 

of data indeed without revealing them. The first approach of zero-knowledge proof has 

been developed by A. Fiat and A. Shamir [FS86] in 1986. In the systems" zero-knowledge 

proof" the verifier does not need a secret and the prover possesses a varied secret that 

doesn't put in peril the whole system. It is a very powerful method to authenticate the 

messages, without giving the least information on the used secret, because a part is left at 

random. 

1.3  Coding Theory 

In domain of communication, if we send a message via a transmission channel (e.g. 

telephone, satellite, ADSL, etc.), the received message is not always the same as the 

emitted one, it exists an error rate. The error rate is the probability that a bit transmitted by 

the channel is different from the emitted bit. This error rate is different from a transmission 

channel to another. In the network computer, the error rate depends on the number of 

repetors and the type of channel (cable, ADSL, Wi-Fi, optic fibre, etc.). For 

communication with optic fiber, it can attain 10-9 (until one error for 109 bits is 

transferred).  The error rate is not only for the support of communication but also for the 

support of storage. In case of engrave file on CD or DVD, there exist errors in the file 

which is stored on CD/DVD. To resolve this problem, in 1950, Richard Hamming 

[Ham50] developed the premises of the codes theory.  
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The errors-correcting codes are a tool aiming to improve the reliability of the 

transmissions on a noisily channel. The method that they use consists in sending on the 

channel more data than the quantity of information to transmit. A redundancy is introduced 

thus. If this redundancy is structured in an exploitable manner, it is then possible to correct 

possible errors introduced by the channel. One can then, in spite of the noise, recover the 

entirety of the information transmitted at the departure.  

We can find an important number of classes of error-correcting codes, but the most 

important class studied in literature are linear error correcting codes.  In our work, we are 

interested in this class. 

1.3.1 Linear Error Correcting Codes 

Linearity allows efficient representation of codes and facilitates the analysis of their 

properties. Linear codes are subspaces of finite vector spaces. We study the finite field of 

which size is 2 symbolized by (��). Then, our study is articulated on the binary linear 

code.  

In this subsection, we present some notions on coding theory in order to clarify this 

topic. For more details, the reader is redirected to [MM77, Cay08, Hal10, RC14]. 

Definition 1.5 (Hamming weight)  

The (Hamming) weight of a vector v is the number of non-zero entries. We use ωt(v) 

to represent the Hamming weight of v. 

Definition 1.6 (Hamming distance) 

 The Hamming distance d(x, y) between the bit strings x =x1x2…xn and y = y1y2…yn is 

the number of positions in which these strings differ, that is, the number of i (i = 1, 

2,…, n) for which xi  ≠ yi. 

Definition 1.7 (Linear code) 

A linear binary code of length n, dimension k and minimum distance d is denoted by 

�(�, �, �), where k and n are positive integers with k<n. � is a t-error correcting 

linear code, that means the error-correcting capability of such a code is the 

maximum number t of errors that the code is able to decode. 

If ωt (.) denotes the Hamming weight for a linear code �, then the Hamming distance 

Dist(.) is defined by the following formula: 



Chapter 1: 

 

The next increase is verified

If the bound of Singleton is reached, the

The minimum distance of a code tells us how many errors it can detect and

errors it can correct, as the following two theorems show:

- A binary code � can detect up to k errors in any codeword if and only if 
+ 1. 

- A binary code � can correct up to k errors in any codeword if and only if 
2k + 1. 

Definition 1.8 (Generator Matrix)

Let � be a linear code over 

rows form a basis of C:

If � � (��|!�"(#$�))

matrix, then this matrix is systematic. 

Let �(n, k, d) be a linear binary code

be encoded to a codeword of 

matrix G with k dimension and 

possible linear combinations of the rows of the generator matrix. An error vector 

length n and Hamming weight of 

codeword c results in a vector 

Figure 
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∀x, y ∈ � Dist(x, y) = ωt (x − y) 

is verified for all linear codes. It is called terminal Singleton

n - k≥ d – 1 

is reached, the code is said MDS. 

The minimum distance of a code tells us how many errors it can detect and

errors it can correct, as the following two theorems show: 

can detect up to k errors in any codeword if and only if 

can correct up to k errors in any codeword if and only if 

(Generator Matrix) 

code over ��. A generator matrix G ∈ ��
�"# of C is a matrix whose 

C: 

C = {xG : x ∈ ��
�	} . 

)) where Ik is identity matrix with dimension k 

this matrix is systematic.  

linear binary code and a binary string m with length 

be encoded to a codeword of n bits c=mG, where G is the generator matrix. The generator 

dimension and n length can generate all vectors in the code by taking all 

possible linear combinations of the rows of the generator matrix. An error vector 

and Hamming weight of wt(e) is less than or equal to ⌊(d−

results in a vector c'=c⊕e.  

Figure 1.2: Encoding of message [Cay08] 

 

Singleton: 

The minimum distance of a code tells us how many errors it can detect and how many 

can detect up to k errors in any codeword if and only if Dist(�) ≥ k 

can correct up to k errors in any codeword if and only if Dist(�) ≥ 

of C is a matrix whose 

k and !�"(#$�) is 

with length k, which can 

generator matrix. The generator 

length can generate all vectors in the code by taking all 

possible linear combinations of the rows of the generator matrix. An error vector e of 

⌋−1)/2  added to the 
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Definition 1.9 (Equivalent codes)  

We say that two (n, k) codes � and �’ are equivalent, if there exists a permutation 

matrix P ∈ ��
#"# such that �’ = P	�. 

Let G be a generator matrix of a (n, k) code � and G’ is a generator matrix of a (n, k) code 

�’. If two codes � and �’ are equivalent, then there exists an invertible matrix T and a 

permutation matrix P such that:  

G = PG’T 

 

Definition 1.10 (Dual code) 

 The dual code of �, denoted �) . It is defined via scalar product:  

�) � {+ ∈ �,
#|-. + = 0, ∀- ∈ �} 

Definition 1.11 (Parity Check Matrix)  

 A parity check matrix H of � is an (n − k) × n matrix whose rows form a basis of the 

orthogonal complement of the vector subspace �, i.e. it holds that, � = {x nF2∈ : Ht
x = 0} . 

In general, suppose that G is a k × n generator matrix with G = (I|A). To G we 
associate the parity check matrix H, where H = (At

|I
n−k). 

� is the core of H. c ∈ � if only if Ht
c = 0. 

S= H
t
c’ = Ht

c ⊕H
t
e is the syndrome of error. 

 

 

Figure 1.3: Syndrome of error [Cay08] 

Decode consists in retrieving c from c’. Decoding algorithm γG is application: 

γ1:												�,# 						→ 		 �,� 

4 × �⨁� ↦ 74				89		:�(�) ≤ �? 			89	:�(�) > � > 
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Decoding algorithm corrects t errors, if only if ∀e ∈  �,# ∀m ∈ �,�:  

wt(e) ≤t ⇒ γG (m × G ⊕ e) = m. 

There are numerous decoding methods: exhaustive research of error vector, 

exhaustive research of codeword, and syndrome method. The two first methods are 

exponential problems. The syndrome method is NP-complete; the application γH is defined 

as follows: 

γ@:												�,#$� 						→ 		 �,# 

AB� ↦ C�				89	∃� ∈ 	�E�	|	:�(�) ≤ �? 																																						89	∄ > 
The decoding algorithm by syndrome is capable to correct t errors, if only if ∀e ∈�,#: 

wt(e) ≤t ⇒GH (H
t
e) = e. 

1.3.2 Structures and Codes 

1.3.2.1 Hamming Codes 

We define the Hamming code using parity check matrices. 
 

Definition 1.12 (Hamming code)  

A Hamming code of order r is a code generated when we take as parity check matrix 

H an r × (2r − 1) matrix with columns that are all the 2r −1 nonzero bit strings of 

length r in any order such that the last r columns form the identity matrix. 

A Hamming code of order r contains 2n−r codewords where n =2r
 – 1 and is a perfect code. The 

minimum distance of a Hamming code of order r is 3 whenever r is a positive integer. 

1.3.2.2 Cyclic Codes 

Definition 1.13 (Cyclic code) 

 An (n,k,d) linear code � is cyclic if whenever (c0, c1, …., cn-1) is a codeword in �, 

then (cn-1,c0, …., cn-2) is also a codeword in �. 

It is convenient to convert codeword vectors c = (c0,c1, …., cn-1) of length n into code 

polynomials c(x) = c0 + c1x + … + cn-1x
n-1 of degree less than n. Note that the left-most bit 

in a codeword is associated with the constant term in the code polynomial. The shifted 

codeword c’(x) has associated code polynomial: 

c'(x) = cn-1+c0 x+ c1x
2
 + … + cn-2x

n-1 
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So c’(x) has degree less than n and is equal to the remainder when xc(x) is divided by xn -1. 

We can define c’(x) by: 

c'(x) = xc(x) (mod x
n
 - 1)  

That is, c’(x) and xc(x) are equal in the ring of polynomials F[x] (mod xn-1), 

1.3.2.3 Goppa Code 

The Goppa code has been introduced by V.D. Goppa in 1970 [Gop70]. Goppa code 

may be used in the key generation of McEliece cryptosystem (see 1.4.1). Goppa code Γ(J, ℒ)	is defined by the irreducible polynomial g of degree t over the finite field ��L  and 

his support ℒ = *MN, … , M#$
} of n elements which are not root of g. The parity matrix of  Γ(J, ℒ) is obtained from the following matrix:  

A =
P
QQR

1J(MN) ⋯ 1J(M#$
)⋮ ⋮MNB$
J(MN) ⋯ M#$
B$
J(M#$
)U
VVW 

Each element of this matrix is then decomposed by m elements, placed in columns, 

using the projection of ��L  in	��X. One passes thus from matrix of size � × � to new parity 

matrix H of size 4� × � over ��. Elements of code Γ(J, ℒ) will be therefore all elements c 

such as: 

A × �Y = 0 

All square sub-matrix � × � of H is inversible because it is written as the 

multiplication of Vandermonde matrix and diagonal inversible matrix:  

A = Z 1 ⋯ 1⋮ ⋮ ⋮MNB$
 ⋯ M#$
B$
[ ×
P
QQR

1J(MN) 0⋮0 1J(M#$
)U
VVW 

Therefore, for each polynomial g, there exists a binary Goppa code of length m to the 

number of field elements n= 2m. The dimension of this code is equal to the number of field 
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elements minus the degree of the irreducible Goppa polynomial multiplied by the degree of 

irreducible polynomial used to create the finite field k≥ n- mt capable of correcting any 

pattern of t or fewer errors. The minimal distance is at least equal t+1. 

1.3.3 Difficult problems in coding theory 

We present a list of some difficult problems related to the theory of the error-

correcting codes. The following problems are not all the problems, as there exists several 

other problems which are found in practice. 

Berlekamp, McEliece and van Tilborg showed in 1978 [BMT78] that the problem of 

the research of words of weight and fixed syndrome was a problem NP-complete. It is 

made out of the resolution of the system: 

Hx=i, |x|=w 

where H is a binary matrix, i is a given vector (syndrome of x) and w is a fixed 

integer (weight of x), x being the unknown. 

Definition 1.14 (Syndrome decoding problem (SD))  

Input: Let H is a binary matrix (n-k,n), w is an integer, and � ∈ ��#$�is a syndrome 

Output: word � ∈ ��#	�\�ℎ	�ℎ��	:�(�) ≤ :	���	A�Y = �    

This problem is used by Stern in his protocol, but some years later come out a variation of 

this problem called minimum distance (MD) which is NP-complete.  

 Definition 1.15 (Minimum Distance problem (MD))  

Input: Let H be a binary matrix (n-k,n), w is an integer >0. 

Question: Does there exist a vector x∈ ��# not null 	of weight ≤w such that Hx
T
=0?   

The Goppa Parameterized Bounded Decoding problem (GPBD) is a particular case 

of SD problem. This problem is also NP-complete.  

Definition 1.16 (Goppa Parameterized Bounded Decoding problem (GPBD))  

Input: Let H be a binary matrix (n-k,n) (the parity matrix of Goppa code (n,k)) and a 

syndrome 	� ∈ ��#$� 

Output:  word � ∈ ��#	�\�ℎ	�ℎ��	:�(�) ≤ #$�^_`a # 	���	A�Y = �      
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We cite another problem used in code-based cryptography which is Goppa Code 

Distinguishing problem (GD). This problem has been stated N. Courtois et al. in [CFS01].  

 Definition 2.17 (Goppa Code Distinguishing problem (GD)).  

Input: Let H be a binary matrix (n-k,n) (the parity matrix of Goppa code (n,k)) or 

random binary matrix (n-k,n)  

Output:  b=1 if A ∈ �bcc�(�, �), b=0 else 

T. Berger et al. [BCGO09] have proposed another decisional problem called 

Decoding by Quasi-cyclic syndrome. They proved that this problem is NP-complete.  

 Definition 2.18 (Decoding by Quasi-cyclic syndrome).  

Being given ℓ > 1(one avoids the case ℓ = 1	which correspond in degenerated case) 

A1,…, !ℓ   of size  e∗ × �∗ over �,, an integer w<	ℓ�∗ and word f ∈ �,ℓg∗
. Let  ℓe∗ × ℓ�∗ matrix defined as follows: 

! = h!
 ⋯			⋯ !ℓ!ℓ !
 			… !ℓ$
⋮ ⋱				⋱ ⋮!� …					!ℓ !

j 

 

Does there exist � ∈ �,ℓ#∗
 of weight wt(e)≤w such that ! × �Y = f ? 

1.3.4 Encoding constant weight words 

To transform a binary string into error vector (bijective) or encode/decode constant 

weight words, we have two methods: the enumerative method [Sch72] and the recursive 

method [Sen05]. The second method, recursive method consists in a variable length 

encoder. It is significantly faster than enumerative method, but the major problem is 

security. We are interested in the enumerative method, which is based on the following 

bijective application: 

�#,B :	k0, l��mk → 	n#,B ∶= p- ∈ �,#|:�(-) = �q 

-											 ⟼ 									 (8
, … , 8B	) 

The Niederreiter cryptosystem (see 1.4.2) is applied in this application for 

implementation and it is as well, used to transform a binary string into error vector. 
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n#,B is represented by its non-zero positions in an increasing order 0≤ i1 <i2<…<it≤ n−1 

and length of x is  ℓ = stbJ�u#Bvw. 
The inverse application is defined as follows: 

�#,B$
:	n#,B 					→																			k0, l��mk 
(8
, … , 8B	) 											⟼ 	x8
1y +	x8�2y +	… +	x8B� y								 

The cost of a bijective application is O(tℓ�) binary operations. The decoding 

algorithm �#,B	is proposed by [Sch72] as follows (Algorithm 2.1): 

Algorithm 2.1 Enumerative decoding 
Data - ∈ |0, u#Bv} 
Result t integers 0≤ i1 <i2<…<it≤ n−1 
j � t 
while j > 0 do 

   ij � invert-binomial (x,j) 

  x � x - l~��m 

  j � j – 1 
end while 

where invert-binomial (x, j) returns the integer i such that l~�m ≤ - < l~�
� m 

1.4  Code-based encryption schemes 

1.4.1 McEliece Cryptosystem 

The McEliece cryptosystem [McE78] is the first public key cryptosystem based on 

algebraic coding theory and based on the general decoding problem. McEliece proposed a 

construction based on Goppa codes. 

The principal idea is to first select a linear code for which an efficient decoding 

algorithm is known, and then to use a trapdoor function to disguise the code as a general 

linear code. Though numerous computationally-intensive attacks against the scheme 

appear in the literature, such as [FS09], no efficient attack has been found up to now. We 

describe this cryptosystem as following: 

Private Key  

- G' a generator matrix of a binary linear C,  

- S a non-singular random k×k binary matrix,  

- P a random binary n×n permutation matrix.  
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- �(. ) a polynomial-time decoding algorithm until 
�� errors.  

Public Key  

- G=SG’P and t integer < ��.  

Encryption  

- m message with length k,  

- Cryptogram c'=mG⊕e, where wt(e)=t.  

Decryption  

- wt(eP−1)=t and (mQ)G is a codeword,  

- mS' =�(��$
) = �((4��)��⨁��$
) ,  

- m = (mS')S'−1.  

1.4.2 Niederreiter Cryptosystem 

Niederreiter cryptosystem [Nie86] defined the dual version of McEliece 

cryptosystem using the parity check matrix which is based on the syndrome decoding 

problem. The security of Niederreiter’s cryptosystem and McEliece’s cryptosystem are 

equivalent. The main difference is that instead of a generator matrix, the Niederreiter PKC 

uses a party check matrix only. It allows to reduce the size of the public key from k×n into 

(n−k)×n, reduce the cryptogram from n into n−k.  

A block of a plaintext is mapped to an error vector of desired weight by a bijective 

application, like �#,B (described in 1.3.3). The corresponding ciphertext is the syndrome of 

the error vector. The Niederreiter encryption scheme is described as follows: 

Private Key  

- H' a parity check matrix (n−k×n) of a binary linear C,  

- P a permutation matrix n×n ,  

- Q a invertible matrix (n−k)×(n−k) permutation matrix,  

- � a decoding algorithm until 
��  errors.  

Public Key  

- H = QH'P and t integer < ��.  

Encryption  

- Decoding message m to error vector e with length n and wt(e)=t,  

- Calculate � = AB� , where S is cryptogram  
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Decryption  

- Calculate  � = �$
�, 

- Compute y= �(�), 

- Calculate e=yP,  

- Encoding e into message m.  

1.4.3 Randomized McEliece Cryptosystem 

Nojima et al. [NIKM08] proved formally that padding the plaintext with a random 

bit-string provides the semantic security against a chosen plaintext attack (IND-CPA) for 

the McEliece (and its dual, the Niederreiter) cryptosystems under the standard 

assumptions. The cryptogram of Randomized McEliece cryptosystem is:  

 c'=c⊕e= [ ]r∥m G⊕e=(rG1⊕e)⊕mG2 

where  

- G=[G1║G2]  

- k1 and k2: two integers such that k=k1+k2  and k1<bk  where b<1,  

- G1 and G2 : matrix with k1xn and k2xn, respectively,  

- r: random string with length k1,  

- m: message with length k2.  

The encryption algorithm only encrypts [r║m] instead of m itself. The decryption 

algorithm is almost the same as McEliece, the difference is that it outputs only the last k2 

bits of the decrypted string.  

1.4.4 Randomized Niederreiter Cryptosystem 

The randomized Niederreiter cryptosystem is based on the use of the random 

padding for enhancing security of the Niederreiter cryptosystem. The cryptogram of 

Randomized McEliece cryptosystem is:  

� = �e|4�A = eA
 ⊕ 4A� 

where:  

- H: matrix (k,n) (public key), where H=SH'P  

- AY = �A
Y|A�Y� 
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- n1 and n2: two integers, such that n=n1 + n2  

- H1: matrix with (n-k)xn1  

- H2 : matrix with (n-k)xn2  

- r : random string with length n1 and weight �
 = � #�×B#��#a� 
- m: message with length n2, and weight �� = � #a×B#��#a� 

1.4.5 McEliece cryptosystem based on QC-MDPC codes 

Quasi Cyclic-Moderate Density Parity Check (QC-MDPC) code is a linear block code 

with quasi-cyclic construction (see [MTSB13]) which permits to reduce the public key 

size.  

- Quasi-cyclic code: An C(n,r)-code of length n=ℓn0 is a quasi-cyclic code of order 

ℓ (and index n0) if C is generated by a parity-check matrix ][ , jiHH =   where each 

jiH ,  is an ℓ×ℓ circulant matrix.  

- MDPC codes: An C(n,r,w)-MDPC code is a linear code of length n and co-

dimension r which stands as a parity-check matrix of row weight w.  

The McEliece cryptosystem based on QC-MDPC codes works as follows:  

Key Generation  

Generate C(n,r,w)-QC-MDPC code, with n=ℓn0 and r=ℓ. Select a vector nF2 ,of row 

weight w uniformly at random, as the initialization factor of generating nr

nFH
×

∈ . The 

parity check matrix H is obtained from r-1 cyclic shifts by h. The matrix has the form 

H=[H0|H1|...|Hn0−1], where row weight of Hi is wi and ∑
−

=

=

1

0

0n

i

iww . A generator matrix 

G=(I|Q) can be derived from the H. Note that the public key for encryption is G nrnF ×−
∈

)(
2    

and the private key is H.   

( )
( )

( ) 



















=

−

−

−

−

−

−

−

T

nn

T

n

T

n

HH

HH

HH

Q

2
1

1

1
1

1

0
1

1

00

0

0

.

...

.

.

 

 



Chapter 1: Cryptography and Coding Theory 

 

25 
 

Encryption 

 To encrypt the message m kF2∈ , where k=n-r 

- Randomly generate e nF2∈  of wt(e)≤t.  

- The ciphertext c' nF2∈  is c'=mG⊕e.   

Decryption  

Let �H a decoding algorithm equipped with the sparse parity check matrix H. To decrypt c' 

into m 

- Compute 4� = �H(4�⨁�),  

- Extract the plaintext m from the first k positions of mG.  

We mention that the public-key generated by McEliece cryptosystem based on QC-

MDPC codes is less then McEliece Goppa codes. The parameters of code that provide a 

level of 80 bit equivalent symmetric security are: n0 = 2, n = 9602, r = 4801, w = 90, and t 

= 84 [MTSB13]. The public-key size in McEliece QC-MDPC codes is 0.586 KB (4801 

bits), however, the public-key in McEliece cryptosystem with Goppa codes is 150 KB.  

1.5  Critical attacks on the McEliece cryptosystem 

In literature of attacks on McEliece cryptosystem, there are two big classes of 

attacks: not critical attacks, and critical attacks [Cay08]. The first one is depended on the 

parameters of code; we can avoid these attacks by increase the value of these parameters. 

A detailed overview of this class of attacks can be found in [IK01, FS09]. In this section, 

we detail the critical attacks.  

The critical attacks discord with size parameters of code, but are based on the use of 

structural weaknesses of the protocol. T. Berson in [Ber97] describes three critical attacks, 

message-resend, related-message, and partial-message attack.  

1.5.1 Message-resend attack 

We suppose that the intruder intercepts the ciphertext transmitted in the network with 

different run: 

c1 = mG + e1 

and 

c2 = mG + e2 
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where e1 ≠e2. We call this a message resend attack. In this case, it is easy for the 

cryptanalyste to recover m here from the system of ci.  We will only examine the case 

where i = 2: The attack is even easier if i > 2.  

Notice that c1 + c2 = e1 + e2 (mod 2). 

A resend of message can be detected easily while observing the weight of Hamming 

of the sum of two ciphertexts. When the messages are different, the expected weight of the 

sum is about 512 (for the original parameters of McEliece, in general the waited weight is 

k). When the two messages are identical, the weight of the sum cannot exceed 100 (or in 

general 2t). Heiman [Hei87] proved that the resend of message can be detected.  

1.5.2 Related-message attack 

This attack is generalized of message-resend attack. We suppose that two ciphertexts 

c1 = mG + e1 

and 

c2 = mG + e2 

where m1 ≠m2 and e1 ≠e2, and that the intruder knows a linear relation between the 

plaintexts m1 and m2, for example m1+m2.  We call this a related-message attack. With 

these conditions, the intruder may recover the mi. Then, we obtain 

c1 + c2 = m1G + e1 + m2G + e1 

Notice that m1G+m2G = (m1+m2)G, a value the intruder can calculate under the condition 

related-message from the known relationship and the public key. It solves then: 

c1 + c2 + (m1+ m2)G= e1 + e1 

and achieve an attack by return of messages, while using (c1 + c2 + (m1 + m2)G) instead of 

(c1 + c2). 

1.5.3 Partial-message attack 

To have a partial knowledge of the plaintext reduced in a drastic manner the cost of 

computation of the attacks against the McEliece cryptosystem [CS98]. For example, we are 

ml and mr representing the kl bits of left and the kr bits remaining the plaintext m, where k 

= kl + kr and m = (ml║mr). 
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Let's suppose that an intruder known mr. Then, the difficulty to recover the plaintext 

unknown ml in the McEliece cryptosystem with parameters (n, k) is equivalent to recover 

the plaintext with parameters (n, kl), since: 

c = mG + e 

c = mlGl + mrGr + e 

c + mlGl = mrGr + e 

c’ = mlGl + e 

Where Gr and Gl are the kr superior lines and kl the other lines of G, respectively. 

1.6  Other Code-based cryptographic primitives 

During the last years, many code-based cryptographic primitives have been designed. 

Here, we present an idea of these cryptographic primitives.  

1.6.1 Pseudo Random Generator 

 B. Fischer and J. Stern [FS96] proposed the first pseudo-random generator based on 

error-correcting codes. This generator is based on the fact that the greater the weight of 

error vectors, the exponentially greater the number of words having the same syndrome. 

They described an efficient pseudo random generator which can output 3500 bits/sec as 

compared to an RSA based generator (512 bits modulus) which outputs 1800 bits/sec.  

1.6.2 Identity Based Identification Scheme 

 Identification schemes are main tools in various applications and online systems for 

preventing data access by invalid users. In 1986, Fiat and Shamir [FS86] proposed a 

particular scheme named zero-knowledge proof. The first designed zero-knowledge 

identification scheme based on hardness of the syndrome decoding problem is proposed by 

Stern in 1993 [Ste93]. A few years later, Véron in [Vér96] has designed a scheme with a 

lower communication cost. In 2010, Cayrel-Véron-El Yousfi in [CVE10] has designed a 

scheme which reduces this communication cost even more. 

1.6.3 Hash Function 

 D. Augot, et al. [AFS05] have been proposed a provably collision resistant family of 

hash functions. The Fast Syndrome Based Hash function is based on the Merkle-Damgard 

design which consists in iterating a compression function. This function takes as input a 

word of s bits, it result is a word of length n and weight t and calculates its syndrome from 

a given r×n parity check matrix (with r < s). In 2011, Bernstein et al. [BLPS11] proposed 
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RFSB (Really Fast Syndrome-Based Hashing). RFSB is based on random functions, and 

uses the AES algorithm. 

1.6.4 Signature Scheme 

Kabatianskii et al. [KKK97] proposed a signature scheme based on arbitrary linear 

error-correcting codes. Using Niederreiter’s cryptosystem, N. Courtois et al. [CFS01] 

proposed a signature scheme which ouputs very short signatures. The principal problem is 

that hash values lie in the set of syndromes and must match the syndrome of an error of 

weight t in order to apply the decrypting function. 

1.6.5 Private-key scheme 

A. K. Al Jabri in [Alj97] proposes a private-key version of McEliece cryptosystem.  

This new variant is based on the same concept suggested by McEliece except that erasures 

are used instead of errors. Such a modification allows for almost doubling the amount of 

added errors to the encoded vector. 

1.7  Conclusion 

In this chapter, we showed the main concepts of public-key cryptography and 

coding theory. Among applications which are applied in coding theory we cited 

cryptography with different schemes (signature, identification, hash function, etc.). We 

focused on code-based encryption schemes particularly McEliece encryption scheme and 

its different variants.  These variants are agreed on to secure a lot of RFID authentication 

protocols, we will show it in this thesis. 
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Chapter 2  

 

RFID Systems and their Security  

2.1  Introduction  

RFID technology was invented in 1948, but it was not commercialized until the 

1980s. RFID systems have seen rapid development in recent years and in different areas, 

including space memory, computing capabilities, and security.  This technology is applied 

in different fields, such as libraries, supply chain management, access control, etc. In the 

survey of RFID systems, we find two principal research topics: security and evolution of 

performance.  

This chapter consists in defining RFID systems as well as their components, their 

applications, and their classification. After that, we present different security and privacy 

properties which are required in RFID systems. Then we show numerous possible threats 

in RFID systems. Finally, we present different categories of RFID authentication protocols. 

2.2  RFID systems  

RFID is a technology without contact with incorporates and using electromagnetic or 

electrostatic coupling in the radio frequency (RF) portion of the electromagnetic spectrum. 

It makes it possible to identify an object, person, or animal. In the last years this 

technology has replaced the barcode, especially in industry.    

The typical RFID systems comprise of three main components:  the tag (or 

transponder), the reader (or transceiver), and the server (or backend, data processing 

device).  The Figure 2.1 shows components of RFID systems. 

2.2.1 Components of RFID systems 

2.2.1.1 RFID tags  

The RFID tag consists of a microchip and a coupling element, such as an antenna, to 

communicate via radio frequency. The microchip has memory and can store data up to 128 
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Kbytes. The antenna is physically attached to the microchip and is used to draw energy 

from the reader to energize the tag. 

 

Figure 2.1: RFID Systems 

2.2.1.2 RFID readers  

The RFID reader is a device which communicates with tags via radio waves. It 

consists of one or more antennas that emit radio waves and receive signals from one or 

more tags. The reader sends a request as an interrogating signal for identification 

information to the tag. The tag responds or broadcasts with the respective information by 

sending an encoded modified signal, which the reader decodes, forwarding it to the server. 

Also, this device can be used to write data into RFID tags.  

2.2.1.3 Server  

The server (back-end or data processing device) is a centralized place that hosts all 

data regarding access permissions and may be consulted by the reader. It can provide a 

variety of computational functions on behalf of applications. The server provides a 

database of information about items identified by tags. 

2.2.2 Functionality and Advantages of RFID systems   

The functionality of this system is defined as follows: the RFID reader sends a signal 

of radio waves on a determined frequency, the tag that is in the field of action of the reader 

uses this signal as energy, this energy actives the chips what permits to send back the 

information that it contains. 

The main advantages of RFID system which are related with smartcards and barcodes are: 

- Tag detection does not require human intervention and thus reduces employment 

costs and eliminates human errors from data collection,  
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- Line-of-sight and direct contact

unlike barcode system

- Wide reading range, the reader can be up to 10 meters away from the tag

- RFID tag has a longer read range than

- Tag has read/write memory capability, while barcode do not, 

- An RFID tag can store a unique identifier 

- Tag is less sensitive to adverse conditions (dust, chemicals, physical damage etc.), 

- Many tags can be read simultaneously using a

- RFID tags can be combined with other devices, such as cell phone and sensors, 

- RFID tags cannot be 

- RFID system is also more stable against the vulnerabl

dirt and wearing that barcodes and optical character rec

2.3  Classification of RFID systems

The RFID systems can be classified into different 

criteria: frequency, power source, memory, standard, and fixation of reader. These 

characteristics are interdepending

Figure 
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direct contact are not required between the reader 

unlike barcode system, tag placement is less constrained, 

Wide reading range, the reader can be up to 10 meters away from the tag

a longer read range than barcode,  

read/write memory capability, while barcode do not,  

tag can store a unique identifier and also large amounts of data, 

less sensitive to adverse conditions (dust, chemicals, physical damage etc.), 

tags can be read simultaneously using anti-collision Identification

RFID tags can be combined with other devices, such as cell phone and sensors, 

RFID tags cannot be replicated easily, 

is also more stable against the vulnerablity environment factors like 

dirt and wearing that barcodes and optical character recognition labels face.

Classification of RFID systems  

The RFID systems can be classified into different classes according to 

criteria: frequency, power source, memory, standard, and fixation of reader. These 

depending.  Figure 2.2 presents different classes of RFID systems.

Figure 2.2: Classification of RFID systems  
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between the reader and the tag 

Wide reading range, the reader can be up to 10 meters away from the tag, 

large amounts of data,  

less sensitive to adverse conditions (dust, chemicals, physical damage etc.),  

collision Identification,  

RFID tags can be combined with other devices, such as cell phone and sensors,  

environment factors like 

ognition labels face. 

according to the following 

criteria: frequency, power source, memory, standard, and fixation of reader. These 

.2 presents different classes of RFID systems. 

 

Ultra High Frequency (UHF)



Chapter 2: RFID Systems and their Security 

 

32 
 

2.3.1 Frequency  

RFID system is based on wireless communication and makes use of radio waves that 

are a part of the electromagnetic spectrum. It operates on different frequencies depending 

on the application. Generally, these operating frequencies are classified into four frequency 

bands. Table 2.1 shows the characteristics of each band with their respective applications. 

Band Low Frequency 

LF 

High Frequency 

HF 

Ultra High 

Frequency 

UHF 

Microwave 

RFID 

Frequency 
125 – 134 kHz 

13.56 MHz 433MHz, 860 – 
960 MHz 

2.45 GHz ~ 

Communication 

Range 
< 0.5 m 

≤ 1.5m 433MHz: ≤ 
100m 

Other: 0.5m~ 5m 

≤ 10m 

Characteristics 

Short range, 
Penetrates water 

but not metal, 
Low data rate 

Mid range, 
Penetrates water 

but not metal, 
Reasonable data 

rate 

Long range, 
Cannot 

penetrates water 
or metal, High 

data rate 

Long range, 
Cannot 

penetrates water 
or metal, High 

data rate 

Application 
Access control, 
Car, animal ID 

Smart Labels, 
Access & 

Security, Apparel 

Logistics, 
Baggage, 

Electronic Toll 
Collection 

Electronic Toll 
Collection 

Table 2.1: Classification of RFID systems by frequency 

2.3.2 Power source 

The tags are classified according to the power sources as follows: 

- Passive: A passive tag captures its power from the incoming RF signal of a reader.  

It is smaller, has lower cost, requires no periodic maintenance, and is very 

inexpensive. 

- Semi-passive: has a battery and requires the power of reader to transmit message 

back to the reader. It is usually of UHF frequency band. Some semi-passive tags are 

in eve until they are activated by a signal coming from the reader, in order to keep 

the autonomy of the battery. These tags are sometimes called tags assisted by 

battery. 

- Active: Contains a battery and sends signals automatically to the reader. It has the 

advantage of longer reading distance as no power has to be transmitted wirelessly.  

The most expensive but is typically used in logistic applications. It can be of UHF 

or Microwave frequency bands. 
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2.3.3 Memory  

Another classification is based on the characteristics of the types of memory. The 

memory of a tag generally consists of a containing ROM (Read Only Memory), the 

information of security, as well as a gone resident of the operating system, and one RAM 

(Random Access Memory) that represents the programs executes themselves.  

- Read only information on the tag is factory programmed, and the memory is 

disabled to prevent future changes. It is a very limited quantity of data can be 

stored.  

- Read-Write can be read as well as written into. It contains more memory (32kB to 

12kB) but it is more expensive than the read only tags. 

2.3.4 Standard 

Standardization was needed for the interoperability of the RFID systems from 

various vendors. The International Standards Organization (ISO) has created standards for 

air interface protocol, data content, conformance and performance testing for RFID 

systems. EPCglobal has designed electronic product code (EPC) system for the use of 

RFID technology. Standards of ISO and EPCglobal are related to physical, 

communication, and application layers. 

- EPCglobal EPCglobal [Epc] was a GS1 (General Specification) initiative to 

develop industry-driven standards. The Electronic Product Code (EPC) is a syntax 

for unique identifiers assigned to physical objects, unit loads, locations, or other 

identifiable entities playing a role in business operations. EPCs have multiple 

representations, including binary forms suitable for use on RFID tags, and text 

forms suitable for data sharing among enterprise information systems. GS1's EPC 

Tag Data Standard (TDS) specifies the data format of the EPC, and provides 

encodings for numbering schemes within an EPC. When unique EPCs are encoded 

onto individual RFID tags, radio waves can be used to capture the unique 

identifiers at extremely high rates and at distances well in excess of 10 metres. 

These characteristics of RFID can be leveraged to boost supply chain visibility and 

increase inventory accuracy. One of the most recent standard of EPCglobal is EPC 

Class 1 Gen 2. It works up to a couple of meters, and it is very sophisticated in 

inventorying, session management, etc. 
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- ISO With ISO group, we can find the following norms:  

• ISO/IEC 14443 This norm specifies a class of RFID proximity tags. It is 

used in transportation systems, building access, Visa paypass. The cards 

operate in the 13.56 MHz band and they have a range of a few dozen 

centimetres. 

• ISO/IEC 15693 This norm specifies a class of RFID vicinity tags. The ISO 

15693 tags operate also in the 13.56 MHz band and they have a far greater 

operating range which can be between 1 and 1.5 meters.    

• ISO/IEC 15459 This norm defines a class of unique identifiers for transport 

units, including supply chain items and containers. It is roughly equivalent 

to the specification of different serialized of EPC. It can be represented in 

multiple forms: barcodes and RFID. 

• ISO/IEC 18000 This norm was first published in 2004. This implicates a 

conflict with the EPC Gen2 specification which was developed in parallel. 

After that, this conflict was corrected in 2006. The norm of ISO/IEC 18000 

provides the specific values for definition of the air interface parameters for 

a particular frequency including LF, HF, UHF, microwave and passive or 

active tags. 

2.3.5 Fixation of readers 

We have two categories of readers according to their fixation: 

- Stationary The reader is attached in a fixed way, for example at the entrance gate, 

and respectively at the exit gate of people. 

- Mobile In this case the reader is a handy, movable reader, for example in inventory 

management. 

2.4  RFID Applications 

RFID applications can be used by the individuals and the enterprises as well as by 

the states. There are numerous RFID applications available today, such as: transportation, 

animal identification, health, library, access control, etc. Figure 2.3 shows examples of 

RFID applications.  

Library Among the important uses of RFID systems is its deployment in libraries. 

Use of RFID technology in libraries can facilitate lending library items (books, DVD, CD, 

etc.), and to tracking and tracing these ones.  Moreover, the RFID tag contains identifying 
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information, such as a book’s title or book’s authors. In last years, this technology has 

replaced the old identification method of books, which is barcode. 

 

Figure 2.3: Examples of RFID Applications 

Access Control Contactless access control with RFID tags is popular for securing 

physical locations, such as office buildings, individual rooms, and commercial premises. 

First invented in 1973 by Charles Walton, the original RFID-based access control system 

involved an electronic lock that opened when presented with an RFID key card. One has 

two different access control systems: online and offline system. The first system tends to 

be used where the access authorization of a large number of people has to be checked at 

just a few entrances. All RFID readers are connected to a server by means of a network. 

The second system has become prevalent primarily in situations where many individual 

rooms, to which only a few people have access, are to be equipped with an electronic 

access control system. 

e-Passports An e-Passport contains a RFID tag, This tag holds the same information 

that is printed on the passport's data page: the holder's name, date of birth, and other 

biographic information. An e-Passport also contains a biometric identifier and the travel 

history (date, time, and place) of entries and exits from the country. Many countries use 

RFID passports ("e-passport") as authentication document in transportation between 

countries. 

Animal identification One of very useful techniques in animal identification is 

implantable RFID tags. This permits to identify the animal at a distance of up to 1 m, 
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verification of origin and the control of epidemics, measuring milk output, and automatic 

feeding in a feeding stall. Many options have been found for attaching the tag to animals: 

collar tag, injectible tag, Bolus, and ear tag. 

Human implants Implantable RFID tags designed for animal tagging are now being 

used in humans. An early experiment with RFID implants was conducted by Kevin 

Warwick, professor of cybernetics, who implanted a tag in his arm in 1998. For example, 

The Mexican Attorney General's office in 2004 implanted as set of its staff members with 

the Verichip to control access to a secure data room.  

Health The RFID technology is used in hospitals to identify patients and permit 

relevant hospital staff (e.g. physicians and nurses) to access medical records. For example, 

the Verichip society produces an implantable RFID tags to identify patients in emergency 

situation. In addition, adapting RFID technology in healthcare systems has helped hospitals 

in reducing medication errors. 

Supply Chain Management RFID application in the supply chain offers solutions 

when it is impractical to use other technologies like barcode to collect data. RFID tags can 

be attached directly to the materials or items and they can be attached to the containers that 

carry them. RFID can be used to monitor and manage the movement of products at 

different points in the supply chain: manufacturing, warehouse, distribution and retail. 

RFID technology can decrease costs associated with product tracking and inventory 

counting. It can increase the accuracy and timelines of inventory data. Also, it is even 

possible to control that the products are transported in the requisite conditions while 

verifying the temperature for example. The important standard oriented to supply chain 

application is EPC RFID. 

Transportation One of the most known applications and uses of the RFID 

technology remains the transportation industry and this in many areas: trucking, airports, 

rail, shipping, and tolls [Flo14]. We explain how RFID technology is used in two first 

areas. In trucking, the car's RFID tag would be read and the pertinent data reviewed (taxes, 

safety, weight, etc.).  If the car met all the standards required, a signal would be sent to the 

car allowing the station to be bypassed. Some airports have implemented control of taxis 

and busses by tagging them and then checking the amount of time or number of trips each 

vehicle makes.  By charging a fee for any excess trips or wait time, airports have been able 

to free up curb space and reduce congestion.    
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2.5  Security and privacy properties 

In order to have secure authentication protocols, it is important that a RFID 

authentication protocol requires security and privacy proprieties. 

- Secrecy or confidentiality, keeping tag’s identifier, cryptographic keys or other secret 

information from all but the server and the tag. This secret information is never 

passed on clearly to air on the radio frequency interface which can be spied on.  

- Integrity If an adversary modifies data of a legitimate tag while the data are being in 

transit, the reader should be able to detect this modification. To detect this 

modification, there are several techniques, like hash function, MAC (Message 

Authentication Code), and digital signature. 

- Mutual authentication A RFID authentication scheme achieves mutual 

authentication, that is to say, it achieves reader’s authentication and the tag’s 

authentication:  

- Tag authentication A reader has to be capable of verifying a correct tag to 

authenticate and to identify a tag in complete safety.  

- Server authentication A tag has to be capable of confirming that it 

communicates with the legitimate reader (a single reader exists in 

communications between the constituents of the RFID system). 

- Untraceability The untraceability is one of privacy proprieties. An RFID system 

satisfies untraceability if an intruder cannot find any links among any readings of the 

same tag. This implies that the intruder cannot track of the tag as run in different 

sessions. This property is called also location privacy. 

- Desynchronization resilience We can define this property as follows: at session (i), 

the intruder can modify or block the transmitted messages between the tag and the 

reader. In the next session, if the authentication process fails, then the tag and the 

reader are not correlated and this protocol does not achieve desynchronization 

resilience. We note that this property specifies for the RFID protocols that update a 

shared secret before terminate the protocol.  

- Forward secrecy One of the abilities of the intruder, is to compromise the secrets 

stored in the tag. The property of forward secrecy signifies protecting the previous 

communications from a tag even when assuming that the tag has been compromised.  
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- Non-repudiation Prevents a user (tag or reader) from denying previous commitments 

or actions. Concerning RFID, the threats of repudiation occur when a user refuses an 

action and no proof exists to confirm that the action has been achieved. 

2.6  RFID Threats 

The communication channel between the server and the reader is assumed to be 

secure while the wireless channel between the reader and the tag is insecure since it makes 

it open to attacks on RFID system. We assume that the intruder has a complete control over 

the channel of communication between the reader and the tag. It can intercept any message 

passing through the network, modify or block messages, and it can also create new 

messages from its initial knowledge. These used assumptions are gathered under the name 

Dolev-Yao model [DY83]. One of the most important studies on RFID threats is [MRT08]. 

- Tag Tracing It consists in tracing a tag and thus, a customer in space or time. The 

goal of the intruder is to trace a tag.  

- Replay attack Replay attack is an impersonation attack where the intruder replays 

or resends previous transmitted messages between reader and tag in the same 

session or in various sessions of same the protocol to be authenticated as legitimate 

reader or tag. 

- Man in the middle attack (MITM) The intruder could interfere with messages 

exchanged between a reader and a tag by modification, insertion, or deletion, in 

order to impersonate it later. 

- Relay Attack In a relay attack an intruder acts as a MITM. An intruder device is 

placed surreptitiously between a legitimate reader and the tag to intercept the 

communications between the reader and the tag. 

- Denial of Service attack The RFID system is in regular work if the tag and the 

server are available. The system does not resist denial of service attack if the 

intruder can block RFID readers’ signals or realizes desynchronization between the 

tag and server, i.e. the intruder can block or modify the messages transmitted 

between the reader and the tag so that they are not correlated in future 

authentication sessions. 

- Eavesdropping The intruder can eavesdrop because the communication between 

the reader and the tag is wireless and based on radio frequency. 

- Tag Cloning An intruder can read the legitimate tag, after that clone the legitimate 

tag by writing all the obtained data into a rogue tag. Cloning does not just mean 
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copying a tag’s identification and data but creating a new tag that follows the 

original one even to the form factor. 

2.7  Privacy model  

In the literature of verification of privacy properties, we can find many privacy 

models. One of the first privacy models was proposed by Avoine et al. [ADO06] which is 

based on the notion of indistinguishability. Juels and Weis [JW07] extended this model 

using side-channel information and making the two target tags chosen by the intruder. 

Another model was proposed by Ouafi and Phan [Oua12, OP08] which is based on the 

Juels-Weis model. Authors added numerous definitions in the untraceability property.  

 Ouafi and Phan capture the notion of privacy as the inability for any adversary to 

infer the identity of a tag chosen from a pair he has chosen. After interacting with the RFID 

system, the adversary is asked to select two RFID tags and receives one of them. The main 

goal is to discover the identity of the received tag. For that, it is still allowed to interact 

with the system and the target tag. The adversary has defeated the privacy of the scheme if 

he guesses for the correct identity of the true tag with a probability significantly greater 

than the one of output as a random guess. 

Now, we present the formal definition of Ouafi and Phan model, protocol party is a 

tag T∈Tags or a reader R∈Readers interacting in protocol sessions as per the protocol 

specifications until the end of the session. An adversary � is a malicious entity, modeled 

as a probabilistic polynomial-time algorithm, which controls the communications between 

readers and tags and interacts with them as defined by the protocol. The adversary is 

allowed to run the following queries:  

- Execute (R,T,i) query. This query models the passive attacks. The adversary � 

eavesdrops the communication channel between T and R and gets reading access to 

the exchanged messages in session i of a truthful protocol execution. 

- Send (U,V,m,i) query. This query models active attacks by allowing the adversary � to impersonate some reader U∈ Readers (respectively tag V ∈ Tags) in some 

protocol session i and sends a message m of its choice to an instance of some tag 

V∈ Tags (respectively reader U ∈Readers). Furthermore the adversary � is 

allowed to block or alert the message m that is sent from U to V (respectively V to 

U) in session i of a truthful protocol execution. 
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- Corrupt (T,K') query. This query allows the adversary � to learn the stored secret 

K of the tag T ∈ Tags, and which further sets the stored secret to K’. Corrupt query 

means that the adversary has physical access to the tag, i.e., the adversary can read 

and tamper with the tag’s permanent memory. 

- Test (�, ��, ��) query. This query does not correspond to any of �’s abilities, but it 

is necessary to define the untraceability test. When this query is invoked for session 

i, a random bit b∈{0,1} is generated and then, A is given �� ∈ (�N, �
) Informally, � wins if he can guess the bit b. 

Definition 2.1 (Freshness) 

A party instance is fresh at the end of execution if, and only if, 

- it has output Accept with or without a partner instance, 

- both the instance and its partner instance (if such a partner exists) have not been 

sent a Corrupt query 

Definition 2.2 (Untraceable privacy (UPriv))  

Untraceable privacy is defined using the game played between an adversary � and a 

collection of the reader and the tag’s instances. This game is divided into three 

phases: 

- Learning phase: � is able to send any Execute, Send, and Corrupt queries at 

will. 

- Challenge phase: � chooses two fresh tags T0, T1 to be tested and sends a Test 

query corresponding to the test session. Depending on a randomly chosen bit b∈ 

{0, 1}, � is given a tag Tb from the set {T0, T1 }. � continues making any 

Execute, and Send queries at will. 

- Guess phase: finally, � terminates the game and outputs a bit b'∈{0, 1}, which is 

its guess of the value of b. 

The success of � in winning the game and thus breaking the notion of UPriv is 

quantified in terms of �’s advantage in distinguishing whether	� received T0 or T1, 

in other term, it correctly guessing b. and denoted by !�����g~�(�) where k is the 

security parameter. 
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2.8  Classification of RFID authentication protocols  

In the classification of the authentication protocols in RFID systems, we can find 

several factors. We cite two important classifications, by stating of shared secret and 

required primitives. 

2.8.1 State of shared secret  

In the protocols using secret shared (tag’s identifier, symmetric-key, etc.), two 

mechanisms are used: static and dynamic. The characteristic of the mechanism of static 

secret is that the shared secret remains the same during the complete authentication, but 

that of the dynamic mechanism, the shared secret is modified. We cite example of RFID 

authentication protocols with dynamic shared secret, like [LAK07, Chi13].  

2.8.2 Required primitives   

This classification is based on cryptographic and algebraic primitives which are used 

in authentication protocols to assure the security and privacy properties. We mention that 

these classes of primitives are as follows: public-key cryptosystem, private-key 

cryptosystem, hash function, lightweight function, and bitwise operators (see Table 2.2). 

All these classes except the last class require a PRNG (Pseudo-Random Number 

Generator) for generating nonces. They are used to avoid replay attacks. The difference 

between these classes lies in the realized security properties and the complexity of 

implementation. 

2.8.2.1 Public-key cryptosystem 

Public-key cryptosystem is divided into three families according to the hardness 

problem: cryptosystem based on number theory, public-key cryptosystem based on coding 

theory, and cryptosystem based on lattice. 

Public-key cryptosystem based on number theory The majority of RFID 

authentication protocols which require these cryptosystems use ECC [Mil85] (Elliptic 

Curve Cryptosystem) cryptosystem (e.g. [HKCL14]) and avoid to use the RSA and 

ElGamel cryptosystems. The advantage of ECC compared with RSA and ElGamel is the 

smaller key sizes and compatibility with available resources of RFID tags. A key size of 

190 bit for an ECC is approximately equivalent to an RSA key size of 1937 bit.  

Concerning the implementation, ECC requires less gates compared to RSA, ECC-256 is 
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possible with less than 10000 GE (gates equivalents), whereas RSA needs about 50000 

GE. This cryptography is used in narrow domains, like e-passport. 

Class Sub-class Scheme Examples of RFID protocols 

Public-key 
cryptosystem 

(PKC) 

PKC based on number 
theory 

ECC [HKCL14, KGA15] 

PKC based on coding 
theory 

McEliece and its 
variants 

[MM12, Chi13, LYL14] 

Niederreiter and its 
variants 

[Cui07, SKI10] 

PKC based on lattice NTRU [EL12, XPK14] 

Private-key 
cryptosystem 

Block cipher AES [FDW04] 
Stream cipher A2U2 [DRL11] 

Hash function - - [LAK06, Liu08, WHC11, 
JDTL12, Khe14] 

Bitwise operators - - [PCMA06, Chi07, Zen09] 

Table 2.2: Classification of RFID authentication protocols 

Public-key cryptosystem based on lattice NTRU cryptosystem [HPS98] is the most 

practical lattice-based encryption scheme known. The NTRU cryptosystem is required in 

various RFID protocols, like [EL12, XPK14]. Its faster key generation and less memory 

usage allow it to be used in embedded devices, like smart-cards and RFID tags. To 

implement this cryptosystem, one requires 3000 GE.  

Public-key cryptosystem based on coding theory In this class, there are numerous 

RFID authentication protocols that use different code-based cryptosystems, such as [Cui07, 

SKI10, MM12, Chi13, LYL14]. These cryptosystems are McEliece and Niederreiter 

cryptosystems and theirs proposed variants.  The tag (except some protocols, such as 

[Cui07, SKI10]) does not require a public matrix or other matrices, but it stores the 

codeword with the necessary information in the tag’s memory. It needs a PRNG to 

generate an error vector and bitwise operators to compute the ciphertext.  

2.8.2.2 Private-key cryptosystem  

Feldhofer et al. [FDW04] proposed a first RFID protocol based on AES 

cryptosystem. They proposed two variants: unidirectional and mutual protocol. They also 

implemented this cryptosystem in RFID tag while using about 3400 GE, with a maximal 

clock frequency estimated to 80MHz, the consumption of energy 8.2 µ TO @ 100kHz and 

the maximal debit 9.9 Mbps. David et al. [DRL11] proposed a stream cipher for RFID, 
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called A2U2. It provides high throughput (1 bit per clock cycle) and requires very less 

number of logical gates, 284 GE. 

2.8.2.3 Hash Function  

In the survey about the design of RFID protocols, we found an important number of 

protocols which require a hash function, such as [LAK06, Liu08, WHC11, JDTL12, 

Khe14]. This primitive is a mechanism that can be integrated with message authentication 

code (MAC) or digital signature.  

The complexities of the cryptographic hash functions standards in the integrated 

circuits of the type ASIC (Application-Specific Integrated Circuit) are: Fast SHA-256 and 

the need of about 23.000 GEs (with a maximal clock frequency estimated at 150MHz and 

the debit 1163 Mbps). Guo et al. [GPP11] designed the Photon hash-function, it has 

various instances (80, 128,160, and 256) and it is strong against differential and linear 

cryptanalysis. Photon requires lesser number of GE, e.g. Photon-80 requires only 865 GEs. 

2.8.2.4 Bitwise operators  

This class needs only the bitwise operators, such as AND, OR, XOR, etc. These 

operators are used in an important number of RFID authentication protocols, like EMAP 

protocol [PCMA06] and SASI protocol [Chi07], and various variants of HB protocol 

[Zen09]. One can implement these operators with a limited number of logical gates.  

2.9  Conclusion  

In this chapter, we have presented different concepts of RFID systems: definition, 

classification, and applications. In addition, we have showed the main notions of RFID 

security: security and privacy requirements, classification of RFID authentication 

protocols, threats, and privacy model. We presented with detail the privacy model which is 

proposed by Ouafi  and Phan. 

The bitwise operators are used in most of RFID authentication protocols for low-cost 

RFID tags beside other cryptographic primitives. In spite of the importance of this 

primitive, the abuse of bitwise operator in the exchanged messages implicates an important 

attack that is algebraic replay attack (ARA). In the next chapter, we detail this attack with 

one of bitwise operators which is or-exclusive.   
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Chapter 3  

 

Algebraic Replay Attacks 

3.1  Introduction  

Among the attacks studied in the last years by researchers, we cite algebraic replay 

attacks (ARA). The main cause of these attacks is the abuse of the algebraic operator 

properties employed by the protocols. The operator or-exclusive (xor) is an algebraic 

operator. This operation is used in many RFID authentication protocols and has aroused a 

lot of interest during the last years; its implementation is low cost and requires few logical 

gates. 

In this chapter, we analyse different recent RFID protocols, the common characteristic 

between the studied protocols are: (i) they use or-exclusive operator and one-way function 

in transmitted messages and (ii) the vulnerabilities of these protocols are of type algebraic 

replay attacks on authentication (ARA). 

This chapter is based on our works [CCB12b, CCB13], it is articulated around the 

verification of RFID authentication protocols by using the AVISPA tools [ABB+05] after 

specifying these protocols in HLPSL (High-Level Protocol Specification Language) 

language [Tea06].  These analyses are based on the automatic verification of three security 

proprieties: secrecy, tag authentication and server authentication. We check which of the 

presented protocols cannot resist algebraic replay attacks.   

3.2  Formal Automatic Verification 

To verify the cryptographic protocol, we use a formal tool of verification. There are 

several tools of automated verification of protocols such as [KW96, Son99, GK00, 

ABB+05]. We select AVISPA tools (Automated Validation of Internet Security Protocols 

and Applications) [ABB+05] for the following reasons:  
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- The four available tools use various techniques of validation: Model-checking, 

automate trees, Solver SAT and resolution of constraints.  

- Among the four tools, two tools are employed OFMC (On-the-fly Model-

Checker) and CL-ATSE (Constraint-Logic-based Attack Searcher), they can 

verify the protocols using algebraic properties of XOR (exclusive-or) and 

modular exponentiation.  

- The AVISPA platform is the analyzer which models a big number of 

cryptographic protocols (more than 90 protocols).  

- These tools are based on only one specification language named HLPSL 

language.  

- AVISPA tools can detect passive and active attacks, like replay and man-in-the-

middle attacks.  

Glouche et al. [GGH+09] developed a SPAN (Security Protocol ANimator) tool to 

animate the security protocols which are specified by HLPSL and verified by AVISPA 

tools. The SPAN tool permits to simulate a protocol, intruder and scenarios of attacks. 

The formal automatic verification of cryptographic protocols involves the following 

steps: 

- Specification: specification of the initial assumptions, the capacity of intruder, the 

protocol goals (secrecy, authentication, etc.), the roles (the tag and reader), the 

messages transmitted and the primitives (hash function, PRNG, xor-operator, 

concatenation, etc.),  

- Verification:  After verifying the protocol using a validation tool, it is confirmed if 

the protocol is either safe or it has failed. In case of failure, the tool presents the 

message transmitted between the intruder, reader and tag, i.e. describes the trace of 

attack.  

3.2.1 Intruder Model 

Beside modelling security protocols, it is also necessary to model the intruder, that is 

to say, to define its behaviour and limit. For this, we assume an active Dolev-Yao attacker 

[DY83]. This intruder model is based on two important assumptions that are the perfect 

encryption and the intruder is the network. 

Perfect encryption ensures in particular that: (1) an intruder can decrypt a message m 

encrypted with key k if it has the opposite of that key, (2) a key cannot be guessed (during 
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the period of its validity), (3) and Given m, it is not possible to find the corresponding 

ciphertext for any message containing m without knowledge of the key. 

The intruder is the network The intruder has complete control over the network, i.e. it 

can impersonate a tag, impersonate a reader, obtain any message passing through the 

network, block or modify messages and it can also derive new messages from its initial 

knowledge and the messages that are received from honest participants during protocol 

run. The communication between the tag and reader is not assured as it is based on radio 

frequencies waves. Our particular verification gets transmissions on the canal reader-tag 

only.  

For the security protocols that require or-exclusive operator, there is another important 

assumption, an intruder that can exploit the algebraic properties of the XOR operator, 

which are: 

x ⊕ 0 � x    (neutral element)    (1) 

x ⊕ x � 0  (nilpotence) (2) 

x ⊕ y � y ⊕ x  (commutativity) (3) 

x ⊕ (y ⊕ z) � (x ⊕ y) ⊕ z  (associativity) (4) 

3.2.2 Specification 

AVISPA provides a language called the High Level Protocol Specification Language 

(HLPSL) [Tea06] for describing security protocols and specifying their intended security 

properties, as well as a set of tools to formally validate them.  

High Level Protocol Specification Language (HLPSL) is a modular, expressive, 

formal, role-based language. The HLPSL specification of protocol consists of two parties: 

basic roles and composition roles. The first part presents honest participants and the second 

part describes scenarios of basic roles.  

Composition roles consist of: session, environment and goal. The session role defines 

the initial state of the system. The environment role shows sessions of protocol between 

honest participants. Before terminating the specification, we determine the security 

properties that we want to verify. HLPSL can specify the secrecy and the authentication 
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properties. Figure 3.1 shows the structure of HLPSL specification of cryptographic 

protocol. 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Structure of HLPSL specification of protocol  

3.2.3 Verification Tools 

AVISPA European Project developed four tools:  On-the-fly Model-Checker 

(OFMC), Constraint-Logic-based Attack Searcher (CL-ATSE), SAT-based Model-

Checker (SATMC), and Tree Automata based on Automatic Approximations for the 

Analysis of Security Protocols (TA4SP). OFMC and CL-ATSE can verify the protocols 

requiring the operator exclusive or (XOR). The architecture of AVISPA is shown in Figure 

3.2. 

OFMC consists of two modules. The classical module performs verification for a 

bounded number of transitions of honest agents using a constraint-based representation of 

the intruder behavior. The fixed point module allows verification without restricting the 

number of steps by working on an over-approximation of the search space that is specified 

by a set of Horn clauses using abstract interpretation techniques and counterexample-based 

refinement of abstractions. Running both modules in parallel, OFMC stops as soon as the 

 

 

 

 

 

 

 

 

 

 

 

role <name_role>(<List_paramters>) 

Played_ by<name_agent> 

Def= 

< declaration_variable> 

role 

 ….. 

<liste _of_transitions> 

role session 

goal 

end goal 

role environment () 

Intruder_ knowledge 

B
a

si
c 

R
o

le
s 

 
C

o
m

p
o

sa
n

t 
ro

le
s 

  
P

ro
p

e
rt

ie
s 



Chapter 3: Algebraic Replay Attacks 

 

48 
 

classic module has found an attack or the fixed point module has verified the specification, 

so as soon as there is a definitive result. 

 

Figure 3.2: Architecture of the AVISPA Tools [ABB+05] 

CL-ATSE is a Constraint Logic based Attack Searcher for the security protocols and 

services. It takes as an input a service specified as a set of rewriting rules, and applies 

rewriting and constraint solving techniques to model all states that are reachable by the 

participants and decides if an attack exists with respect to the Dolev-Yao intruder.  

The SAT-based Model-Checker (SATMC) builds a propositional formula encoding a 

bounded unrolling of the transition relation specified by the IF, the initial state and the set 

of states representing a violation of the security properties. The propositional formula is 

then fed to a state-of-the-art SAT solver and any model found is translated back into an 

attack. SATMC does an analysis with a finished number of sessions where the messages 

exchanged on the network are controlled by Dolev-Yao intruder.  

The TA4SP tool computes either an over-approximation or an under-approximation 

of the intruder knowledge by means of rewriting on tree languages in a context of 

unbounded number of sessions. The TA4SP tool uses the tree automata library Timbuk 2.0 

to perform the computation of the intruder knowledge (over or under approximated). 

3.3  RFID Authentication Protocols 

We can describe the transmitted messages in studied RFID mutual authentication 

protocols in the form: 
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R � T : Nr 

T � R : Nt, Auth_Tag 

R � T : Auth_Reader 

Protocol Auth_Tag Auth_Reader Secret Data α ƒ 

Lee et al. 

[LAK06] 
H(Nr⊕Nt⊕K) 

H(H(Nr⊕Nt⊕K)⊕K⊕Nr

) 
K K H 

Chien and 

Huang 

[CH07] 

LH(RH(id)⊕h(Nr⊕

Nt⊕K)) 

RH(RH(id)⊕h(Nr⊕Nt⊕

K)) 
id, K K H 

Liu [Liu08] 
x⊕h(h(K)⊕nt), 

h(y⊕Nr⊕ Nt) 
y*

⊕h(x*
⊕y), h(x*

⊕y*) 
h(k),y,x,K 

 
y H 

Qingling et 

al. [QYY08] 

CRC(id⊕Nt⊕Nr), 

CRC(id⊕ Nt⊕Nr) ⊕ 

x 

CRC(id⊕Nt), 

CRC(id⊕Nt) ⊕ x 
id id CRC 

Wei et al. 

[WHC11] 
H(Nr⊕Nt⊕S) H(id⊕Ndb) S, id S H 

Jialiang et al. 

[JDTL12] 
H(Nr⊕Nt)⊕S H(Nr⊕Nt⊕Ndb) ⊕ id, Ndb S, id id H 

Table 3.1: RFID Authentication Protocols 

The transmitted messages of Auth_Tag and Auth_Reader are presented in Table 3.1 

The authentication message comprises ƒ(α⊕Nt⊕Nr), with α as secret data shared between 

the tag and reader and ƒ as one-way function like hash function and CRC function. The 

exception case is JDTL, where the message is ƒ(Nt⊕Nr) ⊕α. The following is a detailed 

description of each step of these protocols: 

- The reader RFID produces a nonce Nr and sends it and a request to the tag.  

- After receiving Nr, a tag generates a random number Nt and computes the function 

Auth_Tag, then sends Nt. The Auth_Tag is back to the reader (server).   

- After receiving the authentication message from the tag, the reader would search 

whether there exists certain ά in table α of the database, which could make ƒ(ά 
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⊕Nt⊕Nr)= ƒ(α⊕Nt⊕Nr). If it is found, the tag crosses the authentication of the tag 

and is considered as legitimate, and then the reader calculates Auth_Reader, then 

sends Auth_Reader to the tag. 

- The tag computes Auth_Reader’, if the outcome equals the received Auth_Reader, 

the authentication of the reader is successful; otherwise, the authentication has 

failed. 

In our chapter, we verify six protocols, as follows (see Table 3.1): 

- Lee et al. [LAK06]: Lee et al. propose an authentication protocol. The reader R and 

tag T share secret k. At finish authentication, reader and tag updates k to h(k). 

- Chien et al. [CH07]: The CH protocol was proposed by Chien and Huang in 2008. It 

uses hash function and non-cryptographic primitives (Left, Right and Rotate).  It uses 

these primitives to increase the security of protocol. 

- Liu [L08]: The author Yanfei Liu provided a detailed security analysis of the 

protocol and claimed that YL achieves a list of security properties, including 

resistance to tag impersonating, denial of service, replay and compromising attacks. 

- Qingling et al. [QYY08]: The authors of this protocol claim that this protocol is 

secure because of the use of CRC (Cyclic Redundancy Check) and use of random 

nonces to encrypt messages.  

In the next sections, we verify two recent protocols; the first protocol is proposed by 

Wei et al. [WHC11] and the second is proposed by Jialiang et al. [JDTL12].   

3.4  Wei et al.’s Protocol 

3.4.1 Review of Wei et al.’s Protocol 

Wei et al. [WHC11] proposed an authentication protocol where the reader R and tag T 

share secrets value s and Identifier id. Figure 3.3 shows the process of the WHC protocol.  

The following is a detailed description of each step of this protocol: 

- The reader generates a random number NR and query tags with NR. 

- After receiving NR, the tag generates a random number NT and calculates h(s⊕ 

NR⊕NT), then sends NT and h(s⊕ NR⊕NT) back to the reader.   

- After receiving NT and h(s⊕ NR⊕NT) from the tag, the reader calculates h(RID⊕ NR), 

and sends NR, h(s⊕ NR⊕NT), NT, h(RID⊕ NR) to the server. 
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Figure 3.3: The Wei et al.’s  protocol [WHC11] 

- After receiving an authentication message from the reader, the server checks whether 

NR matches with NR(old), if they match, the authentication is succeed. If they don’t 

match, the authentication is failed. 

- The server would check whether there exists certain RID* in table RID of the 

database, which could make h(RID*⊕ NR) = h(RID⊕ NR). If there exists such a 

record, the authentication application would be considered as from a legitimate 

reader, otherwise authentication is failed.  

- Subsequently, the server would check whether there exists a certain s* in table ID of 

the database, which could make h(s*⊕ NR⊕NT) = h(s⊕ NR⊕NT). If there exists such a 

record, the tag would be considered as a legitimate tag, then the server generates a 

random number Ndb and calculates h(id⊕Ndb), then sends Ndb , h(id⊕Ndb) to the 

reader, subsequently the server should update NR(old), NR(new), sold and snew. 

- After receiving Ndb, h(id⊕NR) from the server, the reader would send Ndb,h(id⊕Ndb) 

to the tag. 

- After receiving Ndb, h(id⊕Ndb) from the reader, the tag would calculate h(id⊕Ndb), If 

the outcome equals the received h(id⊕Ndb), then the object of mutual authentication 

is achieved,  the tag should update s = h(id⊕Ndb⊕ NT), otherwise, the authentication 

is failed. 
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3.4.2 Specification of Wei et al.’s Protocol 

The Wei et al.’s protocol used the primitives: hash function, nonce and xor-operator. 

These primitives are supported in HLPSL. We now present the role of reader in HLPSL 

specification:  

role reader ( R,T: agent, ID,RID, S: text, H : hash_func, Snd,Rec: 

channel(dy)) 

    played_by R 

    def= 

    local  State    : nat, 

    Nr, Nt, Ndb  : text 

    init State := 0 

    transition 

    1. State = 0  /\ Rec(start)   =|> State' := 1 /\ Nr' := new()   

                                      /\ Snd(Nr') 

    2. State = 1  /\ Rec(H(xor(xor(S,Nr),Nt')).Nt') 

    =|> State' := 2   /\ Ndb' := new() /\ Snd(H(xor(ID,Ndb')).Ndb')  

                      /\ secret(ID,sec_id,{R,T}) 

    /\ request(R,T,aut_tag,Nt') /\ witness(R,T,aut_reader,Ndb') 

end role 

 

This role is known as reader, with parameters R and T of type agent, id and RID of 

type text, and H of type hash function. The RCV and SND parameters are of channel type, 

indicating that these are channels upon which the agent is playing the role of the reader 

which will communicate. The attribute to the channel type, in this case (dy), denotes the 

intruder model to be considered for this channel. 

The parameter R appears in the played_by section, which means, intuitively, that R 

denotes the name of the agent which plays the role reader. Also note the local section 

which declares local variables of reader: State which is a nat (a natural number) and 

random numbers of type text, Nr, Nt,and Ndb . The local State variable is initialised to 0 in 

the init section. 

Concerning the transition party, the first transition of the role reader signifies: if the 

value of State is 0 and the message in the channel REC is start then: Nr takes a new random 

value sent on channel SND. The goal fact witness(R,T,aut_server,Nr’) should be read "agent 

R asserts that we want to be the peer of agent T, agreeing on the value Nr’ in an 

authentication effort  identified by the protocol id aut_server. " 
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For the second transition, if the value of State is 1 and the message 

H(xor(xor(Nr,Nt'),S)).Nt' on REC channel then the variable State is set to 2, and reader 

sends the message H(xor(id,Ndb').Ndb' on channel SND. For the predicate secret it signifies 

"the new value stored in S is a secret to be shared only between the R and T agents". The 

predicate request (R,T,aut_tag,Nt’) should be read, "agent R accepts the value Nt’ and now 

relies on the guarantee that agent T exists and agrees with it on this value".  

role session(R,T : agent,ID,RID,S : text, H: hash_func) 

def= 

  local Sa,Ra,Sb,Rb : channel(dy) 

    composition 

    reader(R,T,ID,RID,S,H,Sa,Ra) /\  tag(T,R,ID,RID,S,H,Sb,Rb) 

 

In the role session, one usually declares all the channels used by the basic roles. The 

channel type takes an additional attribute, in parentheses, which specifies the intruder 

model one assumes for that channel. Here, the type declaration channel (dy) stands for the 

intruder model of Dolev and Yao [DY83]. So, reader and tag can send and receive on 

whichever channel they want; when the intruder is the network then the intended 

connection between certain channel variables is irrelevant. In our specification, the reader 

sends on Sa some messages to tag which receives them on Rb.   

role environment() def= 

const r,t : agent, 

      id,rid,s,id,s: text, 

      h: hash_func, 

      aut_reader, aut_tag, sec_id : protocol_id  

      intruder_knowledge = {r,t,h} 

    composition 

    session(r,t,id,rid,s,h) 

    /\  session(r,t,id,rid,s,h) 

 

The role environment (or top-level role) contains global constants and a composition 

of one or more sessions, where the intruder may play some roles as a legitimate user. There 

is also a statement which describes what knowledge the intruder initially has, names of all 

agents (r and t) and hash function h. Specification of this role depends on the treatment of 

two identical sessions between the same tag and the same reader (T and R). This scenario 

allows discovering the attacks of the type replay attack 
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goal 

 secrecy_of sec_id 

authentication_on aut_tag    

authentication_on aut_reader  

end goal 

environment() 

 

Security goals are specified in HLPSL by augmenting the transitions of basic roles 

with so-called goal facts. We provide a validation of properties:  the secrecy of tag’s 

identifier (sec_id), the tag’s authentication (aut_ tag), and the reader’s authentication 

(aut_reader). 

The complete HLPSL specification of Wei et al.’s protocol shown in appendix A. 

3.4.3 Result of verification  

AVISPA tools detect trace of attack on tag authentication. Figure 3.4 shows the trace of 

attack on WHC protocol with the CL-Atse back-end. In this trace result, i represents the 

intruder, (r, 3) the reader, and (t,4) the tag. The posted information such as: n1(Nr) is 

instance of the nonce Nr. X2400 is a variable related to the internal workings of the CL-Atse 

back-end (in this trace is instance of the nonce Nr). N5(Nt) is instance of the nonce Nt.  

We symbolize: n1(Nr) by NR, X1632 by NR’, and n5(Nt) by NT. Several comments can 

be drawn from the trace:  

- Msg1: The reader generates a nonce NR and the intruder captures and stores the 

nonce in the course of the communication. 

- Msg2: The intruder generates another nonce NR’ and sends it to the tag. 

- Msg3: The tag generates an instance of the nonce NT and sends it with the hash 

function h(NR’⊕ NT ⊕s) to the intruder. 

- Msg4: The intruder returns the received function to the reader with NR’⊕ NR ⊕ NT. 

- Msg5: The reader sends the message h(id⊕Ndb), Ndb  to the tag. This message does 

not depend on the discovered attack. 

The attack on tag authentication is realised in Msg4. We will describe the principle of 

this attack in section 3.6.  
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Figure 3.4: Trace attack on the WHC protocol 

3.5   Jialiang et al.’s Protocol 

3.5.1  Review of Jialiang et al.’s protocol 

The protocol proposed by Jialiang et al. [JDTL12] requires hash function and PRNG. Figure 

3.5 shows the process of this protocol.  

 

Figure 3.5: Jialiang et al.’s protocol [JDTL12] 

The (i+1)th authentication access as follows: 

- The reader generates a random number NR and query tags with NR. 

- After receiving NR, tag generates a random number NT and calculates h(NR⊕Nt)⊕S, 

then  sends NT and h(NR⊕NT)⊕s back to the reader.   
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- After receiving Nt and h(NR⊕NT)⊕S from the tag, the reader calculates 

h(NR║NT)⊕RID, and sends NR, h(NR⊕NT)⊕S, Nt, h(NR║NT)⊕RID  to the server. 

- After receiving an authentication message from the reader, the server checks whether 

NR matches with NR(old), if they match, the authentication is failed. If they don’t 

match,  

- The server would calculate RID’= h(NR║NT)⊕(h(NR║NT)⊕RID) and search wether 

there exists a certain RID* in table RID of the database, which could make 

RID’=RID*. If there exists such a record, the authentication application would be 

considered as from a legitimate reader, or authentication is failed.  

- Subsequently, the server would calculate s’= h(NR║NT)⊕(h(NR║NT)⊕s) whether 

there exists a certain snew* in table ID of the database, thus s’=snew*. If there exists 

such a record, the tag would be considered as a legitimate tag, then the server 

generates a random number Ndb that could make the value which equals to 

h(id⊕NR⊕NT⊕Ndb) could not be found in column sold and column snew, and calculate 

h(id⊕ NR⊕NT⊕Ndb)⊕id, then sends Ndb, h(id⊕NR⊕NT⊕Ndb)⊕id to the reader, 

subsequently the server should update NR(old), NR(new), sold and snew. 

- After receiving Ndb, h(id⊕NR⊕NT⊕Ndb)⊕id from the server, the reader would 

calculate id’= h(id⊕NR⊕NT⊕Ndb)⊕(h(id⊕NR⊕NT ⊕Ndb)⊕id) and store id’ in its 

memory, subsequency send Ndb, h(id⊕NR⊕NT ⊕Ndb)⊕id to the tag. 

- After receiving Ndb, h(id⊕ NR⊕NT⊕Ndb)⊕id from the reader, the tag would calculate 

h(id⊕NR⊕NT ⊕Ndb)⊕(h(id⊕ NR⊕NT ⊕Ndb)⊕id), If the outcome is equal to id of the 

tag, then the object of mutual authentication is achieved,  the tag should update s = 

h(id⊕NR⊕NT ⊕Ndb), otherwise, the authentication is failed. 

3.5.2  Result of verification  

HLPSL specification of Jialiang et al.’s Protocol shown in appendix B. AVISPA tools 

detect trace of attack on tag authentication. Figure 3.6 shows the trace of attack on Wei et 

al.’s protocol. 

We symbolize: n1(Nr) by NR, Nr(5) by NR’, n5(Nt) by NT, Nt(2) by NT’ and n2(Ndb) by 

Ndb. Several comments can be drawn from the trace:  
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- Msg1: The reader generates a nonce NR and the intruder captures and stores the 

nonce in the course of the communication. 

- Msg2: The intruder generates another instance of the nonce NR’ and sends it to the 

tag. 

 

Figure 3.6: Trace attack on the Jialiang et al.’s protocol 

- Msg3: The tag generates a nonce NT and sends it with the xor of  s and hash function 

h(NR’⊕ NT) to the intruder. 

- Msg4: The intruder generates a nonce NT’ and sends it with the xor of s and hash 

function h(NR⊕ NT’) to the reader. 

- Msg5: The reader sends the function h(NR⊕ NT ⊕ Ndb)⊕Ndb  and Ndb to the tag. 

- The attack on tag authentication is realising in Msg4. We will describe the principle 

of this attack in the next section. 

3.6  Algebraic Replay Attacks  

In this section, we analyze the results of RFID authentication protocols and we cite the 

implementation and the countermeasure of ARA attacks.  

Our results are based on the automatic verification of the authentication properties of 

each RFID authentication protocol. Concerning the message of tag authentication Auth_tag, 

the difference between these protocols is the type of one-way function (hash function and 

CRC) and the secret data which are shared between the tag and the reader (server).   

For tag impersonation of the studies protocols, an intruder can store all the messages 

transmitted in a protocol run.  
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To tag impersonate, the intruder could replay ƒ(α⊕NR⊕NT) if he ensures that ƒ(α⊕ 

NR⊕NT) = ƒ(α⊕ NR’⊕nt’). The activate intruder can generate a new none and make an 

algebraic calculation of the type xor operation between numbers. Then, to satisfy this 

condition the intruder sets nt’ to NR ⊕ NR’⊕nt.  Here is the operation in detail: 

ƒ(α⊕ NR⊕NT) =? ƒ(α ⊕ NR’⊕ NT’) 

ƒ(α⊕ NR⊕NT)=? ƒ(α ⊕ NR’⊕NR ⊕ NR’⊕ NT)� replace nt’ 

ƒ(α⊕ NR⊕NT)=? ƒ(α ⊕ NR’⊕ NR’⊕ NR ⊕ NT)� commutativity 

ƒ(α⊕ NR⊕NT)=? ƒ(α ⊕0⊕ NR ⊕ NT) � nilpotence                          

ƒ(α⊕ NR⊕NT)= ƒ(α⊕ NR⊕NT)� neutral element                          

For tag impersonation in JDTL protocol, the principal vulnerability is the message of 

tag authentication h(NR⊕NT)⊕s. The intruder generates a nonce NR’ and sends in to the tag. 

The role of this nonce is obtaining the secret value s. The legitimate tag sends a message 

h(NR’⊕NT)⊕s to the intruder. In this step, the intruder obtains the secret value s. 

Subsequently, the intruder generates a nonce Nt’ of impersonation of tag and uses NR of 

the legitimate reader to calculate h(NR⊕Nt’)⊕s. The intruder sends h(NR⊕NT’)⊕s, NT’ to 

the tag. Then, impersonating the tag is successful. 

All the studied protocols cannot resist attack of tag’s authentication, and therefore an 

intruder can impersonate the tag. This type of attack is based on algebraic properties of 

algebraic operators (or, and, xor). The paper [DR09] aims to identify the algebraic 

problems which enable many attacks on RFID protocols. Toward this goal, three targeting 

types of attacks on RFID protocols have emerged authentication, untraceability, and 

secrecy are discussed.  

The common theme in these attacks is the fact that the algebraic properties of 

operators (e.g. xor operator) employed by the protocols are abused. The methods used to 

find algebraic replay attacks are sufficiently straight-forward. The algebraic replay attacks 

in RFID authentication protocols are described in some works such as [DR08, CS09, 

CDP09, Mih11, JF12].  

The relay attack system can use two transponders in order to relay the information 

that a reader and a token exchange during a cryptographic challenge response protocol. A 
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proxy-token device is placed near the real reader and a proxy-reader device is placed near 

the real token, possibly unknown to its holder. Information can therefore be forwarded 

over a great distance if a suitable communication medium is chosen between the proxy-

token and proxy-reader. As a result, the reader will report that it has verified the presence 

of a remote token and thus provide access to the intruder [Han06].  

Practically, the ARA system is based on relay attack system. The difference between 

this system and relay attack system is: this system supports Dolev-Yao attack model (see 

section 2). Therefore, the proxy system can generate a random number and compute xor 

operation between numbers. The process of attack system for Wei et al.’s protocol is as 

following (see figure 3.7): 

- Legitimate reader generates a nonce NR and sends it to the proxy-token. 

- Proxy-token receives it and blocks it; the proxy-token generates a nonce NR’ and 

forwards this nonce to the proxy-reader through the fast communication channels. 

- Proxy-reader fakes the real reader, and sends NR’ to the legitimate tag. 

- Legitimate tag computes a new nonce NT and computes hash function h(s⊕NR’⊕NT) 

and transmits it to the proxy-reader. 

- Proxy-reader receives it and calculates the new NT’ = NR⊕ NR’⊕NT and forwards 

this message and the received hash function to the proxy-token through the fast 

communication channel. 

- Proxy-token forwards NT’ and h(s⊕NR’⊕ NT) to the real reader. 

 

Figure 3.7: Attack System 

3.7  Proposed Solution  

Concerning the Wei et al.’s protocol, the proposed solution is to change the primitive 

XOR (⊕) between the nonce NR and NT by the concatenation (║). Therefore, the new hash 
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function is h(NR║(NT⊕s)). Automated verification of Wei et al.’s protocol after correction  

gives the following result: 

 

Figure 3.8: verification result of Wei et al.’s protocol after correction 

 

This result showed clearly that there is no attack detected during authentication. We 

can thus conclude that this protocol is safe. 

For tag impersonation in Jialing et al.’s protocol, the principal vulnerability is the 

message of tag authentication h(NR⊕NT)⊕s. The intruder generates a nonce NR’ and sends 

it to the tag. The role of this nonce is obtaining the secret value s. The legitimate tag sends 

a message h(NR’⊕NT)⊕s to the intruder. In this step, the intruder obtains the secret value s. 

Subsequently, the intruder generates a nonce NT’ of impersonation of tag and uses NR of 

the legitimate reader to calculate h(NR⊕NT’)⊕S. The intruder sends h(NR⊕NT’)⊕s, NT’ to 

the tag. Then impersonating of the tag is successful. We propose to use the message of tag 

authentication in WHC protocol corrected  as H(NR║(NT⊕S)). 

Therefore, the principal vulnerability in the studied protocols (presented in Table 3.1) 

is the use of xor operator in one-way function. Consequently, the solution is to change the 

primitive XOR (⊕) between the values of one-way function (α, NR, NT) by the 

concatenation (║). Therefore, the new one-way function is: ƒ((α⊕NR)║NT)or 

ƒ(α║(NR⊕NT)).  
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3.8  Conclusion  

 We have presented in this chapter different protocols using xor-operator and one-way 

functions. The one-way functions in the studied protocols are: hash function and CRC 

function. Our security analysis of these RFID authentication protocols by automatic formal 

tools. We showed that the verified protocols cannot resist RFID tag authentication attack 

therefore; an intruder can impersonate the tag.  

The detected attack is the type of algebraic replay attacks (ARA) on tag authentication. 

The principal cause of the described attacks in our work is the abuse of the proprieties of 

xor-operator in the transmitted messages.  The proposed solution for this attack is correcting 

the use of xor-operator and replacing it by concatenation operator.  

Using the obtained results of this chapter, we propose a new protocol based on hash 

function and or-exclusive operator for combined RFID-Biometric system. The details will 

be presented in the next chapter. 

 

 

 

 



Chapter 4: Hash-based Authentication Protocol for RFID-Biometric System 
 

62 
 

 

Chapter 4  

 

Hash-based Authentication Protocol for 

RFID-Biometric System 

 

4.1  Introduction  

The protocols of identity verification which allow access are called the authentication 

protocols. In RFID systems, several RFID authentication protocols have been developed 

(see chapter 2 and 3). The difference between the proposed protocols lies in the realized 

properties of security and the complexity of implementation. Most of these protocols use 

only tag RFID for access control. On the contrary systems with smartcards there are 

several authentication protocols based on the biometric technology. 

We are interested in access control applications. Physical access control consists in 

verifying if a person asking to reach a zone (e.g. building, office, parking, laboratory, etc.), 

has the right necessities to make it. Technique of access controls are based on the 

following criteria: what one possesses (smartcard, tag RFID), what one is (biometry: 

fingerprints, face, iris, etc.), what one knows (e.g. password), or on a combination of these 

criteria.  

In this chapter, we propose a hash-based authentication protocol for RFID-Biometric 

system (RBioA). Our protocol requires a PRNG, a robust hash function and Biometric 

hash function. The Biometric hash function is used to optimize and to protect biometric 

data. We prove the security properties of our proposed protocol by AVISPA tools.  To 

estimate these performances, we will compare it with the other RFID protocols and the 
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biometric protocols of smart cards. The work of this chapter is based on our papers 

[CCB11, CCB12a]. 

The remaining part of this chapter is organised as follows. In section 4.2, we show 

different proposed biometric authentication protocols. Works which describe different 

implementations of combined systems biometric-RFID are summarized in section 4.3. In 

section 4.4, we describe components of our system. Section 4.5 details registration phase 

and mutual authentication of our RBioA protocol. Section 4.6 gives security analyses of 

RBioA protocol. Section 4.7 analyses of RBioA protocol in term of performance. Finally, 

this chapter terminates by a conclusion.  

4.2  Biometric authentication Protocols 

Biometry is widely used in the authentication protocols of smart cards applications 

[KZW08, LH10, LCC10]. The use of these protocols in RFID systems depends on the 

availability of computer resources (memory, complexity, performance, etc.), in the 

constituents of RFID systems and especially the RFID tag. The recent protocol [LCC10] 

requires the calculation of seven operations of the function h in the phases of login and 

authentication and requires 4l as storage space in the tag. This number of calculations and 

this storage space influences negatively on the efficiency of a RFID protocol. Another 

difficulty concerns “Matching” treatment. In the biometric authentication protocols of 

smart card, this part is made with the technique Match-on-card.  

4.3  Implementation of RFID-Biometric system 

Concerning the material implementation of combined systems biometric-RFID, we 

shall quote two recent works. Rodrigues and al. [RHV09] propose a decentralized 

authentication solution for embedded systems that combine both token-based and 

biometric-based mechanism authentication. Aboalsamh [Abo10] proposes a compact 

system that consists of a CMOS fingerprint sensor (FPC1011F1) is used with the FPC2020 

power efficient fingerprint processor; which acts as a biometric sub-system with a direct 

interface to the sensor as well as to an external flash memory for storing finger print 

templates.  

An RFID circuit is integrated with the sensor and fingerprint processor to create an 

electronic identification card (e-ID card). The e-ID card will pre-store the fingerprint of the 

authorized user. The RFID circuit is enabled to transmit data and allow access to the user, 

when the card is used and the fingerprint authentication is successful. 
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4.4  System model  

The proposed system of authentication is based on the combination of two sub-

systems: an RFID system and a biometric system.  

4.4.1 RFID system 

RFID system consists of: a tag T, a reader R and a server S. 

- Tag:  the tag stores the identity (id) and the biometric hash function of the template 

of the person (GB). This id is strictly confidential and is shared between the 

database of the back-end server S and the tag T. The tag can generate random 

numbers, and calculation of the hash function h of a number. Standard ISO and 

EPC GEN2 (Generation 2) support the producing of the random numbers (nonces) 

in the tag.  

- Reader: The reader R can generate also the random numbers. The communication 

between the reader and the server is secured,  

- Server: the server has two main functionalities:  (1) for the biometric system: 

extraction of the characteristics of a biometric modality to create a model or 

template B. (2) For the RFID system: it contains the database which includes the 

list of the identity of tags id.  

4.4.2 Biometric system 

The biometric system consists of two entities, a sensor (SR) and a server (S). The 

biometric device in our system is Sensor, this biometric sensor is an electronic device used 

to capture a biometric modality of a person (fingerprint, face, voice, etc.). 

Biometric data can be stored in the tag or in the database. The biometric template will 

be stored in the tag. It offers a greater privacy and the mobility for the user. This assures 

also that information will always be with the user’s tag.  

Storing the raw biometric data typically requires more substantial memory. For 

example, a complete fingerprint image will require 50 to 100 Kbytes, while a fingerprint 

template requires only 300 bytes to 2 Kbytes [Sma11]. This condition is not always 

sufficient especially for the type of passive RFID tags. In our system, a practicable solution 

to optimize and to protect biometric data is the hash function. This function of template 

allows pressing the biometric template into an acceptable size. 
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The problem which lies with the hash functions standard (e.g. SHA-1 , MD5 , SHA-

256, …) is the comparison between two templates: the template which is protected in the 

tag a h(B) and the template which is generated from the capture h(B’). Equality h(B) = h(B') 

for the same person is not always assured, because B' is a dynamic template where the 

person never keeps the same biometric features, (e.g. movement of the finger during the 

purchase), which implies the existence of a rate of error. We will cite two research works:  

Sutcu and al. [SSM05] propose a secure biometric based authentication scheme which 

fundamentally relies on the use of a robust hash function. The robust hash function is a one-

way transformation tailored specifically for each user and based on their biometrics. The 

function is designed as a sum of properly weighted and shifted Gaussian functions to ensure 

the security and privacy of biometric data. They also provide test results obtained by 

applying the proposed scheme to ORL face database and designating the biometrics as 

singular values of face images. 

A. Nagar and al. [NNJ10] propose six different measures to evaluate the security 

strength of template transformation schemes. Based on these measures, they analyze the 

security of two well-known template transformation techniques, namely, Biohashing and 

cancelable fingerprint templates based on the proposed metrics. 

4.5  Description of our  RBioA protocol 

The proposed Protocol RBioA is divided into two processes: the phase of registration 

and the phase of mutual authentication. Steps detailed by two processes are described 

below.  

4.5.1 Registration Phase  

This registration phase is also called setup phase. The objective is to create a 

biometric template and store it in the related declared identity (see the figure 4.1). In this 

phase, it has to apply the following steps to obtain the RFID tag. 

Step 1: the authorized user inputs his/here personal biometrics, to pass it on to the 

server of the trusted registration center RC. 

Step 2: the RC, after extraction of biometric characteristics, creates a biometric 

template B, and computes the biometric hash function GB such as GB = g (B). 

Step 3: Then, the registration center stores the information {id, GB} in the user’s 

tag and sends it to the tag through a secure channel. 
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Figure 4.1: Registration Process of RBioA protocol 

4.5.2 Mutual Authentication Phase 

According to the order of the passed on messages, the phase of mutual 

authentication is described as below (to see Figure 4.2): 

Step 1: Tag authentication  

Step 1.1: R generates random nonce Nr and sends it as a query command to T.  

Step 1.2: the tag found in the step 1 generates a nonce Nt and computes P         

                such as:  P=LH(id⊕Nt║Nr) 

Step 1.3: the tag sends P with the nonce Nt to the reader RFID, 

Step 1.4: the reader resends the successful P message, Nt and the nonce Nr to the  

              server. 

Step 1.5: from the database, the server looks for a certain idi (such as 1 ≤ i ≤ n, n is       

              the number of tags) to compute Pi=LH((idi⊕Nt)║Nr), and make the 

              following comparison: 

Pi ?= P 

                If it is found, the tag crosses the authentication of the tag and is  

                considered as legitimate, otherwise it is set to end. 

Step 2: Reader authentication 

Step 2.1: the server computes and sends Q to the reader; 

 Q = RH(idi⊕Nt║Nr) such as idi = id  

Step 2.2: the reader sends the Q message in the tag. 

Step 2.3: the tag computes RHR(id⊕Nt║Nr) and verifies if:  

Q ?= RH((id⊕Nt)║Nr) 

               If they are equal, the authentication of the reader is successful; otherwise   

              the authentication of the reader has failed. 
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Step 3: Biometry Verification  

Step 3.1: the tag computes M1 = h (id║Nt║Nr) and makes operation or-

exclusive of M1 with GB and Nt. The resultant message is M = M1⊕GB⊕Nt. 

Step 3.2: the tag sends M to the reader RFID, and the reader resends received 

message to the server. 

Server 

[id] 

Reader Tag 

[id, GB] 

 
Nr ∈R {0,1}n   

   

Nt ∈R {0,1}n 

P= LH(id⊕Nt ║Nr) 

 

 

RFID tag authentication phase  

For each tuple in DB 

    If P = LH(idi⊕Nt ║Nr) 

          Compute Q= RH(id⊕Nt║Nr) 

 

 

 

 

 
 

 

RFID server  authentication phase  

Compute RH(id⊕Nt ║Nr) 

If Q = RH(Nt║S║Nr) 

      M1= h(id║Nt║Nr) 

     Compute M = M1⊕GB⊕Nt 

 
 

Biometry Verification phase 

Input B and Compute hB(B) 

Compute   M2=h (id║Nt║Nr)⊕Nt  

Extracts GB from:  

    M2 ⊕ M = GB 

If  GB ≈ hB(B)  

       Succeed  
 

 
 

Figure 4.2: Authentication phase of proposed RBioA Protocol 

Step 3.3: after acquiring the biometry of the user from the sensor, it sends it to     

              the server. The server extracts biometric characteristics and generates the   

              template B. the server computes the biometric hash function of the   

Request, Nr 

P, Nt P, Nt, Nr 

Q Q 

M 
M 
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              template hB(B). 

Step 3.4: from the database, the server computes M2=h (idi║Nt║Nr)⊕Nt, such    

               as idi= id (of the step 1.5), and extracts GB from:  

M2 ⊕ M = GB 

Step 3.5: to make the comparison of type 1:1 of hB(B) ≈ GB, if it is confirmed, the  

               person is a trusted user, otherwise, the bearer of the tag is illegitimate, the  

              information of failure will be sent to the reader, the protocol is interrupted. 

4.6  Security Analysis 

4.6.1 Automated Verification  

To verify the security of our proposed protocol, we specify it by HLPSL. Then, we 

verify it by AVISPA tools. HLPSL specification of our proposed protocol is shown in 

appendix C.  

The verified properties are: secrecy of the identity id (sec_id_TR and sec_id_RT 

respectively), the secrecy of the template B (sec_b), tag authentication (aut_tag) and reader 

authentication (aut_reader). These properties are specified in HLPSL as follows: 

goal 

    secrecy_of sec_b, sec_id_TR, sec_id_RT 

    authentication_on aut_reader 

    authentication_on aut_tag 

end goal 

As for the authentication, there are two possible attacks: the replay attack and the 

man-in-the-middle attack. For this, we uses two types of specification in the role  

environment.  

a) Replay Attack 

In the replay attack, the intruder can listen to the message of answer of the tag and to 

the reader. It will broadcast the message listened without modification to the reader later.  

Specification below of the role environment in HLPSL depends on the treatment of 

two identical sessions between the same tag and the same reader (t and r). This scenario 

allows discovering the potential existence of attacks of the type replay attack. 

role environment() def= 

const t,r : agent, 

      id,b : text, 
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      h,g,left,right : hash_func 

intruder_knowledge = {t,r,h,g,hright,hleft} 

composition 

session(t,r,id,b,h,g,hright,hleft)/\    

session(t,r,id,b,h,g,hright,hleft) 

end role  

After the verification of this protocol by AVISPA tools, result is showed in Figure 

4.3. This result means in clear that there is no replay attack. We can thus deduct that the 

diagnosis of AVISPA&SPAN tools for this protocol is secure. 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: verification result of RBioA Protocol 

b) Main-in-the-middle Attack  

The scenario of the role environment below allows discovering the the potential 

existence of attacks of this type.  

role environment() def= 

const t,r : agent, 

      id,b,idti,idri,bti,bri : text, 

      h,g,hright,hleft : hash_func 

intruder_knowledge={t,r,h,g,hright,hleft, idti,idri, 

                     bti, bri} 

composition 
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     session(t,r,id,b,h,g,hright,hleft)  

 /\  session(t,i,idti,bti,h,g,hright,hleft)   

 /\  session(i,r,idri,bri,h,g,hright,hleft) 

end role 

The result of the check with this scenario is the same as with the scenario a). We can 

thus deduct that this protocol is resistant to the attack of the “man in the middle”. 

4.6.2 Formal Analysis  

Using Ouafi-Phan model [OP08], we verify untraceability property. During every 

session of authentication, an opponent can observe only the values of (Nt, Nr, M1, P, Q), 

where, Nt and Nr are random numbers and M1 and Q messages are the calculated right/ 

left part of the function H((id⊕Nt)║Nr). The message P = H(id║Nt║Nr)⊕GB⊕Nt. 

The adversary cannot deduce the value of id because function H(id║Nt║Nr)is very 

effective as is shown in the paper of [JW07]. In messages M1, P and Q, the adversary 

cannot correlate id and B because these two values are secret and Nt and Nr are random 

numbers changed in every authentication. So, an adversary cannot track tags. 

4.6.3 Security Analysis  

We now analyze the security properties of the proposed protocol as follows: 

desynchronization resilience and Denial of service (DOS) attack prevention. In the Table 

4.1 below, a comparison of the security with protocols mentioned earlier is given 

[WSRE03, LHLL05, CH07, LHYC08]. 

RFID Protocol 

(static ID) 
[WSRE03] [LHLL05] [CH07] [LHYC08] 

Our 

Protocol 

Mutual Authentication + + + + + 

Replay attack prevention - + - + + 

Untraceability - + + + + 

DoS attack prevention - - + + + 

Desynchronization resilience  + + + + + 

Table 4.1: Security comparaison of RBioA protocol 

c) Desynchronization Resilience   

Our protocol belongs to the static mechanism id where the identifier of the tag is 

fixed. So, in the case of the loss of message, failing of energy or the loss of connection 
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with the server during the authentication, this will not affect the database of the server and 

will not become an obstacle to the protocol. 

d) DOS attack Prevention 

There are several categories of Dos attacks, one is to desynchronize the internal 

states of two entities, and the other is to exhaust the resources of the parties involved. 

For RFID authentication protocols, researchers are concerned about desynchronization.  

As for our protocol, the internal state id is kept static and not changed during the 

authentication process. So, it can resist the attack of denial of service. 

4.7  Performance analysis 

Table 4.2 illustrates the storage cost, the communication cost, and the computation 

cost of entities. The computation cost is a function of the number of operations of the hash 

function in login’s phase and the authentication on the smartcard for the biometric 

protocols, as well as of the number of operations of the hash function on the tag in RFID 

protocols. 

Computation Cost The tag used in the protocol proposed by Lee et al. [LHYC08] 

and the smart cards of the biometric protocols require an important number of operations 

for the hash function. On the contrary, in the protocol of Chien and Huang [CH07], it 

requires a random numbers generator with an input number, but it is necessary not to forget 

the replay algebraic attack. In our protocol, we require two operations of calculation of 

function h in the tag, so these calculations are effective for RFID tags. 

Communication Cost Communication cost between a tag and a reader consists of: 

the number of message exchanges, and the total bit size of the transmitted messages per 

each communication. Concerning our protocol, the total of the bits of the messages of 

communication tag to the reader is: 2½l and for the message of communication reader to 

tag it is: ½l. Compared to the other protocols of smart cards, the performance of the 

communication of our protocol is more effective. 

Storage Cost The amount of storage needed on the back-end server is also another 

important issue. In the biometric protocols [KZW08, LH10], the smart card requires 3l bit 

and 4l for the protocol [LCC10]. In our protocol, the tag requires 2l bit to store the identity 

(id) and the function h of template (GB).  
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Protocol 

Computational 

Cost 

Tag/Smartcard 

Storage Cost 

Communication Cost 

R ����T T ����R 
∑ 

R
F

ID
 

[CH07] 1g 2l ½l 1½l 2l 

[WSRE03] 1h 1l - 2l 2l 

[LHLL05] 3h 1l 3l 3l 6l 

[LHYC08] 4h 2l 1l 2l 3l 

S
m

ar
tc

ar
d [KZW08] 4h 3l 2l 3l 5l 

[LH10] 4h 3l 2l 3l 5l 

[LCC10] 3h 4l 2l 3l 5l 

Our RBioA protocol 2h 2l ½l 2½l 3l 

          Notations: h - the cost of a hash function operation,  

               g - random number generator with an input number, 

               l: size of required memory. 

Table 4.2: Performance Analysis of RBioA protocol 

Consequently, in the implemented protocols, the tag requires only 2l bits at most of 

the memory, which is adapted to tags with weak cost. 

We can conclude that our protocol is effective and adapted to RFID tags as far as 

the computation cost; the storage cost and the communication cost are concerned. 

4.8  Conclusion  

RFID systems can be applied in various areas, among the important ones of them, 

the access control. This work proposed a new RFID authentication protocol (RBioA). For 

an authentication phase, RBioA protocol is based on the combination of RFID tag and 

biometric data. Our proposed protocol realizes the secrecy private data, the tag 

authentication and the reader authentication. Experimental tests (with AVISPA and SPAN 

tools) proved its efficiency. The careful security analysis showed that the new protocol can 

resist man-in-the-middle attack, replay attack and the tracing attack. Moreover, the 

performance evaluation showed that the new protocol is compatible with the constrained 

computational and memory resources of the RFID tags.  
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Our RBioA protocol is of category hash-based RFID protocols that need exhaustive 

research to obtain the value tag’s identifier, i.e. complexity is O(n). In the next chapter, we 

will show a review of code-based RFID protocols which don’t need an exhaustive research 

i.e. the complexity is O(1).   
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Chapter 5  

 

RFID Authentication Protocols based on  

Error-Correcting Codes 

5.1  Introduction  

In the literature on design of RFID authentication protocols, we can find several 

categories according to various primitives requirement (described in chapter 2). The code-

based cryptography is a very important research area and it is applied in different schemes. 

The major problem was the size of public key; recently, code-based cryptosystems were 

presented with small key sizes. In the majority of RFID authentication protocols, the tag 

does not require a generator matrix or other matrices, but it stores the codeword with the 

necessary information.  

In this chapter, we review various and recent RFID authentication protocols based on 

error correcting codes. These protocols use various schemes based on coding theory: 

randomized Niederreiter cryptosystem [SKI06, CKMI07], error-correcting code with secret 

parameters [Par04, Chi06, CL09], Quasi-Dyadic Fix Domain Shrinking [SKI10], 

randomized McEliece cryptosystem [MM12], combination between number theory 

[Chi13], and based on Quasi Cyclic-Moderate Density Parity Check (QC-MDPC) 

McEliece cryptosystem [LYL14].  

Among these protocols, and in our paper [CCCB15a], we provide enough evidence to 

prove that two recent RFID authentication protocols are not secure. These protocols are: 

Malek and Miri [MM12], and Li et al. [LYL14].  
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5.2  Park’s Protocol 

5.2.1 Review of Park’s protocol 

Park [Par04] proposed a one-way authentication protocol to provide untraceability, it 

is based on the secret-key certificate and the algebraic structure of the error-correcting 

code. We note that this protocol is designed for wireless mobile communication systems. 

We study this protocol because the computational capabilities of mobile subscriber is 

limited like the RFID tag, we denote mobiles subscriber (MS) as tag T and the 

authentication server (AS) as reader R.  

a) Initialization phase:  

The T computes and stores the following tokens xi with xi−1=g0(xi), for i=s,s−1,...,1. 

The T sends the root authentication token x0 to the R. The R computes a symmetric-key 

certificate of the tag SC = {id||x0}_kR , where the secret key kR is only known by R. Then, 

the encoding of SC with matrix G, the encoded certificate is c=SC.G. Finally, the encoded 

certificate c is sent to the T in a secure channel.  

b) The authentication phase 

The authentication phase is depicted as follows (see Figure 5.1):  

 

Figure 5.1: Park’s Protocol 

- From application ∅#,B(�8	 ∥ -~�) of enumerative method, T generates the error 

vector e of session (i) ,and computes ci=c⊕e and send it to R.  

- The R decodes the received word c⊕e using the corresponding decoding algorithm, 

obtaining (e,SC).  
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- R decrypts SC to obtain the identifier id and x0 to verify the token xi in the error 

vector.  

- R applied ∅#,B$
(�(~)) to obtain [i||xi], and computes a series of authentication 

tokens JN(-~),	JN(-~$
),…,	JN(-
),, and verify if  JN(-
) is the same as the value 

x0 retrieved from the secret-key certificate, if equal, then tag authentication is 

successful.  

5.2.2 Traceability Attack 

Figure 5.2 shows the message transmission of the traceability attack, and the 

following is the detailed description of each step: 

- At session (i), the intruder intercepts �⨁�(~) ,  
- At session (j), it intercepts ⨁�(�) .  
The Hamming weight of (�⨁�(8))⨁(�⨁�(�)) is less than 2t, and the codeword c fixed 

for all sessions leads to attack on message-resend attack , and implicates an attack on 

untraceability and on confidentiality of c (see Figure 5.2). This attack is described also by 

[Dom06].  

 

Figure 5.2: Traceability attack on Park’s Protocol 

5.2.3 Desynchronization attack 

Other vulnerability of the Park’s protocol is of type deynchronization attack. Figure 

5.3 shows the message transmission of this attack, and the following is the detailed 

description of each step: 
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At session (i), the intruder blocks the message ci. In new run of protocol, the value of 

session i stored in the reader is different from i stored in tag this implicates that the tag and 

the reader are not correlated and will be in a desynchronization state. 

 

Figure 5.3: Desynchronization attack on Park’s Protocol 

5.2.4 Performance analysis 

Concerning storage cost, if the number of authorized sessions s is very large, the tag 

needs important storage space for stocking all the values of g0(xi). For example, if s=1000 

times and the length of JN(. ) is 100 bits, then the tag requires 97.66 Kb for all tokens xi. 

5.3  Chien’s Protocol (2006) 

5.3.1 Review of Chien’s Protocol 

In paper [Chi06], the author proposed two authentication protocols for RFID systems 

oriented to access control applications. Firstly protocol is based on hash function, the 

second one is based on error-correcting codes. We are interest by this last protocol. 

a) Initialization phase 

The server (S) generates a unique key for each tag, key=h(Ksvr║id), where Ksvr is the master 

key of the server. The server also selects a random seed p0 and computes pn’=h
n’(p0) and 

the secret certificate for the tag as ��e�B�� = ��� ¡(8�║c#║��+║��t8�B~X¢) where 

validtime denotes the valid time period of this certificate, hn’(.) denotes hashing n’ times and 

n’ denotes the maximum allowed authentications per tag for each imprinting.  

After the certificate becomes expired, the tag should be re-imprinted. The S further 

encodes the certificate as a codeword ctag=Certtag.Gserver. The tag stored the values (key,ctag, 

p0). 
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b) Authentication phase

The authentication phase is depicted as 

- The R sends the query message to the 

- The T computes pn’

tranform string bits to error

transmission vector 

- S uses Hserver and Algorithm 

value [i ║pn’-i] and 

server verifies the tag by checking whether the equation p

the T is authenticated, and the 

otherwise, it responds an error message 

- S computes and sends back "success" and

forwards this value to 

updates its local value 

5.3.2 Desynchronization attack 

In each run of protocol, the tag and the reader store the number 

If the intruder blocks the last message from 
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Authentication phase 

The authentication phase is depicted as bellow (Figure 5.2):  

Figure 5.4: Chien’s Protocol (2006)  

sends the query message to the T. 

’-i=h
n’-i

(p0), and transforms [i ║pn-i] into an e 

tranform string bits to error vector (see chapter 2). It adds e 

transmission vector r=ctag+e. The R forwards the received r to the 

and Algorithm of transform error vector to string bits

and ctag. It decrypts ctag to get the data (id║pn║

server verifies the tag by checking whether the equation pn?=h

is authenticated, and the S updates the local value i and goes to the next step; 

otherwise, it responds an error message to the R. 

computes and sends back "success" and ℎ(��+⨁c#$
) to the reader. 

this value to T, and T can verify the validity of the response and then 

updates its local value i. 

Desynchronization attack  

In each run of protocol, the tag and the reader store the number i

the last message from R to T, then, the value i of the 

Correcting Codes 

 

 

 using Algorithm of 

 and ctag to get the 

to the S. 

of transform error vector to string bits to derive the 

║key║validtime). The 

h
i(pn’-i) holds. If so, 

and goes to the next step; 

to the reader.  The reader 

can verify the validity of the response and then 

i of the last session. 

the session which is 
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stored in R is different than T, which implicates that T and R are not correlated. Then, the 

Chien’s protocol (2006) does not resist desynchronization attack. 

5.3.3 Performance analysis 

Concerning the computational evaluation, in each run of protocol, the tag compute 

the hash function of cN (n’-i) times. For example If the number of authorized 

authentication n’ is 1000, then h(p0) is computed 999 times for session i=1. Thus, this is an 

important computation and not compatible with low-cost tags. 

5.4  Cui et al. Protocol  

5.4.1 Review of Cui et al.’s Protocol 

In paper [CKMI07], the authors proposed an authentication protocol based on 

randomized Niederreiter cryptosystem and amelioration of the protocol [SKI06].  

a) Initialisation phase  

The identity of tag is uniquely mapped to an element id, R computes �� = 8�A� and 

sends it to T with matrix A�.  

b) Authentication phase  

The authentication phase is depicted as follows (see figure 5.5):  

 

Figure 5.5: Cui et al.’s Protocol 

- The reader R generates random number £¤ and sends it to T.  

- T generates random number r with length n1 and weight t1 and computes �
 =eA
and ��¥ = �
⨁��.  

- It computes VT=h(c2∥r∥NR) and send PID with VT to R.  
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- R decodes PID with private key to obtain id and r. Then hashes value 

h(idH2id∥r∥NR) is compared with VT, tag authentication is successful if they are 

equal, otherwise authentication has failed.  
 

5.4.2 Security Analysis  

In this protocol, the intruder could derive �� and matrix A
 from a compromised tag. 

These data stored inside the legitimate tag are constant during its life. Therefore, this 

protocol does not achieve the forward secrecy. However, Cui et al’s protocol does not 

achieve reader’s authentication, consequently this protocol is one-way authentication.  

5.4.3 Performance Analysis  

As for the performance, the tag stores the public-key matrix H1 to encrypt r. This is 

disadvantageous on two faces: requirement of space of non-volatile memory, and 

computation of ciphertext rH1. The proposed solution is replacing this matrix by vector 

with length n bits using principle of quasi-cyclic codes. We use shifting circular in vector 

to calculate rows of public-key matrix H1. 

5.5  Chien and Laih’s Protocol 

5.5.1 Review of Chien and Laih’s Protocol 

Chien & Laih [CL09] proposed a lightweight RFID authentication protocol based on 

error-correcting codes. This protocol uses confusion scheme to avoid message-resend 

attack and related-message attack. 

a) Initialisation phase  

Initially, R chooses randomly a secret linear code C(n,k,d), as specified by its generator 

matrix G, and assigns row vectors G[j]s' to T for j=(z−1)∗s'+1,…,z∗s', when z is order of 

tag. R maintains the information of each tag in its database id, K and indices of the 

assigned rows of G. Tag’s memory stored id, K, vectors G[j]s'.  

b) Authentication phase  

The authentication phase of the protocol is described as follows (figure 5.6):  

- R generates a nonce NR , and sends it with a query message to the T.  

- T generates a non-zero codeword c via a random linear combination of row 

vectors {G[j]j=(z−1)∗s'+1,…,z∗s'} and randomly computes error vector e. 
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Figure 5.6: Chien and Laih’s Protocol [CL09] 

- It calculates ci=c⊕e, VT=g(e⊕g(NR⊕K)) and generates two random numbers 

(�~′ , ¦Y′ ), where |�~
�| � |�~| and |¦Y| � |¦Y

� |.  

- T sends the two sets {u�~
′ , ¦Y

′ v, (�~, ¦Y)},  to R.  

- R uses the decoding algorithm to derive (m,e), where m can be used to identify 

the tag T and K verifies the equality {VT?=g(e⊕g(NR⊕K))} to accept tag’s 

authentication.  

- R computes VR=g(NR⊕g(e⊕K)) and sends it to T.  

- T verifiesVR?=g(NR⊕g(e⊕K)). If they are equal, the reader’s authentications 

successful; otherwise the reader’s authentication has failed.  

5.5.2 Security analysis 

The tag stores id, K and row vectors G[j]s' are static information, therefore, this 

protocol does not achieve the forward secrecy. However, this protocol cannot prevent the 

tracing attacks [CCZ+14]. Authors used confusion scheme for avoid message-resend attack 

and message-related attack, but we can protect our protocol and reduce the communication 

cost and minimize computational operations by treating the weight of error vector.  
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5.5.3 Performance Analysis  

As for the storage cost, if s' number of row vectors assigned to tag is important, then 

the space memory requires length of generator matrix G multiplied by total number of 

rows on tag and 2×|K|.  

5.6  Sekino et al. Protocol 

Sekino et al. [SKI10] proposed a challenge response authentication protocol based on 

Quasi-Dyadic Fix Domain Shrinking that combines Niederreiter personalized public key 

cryptosystem (P2KC) [KI06] with Quasi-dyadic (Goppa) codes [MB09]. The principal 

objective of this approach is the reduction of size key matrix H1 witch is stored in tag.  

5.6.1 Review of Sekino et al. Protocol 

a.) Initialisation phase  

The decryptor can learn who has generated the ciphertext, and also the system 

provides reduction of the encryption key size and reduction of the encryption computing. 

(P2
KC) can generate encryption key ppk from public key of Niederreiter PKC with n 

dimension vector pv (personalized vector). The sender encrypts plaintext by using ppk , 

with ppk(H1, c2, t, Sub), becomes (n−k)xn1 binary matrix H1, dimension vector c2 ans Sub 

is (n1 + 2) sequence. The ciphertext is � = (A
B)4 ⊕ ��), where m is vector of length n1. 

Decryption of (P2
KC) uses the decoding algorithm of Niederreiter PKC. 

The public key H is produced with the structure of FQD (Flexible Quasi-Dyadic) and 

makes FDS (Fix Domain Shrinking) adjust to H. 

b.) Authentication  phase  

The authentication phase of this protocol is the same authentication phase of Cui et 

al.’ protocol. The only difference between this protocol and Cui et al’s protocol is 

articulated on the method of generation of public matrix. The method used to generate a 

parity-chek matrix of t×n is called Flexible Quasi-Dyadic. On the contrary, in the Cui et 

al.’s protocol, it requires a public matrix of n−k×n, where t<n−k.  

5.6.2 Security Analysis 

The information stored in tag c2 and H1 are static, therefore, this protocol does not 

achieve the forward secrecy. 
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5.6.3 Performance Analysis 

Concerning storage space in tag, the authors reduce the space requirement from 

(n−k)×n1 in Cui et al’ protocol into (n−k)×(n1−(n−k))/t, but it remains relatively for 

important the resources of low-cost tag.  

5.7  Malek & Miri Protocol 

5.7.1 Review of Malek and Miri Protocol 

Malek and Miri [MM12] proposed a RFID authentication protocol based on 

randomized McEliece public-key cryptosystem. In this protocol, the tag can communicates 

with a set of authorized tags. So, it is possible to have different parameters for different 

readers to be stored in the memory of tag. 

a) Initialisation phase  

In the initialization phase, the trusted center (e.g. server) selects a binary string id. 

Then it generates a random string r that uniquely identifies the tag with id. The trusted 

center encrypts [r ║ id] using the randomized McEliece cryptosystem. The trusted center 

outputs rG1⊕idG2. Then it stores {rG1⊕idG2, id} in the tag’s memory. The data stored 

in the reader are private matrices and a database composed of {idR, r, id}, where idR is the 

reader’s identifier. We note that in this protocol, the tag can communicate with a set of 

authorized readers. So, it is possible to have different parameters for different readers to be 

stored in the tag’s memory. 

b) Authentication phase  

The authentication phase of the protocol is described as follows (figure 5.7):  

- reader R sends the query message with idR to the T.  

- T searches its memory to find the values id corresponding to idR. If T finds the 

corresponding values, it generates a random error vector e.  

- T computes y=rG1⊕idG2⊕e and sends it to R.  

- R decrypts y to retrieve (r,id) and e and verifies the received values with id,r 

stored in the database. If tag’s authentication is successful, R generates a new 

random vector p with length n and computes a circular matrix Ap from p. It 
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sends the response set {d0,d1} to T, where d0=rG1⊕idG2⊕p and 

d1=id⊕h(eAp), the length of output of hash function h(.) is k2. 

- T computes d0⊕rG1⊕idG2 to find p and uses its value to generate an Ap. It 

then, verifies the equality of d1⊕h(eAp) and id. When the reader’s 

authentication is successful, the tag requests OK to R.  

- R generates a new random r’ and computes y'=r'G1⊕idG2⊕e. It sends it to T.  

- T refreshes its memory content by replacing { 21' idGGr ⊕ , id} with {+′ ⊕ �, 

id} and terminates this session. 

 

Figure 5.7: Malek and Miri’s Protocol [MM12] 

5.7.2 Desynchronization attack 

We assume that the adversary has a complete control over the channel of 

communication between the reader and the tag. It can intercept any message passing 

through the network, modify or block messages, and it can also create new messages from 

its initial knowledge.  
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Figure 5.8 shows the message transmission of the desynchronization attack, and the 

following is a detailed description of each step: 

 

Figure 5.8: Desynchronisation attack on Malek and Miri's protocol 

- At session (i), we suppose that the system is processing normally, steps of the tag's 

authentication and the reader's authentication are successful. T requests OK to R 

and the adversary intercepts the messages transmitted between R and T.    

- R generates a new random r’, computes +� = e′�
 ⊕ 8��� ⊕ �~, and sends it. R 

updates the value of r by r'. 

- The intruder blocks the message y', generates a vector f, and computes y'⊕ f. It 

sends it to T. 

- T updates the stored data *e�
 ⊕ 8���, 8�}, by *9 ⊕ �~, 8�}and terminates the 

session. The new data stored is *9 ⊕ e��
 ⊕ 8���, 8�}.   
- At session (j), R sends the query message with idR to T. 

- T searches *9 ⊕ e��
 ⊕ 8���, 8�} corresponding to idR. T generates a random 

error vector �� and computes + = e′�
 ⊕ 8��� ⊕ ��  and sends it to $R$.  

- After decrypting y, the received id'',r'' is different from id, r' (stored in the 

database). Thus, the tag's authentication has failed. 

There is another scenario to realize the attack on desynchronization. When the 

intruder blocks the last message, the random value is updated in back-end and not modified 

in the tag. Consequentially, the tag and the reader are not correlated and this protocol does 

not achieve the desynchronization resilience property. 
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5.7.2 Performance analysis  

Let u denote number of authorised readers with a tag. The space of stored memory of 

tag is depending on u, if u is important then we require u×(n+k2) bits.  

Other important factor is circulate matrix Ap, authors propose to calculate the 

circulate matrix Ap from vector p then compute eAp , this requires a more complex 

computation and important space in the volatile memory (n×n) bits.  

7.8 Chien’s Protocol (2013) 

5.8.1 Review of Chien’s Protocol 

H-Y. Chien [Chi13] proposed RFID authentication protocol based on a combination 

between Rabin cryptosystem and error correction codes to achieve anonymity and 

untraceability proprieties. The author proposed two authentication protocols according to 

the security of communication between the reader and the server (secured/unsecured). In 

this paper, we are interest by the protocol in which the communication between reader and 

server is secured.  

a) Initialization phase 

Initially, R assigns {c, id, K, r} to tag T, where c is one non-zero codeword, id is 

tag’s identifier; K is shared key between S and T, and secret random value r. The server 

(reader) keeps {id, c, K, rold and rnew} for each tag and public-key matrix G. rold represents 

the r value used in the previous session, rnew represents the r value is used in the next 

session, and rold = rnew = r initially. 

b) Authentication phase 

The authentication protocol is depicted as follows (Figure 5.9):  

- R sends its query message with a random number NR to T.  

- T generates a random error vector e and computes ci=c+e and 

VT=g(e⊕g(NR⊕K⊕r)). T calculates M=(ci∥VT)2 mod N and send it to T.  

- R who knows two prime numbers first applies the Chinese reminder theory to 

derive four answers {ci∥VT} . For each answer, the reader decods ci to get (c,e) 

to identifier of the corresponding tag. 
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Figure 5.9: Chien’s Protocol (2013) [Chi13] 

- R computes and verifies whether VT?=g(e⊕g(NR⊕K ⊕rold)) or 

VT?=g(e⊕g(NR⊕K ⊕rnew)). When this one is identified, the tag’s authentication 

is successful.  

- R computes VR=g(NR⊕g(e⊕K⊕r)).It updates rold⟵rnew and rnew←g(rnew). 

The R sends VR to T.  

- T verifies the equality VR?=g(NR⊕ g(e⊕K⊕r)) .If successful, it accepts the 

reader’s authentication, and updates r←g(r). 

5.8.1 Security analysis 

This protocol is formally secured and it achieves the security and privacy proprieties, 

but this is not the only factor to evaluate a protocol. Author used Rabin cryptosystem to 

avoid message-resend attack and untraceability attack.  

Using Rabin cryptosystem implicates adding a space memory and adding others 

computational operations (square modular and square root modular). We propose other 

solution; this principle is based on the dynamic of weight of error vector in each session 

wherever less then t.  
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Also, Author selects N=512 as size of public key of Rabin, but the size key 512-bit 

number is factored in 1999 by the Number Field Sieve factoring method (NFS). Actually, 

the size key recommended is 2048 bits. Among techniques used to resolve the problem of 

modular square root to determine the correct plaintext (4 plaintexts possible), we cite 

redundancy scheme, but the author of [Chi13] did not use this scheme, these implicates the 

decoding of codeword and compututaion four g four times.  

The protocol used McEliece cryptosystem because it is very fast and resistant to 

quantum computer, but the Rabin (especially of RSA) is not fast relatively to McEliece and 

cannot resist quantum computer. 

7.9 Li et al. Protocol 

Li et al. proposed in [LYL14] a mutual RFID authentication based on the QC-MDPC 

McEliece cryptosystem. It was designed to secure mutual authentication and to resist 

replay attack. 

5.9.1 Review of Li et al. Protocol 

a) Initialization phase: 

In the initialization phase, the trusted center (e.g. server) generates the initialization 

vector n
Fh 2'∈ , saves it in the tag T and the reader of R with identifier k

Fid 2∈ .  

b) Initialization phase: 

The scheme works as follows (see Figure 5.10): 

- The reader R generates a random vector v and queries the tag T.  

- After receiving the vector v, T randomly generates an error vector e, and then 

utilizes the vector h’ to create public-key matrix G for encryption. Then, it 

computes c'=idG⊕e and h1=hash(p∥e), and sends c' and h1 back to the reader.  

- After receiving the authentication message from R and transmitting them to back-

end database, R performs a decoding algorithm with private key matrices and 

identifies the error vector e as well as id. From id, the server retrieves the 

corresponding value of id.  

- R computes h(p∥e) and compares it with h1. If they are equal, R computes h2=h(e) 

and sends it to T.  
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- T would compute h(e), if h(e)=h2, then the object of mutual authentication is 

achieved, authentication is successful, otherwise, the reader’s authentication has 

failed.  

 

 Figure 5.10: Li et al.’s Protocol [LYL14]. 

 

5.9.2 Traceability attack 

In the McEliece cryptosystem, the parameters (n,k,t) are public. With these information, 

and particularly, the minimum distance d and the Hamming weight t; the adversary can 

attempt to trace the tag with the following scenario:  

- At session (i), the adversary intercepts (c'i=idG⊕ei) and saves it.  

- At session (j), it intercepts (c'j=idG⊕ej).  

- The intruder computes: c'i⊕c'j=idG⊕ei⊕idG⊕ej  

We have ei≠ej and the identifier of the tag id is static in all sessions, this implicates: 

c'i⊕c'j=ei⊕ej. The Hamming weight of (c'i⊕c'j) is less than 2t+1, and the codeword idG 

is fixed for all sessions which leads to message-resend attack, and implicates, that this 

protocol does not provide untraceability.  
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5.9.3 Violation of forward secrecy 

If an intruder compromises a tag, then it might be able to derive previous secret data 

to track old transactions involving that tag, thus violate forward secrecy. In Li et al.’s 

protocol, the data stored in the tag’s memory are {id, h’}, which remain constant in all the 

runs of protocol. An intruder breaking into the memory of tag gets the current id. The 

problem posed is that the value of the identifier is static and not dynamic. Therefore, this 

protocol does not achieve forward secrecy.  

5.10 Conclusion  

In this chapter, we have analysed different RFID authentication protocols. Theses 

studied protocols require error-correcting codes for assuring security requirements (tag’s 

authentication, reader’s authentication, untraceability, etc.).  

In next chapter, we will propose improved version of two recent protocols, Malek-

Miri protocol [MM12] and Li et al. protocol [LYL14].  
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Chapter 6  

 

Improved Code-based RFID Authentication 

Protocols  

 

6.1  Introduction  

In this chapter, we propose two improved RFID mutual protocols using two code-

based schemes, the first one is based on the randomized McEliece cryptosystem 

[CCCB15b] and the second one is based on Quasi Cyclic-Moderate Density Parity Check 

(QC-MDPC) McEliece cryptosystem [CCCB15c].  

We provide security properties using AVISPA (Automated Validation of Internet 

Security Protocols and Applications) tools [ABBC+05]. We use the privacy model of 

Ouafi and Phan [OP08] to verify the untraceability property.  Our work also includes a 

comparison between our improved protocols and different existing code-based RFID 

authentication protocols in terms of security and performance. 
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6.2  RFID authentication protocol based on randomized McEliece 

cryptosystem (R2McE) 

 We propose in this section an improved RFID mutual authentication protocol using 

code-based scheme. Our protocol is based on randomized McEliece cryptosystem 

(R2McE), and uses an efficient decoding/encoding algorithm to generate an error vector of 

fixed weight. The only datum stored in tag is a dynamic identifier, and it is updated before 

the end of the session and without the need to do exhaustive search to obtain the identifier 

from database. This protocol is published in [CCCB15b]. 

6.2.1 System Model 

The RFID system consists of three entities: tag T, reader R and server S.  

- The tag T is low-cost and passive. It stores the dynamic identity (DID) which is 

strictly confidential. T implements an application � (this application is discribed in 

section 2.5.2 of chpater 2) and pseudo-random numbers generator (PRNG) to 

generate x and compute g(.). It also supports bitwise operations (xor, and,...). A tag 

has a rewritable memory that may not be tamper-resistant.  

- The reader R can generate pseudo-random numbers.  

- The server S has a sufficient storage space and computational resources. We 

implement algorithms of � and PRNG. Server S can decode the message received 

from T, then, we implement encryption/decryption of randomized McEliece 

cryptosystem with public-key matrix G, private-key matrices and a polynomial-time 

decoding algorithm �(. ). The server contains the database which includes �#,B�.  
In our work, we propose to use �#,B� as follows (Algorithm 6.1):  

Algorithm 6.1 Generation an error vector 
Randomly choose - ∈ |0, u#Bv} 
repeat  

     determinate the largest t’ such that - ∈ |0, u#B�v} 
until t’<t 
compute �#,B� = �  where wt(e) =t’<t 

We will choose t' such that the syndrome decoding problem (most efficient 

algorithm) remains hard.  
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6.2.2 Description of R2McE protocol 

Our proposed Protocol R2McE is divided into two phases: the registration phase and the 

mutual authentication phase.  

a) Registration phase 

The server generates a random binary Goppa code C[n,k,d] as specified by the generator 

matrix G', where G=S'G'P and G is public-key. The server S generates random values using 

PRNG, id the unique identifier of tag and the random number r. It computes �g = e�
, �~� = 8���, and ¥�¥ = �g ⊕ �~�.  , and initializes �g©ª« and �g¬® by �g. Then, the server 

(registration center) sends DID to the tag through a secure channel, where DID is strictly 

confidential. S stored in the database p8�, �~�, �g©ª« , �g¬®q for each tag. 

b) Mutual authentication phase 

The mutual authentication phase is described as follows (and in Figure 6.1):  

Step 1. Tag’s Authentication  

Step 1.1. R generates a nonce  and sends it as a request to the tag T.  

Step 1.2. T generates a random number - ∈ |0, tbJ�u#Bv| and �� ∈ �1, ��, and 

calculates error vector e with wt(e)=t' from �#,B�, c'=DID⊕e and 

P=g(NR║x║DID).  

Step 1.3. T sends c' with P to the reader, and resends the received c', message P 

and nonce NR to the server S.  

Step 1.4. S performs a decoding algorithm �(. ) with private key matrices and 

identifies the error vector e as well as id and r. From id, in database, the server 

retrieves the values of �~�, �g©ª« , �g¬® and calculates �#,B�$
 (�) and 

P1=g(NR║x║(�g ⊕ �~�)) (either �g©ª«  or �g¬®). S verifies if �
 �?̄ , if they are 

equal, the tag’s authentication is successful; otherwise the tag’s authentication 

has failed.  

Step 2. Reader’s Authentication  

Step 2.1. In the case of the tag’s authentication is successful, the server generates 

a nonce r' and computes cr'=r'G1 and ¥�¥°¢± = �g, ⊕ �~�. It computes 
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Y=DIDNew⊕e and Q=g(NR║DIDNew║x). It updates �g©ª« ← �g¬®  and �g¬® ←�g,, only in case the matched �g is �g¬®. 

Step 2.2. S sends Y and Q to the reader and resends the received message to T.  

Step 2.3. T obtains DIDNew by calculating Y⊕e and calculates Q1= 

g(NR║DIDNew║x). T verifies if �
 ?̄ �, if they are equal, the reader’s 

authentication is successful; otherwise the authentication of the reader has 

failed.  

Step 2.4. T updates the dynamic identifier by the value of DIDNew, if reader’s 

authentication is successful.  

           Server Reader Tag 

 
Generate randomly  

NR
  

 

   

       Generate randomly - 

Compute	�#,B³(-) = �	 
                   where t’<t 

c’�DID⊕e 
P� g(NR║	- ║DID) 

Decode c’ for obtaining (id, e) 

Compute  �#,B³$
 (�) = -  

Verify P = g(NR║	- ║(�g´« ⊕ �g¬®))  

or  P = g(NR║	- ║(�g´« ⊕ �g©ª«))  

If succeed, generate randomly r’ 

Compute DID’� cid ⊕cr’ 

Y � DID’⊕e 
Q� g(NR║	- ║DID’) 

   Update �g©ª«and		�g¬®  

 

 

 

 
 Obtaining DID’  

Verify Q = g(NR║	- ║DID’) 

Update DID by DID’ 
 

Figure 6.1: Our improved protocol - R2McE 

6.2.3 Automated verification 

Using AVISPA tools [BBBC+05], we verify the secrecy and mutual authentication 

security properties of R2McE.  

Our protocol R2McE requires the primitives: PRNG, nonce xor-operator and 

McEliece cryptosystem. The randomized McEliece cryptosystem requires the primitives: 

NR 

c', P 

Nt 

c', P, Nr 

Y, Q Y, Q 

? 

? 

? 
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public key, private key, application � and the decoding algorithm �(.) which is used with a 

private key to obtain id and e. The application � is bijective, but the intruder cannot find x 

without knowing the value of t', and the result of this application e does not circulate 

clearly in the channel, then we can model it by a hash function Phi(x). The intruder will 

know this function, therefore he will be able to compute the error vector but not invert 

values of Phi−1(x) (unless he already knows x). 

Concerning the message DID⊕e, we cannot specify it in HLPSL by xor(DID,E) 

because the reader does not use the algebraic properties of or-exclusive operator (e.g. 

neutral element) to obtain id and e. To retrieve these values, we apply the private decoding 

algorithm �(.) and the private key of McEliece. DID⊕e means the encoding DID by e, 

where DID is encryption of [ ]r∥id  by public key G. The reader (server) obtain the value 

DID and e uses the private decoding algorithm �(.). Therefore, we propose to specify this 

message in HLPSL by {DID}_E. The other side, we can specify the message DIDNew⊕e 

by xor(DNew,E) (last message from reader to tag) because the objective of the tag is to 

retrieve the value of ¥�¥#¢± using the algebraic properties of xor operator.  

The Appendix D shows the specification of R2McE protocol by HLPSL. In our 

protocol, the honest participants are the reader R and the tag T. Then, we have two basic 

roles, the tag and the reader. We can define a session role where all the basic roles are 

instanced with concrete arguments. In the tag, we initialise the argument DID by 

{ID.Rinit}_kG. In the reader, we initialize the values Rold and Rnew by Rinit. We provide 

a validation of properties: the tag’s authentication (aut_tag), the reader’s authentication 

(aut_reader), the secrecy of current DID (sec_did1), and the secrecy of the new DID 

(sec_did2).  

The Figure 5.2 shows the result of verification of our protocol by AVISPA tools. 

This result clearly means that there is no attack detected (replay or man-in-the-middle 

attacks). We can thus deduct that the diagnostic of AVISPA tools for our protocol is 

secure. 
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Figure 6.2 : Verification result using CL-AtSe tool of R2McE protocol 

6.2.4 Privacy verification 

We use the Ouafi-Phan model to verify the achievement of untraceability property in 

our R2McE improved protocol. At session (i), by the Execute query, the adversary � 

eavesdrops a perfect session between �N and a legitimate reader. It obtains the values ¥�¥~⨁�~ and g(NRi║xi║DIDi). At next the session, an intruder cannot replay a previously 

used g(NR║x║DID) and DID⊕e to a reader, even with high probability, it will not match 

the £¤ value generated by the reader for that session. There are two mechanisms to against 

the replay. Firstly, generating an error vector with dynamic length t'≤t where t' is 

confidential. Secondly, accepting the principle of dynamic codeword, which is stored in 

tag in the form of DID. In each session, the transmitted encoding codeword is different 

from the codeword of the last session because the value of the codeword is updated in the 

server and in the tag before the end of the session.  

In addition, the security of our protocol is based on security of randomized McEliece. 

Nojima et al. [NIKM08] prove that padding the plaintext (in our protocol, identifier of tag 

id) with a random bit-string (random number r) provides the semantic security against 

chosen plaintext attack (IND-CPA) for the McEliece cryptosystem with the standard 

assumptions. So, the randomized McEliece cryptosystem is IND-CPA secure, which means 
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that no probabilistic polynomial-time adversary wins the IND-CPA experiment with an 

advantage greater than a negligible function of the security parameter.  

6.2.5 Performance evaluation 

The performance of authentication protocols is mainly measured by storage space on 

tag and computation cost in tag and server, and communications cost between the tag and 

the reader. 

The storage space Concerning the space required in tag’s memory, our R2McE 

protocol requires to store only datum that is dynamic identifier DID, whose length is n bits, 

where n is length of codeword.  

The computation cost, the tag requires simple operations: pseudo-random number 

generator (PRNG), or-exclusive operation, and application�#,B�. We used the PRNG to 

generate x and to compute g(.), which proved to be very fast. The cost of application �	is 

O(tℓ�) binary operations.  

If we select a binary Goppa code C[n=2048,k=1751,d=56], these parameters is suitable 

with the parameters of a secure McEliece cryptosystem for 280 security [BLP08]. We 

choose the values of k1= 890 and k2= 875 which are suitable with condition k2<k1. So, the 

number of tags supported is 2875 tags and the space memory required in the tag is 2048 bits 

for codeword DID and the maximal weight of the error vector is 27 bits. With these 

parameters, we can implement R2McE protocol in low-cost tags, such as Mifare Classic 

1K and Mifare Plus support space memory 1KB to 4 KB [Mif].  

The communication cost between a tag and a reader consists of: the number of 

message exchanges, and the total bit size of the transmitted messages, and this per each 

communication. As for R2McE protocol, the total of the bits of the messages of 

communication is 2n + 3lp, where lp is length of random number generator. 

6.3  Our RFID authentication protocol based on QC-MDPC McEliece 

cryptosystem (RQMcE) 

6.3.1 System model 

- The tag T: In our context, it is passive and it stores {id, rand, h’} which are strictly 

confidential. T implements key generation algorithm and encryption algorithm of 
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QC-MDPC cryptosystem. It also implements pseudo-random number generator 

and supports bitwise operations (xor, and,etc.).   

- The reader R: It can generate the pseudo-random numbers with a PRNG.  

- The server S: We implement decryption algorithm of QC-MDPC cryptosystem and 

PRNG. It contains the private-key and the database which includes {id, randold, 

randnew}.  

6.3.2 Description of RQMcE protocol 

The proposed protocol is divided into two phases: the initialization phase and the 

authentication phase.  

a) Initialization phase 

In this phase, the tags and the database server are initialized for authentication process 

to be performed in the future. The server generates a random binary QC-MDPC code �(n,r,w). The server (trusted center) generates the initialization vector n
Fh 2'∈ , the unique 

identifier of tag 2
2
k

Fid ∈  and shared secret 1
2
k

Frand∈ . Then, the server sends {id, rand, h’} 

to the tag through a secure channel. It stores in the database {id, rand} for each tag and h’, 

where e��� = e���¸¹� = e���#¢±.  

b) Mutual authentication phase 

The mutual authentication phase takes place as follows (to see Figure 6.3): 

Step 1. Tag’s Authentication  

Step 1.1. R generates a nonce NR and sends it then as a request to the tag T.  

Step 1.2. T generates an error vector e with wt(e)≤t, and computes 

c'=[rand∥id]G⊕e. It also computes	º = J(8� ∥ £¤ ∥ �).  

Step 1.3. T sends c' with U to the reader, it resends the received c' and message U 

and nonce NR to the server.  

Step 1.4. The server runs decryption algorithm to find id, rand and e. From id, in 

database, the server obtains the values of { }newold randrand , . if rand=randold or 

rand=randnew then the tag computes U1=g(id∥NR∥e) (either randold or 
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randnew) and verifies if UU
?

1 = . If they are equal, authentication of tag is 

successful; otherwise the authentication of tag has failed.  

           Server Reader Tag 

 
Generate randomly  
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Generate public-key G 
by h’ 
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Identify the tag id and randold (or 
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Compute U1=g(id║ NR║e) 
If U1 = U  
    Generate rand’ 
    P= rand’ ⊕ Right(e,k1) 
    V= g(id║ NR║rand’) 
    Update randold  and randnew 

 

 

 

 

 
 Extract rand’ 

V1= g(id║ NR║rand’) 
If V=V1 

   Update rand     

 

Figure 6.3: Our improved protocol - RQMcE 

Step 2. Reader’s Authentication  

Step 2.1. In this case the authentication of tag is successful. The server generates 

a random number 1
2' k

Frand∈  and computes V=g(id∥NR∥rand') and 

),(' 1keRightrandP ⊕= . It updates randold←randnew and , only in case the 

matched rand is randnew.  

Step 2.2. S sends P and V to the tag.  

Step 2.3. T obtains rand' by computing ),( 1keRightP ⊕ . It computes 

V1=g(id∥NR∥rand') and checks if VV
?

1 = . If they are equal, the authentication 

of reader is successful; otherwise the authentication of the reader has failed.  
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Step 2.3. T updates the secret rand by the value of rand', in case of the reader’s 

authentication is successful. 

6.3.3 Automated verification 

The RQMcE protocol requires the primitives: PRNG, nonce, xor-operator, public-

key, private-key and encryption/ decryption of Randomized McEliece cryptosystem based 

on QC-MDPC codes. We have two honest agents tag and reader. We can present the 

ciphertext c'=[id∥rand]G⊕e as FEncry([id, rand], PKG, E) that means encryption [id∥rand] 

by public-key PKG (is matrix G), then encoding the result by the private error vector E (is 

e). To obtain the value of E, one uses the decoding algorithm	�H. So, The specification of 

this ciphertext by HLPSL is {{Rand.ID}_PKG}_E. We specify the functions g(.) and 

Right(.) by hash function. Other primitives are defined in HLPSL.  

We define a session role where all the basic roles are instanced with concrete 

arguments. In the reader, we initialize the values Randold and Randnew by rand. 

We provide a validation of properties: authentication of tag (auth_tag), 

authentication of reader (auth_reader), the secrecy of identifier of tag id (sec_id), and the 

secrecy of secret random number rand and the new random number rand' (sec_rand and 

sec_randp). These properties are specified in goal.  

 

Figure 6.4: Verification result of RQMcE protocol 
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We also provide that our scheme resists to replay attack and man-in-the-middle 

attack. HLPSL specification of our improved scheme is shown in Appendix E. 

The result of verification of our protocol by AVISPA tools is presented in Figure 6.4. 

This result clearly means that there is no attack detected. We can thus deduct that the 

diagnostic of AVISPA tools for our protocol is secure. 

6.3.4 Privacy verification 

Using Ouafi-Phan model, we validate the untraceability property in our RQMcE 

protocol. At session (i), by the Execute query, the adversary � eavesdrops a perfect 

session between T0 and a legitimate reader. He obtains the values [randi║idi]G⊕ ei and 

g(idi║NRi║ei). At next session, the intruder cannot replay a previously used [rand║id]G⊕ 

e and g(id║NR║e) to a reader, since with high probability, it will not match the NR value 

generated by the reader for that session.  

On the other side, we apply QC-MDPC McEliece cryptosystem with padding the 

plaintext by a random bit-string where the exchanged encoding codeword is different in 

each session. In RQMcE protocol, we have two messages in two different sessions:  

, where ic =[randi∥id]G 

and  

c'j=cj⊕ej, where  jc =[randj∥id]G 

where ci≠cj and ei≠ej. The intruder intercepts c'i and c'j as follows:  

c'i⊕c'j=ci⊕cj⊕ei⊕ej, 

In case wt(ei)=wt(ej)=t and c1=c2 or the adversary knows the linear relation between 

the messages mi of c1 and c2 then this protocol does not resist traceability attack.  

In our protocol, the vector randi, which is used in session i is different from randj 

which is used in session j, and there is no linear relation between them, randi and randj are 

randomly generated. We note that wt(ei) and wt(ej) are secret and different. Then, our 

scheme resists traceability attack. 
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6.3.5 Performance evaluation 

Storage cost The improved protocol requires {id, rand, h} with size k+n. The QC-

MDPC code C[n=9602,r=4801,w=90], n0=2 and t=84 are parameters proposed by 

Misoczki et al. [MTSB13] for a 280 security. Using these parameters, the memory space 

requires in the tag are 14403 bits (n+r). If we choose k1=4300 and k2=501 which is suitable 

with condition k1<bk and b=9/10 then, we can implement our scheme in low-cost tags, 

such as Mifare Classic 1K and Mifare. The number of tags which can be use in our 

protocol is 2501 tags.  

Calculation cost RQMcE protocol requires QC-MDPC McEliece cryptosystem with 

padding of the plaintext by a random bit-string, PRNG and xor operation. The QC-MDPC 

McEliece cryptosystem is designed to reduce the key sizes [MTSB13]. The works of 

[HMG13, MG14] present a very lightweight implementation of the QC-MDPC McEliece 

cryptosystem for embedded devices. We used the PRNG to generate {NR, e} and compute 

g(.), which is very fast. We also cite that, the server does not need an exhaustive search to 

obtain the value of id. When the server decrypts the encoded codeword, it can obtain the 

value of tag’s identifier. 

Communication cost The total of the bits of the messages of communication in 

authentication process is 3lp+n+k1, where k1 is the length of random number rand. 

6.4  Security Comparison  

A secure RFID authentication protocol should provide mutual authentication, 

secrecy, untraceability, desynchronization resilience, forward secrecy and replay attack 

resisting. In this section, we discuss the security and privacy requirements of our proposed 

protocols and others protocols. Table 6.1 presents the security comparison between the 

existing protocols and our proposed protocols.  

6.4.1 Mutual authentication 

If the RFID protocol is successfully achieved, tag authentication and reader 

authentication is successful too, then one can say that this protocol is providing mutual 

authentication. The protocols proposed in [Par04, Chi06, CKMI07, SKI10] are one-way 

authentication protocols, thus they don’t achieve the reader (or server) authentication. We 

have verified the achievement of mutual authentication in our proposed protocols by 

AVISPA tools.    
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6.4.2 Secrecy  

In all studied protocols and also in our proposed protocols R2McE and RQMcE, the 

tag’s identifier and secret information are secured. These data are protected by a code-

based encryption scheme: McEliece and its variants and Niederreiter and its variants. In 

our proposed protocols, this property is verified by AVISPA tools.  

6.4.3 Untraceability  

The weight of error vector in protocols [Par06, CL09] is fixed, when the intruder 

knows d or t then it can follow the trace of the tag. To achieve the property of 

untraceability, we have proposed two mechanisms: dynamic weight and dynamic 

codeword. The first one is by generating an error vector with dynamic weight t'≤t where t' 

is confidential. The last one is by agreeing on the the principle of dynamic codeword, 

which is stored in tag in form dynamic identifier DID in case of [CCCB15a] and add a 

random padding number in each new session in our protocol [CCCB15c]. In each session, 

the transmitted encoding codeword is different from the codeword of the last session 

because the value of, the codeword is updated in the server and in the tag before the end of 

the session. We prove that our proposed protocols achieve untraceability property by 

Ouafi-Phan model. 

6.4.4 Desynchronization resilience 

 The secret information shared between tag and reader (or server) in protocols 

[Par04, Chi06, MM12] are dynamic and are not protected by the technique of secret 

desynchronization, thus these protocols do not resist desynchronization attacks. However, 

the secret information in protocols [CKMI07, CL09, SKI10, LYL14] which are stored in 

tag’s memory are static in all sessions, then the problem of desynchronization attack is not 

posed for these protocols . In R2McE and RQMcE protocols, the random value in 

codeword is updated in each session. Therefore, to achieve this property, we stored two 

secret synchronisation information in the server, (�g©ª« , �g¬®) for R2McE protocol, and (ȩ ¹�, e#¢±) for RQMcE protocol. Then, our two proposed protocols resist 

desynchronization attack. 

6.4.5 Forward secrecy 

In protocols [CKMI07, CL09, SKI10, LYL14], the information stored in the tag’s 

memory remain static in all the runs of scheme. An intruder breaking into the memory of 

the tag gets the current id. The problem posed is the value of identifier when static and not 
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dynamic. Concerning our proposed protocols, before termination of the session, the tag 

updates the value of the secret information, DID in R2McE protocol and rand in RQMcE 

protocol. The adversary could not acquire the previous random vector rand used in the 

prior sessions. So, our proposed RFID authentication protocols could provide forward 

secrecy. 

 M.A D.C Unt D.R F.S R.R 

 Park [Par04] N Y N N Y Y 

Chien, 06 [Chi06] N Y Y N Y Y 

Cui et al. [CKMI07] N Y Y Y N Y 

Chien-Laih[CL09] Y Y N Y N Y 

Sekino-al [SKI10] N Y Y Y N Y 

Malek-Miri [MM12] Y Y Y N Y Y 

Chien, 13 [Chi13] Y Y Y Y Y Y 

Li et al. [LYL14] Y Y N Y N Y 

RQMcE Y Y Y Y Y Y 

 R2McE Y Y Y Y Y Y 

 M.A: Mutual Authentication, D.C: Data Confidentiality 

Unt: Untraceability, D.R: Desynchronization resilience 

F.S: Forward secrecy, R.R: Resist replay attacks 

Table 6.1: Comparison of security and privacy properties 

Remark We note that our proposed protocols as well as Chien’s protocol [Chi13] have 

proved security and privacy properties, though our protocols are based only on error-

correcting codes, it is better in performance analysis (storage space and computation cost), 

view details in Table 6.2. 

6.5  Performance Comparison 

The performance of authentication protocols is mainly measured by storage space on 

the tag, computation cost in tag and server and communications cost between the tag and 

the reader. Our comparison is articulated on authentication phase for each protocol.  

The performance comparison between our proposed protocols and the existing code-

based RFID protocols in terms of storage cost and computation cost is summarized in 

Table 6.2. 
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6.5.1 Storage cost 

Concerning the storage cost, the tags in protocols [CKMI07, SKI10] require public-

key matrix which is of important size compared to resources of low-cost tags. The data 

stored on tags of protocol [Par04, Chi06] are multiple in an agreed number of sessions and 

in [MM12] multiple in number of authorized readers. The protocol of [Chi13] requires 

important space for the id, symmetric-key, public-key of Rabin cryptosystem and unique 

codeword. R2McE protocol requires n bits for dynamic identifier DID. The RQMcE 

protocol requires k bits for vector h and n bits for {id, rand}. Then, the sum is k+n.  Thus 

the space requiring in our proposed protocols R2McE and RQMcE are compatible whith 

resources of low-cost tags. 

 

 
Key space 

Computation 

Tag Server  

Park [Par04] 
lp+n+2 | |key  

1P iP+1D+1ED 

Chien, 06 [Chi06] n+ t»+ │key│ 
(n’-i+1)P (n’-i+1)P+ 1ED 

Cui et al. [CKMI07] 
(n−k)×(n2+1) 

2P + 1EC 4P + 2ED 

Chien-Laih [CL09] n+2 | |key  8P 2P + 1ED 

Sekino et al. [SKI10] (n−k)+(n−k)×(n1−(n−k)/t 
1EC + 2P 2P + 1ED 

Malek-Miri [MM12] 
(n+k2+ | |key ) 

2P + CM 2P + 1ED 

Chien, 13 [Chi13] n+ │N│+ 3│key│ 
1 SQ + 6P 10P+1SR+4ED 

Li et al. [LYL14] 
(n+k2+ | |key ) 

3P + GG 2P + 1ED’ 

RQMcE 
n+k 

3P+ GG 2P + 1ED’ 

R2McE 
n 

3P 2P + 1ED 

 | |key : length of key or id                       lp: length of generating random number or hash. 

i: number of authorised sessions          P, D and CM: cost of RNG or hash function, decryption operation 
GG:  cost of generation of matrix G                            and generation of circular matrix, respectively. 
EC, ED, ED’: encoding operation, decoding operation of McEliece, decoding operation of QC-MDLP 
with McEliece, respectively. 
SQ and SR: cost of squaring and square root solving, respectively 
│N│: public-key of Rabin cryptosystem 

Table 6.2: Comparison of space and computation costs 

6.5.2 Computation cost 

As for the computation cost, the main advantage in all code-based RFID 

authentication protocols in relation to hash-based RFID authentication protocols is that 
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there is not need of exhaustive search to obtain the value of tag’s identifier. In addition, 

The McEliece cryptosystem (also other its variants) is of high-speed encryption and 

decryption compared to asymmetric cryptosystems based on number theory, such as 

Elliptic Cube Cryptosystem (ECC) and ELGamal cryptosystem. The low-cost tags require 

simple operations: pseudo-random number generator and xor operations.  

With regard to the other protocols and consideration of mutual authentication, the 

performance of our proposed protocols is effective. We mention here an important remark, 

in the MQMcE protocol, in each session the tag generates a public-key from the stored 

vector h and applies encryption algorithm to encryption [id║rand]. This protocol is based 

on QC-MDLP cryptosystem which can implement it in embedded devices, like in 

[HMG13, MG14].  

6.5.3 Communication cost 

We evaluate the communication cost by the amount of bits of transmitted messages 

in the RFID protocol from tag to reader and in vice versa. All nonces are generated by 

PRNG with length lp. The length of ciphertext of McEliece cryptosystem and its variants is 

n and length of ciphertext of Niederreiter cryptosystem and its variants is (n-k). Table 6.3 

shows the comparison between our proposed protocols and the existing RFID protocols 

based on error-correcting codes in term of communication cost. 

 T � R R � T Sum  

Park [Par04] n - n 

Chien, 06 [Chi06] n lp n+lp 

Cui et al. [CKMI07] (n-k)+lp lp (n-k)+2lp 

Chien-Laih[CL09] 2 lp +2n 2 lp 4 lp +2n 

Sekino et al. [SKI10] (n-k) + lp lp (n-k) +2 lp 

Malek-Miri [MM12] n 2n+| |key + lp 3n+| |key + lp 

Chien, 13 [Chi13] │N│ 2 lp 2 lp+ │N│ 

Li et al. [LYL14] n+ lp 2 lp n+3lp 

RQMcE n+ lp k1 + 2 lp n+ 3lp+ k1 

R2McE n+ lp n+ lp 2n+lp 

| |key : length of key or id                       lp: length of generating random number or hash 

Table 6.3: Comparaison of communication cost 
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In our proposed protocols is less than the number of bits in protocols of [CL09, 

MM12]. On other side, it is greater than the number of bits in protocols of [Par04, 

CKMI07, SKI10, LYL14]. If we consider the importance of the factor of security 

depending on communication cost, we can conclude that R2McE and RQMcE are 

effective. 

6.6  Conclusion 

In this chapter, we have proposed two improved RFID authentication protocols based 

on two variants of McEliece cryptosystem with mutual authentication, untraceability, 

desychronisation relisience and forward secrecy. Using privacy model of Ouafi-Phan and 

AVISPA tools, we have proved the security and privacy properties.  

With regard to the different existing protocols based on error-correcting codes, the 

performance of our proposed protocols are effective, the space memory required is 

compatible with available space on the low cost tag, they do not need to do exhaustive 

search, and the tag can perform lightweight cryptographic operations.  
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Conclusion and perspectives 

The subject of this thesis is the study of the security problems in embedded systems. 

This research domain is very vast; therefore we articulated our study on design and 

verification of authentication protocols as the security problem and the RFID system as an 

embedded system. 

In topic of RFID security, we found many proposed protocols and each protocol has 

advantages and disadvantages in terms of security and performance. The main design 

objectives of a new authentication protocol in RFID systems are minimizing cost, 

development of performance, and validation of security and privacy properties. This 

equation is not validate in all proposed protocols.   

Along our work, we concentrated our study on the security analysis and the 

performance analysis of recently proposed RFID authentication protocols. We can discover 

weaknesses in several protocols. These protocols are divided into two families, hash-based 

protocols and code-based protocols.  In the first category, we verified two recent protocols 

[WHC11, JDTL12] by AVISPA tools. We showed that the two verified protocols cannot 

resist algebraic replay attack (ARA) on authentication, and therefore an intruder can 

impersonate the tag. The principal cause of the described attacks in our work is the misuse 

of the xor operator in the transmitted messages. The principal cause of the described 

attacks is the abuse of the proprieties of or-exclusive (xor) operator in the transmitted 

messages. We generalized these results to detect this type of attack in other protocols.  

Therefore, we have proposed a solution for this attack which is correcting the use of xor-

operator and replacing it by the concatenation operator. 

Using these results, we proposed a new authentication protocol (RBioA protocol) 

which is based on the combination between two systems, RFID system and biometric 

system, to apply it in access control applications, we used the principal of hash-based 

scheme to realize the security of protocol; used hash functions are cryptographic and 

biometric hash functions. The advantage of RBioA protocol is that it can be used in 

decentralized applications since we have no need of biometric database of the users in the 

system.  Still, there is the problem of exhaustive research of tag’s identifier in the server.  

Other studied category of RFID protocols is code-based RFID authentication 

protocols (presented in chapter 5). Among these protocols, we provide enough evidence to 
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prove that two recent RFID authentication protocols [MM12, LYL14] are not secure. The 

results of security analysis showed that Malek-Miri authentication protocol [MM12] is 

vulnerable to desynchronization attack and Li et al.’s protocol [LYL14] does not provide 

untraceability and forward secrecy.  

In chapter 6, we proposed the improved version protocols to prevent the described 

attacks. These protocols (R2McE and RQMcE) are based on two variants of McEliece 

cryptosystem. Using privacy model of Ouafi-Phan, we have proved the untraceability 

property. We verified the security properties by AVISPA tools. With regard to the different 

existing protocols based on error-correcting codes, the performance of our R2McE and 

RQMcE protocols are effective, does not need to do exhaustive search, and the tag can 

perform lightweight cryptographic operations. 

Our perspectives of research include: 

- Future research includes additional work in regards to the biometric hash function. 

There are many researches on the implementation of the robust hash function in 

RFID tags; but those on the implementation of biometric hash function are limited. 

- We studied the RFID systems as independent systems. In a new technology, the 

components of RFID systems are communicated with other objects via different 

types of connection. This technology is called Internet of Things (IoT). Therefore, 

one need to propose a new approach to secure devices and systems of IoT and that 

takes in consideration their features.  

- The better variant of McEliece cryptosystem used in our protocols and in existing 

protocols is of security IND-CPA, randomized McEliece cryptosystem. There is a 

problem if one wants to use the variant IND-CCA2 because it requires important 

resources, memory and computation.   
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Appendix A: HLPSL of Wei et al protocol 

role reader ( R,T: agent, ID,RID, S: text, H : hash_func, Snd,Rec: 

channel(dy)) 

    played_by R 

    def= 

    local  State         : nat, 

    Nr, Nt, Ndb            : text 

    init State := 0 

    transition 

    1. State = 0  /\ Rec(start)   =|> State' := 1 /\ Nr' := new()  /\ 

Snd(Nr') 

    2. State = 1  /\ Rec(H(xor(xor(S,Nr),Nt')).Nt') 

    =|> State' := 2   /\ Ndb' := new() /\ Snd(H(xor(ID,Ndb')).Ndb') /\ 

secret(ID,sec_id,{R,T}) 

    /\ request(R,T,aut_tag,Nt') /\ witness(R,T,aut_reader,Ndb') 

end role 

 

role tag ( T,R: agent, ID,RID,S: text, H : hash_func,Snd,Rec: 

channel(dy)) 

    played_by T 

    def= 

    local  State               : nat, 

    Nt, Nr,Ndb                  : text 

 %const sec_k2 : protocol_id 

    init State := 0   

    transition 

    1. State = 0 /\ Rec(Nr')   =|>   State' := 1   /\ Nt' := new()  

    /\ Snd(H(xor(xor(S,Nr'),Nt')).Nt') /\ witness(T,R,aut_tag,Nt') 

     

    2. State = 1 /\ Rec(H(xor(ID,Ndb')).Ndb') 

    =|> State' := 2 /\ request(T,R,aut_reader,Ndb') 

end role 

role session(R,T : agent,ID,RID,S : text, H: hash_func) 

def= 

  local Sa,Ra,Sb,Rb : channel(dy) 

    composition 

    reader(R,T,ID,RID,S,H,Sa,Ra) /\  tag(T,R,ID,RID,S,H,Sb,Rb) 

end role 

role environment() def= 

const r,t : agent, 

      id,rid,s,id1,s1: text, 
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      h: hash_func, 

      aut_reader, aut_tag, sec_id : protocol_id  

      intruder_knowledge = {r,t,h} 

    composition 

    session(r,t,id,rid,s,h) 

    /\  session(r,t,id,s,h) 

end role 

goal 

 secrecy_of sec_id 

authentication_on aut_tag    

authentication_on aut_reader  

end goal 

environment() 
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Appendix B: HLPSL of Jialiang et al. protocol 

role reader ( R,T: agent, ID,S: text, H : hash_func, Snd,Rec: 

channel(dy)) 

    played_by R 

    def= 

    local  State         : nat, 

    Nr, Nt, Ndb            : text 

    const sec_id : protocol_id       

    init State := 0 

    transition 

    1. State = 0  /\ Rec(start)   =|> State' := 1 /\ Nr' := new()  /\ 

Snd(Nr') 

    2. State = 1  /\ Rec(Nt'.xor(S,H(xor(Nr,Nt')))) 

    =|> State' := 2   /\ Ndb' := new() /\ 

Snd(xor(H(xor(xor(Nr,Nt'),Ndb')),ID)) /\ secret(ID,sec_id,{R,T}) 

    /\ request(R,T,aut_tag,Nt') /\ witness(R,T,aut_reader,Ndb') 

end role 

 

role tag ( T,R: agent, ID,S: text, H : hash_func,Snd,Rec: channel(dy)) 

    played_by T 

    def= 

    local  State               : nat, 

    Nt, Nr,Ndb                  : text 

 %const sec_k2 : protocol_id 

    init State := 0   

    transition 

    1. State = 0 /\ Rec(Nr')   =|>   State' := 1   /\ Nt' := new()  

    /\ Snd(Nt'.xor(S,H(xor(Nr',Nt')))) /\ witness(T,R,aut_tag,Nt') 

     

    2. State = 1 /\ Rec(xor(H(xor(xor(Nr,Nt),Ndb')),ID)) 

    =|> State' := 2 /\ request(T,R,aut_reader,Ndb') 

end role 

 

role session(R,T : agent,ID,S : text, H: hash_func) 

def= 

  local Sa,Ra,Sb,Rb : channel(dy) 

    composition 

    reader(R,T,ID,S,H,Sa,Ra) /\  tag(T,R,ID,S,H,Sb,Rb) 

end role 

 

role environment() def= 
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const r,t : agent, 

      id,s,id1,s1: text, 

      h: hash_func, 

      aut_reader, aut_tag : protocol_id  

      intruder_knowledge = {r,t,h} 

    composition 

    session(r,t,id,s,h) 

    /\  session(r,t1,id1,s1,h) 

    /\  session(r,t,id,s,h) 

end role 

 

goal 

 secrecy_of sec_id 

authentication_on aut_tag    

authentication_on aut_reader  

   

end goal 

 

environment() 
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Appendix C: HLPSL of our RFID-Biometric Authentication protocol  

role reader ( R,T: agent, ID,B : text, H,G,Hright,Hleft : hash_func, 

               Snd,Rec: channel(dy)) 

    played_by R 

    def= 

      local  State  : nat, Nr, Nt : text, HB: message 

      const sec_id1 : protocol_id        

      init State := 0  

      transition 

       1. State = 0 /\ Rec(start)  =|>  State' := 1 

          /\ Nr' := new() /\ Snd(Nr')  

          /\ witness(R,T,aut_reader,Nr') 

       2. State = 1 

          /\ Rec( Nt'.Hleft(Nt',xor(ID,Nt'),Nr))  

          =|>  State' := 2 /\ Snd(Hright(Nt',xor(ID,Nt'),Nr)) 

          /\ request(R,T,aut_tag,Nt') /\ secret(ID,sec_id1,{R,T})  

3. State=2 

     /\ Rec( xor(H(ID,Nt,Nr),HB))  =|>  State' := 3  

end role 

    role tag ( T,R: agent, ID : text, HB: message, 

                 H,G,Hright,Hleft : hash_func, 

               Snd,Rec: channel(dy)) 

    played_by T 

    def= 

      local  State  : nat, Nt, Nr : text, B: text   

      const sec_id2, sec_b: protocol_id  

      init State := 0 

      transition 

       1. State = 0 /\ Rec(Nr') =|> State' := 1 /\ Nt' := new()    

        /\ Snd( Nt'.Hleft(Nt',xor(ID,Nt'),Nr'))         
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        /\ witness(T,R,aut_tag,Nt') /\ secret(ID,sec_id2,{T,R})  

       2. State = 1 /\ Rec(Hright(Nt,xor(ID,Nr),Nt)) =|>  

          State' := 2 /\ request(T,R,aut_reader,Nr)       

           /\ Snd( xor(H(ID,Nt,Nr),HB))  /\ secret(HB,sec_b,{T,R})  

end role 

role session(T,R : agent, ID,B : text, H,G,Hright,Hleft : hash_func)  

def= 

local Se,Re,Sf,Rf : channel(dy) 

const aut_reader, aut_tag : protocol_id 

composition 

tag(T,R,ID,G(B),H,G,Hright,Hleft,Se,Re) 

/\ reader(R,T,ID,B,H,G,Hright,Hleft,Sf,Rf) 

end role 

role environment() def= 

const t,r : agent, 

      id,b,idti,idri,bti,bri : text, 

      h,g,hleft,hright : hash_func 

intruder_knowledge = {t,r,h,g,hleft,hright,idti,idri,bti,bri} 

composition 

session(t,r,id,b,h,g,hright,hleft)  

/\session(t,r,id,b,h,g,hright,hleft)  

 /\  session(t,i,idti,bti,h,g,hright,hleft)   

/\ session(i,r,idri,bri,h,g,hright,hleft) 

end role 

    goal 

    secrecy_of  sec_id1, sec_id2 ,sec_b 

    authentication_on aut_reader 

    authentication_on aut_tag 

    end goal 

    environment() 
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Appendix D: HLPSL of our improved protocol based on randomized McEliece 

cryptosystem (R2McE) 

role reader ( R,T: agent, ID,Rold, Rnew: text,  

              Fg,Phi : hash_func, KG: public_key,  

              Snd,Rec: channel(dy)) 

    played_by R 

    def= 

      local  State  : nat, 

             Nr, X, RN : text, E : hash(text), 

              DID,DNew : {text.text}_public_key       

      init State := 0  

      transition 

       1. State = 0 

          /\ Rec(start)  =|>  State' := 1 /\ Nr' := new()  

          /\ Snd(Nr') /\ witness(R,T,aut_reader,Nr') 

    % if CR= CRnew 

       2. State = 1 

          /\ Rec({DID}_E'.Fg(Nr.X'.DID)) =|> State' := 2  

          /\ RN':=new()  /\ DNew':={ID.RN'}_KG   

     /\ Snd(xor(DNew',E').Fg(Nr.DNew'.X')) /\ 

secret({DNew'},sec_did2, {R,T})         

          /\ request(R,T,aut_tag,X') /\ Rold':=Rnew /\ Rnew':=RN' 

       % if CR= CRold 

    3. State = 1 

          /\ Rec({DID}_E'.Fg(Nr.X'.DID)) =|> State' := 2  

      /\ DNew':={ID.Rnew}_KG   

          /\ Snd(xor(DNew',E').Fg(Nr.DNew'.X')) /\ 

secret({DNew'},sec_did2, {R,T}) /\ request(R,T,aut_tag,X') 

end role 

role tag ( T,R: agent, DID: {text.text}_public_key, 

        Fg,Phi : hash_func,  

        Snd,Rec: channel(dy)) 

    played_by T 

    def= 

      local  State  : nat, 

             Nr, X, RN : text, 

             E: hash(text), DNew: {text.text}_public_key          

    init State := 0        

    transition 

     1. State = 0 /\ Rec(Nr') =|> State' := 1 

        /\ X' := new()  /\ E':=Phi(X') 
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        /\ Snd({DID}_E'.Fg(Nr'.X'.DID)) /\ witness(T,R,aut_tag,X')    

        /\ secret({DID},sec_did1, {T,R})         

     2. State = 1 /\ Rec(xor(DNew',E).Fg(Nr.DNew'.X')) 

          =|> State' := 2        

        /\ request(T,R,aut_reader,Nr) /\ DID' := DNew' 

end role 

role session(R,T: agent, ID,Rinit: text,  

             Fg, Phi : hash_func, KG: public_key)  

def= 

local Se,Re,Sf,Rf : channel(dy) 

const aut_reader, aut_tag, sec_did1, sec_did2 : protocol_id 

composition 

tag(T,R,{ID.Rinit}_KG,Fg,Phi,Se,Re) 

/\ reader(R,T,ID,Rinit,Rinit,Fg,Phi,KG, Sf,Rf)     

end role 

role environment() def= 

const t,r,i : agent, id,rinit,idit,idri: text,    

      g,phi : hash_func, kG,kGti,kGri: public_key 

 intruder_knowledge = {t,r,i,g,kG,phi,kGti,kGri,idit,idri} 

composition 

% To detection a replay attack:  

session(r,t,id,rinit,g,phi,kG) 

/\ session(r,t,id,rinit,g,phi,kG) 

/\ session(i,t,idit,rinit,g,phi,kGti) 

/\ session(r,i,idri,rinit,g,phi,kGri) 

end role 

    goal 

  secrecy_of sec_did1 % confidentiality of DID 

  secrecy_of sec_did2 % confidentiality of DNew 

  authentication_on aut_reader % Reader's authentication  

     authentication_on aut_tag % Tag's authentication 

    end goal 

    environment() 
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Appendix E: HLPSL of our improved protocol based on QC-MDPC McEliece 

cryptosystem (RQMcE) 

role tag (T,R: agent, ID,Rand: text,  

          Fg,Right : hash_func, 

    PKG: public_key,  

    Snd,Rec: channel(dy)) 

    played_by T 

    def= 

      local  State  : nat, 

             Nr, E, Randp : text 

    init State := 0        

    transition 

1. State = 0 /\ Rec(Nr') =|> State' := 1        

  /\ E' := new()   

  /\ Snd({{ID.Rand}_PKG}_E'.Fg(ID.Nr'.E')) 

  /\ witness(T,R,tag_auth,E')   

  /\ secret({ID},sec_id, {T,R})   

  /\ secret({Rand},sec_rand, {T,R}) 

2. State = 1 /\   

 Rec(xor(Randp',Right(E)).Fg(ID.Nr.Randp'))   

   =|> State' := 2   

   /\ request(T,R,reader_auth,Nr)   

   /\  Rand':=Randp' 

end role 

 

role reader ( R,T: agent,  

              ID,Rnew,Rold: text,  

              Fg,Right : hash_func, 

        PKG: public_key,  

              Snd,Rec: channel(dy)) 

    played_by R 

    def= 

      local  State  : nat, 

             Nr, E, Randp : text 

      init State := 0  

      transition 

1. State = 0 /\ Rec(start)  =|>   

   State' := 1 /\ Nr' := new() /\ Snd(Nr') 

   /\ witness(R,T,reader_auth,Nr') 

 

2. State = 1 /\    
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   Rec({{ID.Rnew}_PKG}_E'.Fg(ID.Nr.E'))  

   =|> State' := 2 /\ Randp':= new() 

   /\ request(R,T,tag_auth,E') /\ 

Snd(xor(Randp',Right(E')).Fg(ID.Nr.Randp')) 

   /\  Rold':=Rnew /\ Rnew':=Randp'   

   /\ secret({Randp'},sec_randp, {R,T}) 

 

2. State = 1 /\   

    Rec({{ID.Rold}_PKG}_E'.Fg(ID.Nr.E'))   

    =|> State' := 2 /\ Randp':= Rnew 

    /\ request(R,T,tag_auth,E') /\   

Snd(xor(Randp',Right(E')).Fg(ID.Nr.Randp')) 

    /\ secret({Randp'},sec_randp, {R,T}) 

end role 

 

role session(R,T: agent, ID,Rand: text,  

             Fg,Right : hash_func,  

             PKG: public_key)  

  def= 

  local Se,Re,Sf,Rf : channel(dy) 

  const reader_auth, tag_auth, sec_id,     

  sec_rand,sec_randp : protocol_id 

  composition 

  tag(T,R,ID,Rand,Fg,Right,PKG, Se,Re) 

  /\ reader(R,T,ID,Rand,Rand,Fg,Right,PKG,   

     Sf,Rf)     

end role 

 

role environment() def= 

  const t,r,i : agent, id,rand: text,    

      g,right : hash_func, 

      pkG: public_key 

  

  intruder_knowledge = {t,r,i,g,right,pkG} 

  composition 

     session(r,t,id,rand,g,right,pkG) 

  /\ session(r,t,id,rand,g,right,pkG) 

 

end role 

 

goal 
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   secrecy_of sec_id  

   secrecy_of sec_rand  

   secrecy_of sec_randp  

   authentication_on reader_auth   

   authentication_on tag_auth  

end goal 

 

    environment() 

 

 


