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Abstract – In this paper, we have presented a new model for 
daily operating policy of hydroelectric power systems, which 
consists to maximize the potential energy of the whole 
system. The method used for the solution is based on the 
discrete maximum principle for determining the optimal 
daily operating policy of hydroelectric power systems 
consisting of multi-reservoirs, where the objective is to 
maximize the potential energy while satisfying all operating 
constraints over a short-term planning horizon. The focus of 
this paper will be also the treatment of the two-sided 
inequality constraints utilizing the augmented Lagrangian 
method. The proposed algorithm takes into account water 
head variations, spilling, and time delays between 
reservoirs. The proposed algorithm is tested on a large 
hydroelectric power system consisting of ten reservoirs. The 
developed algorithm gives a satisfactory solution for the 
problem and turns out to be very efficient. 

 
I. INTRODUCTION 

The daily optimal operating policy of hydroelectric 
power systems is a determinist problem [1-2], which 
consists of choosing the preliminary selected quantity of 
water to release from each reservoir of the system over 
the planning horizon, in order to meet an hourly electric 
power demand assigned previously. The prime objective 
here is to perform the operating policy with the lowest 
use of water; which is achieved by avoiding spilling and 
by maximizing the hydropower generation, besides 
satisfying all operating constraints.  The maximization of 
electrical power production is achieved by maximizing 
the heads. Consequently, this allows maximizing the 
reservoirs content.  

When modeling the problem, and for more accuracy, 
the following factors which make the problem more 
complex are taken into consideration: 
- Significant water travel time between reservoirs. 
- The multiplicity of the input-output curve of 
hydroelectric reservoirs that have variable heads.    
- The maximum generation of the hydroelectric power 
plant varies with the hydraulic head. In fact, the quantity 
of water required for a given power output decreases as 
the hydraulic head increases. 
- The water stored in the upstream reservoir is more 
valuable than that stored in the downstream reservoir. 
- Whether the reservoirs have very different storage 
capacity.  

- Whether the system has quite complex topology with 
many cascaded reservoirs.  

To solve the daily operating policy problem, we use 
the discrete maximum principle [3-4]. While solving the 
equations relating to the discrete maximum principle, we 
use the gradient method [3]. However, to treat equality 
constraints we use Lagrange’s multiplier method. To treat 
the inequalities constraints we use the augmented 
Lagrangian method [5]. 

The present paper is concerned particularly with the 
treatment of the constraints on the state variables, which 
are of two-sided inequalities. The augmented Lagrangian 
method is proposed to deal with this type of inequalities.   

The hydroelectric power system considered in this 
paper consists of ten reservoirs hydraulically coupled, 
i.e., the release of an upstream reservoir contributes to the 
inflow of downstream reservoirs. All reservoirs are 
located in the same river. The time taken by water to 
travel from one reservoir to the downstream reservoir [8-
10] and the water head variation are taken into account. 
The natural inflow and the demand for electrical energy 
are known beforehand. The scheduling is stretched over 
one day divided into hours. 

The decision variables in the optimization problem 
are the amount of water to be released from each 
reservoir to their direct downstream reservoirs in a given 
period. The state variables are the contents of the 
reservoirs. 
 

II. MATHEMATICAL MODEL FORMULATION 

The main objective of the daily operating policy of 
hydroelectric power system is to maximize the reservoir’s 
contents which imply maximizing the value of potential 
energy stored at the end of the planning horizon, while 
satisfying demand for electrical energy and all other 
specified constraints. Thus, the suggested mathematical 
model for the deterministic short-term operating policy of 
the hydroelectric power systems is as follows:  

 
2.1 The objective function 

The main objective is to maximize the total potential 
energy of water stored in all the reservoirs. The 
formulation should take into account the fact that the 
water stored in one reservoir will be used in all its 
downstream reservoirs, hence, the water stored in the 
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upstream reservoir is more valuable than that stored in the 
downstream reservoir, hence: 
 

1

max ( , ) ( , )
f

f f

f mi

kn
k k k k

P i i p mi mi
i k k S

E x h E u v
= = −

+∑ ∑  

 
Where: 

( , )f fk k
p i iE x h : Potential energy of water stored in 

reservoir i  at the end of the planning horizon fk . This 
energy depends on the amount of water stored in the 
reservoir i , on its effective water head fk

ih and on the 
effective water head of all the downstream reservoirs. 

fk
ix : Content of the reservoir i  at the end of period 

fk , in Mm3. 
n : Number of reservoirs of the system. 

fk : The last hour of the planning horizon, in hours. 

m : The reservoir immediately preceding the reservoir i . 

,k k
mi miu v : Respectively the discharge and the spilled 

outflows from the upstream reservoir m incoming later to 
the downstream reservoir i during period k , in Mm3. 

miS : Time required for the water discharged from 
reservoir m  to reach its direct downstream reservoir i , 
in hours. 

( , ) :k k k
p mi miE u v∑  Total potential energy of the outflow 

from reservoir m , which will reach later the downstream 
reservoir i  after the last hour of the planning horizon fk . 

 
2.2 Operational constraints  

The optimization is performed incorporating the 
following constraints [1-2] [8-15]: 
 
- Hydraulic continuity constraint: 
 

The flow balance equation of each reservoir i  of the 
system, for every period k  is represented by the 
following hydraulic continuity equation: 

 
1k k k k k

i i i i ix x q u v−= + − −  
 
Where: 

k
ix : Content of the reservoir i  at the end of period k , 

in Mm3. 
k

iu : Discharge from reservoir i  during period k , in 
Mm3. 

k
iv : Spillage from reservoir i  during period k , in Mm3. 

k
iq :  Total inflow to the reservoir i  during period k , in 

Mm3.  
 

if 

otherwise

   .

( )  .mi mi

k
i

k
k s k ski

i mi mi
m

y i e
q y u v− −

⎧ ≤⎪= ⎨ + +⎪⎩
∑  

 
e : The extreme upstream reservoirs. 

k
iy :  Natural inflow to the reservoir i  during period k , 

in Mm3.  
m ik s

m iu − , m ik s
m iv − : The discharge and the spilled 

outflows, respectively, from the upstream reservoir m  
incoming later to the downstream reservoir i  during 
period k , in Mm3. 
 
- Limits on storage capacity of each reservoir i :  
 

k
i i ix x x≤ ≤  

 
,i ix x : Lower and upper bounds on reservoir storage 

capacity, respectively, for reservoir i , in Mm3.  
 
- Limits on discharged outflow of hydro plant i : 
 

k
ii iu u u≤ ≤  

 
, iiu u : Minimum and maximum bound on water 

discharge, respectively, of hydro power plant i , in Mm3. 
  
- Load demand constraints:   
 

The total power generated by all the hydroelectric 
plants must satisfy the system load demand at each period 
of the planning horizon. In mathematical terms, this has 
the following form:  
 

1

n
k k

i
i

P D
=

=∑  

 
Where: 
Dk : System load demand at each period k , in Mw. 

k
iP : Electric power generated by hydro plant i  at period 

k , in Mw. The generation is a function of the water 
discharge ui

k  and of the effective water head k
ih .  

 
2.3 Modelling the short-term operating policy problem 
 

The suitable mathematical model proposed for the 
daily optimal operating policy problem of a hydroelectric 
plant system is as follows: 

1
max ( , ) ( )

f
f f

f mi

kn
k k k

p i i p mi
i k k S

E x h E u
= = −

+∑ ∑                 (1)  

 
Subject to the following constraints: 
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1k k k k
i i i ix x q u−= + −                                                     (2) 

1

n
k k

i
i

P D
=

=∑                                                              (3) 

0 k
i iu u≤ ≤                                                        (4) 

 k
i i ix x x≤ ≤                                                       (5) 

 
To ovoid the spillage, we make k

iv  equal to zero. 

 
III. SOLUTION METHOD 

The problem (1)-(3) is solved by using the discrete 
maximum principle as follows [3-7]:   

Associate the constraint (2) to the criterion (1) with 
the dual variableλi

k . Furthermore, to satisfy the balance 
between electric power demand and generation, we 
associate the constraint (3) to the criterion (1) with the 
Lagrange multiplier kβ , and then we define the function 

kH  called the Hamiltonian function, which has the 
following form: 
 

1

[ ( ] ( )
n

k k k k k k k k
i i i i i

i

H x q u P Dλ β
=

= + − + −∑ ∑     (6) 

 
Where ui

k and xi
k represent respectively the control and 

state variables. 
To take into account the possible violation of 

constraint (5) we proceed as follows:  
The two-sided inequality constraint (5) can be broken 
into two inequalities constraints and rewritten, following 
the substitution of equation (2) for k

ix : 
 

1( ) 0k k k
i i i ix q u x− + − − ≤                                           (7)  

 
 1( ) 0k k k

i i i ix q u x− + − − ≥                                          (8) 
    

To treat these inequalities constraints we use the 
augmented Lagrangian method [6-7], which consists of 
adding the functions Ri

k  and k
iQ  to the Hamiltonian 

kH  that penalizes respectively the violations of the 
inequalities constraints (7) and (8), i.e., the violation of 
lower and upper limits of the original constraint (5). Then 
the Hamiltonian H k  becomes as follows: 
 

1
[ ( )]

( )

n
k k k k

i i i i
i

k k k k k
i i i

H x y u

P D R Q

λ

β
=

= + − +

− + +

∑

∑
                        (9) 

 
The penalty function Ri

k is defined as follows [6-7]: 
 
R ri

k
i

k
i

k
i

k= +ρ Ψ Ψ( ) 2                                       (10) 
 

Where: 
r : Penalty weight.  

k
iρ : Lagrange multipliers being updated as follows: 

 

)
2

,(max 2
r

xxr
k

i
i

k
i

k
i

k
i

ρ
ρρ −−+=                    (11) 

 
The function k

iΨ  is determined as follows: 

max
2

( , )
k

k k i
i i ix x

r
ρ

Ψ = − −                                      (12) 

The penalty function Qi
k is calculated in the same 

manner as Ri
k . 

Then the problem (1)-(5) becomes: 
 
max kH                                                                 (13) 
 
The necessary conditions for the optimum are: 
 

0
k

k
i

H
u

∂
∂

=                                                                (14) 

 
To find the optimal water discharge trajectory ui

k  from 
equation (14), we must solve the difference’s equations 
(2) and the following ones called the adjoint equation [6]: 
 

λ
∂
∂i

k
k

i
k

H
x

−
−=1

1                                                    (15) 

  
The boundary conditions for equations (2) and (15) are: 
 
- The first one is the initial state, which is specified, i.e., 
the initial content of all reservoirs is known, thus: 
 

ii bx =0
                                                                      (16) 

 
- The second one is the terminal condition for the adjoint 
equation: 
 

( )f

f

f

k
k p i

i k
i

E x
x

∂
λ

∂
=                                                  (17) 

 
The necessary conditions for the optimality constitute 

a two-point boundary value problem, whose solution 
determines the optimal state and control variables. This 
problem is solved iteratively by using the gradient 
method [3]. 
 

IV. TEST RESULTS 

In order to testify the efficiency of the proposed 
algorithm we apply it to the system composed of ten 
reservoirs located on the same river as shown in figure 1:  
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Fig.1: The reservoir network. 
 

The electrical power produced in MW at the 
hydroelectric plant i during a period k  is given by the 
following expression: 
 

( , ) ( )k k k k k
i i i i i iP h u h x u= ⋅                                            (18) 

 
Where: 

( )k k
i ih x : Effective water head of hydropower plant i at 

period k . 
 

The characteristics of the reservoirs and water time 
travel are shown in table 1. 
  

TABLE 1 
CHARACTERISTICS OF THE INSTALLATIONS. 

 

i  x i  
(M.m3) 

iu  

(M.m3/h) 
ih  

(m) 
miS

(m) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

8777,2 
986,4 
998,0 
504,9 

8,5 
4,2 
4,8 

26,9 
4,54 
3,4 

1,1232 
0,5272 
0,5054 
2,5531 
2,4181 
2,5650 
2,5240 
2,7648 
3,0476 
3,4686 

0,00 
0,00 
0,00 
66,61 

114,18 
92,41 
83,28 
55,72 

107,66 
40,81 

55 
70 
42 
5 
7 
2 

22 
3 
2 
0 

 
Where: 
x i : Maximum storage capacity of reservoir i . 

iu  : Maximum water discharge of hydro-power plant i . 
( )k k

i ih x : Effective water head of hydropower plant i at 

period k . 

miS : Time required for the water discharge from 
reservoir m  to reach its direct downstream reservoir i .  

The natural inflows are assumed constant throughout 
the week in all reservoirs. Their values are depicted in 
table 2 as well as the initial contents of each reservoir. 
 

TABLE 2 
NATURAL INFLOWS AND  

INITIAL CONTENTS OF RESERVOIRS. 
 

i  
0
ix    

(Mm3) 

k
iy   

(Mm3/h) 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

4386,6 
986,4 
998,0 
504,9 

8,5 
4,2 
4,8 

26,9 
4,5 
3,4 

0,1476 
0,5272 
0,5054 
0,5531 
0,4181 
0,5650 
0,5240 
0,7648 
0,0476 
0,4686 

 
Where: 

0
ix : Initial content of reservoir i . 
k
iy : Natural inflow to the reservoir i  during each hour of 

the planning horizon fk . 

The hourly demand kD  of the system is shown in Fig. 2. 
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Fig. 2: Hourly demand profile during one day. 
 

V. IMPLEMENTATION RESULTS 

 In this section, we present the results obtained from 
the implementation of the proposed algorithm. The 
algorithm is implemented in FORTRAN.  
 The solution is obtained after a very moderate 
number of iterations with all constraints being satisfied. 
 The daily optimal scheduling, i.e., optimal water 
discharges from each hydropower plant obtained are 
depicted in Fig.3. 
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Fig. 3: Optimal discharge trajectories. 
 

We perceive that the discharge of the hydropower 
plants follows the demand because it is proportional to 
the production on one hand. On the other hand, this 
production must be equal to the demand. Furthermore, 
the discharge from the downstream reservoir is greater 
than in upstream one as shown in Fig. 3, for the reason 
that the water stored in the upstream reservoir is more 
valuable than that stored in the upstream one, i.e., the 
water of the upstream reservoir will be used again in all 
the downstream ones. Consequently, in economic terms, 
water in the upstream reservoirs should be preserved as 
shown in Fig. 4. Thus, the consequences of the optimal 
scheduling of the water discharge are the filling of the 
upstream reservoirs as against the downstream ones.   
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Fig. 4: Optimal evolution storage trajectories. 

 
 The behaviour of the objective function during the 
optimization process is illustrated in Fig. 5. The 
convergence was achieved in about ten iterations with 
only few oscillations. We note also that the search for the 
optimum becomes slower when we approach the optimal 
solution; this is due to the gradient method itself. 
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Fig. 5: Behaviour of the search trajectory 

 (Objective function). 
 
 

VI. CONCLUSION 

 In this paper, we have presented a new model for the 
daily operating policy of hydroelectric power systems, 
which consists to maximize the potential energy of the 
whole system. With the discrete maximum principle, the 
optimal solution is obtained by solving simultaneous 
equations representing the optimality conditions. The 
principle turned out to be very efficient. 
 To deal with the inequalities constraints, we have 
introduced the augmented Lagrangian method. The 
results confirm the promising properties of the augmented 
Lagrangian. In fact, the proposed algorithm based on 
those methods requires moderate time and storage for its 
execution, thus allowing the solution of large-scale 
scheduling problems. 
 Some improvements can be made to the proposed 
algorithm in order to increase the convergence speed of 
the algorithm and its execution time by using an optimal 
step size α   rather than a fixed one. 
 The proposed algorithm can take into account the 
time of water travel between upstream and downstream 
reservoirs and the water head variations.   
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