Rheological characterization of poly(ethylene oxide) solutions of different molecular weights

Journal of Colloid and Interface Science 336(1) 360-367 (2009)

Authors: K. W. Ebagninin, A. Benchabane, K. Bekkour.

Abstract

The rheological properties of aqueous solutions of poly(ethylene oxide) (PEO) of different molecular weights ($1 \times 10^{5}, 4 \times 10^{5}, 1 \times 10^{6}$ and $4 \times 10^{6} \mathrm{~g} \mathrm{~mol}^{-1}$) and concentrations were investigated using shear viscosity and dynamic rheological measurements. It was found that the aqueous solutions of PEO do not exhibit a yield stress and that, above a critical shear rate, all PEO solutions exhibit shearthinning behavior, well described by the Cross model, except for the solutions made by the lowest molecular weight ($1 \times 10^{5} \mathrm{~g} \mathrm{~mol}^{-1}$) which were almost Newtonian. The parameters of the Cross model, namely the zero-shear rate viscosity and reciprocal of the time constant, allowed the determination of the critical concentrations c^{*} and $\mathrm{c}^{* *}$ (respectively, the transition to semi-dilute network solution and concentrated solution). At concentrations higher than $\mathrm{c}^{* *}$ and below a critical shear rate, solutions made of PEO of high molecular weight exhibited a clearly shear-thickening behavior at very low shear rates. In addition, the dynamic tests showed that PEO solutions exhibit concentration-dependent viscoelastic properties, with a dominant viscous behavior at PEO concentrations lower than $\mathrm{c}^{* *}$ and a dominant elastic behavior at PEO concentrations greater than ${ }^{* * *}$.

Keywords: Poly(ethylene oxide) (PEO); Cross model; Shear-thickening; Viscoelasticity; Molecular weight; Overlap critical concentration.

Link http://www.sciencedirect.com/science/article/pii/S002197970900304X

