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Abstract

The objective of this thesis is to proof the existence of optimal relaxed controls as well as opti-

mal stricts controls for systems governed by non linear forward–backward stochastic differen-

tial equations (FBSDEs). In the first part, we study an singular control problem for systems of

forward-backward stochastic differential equations of mean-field type (MF-FBSDEs) in which the

control variable consists of two components: an absolutely continuous control and a singular one.

The coefficients depend on the states of the solution processes as well as their distribution via the

expectation of some function. Moreover the cost functional is also of mean-field type. Our ap-

proach is based on weak convergence techniques in a space equipped with a suitable topological

setting. We prove in first, the existence of optimal relaxed-singular controls,which are a couple

of measure-valued processes and a singular control. Then, by using a convexity assumption and

measurable selection arguments, the optimal regular (strict)-singular control are constructed from

the optimal relaxed-singular one.

In the second part of this thesis, we concentrate on the study of a class of optimal controls

for problems governed by forward-backward doubly stochastic differential equations (FBDS-

DEs). We prove the existence of an optimal control in the class of relaxed controls, which are

measure-valued processes, generalizing the usual strict controls. The proof is based on some

tightness properties and weak convergence on the space of càdlàg functions, endowed with the
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Abstract

Jakubowsky S-topology. Furthermore, under some convexity assumptions, we show that the op-

timal relaxed control is realized by a strict control.

vii



Résumé

L’objectif de cette thèse est de prouver l’existence des contrôles relaxés optimaux ainsi que l’existence

des contrôles stricts optimaux pour des systèmes gouvernés par des équations différentielles

stochastiques progressives-rétrogrades non linéaires (EDSPR). Dans la première partie, nous étu-

dions un problème de contrôle singulier pour des systèmes d’équations différentielles stochas-

tiques progressives et rétrogrades de type champ moyen (MF-FBSDE) dans lequel la variable

de contrôle est constituée de deux composants: un contrôle absolument continu et un singulier.

Les coefficients dépendent des processus d’état de résolution ainsi que de leur distribution via

l’espérance d’une fonction. De plus, la fonctionnelle de coût est également de type champ moyen.

Notre approche est basée sur des techniques de convergence faible dans un espace muni par une

topologie suitable. Nous prouvons premièrement l’existence des contrôles relaxés-singuliers op-

timaux, qui sont des couples du processus valorisés par des mesures et des contrôles singuliers.

Ensuite, en utilisant une hypothèse de convexité et des arguments de sélection mesurables, le

contrôle régulier-singulier optimal est construit à partir du contrôle relaxé-singulier optimal.

Dans la deuxième partie de cette thèse, nous concentrons sur l’étude d’une classe de contrôles

optimaux pour des problèmes gouvernés par des équations différentielles doublement stochas-

tique progressives-rétrogrades (FBDSDE). Nous prouvons l’existence d’un contrôle optimal dans

la classe des contrôles relaxés, qui sont des processus a valeur mesure, généralisant les contrôles

viii



Résumé

stricts usual. La preuve est basée sur quelques propriétés des tensions et des convergences faibles

sur l’espace des fonctions càdlàg, muni par la S-topologie de Jakubowsky. De plus, sous certaines

hypothèses de convexité, nous montrons que le contrôle relaxé optimal est réalisé par un contrôle

strict.

ix



Symbols and Abbreviations

The different symbols and abbreviations used in this thesis.

Symbols

(Ω,F ,P) : Probability space.

(Wt)t≥0 : Brownian motion.

Fθs,t : σ-fields generated by σ (θr − θs, s ≤ r ≤ t) .

Fθt : σ-algebre generated by θ.

Ft := FBt,T ∨ FWt : σ-fields generated by FBt,T ∪ FWt .

Gt = FWt ∨ FBT : The collection (Gt)t≥0 is a filtration.

(Ω,F , (Ft)t≥0,P) : A filtered probability space.

(Ft)t≥0 : Filtration.

Rn×d : The set of all (n× d) real matrixes.

Rn : n-dimensional real Euclidean space.

R : Real numbers.

E[X|Ft] : Conditional expactation.

E[X] : Expactation at X.

N : The collection of class of P -null sets of F .

x



Symbols and Abbreviations

ξ : A singular control.

q : A relaxed control.

δ(da) : A Dirac measure.

U : The set of values taken by the strict control u.

U2 : The set of values taken by the singular part of the control.

U : The set of admissible strict controls (or regular part of the control).

U2 : The set of singular part of the control.

V : The space of positive Radon measures on [0;T ]× U.

q̃ : Optimal relaxed control.

ũ : Optimal strict control.

Rad : The set of relaxed control.

CV (·) : The conditional variation.

Abbreviations

SDEs : Stochastic differential equations.

BSDEs : Backward stochastic differential equations.

BDSDEs : Backward doubly stochastic differential equation.

FBSDE : Forward-backward stochastic differential equations.

MF-FBSDE : Forward-backward stochastic differential equations of mean field type.

càdlàg : Right continuous with left limits.

a.s : Almost surely.
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Introduction

The approach of relaxed controls is a relatively popular method of compactification of stochastic

control problems to establish existence of solutions, which comes in several different flavors.

Fleming [25] derived the first existence result of an optimal relaxed control for SDEs with un-

controlled diffusion coefficient by using compactification techniques. The case of stochastic dif-

ferential equations with controlled diffusion coefficient has been solved by El-Karoui et al. [23],

where the optimal relaxed control is shown to be Markovian, the authors reformulate the control

problem as a relaxed controlled martingale problem. See also [28, 29, 35]. A similar approach is

used by Lacker [36] in the context of MF Games.

Forward-backward stochastic differential equations (FBSDEs in short) were first studied by An-

tonelli (see [1]), where the system of such equations is driven by Brownian motion on a small time

interval. The proof there relies on the fixed point theorem. There are also many other methods to

study FBSDEs on an arbitrarily given time interval. For example, the four-step scheme approach

of Ma et al. [42], in which the authors proved the existence and uniqueness of solutions for fully

coupled FBSDEs on an arbitrarily given time interval, where the diffusion coefficients were as-

sumed to be nondegenerate and deterministic. Their work is based on continuation method. For

systems of FBSDE, the existence of optimal control has been proved by Bahlali, Gherbal and Mez-

erdi [10], see also Buckdahn et al [13]. Benbrahim and Gherbal in [12] proved existence of optimal
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Introduction

controls for FBSDEs of mean-field type with controlled diffusion coefficient. Bahlali, Gherbal and

Mezerdi in [11] proved existence of a strong optimal control for linear BSDEs and this result has

been extended to a system of linear backward doubly SDEs by Gherbal [26]. The existence of

relaxed solutions to mean field games with singular controls has been proved by Fu and Horst in

[24]. The authors proved approximations of solutions for a particular class of mean field games

with singular controls and relaxed controls by solutions for mean field games with purely regular

controls, on the space of cádlág functions equipped with the Skorokhod M1 topology.

A new kind of backward stochastic differential equations called mean-field BSDEs, were intro-

duced by Buckdahn et al. [6], which were derived as a limit of some highly dimentional system

of BSDEs, corresponding to a large number of particles. The existence of solution for forward-

backward stochastic differential equations of mean-field type systems (MF-FBSDEs) has been

proved by Carmona and Dularue [19].

The existence of approximate Nash equilibria in mean field games for large populations has been

established in [19], using a representative agent approach. A relaxed solution concept to mean

field games was introduced by Lacker in [37], in which the author studied in the framework of

controlled martingale problems, a general existence theorems where the equilibrium control is

Markovian. In [38], the author used the notation of weak solution and proved that the weak limit

of ε-Nash equilibria for N player games as N →∞ is a weak solution to mean field games. More-

over, each weak solution to mean field games yields an ε-Nash equilibrium for N player game.

See also Carmona and Delarue [20], they established a new version of the stochastic maximum

principle for systems of SDEs of mean-field type.

The aim of the first part, of this thesis is to study of singular stochastic control problem for systems
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Introduction

governed by the following MF-FBSDEs:

dXu,ξ
t = b(t,Xu,ξ

t ,E[α(Xu,ξ
t )], ut)dt+ σ(t,Xu,ξ

t ,E[γ(Xu,ξ
t )])dBt + φtdξt

dY u,ξt = −f(t,Xu,ξ
t ,E[ζ(Xu,ξ

t )], Y u,ξt ,E[η(Y u,ξt )], ut)dt+ Zu,ξt dBt

+dM− ϕtdξt

Xu,ξ
0 = x0, Y

u,ξ
T = h(Xu,ξ

T ,E[θ(Xu,ξ
T )]), t ∈ [0, T ],

(1)

where b, α, γ, ζ, η, θ, φ, and ψ are given functions, (Bt, t ≥ 0) is a standard Brownian motion, de-

fined on some filtered probability space (Ω,F ,Ft, P ), satisfying the usual conditions.M a square

integrable martingale that is orthogonal to B. The control variable is a suitable process (u, ξ)

such that u : [0, T ] × Ω → U1 ⊂ Rn, ξ : [0, T ] × Ω → U2 = ([0,∞))l are B[0, T ] ⊗ F-measurable,

Ft-adapted, and ξ is an increasing process and cádlág, with ξ0 = 0 and E[|ξT |2] < +∞.

We shall consider a functional cost to be minimized, over the set admissible controls, as the fol-

lowing:

J(u·, ξ·) := E
[
Ψ
(
Xu,ξ
T ,E[λ(Xu,ξ

T )]
)

+ Φ
(
Y u,ξ0 ,E[ρ(Y u,ξ0 )]

)
+
∫ T

0
g
(
t,Xu,ξ

t ,E[π(Xu,ξ
t )], Y u,ξt ,E[$(Y u,ξt )], ut

)
dt+

∫ T
0
ψtdξt

]
,

(2)

where Φ, λ,Ψ, ρ, g, π, ψ and $ are appropriate functions.

Our objective is to minimize the functional cost J over the set of admissible controls U1 × U2. An

admissible control (u∗· , ξ
∗
· ) is called optimal if it satisfies J(u∗· , ξ

∗
· ) = inf{J(u·, ξ·);u· ∈ U1, ξ· ∈

U2}.

The considered system and the cost functional, depend not only on the state of the system, but

also on the distribution of the state process, via the expectation of some function of the state. The

mean-field FBSDEs (1) called McKean-Vlasov systems are obtained as the mean square limit of
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Introduction

an interacting particle system of the form

dXu,ξ,i,n
t = b(t,Xu,ξ,i,n

t , 1
n

n∑
j=1

α(Xu,ξ,j,n
t ), ut)dt

+σ(t,Xu,ξ,i,n
t , 1

n

n∑
j=1

γ(Xu,ξ,j,n
t ))dBt + φitdξ

i
t

dY u,ξ,i,nt = −f(t,Xu,ξ,i,n
t , 1

n

n∑
j=1

ζ(Xu,ξ,j,n
t ), Y u,ξ,i,nt , 1

n

n∑
j=1

η(Y u,ξ,j,nt ), ut)dt

+Zu,ξ,i,nt dBit + dMi
t − ϕitdξit,

where
(
Bi· , i ≥ 0

)
is a collection of independent Brownian motion and 1

n

n∑
j=1

ζ(Xu,ξ,j,n
t ) denotes the

empirical distribution of the individual players’ state at time t ∈ [0, T ]. Our system MF-FBSDEs

(1) occur naturally in the probabilistic analysis of financial optimization and control problems of

the McKean-Vlasov type.

One our main aims in first part of this thesis is to prove existence of optimal control for systems of

FBSDEs of mean-field type (1) with singular controls. We prove in first, the existence of optimal

relaxed controls, for MF-FBSDEs systems and when the Roxin convexity condition is fulfilled, we

prove that the optimal relaxed control is in fact strict. This result is a generalization of the result

given in [27], to the mean-field context and in a different topological setting.

A new class of stochastic differential equations with terminal condition, called Backward doubly

stochastic differential equation (BDSDE) was introduced in 1994 by Pardoux and Peng in [39].

The authors show existence and uniqueness for this kind of stochastic equation and produce a

probabilistic representation of certain quasi-linear stochastic partial differential equations (SPDE)

extending the Feynman-Kac formula for linear SPDEs.

In this subject, Gherbal in [26] proved for the first time the existence of a strong optimal strict

control for systems of linear backward doubly SDEs and established necessary as well as sufficient

optimality conditions in the form of a stochastic maximum principle for this kind of systems.
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Introduction

To our best knowledge, no results in the literature have studied the existence of optimal control

for systems of non linear forward-backward doubly SDEs. Which is in indeed a very difficult

interesting research problem.

Our main goal in the second part of this thesis is to prove existence of optimal relaxed control as

well as existence of optimal strict control for systems of forward-backward doubly SDEs.

In particular, we shall prove the existence of weak optimal solution (more precisely, a solution

defined on an extended probability space) of a control problem driven by the following FBDSDE



Xt = x+
∫ t

0
B (s,Xs, us) ds+

∫ t
0

Σ (s,Xs) dWs,

Yt = H (XT ) +
∫ T
t
F (s,Xs, Ys, us) ds+

∫ T
t
G (s,Xs, Ys) d

←−
Bs

−
∫ T
t
ZsdWs − (MT −Mt) .

(3)

The mappings B,Σ, F,G and H are given, (Ws)s≥0 and (Bs)s≥0 be two mutually independent

standard Brownian motions, defined on a probability space (Ω,F , P ), taking their values respec-

tively in Rd and in Rk, u· represents the control variable. The processes (X·, Y·, Z·,M·) are valued

in Rn×Rm×Rm×d×Rm and M· is a square integrable martingale which is orthogonal to W, with

M0 = 0 and with càdlàg trajectories.

The integral with respect to Bs is a backward Itô integral, while the integral with respect to Ws is

a standard forward Itô integral.

The functional cost to be minimized, over the set of admissible strict controls, is giving by:

J(u·) := E
[
ϕ(XT ) + ψ(Y0) +

∫ T

0

L(t,Xt, Yt, us)dt
]
. (4)

A weak solution for FBSDEs is given by Bahlali et al. [15], where the original probability is

changed using Girsanov’s theorem. See also Antonelli and Ma, [4] and Delarue and Guatteri,
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[22], where the change of probability space comes from the construction of the forward compo-

nent.

A weak solution for FBSDEs where the filtration is enlarged, have been studied by Buckdahn et al.

[9], (see also [7] and [8]), using pseudopaths and the Meyer-Zheng topology, [43]. The success of

Meyer-Zheng topology comes from a tightness criteria which is easily satisfied and ensures that

all limits have their trajectories in the Skorokhod spaceD.We use here the fact that Meyer-Zheng’s

criteria also yields tightness for the S-topology of Jakubowsky on D, [31].

The existence of the orthogonal component M· in our work comes from the fact that the opti-

mal control and the corresponding solutions are obtained by taking weak limits of a minimizing

sequence and the corresponding strong solution.

A weak solutions for FBSDEs where the Brownian filtration is enlarged, have been studied by

Bouchemella and Raynaud de Fitte [17] and the system there also contains an orthogonal martin-

gale component similar to ours. There is a good discussion there about the weak solutions.

One of our main aims in this second part of thesis is to prove in first, the existence of optimal re-

laxed controls, for the system of FBDSDE (3). The existence result is proved by using the tightness

properties of the distributions of the processes defining the control problem and the Skorokhod’s

selection theorem on the space of Skorokhod D, endowed with the Jakubowski S-topology.

Secondly, when the Roxin convexity condition is fulfilled, we prove that the optimal relaxed con-

trol is in fact strict and the set of admissible strict controls coincides with that of relaxed controls.

As a motivation to study a stochastic relaxed control problem for systems of FBDSDEs: is the

fact that the FBDSDEs in their nature include FBSDEs, BSDEs and SDEs, which are widely used

in mathematical economics and finance. FBSDEs, in particular, are encountered in stochastic

recursive utility optimization problems, see [21], [34] and [45] for more details and applications.

Concerning the implementation of relaxed controls in such controlled systems, Anderson and
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Djehiche [3], gives a financial application of relaxed control problem of linear SDE by studying

an optimal bond portfolio problem in a market where there exists a continuum of bonds and the

portfolio weights are modeled as measure-valued processes on the set of times to maturity. We

emphasize also that dealing with relaxed controls is always a good choice when not having a con-

vex domain of controls. There is a good discussion in Ahmed and Charalambous, [2], about this

issue particularly and also the extension of the stochastic maximum principle to relaxed controls.

We organize the dissertation as follows. Our contribution in this thesis touch on a very important

aspect of optimal stochastic control which is the existence of optimal relaxed controls as well as

the existence of optimal strict controls. We will present in what follows a brief description of the

main results we have achieved in this work.

Chapitre (1).

The aim of this chapter is to introduce the concept of SDE and BSDE and to present the terminol-

ogy used in this context. We also present the necessary conditions for the strong existence and the

weak existence of the solutions. We give also a brief summary of equipping the space of càdlàg

functions by the Skorokhod M1 and S-topology and their associated effects, and we will also dis-

cuss the relationship between them in the convergence and tightness. In fact the main reason for

including this material here is to introduce some specific tools which will be used systematically

in later chapters. It also unifies terminology and notation that are to be used in this chapters.

Chapitre (2). (The results of this chapter were the subject of a paper submitted to an international

journal).

In the second chapter we deal with the problem of existence of optimal control for a singular

control problem for systems of forward-backward stochastic differential equations of mean-field

type (MF-FBSDEs) in which the control variable consists of two components: an absolutely con-

tinuous control and a singular one. The coefficients of the system depend on the states of the
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solution processes as well as their distribution via the expectation of some function. Moreover

the cost functional is also of mean-field type. We prove in particular, the existence of optimal

relaxed-singular controls, which are a couple of measure-valued processes and singular control

as well as the existence optimal strict controls.

Chapitre (3). (The results of this chapter were the subject of a paper published in Random Oper-

ators & Stochastic Equations, 2020).

In the third chapter we study a class of optimal controls for problems governed by forward-

backward doubly stochastic differential equations (FBDSDEs). Firstly, we prove existence of opti-

mal relaxed controls, which are measure-valued processes for nonlinear FBDSDEs, by using some

tightness properties and weak convergence techniques on the space of Skorokhod D equipped

with the S-topology of Jakubowsky. Moreover, when the Roxin-type convexity condition is ful-

filled, we prove that the optimal relaxed control is in fact strict.

xix



CHAPTER 1

General Introduction of Stochastic

Analysis.
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General Introduction of Stochastic Analysis.

Stochastic calculus serves as a fundamental tool throughout this thesis. The goal of this chapter

is to introduce several tools from the theory of probability theory and stochastic processes, which

will be useful in later chapters. It also unifies terminology and notation that are to be used in this

chapters.

This Chapter is organized to into six sections in which we present the basic concepts and results

fundamental of Stochastic calculus as follow:

• In section one, we present a some introductory probability will be briefly reviewed.

• In section two, we recall some results on stochastic processes.

• In section three, we are going to define the integral of type Itô integral.

• In section four and five, we study stochastic differential equations (SDEs) and (BSDEs).

• In section six, we give a brief summary of equipping the space of càdlàg functions by some

topologies.

2



Chapter 1. General Introduction of Stochastic Analysis.

1.1 Introductions of Probability Theory

Let Ω be ordinary nonempty set and we denote by Γ (Ω) the set of parts of the set Ω.

Definition 1.1.1 We say that F ⊂Γ (Ω) is a σ-algebra (or field) if

1) Ω (or φ) belong to F .

2) ∀B ∈ F ⇒Bc ∈ F .

3) (Bk)k∈N ⊂ F ⇒ ∪k∈NBk ∈ F .

Example 1.1.2 Γ (Ω) the set of all collections of Ω and {φ,Ω} are σ-algebras.

A set Ω endowed with a σ-algebra F ⊂Γ (Ω) is called a measurable space. Members of F are

called measurable sets.

Proposition 1.1.3 Let C⊂Γ (Ω) . Then there exists a unique σ-algebra, σ (C) generated by C, which is

the unique smallest σ-algebra containing C.

Example 1.1.4 The σ-algebra generated by C = {B} ⊂ Ω is σ (C) = {φ,Ω, B,Bc} .

The σ-algebra generated by all open sets in Rd is called the Borel σ-algebra of Rd and is denoted

by B
(
Rd
)

. It is defined to be the smallest σ-algebra containing all such open subsets of Rd.

Definition 1.1.5 we call measure µ on the measurable space (Ω,F) an application of F in [0,∞] which

verifies

1) µ (φ) = 0.

3



Chapter 1. General Introduction of Stochastic Analysis.

2) Let the family (Bk)k∈N ⊂ F is disjoint (i.e: Bi ∩Bj = φ if i 6= j) , then

µ (∪k∈NBk) =
∑
k≥0

µ (Bk) .

The triplet (Ω,F , µ) is called a measure space.

Remark 1.1.6 If µ (Ω) = 1, we say that µ is a probability measure and (Ω,F , µ) is a probability space.

Let (Ω,F , P ) be a probability space. Let

N = {A ⊂ Ω/∃B ∈ F , P (B) = 0 and A ⊂ B} ,

be the collection of null probability sets. We then say that the probability space (Ω,F , P ) is com-

plete if N ⊂ F . In this thesis the probability space (Ω,F , P ) will always be considered as com-

pleted by the collection of null probability sets.

Now, if E is a topological space, let B (E) denote its Borel σ-field over E, generated by the family

of open subsets of E. The mapping X : Ω → E is an random variable E-valued. If E = R then

X will be called a real random variable. If E = Rd then X will be called a d-dimensional random

variable.

The probability measurePX : B (E)→ [0, 1] is called the law ofX, defined byPX (B) = P (X ∈ B) .

Let X : (Ω,F , P )→ E be a random variable, the

σ (X) =
{
X−1 (B) /B ∈ B (E)

}
,

is called the σ-algebra generated by X, is the smallest -algebra which makes X measurable. Also

σ (X) represents the information carried by X. Let {Xk, k ∈ I} family of random variables, we

can associate the σ-algebra σ (Xk, k ∈ I), which is the smallest σ-algebra containing ∪k∈Iσ (Xk) .
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Chapter 1. General Introduction of Stochastic Analysis.

Let F , G be two σ-algebras. We say that F and G are independent if

P (A ∩B) = P (A) .P (B) , ∀A ∈ F , B ∈ G.

LetX, Y : Ω→ E be two random variables andF a σ-field on Ω. ThenX is said to be independent

of F if σ (X) is independent of F , and X is said to be independent of Y if σ (X) and σ (Y ) are

independent.

Let {Fk, k ∈ I} be a family of σ-fields on Ω. We define

∨k∈IFk = σ (∪k∈IFk) ,

and

∧k∈IFk = ∩k∈IFk.

It is easy to show that ∨k∈IFk and ∧k∈IFk, are both σ-fields and that they are the smallest σ-field

containing all Fk and the largest σ-field contained in all Fk respectively.

Remark 1.1.7 Note that if (E,B (E)) =
(
Rd,B

(
Rd
))
, then

σ (Xk, k ∈ I) = ∨k∈IX−1
(
B
(
Rd
))

Now, we call the expectation (or mean) of a random variable is the integral

E [X] =

∫
Ω

X (ω) dP (ω) ,

and the variance of X by

V ar [X] = E
[
(X − E [X])

2
]

= E
[
X2
]
− E [X]

2
.
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We can use the notation P (dω) for dP (ω) . For all B ∈ F we define

E [X1B] =

∫
B

X (ω) dP (ω) ,

where

1B (ω) =


1 if ω ∈ B

0 if ω /∈ B.

Example 1.1.8 Let (Ω,F , P ) be a probability space. Let X, Y : Ω → R be two independent ramdom

variables. Then

E [XY ] = E [X]E [Y ] .

Let us show that if X = 1A and Y = 1B, for some A, B ∈ F , then

E [XY ] = E [1A1B] =

∫
Ω

1A∩B (ω) dP (ω)

= P (A ∩B) = P (A) .P (B)

= E [X]E [Y ] .

LetXn, X : (Ω,F , P )→ Rd, n ∈ N, be two random variables. The following types of convergence

will be used in this thesis:

• Xn → X a.s if there exists an A ∈ F , P (A) = 1 where

lim
n→∞

Xn (ω) = X (ω) , for all ω ∈ A.

• Xn → X in probability if for all ε > 0, we have

lim
n→∞

P (|Xn −X| ≥ ε) = 0.

6
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For all p > 0, we denote by Lp
(
Ω,F , P,Rd

)
, the linear space of random variables X : Ω → Rd

such that E (|Xt|p) <∞.

• Xn → X in Lp
(
Ω,F , P,Rd

)
, if Xn, X ∈ Lp

(
Ω,F , P,Rd

)
and

lim
n→∞

E [|Xn −X|p] = 0.

• Xn → X in law if for any bounded continuous function ϕ : Rd → R

lim
n→∞

E [ϕ (Xn)] = E [ϕ (X)] .

It is well-known that if Xn → X in probability, then ϕ (Xn) → ϕ (X) , for every ϕ ∈ C
(
Rd
)
, and

there exists a subsequence Xnk → X a.s. Also, if Xn → X in probability then Xn → X in law.

Remark 1.1.9 The various concepts of convergence of random variables with values in a metric space are

defined analogously.

Theorem 1.1.10 (Monotone Convergence) Let Xn, X be two random variables, n ∈ N. If

i) 0 ≤ X1 ≤ X2... ≤ Xn ≤ ... ≤ X P − a.s.

ii) Xn → X a.s, then

lim
n→∞

E [Xn] = E [X] .

Theorem 1.1.11 (Fatou’s Lemma) Let Xn, X be two random variables and Xn positive a.s, for all n ∈

N∗. Then

E
[
lim inf
n→∞

Xn
]
≤ lim inf

n→∞
E [Xn] .

If moreover Xn → X in law, then X positive a.s and

E [X] ≤ lim inf
n→∞

E [Xn] .

7
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Theorem 1.1.12 (Dominated Convergence Theorem) Let Xn, X be two d-dimensional random vari-

ables, n ∈ N∗. If Xn → X in law and there exists a positive random variable Y ∈ L1 (Ω,F , P ) such that

for all n ∈ N∗ : |Xn| ≤ Y a.s, then

E [|X|] <∞, and lim
n→∞

E [Xn] = E [X] .

1.1.1 Conditional expectation

In this Subsection, we present the notion of conditional expectation, i’ts main properties, which

will be needed in the next sections and chapters.

All random variables will be assumed to be defined on a probability space (Ω,F , P ) . We denote

by G, H two sub-σ-algebras of F , and we will assume that each of them contains the collection

N of all P -null sets of F .

The space L2
(
Ω,G, P,Rd

)
is a sub-Hilbert space of L2

(
Ω,F , P,Rd

)
, with respect to the scalar

product E [〈X,Y 〉] . Therefore, we can define the conditional expectation as follows:

Definition 1.1.13 We call the conditional expectation with respect to G the orthogonal projection operator

from L2
(
Ω,F , P,Rd

)
into L2

(
Ω,G, P,Rd

)
.

So be it X random variable square integrable (X ∈ L2
(
Ω,F , P,Rd

)
), the orthogonal projection on

L2
(
Ω,G, P,Rd

)
is the conditional expectation, denote by

E [X | G] .

8
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In fact, E [X | G] is the unique G-random variable satisfying
E [X | G] is G-measurable

E [XY ] = E [E [X | G]Y ] , ∀Y ∈ L2
(
Ω,G, P,Rd

)
.

In particular, if Y = 1Ω, we get

E [X] = E [E [X | G]] .

Remark 1.1.14 If G = {φ,Ω} , then E [X] = E [X | G] .

Now, we can established that the conditional expectation is continuous with respect to the norm

in the space L1
(
Ω,F , P,Rd

)
, for any square integrable X, we have

X = X+ −X−

|X| = X+ +X−,

then by linearity of the orthogonal projection

E [X | G] = E
[
X+ | G

]
− E

[
X− | G

]
|E [X | G]| ≤ E

[
X+ | G

]
+ E

[
X− | G

]
≤ E [|X| | G] ,

and hence

E [|E [X | G]|] ≤ E [|X|] .

Now, we us collect main properties of the conditional expectation in the following proposition.

Proposition 1.1.15 Let X, Y ∈ L1
(
Ω,F , P,Rd

)
, and (α, β) ∈ R, then:

1)-X ≥ 0 a.s =⇒ E [X | G] ≥ 0 a.s.

9
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2)-E [αX + βY | G] = αE [X | G] + βE [Y | G] .

3)-If X is G-measurable and 〈X,Y 〉 is integrable, then

E [〈X,Y 〉 | G] = 〈X,E [Y | G]〉.

4)-If G⊂H, then

E [E [X | H] | G] = E [X | G]

5)-If H and G∨σ (X) are independent, then

E [X | G∨H] = E [X | G] .

In particular, if G and X are independent, then

E [X | G] = E [X] .

6)-(Jensen’s inequality) Let ϕ : Rd → R is a convex function such that ϕ (X) ∈ L1 (Ω,F , P,R) . Then

ϕ (E [X | G]) ≤ E [ϕ (X) | G] P a.s.

Corollary 1.1.16 If p ≥ 1, then E [· | G] is a linear continuous operator from Lp
(
Ω,F , P,Rd

)
into

Lp
(
Ω,G, P,Rd

)
.

Proof. From the property (6) with ϕ (X) = |X|p , we obtain

E [|E [X | G]|p] ≤ E [|X|p] .

10
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Lemma 1.1.17 Let Y : (Ω,F , P )→ Rd be a random variable, andX ∈ L1
(
Ω,F , P,Rd

)
. IfE [Xψ (Y )] =

0 for any ψ ∈ Cb
(
Rd
)
, then we have

E [X1A] = 0, ∀A ∈ σ (Y ) .

Proposition 1.1.18 Let Yk : (Ω,F , P )→ Rmk ∀k ≥ 1, be a sequence of random variables. Let G =∨k≥1

σ (Yk) and X ∈ L1 (Ω,F , P,Rm) . Then E [X | G] = 0 if and only if E [Xψ (Y1, Y2, ..., Yk)] = 0 for any

k ≥ 1 and ∀ψ ∈ Cb (Rn) , n =
∑k
i=1mi.

Now, we turn to the conditional probability. We define

P (B | G) = E [1B | G] , ∀B ∈ F ,

which is called the conditional probability of the event A given the condition G. Note that, if
P (φ | G) = 0, P (Ω | G) = 1

P (∪k≥0Bk | G) =
∑
k≥1 P (Bk | G) , ∀Bk ∈ F , and ∀i 6= j Bi ∩Bj = φ.

Remark 1.1.19 For a given ω ∈ Ω, P (· | G) (ω) is not necessarily a probability measure on F .

Definition 1.1.20 A separable complete metric space is called a Polish space.

Proposition 1.1.21 Let (Ω,F , P ) a probability space. If Ω is a Polish space and G ⊂F , then there is a

map p : Ω×F → [0, 1] , called a regular conditional probability, such that p (ω, ·) is a probability measure

on (Ω,F) for any ω ∈ Ω, and p (·, B) is G-measurable for any B ∈ F ,

E [1B | G] (ω) = P (B | G) (ω) = p (ω,B) , ∀B ∈ F .

11
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Remark 1.1.22 If ṕ is another regular conditional probability G-measurable, then there exists a P -null

set A ∈ G such that for any ω /∈ A,

p (ω,B) = ṕ (ω,B) , ∀B ∈ F ,

in the sense that it is unique.

1.1.2 Convergence of probabilities

To prove some existence results in stochastic analysis and stochastic controls, it inevitably in-

volves convergence of certain probabilities. We summarize in this subsection some important

results concerning the convergence of probability measures.

Let (U, ρ) be a separable metric space and B (U) the Borel σ-field. We denote by P (U) the set of

all probability measures on the measurable space (U,B (U)) .

Definition 1.1.23 i)-Let (Qn)n≥0 ⊂ P (U) , we say that Qn converges weakly to Q ∈ P (U) , if

lim
n→∞

∫
U
ψ (u)Qn (u) =

∫
U
ψ (u)Q (u) .

for all, bounded continuous function ψ on U, (∀ψ ∈ Cb (U)) .

ii)-Let (Qn)n≥0 ⊂ P (U) , we say that Qn converges vaguely to Q, if

lim
n→∞

∫
U
ψ (u)Qn (u) =

∫
U
ψ (u)Q (u) .

for all, continuous function with compact support ψ on U, (∀ψ ∈ Cc (U)) .

Proposition 1.1.24 There is a metric d on P (U) such that Qnconverges weakly to Q, is equivalent to

d (Qn, Q)→ 0 a.s n→∞.

12
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Definition 1.1.25 Let K be a subset of P (U) .

i)- A set K is said to be relatively compact if any sequence (Qn)n≥0 ⊂ K contains a weakly convergent

subsequence.

ii)-A set K is said to compact, if K is relatively compact and closed.

ii)-A set K is said to tight, if for any ε > 0 there is a compact set Σ ⊂ U such that

Q (Σ) ≥ 1− ε, ∀Q ∈ K.

Proposition 1.1.26 Let K be a subset of P (U) . Then:

i)-K is relatively compact if it is tight.

ii)-If (U, ρ) is complete (i.e: it is a polish space), then K is tight if it is relatively compact.

Corollary 1.1.27 If (U, ρ) is compact, then any K ⊂ P (U) is tight and relatively compact. In particular,

P (U) is compact.

Proof. Straightforward by Definition (18) and Proposition (19) .

Theorem 1.1.28 (Prokhorov’s) Let (U, ρ) be a complete separable metric space, and let K be a subset of

P (U) . Then the following two statements are equivalent:

a)-K is compact in P (U).

b)-K is tight.

Now, if X is a random variable definite from (Ω,F , P ) into (U, ρ) , we denote by Q = PX ∈

P (U) the probability induced by X. We say that a family of random variables (Xn)n≥0 is tight if

(PXn)n≥0 is tight. As we say that Xn, converges to X in law if PXn converges weakly to PX as

n→∞.

13
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1.2 Stochastic Processes

In this section we recall some results on stochastic processes.

Definition 1.2.1 Let (Ω,F , P ) be a probability space. A family (Xt)t∈I , I ⊂ R of functions from Ω× I

into Rd is called a stochastic process. For all t ∈ I, X (·, t) is an Rd-valued random variable. The mappings

X (ω, ·) , ω ∈ Ω are called the trajectories of the stochastic process X.

Now, we give a stochastic process (Yt)t∈[0,T ] , we say that Yt is a modification of Xt if for all

t ∈ [0, T ] , we have

Yt = Xt P − a.s, ∀t ∈ [0, T ]

In this case, one is called a modification of the other. In the same context we say that Yt is indis-

tinguishable from Xt if their paths coincide a.s, then for any t ∈ [0, T ] , there exists a P -null set

Bt ∈ F such that

Yt = Xt ∀ω ∈ Ω�Bt.

Definition 1.2.2 The stochastic process Xt is said to be càdlàg if for each ω ∈ Ω, the path Xt is right

continuous and admits a left-limit i.e:
for 0 ≤ t < T, Xt+ ≡ lims↘tXs exists with Xt+ = Xt,

for 0 ≤ t ≤ T, Xt− ≡ lims↗tXs exists.

Obviously, the notion of indistinguishability is stronger than the one of modification, but if the

two processes Xt and Yt are càdlàg, and if Yt is a modification of Xt, then Xt and Yt are indistin-

guishable.

14
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Definition 1.2.3 We say that Xt is stochastically continuous at t ∈ [0, T ] if for any ε > 0

lim
s→t

P (|Xs −Xt| > ε) = 0.

Moreover, Xt is said to be continuous if there exists a P -null set B ∈ F such that ∀ω ∈ Ω�B the

trajectories Xt is continuous.

Definition 1.2.4 A filtration on (Ω,F , P ) is an increasing family (Ft)0≤t≤T of σ-fields of F such that

Fs ⊂ Ft ⊂ F for all 0 ≤ s ≤ t ≤ T.

Ft is interpreted as the information known at time t, and increases as time elapses. Set Ft+ =

∩s>tFs for any t ∈ [0, T ) , and Ft− = ∪s<tFs for any t ∈ (0, T ]. If Ft+ = Ft (resp.Ft− = Ft),

we say that (Ft)0≤t≤T is right (resp. left) continuous. We call (Ω,F , (Ft)0≤t≤T , P ) a filtered

probability space. Then we say that the filtered probability space (Ω,F , (Ft)0≤t≤T , P ) satisfies the

usual condition if (Ω,F , P ) is complete (i.e: F0 contains all the P -null sets in F), and (Ft)0≤t≤T

is right continuous. The completion of the filtration means that if an event is impossible, this

impossibility is already known at time 0. The natural filtration (or canonical) of Xt is the smallest

σ-field under which Xs is measurable for all 0 ≤ s ≤ t such that

FXt = σ (Xs; 0 ≤ s ≤ t) , ∀t ∈ [0, T ] .

FXt is called the history of the process X until time t ≥ 0.

Definition 1.2.5 A process (Xt)0≤t≤T is adapted with respect to F , if for all t ∈ [0, T ] , Xt is Ft-

measurable.
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When one wants to be precise with respect to which filtration the process is adapted, we write

F-adapted. Thus, an adapted process is a process whose value at any time t is revealed by the

information Ft.

Definition 1.2.6 The process Xt is progressively measurable with respect to (Ft)0≤t≤T , if for all t ∈

[0, T ] , the map (ω, t)→ Xt (ω) is B ([0, T ])×Ft-measurable.

It is clear that if Xt is (Ft)0≤t≤T -progressive measurable, it must be measurable and (Ft)0≤t≤T -

adapted. Conversely, on a filtered probability space, we have the following result.

Proposition 1.2.7 Let
(

Ω,F , (Ft)0≤t≤T , P
)

be a filtered probability space, and letXt be measurable and

(Ft)0≤t≤T -adapted. Then there exists an (Ft)0≤t≤T -progressively measurable process Yt modification to

Xt.

Remark 1.2.8 If Xt is left (or right) continuous, then Xt itself is (Ft)0≤t≤T -progressively measurable.

Let EmT = C ([0, T ] ,Rm) the space of continuous functions from [0, T ] to Rm. We called a Borel

cylinder B ⊂ EmT if there exist 0 ≤ t1 ≤ t2....tk ≤ T and A ∈ B (Rm) such that

B = {Y ∈ EmT \ (Yt1 , Yt2 , ..., Ytk) ∈ A} .

Now, let Cs be the set of all Borel cylinders in Ems with t1, t2...., tk ∈ [0, s] .

Lemma 1.2.9 The σ-field generated by CT coincides with the Borel σ-field B (EmT ) of EmT .

Lemma 1.2.10 Let (Ω,F , P ) be a complete probability space and Y : [0, T ] × Ω → Rm a continuous

process. Then there exists an Ω0 ∈ F with P (Ω0) = 1 such that Y : Ω0 → EmT and for any s ∈ [0, T ] ,

FYt = Y −1 (σ (B (Emt ))) .
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We now recall the very well known Kolmogorov’s criterion for the existence of a continuous

version of a process.

Theorem 1.2.11 Let Xt be an m-dimensional stochastic process over [0, T ] such that

E [|Xt −Xs|α] < K |t− s|β+1
, ∀t, s ∈ [0, T ] ,

for some constants α, β > 0. Then there exists an m-dimensional continuous process that is modification

to Xt.

1.2.1 Tightness of the laws of processes

In this subsection we are interested in studying of limit behavior of stochastic processes one often

needs to know when a sequence of random variables is convergent in distribution or, at least, has

a subsequence that converges in distribution or rather of the relatively compact. Which play an

important role in appropriately formulating stochastic optimal control problems studied in the

subsequent chapters.

Let (Ω,F , P ) be a probability space and X : Ω → E be a random variable, then the probability

measure PX : B (E)→ [0, 1] defined by

PX (B) = P (X ∈ B) ,

is called the law of X.

Denote by P (E) the space of probability measures, for all Q ∈ P (E) there exists a probability

space (Ω,F , P ) and a random variable X : Ω→ E such that PX = Q where

∫
Ω

H (X (ω)) dP (ω) =

∫
E

H (x) dQ (x) .

17
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Xn → X, as n→∞ in law, or weakly if Qn → Q or equivalently

lim
n→∞

E [ϕ (Xn)] = E [ϕ (X)] ,

for all ϕ ∈ Cb
(
Rd
)
. The topology induced by weak convergence on P (E) , is called the weak

topology.

Definition 1.2.12 i) The family (Xn)n≥0 is relatively compact in law, if every subsequence (Xnk)k>0

convergent in law, i.e: there exists a probability space (Ω,F , P ) and a random variable X : Ω → E such

that Xnk → X, as n→∞ in law.

ii) A family (Xn)n≥0 , of random variables is tight, if for every ε > 0 there exists a compact set Kε ⊂ E,

such that for all n ≥ 0

Pn (Xn ∈ Kε) ≥ 1− ε.

Theorem 1.2.13 Let (E, ρ) be a metric space and (Xn)n≥0 be a family of E-valued random variables.

i) If (Xn)n≥0 is tight then it is relatively compact in law (or weakly).

ii) Suppose that (E, ρ) is a Polish space. If (Xn)n≥0 is relatively compact in law (or weakly) then it is

tight.

Remark 1.2.14 A separable complete metric space is called a Polish space.

1.2.1.1 The space of relaxed controls

We know that in stochastic control theory, in the absence of additional convexity conditions, an

optimal control may fail to exist in the set U . There are many methods used to prove existence of

an optimal control of which maximum principle or the minimizing sequence and compactification

18
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(classical method). The classical method is then to introduce generalized controls, i.e: to use a

bigger new class its role is to compensate strict control set. This new class of processes is suitable

for the needs of the theory of limit for random functions and have a richer structure of compacity

and convexity. To be convinced on the fact that strict optimal controls may not exist even in the

simplest cases let us consider adeterministic example

Exemple The problem is to minimize the following cost function

J(u) =

∫
[0,T ]

(xut )
2
dt,

over the set Uad of measurable functions u : [0, 1]→ U = {−1, 1} .

Let xut be the unique solution of a system that evolves according to the following (SDE)

xut = utdt, x
u
0 = 0.

So be it un be a sequence of controls, that is unt = (−1)
k if k

n ≤ t ≤ k+1
n , 0 ≤ k ≤ n − 1. Then,

∀t ∈ [0, 1] ,
∣∣xunt ∣∣ ≤ 1

n , and therefore 0 ≤ J(u) ≤ 1
n2 which implies that

inf
u∈Uad

J(u) = 0.

In this case, there is not u which fulfilled J(u) = 0, it is obvious then that it implies that xut =

0, ∀t ∈ [0, 1] if and only if ut = 0 which is impossible. Accordingly, the problem is the fact

that the sequence (un) lacks a limit in the control space Uad, the limit that must be the natural

candidate for optimality. We identify (unt ) with the Dirac measure on U, to put a sequence of

measures qn (dt, du) = δunt (du) dt over the space [0, 1]×U, which converges weakly to q (dt, du) =

1
2 (δ−1 (du) + δ1 (du)) dt. For any bounded continuous function ϕ on [0, 1]× U we have

∫
[0,1]×U

ϕ (t, u) qn (dt, du) =
n−1∑
k=0

∫
[ kn ,

k+1
n ]

ϕ
(
t, (−1)

k
)
dt.
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We assume that n is pair (n = 2N) , let it beϕ (t,−1) , andϕ (t, 1) are continuous on [0, 1] , therefore

uniformly continuous, so ∀ε > 0 there is an M > 0 such that ∀N ≥M

|ϕ (t, u)− ϕ (s, u)| < ε, if |t− s| < 1

N
,

then for every k = 0, ..., 2N − 1,

∣∣∣∣∣
∫

[ 2k
n ,

2k+1
n ]

ϕ (t, 1) dt−
∫
[ 2k+1

n , 2k+2
n ]

ϕ (t,−1) dt− 0

∣∣∣∣∣ < ε

2N

so ∣∣∣∣∣
n−1∑
k=0

∫
[ 2k
n ,

2k+1
n ]

ϕ (t, 1) dt−
n−1∑
k=0

∫
[ 2k+1

n , 2k+2
n ]

ϕ (t,−1) dt− 0

∣∣∣∣∣ < ε

2

on the other hand, we have

n−1∑
k=0

∫
[ 2k
n ,

2k+1
n ]

ϕ (t, 1) dt+

n−1∑
k=0

∫
[ 2k+1

n , 2k+2
n ]

ϕ (t,−1) dt =

∫
[0,1]

ϕ
(
t, (−1)

k
)
dt

and hence 
∣∣∣∑n−1

k=0

∫
[ 2k
n ,

2k+1
n ] ϕ (t, 1) dt− 1

2

∫
[0,1]

ϕ (t, 1) dt
∣∣∣ < ε

2∣∣∣∑n−1
k=0

∫
[ 2k+1

n , 2k+2
n ] ϕ (t,−1) dt− 1

2

∫
[0,1]

ϕ (t,−1) dt
∣∣∣ < ε

2 ,

then ∣∣∣∣∣
∫

[0,1]

ϕ
(
t, (−1)

k
)
dt− 1

2

∫
[0,1]

ϕ (t, 1) + ϕ (t,−1) dt

∣∣∣∣∣ < ε.

Thus, we find the following

∣∣∣∣∣
∫

[0,1]×U
ϕ (t, u) qn (dt, du)− 1

2

∫
[0,1]×U

ϕ (t, u) (δ−1 (du) + δ1 (du)) dt

∣∣∣∣∣ < ε.

This indicates that the Uad-set of strict controls is narrow and should be embedded in a broader

class with a richer topological structure in which the control problem becomes solvable.
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And from it us introduce the concept of relaxed controls which gives a more suitable topological

structure. Let P (U) denote the space of probability measures equipped with the topology of

weak convergence, then P (U) is also compact space. In a relaxed control problem, the U -valued

process ut is replaced by an P (U)-valued processqt.

Let V the space of probability measures on the set [0, T ]× U, such that its first marginal is coincide

with the Lebesgue measure, and its second marginal is a probability distribution overU. The space

V equipped with the boreal tribe, which is the smallest tribe such that the q →
∫
ϕ (t, u) q (dt, du)

application is measurable for any measurable, bounded and continuous function ϕ.

Definition 1.2.15 We call a relaxed control on the probability space (Ω,F , P ), is a random variable ω →

q (ω, dt, du) with values in V, such that is Ft-progressively measurable and such that for each t, 1]0,t]q is

Ft- measurable.

Proposition 1.2.16 Let q be a relaxed control with values inV. Then ∀t ∈ [0, T ] , there exists a probability

measure qt on U such that: q (dt, du) = qt (du) dt.

Often, one needs to know when a sequence of random variables converge in the distribution, or

at least have a convergence subsequence in the distribution. In this context, we provide a good

description of the sequences in P (U) that have a convergent subsequence through the concept

relatively compact sets of P (U) .

Proposition 1.2.17 Let U is a compact set, then P (U) is a compact space for the topology of weak con-

vergence.
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Proof. U being compact, then by Prokhorov’s theorem, the space P (U) is compact for the topol-

ogy of weak convergence.

Definition 1.2.18 Let (qn)n≥0 ⊂ V, we say that qn converges weakly to q ∈ V, if

lim
n→∞

∫
[0,T ]×U

ϕ (t, u) qn (dt, du) =

∫
[0,T ]×U

ϕ (t, u) q (dt, du) ,

for all continuous and measurable function ϕ.

Since all the elements of V have the same marginal on [0, T ] , which is Lebesgue’s measure, it is

possible to considerably modify the weak convergence and to weaken the hypotheses on χ by

obtaining another type of convergence, which is the stable convergence, as follows

Proposition 1.2.19 We assume that (qn)n≥0 converges to q in the set V. Then for all continuous and

measurable function ϕ on [0, T ]× U we have

lim
n→∞

∫
[0,T ]×U

ϕ (t, u) qn (dt, du) =

∫
[0,T ]×U

ϕ (t, u) q (dt, du) ,

this type of convergence is called stable convergence.

1.2.1.2 The functions space C ([0, T ] ,Rm)

Let C ([0, T ] ,Rm) denote the space of continuous Rm-valued functions on the interval [0, T ] , with

the sup norm. If X ∈ C ([0, T ] ,Rm) , equipped with uniform convergence on compact sets,

C ([0, T ] ,Rm) is a Polish space. We assume
‖X‖∞ = sup0≤t≤T |Xt| and for

0 ≤ θ ≤ 1, ΠX (θ) ≡ sup|t−s|≤θ |Xt −Xs| ,
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a necessary and sufficient condition for X to be uniformly continuous is

lim
θ→0

ΠX (θ) ≡ 0.

Let (Xn)n≥0 , is a family of continuous stochastic processes such that Qn is the law of the random

variableXn
t for 0 ≤ t ≤ T, then the following result is a consequence of the Arzelà–Ascoli theorem

Theorem 1.2.20 Let Xn : (Ω,F , P ) → C ([0, T ] ,Rm) , (Xn)n≥0 is tight on C ([0, T ] ,Rm) if and only

if for every T ≥ 0 : 
i) limN→∞ supn≥1 P (|Xn

0 | ≥ N) = 0,

ii) limθ→0 supn≥1 P (ΠXn (θ) ≥ α) = 0, ∀α > 0.

Condition ii), can be put in a more compact form: for all positive N,

lim
N→∞

sup
n≥1

P (‖Xn‖ ≥ N) = 0.

Theorem 1.2.21 Let (Xn)n≥0 be a sequence ofm-dimensional continuous processes satisfying the follow-

ing two conditions:

i) there exist positive constants C and γ such that E[|Xn
0 |γ ] ≤ C, n ≥ 0,

ii) there exist positive constants α, β, M such that

E [|Xn
t −Xn

s |
α

] < M |t− s|β+1
,∀t, s ∈ [0, T ] ,

then (Xn) is tight as C ([0, T ] ,Rm)-valued random variables. As a consequence, there exists a subsequenc

(Xnk)k>0 , on a probability space
(

Ω̂, F̂ , P̂
)
, and m-dimensional continuous processes

(
X̂nk

)
k>0

and

X̂, defined on it such that

1) the laws of X̂nk and Xnk coincide,

2) X̂nk
t converges to X̂t uniformly on every finite time interval, P − a.s.
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A sequence of processes (Xn)n≥0 with paths in C ([0,∞) ,Rm) is tight if and only if its restriction

to the interval [0, T ] is tight for each T <∞.

1.2.1.3 The functions space D ([0, T ] ,Rm)

Let D ([0, T ] ,Rm) denote the space of càdlàg (ie: continuous from the right with left hand limits),

Rm-valued functions on the interval [0, T ] .

Now, let Λ denot the class of strictly increasing continuous mappings of [0, T ] onto itself. If λ ∈ Λ,

then λ (0) = 0 and λ (T ) = T . For X, Y ∈ D ([0, T ] ,Rm) , we define d (x, y) to be the infimum of

those for which there exists in Λ a λ satisfying
supt∈[0,T ] |λ (t)− t| = supt∈[0,T ]

∣∣t− λ−1 (t)
∣∣

supt∈[0,T ]

∣∣Xt − Yλ(t)

∣∣ = supt∈[0,T ]

∣∣Xλ−1(t) − Yt
∣∣ ,

then the definition of d (x, y) becomes

d (x, y) = inf
λ∈Λ

{
sup
t∈[0,T ]

|λ (t)− t| ∨ sup
t∈[0,T ]

∣∣Xt − Yλ(t)

∣∣} ,
this metric defines the Skorokhod topology.

Theorem 1.2.22 d (x, y) is a metric on D ([0, T ] ,Rm) .

Theorem 1.2.23 The space D ([0, T ] ,Rm) is separable under d (x, y) , but is not complete.

The sequence Xn is converge to limit X in the space D ([0, T ] ,Rm) endowed with the Skorokhod

topology if and only if there exist sequence of functions λn in Λ such that limn→∞X
n
λn(t) = Xt

uniformly in t. If Xn converging uniformly to X, then there is convergence in the Skorokhod

topology (λn (t) = t) . The Skorokhod convergence does imply that limn→∞X
n
t = Xt hold for
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continuity points t of Xt and hence for all but countably many t. A consequently, if Xt uniformly

continuous on all t ∈ [0, T ] , then the Skorokhod convergence implies uniform convergence.

Corollary 1.2.24 The Skorokhod topology coincides with uniform topology on C ([0, T ] ,Rm) .

For t ∈ [0, T ] , we define the projection πt : X ∈ D ([0, T ] ,R)→ Xt, for each λ ∈ Λ, πλ(0) = π0 and

πλ(T ) = πT are continuous. If Xn convergence to X in the Skorokhod topology and X continuous

at t, then by

|Xn
t −Xt| ≤

∣∣Xn
t −Xλn(t)

∣∣+
∣∣Xλn(t) −Xt

∣∣ .
Xn convergence to X. We assume that, X is discontinuous at t, if λn (t) = t + 1

n , element of Λ

for t ∈ [0, T ] and if Xn
λn(t) ≡ Xn

t , then Xn
t converges to Xt in the Skorokhod topology but Xn

t

does not converge to Xt. Therefore, for each 0 ≤ t ≤ T, πt is continuous at X if and only if X is

continuous at t.

Corollary 1.2.25 If d (Xn, X)→ 0 as n→∞, then

sup
t∈[0,T ]

|Xn
t −Xt| → 0 as n→∞,

for each t /∈ Disc (X) = {t ∈ [0, T ]/Xt 6= Xt−} .

Remark 1.2.26 If Xn convergence to X in the Skorokhod topology, then Xn convergence to X for contin-

uty points t of X and hence for points t outside aset of Lebesgue measure 0.

We can develop a simple criterion for Skorokhod convergence for monotone functions

Theorem 1.2.27 Let Xn is monotone for ∀n ∈ N, then Xn
t → Xt for all t in a dense subset of [0, T ]

including 0 and T implies Xn convergence to X in the Skorokhod topology, for X ∈ D ([0, T ],Rm) .
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Under the Skorokhod topology, addition of functionsD ([0, T ],Rm) is not topological group. Since

addition is not continuous everywhere, for this we show that it is continuous almost everywhere,

andt it is measurable. It is thus important to know more about the Borel σ-fields associated with

the Skorohod topologies. The σ-field of Borel subsets for the Skorokhod topology coincides with

the Kolmogorov σ-field, which is generated by the projection πt.

We can define in D ([0, T ],Rm) another metric give the Skorohod topology, and under this metric

D ([0, T ],Rm) is complete. If λ is non decreasing function on [0, T ] satisfying λ (0) = 0 and λ (T ) =

T, we put

‖λ‖ = sup
s<t

∣∣∣∣log

(
λ (t)− λ (s)

t− s

)∣∣∣∣
Let d̂ (x, y) to be the infimum of those for which there Λ contains some λ satisfying (‖λ‖ <∞) :

d̂ (x, y) = inf
λ∈Λ

{
‖λ‖ ∨ sup

t∈[0,T ]

∣∣Xt − Yλ(t)

∣∣} .
Theorem 1.2.28 i) The metric d̂ (x, y) on D ([0, T ],Rm) is topologically equivalent to d (x, y) .

ii) The space D ([0, T ] ,Rm) is separable and complete under d̂ (x, y) .

Compactness characterizations on D ([0, T ],Rm) translate into tightness characterizations for sets

of probability measures on D ([0, T ],Rm). We recall that a set B of probability measures is said to

be tight if for all ε > 0 there exists a compact subset Kε such that

P (Kε) ≥ 1− ε, ∀P ∈ B.

Given a subdivision 0 = t0 < t1 < ... < tn = T, we define

Π̂X (θ) = inf
tk

max
0≤k≤n

ΠX (θ) .
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Let (Xn)n≥0 ⊂ D ([0, T ],Rm) , to be a family of càdlàg stochastic processes such that Qn is the law

of the random variable Xn
t for 0 ≤ t ≤ T, then we present the following result.

Theorem 1.2.29 Let Xn : (Ω,F , P ) → C ([0, T ] ,Rm) , (Xn)n≥0 is tight on C ([0, T ] ,Rm) if and only

if for every T ≥ 0 : 
i) limN→∞ supn≥1 P (‖Xn‖∞ ≥ N) = 0,

ii) limθ→0 supn≥1 P
(

Π̂Xn (θ) ≥ α
)

= 0, ∀α > 0.

1.2.2 Brownian motion

The Brownian motion, is a name given by the botanist Robert Brown in 1827 to describe the ir-

regular motion of pollen particles in a fluid. The context of applications of Brownian motion goes

far beyond the study of microscopical particles, and is now largely used in finance for modelling

stock prices, historically since Bachelier in 1900.

1.2.2.1 Definition and Main Properties

Definition 1.2.30 Let
(

Ω,F , (Ft)0≤t≤T , P
)

be a filtered probability space. An (Ft)0≤t≤T -adapted Rm-

valued process W is called an m-dimensional (Ft)0≤t≤T -Brownian motion if for all 0 < s < t, the

increment Wt−Ws is independent of Fs and is normally distributed with mean 0 and variance-covariance

matrix (t− s) Im. For any 0 < s < t

E [Wt −Ws | Fs] = 0.

In addition, if W0 = 0, then Wt is called an m-dimensional standard (Ft)0≤t≤T -Brownian motion.
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In the definition of a standard Brownian motion, the independence of the increments is with

respect to the natural filtration of Wt. The natural filtration of Wt is sometimes called Brownian

filtration. It is often to work with a larger fltration than the natural filtration. In this case, the

definition remains correct for this fltration. We now give some elementary properties of Brownian

motion.

Proposition 1.2.31 Let (Wt)0≤t≤T be a Brownian motion with respect to (Ft)0≤t≤T .

i) Scaling invariance: for all λ > 0, the process
(
λW t

λ2

)
0≤t≤T

is also a Brownian motion.

ii) Invariance by translation: for all s > 0, the process (Wt+s −Ws)0≤t≤T is a standard Brownian motion

independent of Fs.

Remark 1.2.32 The scaling invariance property (with λ = −1) implies that standard Brownian motion

is symmetric about 0. In other words, if (Wt)0≤t≤T is a standard Brownian motion then Wt has the same

distribution as −Wt.

Proposition 1.2.33 Let (Wt)0≤t≤T be a Brownian motion with respect to (Ft)0≤t≤T . Then

i) for all t > s, Wt −Ws is independent of Fs = σ (Wr|0 ≤ r ≤ s) ,

ii) E [WtWs] = t ∧ s.

Proof. i) Since W has independent increments, then Wt −Ws is independent of Ws −W0. Also

Wt − Ws is independent of Ws − Wr for all 0 ≤ r ≤ s. On the other hand, note that Wr =

− (Ws −Wr) +Ws. Thus Wr is σ (Ws) ∨ σ (Ws −Wr)-measurable for all 0 ≤ r ≤ s. Consequently

from above, we deduce that Wt−Ws is independent of σ (Wr) for all 0 ≤ r ≤ s, which means that

Wt −Ws is independent of Fs = σ (Wr|0 ≤ r ≤ s) for all 0 ≤ s ≤ t.
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ii) If t ≥ s by using the independence of Wt −Ws and Ws, we get

E
[
(Wt −Ws)Ws +W 2

s

]
= E [(Wt −Ws)Ws] + E

[
W 2
s

]
= s.

On the other hand, if t ≤ s we deduce that E [WtWs] = t.

Definition 1.2.34 we call infinitesimal variation of order (p) of an associated process (Xt)0≤t≤T of a

subdivision ∆n = (tn1 < ..... < tnn) of [0, T ]

V pT (Xt) =
n∑
k=1

∣∣Xtk −Xtk−1

∣∣p ,
if V pT (Xt) admits a limit when ‖∆n‖ → 0 as n → ∞ and the limit does not depend on a subdivided

proportion, we call of order variation (p) on [0, T ] .

If p = 1 the limit is called totol variation of X.

If p = 2 the limit is called quadratic variation and we denote by 〈X,X〉T .

Proposition 1.2.35 i) The quadratic variation of a Brownian motion on [t, T ] converges as a quadratic

mean to T − t, ∀t, T ∈ R and if (∆n)n≥0 is a sequence of subdivisions of [t, T ] , where ‖∆n‖ → 0 as

n→∞.

ii) If the subdivision ∆n on [0, T ] verify
∑
n≥0 ‖∆n‖ <∞ then

V 2
T (Xt)→ T.

Proof. Using the fact that for a random variableWt Brownian motion is normally distributed with

mean 0 and variance t, with E
(
W 4
t

)
= 3t2 we have

E
[(
V 2
t,T (Wt)− (T − t)

)2]
= E

( n∑
k=1

(∣∣Wtk −Wtk−1

∣∣2 − (tk − tk−1)
))2

 ,
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where ∆n = (tn1 < ..... < tnn) is subdivision of [t, T ] , with
∑n
k=1 (tk − tk−1) = T − t.

Since the increment Wtk −Wtk−1
is independent so we get

E
[(
V 2
t,T (Wt)− (T − t)

)2]
=

n∑
k=1

E
[(∣∣Wtk −Wtk−1

∣∣2 − (tk − tk−1)
)2
]
.

On the other hand,

E
[(∣∣Wtk −Wtk−1

∣∣2 − (tk − tk−1)
)2
]

= 3 (tk − tk−1)
2

+ (tk − tk−1)
2

−2 (tk − tk−1)E
(∣∣Wtk −Wtk−1

∣∣2) = 2 (tk − tk−1)
2
.

Then

E
[(
V 2
t,T (Wt)− (T − t)

)2] ≤ 2 sup |tk − tk−1|
∑n
k=1 (tk − tk−1)

≤ 2 (T − t) sup |tk − tk−1| → 0, as n→∞.

Proposition 1.2.36 Let f : R→ R be a measurable function, then

E [f (Wt)] =
1

(2πt)
1
2

∫
R
|y| exp

(
−y2

2t

)
dy.

Example 1.2.37 Let f : R→ R be f (x) = |x|. By applying Proposition previous we find

E [|Wt|] =
1

(2πt)
1
2

∫
R
|y| exp

(
−y2

2t

)
dy

=
2

(2πt)
1
2

∫ ∞
0

y exp

(
−y2

2t

)
dy,

using the variable change u = y2

2t we find

E [|Wt|] =
(2t)

1
2

(π)
1
2

∫ ∞
0

exp (−u) du

=

(
2t

π

) 1
2

.
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Proposition 1.2.38 Let (Wt)0≤t≤T be a Brownian motion. Then
(
W 2
t − t

)
0≤t≤T is

(
FWt

)
0≤t≤T -martingales.

Proof. Since FWt = σ (Ws, 0 ≤ s ≤ t) it follows that Wt −Ws is independent of FWs and hence

E
[
W 2
t − t | FWs

]
= E

[
W 2
t −W 2

s | FWs
]
− t+W 2

s

= E
[
(Wt −Ws)

2 − 2Ws (Wt −Ws) | FWs
]
− t+W 2

s

= E
[
(Wt −Ws)

2
]
− 2WsE [Wt −Ws]− t+W 2

s

= (t− s)− t+W 2
s = W 2

s − s.

Proposition 1.2.39 For each α > 0, there exists a constant M such that

E

[
sup
r∈[s,t]

|Wt −Ws|α
]
< M |t− s|

α
2 ,∀0 ≤ s ≤ t.

We also recall that, the augmentation of
(
FWt

)
0≤t≤T by all the P -null sets (F̂t= FWt ∨ N , where

N is the set of negligible events), and Wt is still a Brownian motion on the (augmented) filtered

probability space
(

Ω,F ,
(
F̂t
)

0≤t≤T
, P

)
. In what follows, by saying that (Ft)0≤t≤T is the natural

filtration generated by the Brownian motion W, we mean that (Ft)0≤t≤T is generated by W and

augmented by all the P -null sets in F .

1.3 Itô’s stochastic integral

In this section we give the definition of the Itô integral as well as some basic properties of such an

integral. We shall describe the basic idea of defining the Itô integral. Those results will be useful

later in this thesis.
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1.3.1 Definition of Itô’s Stochastic Integral

Let
(

Ω,F , (Ft)0≤t≤T , P
)

be a fixed filtered probability space satisfying the usual condition. Let

T > 0 and recall that L2 (Ω,F , P,Rm) is the set of all Ft−measurable processes Zt defined from

[0, T ]× Ω into Rm, such that

E

[∫ T

0

‖Zt‖2 dt

] 1
2

<∞,

Now we define the Itô integral for a given Brownian motion Wt defined on the filtered proba-

bility space
(

Ω,F , (Ft)0≤t≤T , P
)
. Let ΣF ([0, T ]) ⊂ L2 (Ω,F , P,Rm) the subset of all real simple

processes Zt of the following form

Zt =

n−1∑
k=0

Zk1[tk,tk+1], 0 ≤ t ≤ T,

with n ∈ N, t0 < t1 < ..... < tn and for 0 ≤ k ≤ n−1, Zk : Ω→ Rm is an Ftk-measurable bounded

random variable.

Remark 1.3.1 The set ΣF ([0, T ]) is dense in L2 (Ω,F , P,Rm) .

Now, for any simple process Zt ∈ ΣF ([0, T ]) we define the following linear operator

It (Z) =
n−1∑
k=0

Zk
(
Wtk+1

−Wtk

)
, 0 ≤ t ≤ T.

Lemma 1.3.2 Let It (Z) be a linear random variable with meanE [It (Z)] = 0, and varianceE
[
It (Z)

2
]

=

∑n−1
k=0 E

[
Z2
k

]
(tk+1 − tk) .

Proof. For each 0 ≤ k ≤ n− 1, we have

E
[
Zk
(
Wtk+1

−Wtk

)]
= E

[
ZkE

[(
Wtk+1

−Wtk

)
| Ftk

]]
= E

(
ZkE

[
Wtk+1

−Wtk

])
= 0.
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Hence E (It (Z)) = 0. On the other hand, we have

It (Z)
2

=
n−1∑
r,k=0

ZrZk
(
Wtr+1

−Wtr

) (
Wtk+1

−Wtk

)
.

If r 6= k, where r < k

E
[
ZrZk

(
Wtr+1 −Wtr

) (
Wtk+1

−Wtk

)]
= E

[
ZrZk

(
Wtr+1

−Wtr

)
E
[
Wtk+1

−Wtk | Ftk
]]

= E
(
ZrZk

(
Wtr+1

−Wtr

)
E
[
Wtk+1

−Wtk

])
= 0.

Moreover, for r = k we have

E
[
Z2
k

(
Wtk+1

−Wtk

)2]
= E

[
Z2
kE
[(
Wtk+1

−Wtk

)2 | Ftk]]
= E

[
Z2
kE
(
Wtk+1

−Wtk

)2]
= E

[
Z2
k

]
(tk+1 − tk) .

For any Zt ∈ L2 (Ω,F , P,Rm) , there is (Zk)k≥0 ⊂ ΣF ([0, T ]) such that

lim
k→∞

E

[∫ T

0

‖Zk − Zt‖2 dt

] 1
2

= 0.

(It (Zk))k≥0 is Cauchy in L2 (Ω,F , P,Rm) ie: has a unique limit in L2 (Ω,F , P,Rm) , denoted by

It (Z) is called the Itô integral, denoted by

It (Z) =

∫ T

0

ZtdWt, 0 ≤ t ≤ T.

Proposition 1.3.3 For any Z, Y ∈ L2 (Ω,F , P,Rm) and 0 ≤ s ≤ t. Then

a) E
[∫ t
s
ZrdWr | FWs

]
= 0.

b) E
[∣∣∣∫ ts ZrdWr

∣∣∣2 | FWs ] = E
[∫ t
s
|Zr|2 dr | FWs

]
= 0.

c) E
[∫ t
s
ZrdWr

∫ t
s
YrdWr | FWs

]
= E

[∫ t
s
ZrYrdWr | FWs

]
= 0.
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Proposition 1.3.4 (Product Property) For any Zt, Yt ∈ L2 (Ω,F , P,Rm) , the following equality holds

E

[∫ T

0

ZtdWt

∫ T

0

YtdWt

]
=

∫ T

0

E [YtZt] dt.

Theorem 1.3.5 (Martingale Property) Let Zt ∈ L2 (Ω,F , P,Rm) . Then the stochastic process

Xt =

∫ t

0

ZsdWs, 0 ≤ t ≤ T,

is a martingale with respect to the filtration (Ft)0≤t≤T .

Example 1.3.6 Using the definition of Itô integral, we prove that

∫ t

0

sdWs = tWt −
∫ t

0

Wsds.

Given a subdivision 0 = t0 < t1 < ... < tn = t, we put

tWt =

n−1∑
k=0

(
tk+1Wtk+1

− tkWtk

)
.

We note that

(
tk+1Wtk+1

− tkWtk

)
= Wtk+1

(tk+1 − tk) + tk
(
Wtk+1

−Wtk

)
,

so

tWt =
n−1∑
k=0

Wtk+1
(tk+1 − tk) +

n−1∑
k=0

tk
(
Wtk+1

−Wtk

)
,

and, when we let ∆tk → 0, we get

tWt =

∫ t

0

sdWs +

∫ t

0

Wsds,

such that ∆tk = (tk+1 − tk) .

Hence ∫ t

0

sdWs = tWt −
∫ t

0

Wsds.
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Now, we present the backward Itô integral, and the forward Itô integral with respect to Brow-

nian motion, those two types of integrals are particular cases of the Itô-Skorohod integral. This

stochastic integral, introduced for the first time by A. Skorohod in 1975, may be regarded as an ex-

tension of the Itô integral to integrands that are not necessarily Ft-adapted. Let us now recall the

definition of backward stochastic integrals, we denote by (πn)n≥0 any sequence of subdivisions:

πn = {t = tn0 < tn1 < ... < tnn = T} . Such that |πn| = sup0≤k≤n−1

(
Wtk+1

−Wtk

)
→ 0 as n → ∞.

Then the backward Itô integral can be defined as

∫ T

t

Zsd
←−
Ws = lim

n→0

n−1∑
k=0

Ztk+1

(
Wtk+1

−Wtk

)
.

In fact, the backward Itô integral of Zs with respect to Ws may be understood as the forward

integral of Z̃s = ZT−s with respect to W̃s = WT−s −WT such that

∫ T−t

0

Z̃sdW̃s = lim
n→0

n−1∑
k=0

Z̃tk+1

(
W̃tk+1

− W̃tk

)
= lim
n→0

n−1∑
k=0

ZT−tk
(
WT−tk+1

−WT−tk
)
,

note that rk+1 = T − tk < rk = T − tk+1 is a subdivision of [t, T ] then we get

∫ T−t

0

Z̃sdW̃s = − lim
n→0

n−1∑
k=0

Zrk+1

(
Wrk+1

−Wrk

)
= −

∫ T

t

Zsd
←−
Ws.

Remark 1.3.7 If Zt is Ft-adapted then, the Skorohod integral is coincides with the Itô integral.
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1.3.2 Itô’s Formula

In this Subsubsection we present a stochastic version of the chain rule, or change-of-variable for-

mula, called Itô’s formula lemma which applies to the Itô integral. It is one of the most powerful

and frequently used theorems in stochastic calculus.

In this context, In finance, we often use Itô processes for modeling the dynamics of asset prices.

An Itô process is defined to be an adapted stochastic process that can be expressed as the sum of

an integral with respect to Brownian motion and an integral with respect to time.

Definition 1.3.8 (Itô process) Let Wt be a m-dimensional Brownian motion on a filtered probability

space
(

Ω,F , (Ft)0≤t≤T , P
)
.We define an Itô process as a process (Xt)0≤t≤T valued in Rn such that a.s.

Xt = X0 +

∫ t

0

bsds+

∫ t

0

σsdWs, 0 ≤ t ≤ T,

where X0 is F0-measurable, b and σ are progressively measurable processes valued respectively in Rn and

Rn×d such that ∫ t

0

|bs| ds+

∫ t

0

|σs|2 ds <∞, a.s.,∀t ∈ [0, T ] .

Theorem 1.3.9 (Itô’s formula) Let
(

Ω,F , (Ft)0≤t≤T , P
)

be a filtered probability space satisfying the

usual condition, Wt an m-dimensional Ft-Brownian motion, and let Xt be a Itô process. Let f : [0, T ] ×

Rn → R be a C1 (R) function with respect to t, and class C2 (R) with respect to X. Then

f (t,Xt) = f (0, X0) +
∫ t

0
∂f
∂t (s,Xs) ds+

∫ t
0
∂f
∂x (s,Xs) dXs

+1
2

∫ t
0

∂2f
∂x∂x (s,Xs)× σ2

sds, ∀t ∈ [0, T ] .

Example 1.3.10 Our goal is calculation ∫ t

0

sdWs =?
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Using Itô’s formula, we put f (t, x) = tx, ∀ (t, x) ∈ [0, T ]× R.

Then we get

f (t,Wt) = tWt =

∫ t

0

Wsds+

∫ t

0

sdWs + 0.

And therefore ∫ t

0

sdWs = tWt −
∫ t

0

Wsds.

Proposition 1.3.11 (Integration by parts formula) Let X and Y be Itô processes in R. Then

XtYt = X0Y0 +

∫ t

0

XsdYs +

∫ t

0

YsdXs + 〈X,Y 〉t, t ≥ 0.

1.3.3 Martingale representation theorem

In this Subsection, we state some martingale representation theorems by means of stochastic inte-

grals. In probability theory, the martingale representation theorem states that a random variable

that is measurable with respect to the filtration generated by a Brownian motion can be written

in terms of an Itô integral with respect to this Brownian motion. The theorem only asserts the

existence of the representation and does not help to find it explicitly. Similar theorems also exist

for martingales on filtrations expandeds.

The first result is the Brownian martingale representation theorem.

Theorem 1.3.12 (Representation of Brownian martingales) Assume that (Ft)0≤t≤T is the natural

(augmented) filtration of a standard m-dimensional Brownian motion W. Let (Mt)0≤t≤T be a càdlàg local

martingale. Then there exists Ft-progressively measurable process Zt with values in Rm×d such that

E

[∫ T

0

‖Zt‖2 dt

]
<∞,
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Mt = M0 +

∫ t

0

ZsdWs, 0 ≤ t ≤ T.

This result shows in particular that any martingale with respect to a Brownian filtration is contin-

uous. The second result is the projection theorem on the space of stochastic integrals with respect

to a continuous local martingale.

Theorem 1.3.13 (Galtchouk-Kunita-Watanabe decomposition) Let Nt be a square integrable Ft-

martingale. Then for any Mt ∈ L2 (Ω,F , P,Rm) we have

Mt = M0 +

∫ t

0

ZsdNs +Rt, 0 ≤ t ≤ T,

where Zt is predictable, with

E

[∫ T

0

‖Zs‖2 d〈N,N〉s

]
<∞,

and Rt is an L2-martingale with R0 = 0. Further, the martingales Rt and Nt are orthogonal in the sense

that〈Rt, Nt〉 = 0, 0 ≤ t ≤ T.

Example 1.3.14 LetW be a Brownian motion in Rn, with θ (t, ω) ∈ L2 (Ω× [0, T ] ,Rn) , where T <∞.

We define

Zt = exp

(∫ t

0

θsdWs −
1

2

∫ t

0

θ2
sds

)
, 0 ≤ t ≤ T.

By Itô’s formula we get

dZt = ZtθtdWt.

Consequently we get

Zt = 1 +

∫ t

0

ZsθsdWs.
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1.4 Stochastic Differential Equations

In this sections we are going to study stochastic differential equations (SDEs, for short), which can

be regarded as a generalization of ordinary differential equations (ODEs, for short). A stochas-

tic differential equation SDE is a differential equation in which Including of the Itô integral will

be involved, resulting in a solution which is also a stochastic process. SDEs are used to model

various phenomena such as unstable stock prices or physical systems subject to thermal fluctua-

tions. Typically, SDEs contain a variable which represents random white noise calculated as the

derivative of Brownian motion or the Wiener process.

We fix a filtered probability space
(

Ω,F , (Ft)0≤t≤T , P
)

satisfying the usual conditions and a

m-dimensional Brownian motion (Wt)0≤t≤T with respect to (Ft)0≤t≤T . We are given functions

(b (ω, t, x))0≤t≤T and (σ (ω, t, x))0≤t≤T defined on Ω × [0, T ] × Rn, and valued respectively in Rn

and Rn×d. We assume that for all ω, the functions b (ω, ., .) and σ (ω, ., .) are Borelian on [0, T ]×Rn

and for all x ∈ Rn, the processes b (., ., x) and σ (., ., x) , are progressively measurable. We consider

the following (SDE) with valued in Rn

(E1)


dXt = b (t,Xt) dt+ σ (t,Xt) dWt,

X0 = ζ.

In the above equation, we need to explain what it means that a stochastic process Xt is a solution

of the (SDE). There are different notions of solutions to (SDE) depending on different roles that

the underlying filtered probability space
(

Ω,F , (Ft)0≤t≤T , P
)

and the Brownian motion Wt are

playing. Let us introduce them in the following Subsubsections.
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1.4.1 Strong solutions

Definition 1.4.1 Let
(

Ω,F , (Ft)0≤t≤T , P
)

be a filtered probability space, andWt be a givenm-dimensional

standard (Ft)0≤t≤T -Brownian motion, and X0, F0-measurable. An (Ft)0≤t≤T -adapted continuous pro-

cess Xt, 0 ≤ t ≤ T, is called a strong solution of (E1) if
∫ t

0
|b (s,Xs)| ds+

∫ t
0
|σ (s,Xs)|2 ds <∞, ∀t ∈ [0, T ] , P − a.s, (C1)

Xt = X0 +
∫ t

0
b (s,Xs) ds+

∫ t
0
σ (s,Xs) dWs, t ∈ [0, T ] , P − a.s. (C2)

For any two strong solutions X and Y of (E1) defined on
(

Ω,F , (Ft)0≤t≤T , P
)

along with given

standard (Wt)0≤t≤T -Brownian motion, we have

P (Xt = Yt,∀t ∈ [0, T ]) = 1,

then we say that strong uniqueness holds.

Let
(

Ω,F , (Ft)0≤t≤T , P
)

be a filtered probability space satisfying the usual condition, Wt an m-

dimensional standard (Ft)0≤t≤T -Brownian motion, and an F0-measurable random variable. We

make the following assumption for the coefficients of (E1) .

Existence and uniqueness of a strong solution to the (SDE) (E1) is ensured by the following Lips-

chitz and linear growth conditions:

(H) There exists a constant K such that for all ω ∈ Ω, t ∈ [0, T ] , x, y ∈ Rn

|b (ω, t, x)− b (ω, t, y)|+ |σ (ω, t, x)− σ (ω, t, y)| ≤ K (|x− y|) ,

|b (ω, t, x)|+ |σ (ω, t, x)| ≤ K (1 + |x|) .
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Theorem 1.4.2 Let (H) hold. Then, for any t ∈ [0, T ] , equation (E1) admits a unique strong solution X

such that for any T > 0. Moreover, for any ζ F0-measurable random variable valued in Rn, such that

E [|ζ|p] <∞, for some p > 1,

there is uniqueness of a strong solution X starting from ζ such that

E
[

sup
0≤t≤T

|Xt|2
]
<∞.

1.4.2 Weak solutions

Definition 1.4.3 A 6-tuple
(

Ω,F , (Ft)0≤t≤T , P,W,X
)

is called a weak solution of (E1) if

i)
(

Ω,F , (Ft)0≤t≤T , P
)

is a filtered probability space satisfying the usual condition,

ii) W is an m-dimensional standard (Ft)0≤t≤T -Brownian motion and X is (Ft)0≤t≤T -adapted and con-

tinuous,

iii) X0 and ζ have the same distribution,

iv) (C1) , and (C2) hold.

The main difference between weak and strong solutions is indeed that for strong solutions we are

given a Brownian motion W on a given probability space
(

Ω,F , (Ft)0≤t≤T , P
)

whereas for weak

solutions
(

Ω,F , (Ft)0≤t≤T , P
)

and W are parts of the solution. In other words, we are free to

choose to choose the Brownian motion and the probability space.

Definition 1.4.4 If for any two weak solutions
(

Ω,F , (Ft)0≤t≤T , P,W,X
)

and(
Ω̂, F̂ ,

(
F̂t
)

0≤t≤T
, P̂ , Ŵ , X̂

)
of (E1) with

P (X0 ∈ B) = P̂
(
X̂0 ∈ B

)
, ∀B ∈ B (Rn) ,
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we have

P (X ∈ B) = P̂
(
X̂ ∈ B

)
, ∀B ∈ B (Rn) ,

then we say that the weak solution of (E1) is unique (in the sense of probability law).

Definition 1.4.5 If

P
(
Xt = X̂t, 0 ≤ t ≤ T

)
= 1,

for any two weak solutions
(

Ω,F , (Ft)0≤t≤T , P,W,X
)

and
(

Ω,F ,
(
F̂t
)

0≤t≤T
, P,W, X̂

)
of (E) with

P
(
X0 = X̂0

)
= 1,

then we say that the weak solutions have pathwise uniqueness.

Existence of weak solutions does not imply that of strong solutions, and weak uniqueness does

not imply pathwise uniqueness nor strong uniqueness.

Example 1.4.6 Let (Wt)0≤t≤T be a Brownian motion. Then Xt = Wt and X̂t = −Wt are weak solutions

to the (SDE)

dXt = dBt, X0 = 0.

Clearly

P
(
Xt = X̂t

)
= P (Wt = 0) = 0.

The notion of uniqueness for weak solutions is weak uniqueness, i.e: uniqueness in distribution.

Relations between the strong and weak solutions are presented in the following two theorems.
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Theorem 1.4.7 Let the processes (b (ω, t, x))0≤t≤T and (σ (ω, t, x))0≤t≤T are progressively measurable,

and its values respectively in Rn and Rn×d. Then (E1) admits a unique strong solution if and only if for

any probability measure µ on
(
Rd,B

(
Rd
))
, (E1) admits a weak solution with the initial distribution and

pathwise uniqueness holds for (E1) .

By and large, Theorem previous tells that strong existence and uniqueness is equivalent to weak

existence plus pathwise uniqueness.

Theorem 1.4.8 Pathwise uniqueness implies weak uniqueness.

The following is a general existence result of weak solutions for equations with only continuous

(not necessarily Lipschitz continuous) coefficients.

Theorem 1.4.9 Let the processes (b (ω, t, x))0≤t≤T and (σ (ω, t, x))0≤t≤T are progressively measurable,

be bounded and continuous. Then there exists a weak solution of (E1) .

1.5 Backward Stochastic Differential Equations

Let
(

Ω,F , (Ft)0≤t≤T , P
)

be a complete probability space, where (Ft)0≤t≤T is the natural filtration

of a standard Brownian motion (Wt)0≤t≤T on Rm. Consider the backward stochastic differential

equation (BSDE)

(E2)


dYt = −f(t, Yt, Zt)dt+ ZtdWt, 0 ≤ t ≤ T,

YT = ξ,

where the random variable ξ is a FT -measurable takes values in Rn, and the coefficient or driver

which is a function

f : Ω× [0, T ]× Rn × Rn×d → Rn,
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and the processes (f (ω, t, y, z))0≤t≤T is progessively measurable with respect to the completed

Brownian filtration (Ft)0≤t≤T .

We now introduce the following spaces of processes

M2
Ft
(
0, T,Rn×d

)
:the space of Y : [0, T ]× Ω −→ Rn×d, Ft-progressively measurable such that

E

[∫ T

0

|Yt|2 dt

]
<∞.

S2
Ft (0, T,Rn) :the space of Y : [0, T ]× Ω −→ Rn, Ft-progressively measurable such that

E
[

sup
0≤t≤T

|Yt|2
]
<∞.

Definition 1.5.1 A solution of the (BSDE) (E2) with driver f and terminal condition ξ is a pair (Y,Z) ∈

S2
Ft (0, T,Rn)×M2

Ft
(
0, T,Rn×d

)
, satisfying

1)

E

[
sup

0≤t≤T
|Yt|2 +

∫ T

0

‖Zt‖2 dt

]
<∞,

2) (Y,Z) verifies (E2) P − a.s.

Example 1.5.2 Let (Wt)0≤t≤T be a Brownian motion, and for any ξ ∈ L2 (Ω,FT , P,Rn) , we put

Yt = E [ξ | Ft] ,

so by Martingale Representation Theorem there exists a unique Zt ∈M2
Ft
(
0, T,Rn×d

)
such that

Yt = E [ξ] +

∫ t

0

ZsdWs,

and therefore

Yt = ξ +

∫ T

t

ZsdWs.
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The first existence and uniqueness result for non linear BSDEs has been proved by Pardoux and

Peng [40]. This important paper has given rise to a huge literature on BSDEs and has become a

powerful tool in many fields such as financial mathematics, optimal control, stochastic games etc.

(H1) There exists a constant K > 0 such that for all ω ∈ Ω, t ∈ [0, T ] , (yi, zi) ∈ Rn × Rn×d, i = 1.2

|f (ω, t, y1, z1)− f (ω, t, y2, z2)| ≤ K (|y1 − y2|+ ‖z1 − z2‖) ,

(H2) The process (f (ω, t, 0, 0))0≤t≤T is in M2
Ft
(
0, T,Rn×d

)
.

Theorem 1.5.3 Under the hypothesis (H1)− (H2) . Then BSDE (E2) admits a unique solution (Y,Z) .

1.5.1 Weak solutions

Definition 1.5.4 A standard set-up
(

Ω,F , (Ft)0≤t≤T , P,W
)

along with a couple of processes (Y,Z)

defined on this set-up is called a weak solution of (E2) if

1) W is a standard Brownian motion with respect to the filtration (Ft)0≤t≤T ,

2) The processes Y is Rn-valued and càdlàg, and Z is Rn×d-valued, with

E

[
|YT |2 +

∫ T

0

‖Zt‖2 dt

]
<∞,

3) (Y,Z) verifies (E2) P − a.s.

Remark 1.5.5 The solution of (E2) takes the form of a triplet (Y,Z,M) of processes defined on an extended

probability space and satisfying

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdWs − (MT −Mt) , (E3)
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where M is a square integrable martingale which is orthogonal to W. In this case, a strong solution to

(E3) coincides with that of a strong solution to (E2) , because then M would be an FWt - martingale, hence

M = 0.

As in the case of stochastic differential equations, one might expect that BSDEs with continuous

generator always admit at least a weak solution, that is, a solution defined on a different proba-

bility space, generally with a larger filtration than the original one. Now, we prove the existence

of a weak solution to a backward stochastic differential equation (BSDE)

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdWs − (MT −Mt) , (E3)

where the coefficient or driver which is a function

f : Ω× [0, T ]× Rn × L (Rn)→ Rn,

which satisfies the following assumptions

(H3) There exists a constant C ≥ 0 such that ∀ (t, y, z) ∈ [0, T ]× Rn × L (Rn) ,

|f (t, y, z)| ≤ C (1 + ‖z‖) .

(H4) f (t, y, z) is continuous with respect to y and affine with respect to z.

We denote by L (Rn) the space of linear mappings from Rd to Rn.

Theorem 1.5.6 Under the hypothesis (H3)− (H4). Then Eq. (E3) admits a weak solution.

Proof. See Bouchemella & Raynaud [17].

Now we review the relationship between the strong and weak solutions by the following Propo-

sition.
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Proposition 1.5.7 Existence of a weak solution and pathwise uniqueness for BSDE (E3) imply existence

of a strong solution. Conversely, if every solution to (E3) is strong, (see Remark (1.5.5)), then pathwise

uniqueness holds for Eq. (E3) .
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A mixed Relaxed-Singular Optimal

Controls For Systems of MF-FBSDE
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48



C
H

A
PT

ER 2
A mixed Relaxed-Singular Optimal Controls For Systems

of MF-FBSDEs Type.

Forward-backward stochastic differential equations (FBSDEs in short) were first studied by An-

tonelli (see [1]), where the system of such equations is driven by Brownian motion on a small time

interval. The proof there relies on the fixed point theorem. A weak solution for FBSDEs is given

by Bahlali et al [15], where the original probability is changed using Girsanov’s theorem. See also

Antonelli and Ma [4] and Delarue and Guatteri [22], where the change of probability space comes

from the construction of the forward component. A weak solution for FBSDEs where the filtration

is enlarged, have been studied by Buckdahn et al. [9], (see also [7] and [8]), using pseudopaths

and the Meyer-Zheng topology, [43]. In this Chapter, we consider a singular control problem for

systems of forward-backward stochastic differential equations of mean-field type (MF-FBSDEs)

in which the control variable consists of two components: an absolutely continuous control and a

singular one. The coefficients depend on the states of the solution processes as well as their dis-
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tribution via the expectation of some function. Moreover the cost functional is also of mean-field

type. We prove in particular, the weak existence of optimal relaxed controls, which are measure-

valued processes as well as the existencet optimal strict controls.

2.1 Formulation of the problems and assumptions

Let (Bt, t ≥ 0) is a d-dimensional Brownian motion defined on some complete filtered probability

space
(

Ω,F , (Ft)t≥0 , P
)

and M is a square integrable martingale that is orthogonal to B, with

(Ft)t≥0 being its natural filtration, augmented by all the P -null sets.

2.1.1 Regular-singular control problem

We consider the following sets U1 is a non empty subset of Rk and U2 = ([0;∞))l. The control

variable is a suitable process (u, ξ) such that u : [0, T ]×Ω→ U1, ξ : [0, T ]×Ω→ U2 are B[0, T ]⊗F-

measurable, Ft-adapted, such that ξ is nondecreasing, left-continuous with right limits and ξ0 =

0,E[|ξT |2] < +∞. ξ is called singular control. Let U1 the set of regular control or absolutely

continuous part of the control and U2 the set of singular part of the control.

Property of Singular control. Let for all functions ξ : [0, T ]×Ω→ U2 that are right limit with left

continuous. We define ∆ξs = ξs+ − ξs and set {s ∈ [0, T ]�∆ξs = 0}. Then, the pure jump part of

ξ is defined by ξjt =
∑

0s≤t ∆ξs, and the continuous part is ξct = ξt − ξjt . Note that ξct is bounded

variation and differentiable almost everywhere, and we have by Lebesgue decomposition Theo-

rem that ξct = ξact + ξsct , t ∈ [0, T ], where ξact is called the absolutely continuous part of ξ, and ξsct

the singularly continuous part of ξ. Thus, we obtain that
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ξt = ξact + ξsct + ξjt , t ∈ [0, T ], unique.

Remark 2.1.1 i) If we assume that ξjt = 0, t ∈ [0, T ], then the singular control reduces to a standard

control problem , since we take ξact + ξsct as a new control variable.

ii) If we assume that ξact + ξsct ≡ 0, t ∈ [0, T ], then the singular control performs a special form of a pure

jump process, so called impulse control.

Now, let us consider a regular-singular control problem governed by the following controlled

MF-FBSDE

(
Eu,ξ1

)



Xu,ξ
t = x+

∫ t
0
b
(
s,Xu,ξ

s ,E[α(Xu,ξ
s )], us

)
ds

+
∫ t

0
σ
(
s,Xu,ξ

s ,E[γ(Xu,ξ
s )]

)
dBs +

∫ t
0
φtdξs

Y u,ξt = h(XT ,E[θ(Xu,ξ
T )]) +

∫ T
t
f
(
s,Xu,ξ

s ,E[ζ(Xu,ξ
s )], Y u,ξs ,E[η(Y u,ξs )], us

)
ds

−
∫ T
t
Zu,ξs dBs − (MT −Mt) +

∫ T
t
ϕtdξs,

Xu,ξ
0 = x, Y u,ξT = h(Xu,ξ

T ,E[θ(Xu,ξ
T )]).

where ut is the absolutely continuous part of the control and ξt the singular part of the control,

Mt is a càdlàg square integrable martingale which is orthogonal to Bt with M0 = 0, and the
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mappings

b : [0, T ]× Rn × Rn × U1 → Rn,

σ : [0, T ]× Rn × Rn → Rn×d,

f : [0, T ]× Rn × Rn × Rm × Rm × U1 → Rm,

h : [0, T ]× Rn × Rn → Rm,

α, γ, ζ, θ : [0, T ]× Rn → Rn,

η : [0, T ]× Rm → Rm,

φ : [0, T ]→ Rn×l,

ϕ : [0, T ]→ Rm×l,

are measurable and attain some other properties to be introduced below.

It should be noted that the probability space and the Brownian motion may be change with the

control. Therefore, we need to defined the admissible weak control, as follows:

Definition 2.1.2 A 7-tuple ϑ· =
(

Ω,F , (Ft)t≥0 , P,B·, u·, ξ·

)
is called admissible regular-singular con-

trol, and
(
Xu,ξ
t , Y u,ξt , Zu,ξt ,Mu,ξ

t

)
a admissible triple if:

i)-
(

Ω,F , (Ft)t≥0 , P
)

is a filtered probability space satisfying the usual conditions andBt is an d-dimensional

standard Brownian motion defined on this space;

ii)-(ut, ξt) is an Ft-adapted process valued in the action space U1×U2. ξt is nondecreasing, left-continuous

with right limits taking values in U2 with ξ0 = 0,E[|ξT |2] < +∞.

iii)-
(
Xu,ξ
t , Y u,ξt , Zu,ξt ,Mu,ξ

t

)
is the solution of the MF-FBSDE

(
Eu,ξ1

)
under (ut, ξt).

iv)Mu,ξ
t is a square integrable Ft-martingale, orthogonal to Brownian motion Bt.
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The set of all admissible regular-singular controls is denoted by U = U1 × U2.

Consider a cost functional

J(ϑ·) := E
[
Φ
(
Xu,ξ
T ,E[λ(Xu,ξ

T )]
)

+ Ψ
(
Y u,ξ0 ,E[ρ(Y u,ξ0 )]

)
+
∫ T

0
g
(
t,Xu,ξ

t ,E[π(Xu,ξ
t )], Y u,ξt ,E[$(Y u,ξt )], ut

)
dt+

∫ T
t
ψtdξt

]
,

(2.1)

for measurable functions

Φ : [0, T ]× Rn × Rn → R,

Ψ : [0, T ]× Rm × Rm → R,

g : [0, T ]× Rn × Rn × Rm × Rm × U1 → R,

λ, π : [0, T ]× Rn × Rn → Rn,

$, ρ : [0, T ]× Rm × Rm → Rm,

ψ : [0, T ]→ Rl.

The control problem is to minimize the functional J(·) over U . We say that the admissible control

ϑ∗ is optimal control, if it satisfies

J (ϑ∗· ) = inf
ϑ·∈U

J (ϑ·) . (2.2)

2.1.2 Relaxed-singular control problem

Due to the fact the existence of optimal solution of the regular control problem may fail to exist

one typically seeks a certain compactness structure. The idea is then to extended the absolutely

53



Chapter 2. A mixed Relaxed-Singular Optimal Controls For Systems of MF-FBSDE Type.

continuous part of the control ut from the set U1 to the set P (U1) of probability measures (qt).

These measure valued control are called relaxed control. If qt (du) = δut (du) is a Dirac measure

charging ut for each t, then we get that the set of the absolutely continuous part of the control is a

subset of the set of relaxed controls.

We denote byV(0, T ;U1) the space of positive Radon measure-valued processes dυt(u) = qt (du) dt,

whose projections on [0, T ] coincide with Lebesgue measure dt. Equipped with the topology of

stable convergence of measures, V(0, T ;U1) is a compact metrizable space, (see Jacod and Mémin

[33]).

In this case, the state equation is defined by the following MF-FBSDE

(
Eq,ξ2

)



Xq,ξ
t = x+

∫ t
0

∫
U1
b(s,Xq,ξ

s ,E[α
(
Xq,ξ
s

)
], u)qs (du) ds

+
∫ t

0
σ(s,Xq,ξ

s ,E[γ
(
Xq,ξ
s

)
])dBs +

∫ t
0
φtdξs

Y q,ξt = h(Xq,ξ
T ,E[θ(Xq,ξ

T )])

+
∫ T
t

∫
U1
f(s,Xq,ξ

s ,E[ζ
(
Xq,ξ
s

)
], Y q,ξs ,E[η

(
Y q,ξs

)
], u)qs (du) ds

−
∫ T
t
Zq,ξs dBs − (MT −Mt) +

∫ T
t
ϕtdξs,

Xq,ξ
0 = x, Y q,ξT = h(Xq,ξ

T ,E[θ(Xq,ξ
T )]).

The definition of admissible relaxed-singular control is given by:

Definition 2.1.3 A 7-tuple µ· =
(

Ω,F , (Ft)t≥0 , P,B·, q·, ξ·

)
is called admissible relaxed-singular con-

trol, and
(
Xq,ξ
t , Y q,ξt , Zq,ξt ,Mq,ξ

t

)
a admissible triple if:

a)-
(

Ω,F , (Ft)t≥0 , P
)

is a filtered probability space satisfying the usual conditions andBt is an d-dimensional

standard Brownian motion defined on this space;
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b)-qt is Ft-progressively measurable and such that for each t, 1]0,t] · q is Ft- measurable, taking values in

P (U1). ξt is nondecreasing, left-continuous with right limits taking values in U2 with ξ0 = 0,E[|ξT |2] <

+∞.

c)-
(
Xq,ξ
t , Y q,ξt , Zq,ξt ,Mq,ξ

t

)
is the solution of the MF-FBSDE

(
Eq,ξ2

)
under (qt, ξt).

d)-Mq,ξ
t is a square integrable Ft-martingale, orthogonal to Brownian motion Bt.

The set of all admissible relaxed-singular controls is denoted byR.

Accordingly, the cost functional to be minimized over the setR of admissible relaxed control, well

be given by:

J(µ·) := E
[
Φ
(
Xq,ξ
T ,E[λ(Xq,ξ

T )]
)

+ Ψ
(
Y q,ξ0 ,E[ρ(Y q,ξ0 )]

)
+
∫ T

0

∫
U1
g
(
t,Xq,ξ

t ,E[π(Xq,ξ
t )], Y q,ξt ,E[$(Y q,ξt )], u

)
qt(du)dt+

∫ T
0
ψtdξt

]
.

(2.3)

A relaxed-singular control µ∗· is called optimal if it satisfies

J (µ∗· ) = inf
µ·∈R

J (µ·) . (2.4)

2.1.3 Notation and assumptions

We now introduce the following spaces of processes:

M2(0, T ;Rm) : the set of Ft-measurable processes
{
Yt, t ∈

[
0, T

]}
with values in Rm such that

E
[∫ T

0

|Yt|2 dt
]
<∞.

Let S2(0, T ;Rn) : the set of Ft-measurable processes
{
Xt, t ∈

[
0, T

]}
with values in Rn such that

E
[

sup
0≤t≤T

|Xt|2
]
<∞.
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C (0, T ;Rn) : the space of continuous functions from [0, T ] to Rn, equipped with the topology of

uniform convergence.

D (0, T ;Rm) : the Skorokhod space of càdlàg functions from [0, T ] to Rm, that is functions which

are continuous from the right with left hand limits, equipped with the S-topology of Jakubowski

(see [31]).

Let us assume the following conditions regarding the state equation and the cost function

(H1) Assume that the functions b, σ, f, h, α, γ, ζ, η, are bounded and continuous. Moreover as-

sume that there exist a constantK > 0 such that for every (x1, x2, x
′
1, x
′
2) ∈ R4n, (y1, y2, y

′
1, y
′
2)R4m,

|f (t, x1, x2, y1, y2, u)− f (t, x′1, x
′
2, y
′
1, y
′
2, u)|

≤ K (|x1 − x′1|+ |x2 − x′2|+ |y1 − y′1|+ |y2 − y′2|) ,

|b (t, x1, x2, u)− b (t, x′1, x
′
2, u)|

≤ K (|x1 − x′1|+ |x2 − x′2|) ,

|σ (t, x1, x2)− σ (t, x′1, x
′
2)|

≤ K (|x1 − x′1|+ |x2 − x′2|) .

Also, the functions α, γ, ζ, are uniformly Lipschitz in x and η are uniformly Lipschitz in y. The

functions φ, ϕ are positive, continuous and bounded.

(H2) Assume that the functions Φ,Ψ, g, λ, ρ, π,$ are bounded and continuous and h(t, ·, ·, ·, ·, u)

is Lipschitz continuous uniformly in (t, u). The function ψ is continuous and bounded.

Befor we proceed with the definition of the optimization problem let us take abrief look at the

existence and uniqueness of the solutions for the system. We observd that forward and backward
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equations are decoupled in the sens that Xu,ξ
t does not depend on Y u,ξt , we can solve the system

separately. Now, we presente the following result.

Proposition 2.1.4 Under assumptions (H1) and for each admissible control (ut, ξt), the system
(
Eu,ξ1

)
has a unique solution

(
Xu,ξ
t , Y u,ξt , Zu,ξt

)
∈ S2(0, T ;Rn)2 ×M2(0, T ;Rm).

Proof. The proof idea, is based on the representation of forward and backward equations respec-

tively as continuous process plus integral with respect to singular control as follow:

(
Eu,ξ3

)
Xu,ξ
t = X u,ξt +

∫ t
0
φsdξs

Y u,ξt = Yu,ξt +
∫ T
t
ϕsdξs,

such that

(
Eu,ξ4

)
X u,ξt = x+

∫ t
0
b
(
s,Xu,ξ

s ,E[α(Xu,ξ
s )], us

)
ds+

∫ t
0
σ
(
s,Xu,ξ

s ,E[γ(Xu,ξ
s )]

)
dBs

Yu,ξt = h(XT ,E[θ(Xu,ξ
T )]) +

∫ T
t
f
(
s,Xu,ξ

s ,E[ζ(Xu,ξ
s )], Y u,ξs ,E[η(Y u,ξs )], us

)
ds−

∫ T
t
Zu,ξs dBs.

On the other hand, by use the Picard’s iteration method on system
(
Eu,ξ4

)
, we conclude the

existence and uniqueness of solutions for systems
(
Eu,ξ3

)
, for each admissible control (ut, ξt).

Remark 2.1.5 The strong solution of system
(
Eu,ξ1

)
is the quartet

(
Xu,ξ
t , Y u,ξt , Zu,ξt ,Mu,ξ

t

)
defined on

the natural filtration of the Brownian motion (Bt), such thatMu,ξ
t is a cádlág martingale orthogonal to

Bt with Mu,ξ
0 = 0, is coincides with the strong solution of

(
Eu,ξ3

)
, because then Mu,ξ

t would be an

FBt -martingale, hence disappears, due to the uniqueness of solutions.
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2.2 Existence of an optimal control

2.2.1 Existence of an optimal relaxed-singular control

Our first results in this paper extends those of [10], and [14] to a systems governed by FBSDE of

mean-field type.

Let us give some results on the tightness of the distributions of the processes defining the control

problem.

Let µn· =
(

Ωn,Fn, (Fnt )t≥0 , P
n, Bn· , q

n
· , ξ

n
·

)
be a minimizing sequence, that is lim

n→∞
J (µn· ) =

inf
µ·∈R

J (µ·) . Let (Xqn,ξn

· , Y q
n,ξn

· , Zq
n,ξn

· ) be the unique solution of the following MF-FBSDE



Xqn,ξn

t = x+
∫ t

0

∫
U1
b
(
s,Xqn,ξn

s ,E
[
α
(
Xqn,ξn

s

)]
, u
)
qns (du) ds

+
∫ t

0
σ
(
s,Xqn,ξn

s ,E
[
γ
(
Xqn,ξn

s

)])
dBns +

∫ t
0
φtdξ

n
t ,

Y q
n,ξn

t = h
(
Xqn,ξn

T ,E[θ(Xqn,ξn

T )]
)

+
∫ T
t

∫
U1
f
(
s,Xqn,ξn

s ,E
[
ζ
(
Xqn,ξn

s

)]
, Y q

n,ξn

s ,E
[
η
(
Y q

n,ξn

s

)]
, u
)
qns (du) ds

−
∫ T
t
Zq

n,ξn

s dBns +
∫ T
t
ϕtdξ

n
t ,

Xqn,ξn

0 = x, Y q
n,ξn

t = h
(
Xqn,ξn

T ,E[θ(Xqn,ξn

T )]
)
.

The space U2 of singular control is equipped with the topology of weak convergence (see Hauss-

mann and Suo [27]). The weak convergence is a convergence in measure in the sense, for ξn, ξ ∈

U2, ξ
n → ξ if and only if ∫ T

0

Γtdξ
n
t →

∫ T

0

Γtdξt,
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for any Γ ∈ C (0, T ;Rn) .

Let us defined the following processes

X q
n,ξn

t = Xqn,ξn

t −
∫ t

0

φsdξ
n
s ,

Yq
n,ξn

t = Y q
n,ξn

t −
∫ t

0

ϕsdξ
n
s .

Proposition 2.2.1 There exists a positive constant C such that:

sup
n
E
[

sup
0≤t≤T

|X q
n,ξn

t |2 + sup
0≤t≤T

∣∣∣Yqn,ξnt

∣∣∣2 +

∫ T

0

∥∥∥Zqn,ξns

∥∥∥2

ds
]
≤ C, (2.5)

where (Xqn,ξn

· , Y q
n,ξn

· , Zq
n,ξn

· ) is the unique strong solution of the system (3.1).

Proof. By using the boundedness of b and σ, it is easy to prove that

For every 0 ≤ t ≤ T and n > 1 we have

∣∣∣X qn,ξnt

∣∣∣2 =
∣∣∣x+

∫ t
0

∫
U1
b
(
s,Xqn,ξn

s ,E
[
α
(
Xqn,ξn

s

)]
, u
)
qns (du) ds

+
∫ t

0
σ
(
s,Xqn,ξn

s ,E
[
γ
(
Xqn,ξn

s

)])
dBns

∣∣∣2 .
Applying the inequality (a+ b+ c) ≤ 3

(
a2 + b2 + c2

)
, we obtain

∣∣∣X qn,ξnt

∣∣∣2 ≤ 3

[
x2 +

∣∣∣∫ t0 ∫U1
b
(
s,Xqn,ξn

s ,E
[
α
(
Xqn,ξn

s

)]
, u
)
qns (du) ds

∣∣∣2
+
∣∣∣∫ t0 σ (s,Xqn,ξn

s ,E
[
γ
(
Xqn,ξn

s

)])
dBns

∣∣∣2] .
Passing to the expectation, we get

E
[∣∣∣X qn,ξnt

∣∣∣2] ≤ 3

[
E
[
x2
]

+ E
[∣∣∣∫ t0 ∫U1

b
(
s,Xqn,ξn

s ,E
[
α
(
Xqn,ξn

s

)]
, u
)
qns (du) ds

∣∣∣2]
+ E

[∣∣∣∫ t0 σ (s,Xqn,ξn

s ,E
[
γ
(
Xqn,ξn

s

)])
dBns

∣∣∣2]] .
By applying Holder inequality we have

E
[∣∣∣∫ t0 ∫U B (s,Xn

s , u) qns (du) ds
∣∣∣2] ≤ T × E [∫ t0 ∫U |B (s,Xn

s , u)|2 qns (dα) ds
]
.
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By the Burkholder–Davis–Gundy and Holder inequality provid that is inequality

E
[
sup0≤t≤T

∣∣∣∫ t0 Σ (s,Xn
s ) dWn

s

∣∣∣2] ≤ CE [∫ T0 |Σ (s,Xn
s )|2 ds

]
.

Hence, we have

E
[∣∣∣X qn,ξnt

∣∣∣2] ≤ C (E [x2
]

+ ĆE
[∫ T

0

∫
A

(
|B (s,Xn

s , u)|2 + |Σ (s,Xn
s )|2

)
qns (dα) ds

])
.

Now by using the boundedness of b and σ, it is easy to prove that

sup
n
E
[

sup
0≤t≤T

|X q
n,ξn

t |2
]
< +∞.

Applying Itô’s formula to |Yq
n,ξn

t |2, we get

d|Yq
n,ξn

t |2 = 2|Yq
n,ξn

t |dYq
n,ξn

t + d〈Yq
n,ξn ,Yq

n,ξn〉t

= −2〈|Yq
n,ξn

t |, f
(
t,Xqn,ξn

t ,E[ζ(Xqn,ξn

t )], Y q
n,ξn

t ,E[η(Y q
n,ξn

t )], u
)
〉dt

+ 2〈|Yq
n,ξn

t |, Zq
n,ξn

t 〉dBnt +
∥∥∥Zqn,ξnt

∥∥∥2

dt.

Passing to the integral between t and T, we obtain

|Yq
n,ξn

T |2 − |Yq
n,ξn

t |2 = −2

∫ T

t

〈|Yq
n,ξn

s |, f
(
s,Xqn,ξn

s ,E[ζ(Xqn,ξn

s )], Y q
n,ξn

s ,E[η(Y q
n,ξn

s )], u
)
〉dt

+ 2

∫ T

t

〈|Yq
n,ξn

s |, Zq
n,ξn

s 〉dBns +

∫ T

t

∥∥∥Zqn,ξns

∥∥∥2

ds.

And then,

|Yq
n,ξn

t |2 +

∫ T

t

∥∥∥Zqn,ξns

∥∥∥2

ds = |Yq
n,ξn

T |2

+ 2

∫ T

t

〈|Yq
n,ξn

s |, f
(
s,Xqn,ξn

s ,E[ζ(Xqn,ξn

s )], Y q
n,ξn

s ,E[η(Y q
n,ξn

s )], u
)
〉dt

− 2

∫ T

t

〈|Yq
n,ξn

s |, Zq
n,ξn

s 〉dBns .
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Taking expectation, we get

E
[
|Yq

n,ξn

t |2
]

+ E

[∫ T

t

|Zq
n,ξn

s |2ds

]
= E

[
|h
(
Xqn,ξn

T ,E[θ(Xqn,ξn

T )]
)
|2
]

+ 2E

[∫ T

t

∫
U1

〈
∣∣∣Yqn,ξns

∣∣∣ , f (s,Xqn,ξn

s ,E[ζ(Xqn,ξn

s )], Y q
n,ξn

s ,E[η(Y q
n,ξn

s )], u
)
〉qns (du)ds

]

≤ E
[
|h
(
Xqn,ξn

T ,E[θ(Xqn,ξn

T )]
)
|2
]

+ E

[∫ T

t

|Yq
n,ξn

s |2ds

]

+ E

[∫ T

t

∫
U1

∣∣∣f (s,Xqn,ξn

s ,E[ζ(Xqn,ξn

s )], Y q
n,ξn

s ,E[η(Y q
n,ξn

s )], u
)∣∣∣2 qns (du)ds

]
.

From the fact that g and f are bounded, applying Gronwall’s lemma, we obtain

sup
n
E

[
sup

0≤t≤T
|Yq

n,ξn

t |2 +

∫ T

0

∥∥∥Zqn,ξns

∥∥∥2

ds

]
< +∞.

Proposition 2.2.2 The sequence of distributions of processes (X q
n,ξn

· , Bn· ,Y
qn,ξn

· ,
∫ ·

0
Zq

n,ξn

s dBns , q
n
· , ξ

n
· )

is tight on the space Λ := C (0, T ;Rn)×C
(
0, T ;Rd

)
×D (0, T ;Rm)×D

(
0, T ;Rm×d

)
×V(0, T ;U)×U2

endowed with the topology of uniform convergence for the first and second factor, endowed with the S-

topology of Jakubowski (see[31]) for the third and forth factor, equipped with the topology of stable conver-

gence for the fifth factor and equipped with the topology of weak convergence for the sixth factor.
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Proof. Using the boundedness of b and σ, we have

E
[∣∣∣X qn,ξnt −X q

n,ξn

s

∣∣∣4] = E

[∣∣∣∣(Xqn,ξn

t −
∫ t

0

ϕrdξ
n
r

)
−
(
Xqn,ξn

s −
∫ s

0

ϕrdξ
n
r

)∣∣∣∣4
]

= E[|
∫ t

s

∫
U1

b
(
r,Xqn,ξn

r ,E
[
α
(
Xqn,ξn

r

)]
, u
)
qnr (du) dr

+

∫ t

s

σ
(
r,Xqn,ξn

r ,E
[
γ
(
Xqn,ξn

r

)])
dBnr |4]

≤ CE

[(∫ t

s

∫
U1

∣∣∣b(r,Xqn,ξn

r ,E
[
α
(
Xqn,ξn

r

)]
, u
)∣∣∣2 qnr (du) dr

)2
]

+ CE

[(∫ t

s

∣∣∣σ (r,Xqn,ξn

r ,E
[
γ
(
Xqn,ξn

r

)])∣∣∣2 dr)2
]

≤ K1 |t− s|2 .

By the same method, it is readily seen that there exists a constants K2 independent from n such

that

E
[
|Bnt −Bns |

4
]
≤ K2 |t− s|2 ,

for each s, t ∈ [0, T ]. Hence the Kolmogorov tightness criteria is fulfilled (see Ikeda and Watanabe

[30] page 18), then the sequence (X qn,ξn , Bn) is tight.

Let us prove that (Yq
n,ξn

· ,
∫ ·

0
Zq

n,ξn

s dBns ) is tight.

Let 0 = t0 < t1 < ... < tn = T . We have

CV
(
Yq

n,ξn

·

)
:= supE

[∑
i

∣∣∣E(Yqn,ξnti+1
− Yq

n,ξn

ti

)
| FB

n

ti

∣∣∣]

≤ CE

[∫ T

0

∫
U1

|f
(
s,Xqn,ξn

s ,E
[
ζ
(
Xqn,ξn

s

)]
, Y q

n,ξn

s ,E
[
η
(
Y q

n,ξn

s

)]
, u
)
|qns (du) ds

]
,

where CV
(
Yq

n,ξn

·

)
is the conditional variation, the supremum is taken over all partitions of

the interval [0, T ] and C is a constant depending only on t. By combining conditions (H1) and
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Proposition 3.1, we deduce that

sup
n

[
CV

(
Yq

n,ξn

·

)
+ sup

0≤t≤T
E
[∣∣∣Yqn,ξnt

∣∣∣]+ sup
0≤t≤T

E

[∣∣∣∣∣
∫ T

0

Zq
n,ξn

s dBns

∣∣∣∣∣
]]

< +∞.

Thus the Meyer-Zheng tightness criteria is fulfilled (see [43]), then the sequences Yq
n,ξn

· and

∫ ·
0
Zq

n,ξn

s dBns are tight.

Also the family of distributions associated to (qn· )n is tight, from the fact that the space V(0, T ;U1)

of probability measures on [0, T ]× U1 is compact (Prokhorov’s theorem).

For the tightness of ξnt , we use the same technique as is Haussmann and Suo [27]. Define the set

VM = {ξ ∈ Un2 : |ξT | ≤M},

VM is then compact for any constant M > 0. Further, define the set

Rβ = {µ ∈ R : J(µ) ≤ β, }

where β is chosen so that Rβ is nonempty. Clearly, we can restrict the minimizing sequence to

Rβ. It also holds that

lim
M→∞

inf
µ·∈Rβ

P (|ξT | ≤M) = 1.

Thus, for any ε > 0 there exists a compact set VM such that for all Pn, ξn· ∈ Rβ, we have

Pn(ξn· ∈ VM ) ≥ 1− ε.

Which mean that the sequence ξnt is tight.

Theorem 2.2.3 Under conditions (H1) and (H2) , the relaxed control problem {(2.4) , (2.5) , (2.6)} has

an optimal solution.
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Proof. From the Proposition 3.2, the sequence of processes

Θn
· :=

(
X q

n,ξn

· , Bn· ,Y
qn,ξn

· ,
∫ ·

0
Zq

n,ξn

s dBns , q
n
· , ξ

n
·

)
is tight on the space Λ. Thus by the Skorokhod’s

selection theorem, there exists a probability space (Ω̃,F , P̃ ), on which is defined a sequence Θ̃n
· :=

(X̃ q̃
n,ξ̃n

· , B̃n· , Ỹ
q̃n,ξ̃n

· ,
∫ ·

0
Z̃ q̃

n,ξ̃n

s dB̃ns , q̃
n
· , ξ̃

n
· ) identical in law to Θn

· and converging on this space to

Θ̃· = (X̃ , B̃·, Ỹ·, Ñ·, q̃·, ξ̃·) in the sense, there exist a countable subset D of [0, T ] such that

(i) onDc, the sequence (Ỹ q̃
n,ξ̃n

· ,
∫ ·

0
Z̃ q̃

n,ξ̃n

s dB̃ns ) converges to the càdlàg processes (Ỹ·, Ñ·), dt×P̃ -a.s

and (Ỹ q̃
n,ξ̃n

T ,
∫ T

0
Z̃ q̃

n,ξ̃n

s dB̃ns ) converges to (ỸT , ÑT ) as n→∞, P̃ -a.s.

(ii) sup
0≤t≤T

∣∣∣X̃ qn,ξnt − X̃t
∣∣∣→ 0, P̃ -a.s.

(iii) (q̃n· ) converges in the stable topology to q̃·, P̃ -a.s.

(iv)
(
ξ̃n·

)
converges in the topology of weak convergence to ξ̃, P̃ -a.s.

From the fact that, lawΘn ≡ lawΘ̃n, we have

X̃ q̃
n,ξ̃n

t = x+
∫ t

0

∫
U1
b
(
s, X̃ q̃n,ξ̃n

s ,E[α(X̃ q̃n,ξ̃n

s )], u
)
q̃ns (du)ds

+
∫ t

0
σ
(
s, X̃ q̃n,ξ̃n

s ,E[γ(X̃ q̃n,ξ̃n

s )]
)
dB̃ns ,

Ỹ q̃
n,ξ̃n

t = h
(
X̃ q̃n,ξ̃n

T ,E[θ(X̃ q̃n,ξ̃n

T )]
)

+
∫ T
t

∫
U1
f
(
s, X̃ q̃n,ξ̃n

s ,E[ζ(X̃ q̃n,ξ̃n

s )], Ỹ q̃
n,ξ̃n

s ,E[η(Ỹ q̃
n,ξ̃n

s )], u
)
q̃ns (du)ds

−
(
Ñn
T − Ñn

t

)
,

Ỹ q̃
n,ξ̃n

t = h
(
X̃ q̃n,ξ̃n

T ,E[θ(X̃ q̃n,ξ̃n

T )]
)
,

where

Ñn
t =

∫ t

0

Z̃q
n,ξn

s dB̃ns , X̃
q̃n,ξ̃n

t = X̃ q̃n,ξ̃n

t −
∫ t

0

φsdξ̃
n
s , Ỹ

q̃n,ξ̃n

t = Ỹ q̃
n,ξ̃n

t −
∫ t

0

ϕsdξ̃
n
s .

Using properties (i), (i), (iii), under (H1)-(H2) and passing to the limit in the MF-FBSDE (3.3), we
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obtain

X̃ q̃,ξ̃t = x+
∫ t

0

∫
U1
b
(
s, X̃ q̃,ξ̃

s ,E[α(X̃ q̃,ξ̃
s )], u

)
q̃s(du)ds

+
∫ t

0
σ
(
s, X̃ q̃,ξ̃

s ,E[γ(X̃ q̃,ξ̃
s )]

)
dB̃s,

Ỹ q̃,ξ̃t = h
(
X̃ q̃,ξ̃
T ,E[θ(X̃ q̃,ξ̃

T )]
)

+
∫ T
t

∫
U1
f
(
s, X̃ q̃,ξ̃

s ,E[ζ(X̃ q̃,ξ̃
s )], Ỹ q̃,ξ̃s ,E[η(Ỹ q̃,ξ̃s )], u

)
q̃s(du)ds

−
(
ÑT − Ñt

)
,

Ỹ q̃,ξ̃t = h
(
X̃ q̃,ξ̃
T ,E[θ(X̃ q̃,ξ̃

T )]
)
,

(2.6)

with

X̃ q̃,ξ̃t = X̃ q̃,ξ̃
t −

∫ t

0

φsdξ̃s, Ỹ q̃,ξ̃t = Ỹ q̃,ξ̃t −
∫ t

0

ϕsdξ̃s. (2.7)

Let F̃s := F X̃ q̃,ξ̃,Ỹ q̃,ξ̃,q̃,ξ̃s , the minimal admissible and complete filtration generated by

(X̃ q̃,ξ̃
r , Ỹ q̃,ξ̃r , q̃r, ξ̃r, r ≤ s). We can get easily that Ñ is a F̃s-martingale. Therefore by the martingale

decomposition theorem, there exist a process Z̃ ∈M2(0, T ;Rm×d) such that

Ñt =

∫ t

0

Z̃sdB̃s + M̃t, and
〈
M̃, B̃

〉
t

= 0,

thus, the backward part in (2.6) becomes

Ỹ q̃,ξ̃t = h
(
X̃ q̃,ξ̃
T ,E[θ(X̃ q̃,ξ̃

T )]
)

(2.8)

+

∫ T

t

∫
U1

f
(
s, X̃ q̃,ξ̃

s ,E[ζ(X̃ q̃,ξ̃
s )], Ỹ q̃,ξ̃s ,E[η(Ỹ q̃,ξ̃s )], u

)
q̃s(du)ds

−
∫ T

t

Z̃sdB̃s −
(
M̃T − M̃t

)
,
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replacing (2.7) and (2.8) in (2.6), we obtain

X̃ q̃,ξ̃
t = x+

∫ t
0

∫
U1
b
(
s, X̃ q̃,ξ̃

s ,E[α(X̃ q̃,ξ̃
s )], u

)
q̃s(du)ds

+
∫ t

0
σ
(
s, X̃ q̃,ξ̃

s ,E[γ(X̃ q̃,ξ̃
s )]

)
dB̃s +

∫ t
0
φsdξ̃s,

Ỹ q̃,ξ̃t = h
(
X̃ q̃,ξ̃
T ,E[θ(X̃ q̃,ξ̃

T )]
)

+
∫ T
t

∫
U1
f
(
s, X̃ q̃,ξ̃

s ,E[ζ(X̃ q̃,ξ̃
s )], Ỹ q̃,ξ̃s ,E[η(Ỹ q̃,ξ̃s )], u

)
q̃s(du)ds

−
∫ T
t
Z̃sdB̃s −

(
M̃T − M̃t

)
+
∫ t

0
ϕsdξ̃s,

Ỹ q̃,ξ̃t = h
(
X̃ q̃,ξ̃
T ,E[θ(X̃ q̃,ξ̃

T )]
)
.

(2.9)

To finish the proof of our first result (Theorem 3.3), it remains to prove that µ̃ minimize the cost

functional J over the setR of admissible relaxed-singular control.

Using properties (i)-(iii), and under assumptions (H1) and (H2), we have,

inf
µ·∈R

J (µ·) = lim
n→∞

J (µn· ) = lim
n→∞

J (µ̃n· ) ,

= lim
n→∞

E
[
Φ
(
Xqn,ξn

T ,E[λ(Xqn,ξn

T )]
)

+ Ψ
(
Y q

n,ξn

0 ,E[ρ(Y q
n,ξn

0 )]
)

+

∫ T

0

∫
U1

g
(
t,Xqn,ξn

t ,E[π(Xqn,ξn

t )], Y q
n,ξn

t ,E[$(Y q
n,ξn

t )], u
)
qnt (du)dt

+

∫ T

0

ψtdξ
n
t

]
,

= lim
n→∞

Ẽ
[
Φ
(
X̃ q̃n,ξ̃n

T ,E[λ(X̃ q̃n,ξ̃n

T )]
)

+ Ψ
(
Ỹ q̃

n,ξ̃n

0 ,E[ρ(Ỹ q̃
n,ξ̃n

0 )]
)

+

∫ T

0

∫
U1

g
(
t, X̃ q̃n,ξ̃n

t ,E[π(X̃ q̃n,ξ̃n

t )], Ỹ q̃
n,ξ̃n

t ,E[$(Ỹ q̃
n,ξ̃n

t )], u
)
q̃nt (du)dt

+

∫ T

0

ψtdξ̃
n
t

]
.

And hence
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inf
µ·∈R

J (µ·) = Ẽ
[
Φ
(
X̃ q̃,ξ̃
T ,E[λ(X̃ q̃,ξ̃

T )]
)

+ Ψ
(
Ỹ q̃,ξ̃0 ,E[ρ(Ỹ q̃,ξ̃0 )]

)
+

∫ T

0

∫
U1

g
(
t, X̃ q̃,ξ̃

t ,E[π(X̃ q̃,ξ̃
t )], Ỹ q̃,ξ̃t ,E[$(Ỹ q̃,ξ̃t )], u

)
q̃t(du)dt

+

∫ T

0

ψtdξ̃t

]
,

= J (µ̃·) ,

thus µ̃· =

(
Ω̃, F̃ ,

(
F̃t
)
t≥0

, P̃ , B̃·, q̃·, ξ̃·

)
is an relaxed-singular optimal control, then theorem (3.3)

is proved.

2.2.2 Existence of an optimal strict-singular control

We prove in this subsection the existence of optimal solution to the control problem {(2.1) , (2.2) ,

(2.3)} . In this end, we need the following Roxin’s condition:

(H3) : (Roxin-type convexity condition): The set

(b, f, g) (t, x, x′, y, y′, U1) := {bi (t, x, x′, u) ,

fj (t, x, x′, y, y′, u) , g (t, x, x′, y, y′, u)�u ∈ U1, i = 1, · · · , n, j = 1, · · · ,m},

is convex and closed in Rn+m+1.

Proposition 2.2.4 Assume that (H1)-(H3) hold. Then, the strict-singular control problem {(2.1) , (2.2) ,

(2.3)} , has an optimal solution.

Proof. The proof is inspired from that given in Yong and Zhou [49] (proof of theorem 5.3, page

71).
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From (2.9), we put

∫
U1

b
(
t, X̃t,E[α(X̃t)], u

)
q̃t(du) := b̃ (t, w) ∈ b (t, x, x′, U1) ,∫

U1

f
(
t, X̃t,E[ζ(X̃t)], Ỹt,E[η(Ỹt)], u

)
q̃t(du)

:= f̃ (t, w) ∈ f (t, x, x′, y, y′, U1) ,∫
U1

g
(
t, X̃t,E[π(X̃t)], Ỹt,E[$(Ỹt)], u

)
q̃t(du)

:= h̃ (t, w) ∈ h (t, x, x′, y, y′, U1) .

Under (H3) and the measurable selection theorem (see Li-Yong [41] p. 102, Corollary 2.26), there

is a U1-valued, F̃t-adapted process ũ, such that for every t ∈ [0, T ] and w ∈ Ω̃,

(
f̃ , g̃
)

(t, w) = (f, h)
(
t, X̃ (t, w) , X̃ ′ (t, w) , Ỹ (t, w) , Ỹ ′ (t, w) , ũ (t, w)

)
,

and

b̃ (t, w) = b
(
t, X̃ (t, w) , X̃ ′ (t, w) , ũ (t, w)

)
.

Thus, we have

∫
U1

b
(
t, X̃t,E[α(X̃t)], u

)
q̃t(du) = b

(
t, X̃t,E[α(X̃t)], ũt

)
,∫

U1

f
(
t, X̃t,E[γ(X̃t)], Ỹt,E[δ(Ỹt)], u

)
q̃t(du)

= f
(
t, X̃t,E[γ(X̃t)], Ỹt,E[δ(Ỹt)], ũt

)
,∫

U1

g
(
t, X̃t,E[π(X̃t)], Ỹt,E[$(Ỹt)], u

)
q̃t(du)

= g
(
t, X̃t,E[π(X̃t)], Ỹt,E[$(Ỹt)], ũt

)
.
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Hence (2.9) becomes

X̃t = x+
∫ t

0
b
(
s, X̃s,E[α(X̃s)], ũ

)
ds

+
∫ t

0
σ
(
s, X̃s,E[γ(X̃s)]

)
dW̃s +

∫ t
0
φsdξ̃s,

Ỹt = h
(
X̃T ,E[θ(X̃T )]

)
+
∫ T
t
f
(
s, X̃s,E[ζ(X̃s)], Ỹs,E[η(Ỹs)], ũ

)
ds

−
∫ T
t
Z̃sdW̃s −

(
M̃T − M̃t

)
+
∫ T
t
ϕsdξ̃s.

Ỹt = h
(
X̃T ,E[θ(X̃T )]

)
.

Moreover,

J(q̃) = Ẽ
[
Φ
(
X̃T ,E[λ(X̃T )]

)
+ Ψ

(
Ỹ0,E[ρ(Ỹ0)]

)
+

∫ T

0

∫
U

g
(
t, X̃t,E[π(X̃t)], Ỹt,E[$(Ỹt)], u

)
q̃t(du)dt+

∫ T

0

ψsdξ̃s

]

= Ẽ
[
Φ
(
X̃T ,E[λ(X̃T )]

)
+$

(
Ỹ0,E[ρ(Ỹ0)]

)
+

∫ T

0

g
(
t, X̃t,E[π(X̃t)], Ỹt,E[$(Ỹt)], ũt

)
dt+

∫ T

0

ψsdξ̃s

]

= J(ϑ̃),

where ϑ̃ =

(
Ω̃, F̃ ,

(
F̃t
)
t≥0

, P̃ , W̃ , ũ

)
. Which ends the proof.
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Forward-Backward Doubly SDEs.

We wish to study a class of optimal controls for problems governed by forward-backward doubly

stochastic differential equations (FBDSDEs). Firstly, we prove existence of optimal relaxed con-

trols, which are measure-valued processes for nonlinear FBDSDEs, by using some tightness prop-

erties and weak convergence techniques on the space of Skorokhod of càdlàg functions equipped

with the S-topology of Jakubowsky. Moreover, when the Roxin-type convexity condition is ful-

filled, we prove that the optimal relaxed control is in fact strict.
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3.1 Introduction to Backward Doubly Stochastic Differen-

tial Equations BDSDEs

Pardoux and Peng in [39], introduced a new class of BSDEs with two different directions of

stochastic integrals, called backward doubly stochastic differential equations (BDSDEs) with the

form

Yt = YT +

∫ T

t

F (s, Ys, Zs) ds+

∫ T

t

G (s, Ys, Zs) d
←−
Bs −

∫ T

t

ZsdWs, for all t ∈ [0, T ] , (3.1)

where terminal value YT = ξ and the functions F, G are given, the integral with respect to Bt is a

backward Itô integral and the integral with respect toWt is a standard forward Itô integral. Those

two types of integrals are particular cases of the Ito-Skorohod integral, see Nualart and Pardoux

[44]. Let us now recall the definition of backward stochastic integrals, we denote by (πn)n≥0 any

sequence of subdivisions:

πn = {t = tn0 < tn1 < ... < tnn = T} . Such that |πn| = sup0≤k≤n−1

(
Btk+1

−Btk
)
→ 0 as n → ∞.

Then the backward Itô integral can be defined as

∫ T

t

Hsd
←−
Bs = lim

n→0

n−1∑
k=0

Htk+1

(
Btk+1

−Btk
)
,

is FBt,T = σ (Br −BT , t ≤ r ≤ T ) backward martingale. In fact, the backward Itô integral of Hs

with respect to Bs may be understood as the forward integral of H̃s = HT−s with respect to
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B̃s = BT−s −BT such that

∫ T−t

0

H̃sdB̃s = lim
n→0

n−1∑
k=0

H̃tk

(
B̃tk+1

− B̃tk
)

= lim
n→0

n−1∑
k=0

HT−tk
(
BT−tk+1

−BT−tk
)
,

note that rk+1 = T − tk < rk = T − tk+1 is a subdivision of [t, T ] then we get

∫ T−t

0

H̃sdB̃s = − lim
n→0

n−1∑
k=0

Hrk+1

(
Brk+1

−Brk
)

= −
∫ T

t

Hsd
←−
Bs.

On the other hand we have

FBT−t,T = σ (Br −BT , T − t ≤ r ≤ T )

= σ (BT−s −BT , 0 ≤ s ≤ t)

= F B̃t .

The same if W̃s = WT−s −WT we have FW̃T−t,T = FWt ∀0 ≤ t ≤ T.

In [39], the existence and uniqueness of solution are established under uniformly Lipschitz condi-

tion on the coefficients. It is worth noting that the definition of solution of this type of equations is

slightly different from that of classical (BSDEs). The BDSDEs (3.1) can be related to semilinear and

quasilinear stochastic partial differential equations (SPDEs). This link was developed in many pa-

pers and has motivated many efforts to establish the existence and uniqueness of solutions under

more general conditions than the global Lipschitz see for exmple ([5] [48] [50])
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3.1.1 Existence and Uniqueness of BDSDEs

In this subsection, we will discuss the existence and uniqueness of adapted solution for (BDSDEs)

(3.1). The basic ideas used to prove existence and unique are the use of the martingale representa-

tion property of Brownian motion and a Picard iteration scheme are used. Now we cite the some

results.

Let (Ω,F , P ) be a probability space, (Wt)t≥0 and (Bt)t≥0 be two mutually independent standard

Brownian motions, with values respectively in Rd and Rk. Let N denote the class of P−null

sets of F . For each t ∈ [0;T ], we define Ft := FBt,T ∨ FWt , where for any process θt, Fθs,t =

σ (θr − θs, s ≤ r ≤ t) ∨ N , Fθt = Fθ0,t. Note that the collection (Ft)0≤t≤T is neither increasing nor

decreasing, and it does not constitute a filtration.

We introduce the following notation:

L2
T (Rm): is the space of Rm−valued FT−measurable random variables ξ satisfying

E
[
|ξ|2

]
<∞,

M2
(
0, T,Rm×d

)
: the space of Ft−measurable processes Zt defined from [0, T ] × Ω into Rm×d,

such that

E
[ ∫ T

0

‖Zt‖2 dt
]
<∞,

and S2 (0, T,Rm): the space of Ft−measurable processes Yt defined from [0, T ]×Ω into Rm, such

that

E
[

sup
0≤t≤T

|Yt|2
]
<∞.

74



Chapter 3. Existence of Optimal Controls For Systems of Controlled Forward-Backward
Doubly SDEs.

The equation we want to solve is
−dYt = F (s, Ys, Zs) ds+G (s, Ys, Zs) d

←−
Bs − ZsdWs, for all t ∈ [0, T ] ,

YT = ξ.

(3.2)

Definition 3.1.1 A solution of equation (3.2) is a couple (Y,Z) which belongs to the space S2 (0, T,Rn)×

M2
(
0, T,Rm×d

)
and satisfes (3.2).

Next we consider the following assumptions

F : [0, T ]× Rm × Rm×l −→ Rm

G : [0, T ]× Rm × Rm×l −→ Rm×d,

are measurable for each (y, z) ∈ Rm × Rm×l, with ξ ∈ L2
T (Rm) and F (., y, z) ∈ M2 (0, T,Rm) ,

G (., y, z) ∈M2
(
0, T,Rm×d

)
respectively.

We assume moreover that there exist a constant K > 0 and 0 < α < 1, such that for every

(y1, y2) ∈ R2m, (z1, z2) ∈ R2m×l

|F (t, y1, z1)− F (t, y2, z2)|2 ≤ K
(
|y1 − y2|2 + ‖z1 − z2‖2

)
‖G (t, x1, y1)−G (t, x2, y2)‖2 ≤ K

(
|y1 − y2|2 + α ‖z1 − z2‖2

)
.

The main result of this subsection is the following

Theorem 3.1.2 Under the above conditions, the (BDSDEs) (3.2) has a unique solution (Y, Z) ∈ S2 (0, T,Rn)×

M2
(
0, T,Rm×d

)
.

Proof. Can be found in Pardoux and Peng in [39].
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Now we introduce a type of forward doubly stochastic differential equation as follows

Yt = η +

∫ t

0

F (s, Ys, Zs) ds+

∫ t

0

G (s, Ys, Zs) dBs −
∫ t

0

Zsd
←−
W, for all t ∈ [0, T ] , (3.3)

where Y0 = η is F0−measurable. we recall that this type of equations appears in stochastic con-

trol problems. For example, in the stochastic formula of the principle of Pontryagin Maximum

for controlled systems whose dynamics are subject to a backward doubly stochastic differential

equations (BDSDEs). Now under what was mentioned in the previous subsection about the back-

ward Itô integral, we will transform the equation (3.3) into equation of type (3.1), so we have

B̃s = BT−s −BT , W̃s = WT−s −WT and F̃t = F B̃t,T ∨ FW̃t ∀0 ≤ t ≤ T and hence

Ỹt = η +

∫ T

t

F
(
s, Ỹs, Z̃s

)
ds+

∫ T

t

G
(
s, Ỹs, Zs

)
d
←−̃
B s −

∫ T

t

ZsdW̃s, (3.4)

where Ỹt = YT−t, Z̃t = ZT−t for all t ∈ [0, T ] , and η is F̃T−measurable. Note that (3.4) have

the similar form as (3.1), then by Theorem previous there exists a unique pair of
(
Ỹt, Z̃t

)
solving

(3.4), and we have

Theorem 3.1.3 Under the same previous conditions, the (FDSDEs) (3.3) has a unique solution
(
Ỹ , Z̃

)
∈

S2 (0, T,Rn)×M2
(
0, T,Rm×d

)
.
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3.2 Existence of optimal controls for nonlinear FBDSDEs

3.2.1 Statement of the problems and assumptions

3.2.1.1 Strict control problem

Let (Ω,F , P ) be a probability space, (Wt)t≥0 and (Bt)t≥0 be two mutually independent stan-

dard Brownian motions, with values respectively in Rd and Rk. Let N denote the class of P -

null sets of F . For each t ∈ [0;T ], we define Ft := FBt,T ∨ FWt , where for any process θt,

Fθs,t = σ (θr − θs, s ≤ r ≤ t) ∨N , Fθt = Fθ0,t.

Note that the collection (Ft)0≤t≤T is neither increasing nor decreasing, and it does not constitute

a filtration.

We want to prove the existence of optimal strict controls for a control problem driven by the

following FBDSDE

Xt = x+
∫ t

0
B (s,Xs, us) ds+

∫ t
0

Σ (s,Xs) dWs,

Yt = H (XT ) +
∫ T
t
F (s,Xs, Ys, us) ds+

∫ T
t
G (s,Xs, Ys) d

←−
Bs −

∫ T
t
ZsdWs

− (MT −Mt) ,

(3.5)

where M· is a square integrable martingale which is orthogonal to W·. With M0 = 0 and with

càdlàg trajectories.

Remark 3.2.1 1)-Such a weak solution to the FBDSDE (3.5) can be considered as a generalized weak
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solution to the more classical controlled system

Xt = x+
∫ t

0
B (s,Xs, us) ds+

∫ t
0

Σ (s,Xs) dWs,

Yt = H (XT ) +
∫ T
t
F (s,Xs, Ys, us) ds+

∫ T
t
G (s,Xs, Ys) d

←−
Bs −

∫ T
t
ZsdWs,

(3.6)

2)-Existence and uniqueness of strong solution (X,Y, Z) of the backward doubly component of (3.6) can

be proved by using the same method given in [39], where u· is the control variable and X· is the solution of

a forward SDE, if we assume that

• (H4) F (·, x, y, u) and G(·, x, y) are square integrable with respect to the associate norm, there exist

constants K > 0 such that for any (w, t) ∈ Ω× [0, T ], (x, y), (x′, y′) ∈ Rn × Rm,

|F (t, x, y, u)− F (t, x′, y′, u′)|2 ≤ K(|x− x′|2 + |y − y′|2),

‖G(t, x, y)−G(t, x′, y′)‖2 ≤ K(|x− x′|2 + |y − y′|2),

and H(XT ) is square integrable and FT -measurable.

Similarly, a strong solution to the backward doubly component of (3.5) should be a quadruple (X,Y, Z,M)

defined on Ω× [0, T ], such that (H4) is satisfied and M· is a càdlàg square integrable martingale which is

orthogonal to W·. With M0 = 0, but this notation coincides with that of strong solution to the backward

doubly component of (3.6), because thenM· would be an Gt = FWt ∨FBT -martingale andFt = FWt ∨FBt,T -

measurable, hence M· = 0.

We introduce the concept of admissible controls to the FBDSDE (3.5).
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Definition 3.2.2 A 7-tuple π· =
(

Ω,F , (Ft)0≤t≤T , P,W·, B·, u·

)
is called admissible strict control, and

(Xt, Yt, Zt,Mt) an admissible quadruple if:

i)-(Ω,F , P ) is a probability space;

ii)-Wt andBt be two mutually independent standard Brownian motion defined on
(

Ω,F , (Ft)0≤t≤T , P
)
,

with Ft := FBt,T ∨ FWt ;

iii)-ut is an Ft-measurable process on (Ω,F , P ) valued in U which is a nonempty Borel compact subset of

Rr;

iv)-(Xt, Yt, Zt,Mt) is the solution of the FBDSDE (3.5) on
(

Ω,F , (Ft)0≤t≤T , P
)

under ut.

v)-Mt is a square integrable martingale, orthogonal to Brownian motion Wt.

The set of all admissible strict controls π· is denoted by Uad.

The functional cost to be minimized, over the set Uad of strict control, is given by

J(u·) := E
[
ϕ (XT ) + ψ(Y0) +

∫ T
0
L(t,Xt, Yt, ut)dt

]
.

An admissible strict control π∗· , is called optimal if it satisfy

J (π∗· ) = inf
π·∈Uad

J (π·) . (3.7)

3.2.1.2 Relaxed control problem

Let us introduce the concept of relaxed controls which gives a more suitable topological structure.

The weak formulation enables us to find the compactness of the image measure of some processes

involved on a certain functional space, then an optimal control may fail to exist in the setU of strict

controls.
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To be convinced on the fact that strict optimal controls may not exist even in the simplest cases,

let us consider a deterministic example.

Example 3.2.3 Let U = {−1, 1}, Uad := {u· : [0, 1]→ {−1, 1}/u·measurable }, and J(u·) =
∫ 1

0
X2
t dt,

where Xt denotes the solution of


dXt = utdt,

X0 = 0, t ∈ [0, 1].

(3.8)

The optimal control problem is to find a pair (X̃, ũ) such that

J(ũ) = inf
u·∈Uad

J(u·),

and X̃ satisfies (3.8). We will show that:

J(ũ) = inf
u·∈Uad

J(u·) = 0.

Indeed, for any n > 0, we consider the sequence

Unt = (−1)k,
k

n
≤ t ≤ k + 1

n
, 0 ≤ k ≤ n− 1.

Then immediately, we have |Xn
t | ≤ 1

n ,whereXn
t is the solution of (3.8) associated withUn, thus |J(un)| ≤

1
n2 , which implies that infu·∈Uad J(u·) = 0.

On the other hand, for any u· ∈ Uad,

J(u) =

∫ 1

0

X2
t dt ≥ 0.

Consequently, we get J(ũ) = 0.
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If this would have been the case, then for every t, X̃t = 0. This implies that ũt = 0, which is impossible.

The problem is that the sequence Un· has no limit in the space of strict controls. This limit, if it exists, will

be the naturale candidate for optimality. As a matter of fact, let δu denote the atomic measure concentrated

at a single point u·, and we identify the sequence Unt with δunt (du), we get

dtδunt (du)→ 1

2
dt(δ−1 + δ1)du = qt(du), t ∈ [0, 1],

which means that qt(du) is an optimal relaxed control. This suggests that the set of strict controls is too

narrow and should be embedded into the class of relaxed control.

Let P (U) denote the space of probability measures on B(U) equipped with the topology of weak

convergence, where U is a nonempty Borel compact subset of Rr, then P (U) is also compact

metrizable space. In a relaxed control problem, the U -valued process vt is replaced by an P (U)-

valued process qt.

If χ : U → R is a bounded measurable function, then we extend χ to P (U) by letting χ(q) :=

∫
U
χ(u)q(du).

Moreover, if qt(du) = δvt(du) is a Dirac measure charging vt for each t, then we get a strict control

problem as a special case of the relaxed one, with the following property: For any bounded and

uniformly continuous function %(t, x, u) defined on [0, T ]× Rn × U,

%(t, x, vt) =

∫
U

%(t, x, u)δv·(t, du) := %̂(t, x, δv·).

Denote by V the set of Radon measures µ· on B(U × [0, T ]) such that µ(U × Υ) = Leb(Υ) for

all Υ ∈ B([0, T ]), where Leb is the Lebesgue measure on [0, T ]. Elements of V are called Young

measures on U in deterministic theory. V is endowed with the stable topology, for which the
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mappings:

V 3 µ 7→
∫

Υ

∫
U

h(u)µ(du, ds) ∈ R,

are continuous, ∀Υ ∈ B([0, T ]) and h ∈ Cb(U).

It is clear that, any element µ ∈ V can be decomposed as

µ(du, dt) = µt(du)dt,

where µt(du) ∈ P (U), t ∈ [0, T ], see [18]. Equipped with the topology of stable convergence of

measures, V is a compact metrizable space, (see Jacod and Mémin [33]).

The system in this case, is then governed by the following FBDSDE

Xt = x+
∫ t

0

∫
U
B (s,Xs, u) qs (du) ds+

∫ t
0

Σ (s,Xs) dWs,

Yt = H (XT ) +
∫ T
t

∫
U
F (s,Xs, Ys, u) qs (du) ds+

∫ T
t
G (s,Xs, Ys) d

←−
Bs

−
∫ T
t
ZsdWs − (MT −Mt) ,

(3.9)

where M· is a square integrable martingale which is orthogonal to W . With M0 = 0 and with

càdlàg trajectories.

Definition 3.2.4 A 7-tuple $· :=
(

Ω,F , (Ft)0≤t≤T , P,W·, B·, q·

)
is called admissible relaxed control,

and (Xt, Yt, Zt,Mt) an admissible quadruple if:

i)-(Ω,F , P ) is a probability space;

ii)-Wt andBt be two mutually independent standard Brownian motion defined on
(

Ω,F , (Ft)0≤t≤T , P
)

;

iii)-qt is Ft-progressively measurable and such that for each t, 1]0,t] · q is Ft- measurable, taking values in

V;
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iv)-(Xt, Yt, Zt,Mt) is the solution of the FBDSDE (3.9) on
(

Ω,F , (Ft)0≤t≤T , P
)

under qt.

v)-Mt is a square integrable martingale, orthogonal to Brownian motion Wt.

The set of all admissible relaxed controls is denoted byRad.

The cost to be minimized, over the setRad of relaxed controls, has the form

J(q·) := E
[
ϕ (XT ) + ψ (Y0) +

∫ T
0

∫
U
L (s,Xs, Ys, u) qs (du) ds

]
.

A relaxed control $∗· is called optimal if it satisfy

J ($∗· ) = inf
$·∈Rad

J ($·) . (3.10)

Let us denote by D (0, T ;Rm): the Skorokhod space of càdlàg functions from [0, T ] to Rm, that is

functions which are continuous from the right with left hand limits, equipped with the S-topology

of Jakubowski (see [31]),

C(0, T,Rn): the space of continuous functions from [0, T ] into Rn, endowed with the topology of

uniform convergence,

M2
Ft
(
0, T,Rm×d

)
: the space of (Ft)0≤t≤T -measurable processes Yt defined from [0, T ] × Ω into

Rm×d, such that

E
[ ∫ T

0

|Yt|2 dt
]
<∞,

and S2
Ft (0, T,Rn): the space of (Ft)0≤t≤T -measurable processes Xt defined from [0, T ] × Ω into

Rn, such that

E
[

sup
0≤t≤T

|Xt|2
]
<∞.

We shall consider in the first part of this section the following assumptions.
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(H5). Assume that,

B : [0, T ]× Rn × U −→ Rm,

Σ : [0, T ]× Rn −→ Rn×d,

F : [0, T ]× Rn × Rm × U −→ Rm,

G : [0, T ]× Rn × Rm −→ Rm×k,

H : Rn −→ Rm,

are bounded and continuous. Moreover, assume that there exist a constant K > 0, such that for

every (x, x′) ∈ R2n, (y, y′)R2m,

|F (t, x, y, u)− F (t, x′, y′, u)| ≤ K (|x− x′|+ |y − y′|) ,

|G (t, x, y)−G (t, x′, y′)| ≤ K (|x− x′|+ |y − y′|) ,

|B (t, x, u)−B (t, x′, u)| ≤ K |x− x′| ,

|Σ (t, x)− Σ (t, x′)| ≤ K |x− x′| .

(H6). Assume that the functions

L : [0, T ]× Rn × Rm × U → R,

ϕ : Rn → R,

ψ : Rm → R,

are bounded and continuous and there exist a constant K > 0, such that for every (x, x′, y, y′) ∈

R2n × R2m,

|L (t, x, y, u)− L (t, x′, y′, u)| ≤ K (|x− x′|+ |y − y′|) .
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3.2.2 Existence of optimal relaxed controls

The first main result in this paper is to prove existence of optimal relaxed control.

Theorem 3.2.5 If the assumptions (H5) and (H6) hold. Then, the relaxed control problem {(3.9), (3.10)}

has an optimal solution.

To prove Theorem 3.2.5, we need some auxiliary results on the tightness of the processes under

consideration.

Let $n
· := (Ωn,Fn, (Fnt )0≤t≤T , P

n,Wn
· , B

n
· , q

n
· ) be a minimizing sequence, that is

lim
n−→∞

J ($n
· ) = inf

$·∈Rad
J ($·) .

Let (Xn
· , Y

n
· , Z

n
· ) be the unique strong solution of the following FBDSDE, corresponding to $n

· ,

Xn
t = x+

∫ t
0

∫
U
B (s,Xn

s , u) qns (du) ds+
∫ t

0
Σ (s,Xn

s ) dWn
s ,

Y nt = H (Xn
T ) +

∫ T
t

∫
U
F (s,Xn

s , Y
n
s , u) qns (du) ds+

∫ T
t
G (s,Xn

s , Y
n
s ) d
←−
Bns

−
∫ T
t
Zns dW

n
s .

(3.11)

Lemma 3.2.6 The family of distributions associated to the relaxed controls (qn· )n≥0 is tight in V.

Proof. From the fact that [0, T ] × U is compact, then by Prokhorov’s theorem, we get that the

family of distributions associated to qn· n ≥ 0 which valued in the compact space V, is tight.

Lemma 3.2.7 LetXn
t be the forward component of (3.11). Then, the sequence of processes (Xn

· , B
n
· ,W

n
· )

is tight on the space C(0, T,Rn+k+d) endowed with the topology of uniform convergence.
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Proof. By standard arguments, one can get easily that the Kolmogorov tightness criteria (see

Ikeda and Watanabe [30] page 18), is fulfilled by (Xn
· , B

n
· ,W

n
· ) , i.e., there exist a constant K such

that

En
[
|Xn

t −Xn
s |

4 ] ≤ K |t− s|2 ,∀t, s ∈ [0, T ],

where En is the expectation under Pn, and by the same method for (Bn· ,W
n
· ). Then the sequence

of processes (Xn
· , B

n
· ,W

n
· ) is tight.

Lemma 3.2.8 Let (Xn
· , Y

n
· , Z

n
· ) be the unique solution of (3.11). There exists a positive constant β ≥ 0

such that

sup
n
En
[

sup
0≤t≤T

|Xn
t |

2
+ sup

0≤t≤T
|Y nt |

2
+

∫ T

0

‖Znt ‖
2
dt
]
≤ β. (3.12)

Proof. For every 0 ≤ t ≤ T and n > 1, we want to show that

En
[

sup
0≤t≤T

|Xn
t |

2 ]
<∞.

We have

|Xn
t |

2
=
∣∣∣x+

∫ t
0

∫
U
B (s,Xn

s , u) qns (du) ds+
∫ t

0
Σ (s,Xn

s ) dWn
s

∣∣∣2 .
Applying the inequality (a+ b+ c) ≤ 3

(
a2 + b2 + c2

)
, we obtain

|Xn
t |

2 ≤ 3

(
x2 +

∣∣∣∫ t0 ∫U B (s,Xn
s , u) qns (du) ds

∣∣∣2 +
∣∣∣∫ t0 Σ (s,Xn

s ) dWn
s

∣∣∣2) .
Passing to the expectation, we get

E
[
|Xn

t |
2
]
≤ 3

(
E
[
x2
]

+ E
[∣∣∣∫ t0 ∫U B (s,Xn

s , u) qns (du) ds
∣∣∣2]+ E

[∣∣∣∫ t0 Σ (s,Xn
s ) dWn

s

∣∣∣2]) .
By applying Holder inequality we have

E
[∣∣∣∫ t0 ∫U B (s,Xn

s , u) qns (du) ds
∣∣∣2] ≤ T × E [∫ t0 ∫U |B (s,Xn

s , u)|2 qns (dα) ds
]
.
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By the Burkholder–Davis–Gundy and Holder inequality provid that is inequality

E
[
sup0≤t≤T

∣∣∣∫ t0 Σ (s,Xn
s ) dWn

s

∣∣∣2] ≤ CE [∫ T0 |Σ (s,Xn
s )|2 ds

]
.

Hence, by using assumption (H1) with a linear growth, we get

E
[
sup0≤t≤T |Xn

t |
2
]
≤ C

(
|x|2 + 1

)
+ C

∫ T
0

∫
U
E
[
sup0≤s≤T |Xn

s |
2
]
qns (dα) ds.

So by applying Gronwall’s lemma, we have

E
[
sup0≤t≤T |Xn

t |
2
]
≤ C

(
|x|2 + 1

)
exp (CT ) <∞.

We now pass to prove the second inequality of Y nt . It then follows by using the generalized Itô’s

formula (See Pardoux and Peng [[39], Lemma 1.3, page 213],) we get

En
[
|Y nt |

2 ]
+ En

[ ∫ T
t
‖Zns ‖

2
ds
]

≤ En
[
|H (Xn

T )|2
]

+ 2En
[ ∫ T
t

∫
U
|〈Y ns , F (s,Xn

s , Y
n
s , u)〉| qns (du) ds

]
+En

[ ∫ T
t
|G (s,Xn

s , Y
n
s )|2 ds

]
≤ En

[
|H (Xn

T )|2
]

+ En
[ ∫ T
t
|Y ns |

2
ds
]

+En
[ ∫ T
t

∫
U
|F (s,Xn

s , Y
n
s , u)|2 qns (du) ds

]
+ En

[ ∫ T
t
|G (s,Xn

s , Y
n
s )|2 ds

]
.

So by using (H1), applying Gronwall’s lemma and the Burkholder-Davis-Gundy inequality, we

get

sup
n
En
[

sup
0≤t≤T

|Y nt |
2

+

∫ T

0

‖Znt ‖
2
dt
]
<∞.

Lemma 3.2.9 Let (Xn
· , Y

n
· , Z

n
· ) be the unique solution of (3.11). The sequence of processes

(
Y n· ,

∫
·
0
Zns dW

n
s

)
is tight on the space D(0, T,Rm+m+d) endowed with the S-topology of Jakubowski.
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Proof. To prove this Lemma, we borrow the idea from the method using in the paper of Tang and

Wu, [46]. Therefore, to prove that the sequence
(
Y n· ,Nn

t =
∫

·
0
Zns dW

n
s

)
satisfies the Meyer-Zheng

tightness criteria, let us defined on the space D(0, T,Rm+m+d), the filtration Gnt by

Gnt = FX
n,Y n,qn,Wn

t ∨ FB
n

T .

Given a subdivision 0 = t0 < t1 < ... < tn = T . We define the conditional variation by

V C (Y n· ) := supEn
[ n−1∑
k=0

∣∣∣En (Y ntk+1
− Y ntk | G

n
tk

)∣∣∣ ],
where the supremum is taken over all partitions of the interval [0, T ]. Since Nn

t is Gnt -martingale

and
∫ T
t
G (s,Xn

s , Y
n
s ) d
←−
Bns is Gnt -measurable, we obtain

V C (Y n· ) ≤ En
[ ∫ T

0

∫
U

|F (s,Xn
s , Y

n
s , u)| qns (du) ds

]
.

Hence combining assumptions (H1) and Lemma 3.2.8, we have

sup
n

(
V C (Y n) + sup

0≤t≤T
En
[
|Y nt |

]
+ sup

0≤t≤T
En
[
|Nn

t |
])
<∞.

Thus the Meyer-Zheng tightness criteria is fulfilled (see [43]), then the sequence (Y n· ,Nn
· ) is tight

in D(0, T,Rm+m+d) equipped with the Jakubowski S-topology.

3.2.2.1 Proof of existence of optimal relaxed control (Theorem 3.2.5)

Let $n
· := (Ωn,Fn, (Fnt )0≤t≤T , P

n,Wn
· , B

n
· , q

n
· ) be a minimizing sequence, and (Xn

· , Y
n
· , Z

n
· ) be

the unique solution of the FBDSDE (3.11).
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From Lemma 3.2.6, Lemma 3.2.7 and Lemma 3.2.9, it follows that the sequence of processes

ϑn· = (Xn
· , B

n
· ,W

n
· , q

n
· , Y

n
· ,Nn

· ) is tight on the space Π = C(0, T,Rn+k+d)× V× D(0, T,Rm+m+d).

By Skorokhod’s representation theorem, one can choose a subsequence (still labeled as ϑn· ) and

there exists a sequence ϑ̂n· =
(
X̂n
· , B̂

n
· , Ŵ

n
· , q̂

n
· , Ŷ

n
· ,M̂n

·

)
, n ≥ 0 and ϑ̂· =

(
X̂·, B̂·, Ŵ·, q̂·, Ŷ·,M̂·

)
defined on a suitable probability space (Ω̂, F̂ , P̂ ), such that

law (ϑn) = law(ϑ̂n),∀n ≥ 1, (3.13)

there exists a subsequence (ϑ̂nk) of (ϑ̂n), still denoted (ϑ̂n),

which converges to ϑ̂, P̂ − a.s., on the space Π,

(3.14)

(Ŷ n· ,M̂n
· =

∫
·
0
Ẑns dŴ

n
s ) converges to the càdlàg processes (Ŷ·,M̂·),

dt× P̂ − a.s, and (Ŷ nT ,M̂n
T ) converges to (ŶT ,M̂T ), P̂ − a.s., as n→∞,

(3.15)

sup0≤t≤T

∣∣∣X̂n
t − X̂t

∣∣∣ −→ 0, P̂ − a.s, as n→∞, (3.16)

and

q̂n· converges weakly to q̂·, P̂ − a.s, as n→∞ on V. (3.17)

Set that 

F̂nt := F X̂
n,Ŷ n,q̂n,Ŵn

t ∨ F B̂nt,T ,

F̂t := F X̂,Ŷ ,q̂,Ŵt ∨ F B̂t,T ,

where F̂nt is the σ−field generated by

X̂n
t1 , · · · , X̂

n
t`
, Ŷ nt1 , · · · , Ŷ

n
t`
, q̂nt1 , · · · , q̂

n
t`
, Ŵn

t1 , · · · , Ŵ
n
t`
, B̂nr − B̂nt̀1 , · · · , B̂

n
r − B̂nt̀ ,

where 0 ≤ t1 ≤ t2 ≤ · · · ≤ t` ≤ t ≤ T and t` ≤ r ≤ t, ` = 1, 2, · · · . A similar statement can be

made for F̂t.
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We need to show that Ŵn
· and B̂n· are two F̂nt −Brownian motions. Note that Wn

· and Bn· are

two FX
n,Y n,qn,Wn

t ∨ FBnt,T −Brownian motions. Thus for any 0 ≤ s ≤ t ≤ T and for any bounded

continuous function Θs on C (0, s;Rn)× D (0, s;Rm)× Vs × C
(
0, s;Rd+k

)
, we have

En
[
Θs(X

n
· , Y

n
· , q

n
· ,W

n
· , B

n
· ) · (Wn

t −Wn
s )
]

= 0,

En
[
Θs(X

n
· , Y

n
· , q

n
· ,W

n
· , B

n
· ) ·

(
(Wn

t −Wn
s )(Wn

t −Wn
s )T

]]
= (t− s)I,

and

En
[
Θs(X

n
· , Y

n
· , q

n
· ,W

n
· , B

n
· ) · (Bnt −Bns )

]
= 0,

En
[
Θs(X

n
· , Y

n
· , q

n
· ,W

n
· , B

n
· ) ·

(
(Bnt −Bns )(Bnt −Bns )T

)]
= (t− s)I,

where Vs denote the restriction of probability measures to the set [0, s]× U.

In view of (3.13), we obtain

Ên
[
Θs(X̂

n
· , Ŷ

n
· , q̂

n
· , Ŵ

n
· , B̂

n
· ) · (Ŵn

t − Ŵn
s )
]

= 0,

Ên
[
Θs(X̂

n
· , Ŷ

n
· , q̂

n
· , Ŵ

n
· , B̂

n
· ) ·

(
(Ŵn

t − Ŵn
s )(Ŵn

t − Ŵn
s )T

)]
= (t− s)I,

(3.18)

and

Ên
[
Θs(X̂

n
· , Ŷ

n
· , q̂

n
· , Ŵ

n
· , B̂

n
· ) · (B̂nt − B̂ns )

]
= 0,

Ên
[
Θs(X̂

n
· , Ŷ

n
· , q̂

n
· , Ŵ

n
· , B̂

n
· ) ·

(
(B̂nt − B̂ns )(B̂nt − B̂ns )T

)]
= (t− s)I,

(3.19)

where Ên is the expectation under P̂n.

According to (3.13), we have the following FBDSDE on the space (Ω̂, F̂ , (F̂nt )0≤t≤T , P̂ ),

X̂n
t = x+

∫ t
0

∫
U
B(s, X̂n

s , Ŷ
n
s , u)q̂ns (du)ds+

∫ t
0

Σ(s, X̂n
s )dŴn

s ,

Ŷ nt = H(X̂n
T ) +

∫ T
t

∫
U
F (s, X̂n

s , Ŷ
n
s , u)q̂ns (du)ds+

∫ T
t
G(s, X̂n

s , Ŷ
n
s )d
←−
B̂ns

−(M̂n
T − M̂n

t ),

(3.20)

where M̂n
t =

∫ t
0
Ẑns dŴ

n
s .
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Using (3.13)-(3.17), assumption (H2) and passing to the limit in the FBDSDE (3.20), one can show

that there exists a countable set Q ⊂ [0, T ) such that

X̂t = x+
∫ t

0

∫
U
B(s, X̂s, Ŷs, u)q̂s(du)ds+

∫ t
0

Σ(s, X̂s)dŴs, t ≥ 0,

Ŷt = H(X̂T ) +
∫ T
t

∫
U
F (s, X̂s, Ŷs, u)q̂s(du)ds+

∫ T
t
G(s, X̂s, Ŷs)d

←−
B̂s

−(M̂T − M̂t), t ∈ [0, T ]�Q.

(3.21)

Since Ŷ et M̂ are continuous, then are càdlàg, it follows that the doubly backward component of

(3.21) is satisfied for every t ∈ [0, T ] , i.e.,

Ŷt = H(X̂T ) +
∫ T
t

∫
U
F (s, X̂s, Ŷs, u)q̂s(du)ds+

∫ T
t
G(s, X̂s, Ŷs)d

←−
B̂s

−(M̂T − M̂t).

(3.22)

Now, let us defined the filtration Ĝt = F X̂,Ŷ ,q̂,Ŵt ∨ F B̂T .

We need to show that M̂t is Ĝt-martingale.

In this end, for any s, t : 0 ≤ s ≤ t ≤ T and Θs a bounded continuous function defined on

C (0, s;Rn)×D (0, s;Rm)×Vs×C
(
0, s;Rd+k

)
, and from the fact thatNn

t is Gnt := FX
n,Y n,qn,Wn

t ∨

FBnT -martingale we have

En
[
Θs (Xn

· , Y
n
· , q

n
· ,W

n
· , B

n
· )
( ∫ ε

0

(Nn
t+ρ −Nn

s+ρ)dρ
)]

= 0,

and from (3.13) we get

Ên
[
Θs

(
X̂n
· , Ŷ

n
· , q̂

n
· , Ŵ

n
· , B̂

n
·

) ( ∫ ε

0

(M̂n
t+ρ − M̂n

s+ρ)dρ
)]

= 0.
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Since
(
X̂n
· , Ŷ

n
· , q̂

n
· , Ŵ

n
· , B̂

n
·

)
converges weakly to

(
X̂·, Ŷ·, q̂·, Ŵ·, B̂·

)
and Ên

[
sup0≤t≤T

∣∣∣M̂n
t

∣∣∣2 ] <
∞, we have

Ê
[
Θs

(
X̂·, Ŷ·, q̂·, Ŵ·, B̂·

) ( ∫ ε

0

(M̂t+ρ − M̂s+ρ)dρ
)]

= 0,

where Ê is the expectation under P̂ , dividing by ε, sending it to 0 and using the fact that M̂t is

continuous from the right, we obtain

Ê
[
Θs

(
X̂·, Ŷ·, q̂·, Ŵ·, B̂·

)
(M̂t − M̂s)

]
= 0,

which gives M̂t is Ĝt-martingale.

Now, from the martingale decomposition theorem, there exist a process Ẑ ∈ M2
Ĝt

(
0, T,Rm×d

)
such that

M̂t =

∫ t

0

ẐsdŴs + ℵ̂t, with 〈Ŵ , ℵ̂〉t = 0,

then (3.22) becomes

Ŷt = H(X̂T ) +
∫ T
t

∫
U
F (s, X̂s, Ŷs, u)q̂s(du)ds+

∫ T
t
G(s, X̂s, Ŷs)d

←−
B̂s

−
∫ T
t
ẐsdŴs − (ℵ̂T − ℵ̂t),

(3.23)

and by the same technique using in, [39], one can prove that Ŷ·, Ẑ· and ℵ̂· are in fact F̂t-measurable.

Finally, it remains check that (q̂·) minimize the cost functional J over the setRad.
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According to properties (3.13)-(3.17) and assumption (H6), we have

inf
$·∈Rad

J ($·) = lim
n→∞

J ($n
· ) = lim

n→∞
J ($̂n

· ) ,

= lim
n→∞

E
[
ϕ (Xn

T ) + ψ (Y n0 ) +

∫ T

0

∫
U

L (t,Xn
t , Y

n
t , u) qnt (du) dt

]
,

= lim
n→∞

Ê
[
ϕ(X̂n

T ) + ψ(Ŷ n0 ) +

∫ T

0

∫
U

L(t, X̂n
t , Ŷ

n
t , u)q̂nt (du)dt

]
,

= Ê
[
ϕ(X̂T ) + ψ(Ŷ0) +

∫ T

0

∫
U

L(t, X̂t, Ŷt, u)q̂t(du)dt
]
,

= J ($̂·) .

Thus $̂· := (Ω̂, F̂ , (F̂t)0≤t≤T , P̂ , Ŵ·, B̂·, q̂·) is optimal relaxed control, then theorem 3.2.5 is proved.

3.2.3 Existence of optimal strict control

The second main result in this section is to prove existence of optimal strict control. In this end

we need to assume the Roxin’s condition as follows:

(H7) : (Roxin-type convexity condition): The set

(B,F,L) (t, x, y, U) := {Bi (t, x, u) , Fj (t, x, y, u)

, L (t, x, y, u)�u ∈ U, i = 1, · · · , n, j = 1, · · · ,m},

is convex and closed in Rn+m+1.

Theorem 3.2.10 Under (H5)-(H7) . The optimal relaxed control q̂t has the form

q̂t (du) = δût (du) ,

where δût is the Dirac measure charging a strict control ût, which is optimal.
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Proof. We put

∫
U

F
(
s, X̂s, Ŷs, u

)
q̂s (du) = F̂ (s, ω) ∈ F (s, x, y, U)∫

U

B
(
s, X̂s, u

)
q̂s (du) = B̂ (s, ω) ∈ B (s, x, U)∫

U

L
(
s, X̂s, Ŷs, u

)
q̂s (du) = L̂ (s, ω) ∈ L (s, x, y, U) .

From (H7) and the measurable selection theorem (see Li-Yong [41] p. 102, Corollary 2.26), there

is a U -valued and F̂t-measurable process û·, such that for every s ∈ [0, T ] and ω ∈ Ω̂, we have

(
F̂ , L̂

)
(s, ω) = (F,L)

(
s, X̂s (ω) , Ŷs (ω) , ûs (ω)

)
,

and for every t ≥ 0,

B (t, ω) = B
(
t, X̂t (t) , ût (ω)

)
.

Therefore, for every s ∈ [0, T ] , t ≥ 0, and ω ∈ Ω̂, we get

∫
U

F
(
s, X̂s, Ŷs, u

)
q̂s (du) = F

(
s, X̂s (ω) , Ŷs (ω) , ûs (ω)

)
∫
U

L
(
s, X̂s, Ŷs, u

)
q̂s (du) = L

(
s, X̂s (ω) , Ŷs (ω) , ûs (ω)

)
,

and ∫
U

B
(
t, X̂t, u

)
q̂t (du) = B

(
t, X̂t (ω) , ût (ω)

)
.

Then the processes
(
X̂t, Ŷt, Ẑt

)
satisfies, for each t ∈ [0, T ] the following FBDSDE



X̂t = x+
∫ t

0
B
(
s, X̂s, Ŷs, ût

)
ds+

∫ t
0

Σ
(
s, X̂s

)
dŴs,

Ŷt = H
(
X̂T

)
+
∫ T
t
F
(
s, X̂s, Ŷs, ût

)
ds+

∫ T
t
G
(
s, X̂s, Ŷs

)
d
←−
B̂ s

−
∫ T
t
ẐsdŴs −

(
ℵ̂T − ℵ̂t

)
.

(3.24)
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Moreover, we have

J($̂·) = Ê
[
ϕ
(
X̂T

)
+ ψ

(
Ŷ0

)
+

∫ T

0

∫
U

L
(
t, X̂t, Ŷt, u

)
q̂t (du) dt

]
= Ê

[
ϕ(X̂T ) + ψ(Ŷ0) +

∫ T

0

L(t, X̂t, Ŷt, ût)dt
]
,

= J (π̂·) .

where π̂ =

(
Ω̂, F̂ ,

(
F̂t
)

0≤t≤T
, P̂ , Ŵ·, B̂·, û·

)
. Which achieves the proof.
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In this appendix we summarize related to some results by equipping the space of

càdlàg functions by the Skorokhod M1 and S-topology and their associated effects, and

we will also discuss the relationship between them in the convergence and tightness.

A.1 The Skorokhod M1 topology

Has been introduced a first time in 1956 on the hands of Skorohod for more details

see the original paper as we refer to the book Whitt in [47], we denote for space of

càdlàg functions (functions which are continuous from the right with left hand limits)

from [0, T ] into Rm by D([0, T ],Rm) ie Xt ∈ D([0, T ] ,Rm) if

Xt = lim
s↘t

Xs = Xt+ and lim
s↗t

Xs = Xt− exist in Rm.

For define the M1 metric in D([0, T ],Rm), we need to define the completed graphs of

the càdlàg function X by

GX = {(z, t) ∈ Rm × [0, T ] \ z ∈ [Xt−, Xt]} ,
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where denote by [Xt−, Xt] the segments between points Xt−, Xt ∈ Rm i.e.,

[Xt−, Xt] = {z ∈ Rm/z = αXt− + (1− α)Xt for α ∈ [0, 1]}

In fact Xt− could be bigger than Xt. Hence the segments [Xt−, Xt] is the column that

connects Xt− and Xt for all discontinuity points t, we denote by

Disc (X) = {t ∈ [0, T ] \Xt 6= Xt−} ,

the set of discontinuous points of X,.this set is either finite or countably infinite (see

the Corollary 12.2.1 In [47]).

Remark A.1.1 In Whitt (rf: [47]): for Xt ∈ D([0, T ],Rm) that are left-continuous at time T,

and there in, the piecewise constant functions use for approximating càdlàg functions on [0, T ]

are precisely assumed to be continuous at terminal time T (see the Theorem 12.2.2).

We now define order relations on the complete graph, for any (z1, t1) , (z2, t2) ∈ GX we

say that (z1, t1) ≤ (z2, t2) if either (1) or (2) where:

(1) t2 > t1,

(2) t2 = t1 and |Xt1− − z1| ≤ |Xt1− − z2| .

In other words, this relationship ensures that the normal order of GX is from left to

right (ascending order). We now define parametric representation on the complete

graph. A parametric representation of X is a continuous non decreasing function (r, e)
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mapping [0, T ] into GX i.e.

(r, e) : t ∈ [0, T ] −→ (r (t) , e (t)) ∈ GX ,

where (r, e) ∈ C([0, T ],Rm)2. We define RX as the set of all parametric representations

of GX .

Now we define the M1 distance between X1, X2 ∈ D([0, T ],Rm) by

dM1 (X1, X2) = inf
(ri,ei)∈RX i=1,2

max [‖e1 − e2‖ , ‖r1 − r2‖] ,

where ‖.‖ is the usual uniform norm on C([0, T ],Rm). We now define oscillation func-

tions that we will use with the M1 topologies, for give characterizes of M1 convergence

where for X ∈ D([0, T ],Rm), t ∈ [0, T ] and δ > 0 we have

wT (X, t, δ) = sup
min(t+δ,T )≥t3>t2>t1≥max(t−δ,0)

‖Xt2 − [Xt1 , Xt3 ]‖ , (1.1)

where ‖Xt2 − [Xt1 , Xt3 ]‖ is distance between a point Xt2 and a subset [Xt1 , Xt3 ] in Rm

defined dy

‖Xt2 − [Xt1 , Xt3 ]‖ = inf
z∈[Xt1 ,Xt3 ]

|Xt2 − z|

= inf
α∈[0,1]

|Xt2 − αXt1 + (1− α)Xt3 | .

Now we review some of the results of sequences convergence of what and tightness

in D([0, T ],Rm) that endowed with the Skorokhod M1 topology, for more information

(see [47], Chapter (12)), Now we start with the following result:
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Theorem A.1.2 The family of the functions (Xn)n≥0 ⊂ D([0, T ],Rm) converges to X ∈

D([0, T ],Rm) in the M1 topology if and only if Xn
t converges to Xt for each t ∈ Disc (X)

c a

dense subset of [0, T ] that includes 0 and T , and

lim
δ−→0

lim sup
n−→∞

sup
0≤t≤T

wT (X, t, δ) = 0.

Theorem A.1.3 If the sequence (Xn)n≥0 ⊂ D([0, T ],Rm) is converges to X in D([0, T ],Rm)

endowed with the M1 topology.then for all t ∈ [0, T ] points continuation of X it holds that

lim
δ−→0

lim sup
n−→∞

sup
min(t+t,T )≥t≥max(t−δ,0)

|Xn
t −Xt| .

Remark A.1.4 i) If X is continuous on the interval [0, T ] then the convergence of (Xn)n≥0 by

the M1 topology is equivalent of the uniform convergence (That’s true for each t /∈ Disc (X)).

ii) If D([0,∞) ,Rm) so the sequence (Xn)n≥0 converges to X in D([0,∞) ,Rm) if and only if

the restrictions of Xn in [0, T ] converge to the restriction of X to [0, T ] in D([0, T ],Rm) for

all T > 0 that are continuity points of X (see [47], Chapter (3)).

Now we define

υT (X, t, δ) = sup
min(t+δ,T )≥t2≥t1≥max(t−δ,0)

|Xt1 −Xt2 | ,

for the following result:

Theorem A.1.5 Let subsetK ⊂ D([0, T ],Rm) is relatively compact in D([0, T ],Rm) endowed

with the M1 topology if and only if

sup
Xt∈K

‖Xt‖ ≤ C,
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such that C ≥ 0 finite strictly and

lim
δ−→0

sup
Xt∈K

max

[(
sup

0≤t≤T
wT (X, t, δ)

)
, υT (X, 0, δ) , υT (X,T, δ)

]
= 0. (1.2)

Remark A.1.6 If X have jumps at 0 and T then we replace the condition (1.6.2) by

lim
δ−→0

sup
Xt∈K

[
sup

0≤t≤T
wT (X, t, δ) + wT (X, 0, δ) + wT (X,T, δ)

]
= 0,

where 
wT (X, 0, δ) = supδ≥t>s≥0 ‖Xs − [X0, Xt]‖ ,

wT (X,T, δ) = supT+δ≥t>s≥T ‖Xs − [XT , Xt]‖ .

We have known that (D([0, T ],Rm),+) is not topological group because addition is

not continuous everywhere in [0, T ], and for this we show that it is continuous almost

everywhere, and it is measurable so we offer the following results:

Lemma A.1.7 The Borel σ-field on D([0, T ],Rm) coincides with the Kolmogorov σ-field.

Remark A.1.8 This result allows that the law of a process in D([0, T ],Rm) endowed with the

M1 topology, is characterized by its finite dimensional distributions, where the Kolmorogov σ-

field, is generated by the projection.

Now we offer a condition for addition to be continuous

Corollary A.1.9 Let (Xn)n≥0 and (Y n)n≥0 two sequences, if dM1 (Xn, X) converge to 0 and

dM1 (Y n, Y ) converge to 0 in D([0, T ],Rm) and

Disc (X) ∩Disc (Y ) = ∅,
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then dM1 (Xn + Y n, X + Y ) converge to 0 in D ([0, T ],Rm) .

The proposition shows that the M1 convergence for two sequences by the addition

operation hold if two limits do not jump at the same time.

A.2 The Meyer-Zheng topology

The Meyer-Zheng topology, introduced in [43] is a the image measures on graphs

(t,Xt)0≤t≤T of trajectories Xt under the measure λ (t) = exp (−t) dt called pseudo-

paths, let Xt : t ∈ R+ → (t,Xt) ∈ R+ × Rm

∫
R+

f (Xt)λ (dt) =

∫
R+×Rm

f (Xt)λXt (dt) ,

where ∀A ∈ B (R+ × Rm) , ∃B ∈ B (R+) such that λXt (B) = λ
(
X−1
t (A)

)
, induced by

the weak topology on probability laws on compactified space [0,∞]× R̄m. Thus it pro-

vides us with an imbedding ofD([0, T ],Rm) into the compact Polish spaceP
(
[0,∞]× R̄m

)
of all the probabilities on [0,∞]× R̄m (with the topology of weak convergence). The as-

sociated Borel σ-algebra onD([0, T ],Rm) is the same one that we get from the Skorohod

topology. The Meyer-Zheng topology on the Skorokhod space D([0, T ],Rm) generated

by the convergence in measure.

Definition A.2.1 The topology MZ on D(I,Rm), where I = [0, T ] or R+, is the topology
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generated by the convergence

∫
I

f (t,Xn
t )λ (dt)→

∫
I

f (t,Xt)λ (dt) , ∀f ∈ Cb (I × Rm)

The space D ([0, T ],Rm) with the pseudo-path topology, is not a Polish space. But from

the definition we know that it is homeomorphic to a subspace of the Polish space

P
(
[0,∞]× R̄m

)
, and hence is a separable metric space. Let (Ω,F , (Ft)t≥0 , P ) be a

filtered probability space, we define the conditional variation of Y ∈ D([0, T ],Rk) over

the interval [0, T ] as follows

V C (Y ) = supE

[∑
k

∣∣E (Ytk+1
− Ytk�Ftk

)∣∣] ,
for all the subdivision 0 = t0 < t1 < ... < tn = T, n ∈ N. The process Y is call

quasimartingale if CV (Y ) < +∞.

Corollary A.2.2 Let subsetK ⊂ D([0, T ],Rm) is relatively compact inD([0, T ],Rm) endowed

with the pseudo-path topology then

sup
X∈K

‖X‖ < +∞,

and for each a < b

sup
X∈K

Na,b (X) < +∞,

where Na,b (X) is the number of up-crossings for each a < b (see p 358, in [43]).

Convergence of sequences in this topology is just the convergence in Lebesgue mea-
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sure. This topology is not suitable for the “functional convergence” of stochastic pro-

cesses. However, as a weak topology it can be and it is used in existence problems,

due to easy-to-check compactness criteria. Now we offer Meyer-Zheng convergence

naturally in the context of the following criteria of compactness

Lemma A.2.3 Let (Y n)n≥0 be a sequence of processes on the space D([0, T ],Rk), such that:

sup
n
V C (Y n) <∞,

then (PY n)n≥0 is tight in P
(
D([0, T ],Rk)

)
.

A.3 The Jakubowski topology

Has been introduced a first time in 1997 on the hands of Jakubowski [31], in fact

this topology is weaker than the Skorokhod M1 topology as will be explained in this

section and his advantage lies in ease the tightness criteria, which presented by both of

the Meyer & Zheng [43].

In this section, we will provide some results about S-topology and associated effects

in D([0, T ],Rm) finally we conclude with the relationship between M1 and S-topology,

and we refer to original paper see.[31] for detailed of the definition and properties of S-

convergence. Now we offer S-topology naturally in the context of the following criteria

of compactness.
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Definition A.3.1 A subset K ⊂ D([0, T ],Rm), we say that K is S-Closed (Closed in S-

topology) if for any (Xn)n≥0 ⊂ K we have Xn S-convergence to X with X ∈ K.

Definition A.3.2 The family (Xn)n≥0 ⊂ D([0, T ],Rm), we say that is convergent in distri-

bution if for any subsequence (Xnk)k≥0 we can find a further subsequence (Xnki )i≥0 admits a

strong a.s. Skorohod representation.

Lemma A.3.3[The a.s. Skorokhod Representation] Let (D,S) be a topological space on

which there exists a countable family of S-continuous functions separating points in X . Let

(Xn)n≥0 be a uniformly tight sequence of laws on D. In every subsequence (Xnk) one can find

a further subsequence (Xnki ) and stochastic processes
(
Y k
)

defined on ([0, T ], B[0,T ], l) such

that

the laws of Xnki and Y k coincide for k = 0, 1, 2, ..., (1.3)

Y k (ω) −→ Y 0 (ω) , as k →∞, (1.4)

and for each ε > 0 there exists an S-compact subset Kε ⊂ D such that

P
(
ω ∈ [0, T ] : Y k (ω) ∈ Kε, k = 0, 1, 2, ...,

)
> 1− ε. (1.5)

One can say that (1.4) and (1.5) describe “the almost sure convergence in compacts”

and that (1.3)− (1.5) define the strong a.s. Skorokhod representation for subsequences

(“strong” because of condition (1.5)).
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Proposition A.3.4 Let subset K ⊂ D([0, T ],Rm) is relatively compact in D([0, T ],Rm) en-

dowed with the S-topology then

sup
X∈K

‖X‖ < +∞,

and for each a < b

sup
X∈K

Na,b (X) < +∞,

where Na,b (X) is the number of up-crossings for each a < b see [31] and [43].

Remark A.3.5 Xn converge to X in S-topology if, and only if, in each subsequence Xnk one

can find a further subsequence Xnkl S-convergence to X.

Lemma A.3.6 Let the family (Xn)n≥0in D([0, T ],Rm) we say that Xn S-convergence to X If

we find a subsequence (Xnk)k≥0 and countable set D ⊂ [0, T ] such that
Xnk −→ X for all t ∈ Dc = [0, T ]�D,

and Xn
T −→ XT for t = T.

Remark A.3.7 i) The set D it is a union of the discontinuity points of the signed measure on

([0, T ], B ([0, T ])) see [Jakubowski p 8].

ii) The projection πT : y ∈ (D([0, T ],Rm), S) −→ πT (y) = y (T ) ∈ Rm is continuous (see

Remark (2.4), p. 8 in [31]), but y −→ y (t) is not continuous for each 0 ≤ t ≤ T .

This topology is weaker than the Skorokhod topology and the tightness criteria are

easier to establish. This criteria is the same as that of the Meyer and Zheng topology.

We recall some facts about the S-topology.
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Proposition A.3.8[A criteria for S-tight] A sequence (Y n)n>0 is S-tight if and only if it is

relatively compact on the S-topology.

Proposition A.3.9 Let (Y n)n>0 be a family of stochastic processes in D([0;T ];Rm). Then this

family is tight for the S-topology if and only if (‖Y n‖)n and
(
Na,b(Y n)

)
n

are tight for each

a < b.

We recall (see Meyer & Zheng [43] and Jakubowski [31],[32]) that for a familly (Y n)n of

quasi-martingales on the probability space
(

Ω, {Ft}0≤t≤T , P
)
, the following condition

insures the tightness of the familly (Y n)n on the space D ([0, T ] ;Rm) endowed with the

S-topology

sup
n

(CV (Y n)) < +∞,

where the conditional variation of Y on [0, T ], and is defined by

CV (Y n) = supE

[∑
i

∣∣E (Y nti+1 − Y nti | F
n
ti

)∣∣] .
Proposition A.3.10 Let (Y n, Mn) be a multidimensional process inD([0, T ]; Rm) converging

to (Y, M) in the S-topology. Let (FY nt )t≥0 (resp. (FYt )t≥0) be the minimal complete admissi-

ble filtration for Y n (resp.Y ). We assume that sup
n
E
[
sup0≤t≤T |Mn

t |2
]
< CT ∀T > 0, Mn is

a FY n-martingale and M is a FY -adapted. Then M is a FY -martingale.

Proposition A.3.11 Let (Y n)n>0 be a sequence of processes converging weakly inD([0, T ]; Rm)

to Y . We assume that sup
n
E
[
sup0≤t≤T |Y nt |2

]
< +∞. Hence, for any t ≥ 0, E

[
sup0≤t≤T |Yt|2

]
<

+∞.
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Now the relationsbhip between M1 and S-topology come in context of the following

result

Theorem A.3.12 The M1 topology is stronger than the S-topology hence a setA ⊂ D([0, T ],Rm),

which is relatively M1 compact is also relatively S compact.

Lemma A.3.13 Let X ∈ D([0, T ],Rm), then for each 0 ≤ a < b ≤ T we have if (b− a) >

2d [a, b]

Na,b (Xt) ≤ Nb−a (Xt) ≤
|Xa −Xb|+ d [a, b]

(b− a)− d [a, b]

where d [a, b] = supb≥t3>t2>t1≥a ‖Xt2 − [Xt1 , Xt3 ]‖ , andNb−a (Xt) is the number of (b− a)-

oscillations of Xt in the interval [a, b] .

That the topology M1 and S is suitable for the needs of the theory of limit for random

functions in D([0, T ],Rm). He admits even such effective tools as Prohorov theories

are valid. There is a Skorohod representation and finite dimensional convergence out-

side a countable set see original paper for Jakubowski and Billingsley (see [31] and [16]

Chapter (1)).
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In this thesis, we have investigated about two results on the existence of optimal re-

laxed controls as well as strict optimal controls of an stochastic optimal control prob-

lems, by using probabilistic effective tools. In the first part, we treating a singular

control problem for systems of forward-backward stochastic differential equations of

mean-field type (MF-FBSDEs). The ingredients used in the proof of this result is based

on tightness results of the distributions of the processes defining the singular control

problem and the Skorokhod representation theorem on the space of càdlàg functions,

endowed with the Jakubowski S-topology. The assumptions on the coefficients which

depend on the stats of the solution processes as well as their distribution via the expec-

tation of some function, are made to ensure weak convergence of the processes under

consideration and the corresponding cost functional which is also of mean-field type.

In the same context, we can reformulate the control problem by using the Jakubowski

S-topology for the space of Y q,ξ and we replaced the topology of uniform convergence

for the space of Xq,ξ by M1 topology of the Skorokhod induced by the metric dM1,
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which considered stronger than S-topology, which is defined using the concept of local

uniform convergence at all points of continuity. Under the same assumptions one can

conclude that our main result remains correct, despite the various effects associated

with the M1 topology in D (0, T ;Rm).

In this part we assume that the initial and the terminal time are continuous points

of Xq,ξ, Y q,ξ ∈ D (0, T ;Rm) . But it’s natural to accepted jumps at initial and termi-

nal time, this discontinuity of Xq,ξ, Y q,ξ at the terminal time T and initial time 0(
ie: Xq,ξ

T 6= Xq,ξ
T−, and Y q,ξ0 6= Y q,ξ0−

)
, it is the reason for defining the cost function in

this case without initial and terminal cost because, the convergence cannot be guaran-

teed in the M1 topology at terminal time where he is equivalent of the uniform conver-

gence for each t /∈ Disc (X) , on the other hand the convergence of Y q
n,ξn

0 to Y q,ξ0 is not

ensured with respect to the S-topology. But, we can calculate the value of Y q,ξ0 from the

fact that

Y q
n,ξn

0 = Yq
n,ξn

0 +
∫ T

0
ϕsdξ

n
s converges to

Y q,ξ0 = Yq,ξ0 +
∫ T

0
ϕsdξs as n tends to∞.

This result assured by sequential continuity of the addition, with respect to the S-

topology (see [31] Remark (3.12)), despite that the space of càdlàg functions endowed

with S-topology is not a linear topological space. So by Skorokhod’s representation

theorem the sequence Y q
n,ξn

0 converges in distribution to Y q,ξ0 .

In the second part, we deal with a forward-backward doubly stochastic differential
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equations (FBDSDEs), where the coefficients depend onX and Y, but not on the second

variable Z, with an uncontrolled diffusion coefficient. We use Jakubowski S-topology

and a suitable version of the Skorokhod theorem to prove the main result. Under some

additional convexity assumption, we show that the relaxed optimal control, is in fact

as a strict control.
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