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Introduction

In this thesis, we are interested in optimality necessary conditions for control prob-lems of systems evolving according to the stochastic di¤erential equation

dx (t) = b (t; x (t) ; u (t)) dt+ � (t; x (t) ; u (t)) dWt; x(0) = x0

on some �ltered probability space (
;F ; (Ft)t; P ), where b and � are deterministic func-

tions, (Wt; t � 0) is Brownian motion, x0 is the initial state and u (t) stands for the control

variable. Our control problem consists in minimizing a cost functional of the form

J(u) = E

�Z 1

0

h (t; x (t) ; u (t)) dt+ g(x (1))

�
;

over the class U of admissible controls, that is adapted processes, with values in some

compact metric space A, called the action space.

Let us �rst speak quickly about the optimization problems. One of the principal

approaches in solving optimization problems is to derive a set of necessary conditions

that must be satis�ed by any optimal solution. For example, in obtaining an optimum of

a �nite-dimensional function, one relies on the zero-derivative condition (for the uncon-

strained case) or the Kuhn-Tucker condition (for the constrained case), which are necessary

conditions for optimality. These necessary conditions become su¢ cient under certain con-

vexity conditions on the objective/constraint functions. But in the problems of optimal

control, it become an optimization problems in in�nite-dimensional spaces; therefore these
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Introduction

problems are substantially di¢ cult to solve.

A control �u is called optimal if it satis�es

J(�u) = inf fJ(u); u 2 Ug :

If, moreover, �u is in U , it is called strict. Existence of such a strict control or an optimal

control in U follows from the convexity of the image of the action space by the map

(b(t; x; :); �2(t; x; :); h(t; x; :)) ; called the Filipov-type convexity condition, see [13, 23, 27,

37, 43]. Without this convexity condition an optimal control does not necessarily exist

in U , this set is not equipped with a compact topology. The idea is then to introduce a

larger class R of control processes, in which the controller chooses at time t a probability

measure qt(da) on the control set U , rather than an element ut 2 U . These are called

relaxed controls and have a richer topological structure, for which the control problem

becomes solvable and the SDE will have the form

dx (t) =

Z
A

b (t; x (t) ; a) qt(da)dt+

Z
A

� (t; x (t) ; a)M (da; dt) ; x(0) = x0;

where M(da; dt) is an orthogonal continuous martingale measure, whose intensity is the

relaxed control qt(da)dt, and his corresponding cost is given by

J(q) = E

�Z 1

0

Z
A

h (t; x (t) ; a) qt(da)dt+ g(x (1))

�
:

The relaxed control problem �nds its interest in two essential points. The �rst is that

an optimal solution exists. Fleming [27] derived an existence result of an optimal relaxed

control for systems with uncontrolled di¤usion coe¢ cient. The existence of an optimal

solution, where the drift and the di¤usion coe¢ cients depend explicitly on the relaxed

control variable, has been solved by El Karoui et al.[23], see also [37, 36]. The relaxed

optimal control in this general case is shown to be Markovian. See also [10] for an altern-

2



Introduction

ative proof of the existence of an optimal relaxed control based on Skorokhod selection

theorem.

The second advantage of the use of relaxed controls is that it is a generalization of the strict

control problem, in the sense that both control problems have the same value function.

Indeed, if qt(da) = �ut(da) is a Dirac measure charging ut for each t, we get a strict control

as a particular case of the relaxed one.

Motivated by the existence of an optimal relaxed control, various versions of the

stochastic maximum principle have been proved. The �rst result in this direction has

been established in [51], where a stochastic maximum principle for relaxed controls, in the

case of uncontrolled di¤usion coe¢ cient has been given by using the �rst order adjoint

process (see also [9] the extension to singular control problems). The case of a controlled

di¤usion coe¢ cient has been treated in [10], by using Ekeland�s variational principle and

an approximation scheme, by using the �rst and second order adjoint processes. Let us

point out that a di¤erent relaxation has been used in [3, 1], where the drift and di¤usion

coe¢ cient have been replaced by their relaxed counterparts. Their relaxed state process

is linear in the control variable and is di¤erent from ours, in the sense that in our case we

relax the in�nitesimal generator instead of relaxing directly the state process. Then, we

obtain a maximum principle of the Pontryagin type.

The maximum principle of Pontryagin type is formulated and derived by the Russian

mathematician Lev Pontryagin and his students in the 1950s. This principle used in op-

timal control theory, he is truly a milestone of optimal control theory. He �nd that any

optimal control along with the optimal state trajectory must solve the so-called Hamilto-

nian system, it can also be called a forward-backward di¤erential equation, where we

can compare it with the stochastic case, a maximum condition of a function called the

Hamiltonian. Its proof is historically based on maximizing the Hamiltonian. The initial

application of this principle was to the maximization of the terminal speed of a rocket.

However, as it was subsequently mostly used for minimization of a performance index it
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Introduction

has here been referred to as the minimum principle. The mathematical signi�cance of

the maximum principle lies in that maximizing the Hamiltonian is much easier than the

original control problem that is in�nite-dimensional. Another approach of the Pontryagin

type is a Peng-type.

The aim of the present this work is to obtain a Peng-type general stochastic max-

imum principle for relaxed controls, using directly the spike perturbation. Our method

di¤ers from the one used in [10], in the sense that we don�t use neither the approximation

procedure nor Ekeland�s variational principle. We use a spike variation method directly

on the relaxed optimal control. Then, we derive the variational equation from the state

equation and the variational inequality from the inequality

J
�
q�
�
� J (q) � 0:

As for strict controls, the �rst order expansion of J
�
q�
�
is not su¢ cient to obtain a

necessary optimality condition. One has to consider the second-order terms (with respect

to the state) in the expansion of J
�
q�
�
� J (q). Although the second-order terms are

quadratic with respect to the state variable, a so called second-order variational equation

and second-order variational inequality are introduced. By using a suitable predictable

representation theorem for martingale measures [55], we obtain the corresponding �rst and

second-order adjoint equations, which are linear backward stochastic di¤erential equations

driven by the optimal martingale measure. This could be seen as one of the novelties of

this work.

This thesis is organized as follows. In the �rst chapter, we begin by given a de�nition

and basic properties of martingale measures and we look about examples of martingale

measures, then we go to in important result which is the representation of martingale

measures, where we can discover that the intensity of martingale measures can be decom-

pose, and the construction of martingale measures, without forget the representation of
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vector martingale measures. Finally, we set two essentially results, which are the stabil-

ity theorem for martingale measures and the approximation by the integral of Brownian

motion, which they have big applications, since we set here a famous lemma Known by

the name of chattering lemma. Let us point out that in this work, we interest exactly to

orthogonal continuous martingale measures.

In the second chapter, we are interesting to give the general stochastic maximum prin-

ciple for control problems, and we refer the interested reader to the famous references Peng

[56], Young Zho [60]. Here we have �rst state of the stochastic maximum principle, which

contain the adjoint equations, maximum principle and stochastic Hamiltonian systems,

then we go to the proof of the maximum principle which is rather lengthy and technical,

we need Taylor expansions and duality analysis, then the completion of the proof.

In the last chapter, we present our result which is the generalization of the second

chapter result in the case that here we have stochastic di¤erential equations driven by

orthogonal martingale measures. But before this, may we speak about the cases which

lead to relax our problem, for this we begin by setting the control problemwhich decompose

to the strict control problem and relaxed control problem, then we present a predictable

representation for martingale measures and a representation of relaxed control problems.

Finally, present our main result. We obtain a maximum principle of the Pontriagin type

for relaxed controls, extending the well known Peng stochastic maximum principle to the

class of measure-valued controls.
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Chapter 1

Martingale measures and basic

properties

Martingale measure theory was introduced by JB Walsh in 1984 [59]. The idea

was to construct a stochastic calculus for two parameter "space-time" processes

having a martingale property in the time variable and a measure property in space. Mar-

tingale measure arise in the representation of processes whose quadratic variation is the

integral of a space-time function.

1.1 De�nition and basic properties of martingale meas-

ures

Considering set functions on Rdu1 with all coordinates treated symmetrically, we choose

one coordinate to be the "time" and the other coordinates to be the "space".

Let us begin with some remarks on random set functions and vector-valued measures. Let

(E; E) a Lusin space, i.e a measurable space homeomorphic to a Borel subset of the line.

(this includes all Euclidean space and, more generally, all Polish spaces).

6



Chapter 1. Martingale measures and basic properties

We consider a function U (A; !) de�ned on A�
, where A is a subring of E which satis�es

kU(A)k22 = E
�
U(A)2

�
<1; 8A 2 A:

Suppose that U is �nitely additive

if A \B = ?) U(A) + U(B) = U(A [B) a.s. 8A and B in A:

In most interesting cases U will not be countably additive if we consider it as a real-valued

set function. However, it may become countably additive if we consider it as a set function

with values in L2(
;F ; P ): Let kU(A)k2 = E [U(A)2]
1
2 be the L2-norm of U(A).

We will say that the map U is �-�nite when there exists an increasing sequence (En) of

E such that

1.
[
n

E = E;

2. 8n; En = EjEn � A;

3. sup fkU(A)k2 ; A 2 Eng <1:

De�ne a set function � by

�(A) = kU(A)k22 :

A �-�nite additive set function U is countably additive on En (as an L2-valued set function)

i¤

Aj 2 En;8n;Aj # ?) lim
j!1

�(Aj) = 0: (1.1)

If U is countably additive on En, 8n; we can make a trivial further extension: if A 2 En,

set U(A) = lim
n!1

U (A \ En) if the limit exists in L2; and let U(A) be unde�ned. This

leaves U unchanged on each En, but may change its values on some sets A 2 E which are

not any En: We will assume below that all our countably additive set functions have been

extended in this way. We will say that such a U is �-�nite L2-valued measure.

7



Chapter 1. Martingale measures and basic properties

De�nition 1.1.1 Let (
;F ; (Ft)t�0; P ) be a �ltered probability space satisfying the usual

condition ( El Karoui et Méleard [22]). fMt (A) ; t = 0; A 2 Ag is a Ft�martingale meas-

ure if and only if

1) M0 = 0; 8A 2 A

2) fMt (A) ; t = 0g is a F t-martingale, 8A 2 A

3) 8t > 0;Mt(:) is a L2-valeud �-�nite measure.

Remark 1.1.1 When we integrate over dx for �xed t- this is the Bochner integral- and

over dt for �xed sets A - this is the Ito integral. The problem facing us now is to integrate

over dx and dt at the same time.

There are two rather di¤erent classes of martingale measures which have been popular,

orthogonal martingale measures and martingale measures with a nuclear covariance.

De�nition 1.1.2 A martingale measure M is orthogonal if, for any two disjoint sets A

and B in A, the martingales fMt (A) ; t � 0g and fMt (B) ; t � 0g are orthogonal.

Equivalently,M is orthogonal if the productMt (A)Mt (B) is a martingale for any two dis-

joint sets A and B. This is in turn equivalent to having hM (A) ;M (B)it, the predictable

process of bounded variation, vanish.

De�nition 1.1.3 A martingale measure M has nuclear covariance if there exists a �nite

measure � on (E; E) and a complete ortho-normal system (�k) in L2 (E; E ; �) such that

� (A) = 0) � (A) = 0 for all A 2 E and

X
k

E
�
Mt(�k)

2
�
< 0

where Mt(�k) =
R
�k (x)Mt(dx) is a Bochner integral.

8



Chapter 1. Martingale measures and basic properties

1.1.1 Worthy Measures

Unfortunately, it is not possible to construct a stochastic integral with respect to all

martingale measures, so we will need to add some conditions. There are rather strong,

and, though su¢ cient, are doubtless not necessary. However, they are satis�ed for both

orthogonal martingale measures and those with a nuclear covariance.

Let M be a �-�nite martingale measure. By restricting ourselves to one of the En, if

necessary, we can assume that M is �nite. We shall also restrict ourselves to a �xed time

interval [0; T ].

De�nition 1.1.4 The covariance function of M is

�Qt (A;B) = hM (A) ;M (B)it :

Note that �Qt is symmetric in A and B and biadditive: for �xed A, �Qt (A; :) and �Qt (:; A)

are additive set function. Indeed, if B \ C = ?,

�Qt (A;B \ C) = hM (A) ;M (B) +M (C)it
= hM (A) ;M (B)it + hM (A) ;M (C)it
= �Qt (A;B) + �Qt (A;C) :

Moreover, by the general theory,

�� �Qt (A;B)�� � Qt (A;A)
1=2Qt (B;B)

1=2 :

A set A�B � (s; t] � E �E �R+ will be called a rectangles. De�ne a set function Q on

rectangles by

Q (A�B � (s; t]) = �Qt (A;B)� �Qs (A;B) ;

and extend Q by additivity to �nite disjoint unions of rectangles, i.e. if Ai � Bi � (si; ti]

9



Chapter 1. Martingale measures and basic properties

are disjoint, i = 1; :::; n set

Q

 
n[
i=1

Ai �Bi � (si; ti]
!
=

nX
i=1

�
�Qti (Ai; Bi)� �Qsi (Ai; Bi)

�
:

De�nition 1.1.5 A signed measure K (dx; dy; ds) on E � E � B is positive de�nite if for

each bounded measurable function f for which the integral makes sense,

Z
E�E�R+

f (x; s) f (y; s)K (dx; dy; ds) � 0:

For such a positive de�nite signed measure K, de�ne

(f; g)K =

Z
E�E�R+

f (x; s) g (y; s)K (dx; dy; ds) � 0:

Note that (f; f)K � 0 by the last inequality.

We are led to the following de�nition.

De�nition 1.1.6 A martingale measure M is worthy if there exist a random ���nite

measure K (�; w), � 2 E � E � B, w 2 
, such that

i) K is positive de�nite and symmetric in x and y,

ii) for �xed A, B, fK (A�B � (0; t]) ; t � 0g is predictable,

iii) for all n, E fK (En � En � (0; T ])g <1,

iv) for any rectangle �, jQ (�)j � K (�).

We call K the dominating measure of M .

10



Chapter 1. Martingale measures and basic properties

Remark 1.1.2 1. The requirement that K be symmetric is no restriction see [59] for

more detaile.

2. Both orthogonal martingale measures and those with nuclear covariance are worthy.

But, we will show it below only for orthogonal martingale measures.

IfM is worthy with covariance Q and dominating measure K, then K+Q is a positive set

function. The ���eld E is separable, so that we can �rst restrict ourselves to a countable

subalgebra of E � E � B upon which Q (:; w) is �nitely additive for a.e. w. Then K + Q

is a positive �nitely additive set function by the measure 2K, and hence can be extended

to a signed measure on E � E�B, and the total variation of Q satis�es

jQj (�) � K (�)

for all E � E � B.

Let

4 (E) = f(x; x) : x 2 Eg ;

be the diagonal of E.

Proposition 1.1.1 A worthy martingale measure is orthogonal i¤ Q is support by 4 (E)� R+ :

Proof. Q (A�B � (0; t]) = hM (A) ;M (B)it :

If M is orthogonal and A \B = ?, this vanishes hence

jQj [(A�B �4 (E))� R+] = 0;

i.e. sup pQ � 4 (E) � R+: Conversely, if this vanishes for all disjoint A and B, M is

evidently orthogonal.

De�nition 1.1.7 If M is a martingale measure and if, moreover, for all A of A, the map

t!Mt (A) is continuous, we will say that M is continuous.

11



Chapter 1. Martingale measures and basic properties

We can associate with each set A of A the increasing process hM (A)i of the martingale

fMt (A) ; t = 0g. The process can be regularized in a positive measure on R+ � E, in the

following sense

Theorem 1.1.1 (Walsh [59]) If M is a Ft�orthogonal martingale measure, there exists

a random �-�nite positive measure �(ds; dx) on R+ � E; Ft�predictable, such that for

each A of A the process (� ((0; t]� A))t is predictable, and satis�es

8A 2 A;8t > 0; � ((0; t]� A) = hM(A)it P-a.s.

If M is continuous, � is continuous. The measure � is called the intensity of M .

Remark 1.1.3 1) We have

8A;B 2 A;8t > 0; hM(A);M(B)it = hM(A \B)it = � ((0; t]� A \B) P-a.s.

The measure � characterizes thus completely all quadratic variations of the orthogonal

martingale measure M .

2) In the following, measures on R+ � E are positive and �-�nite.

1.1.2 Stochastic integrals

Let M be a worthy martingale measure on the Lusin space (E � E) ; and let QM and KM

be its covariation and dominating measures respectively. This de�nition of the stochastic

integral may look unfamiliar at �rst, but it merely following Ito�s construction in a di¤erent

setting.

In the classical case, one constructs the stochastic integral as a process rather than as a

random variable. That is, one construct
�Z t

0

fdW; t � 0
�
simultaneously for all t, one

can then say that the integral is a martingale, for instance. The analogue of "martingale"

12



Chapter 1. Martingale measures and basic properties

in this setting is "martingale measure". According, they de�ne this stochastic integral as

a martingale measure.

Recall that we are restricting ourselves to a �nite time interval (0; T ] and to one of the En,

so that M is �nite. As usual, they �rst de�ne the integral for elementary functions, then

for simple functions, and then for all functions in a certain class by a functional completion

argument.

De�nition 1.1.8 (Walsh [59]) A function f (x; s; w) is elementary if it is of form

f (x; s; w) = X (w) 1(a;b] (s) 1A (x) ;

where 0 � a < t, X is bounded and Fa-measurable, and A 2 E. f is simple if it is a �nite

sum of elementary function. We denote the class of simple function by S.

De�nition 1.1.9 The predictable �-�eld P on 
�E �R+ is the �-�eld generated by S.

A function is predictable if it is P-measurable.

They de�ne a norm k:kM on the predictable functions by

kfkM = E f(jf j ; jf j)Kg
1=2 :

Note that they have used the absolute value of f to de�ne kfkM 0 so that

(f; f)Q � kfk
2
M :

Let PM be the class of all predictable f for which kfkM <1.

Proposition 1.1.2 Let f 2 PM and let A = f(x; s) : jf (x; s)j � �g. Then

E fK (A� E � [0; T ])g � 1

�
kfkM E fK (E � E � [0; T ])g :

13



Chapter 1. Martingale measures and basic properties

Proof.

�E fK (A� E � [0; T ])g � E
�R
jf (x; t)jK (dx; dy; dt)

	
= E f(jf j ; 1)Kg

� E
n
(jf j ; jf j)1=2K K (E � E � [0; T ])

o
� kfkM E fK (E � E � [0; T ])g1=2

where we have used Schawartz�s inequality in two forms.

Proposition 1.1.3 S is dense in PM .

Proof. If f 2 PM , let

fN (x; s) =

8><>: f (x; s) if jf (x; t)j < N

0 otherwise
;

then

kf � fNkM = E

�Z
jf (x; s)� fN (x; s)j jf (y; s)� fN (y; s)jK (dx; dy; ds)

�

which goes to zero by monotone convergence. Thus the bounded functions are dense. If

f is bounded step function, i.e. if there exist 0 � t0 < t1 < ::: < tn such that t! f (x; t)

is constant on each (tj; tj+1), then f can be uniformly approximated by simple functions.

It remains to show that the step function are dense in the bounded functions.

To simplify our notation, let us suppose that K (E � E � ds) is absolutely continuous

with respect to Lebesgue measure. [ We can always make a preliminary time change to

assure this.] If f (x; s; w) is bounded and predictable, set

fn (x; s; w) = 2
�n
Z k2�n

(k�1)2�n
f (x; u; w) du if k2�n � s � (k + 1) 2�n;

�x w and x. Then fn (x; s; w)! f (x; s; w) for a.e. s by either the martingale convergence

theorem or Lebesgue�s di¤erentiation theorem. It follows easily that kf � fNkM ! 0.

14
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Now the integral can be constructed with a minimum of interruption. If

f (x; s; w) = X (w) 1(a;b] (s) 1A (x)

is an elementary function, de�ne a martingale measure f:M by

f:Mt (B) = X (w) (Mt^b (A \B)�Mt^a (A \B)) : (1.2)

Lemma 1.1.1 f:M is a worthy martingale measure. Its covariance and dominating meas-

ures Qf:M and Kf:M are given by

Qf:M (dx; dy; ds) = f (x; s) f (y; s)QM (dx; dy; ds) (1.3)

Kf:M (dx; dy; ds) = jf (x; s) f (y; s)jKM (dx; dy; ds) : (1.4)

Moreover

E
�
f:Mt (B)

2	 � kfk2M for all B 2 E ; t � T: (1.5)

Proof. f:Mt (B) is adapted since X 2 Fa; it is square integrable, and a martingale.

B ! f:Mt (B) is countably additive (in L
2 ), which is clear from (1.2): Moreover

f:Mt (B) f:Mt (C)�
Z
B�C�[0;t]

f (x; s) f (y; s)QM (dx; dy; ds)

= X2 [(Mt^b (A \B)�Mt^a (A \B)) (Mt^b (A \ C)�Mt^a (A \ C))

�hM (A \B) ;M (A \ C)it^b + hM (A \B) ;M (A \ C)it^a]

which is a martingale. This proves (1.3), and (1.4) follows immediately since Kf:M is

positive and positive de�nite. (1.5) then follows easily.

15
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We now de�ne f:M for f 2 S by linearity.

Suppose now that f 2 PM . By Proposition 1.1.3 there exist fn 2 S such that kf � fnkM ! 0 .

By (1.5), if A 2 E and t � T ,

E
�
(fm:Mt (A)� fn:Mt (A))

2	 � kfm � fnkM ! 0

as m;n!1. It follows that (fn:Mt (A)) is Cauchy in L2 (
;F ; P ), so that it converge in

L2 to a martingale which we shall call f:Mt (A). The limit is independent of the sequence

(fn).

Theorem 1.1.2 If f 2 PM , then f:M is a worthy martingale measure. It is orthogonal

if M is. Its covariance and dominating measures respectively are given by

Qf:M (dx; dy; ds) = f (x; s) f (y; s)QM (dx; dy; ds) ; (1.6)

Kf:M (dx; dy; ds) = jf (x; s) f (y; s)jKM (dx; dy; ds) : (1.7)

Moreover, if g 2 PM and A;B 2 E, then

hf:M (A) ; g:M (B)it =
Z
A�B�[0;t]

f (x; s) g (y; s)QM (dx; dy; ds) (1.8)

E
�
f:Mt (A)

2	 � kfk2M : (1.9)

Proof. f:M (A) is the L2 limit of the martingales fn:M (A), and is hence a square-

integrable martingale. For each n

fn:Mt (A) fn:Mt (B)�
Z
A�B�[0;t]

fn (x; s) fn (y; s)QM (dx; dy; ds) (1.10)

is a martingale. fn:Mt (A) and fn:Mt (B) each converge in L2, hence their product con-

16
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verges in L1. Moreover

E

�����Z
A�B�[0;t]

(fn (x; s) fn (y; s)� f (x; s) f (y; s))QM (dx; dy; ds)

�����
� E

�Z
E�E�[0;T ]

jfn (x)j jfn (y)� f (y)jKM (dx; dy; ds)

�
+E

�Z
E�E�[0;T ]

jfn (x)� f (x)j jf (y)jKM (dx; dy; ds)

�
� E f(jfnj ; jf � fnj)K + (jf � fnj ; jf j)Kg

� (kfnkM + kfkM) kf � fnkM ! 0

we use Schwartz in the last inequality. Thus the expression (1.10) converge in L1 to

f:Mt (A) f:Mt (B)�
Z
A�B�[0;t]

f (x; s) f (y; s)QM (dx; dy; ds)

which is therefore a martingale. The latter integral, being predictable, must therefore

equal hf:M (A) ; f:M (B)it, which veri�es (1.6), and (1.7) follows.

This see that f:Mt (A) is a martingale measure, we must check countable additivity. If

An � E; An # ?, then

E
�
f:Mt (An)

2	 � E

�Z
An�An�[0;t]

jf (x; s) f (y; s)jK (dx; dy; ds)
�

which goes to zero by monotone convergence.

If M is orthogonal, QM sits on 4 (E)� [0; T ], hence, by (1.6), so does Qf:M . Then, f:M

is orthogonal.

Now that the stochastic integral is de�ned as a martingale measure, we de�ne the usual

stochastic integral by Z
A�[0;t]

fdM = f:Mt (A)

and Z
E�[0;t]

fdM = f:Mt (E)

17
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while Z
fdM = lim

t!1
f:Mt (E) :

When it is necessary we will indicate the variables of integration. For instance

Z
A�[0;t]

f (x; s) dM (dx; ds) and
Z
A

Z
[0;t]

f (x; s) dMxs

both denote f:Mt (A).

It is frequently necessary to change the order of integration in iterated stochastic integrals.

Here is a form of stochastic Fubini�s theorem which will be useful.

Let (G;G; �) be a �nite measure space and letM be a martingale with dominating measure

K.

Theorem 1.1.3 Let f (x; s; w; �), x 2 E, s � 0, w 2 
, � 2 G be a P � G-measurable

function. Suppose that

E

�Z
E�E�[0;T ]�G

jf (x; s; w; �) f (y; s; w; �)jK (dx; dy; ds)� (d�)
�
<1:

Then

Z
G

�Z
E�[0;t]

f (x; s; �)M (dx; ds)

�
� (d�) =

Z
E�[0;t]

�Z
G

f (x; s; �)� (d�)

�
M (dx; ds) :

Proof. See Walsh [59]

18
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This property characterizes continuous orthogonal martingale measures, in the following

sense. From new, when we say martingale measures it means that we speak about ortho-

gonal continuous martingale measures.

Corollary 1.1.1 Let M be an orthogonal martingale measure on E and � (ds; dx) a ran-

dom continuous positive measure on R+�E. Then M is a continuous martingale measure

with intensity � if and only if

E

�
exp

�Z t

0

Z
E

f (s; x)M (ds; dx)� 1=2
Z
(0;t]�E

f 2 (s; x) � (ds; dx)

��
= 1

8f 2 L2v:
(1.11)

Proof. The condition is clearly necessary.

Conversely, let us consider f 2 L2v and the following function F

F (w; u; x) = �f (w; u; x)1]s;t] (u)1Gs (w) ;

where Gs 2 Fs, 0 5 s < t, � 2 R.

The condition (1.11) implies that

E

�
exp

�
�1Gs (Mt (f)�Ms (f))� 1Gs �

2

2

Z t

s

Z
E

f 2 (u; x) � (du; dx)

��
= 1 i.e

E

�
1Gs exp

�
� (Mt (f)�Ms (f))� �2

2

Z t

s

Z
E

f 2 (u; x) � (du; dx)

��
= P (Gs) :

Then, for f 2 L2v,Mt (f) is a continuous martingale with quadratic variation , according to

the result of Jacod and Memin [40] about the characterization of continuous martingales.
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1.2 Examples of martingale measures

1.2.1 Finite space

Let us suppose that E is a �nite space fa1; a2; :::; ang : A martingale measure is uniquely

determined by the n-orthogonal square integrable martingales (Mt (faig))ni=1.

Conversely, let m1
t ; :::;m

n
t be n-orthogonal martingales with increasing processes (C

i
t)
n
i=1 ;

then the mapping

Mt(A) =

nX
i=1

mi
t�faig(A)

de�nes a martingale measure on E with intensity dCit�faig(da); since

hM(da)it =
*

nX
i=1

mi
t�faig(da)

+
t

=
nX
i=1

�faig(da)


mi
t

�
t

=
nX
i=1

dCit�faig(da):

1.2.2 More generally

Proposition 1.2.1 Let E be a Lusin space and (us)s=0 an E-valued predictable process.

Let us consider moreover a square integrable martingalemt with quadratic variation process

Ct. Let

Mt (A) =

Z t

0

1A(us)dms; (1.12)

for A 2 E, then fMt (A) ; t = 0; A 2 Ag is a martingale measure with intensity equal to

�us(da)dCs. If m is continuous, M is continuous.

Conversely, all martingale measures with intensity �us(da)dCs are of the form (1.12), with

mt =Mt (E) :
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Proof. We get immediately that Mt is a martingale measure and

hM(da)it =
�Z t

0

1fdag(us)dms

�
=

Z t

0

�
1fdag(us)

�2
d hmis

=

Z t

0

1fdag(us)d hmis

=

Z t

0

�us(da)dCs

since 1A(us) =

8><>: 1 if us 2 A

0 if not
= �us(A); then the intensity of fMt (A) ; t = 0; A 2 Ag

is �us(da)dCs:

Conversely; let us study the di¤erenceMt (A)�Mt (f1E), A 2 E , where f (!; s) = 1A (us (!)) :

Let us remark that

Mt (f1E) =

Z
E

Z t

0

(1A(us)1E(us))M (da; ds) =

Z
E

Z t

0

1A\E(us)M (da; ds)

=

Z
E

Z t

0

1A(us)M (da; ds) =

Z t

0

1A(us)

Z
E

M (da; ds)

=

Z t

0

1A(us)M (E; ds) =

Z t

0

1A(us)dms;

because ms =Ms (E) and f is not depending on a.

Mt (A)�Mt (f1E) is a martingale with increasing process

hM (A)�M (f1E)it =
Z
E

Z t

0

(1A(us)� f(s))2 �us(da)dCs

=

Z t

0

�
1A(us)� 21A(us)f(s) + f 2(s)

�
dCs

=

Z t

0

(1A(us)� f(s))2 dCs = 0
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then

Mt (A) =Mt (f1E) =

Z t

0

1A(us)dms P � p:s

1.2.3 White noises

As the Brownian motion in the theory of continuous martingales, there exist fundamental

martingale measure: white noises. Let us consider a centered Gaussian measure W on

(R+ � E;B (R+)
 E ; �) ; where � is a positive ���nite measure on R+ � E, de�ned by

8h 2 L2�; E (expW (h)) = exp

�
1

2

Z
R+�E

h2 (y)� (dy)

�
: (1.13)

A construction of such a measure is given by Neveu [53]:

The process Bt (A) =W ((0; t]� A), de�ned for the state A 2 A which satisfy

� = ((0; t]� A) <1;8t > 0;

is then a Gaussian process with independent increments and intensity �, with cadlag

trajectories. It is easy to show that fBt (A) ; t = 0; A 2 Ag is a martingale measure with

a deterministic intensity, with respect to its natural �ltration. When � is continuous, its

continuity is proven according to Corollary 1.1.1 and the characterization (1.13).

De�nition 1.2.1 When the measure � is continuous, the family fBt (A) ; t = 0; A 2 Ag

is called white noise with intensity �.

White noises are completely determined by the deterministic nature of their intensity.

Proposition 1.2.2 Let fMt (A) ; t = 0; A 2 Ag be a Ft�martingale measure with a de-

terministic continuous intensity �. Then, M is a white noise (with respect to its natural

�ltration)

22



Chapter 1. Martingale measures and basic properties

1.2.4 Image martingale measures

De�nition 1.2.2 (E; E) and (U;U) are two Lusin spaces. Let N be a martingale measure

with intensity � (ds; dx) on 
 � R+ � U and � (w; s; u) a P 
 U�measurable E�valued

process.

Let

Mt (w;B) =

Z t

0

Z
U

1B(� (w; s; u))N (w; ds; du) :

fMt (B) ; t � 0; B 2 Eg de�nes a martingale measure with intensity �, where � is given by

� ((0; t]�B) =

Z
(0;t]

Z
U

1B(� (s; u))� (ds; du) :

M is called image martingale measure of N under �. Let us remark that N is continuous,

M is also continuous.

1.3 Representation of martingale measures

1.3.1 Intensity decomposition. Construction of martingale meas-

ures

We will prove �rst that the form qt (dx) dkt for a martingale measure intensity is not a

restrictive assumption.

Lemma 1.3.1 Let � (dt; du) be a random predictable ���nite measure. � can be decom-

posed as follows;

� (dt; du) = qt (dx) dkt

where kt is a random predictable increasing process and (qt (dx) dkt)t�0 is a predictable

family of random ���nite measures.
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Proof. We will use the notation of section 2.

If � is a �nite measure, the lemma is well known. Otherwise, there exists aP
E�measurable

function W : 
� R+ � E ! (0;1) such that

�0 (dt; dx) = � (dt; dx) :W (t; x)

is �nite. Then we can decompose

�0 (dt; dx) = q0t (dx) dkt;

the result follows by setting

qt (dx) =W (t; x)�1 :q0t (dx) :

Remark 1.3.1 This decomposition is not unique, and it is always possible to assume that

the process kt is increasing, for example by replacing kt by kt+ t. In the following, we will

use this decomposition of the intensity in which the time coordinate plays a special role,

and we will denote the intensities of martingale measures in the form qt (dx) dkt, with an

increasing processes (kt)t�0.

An important result is that is always possible to give a representation of the random

measures as image measures of deterministic measures ( cf. A.V Skorohod [58], N. Elkaroui

and J.P. Lepeltier [20], B. Grigelionis [33])

Theorem 1.3.1 Let (qt (dx))t�0 be a predictable family of random ���nite measures,

de�ned on a Lusin space (E; E).

Let us also consider a Lusin space (U;U) and a deterministic di¤use ���nite measure �

on U which satis�es

qt (E) � � (U) 8t 2 R+;8w 2 
:
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Then there exists a predictable process ' (t; u), with values in E [ f�g, ( � is the cemetery

point), such that

qt (A) =

Z
U

1A(' (t; u))� (du) 8A 2 E ;8w 2 
 (1.14)

and a predictable kernel from E to U . Q (t; x; du) which satis�es

Z
U

1B (u) f(' (t; u))� (du) =

Z
E

f(x)Q (t; x; B) qt (dx) (1.15)

8w 2 
;8f measurable positive, 8B 2 U :

The kernel Q (t; x; :) is the conditional law of u with respect to the ���eld generated by '.

According to this theorem, the existence of a continuous martingale measure with intensity

qt (dx) dkt, follows immediately from the existence of a white noise, as the construction

will show it. When kt is deterministic, the martingale measure is given as image measure

of white noise, and the general case follows by using a time-change.

Theorem 1.3.2 Let (
;F ; (Ft)t�0; P ) be a �ltered space and � a random positive con-

tinuous ���nite measure, satisfying

� (dt; dx) = qt (dx) dkt;

8><>: (kt) continuous and increasing

(qt) predictable.

There exist on an extension 
̂ =
�

� ~
;F � ~F ; (Ft � ~Ft)t�0; P � ~P

�
a continuous mar-

tingale measure N with intensity �, obtained as time-changed image measure of a white

noise.

Moreover, N is orthogonal to each continuous (Ft; P ) martingale measure M:

Proof. i) Let us assume that kt is deterministic.

We can build on an auxiliary space (~
; ~F ; ( ~Ft)t�0; ~P ) a white noise B with intensity

� (du) dkt, where � satis�es the assumpositions of Theorem 1:3:1:On the extension
�

̂; F̂ ; (F̂t)t�0; P̂

�
=
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�

� ~
;F � ~F ; (Ft � ~Ft)t�0; P � ~P

�
, B is a continuous martingale measure with a de-

terministic intensity and then a (F̂t)�white noise (Proposition 1:2:2). Let ' (t; u) be the

predictable process satisfying (1.14). It is clear that ' is P̂ 
 U measurable, P̂ being the

predictable ���eld on the extension 
̂.

By the de�nition 1:2:2 and (1.14), the family

Nt (w;w
0; A) =

Z t

0

Z
U

1A(' (w; s; u))B (w
0; ds; du) ; A 2 E ;

is a continuous martingale measure with intensity

Z t

0

Z
U

1A(' (w; s; u))� (du) dks = � ((0; t]� A) :

Moreover, B and each (Ft; P )�martingale measureM are orthogonal (by construction,M

is again in a F̂t�martingale measure). We verify that each predictable step function , the

martingale measure
Z t

0

Z
U

h(' (s; u))B (ds; du) and M are orthogonal, and that this prop-

erty is more generally satis�ed for h in L2 (dP 
 qt (dx) dkt). That implies immediately

the orthogonality for M and N .

ii) If kt is not deterministic, let us consider �t = inf fs > 0; ks � tg . �t is then the increasing

inverse of kt. We can consider the ���nite random measure  (dt; dx) = q�t (dx) dt, where

q� is predictable (for the �ltration F�t ).

According to i), we construct a white noise B with intensity � (du) dt, ' a predictable

process (for F�t ), such that

Nt (A) =

Z t

0

Z
U

1A(' (w; s; u))B (ds; du) ; de�nes for t � 0, A 2 E ;

a F�t�martingale measure, with intensity  (dt; dx).
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Let us now consider theFt�martingale measure fMt (A) ; t = 0; A 2 Ag de�ned by Mt (A) = Nkt (A) .

The intensity of M is then qt (dx) dkt, since

hM (A)it =
Z kt

0

Z
E

1A(x)q�s (dx) ds =

Z t

0

Z
E

1A (x) qu (dx) dku:

1.3.2 Extension and representation of martingale measures as

image measures of a white noise

Martingale measures can be described as time changed image measures for white noises.

To obtain this property, it is necessary to use an extension result, (this idea is due to

Funaki [32] ), and the following theorem is thus fundamental

Theorem 1.3.3 Let (
;F ; (Ft)t�0; P ) be a �ltered space, E and ~E two Lusin spaces and

M a continuous martingale measure with intensity qt (dx) dkt on R+ � E, where kt is

a continuous increasing process and (qt (dx))t�0 is a Ft�predictable family of random

measures.

Let rt (x; d~x) be a predictable probability transition kernel from E to ~E and de�ne the

predictable ���nite measure pt (dx; d~x) on R+ � E � ~E as follows:

pt (dx; d~x) = qt (dx) rt (x; d~x) :

Then there exists on an extension
�

� ~
;F 
 ~F ; P 
 ~P

�
a continuous martingale meas-

ure ~Mt (dx; d~x) with intensity dktpt (dx; d~x) and whose projection on R+ � E is M , i.e.

~Mt

�
A� ~E; (w; ~w)

�
=Mt (A;w) ; 8A 2 A; (w; ~w) 2 
� ~
;8t � 0:
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Proof. Let N be the continuous martingale measure on E � ~E; built on an auxiliary

space
�
~
; ~F ; ( ~Ft)t�0; ~P

�
with intensity dktpt (dx; d~x) such that N and each Ft�martingale

measure are orthogonal ( Theorem 1:1:2).

Let us consider the mapping

~Mt (C) =

Z t

0

Z
E

rs (x;C)M (ds; dx) +

Z t

0

Z
E� ~E

[1C (x; ~x)� rs (x;C)]N (ds; dx; d~x)

8C 2 E 
 ~E ; where rs (x;C) =
Z
~E

1C (x; ~x) rs (x; d~x) :

The two terms on the right of the above equality are orthogonal continuous martingale

measures.
n
~Mt (C) ; t � 0; C 2 E 
 ~E

o
is then a continuous martingale measure with in-

tensity given by

Z
(0;t]

dks

�Z
E

r2s (x;C) qs (dx) +

Z
E� ~E

ps (dx; d~x) (1C (x; ~x)� rs (x;C))
2

�
=

Z
(0;t]

dks

�Z
E

r2s (x;C) qs (dx) +

Z
E� ~E

qs (dx) rs (x; d~x)
�
1C (x; ~x) + r2s (x;C)� 2rs (x;C)1C (x; ~x)

��
=

Z
(0;t]

dks

Z
E

rs (x;C) qs (dx) ( rs (x; :) is a probability)

=

Z
(0;t]

dksps (C) :

b) Let us assume that C is in E

1C (x)�
Z
~E

rs (x; d~x)1C (x) = 0 and then ~Mt(C) =Mt(C):
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This result can be applied to continuous square integrable martingales, by interpreting

them as degenerated martingale measures.

Corollary 1.3.1 Let nt be a continuous square integrable martingale with increasing pro-

cess

hnit (w) =
Z t

0

Z
E

�2 (w; s; x) qs (w; dx) dks

(kt) being a predictable family of random measures and �(s; x) a function of L2(qs(dx)dks).

We assume moreover that no = 0.

There exists on an extension a continuous martingale measure N with intensity �2(s; x)qs(dx)dks

such that

nt = Nt (E) :

Proof. See [22]

Using Theorem 1:3:3, we can now state that each martingale measure is representable as

time-changed image martingale measure of a white noise. An application of this result

is given in Méléard, Roelly-Coppoletta [48]; [49]: it allows to give a sense to a stochastic

di¤erential equation in the space of vector measures with values in L2(
) for a certain

class of measure-valued branching processes.

Theorem 1.3.4 Let M be a continuous martingale measure on (
;F ; (Ft)t�0; P ) with

intensity qt (dx) dkt. Let � be the di¤use ���nite measure and ' be the predictable process

given in Theorem 1:3:1.

1. If (kt) is deterministic, there exist an extension (
̂; F̂ ; F̂t; P̂ ) of (
;F ;Ft; P ) and a

white noise Bt(ŵ; du) with intensity �(du)dkt such that:

8f 2 L2(qs(dx)dks); Mt (f) =

Z t

0

Z
U

f (' (s; u))B (ds; du) :

2. In the general case, M is a time-changed image martingale measure of a white noise.

29



Chapter 1. Martingale measures and basic properties

Proof. We use the predictable kernel Qt (x; du) de�ned in Theorem 1:3:1 by (1.15).

We consider the measure pt (dx; du) = Qt (x; du) qt (dx) ; it satis�es

8f 2 E ; A 2 U ;
Z
U

1B (' (t; u))1A(u)�(du) =

Z
E�U

1B (x)1A(u)pt (dx; du)

According to Theorem 1:3:3, we build on E � U a continuous martingale measure M̂

with intensity pt (dx; du) dkt and whose projection onto E is M . The martingale measure

N (dt; du) =

Z
E

M̂ (dt; dx; du) has thus the intensity

Z
E

Qt (x; du) qt (dx) dkt = dkt1f'(t;u) 6=�g�(du); � cemetery point:

Nt is not a white noise, because its intensity is not deterministic. We build then on

an auxiliary space a white noise Wt (du) with intensity �(du)dkt and we consider the

martingale measure

Bt (du) = Nt (du) + 1f�g (' (t; u))Wt (du) :

Then, B is a continuous martingale measure with deterministic intensity and is therefore

a white noise (Proposition 1:2:2).

1. Let f be in L2(qs(dx)dks); then f � ' belongs to L2(dkt�(du)) and

Z t

0

Z
U

f (' (s; u))B (ds; du) =

Z t

0

Z
U

f (' (s; u))N (ds; du)

+

Z t

0

Z
U

f (' (s; u))1f�g (' (t; u))W (ds; du)

=

Z t

0

Z
U

f (' (s; u))N (ds; du)

=

Z t

0

Z
U

f (' (s; u))

Z
E

M̂ (ds; dx; du)

=

Z t

0

Z
E

Z
U

f (' (s; u)) M̂ (ds; dx; du) :
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We want to compare this quantity to

Z t

0

Z
E

f (x)M (ds; dx) =

Z t

0

Z
E

Z
U

f (x) M̂ (ds; dx; du) :

Then

E

"�Z t

0

Z
E

Z
U

f (' (s; u)) M̂ (ds; dx; du)�
Z t

0

Z
E

Z
U

f (x) M̂ (ds; dx; du)

�2#
= E

�Z t

0

Z
E

Z
U

(f (' (s; u))� f (x))2Qs (x; du) qs (dx) dks

�
= E

�Z t

0

Z
E

Z
U

(f (' (s; u))� f (' (s; u)))2 �(du)dks

�
= 0:

Thus

Z t

0

Z
E

Z
U

f (' (s; u)) M̂ (ds; dx; du) =

Z t

0

Z
E

Z
U

f (x) M̂ (ds; dx; du)

=

Z t

0

Z
E

f (x)M (ds; dx) P -a.s

2. The proof of the generalization is similar to the proof of theorem 1:3:2 (ii).

1.3.3 Representation of vector martingale measures

The �rst theorem of this section gives a representation of vector martingale measures in

terms of orthogonal martingale measures, which generalizes the representation theorem

for continuous martingales in terms of Brownian motions.

Theorem 1.3.5 Let (M i)
n
i=1 be n continuous martingale measures on a Lusin space E,

with intensities



M i (') ;M j ( )

�
t
=

Z t

0

Z
E

' (x) (x) aij (s; x) qs(dx)dks
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where

aij (s; x) =

nX
k=1

�ik (s; x)�kj (s; x) ;

8i; k 2 f1; :::; ng ; �ik (s; x) 2 L2(qs(dx)dks); (kt) is a continuous increasing process,

(qt(dx)) is a predictable process of random �nite measures.

There exists on an extension n continuous orthogonal martingale measures
�
M̂ i
s (dx)

�n
i=1

with intensity qs(dx)dks which satisfy

M i
t (') =

nX
k=1

Z t

0

Z
E

' (x)�ik (s; x) M̂
k (ds; dx) 8i 2 f1; :::; ng :

Proof. This theorem is proven with the same method as in [39].

We can suppose that � (s; x) = a1=2 (s; x) is the symmetric square root of a (s; x) and

de�ne

~� (s; x) = lim
�#0

a1=2 (s; x) (a (s; x) + �I)�1 ; 8 (s; x) 2 R+ � E:

We have

� (s; x) ~� (s; x) = ~� (s; x)� (s; x) = ER (s; x) ;

where ER (s; x) is the orthogonal projection onto range a (s; x)
�
Rd
�
and denote EN (s; x) =

I � ER (s; x) :

We de�ne then, for i 2 f1; :::; ng ; the continuous martingale measure

M̂ i
s (f) =

nX
k=1

Z t

0

~�ik (s; x) f (x)M
k (ds; dx) +

nX
k=1

Z t

0

Z
E

EN (s; x) f (x) ~M
k (ds; dx)

where
�
~Mk
�n
k=0

are n continuous orthogonal martingale measures with intensity qs(dx)dks

built on an auxiliary space. It is therefore easy to verify that

D
M̂ i (f) ; M̂ j (g)

E
t
= �ij

Z t

0

Z
E

f (x) g (x) qs(dx)dks 8f; g 2 L2(qs(dx)dks)
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and that
nX
k=1

Z t

0

Z
E

f (x)�ik (s; x) M̂
k (ds; dx) =M i

t (f) :

(The calculations are carried out in the book of Ikeda and Watanabe [39] p. 90.).

Corollary 1.3.2 If we use the notations and the result of Theorem 1:3:4, and if the process

(kt) is deterministic, we can represent the martingale measures (M i)
n
i=1 with n orthogonal

white noises (Bi)
n
i=1 by

M i
t (f) =

nX
k=1

Z t

0

Z
U

f (' (s; u))�ik (s; ' (s; u))B
k (ds; du) :

A very interesting problem is to obtain a similar representation theorem for vector square

integrable martingales (mi
t)
n
i=1 whose quadratic variation process has the special form



mi;mj

�
t
=

Z t

0

Z
E

aij (s; x) qs(dx)dks

(where a is a quadratic matrix). The aim is to represent them in terms of orthogonal

martingale measures with intensity qs(dx)dks. It will be used in particular to describe

solutions of martingale problems. To obtain this result, we need an extension property,

which generalizes to vector martingales the extension property obtained in corollary 1:3:1

for the dimension one.

Proposition 1.3.1 Let (mi
t)
n
i=1 be n continuous square integrable martingales such that

mi
0 = 0: We assume that the quadratic variation process corresponding to mi and mj is



mi;mj

�
t
=

Z t

0

Z
E

aij (s; x) qs(dx)dks;

where: a (s; x) = � (s; x)�� (s; x) is a P 
 E measurable matrix such that

aij (s; x) 2 L2(qs(dx)dks); 8i; j 2 f1; :::; ng ;
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(kt)t�0 is a continuous increasing process, (qt(dx))t�0 is a predictable �nite measure-valued

process.

Then on an extension, there exist n continuous martingale measures (M i
s (dx))

n
i=1 such

that 8B;C 2 E ;



M i (B) ;M j (C)

�
t
=

Z t

0

Z
E

1B (x)1C (x) aij (s; x) qs(dx)dks

and M i
t (E) = mi

t; 8t � 0:

Proof.

a) We suppose �rst that the symmetric matrix 4 (s) =
�Z

aij (s; x) qs(dx)

�
1�i�n
1�j�n

is in-

vertible. Let us denote by � (s) its inverse. For f in L2(qs(dx)dks); we will denote

Q (s; f) the symmetric matrix
�Z

aij (s; x) f (x) qs(dx)

�
1�i�n
1�j�n

; Q (s; 1) = 4 (s).

It is easy to build on a larger space n martingale measures
�
N̂ i
�n
i=1

which satisfy

D
N̂ i (f) ; N̂ j (g)

E
t
=

Z t

0

Z
E

f (x) g (x) aij (s; x) qs(dx)dks;8f; g 2 L2(qs(dx)dks):

In fact, we can de�ne on R+�E �f1; :::; ng a martingale measure N with intensityPn
k=1 qs(dx)dks�fig (dj) (see Theorem 1:3:2) and construct the martingale measures�
N̂ i
s (dx)

�n
i=1

as follows

8A 2 E ; N̂ i
s (A) =

nX
k=1

Z t

0

Z
A

�ik (s; x)N (ds; dx; fkg) :

We may take therefore

i 2 f1; :::; ng ; t � 0; f 2 L2(qs(dx)dks);

M i
s (f) =

nX
k=1

Z t

0

(Q (s; f) � (s))ik dm
k
s +

nX
k=1

Z t

0

Z
E

(f (x) I �Q (s; f) � (s))ik N̂
k (ds; dx)
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(I identity matrix ofMn (R)).

It is immediate to verify that M i
t (E) = mi

t, since Q (s; E) = 4 (s). Let us calculate

the intensity of (M i)
n
i=1: For every f and g in L

2(qs(dx)dks), we set

hM i (f) ;M j (g)it =
nX

k;l=1

Z t

0

(Q (s; f) � (s))ik (Q (s; f) � (s))jl

Z
E

akl (s; x) qs(dx)dks

+

nX
k;l=1

Z t

0

Z
E

(f (x) I �Q (s; f) � (s))ik (g (x) I �Q (s; g) � (s))jl akl (s; x) qs(dx)dks

=

Z t

0

[Q (s; f) � (s)4 (s) (Q (s; g) � (s))�]ij (Q (s; f) � (s))jl dks

+

Z t

0

Z
E

[(f (x) I �Q (s; f) � (s)) a (s; x) (g (x) I �Q (s; g) � (s))�]ij qs(dx)dks

Q (s; :) and � (s) are symmetric matrices for every s in R+. Thus,

Q (s; f) � (s)4 (s) (Q (s; g) � (s))� = Q (s; f) � (s)4 (s) � (s)Q (s; g)

= Q (s; f) � (s)Q (s; g)

and,

Z
E

[(f (x) I �Q (s; f) � (s)) a (s; x) (g (x) I �Q (s; g) � (s))�] qs(dx)

=

Z
E

[(f (x) I �Q (s; f) � (s)) a (s; x) (g (x) I � � (s)Q (s; g))] qs(dx)

=

Z
E

[f (x) g (x) a (s; x)� f (x) a (s; x) � (s)Q (s; g)�Q (s; f) � (s) g (x) a (s; x)

+Q (s; f) � (s) a (s; x) � (s)Q (s; g)] qs(dx)

=

Z
E

f (x) g (x) a (s; x) qs(dx)�Q (s; f) � (s)Q (s; g) :

So, hM i (f) ;M j (g)it =
Z t

0

Z
E

f (x) g (x) aij (s; x) qs(dx)dks.

b) When 4 (s) is not invertible, we use a method similar to that one of Ikeda and
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Watanabe [39]: We introduce the symmetric matrix ~� (s) which satis�es

8s 2 R+; ~� (s)4 (s) = 4 (s) ~� (s) = ER (s) ;

where ER (s) is the orthogonal projection onto range 4 (s)Rd. We have

I � ER (s) = EN (s) ; with EN (s)4 (s) = 0; ~� (s)4 (s) ~� (s) = 0

Let us consider now

M i
t (f) =

nX
k=1

Z t

0

�
Q (s; f) ~� (s)

�
ik
dmk

s+
nX
k=1

Z t

0

Z
E

�
f (x) I �Q (s; f) ~� (s)

�
ik
N̂k (ds; dx) :

We get

M i
t (E) =

nX
k=1

Z t

0

�
4 (s) ~� (s)

�
ik
dmk

s +
nX
k=1

Z t

0

Z
E

�
I �4 (s) ~� (s)

�
ik
N̂k (ds; dx)

=
nX
k=1

Z t

0

(ER (s))ik dm
k
s +

nX
k=1

Z t

0

Z
E

(EN (s))ik N̂
k (ds; dx)

= mi
t �

nX
k=1

Z t

0

(EN (s))ik dm
k
s +

nX
k=1

Z t

0

Z
E

(EN (s))ik N̂
k (ds; dx) :

The two right-hand terms have the intensity

nX
k;l=1

Z t

0

(EN (s))ik (EN (s))jl

Z
E

akl (s; x) qs(dx)dks

=

nX
l=1

Z t

0

(EN (s)4 (s))il (EN (s))jl dks = 0

and thus vanish.

We verify easily, with an analogous calculation, that the quadratic variation hM i (f) ;M j (g)it
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is Z t

0

Z
E

f (x) g (x) aij (s; x) qs(dx)dks:

Let us give now this theorem, which is obtained immediately by application of Theorem

1:3:5 and Proposition 1:3:1

Theorem 1.3.6 Let (mi
t)
n
i=1 be n continuous square integrable martingales, with (matrix

valued) quadratic variation process



mi;mj

�
t
=

Z t

0

Z
E

aij (s; x) qs(dx)dks:

There exist on an extension n continuous orthogonal martingale measures
�
M̂ i
s (dx)

�n
i=1

with intensity qs(dx)dks which satisfy

mi
t =

nX
k=1

Z t

0

Z
E

�ik (s; x) M̂
k (ds; dx) ;8i 2 f1; :::; ng :

1.4 Stability theorem for martingale measures

Theorem 1.4.1 Let M be an orthogonal continuous martingale measure de�ned on 
�

[0; T ]� E, with intensity

� (da; dt) = qt(da)dkt:

Let us consider a sequence of random predictable measures (�n)n2N converging weakly to

� on E � [0; T ] P almost surely, such that

�n (E � :) = � (E � :) ; a:s:

Then there exists on an extension of probability space a sequence of orthogonal continuous

martingale measures Mn de�ned on E � [0; T ] with intensity �n, such that
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For each predictable bounded function ' from 
 � [0; T ] � E to R, continuous in the

E�variable,

lim
n!+1

E
�
(Mn

t (')�Mt ('))
2� = 0:

Since �n (E � :) = � (E � :), �n can be decomposed as �n (da; dt) = qnt (da)dkt, where

qnt (E) = 1.

To obtained this theorem, we shall prove thanks to a generalization of the Skorohod

representation theorem the existence of a sequence of randommeasuresmn onE�E�[0; T ]

satisfying

mn (dx; dy; dt) = m�n
t (dx; dy) dkt;

m�n
t (dx;E) = qnt (dx);

m�n
t (E; dy) = qt(dx);

and converging weakly to a measure carried only by the diagonal.

To prove this theorem we need

Lemma 1.4.1 Under the hypotheses of Theorem 1:4:1, for almost all w, there exists a

sequence of random probability measures on E � E � [0; T ], mn (w; da; da0; dt), satisfying

mn (w;E; da0; dt) = � (w; da0; dt) = qt(w; da
0)dkt

mn (w; da;E; dt) = �n (w; da; dt) = qnt (w; da)dkt

and converging weakly to a random probability measure m (w; da; da0; dt) on E�E� [0; T ],

such that

m (w; da; da0; dt) = � (w; da; dt) �a (da
0) :

Proof. Fix w 2 
 such that (qnt (w; da)dkt) converges weakly to qt(w; da)dkt on E� [0; T ].

Thanks to a generalization of Skorohod�s representation theorem, one can construct an

auxiliary probability space ~
 and random variables Xn
w ( ~w), X

1
w ( ~w), Tw ( ~w) with values

respectively in E, E, [0; T ], depending measurable on w, such that:

38



Chapter 1. Martingale measures and basic properties

(Xn
w ( ~w) ; Tw ( ~w)) has law q

n
t (w; da)dkt, (X

1
w ( ~w) ; Tw ( ~w)) has law qt(w; da)dkt and (X

n
w ( ~w))

converges for each ~w of ~
 to X1
w ( ~w).

Then (Xn
w ( ~w) ; X

1
w ( ~w) ; Tw ( ~w)) converges (everywhere) to (X

1
w ( ~w) ; X

1
w ( ~w) ; Tw ( ~w)) :

The law mn of (Xn
w; X

1
w ; Tw) answers the problem.

Remark 1.4.1 The time-martingale of mn being the predictable measure dkt, the dual

predictable projection of mn can be disintegrated in the form Qnt (da; da
0) dkt, where Qn is

a predictable kernel. ( It su¢ ces to apply the disintegration theorem for dual predictable

projections of random measures [41]):

We will then have for each P 
 E 
 E measurable function f de�ned on 
� [0; T ]�E�E,

E

�Z
[0;T ]�E2

f (s; a; a0)mn (da; da0; ds)

�
= E

�Z
[0;T ]�E2

f (s; a; a0)Qns (da; da
0) dks

�
:

Moreover, the second martingale of mn being the predictable process (qt),

Qnt (E; da
0) = qt (da

0) dkt 
 P a:s:

In the same way, the predictable measure m is disintegrated in the form Qt (da; da
0) dkt,

where Q is predictable kernel.

Now, we proof the Theorem 1:4:1, and we use in this proof the Theorem 1:3:3.

Proof. We naturally use the martingale measure M̂n constructed above.

The �rst martingale measure of M̂n de�nes an orthogonal continuous martingale measure

Mn on E � [0; T ] as follows

8A 2 E ;8t 2 [0; 1] ;

Mn
t (A) =

Z t

0

Z
E

Q̂ns (A; a
0)M (da0; ds) +

Z t

0

Z
E�E

�
1A (a)� Q̂ns (A; a

0)
�
R (da; da0; ds) :

The sequence of martingale measures (Mn) approximates the martingale measure M in

the sense of Theorem 1:4:1:
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Consider �rst a continuous bounded function ' de�ned on E.

According to the above results, we have

Mn
t (') =

Z t

0

Z
E�E

' (a) M̂n (da; da0; ds) ; Mt (') =

Z t

0

Z
E�E

' (a0) M̂n (da; da0; ds) :

Thus,

E
�
(Mn

t (')�Mt ('))
2� = E

"�Z t

0

Z
E�E

(' (a)� ' (a0)) M̂n (da; da0; ds)

�2#

= E

�Z t

0

Z
E�E

(' (a)� ' (a0))
2
Qns (da; da

0) dks

�
= E

�Z t

0

Z
E�E

(' (a)� ' (a0))
2
mn (da; da0; ds)

�

by de�nition of the predictable projection of mn.

According to Lemma 1:4:1, this tends to 0 when n tend to in�nity, using the boundedness

of ' and Lebesgue�s dominated convergence theorem.

The generalization of this result to predictable function � continuous in the E�variable

is obtained thanks to the following result: it is proved in [40] that the weak topology

on R (space of Radon measures on E � [0; T ] whose projection on [0; T ] is the Lebesgue

measure) is the same as the stable topology, i.e. the topology where the convergence is

required for measurable bounded functions continuous in the E�variable.

Remark 1.4.2 a) Moreover, by Doob�s inequality, we obtain that

E

�
sup
t�T

(Mn
t (')�Mt ('))

2

�

tends to 0 when n tends to in�nity.

b) The above construction implies in particular that

8n 2 N;8t 2 [0; T ] ; Mn
t (E) =Mt (E) :
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1.5 Approximation by the stochastic integral of a Brownian

motion

An amusing application of the next theorem is the following: if E is a compact set, each

continuous martingale measure can be obtained as a limit in L2 (
) of sequence of time-

changed stochastic integrals with respect to a single Brownian motion.

Theorem 1.5.1 We assume that the Lusin space E is a compact set. Let M be a con-

tinuous orthogonal martingale measure with intensity qt(da)dt on E � [0; 1].

Then, there exists a sequence of predictable E�valued processes
�
uk (s)

�
k2N and a Brownian

motion W de�ned on an extension of the probability space 
, such that

8t 2 [0; 1] ;8� a continuous bounded function from E to R,

lim
k!+1

E

"�
Mt (�)�

Z t

0

�
�
uk (s)

�
dWs

�2#
= 0:

This theorem derives from Theorem 1:4:1 and a fundamental approximation lemma ob-

tained �rst for deterministic measures and then generalized for random measures [27], [24],

known under the name of chattering lemma.

A similar result for more general intensity qt(da)dkt (k is continuous) can be deduced by

time change.

Lemma 1.5.1 (Chattering lemma) Let (qt) be a predictable process, with values in the

space of probability measure on E. Then there exists a sequence of predictable processes�
uk (t)

�
k2N with values in E such that the sequence of random measures

�
�ukt (da) dt

�
converge weakly to qt (da) dt; P � a:s, where k tends to +1.

Proof. We will prove here the Theorem 1:5:1.

Let M be an orthogonal continuous martingale measure with intensity qt (da) dt, de�ned

on E � [0; 1], where E is a compact set. We have see, in chattering lemma that the
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random measure qt (da) dt de�ned on 
 � E � [0; 1] is approximated by a sequence of

atomic measures of the form �ukt (da) dt, for the weak topology on the space of measures

on E � [0; 1], and this being true for almost all w of 
.

By Theorem 1:4:1 there exists a sequence of orthogonal continuous martingale measure

Mk with intensity �ukt (da) dt which converges to M .

The martingale measureMk can be represented as stochastic integrals with respect to the

same Brownian motion. Indeed, we have in Proposition 1:2:1; that for each A of E,

Mk
t (A) =

Z t

0

1A
�
uk
�
dmk

s ;

where mk is the continuous martingale de�ned by mk
t =Mk

t (E).

But we have noted in Remark 1:4:2:b); that for each k of N, Mk
t (E) =Mt (E) :

M: (E) is a continuous Ft�martingale with quadratic variation process t, thus it is a Ft

Brownian motion (independent of k ) that we shall denote by W .

We have �nally obtained that for each continuous bounded function '

8t 2 [0; 1] ;Mk
t (') =

Z t

0

'
�
uks
�
dWs;

and that

lim
k!+1

E

"�
Mt (')�

Z t

0

'
�
uks
�
dWs

�2#
= 0:

Remark 1.5.1 Since, for each function ', M: (') is a continuous martingale with in-

creasing process Z t

0

�Z
E

'2 (a) qs(da)

�
ds;

M: (') can be represented as a stochastic integral with respect to Brownian motion N' in

the form

Mt (') =

Z t

0

V '
s dN

'
s ; où V

'
s =

�Z
E

'2 (a) qs(da)

�1=2
:
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It is clear that V ' is not linear in ' and the Brownian motion N' depends on '.

The interest of Theorem 1:5:1 is to give an approximation ofMt (') in L2 (
) by stochastic

integrals with respect to a "canonical" Brownian motion, that is not depending on the

function '.

Remark 1.5.2 In the case where the time martingale of the intensity of the martingale

measure is not the Lebesgue measure, but a random measure dkt; k being continuous and

increasing, a similar result can be obtained thanks to time change. Let us consider the

inverse of kt

�t = inf fs > 0; ks � tg ;

�t is continuous and increasing from [0; 1] to [0; 1].

The random function N de�ned on 
� E � [0; 1] by

Nt (A) =M�t (A)

is then a Ft�martingale measure with intensity q�t (da) dt.

According to Theorem 1:5:1; one can de�ne a F�t�Brownian motion ~W and a sequence of

E�valued predictable processes
�
~uk
�
(for the �ltration F�t ) such that for each event A

of E , the sequence
R t
0
1A
�
~uks
�
d ~Ws converges (for each t ) in L2 (
) into Nt (A).

Remark 1.5.3 We deduce from it that for each continuous bounded function ,

lim
k!+1

E

"�
Mt (')�

Z kt

0

'
�
~uks
�
d ~Ws

�2#
= 0:
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Chapter 2

A general stochastic maximum

principle for control problems

In this chapter we study the following type of stochastic optimal control problem.Minimize a cost function

J (u (:)) = E

Z T

0

f (t; x (t) ; u (t)) dt+ h (x (T ))

subject to 8><>: dx (t) = b (t; x (t) ; u (t)) dt+ � (t; x (t) ; u (t)) dW (t)

x (0) = x0;

in the above, u (t) is the control variable valued in a subset of Rk, x (t) is the state variable,

W (t) is an m�dimensional standard Brownian motion, and f , h, b, � are given maps.

The object is to obtain a necessary condition, called the maximum principle, for optimal

control.

There are many works concerning this subject (see [15], [37], [38], [44]). A di¢ culty is

treating the case where the di¤usion coe¢ cient � contains the control variable u. Ben-

soussan [14], [15] studied such a case. The maximum principle he obtained is of local
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Chapter 2. A general stochastic maximum principle for control problems

condition, and his method depends heavily on the control being convex. In this problem,

since the control domain is not necessarily convex, we must obtain the maximum principle

in its global form. A classical way of treating such a problem is to use the "spike variation

method" [57].

2.1 Statement of the Stochastic Maximum Principle

First recall the strong formulation of the stochastic optimal control problem, then intro-

duce some assumptions.

Let
�

;F ; (Ft)t�0 ; P

�
be a given �ltered probability space satisfying the usual conditions,

on which an m�dimensional standard Brownian motion W (t) (with W (0) = 0) is given.

We consider the following stochastic controlled system

8><>: dx (t) = b (t; x (t) ; u (t)) dt+ � (t; x (t) ; u (t)) dW (t)

x (0) = x0;
; t 2 [0; T ] ; (2.1)

with the cost functional

J (u (:)) = E

�Z T

0

f (t; x (t) ; u (t)) dt+ h (x (T ))

�
: (2.2)

In the above, b : [0; T ]�Rn�U ! Rn; � : [0; T ]�Rn�U ! Rn�m; f : [0; T ]�Rn�U ! R;
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Chapter 2. A general stochastic maximum principle for control problems

and h : Rn ! R: We de�ne8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

b (t; x; u) =

0BBBB@
b1 (t; x; u)

...

bn (t; x; u)

1CCCCA ;

� (t; x; u) = (�1 (t; x; u) ; : : : ; �n (t; x; u)) ;

�j (t; x; u) =

0BBBB@
�1j (t; x; u)

...

�nj (t; x; u)

1CCCCA ; 1 � j � m:

(2.3)

Let us make the following assumptions

(S0) (Ft)t�0 is the natural �ltration generated by W (t), augmented by all the P�null

sets in F .

(S1) (U; d) is a separable metric space and T > 0.

(S2) The maps b; �; f and h are measurable, and there exist a constant L > 0 and a

modulus of continuity �w : [0;1) ! [0;1) such that for ' (t; x; u) = b (t; x; u) ;

� (t; x; u) ; f (t; x; u) ; h (x), we have

8>>>><>>>>:
j' (t; x; u)� ' (t; x̂; û)j � L jx� x̂j+ �w (d (u; û)) ;

8t 2 [0; T ] ; x; x̂ 2 Rn; u; û 2 U

j' (t; 0; u)j � L; 8 (t; u) 2 [0; T ]� U:

(2.4)

(S3) The maps b; �; f and h are C2 in x. Moreover, there exists a constant L > 0 and a

modulus of continuity �w : [0;1)! [0;1) such that for ' = b; �; f; h, we have

8>>>><>>>>:
j'x (t; x; u)� 'x (t; x̂; û)j � L jx� x̂j+ �w (d (u; û)) ;

j'xx (t; x; u)� 'xx (t; x̂; û)j � �w (jx� x̂j+ d (u; û)) ;

8t 2 [0; T ] ; x; x̂ 2 Rn; u; û 2 U:

(2.5)
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Chapter 2. A general stochastic maximum principle for control problems

Assumption (S0) signi�es that the system noise is the only source of uncertainty in the

problem, and the past information about the noise is available to the controller. This

assumption will be crucial below.

Now we de�ne

U [0; T ] =
�
u : [0; T ]� 
! U

��u is (Ft)t�0 � adapted	 : (2.6)

Given u (:) 2 U [0; T ], equation (2.1) is an SDE with random coe¢ cients. From Yong-Zhou

[60] (Chapter1, Section 6.4), they �nd that under (S0)-(S2), for any u (:) 2 U [0; T ], the

state equation (2.1) admits a unique solution x (:) = x (:; u (:)) and the cost functional (2.2)

is well-de�ned. In the case that x (:) is the solution of (2.1) corresponding to u (:) 2 U [0; T ],

we call (x (:) ; u (:)) an admissible pair, and x (:) an admissible state process (trajectory).

Our optimal control problem can be stated as follows.

Problem 2.1.1 Minimize (2.2) over U [0; T ].

Any �u (:) 2 U [0; T ] satisfying

J (�u (:)) = inf
u(:)2U [0;T ]

J (u (:)) (2.7)

is called an optimal control. The corresponding �x (:) = x (:; �u (:)) and (�x (:) ; �u (:)) are

called an optimal state process/trajectory and optimal pair, respectively.

Notice that the strong formulation is adopted here for the optimal control problem see

Yong-Zhou [60] (chapter 2, section 4.1 for more details). The next goal is to derive a set

of necessary conditions for stochastic optimal controls, similar to the maximum principle

for the deterministic case. To this end, we need some preparations.
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Chapter 2. A general stochastic maximum principle for control problems

2.1.1 Adjoint equations

In this subsection we will give adjoint equations involved in a stochastic maximum principle

and the associated stochastic Hamiltonian system.

Recall that Sn =
�
A 2 Rn�n

��AT = A
	
and (x (:) ; u (:)) be a given optimal pair.

We knew that in the deterministic case the adjoint variable p (:) plays a central role in

the maximum principle. The adjoint equation that p (:) satis�es is a backward ordinary

di¤erential equation (meaning that the terminal value is speci�ed). It is nevertheless

equivalent to a forward equation if we reverse the time. In the stochastic case, however,

one cannot simply reverse the time, as it may destroy the non anticipativeness of the

solutions. Instead, we introduce the following terminal value problem for a stochastic

di¤erential equation

8>>>>>><>>>>>>:
dp (t) = �

"
bx (t; �x (t) ; �u (t))

� p (t) +
mX
j=1

�jx (t; �x (t) ; �u (t))
� qj (t)

�fx (t; �x (t) ; �u (t))] dt+ q (t) dW (t) ; t 2 [0; T ]

p (T ) = �hx (�x (T )) :

(2.8)

Here the unknown is a pair of (Ft)t�0�adapted processes (p (:) ; q (:)). We call the above

a backward stochastic di¤erential equation (BSDE, for short). The key issue here is

that the equation is to be solved backwards (since the terminal value is given); how-

ever, the solution (p (:) ; q (:)) is required to be (Ft)t�0�adapted. Any pair of processes

(p (:) ; q (:)) 2 L2F (0; T ;Rn)�(L2F (0; T ;Rn))
m satisfying (2.8) is called an adapted solution

of (2.8).

The adjoint variable p (:) in the deterministic case corresponds to the so-called shadow price

or the marginal value of the resource represented by the state variable in economic theory.

The maximum principle is nothing but the so-called duality principle: Minimizing the total

cost amounts to maximizing the total contribution of the marginal value. Nevertheless,

in the stochastic situation, the controller has to balance carefully the scale of control and
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the degree of uncertainty if a control made is going to a¤ect the volatility of the system

(i.e., if the di¤usion coe¢ cient depends on the control variable). Therefore, the marginal

value alone may not be able to fully characterize the trade-o¤between the cost and control

gain in an uncertain environment. One has to introduce another variable to re�ect the

uncertainty or the risk factor in the system. This is done by introducing an additional

adjoint equation as follows

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

dP (t) = � [bx (t; �x (t) ; �u (t))� P (t) + P (t) bx (t; �x (t) ; �u (t))

+

mX
j=1

�jx (t; �x (t) ; �u (t))
� P (t)�jx (t; �x (t) ; �u (t))

+
mX
j=1

�jx (t; �x (t) ; �u (t))
�Qj (t) +Qj (t)�

j
x (t; �x (t) ; �u (t))

+Hxx (t; �x (t) ; �u (t) ; p (t) ; q (t))] dt+
mX
j=1

Qj (t) dW
j (t) ;

P (T ) = �hxx (�x (T )) ;

(2.9)

where the Hamiltonian H is de�ned by

H (t; x; u; p; q) = hp; b (t; x; u)i+ tr
�
qT� (t; x; u)

�
� f (t; x; u) ; (2.10)

(t; x; u; p; q) 2 [0; T ]� Rn � U � Rn � Rn�m;

and (p (:) ; q (:)) is the solution to (2.8). In the above (2.9), the unknown is again a pair

of processes (P (:) ; Q (:)) 2 L2F (0; T ;Sn)� (L2F (0; T ;Sn))
m
:

Incidentally, the Hamiltonian H (t; x; u; p; q) de�ned by (2.10) coincides with H (t; x; u; p)

de�ned by (2.8) when � = 0.

Note that equation (2.9) is also a BSDE with matrix-valued unknowns. As with (2.8),

under assumptions (S0)-(S3), there exists a unique adapted solution (P (:) ; Q (:)) to (2.9).

We refer to (2.8) (resp. (2.9)) as the �rst-order (resp. second-order) adjoint equations, and

to p (:) (resp. P (:)) as the �rst-order (resp. second-order) adjoint process. In what follows,

if (�x (:) ; �u (:)) is an optimal (resp. admissible) pair, and (p (:) ; q (:)) and (P (:) ; Q (:)) are
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adapted solutions of (2.8) and (2.9), respectively. then (�x (:) ; �u (:) ; p (:) ; q (:) ; P (:) ; Q (:))

is called an optimal 6-tuple (resp. admissible 6-tuple).

2.1.2 Maximum principle and stochastic Hamiltonian systems

Now we are going to state the Pontryagin-type maximum principle for optimal stochastic

controls. At �rst glance, it might be quite natural for one to expect that a stochastic

maximum principle should maximize the Hamiltonian H de�ned by (2.10). Unfortunately,

this is not true if the di¤usion coe¢ cient � depends on the control.

Next, associated with an optimal 6-tuple (�x (:) ; �u (:) ; p (:) ; q (:) ; P (:) ; Q (:)), we de�ne an

H-function

H (t; x; u) = H (t; x; u; p (t) ; q (t))� 1
2
tr [� (t; �x (t) ; �u (t))� P (t)� (t; �x (t) ; �u (t))]

+1
2
tr f[� (t; x; u)� � (t; �x (t) ; �u (t))]� P (t) [� (t; x; u)� � (t; �x (t) ; �u (t))]g

= 1
2
tr [� (t; x; u)� P (t)� (t; x; u)] + hp; b (t; x; u)i � f (t; x; u)

+tr [q (t)� � (t; x; u)]� tr [� (t; x; u)� P (t)� (t; �x (t) ; �u (t))]

= G (t; x; u; p (t) ; P (t)) + tr f� (t; x; u)� [q (t)� P (t)� (t; �x (t) ; �u (t))]g :

(2.11)

Notice that an H-function may be de�ned similarly associated with any admissible 6-tuple

(x (:) ; u (:) ; p (:) ; q (:) ; P (:) ; Q (:)).

Theorem 2.1.1 (Stochastic Maximum Principle) Let (S0)-(S3) hold. Let (�x (:) ; �u (:)) be

an optimal pair of Problem 2:1:1. Then there are pairs of processes

8><>: (p (:) ; q (:)) 2 L2F (0; T ;Rn)� (L2F (0; T ;Rn))
m

(P (:) ; Q (:)) 2 L2F (0; T ;Sn)� (L2F (0; T ;Sn))
m

(2.12)

where 8><>: q (:) = (q1 (:) ; :::; qm (:)) ; Q (:) = (Q1 (:) ; :::; Qm (:)) ;

qj (:) 2 (L2F (0; T ;Rn)) ; Qj (:) 2 L2F (0; T ;Sn) ; 1 � j � m;
(2.13)
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satisfying the �rst-order and second-order adjoint equations (2.8) and (2.9), respectively,

such that

H (t; �x (t) ; �u (t) ; p (t) ; q (t))�H (t; �x (t) ; u; p (t) ; q (t))

�1
2
tr ([� (t; �x (t) ; �u (t))� � (t; �x (t) ; u)]� P (t)

[� (t; �x (t) ; �u (t))� � (t; �x (t) ; u)]) � 0;

8u 2 U; a.e. t 2 [0; T ] ; P � a:s:;

(2.14)

or, equivalently,

H (t; �x (t) ; �u (t)) = max
u2U

H (t; �x (t) ; u) ; a.e. t 2 [0; T ] ; P � a:s: (2.15)

The inequality (2.14) is called the variational inequality, and (2.15) is called the max-

imum condition. Note that the third term on the left-hand side of (2.14) re�ects the risk

adjustment, which must be present when � depends on u.

Let us single out two important special cases.

Case 1. The di¤usion does not contain the control variable, i.e.

� (t; x; u) = � (t; x) ; 8 (t; x; u) 2 [0; T ]� Rn � U (2.16)

In this case, the maximum condition (2.15) reduces to

H (t; �x (t) ; �u (t) ; p (t) ; q (t)) = max
u2U

H (t; �x (t) ; u; p (t) ; q (t)) ; a.e. t 2 [0; T ] ; P�a:s:

(2.17)

which is parallel to the deterministic case (no risk adjustment is required). We note

that in this case, equation (2.9) for (P (:) ; Q (:)) is not needed. Thus, the twice

di¤erentiability of the functions b; �; f and h in x is not necessary here.

Case 2. The control domain U � Rk is convex and all the coe¢ cients are C1 in u. Then
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(2.14) implies

hHu (t; �x (t) ; �u (t) ; p (t) ; q (t)) ; u� �u (t)i � 0;8u 2 U; a:e: t 2 [0; T ] ; P � a:s:

(2.18)

This is called a local form (in contrast to the global form (2.14) or (2.15)) of the

maximum principle. Note that the local form does not involve the second-order

adjoint process P (:) either.

Analogous to the deterministic case, the system (2.1) along with its �rst-order adjoint

system can be written as follows

8>>>><>>>>:
dx (t) = Hp (t; x (t) ; u (t) ; p (t) ; q (t)) dt+Hq (t; x (t) ; u (t) ; p (t) ; q (t)) dW (t) ;

dp (t) = �Hx (t; x (t) ; u (t) ; p (t) ; q (t)) dt+ q (t) dW (t) ;

x (0) = x0, P (T ) = �hx (x (T )) :

t 2 [0; T ] ;

(2.19)

The combination of (2.19), (2.9), and (2.14) (or (2.15)) is called an (extended) stochastic

Hamiltonian system, with its solution being a 6-tuple (x (:) ; u (:) ; p (:) ; q (:) ; P (:) ; Q (:)).

Therefore, we can rephrase Theorem 2:1:1 as the following.

Theorem 2.1.2 Let (S0)-(S3) hold. Let the precedent Problem 2:1:1 admit an optimal

pair (�x (:) ; �u (:)). Then the optimal 6-tuple (�x (:) ; �u (:) ; p (:) ; q (:) ; P (:) ; Q (:)) of the pre-

cedent Problem 2:1:1 solves the stochastic Hamiltonian system (2.19), (2.9), and (2.14)

(or (2.15)).

It is seen from the above result that optimal control theory can be used to solve stochastic

Hamiltonian systems. System (2.19) (with u (:) given) is also called a forward-backward

stochastic di¤erential equation (FBSDE, for short).
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2.2 Proof of the Maximum Principle

In this section we are going to give a proof of the stochastic maximum principle, Theorem

2:1:1. The idea is still the variational technique. However, due to the presence of the

di¤usion coe¢ cient, which may contain the control variable, the method that works for

deterministic case has to be substantially modi�ed to �t the stochastic case.

2.2.1 Moment estimate

In this subsection we prove an elementary lemma, which will be useful in the sequel.

Lemma 2.2.1 Let Y (t) 2 L2F (0; T ;Rn) be the solution of the following8>><>>:
dY (t) = [A (t)Y (t) + � (t)] dt+

mX
j=1

[Bj (t)Y (t) + �j (t)] dW j (t)

Y (0) = Y0

(2.20)

where A;Bj : [0; T ]� 
! Rn�m and �; �j : [0; T ]� 
! Rn are (Ft)t�0adapted, and

8><>:
jA (t)j ; jBj (t)j � L; a:e: t 2 [0; T ] ; P � a:s:; 1 � j � m;Z T

0

h
E j� (s)j2k

i 1
2k
ds+

Z T

0

h
E j�j (s)j2k

i 1
2k
ds <1; 1 � j � m;

(2.21)

for some k � 1. Then

sup
t2[0;T ]

E jY (t)j2k � K

"
E jY0j2k +

�Z T

0

h
E j� (s)j2k

i 1
2k
ds

�2k
+

mX
j=1

�Z T

0

h
E
���j (s)��2ki 1k ds�k# :

(2.22)

Proof. For notational simplicity, we set the prove only in the case m = 1 (i.e., the

Brownian motion W (t) is one-dimensional). Thus, the index j in Bj (:) and �j (:) will be

dropped. We �rst assume that � (:) and � (:) are bounded. Let � > 0 and de�ne

hY i� =
q
jY j2 + �2; 8Y 2 Rn: (2.23)
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Note that for any � > 0, the map Y ! hY i� is smooth and hY i� ! jY j as � ! 0. The

purpose of using such a function is to avoid some di¢ culties that might be encountered

in di¤erentiating functions like jY j2k for noninteger k. Applying Itô�s formula to hY i�, we

have

E hY (t)i2k� � E hY (0)i2k� + 2kE
Z t

0

hY (s)i2k�1� [jA (s)j hY (s)i� + j� (s)j] ds

+k (2k � 1)E
Z t

0

hY (s)i2k�2� [jB (s)j hY (s)i� + j� (s)j]
2 ds

� E hY (0)i2k� +K0E

Z t

0

h
hY (s)i2k� + j� (s)j hY (s)i

2k�1
�

+ j� (s)j2 hY (s)i2k�2�

i
ds:

(2.24)

Here K0 = K0 (k; L) is independent of t. Applying Young�s inequality, we obtain

E hY (t)i2k� � E hY (0)i2k� +KE

Z t

0

h
hY (s)i2k� + j� (s)j

2k + j� (s)j2k
i
ds: (2.25)

Hence, it follows from Gronwall�s inequality that

E hY (t)i2k� � K
�
E hY (0)i2k� + E

R T
0

h
j� (s)j2k + j� (s)j2k

i
ds
�
;

t 2 [0; T ] :
(2.26)

Here K = K (L; k; T ). Note that since we assume for the time being that � (:) and � (:)

are bounded, the above procedure goes through (otherwise the integration on the right-

hand side of (2.25) may not exist; see (2.21)). Next, we want to re�ne the above estimate

so that (2.22) will follow. To this end, note that (2.25) implies that its left-hand side is

bounded uniformly in t 2 [0; T ]. Thus, we may set

' (t) =

�
sup
0�s�t

E hY (s)i2k�
� 1
2k

; t 2 [0; T ] : (2.27)
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We now return to (2.24), using (2.27). De�ne � = (4K0)
�1. Then, for any t 2 [0; �],

applying Holder�s inequality and Young�s inequality, we obtain

' (t)2k � ' (0)2k +K0

�
' (t)2k t+ ' (t)2k�1

Z t

0

�
E j� (s)j2k

� 1
2k
ds+ ' (t)2k�2

Z t

0

�
E j� (s)j2k

� 1
k
ds

�
� ' (0)2k + 1

2
' (t)2k +K1

"�Z t

0

�
E j� (s)j2k

� 1
2k
ds

�2k
+

�Z t

0

�
E j� (s)j2k

� 1
k
ds

�k#
:

(2.28)

The constant K1 = K1 (k; L; �) in (2.28) is independent of t. From (2.28), we obtain

' (t)2k � 2' (0)2k+2K1

(�Z t

0

h
E j� (s)j2k

i 1
2k
ds

�2k
+

�Z t

0

h
E j� (s)j2k

i 1
k
ds

�k)
; 8t 2 [0; �] :

(2.29)

Now we can do the same thing on [�; 2�] and on [2�; 3�], and so on. Finally, we end up

with

' (T )2k � K

(
' (0)2k +

�Z T

0

h
E j� (s)j2k

i 1
2k
ds

�2k
+

�Z T

0

h
E j� (s)j2k

i 1
k
ds

�k)
; (2.30)

with the constant K = K (L; k; T; �). By (2.27), the de�nition of ' (t), we conclude that

sup
t2[0;T ]

E hY (s)i2k� � K

(
hY (0)i2k� +

�Z T

0

h
E j� (s)j2k

i 1
2k
ds

�2k
+

�Z T

0

h
E j� (s)j2k

i 1
k
ds

�k)
:

(2.31)

Letting �! 0, we obtain (2.22). Finally, in the case that we only have (2.21) (instead of

� and � being bounded), we can use the usual approximation.

2.2.2 Taylor expansions

The following elementary lemma will be used below.

Lemma 2.2.2 Let g 2 C2 (Rn). Then, for any x; �x 2 Rn;

g (x) = g (�x) + hgx (�x) ; x� �xi+
Z 1

0

h�gxx (��x+ (1� �)x) (x� �x) ; x� �xi d�: (2.32)
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Now, let (�x (:) ; �u (:)) be the given optimal pair. Then the following is satis�ed

8><>: d�x (t) = b (t; �x (t) ; �u (t)) dt+ � (t; �x (t) ; �u (t)) dW (t)

�x (0) = x0;
; t 2 [0; T ] : (2.33)

Fix any �u (:) 2 U [0; T ] and � > 0. De�ne

u� (t) =

8><>: �u (t) ; t 2 [0; T ] nE�;

u (t) ; t 2 E�;
(2.34)

where E� � [0; T ] is a measurable set with jE�j = �. Let (x� (:) ; u� (:)) satisfy the following

8><>: dx� (t) = b (t; x� (t) ; u� (t)) dt+ � (t; x� (t) ; u� (t)) dW (t)

x� (0) = x0; t 2 [0; T ] :
(2.35)

Next, for ' = bi; �ij; f (1 � i � n; 1 � j � m), we de�ne

8>>>>>>><>>>>>>>:

'x (t) = 'x (t; �x (t) ; �u (t)) ; 'xx (t) = 'xx (t; �x (t) ; �u (t))

�' (t) = ' (t; �x (t) ; u (t))� ' (t; �x (t) ; �u (t)) ;

�'x (t) = 'x (t; �x (t) ; u (t))� 'x (t; �x (t) ; �u (t)) ;

�'xx (t) = 'xx (t; �x (t) ; u (t))� 'xx (t; �x (t) ; �u (t)) :

(2.36)

Let y� (t) and z� (t) be respectively the solution of the following stochastic di¤erential

equations

8>><>>:
dy� (t) = bx (t) y

� (t) dt+

mX
j=1

[�jx (t) y
� (t) + ��j (t)1E" (t)] dW

j (t) ;

y� (0) = 0; t 2 [0; T ] ;
(2.37)

56



Chapter 2. A general stochastic maximum principle for control problems

and8>>>>>><>>>>>>:

dz� (t) =
�
bx (t) z

� (t) + �b (t)1E" (t) +
1
2
bxx (t) y

� (t)2
�
dt

+

mX
j=1

�
�jx (t) z

� (t) + ��jx (t) y
� (t)1E" (t) +

1
2
�jxx (t) y

� (t)2
�
dW j (t) ;

z� (0) = 0; t 2 [0; T ] ;

(2.38)

where

bxx (t) y
� (t)2 =

0BBBB@
tr (b1xx (t) y

� (t) y� (t)�)

...

tr (bnxx (t) y
� (t) y� (t)�)

1CCCCA ;

�jxx (t) y
� (t)2 =

0BBBB@
tr (�1jxx (t) y

� (t) y� (t)�)

...

tr (�njxx (t) y
� (t) y� (t)�)

1CCCCA ; 1 � j � m:

(2.39)

The following result gives the Taylor expansion of the state with respect to the control

perturbation.

Theorem 2.2.1 Let (S1)-(S3) hold. Then, for any k � 1,

sup
t2[0;T ]

E jx� (t)� �x (t)j2k = O
�
�k
�
; (2.40)

sup
t2[0;T ]

E jy� (t)j2k = O
�
�k
�
; (2.41)

sup
t2[0;T ]

E jz� (t)j2k = O
�
�2k
�
; (2.42)

sup
t2[0;T ]

E jx� (t)� �x (t)� y� (t)j2k = O
�
�2k
�
; (2.43)

sup
t2[0;T ]

E jx� (t)� �x (t)� y� (t)� z� (t)j2k = �
�
�2k
�
: (2.44)
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Moreover, the following expansion holds for the cost functional

J (u� (:)) = J (�u (:)) + E hhx (�x (T )) ; y� (T ) + z� (T )i+ 1
2
E hhxx (�x (T )) y� (T ) ; y� (T )i

+E

Z T

0

�
hfx (t) ; y� (t) + z� (t)i+ 1

2
hfxx (t) y� (t) ; y� (t)i+ �f (t)1E� (t)

�
dt+ � (�)

(2.45)

Proof. The proof of the above theorem is rather lengthy and technical. For simplicity of

presentation, we carry out the proof only for the case n = m = 1 (thus, the indices i and

j will be omitted below).

1. Proof of (2.40) and (2.41) Let �� (t) = x� (t)� �x (t) ;, then we have

8><>: d�� (t) =
h
~bx (t) �

� (t) + �b (t)1E" (t)
i
dt+ [~��x (t) �

� (t) + �� (t)1E" (t)] dW (t) ;

�� (0) = 0; t 2 [0; T ] ;
(2.46)

where 8>><>>:
~b�x (t) =

Z 1

0

bx (t; �x (t) + � (x� (t)� �x (t)) ; u� (t)) d�;

~��x (t) =

Z 1

0

�x (t; �x (t) + � (x� (t)� �x (t)) ; u� (t)) d�:
(2.47)

By Lemma 2:1:1, we obtain

sup
t2[0;T ]

E j�� (t)j2k � K

�Z T

0

n
E j�b (s)1E" (s)j

2k
o 1

2k
ds

�2k
+K

�Z T

0

n
E j�� (s)1E" (s)j

2k
o 1

k
ds

�k
� K

�
�2k + �k

�
� K�k:

(2.48)

This proves (2.40). Similarly, we can prove (2.41).
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2. Proof of (2.42) Form (2.38), Lemma 2:1:1 and (2.41), we have

sup
t2[0;T ]

E jz� (t)j2k � K

�Z T

0

n
E
���b (s)1E" (s) + 1

2
bxx (s) y

� (s)2
��2ko 1

2k
ds

�2k
+K

�Z T

0

n
E
����x (s)1E" (s) y� (s) + 1

2
�xx (s) y

� (s)2
��2ko 1

k
ds

�k
� K

�Z T

0

�
1E" (s) +

�
E jy� (s)j4k

� 1
2k

�
ds

�2k
+K

�Z T

0

�
1E" (s)

�
E jy� (s)j2k

� 1
k
+
�
E jy� (s)j4k

� 1
k

�
ds

�k
� K�2k:

(2.49)

This gives (2.42).

3. Proof of (2.43) Set

�� (t) = x� (t)� �x (t)� y� (t) = �� (t)� y� (t) : (2.50)

By (2.46) and (2.37), we have

d�� (t) =
h
~b�x (t) �

� (t) + �b (t)1E" (t)� bx (t) y
� (t)

i
dt

+ [~��x (t) �
� (t)� �x (t) y

� (t) (t)] dW (t)

=
h
~b�x (t) �

� (t) + �b (t)1E" (t) +
�
~b�x (t)� bx (t)

�
y� (t)

i
dt

+ [~��x (t) �
� (t) + (~��x (t)� �x (t)) y

� (t) (t)] dW (t) :

(2.51)
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Thus, it follows from Lemma 2:1:1 that

E j�� (t)j2k � K

 Z T

0

�
E
����b (s)1E" (s) + �~b�x (s)� bx (s)

�
y� (s)

���2k� 1
2k

ds

!2k
+K

�Z T

0

n
E j(~��x (s)� �x (s)) y

� (s)j2k
o 1

k
ds

�k
� K

 
�+

Z T

0

�
E jy� (s)j4k

� 1
4k

�
E
���~b�x (s)� bx (s)

���4k� 1
4k

ds

!2k
+K

�Z T

0

�
E jy� (s)j4k

� 1
2k
�
E j(~��x (s)� �x (s))j4k

� 1
2k
ds

�k
� K

24�2k + �k

 Z T

0

�
E
���~b�x (s)� bx (s)

���4k� 1
4k

ds

!2k35
+K

"
�k
�Z T

0

�
E j(~��x (s)� �x (s))j4k

� 1
2k
ds

�k#
:

(2.52)

Note that (by (S3) and (2.40))

Z T

0

�
E
���~b�x (s)� bx (s)

���4k� 1
4k

ds =

Z T

0

�
E

����Z 1

0

(b�x (s; �x (s) + � (x� (s)� �x (s)) ; u� (s)))

�bx (s; �x (s) ; �u (s)) d�j4k
i 1
4k
ds

� K

Z T

0

n
E jL jx� (s)� �x (s)j+ �b (s)1E" (s)j

4k
o 1

4k
ds

� K

�
�+

Z T

0

n
E jx� (s)� �x (s)j4k

o 1
4k
ds

�
� K

p
�:

(2.53)

Similarly, we have

Z T

0

�
E j~��x (s)� �x (s)j4k

� 1
2k
ds � K�; (2.54)

then (2.43) follows from (2.52).
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4. Proof of (2.44) Set

�� (t) = x� (t)� �x (t)� y� (t)� z� (t) = �� (t)� y� (t)� z� (t)

= �� (t)� z� (t) :
(2.54)

It is clear that 8><>: d�� (t) = B (t) dt+ A (t) dW (t) ;

�� (0) = 0;
(2.55)

where (noting (2.33)-(2.38) and Lemma 2:2:2)

B (t) = b (t; x� (t) ; u� (t))� b (t; �x (t) ; u� (t))� bx (t) [y
� (t) + z� (t)]

�1
2
bxx (t) y

� (t)2

= bx (t; �x (t) ; u
� (t)) �� (t) + 1

2
~b�xx (t) �

� (t)2

�bx (t) [y� (t) + z� (t)]� 1
2
bxx (t) y

� (t)2

= bx (t) �
� (t) + �bx (t)1E" (t) �

� (t)

+1
2

h
~b�xx (t)� bxx (t; �x (t) ; u

� (t))
i
�� (t)2

+1
2
�bxx (t)1E" (t) �

� (t)2 + 1
2
bxx (t)

�
�� (t)2 � y� (t)2

�
= bx (t) �

� (t) + �� (t) ;

(2.56)

61



Chapter 2. A general stochastic maximum principle for control problems

and

A (t) = � (t; x� (t) ; u� (t))� � (t; �x (t) ; u� (t))� �x (t) [y
� (t) + z� (t)]

�1
2
�xx (t) y

� (t)2 � ��x (t)1E" (t) y
� (t)

= �x (t; �x (t) ; u
� (t)) �� (t) + 1

2
~��xx (t) �

� (t)2 � �x (t) [y
� (t) + z� (t)]

�1
2
�xx (t) y

� (t)2 � ��x (t)1E" (t) y
� (t)

= �x (t) �
� (t) + ��x (t)1E" (t) �

� (t)

+1
2
[~��xx (t)� �xx (t; �x (t) ; u

� (t))] �� (t)2

+1
2
��xx (t)1E" (t) �

� (t)2 + 1
2
�xx (t)

�
�� (t)2 � y� (t)2

�
= �x (t) �

� (t) + �� (t) ;

(2.57)

with 8>><>>:
~b�x (t) = 2

Z 1

0

�bxx (t; ��x (t) + (1� �)x� (t) ; u� (t)) d�;

~��x (t) = 2

Z 1

0

��xx (t; ��x (t) + (1� �)x� (t) ; u� (t)) d�;

(2.58)

and8>>>>>>>><>>>>>>>>:

�� (t) = �bx (t)1E" (t) �
� (t) + 1

2

h
~b�xx (t)� bxx (t; �x (t) ; u

� (t))
i
�� (t)2

+1
2
�bxx (t)1E" (t) �

� (t)2 + 1
2
bxx (t)

�
�� (t)2 � y� (t)2

�
;

�� (t) = ��x (t)1E" (t) �
� (t) + 1

2
[~��xx (t)� �xx (t; �x (t) ; u

� (t))] �� (t)2

+1
2
��xx (t)1E" (t) �

� (t)2 + 1
2
�xx (t)

�
�� (t)2 � y� (t)2

�
:

(2.59)

In order to use Lemma 2:2:1, we need to estimate �� (:) and �� (:). To this end,

recall that �w appearing in (S3) is a modulus of continuity for bxx (t; :; u) (uniform in

t 2 [0; T ] and u 2 U). Thus for any � > 0, there exists a constant K� > 0 such that

�w (r) � �+ rK�; 8r � 0: (2.60)
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Consequently,

���~b�xx (t)� bxx (t; �x (t) ; u
� (t))

��� � �w (j�� (t)j) � �+ rK� j�� (t)j : (2.61)

Recalling (2.50) and (2.59), as well as (2.40)-(2.43), we can estimate �� (:) as follows

Z T

0

�
E j�� (t)j2k

� 1
2k
dt �

Z T

0

��
E j�bx (t)1E" (t) �� (t)j

2k
� 1
2k

+

�
E
���12 h~b�xx (t)� bxx (t; �x (t) ; u

� (t))
i
�� (t)2

���2k� 1
2k

+
�
E
��1
2
�bxx (t)1E" (t) �

� (t)2
��2k� 1

2k

+
�
E
��1
2
bxx (t)

�
�� (t)2 � y� (t)2

���2k� 1
2k

�
dt

� K

Z T

0

�
1E" (t)

�
E j�� (t)j2k

� 1
2k
+ 1E" (t)

�
E j�� (t)j4k

� 1
2k

+
�
E [�+K� j�� (t)j]4k

� 1
4k
�
E j�� (t)j8k

� 1
4k

+
�
E j�� (t)j4k

� 1
4k
�
E j�� (t) + y� (t)j4k

� 1
4k

�
dt

� K
n
�
3
2 + � (�+

p
�K�) + �2 + �

3
2

o

(2.62)

this implies Z T

0

�
E j�� (t)j2k

� 1
2k
dt = � (�) :

Similar to (2.61), we have

j~��xx (t)� �xx (t; �x (t) ; u
� (t))j � �w (j�� (t)j) � �+ rK� j�� (t)j : (2.63)
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As with (2.62), we can estimate �� (:) as follows.

Z T

0

�
E j�� (t)j2k

� 1
2k
dt �

Z T

0

��
E j��x (t)1E" (t) �� (t)j

2k
� 1
k

+
�
E
��1
2
[~��xx (t)� �xx (t; �x (t) ; u

� (t))] �� (t)2
��2k� 1

k

+
�
E
��1
2
��xx (t)1E" (t) �

� (t)2
��2k� 1

k

+
�
E
��1
2
�xx (t)

�
�� (t)2 � y� (t)2

���2k� 1
k

�
dt

� K

Z T

0

�
1E" (t)

�
E j�� (t)j2k

� 1
k
+ 1E" (t)

�
E j�� (t)j4k

� 1
k

+
�
E [�+K� j�� (t)j]4k

� 1
2k
�
E j�� (t)j8k

� 1
2k

+
�
E j�� (t)j4k

� 1
2k
�
E j�� (t) + y� (t)j4k

� 1
2k

�
dt

� K
�
�3 + �2

�
�2 + �K2

�

�
+ �3 + �3

	

(2.64)

thus Z T

0

�
E j�� (t)j2k

� 1
k
dt = �

�
�2
�
: (2.65)

Then, by Lemma 2:2:1, we obtain (2.44).

5. Proof of (2.45) By Lemma 2:2:2, we have

J (u� (:))� J (�u (:)) = E [h (x� (T ))� h (�x (T ))]

+E

Z T

0

[f (t; x� (t) ; u� (t))� f (t; �x (t) ; �u (t))] dt

= E hh (�x (T )) ; �� (T )i

+E

Z 1

0

h�hxx [��x (T ) + (1� �)x� (T )] �� (T ) ; �� (T )i d�

+E

Z T

0

[�f (t)1E" (t) + hfx (t; �x (t) ; u� (t)) ; �� (t)i

+ h�fxx [t; ��x (t) + (1� �)x� (t)] �� (t) ; �� (t)i d�] dt:
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Now, recalling the de�nitions of ��, �� and ��, we have

J (u� (:))� J (�u (:)) = E hhx (�x (T )) ; y� (T ) + z� (T )i+ E hhx (�x (T )) ; �� (T )i

+1
2
E hhxx (�x (T )) y� (T ) ; y� (T )i

+1
2
E hhxx (�x (T )) �� (T ) ; �� (T ) + y� (T )i

+E

Z 1

0

h� [hxx (��x (T ) + (1� �)x� (T ))� hxx (�x (T ))] �
� (T ) ; �� (T )i d�

+E

Z T

0

f�f (t)1E" (t) + h�fx (t) ; �� (t)i1E" (t)

+ hfx (t) ; y� (t) + z� (t)i+ hfx (t) ; �� (t)i

+

Z 1

0

h� [fxx (t; ��x (t) + (1� �)x� (t)x� (t) ; u� (t))

�fxx (t; �x (t) ; u� (t))] �� (t) ; �� (t)i d�

+1
2
h�fxx (t) ��; ��i1E" (t)

+1
2
hfxx (t) y� (t) ; y� (t)i+ 1

2
hfxx (t) �� (t) ; �� + y� (t)i

	
dt:

Then, by (2.40)-(2.44), we can show that

J (u� (:))� J (�u (:)) = E hhx (�x (T )) ; y� (T ) + z� (T )i+ 1
2
E hhxx (�x (T )) y� (T ) ; y� (T )i

+E

Z T

0

�
hfx (t) ; y� (t) + z� (t)i+ 1

2
hfxx (t) y� (t) ; y� (t)i

�f (t)1E" (t)g dt+R (�) :

(2.66)

where R (�) is of order � (�). Hence, our conclusion follows.
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2.2.3 Duality analysis and completion of the proof

From Theorem 2:2:1, we conclude that a necessary condition for a given optimal pair

(�x (:) ; �u (:)) is the following

0 �
�
E hhx (�x (T )) ; y� (T ) + z� (T )i+ 1

2
hhxx (�x (T )) y� (T ) ; y� (T )i

	
+E

Z T

0

�
hfx (t) ; y� (t) + z� (t)i+ 1

2
hfxx (t) y� (t) ; y� (t)i

�f (t)1E" (t)g dt+ � (�) ; 8u (:) 2 U [0; T ] ;8� > 0;

(2.67)

where y� (:) and z� (:) are solutions to the (approximate) variational systems (2.37) and

(2.36), respectively. As in the deterministic case, we are now in a position to get rid of

y� (:) and z� (:), and then pass to the limit. To this end, we need some duality relations

between the variational systems (2.37)-(2.38) and the adjoint equations (2.8) and (2.9).

Lemma 2.2.3 Let (S0)-(S3) hold. Let y� (:) and z� (:) be the solutions of (2.37) and

(2.38), respectively. Let (p (:) ; q (:)) be the adapted solution of (2.8). Then

E hp (T ) ; y� (T )i = E

Z T

0

[hfx (t) ; y� (t)i+ tr (q (t)� �� (t))1E" (t)] dt; (2.68)

and

E hp (T ) ; z� (T )i = E

Z T

0

fhfx (t) ; z� (t)i

+1
2

"

p (t) ; bxx (t) y

� (t)2
�
+

mX
j=1



qj (t) ; �

j
xx (t) y

� (t)2
�#

+

"
hp (t) ; �b (t)i+

mX
j=1

hqj (t) ; ��jx (t) y� (t)i
#
1E" (t)

)
dt:

(2.69)
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Adding (2.68) and (2.69), and appealing to the Taylor expansions given in Theorem 2:2:1,

we get

�E hhx (�x (T )) ; y� (T ) + z� (T )i = E

Z T

0

�
hfx (t) ; y� (t) + z� (t)i+ 1

2



p (t) ; bxx (t) y

� (t)2
�

+

"
1
2

mX
j=1



qj (t) ; �

j
xx (t) y

� (t)2
�
+ hp (t) ; �b (t)i+ tr (q (t)� �� (t))

#
1E" (t)

)
dt+ � (�)

(2.70)

Thus, by (2.44) and the optimality of �u (:), we have

0 � J (u� (:))� J (�u (:))

= �1
2
E hhxx (�x (T )) y� (T ) ; y� (T )i

+1
2
E

Z T

0

�
�hfxx (t) y� (t) ; y� (t)i+



p (t) ; bxx (t) y

� (t)2
�

+
mX
j=1



qj (t) ; �

j
xx (t) y

� (t)2
�)

dt

+E

Z T

0

f��f (t+) hp (t) ; �b (t)i

+
mX
j=1

hqj (t) ; ��j (t)i
)
1E" (t) dt+ � (�)

= 1
2
E [tr (P (T )Y � (T ))]

+E

Z T

0

�
1
2
tr [Hxx (t)Y

� (t)] + �H (t)1E" (t)
	
dt+ � (�) ;

(2.71)

where 8>>>><>>>>:
Y � (t) = y� (t) y� (t)�

Hxx (t) = Hxx (t; �x (t) ; �u (t) ; p (t) ; q (t)) ;

�H (t) = H (t; �x (t) ; u (t) ; p (t) ; q (t))�H (t; �x (t) ; �u (t) ; p (t) ; q (t))

(2.72)

We see that (2.71) no longer contains the �rst-order terms in y� (:) and z� (:). But, unlike

the deterministic case, there are left some second-order terms in y� (:), which are written in

terms of the �rst-order in Y � (:). Hence, we want further to get rid of Y � (:). To this end,

we need some duality relation between the equation satis�ed by Y � (:) and the second-order
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adjoint equation (2.9) (which is exactly where the second-order adjoint equation comes

in). Let us now derive the SDE satis�ed by Y � (:). Applying Itô�s formula to y� (t) y� (t)�

and noting (2.38), one has

dY � (t) = fbx (t)Y � (t) + Y � (t) bx (t)
�

+

mX
j=1

�jx (t)Y
� (t)�jx (t)

� +

mX
j=1

��j (t) ��j (t)�E" 1 (t)

+

mX
j=1

(�jx (t) y
� (t)�j (t)� + ��j (t) y� (t)� ��jx (t)

�)1E" (t)

)
dt

+

mX
j=1

(�jx (t)Y
� (t) + Y � (t)�jx (t)

�) dW j (t)

+
mX
j=1

(��j (t) y� (t)� + y� (t) ��j (t)�)1E" (t) dW
j (t) :

(2.73)

To establish the duality relation between (2.73) and (2.9), we need the following lemma,

whose proof follows directly from Itô�s formula.

Lemma 2.2.4 Let Y (:) ; P (:) 2 L2F (0; T;Rn�n) satisfy the following8>>>><>>>>:
dY (t) = � (t) dt+

mX
j=1

	j (t) dW
j (t) ;

dP (t) = � (t) dt+
mX
j=1

Qj (t) dW
j (t) ;

(2.74)

with � (:) ;	j (:) ;�(:) and Qj (:) all being elements in L2F (0; T;Rn�n). Then

E ftr [P (t)Y (t)]� tr [P (0)Y (0)]g

= E

Z T

0

(
tr

"
�(t)Y (t) + P (t) � (t) +

mX
j=1

Qj (t)	j (t)

#)
dt

(2.75)
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Proof. (Theorem 2:1:1) Now we apply the above lemma to (2.73) and (2.9) to get the

following (using Theorem 2:2:1, and noting tr (AB) = tr (BA) and Y (0) = 0)

E ftr [P (t)Y � (t)]g

= E

Z T

0

tr (�� (t)� P (t) �� (t)1E" (t)�Hxx (t)Y
� (t)) dt+ � (�) ;

(2.76)

where 8><>: Hxx (t) = Hxx (t; �x (t) ; �u (t) ; p (t) ; q (t)) ;

�� (t) = � (t; �x (t) ; u (t))� � (t; �x (t) ; �u (t)) :

Hence, (2.73) can be written as

� (�) � E

Z T

0

�
�H (t) +

1

2
tr
h
�� (t)T P (t) �� (t)

i�
1E" (t) dt: (2.77)

Then we can easily obtain the variational inequality (2.14). Easy manipulation shows that

(2.14) is equivalent to (2.15). This completes the proof of Theorem 2:1:1.
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Chapter 3

Maximum principle in optimal

control of systems driven by

martingale measures

In this chapter, �rst we present a generalization of the notion of control, of course, acontrol problem -and even a deterministic one- does not necessarily have a solution.

Then we present our result.

3.1 Control problem

3.1.1 Strict control problem

The systems we wish to control are driven by the following n-dimensional stochastic di¤er-

ential equations of di¤usion type, de�ned on some �ltered probability space (
;F ; (Ft)t�0; P )

dx (t) = b(t; x (t) ; u (t))dt+ �(t; x (t) ; u (t))dWt; x (0) = x0 (3.1)
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where, for each t 2 [0; 1], the control ut is in the action space A, a compact set in Rk; the

drift term b : R+ � Rn � A ! R; and di¤usion coe¢ cient � : R+ � Rn � A ! Rn 
 Rm

are bounded measurable and continuous in (x; a).

The �nitesimal generator L, associate with (3.1), acting on functions f in C2b (Rn;R); is

Lf(t; x; u) =
1

2

X
i;j

�
aij

@2f

@xi@xj

�
(t; x; u) +

X
j

�
bj
@f

@xj

�
(t; x; u) (3.2)

where aij (t; x; u) denotes the generic term of the symmetric matrix ��� (t; x; u). Let U

denote the class of admissible controls, that is (Ft)t-adapted process with values in the

action space A. This class is nonempty since it contains constant controls.

The function to be minimized over such controls is

J(u) = E

�Z 1

0

h (t; x (t) ; u (t)) dt+ g(x1)

�
; (3.3)

where h and g are assumed to be real-valued, continuous, and bounded, respectively, on

R+ � Rn �A and on Rn.

We now introduce the notion of strict control to (3.1).

De�nition 3.1.1 A strict control is the term � = (
;F ; (Ft)t�0; P; u (t) ; x (t) ; x0) such

that

(1) x0 2 Rn is the initial data;

(2) (
;F ; (Ft)t�0; P ) is a probability space equipped with a �ltration (Ft)t�0 satisfying

the usual conditions;

(3) u (t) is an A-valued process, progressively measurable with respect to (Ft);

(4) (x (t)) is Rn-valued, Ft-adapted, with continuous paths, such that

f(x (t))� f(x0)�
Z t

0

Lf (s; x (s) ; u (s)) ds is a P -martingale, (3.4)

for each f 2 C2b , for each t > 0; where L is the in�nitesimal generator of the di¤usion
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(x (t)).

In fact, when the control u (t) is constant, the conditions imposed above on the drift term

and di¤usion coe¢ cient ensure that our martingale problem admits at least one solution,

which implies weak existence of solutions of (3.1). The associated controls are called weak

controls because of the possible change of the probability space and the Brownian motion

with u (t). When pathwise uniqueness holds for the controlled equation it is shown in El

Karoui and al [23], that the weak and strong control problems are equivalent in the sense

that they have the same value functions.

3.1.2 Relaxed control problem

The strict control problem as de�ned in the last section may fail to have an optimal

solution. We begin by ad-hoc famous example taken from [46] in order to illustrate what

we are going to do.

An example

Consider U = f�1; 1g and consider piecewise continuous function u : [0; 1] ! U (the

controls).

The dynamic of the problem is given by the di¤erential equation

8><>:
dxut
dt

= u (t)

xu0 = 0

and the cost associated to the problem is

J (u) =

Z 1

0

(xut )
2 dt

72



Chapter 3. Maximum principle in optimal control of systems driven by martingale
measures

First claim: inf
u
J (u) = 0:

Indeed, consider an integer n 2 N� and take

un (t) = (�1)k ; if
k

n
� t <

k + 1

n
for 0 � k � n� 1:

Then, clearly, for all t 2 [0; 1], jxunt j �
1

n
and so J (u) � 1

n2
.

Second claim: there is not an u such that J (u) = 0.

This is obvious as it would imply that xut = 0, 8t and so ut = 0 which is impossible.

If we analyze the previous example, we can understand where the trouble is: it is the fact

that the sequence (un) lacks a limit in the space of controls, limit which should be the

natural candidate to optimality. So we look for a space in which this limit exists.

Identify un (t) with the Dirac measure on U : �un(t) (du). Set

qn (dt; du) = �un(t) (du) dt;

qn is a measure over the space [0; 1]� U .

Lemma 3.1.1 qn converge weakly to

�q (dt; du) =
1

2
[��1 + �1] (du) dt:

Proof. Take f a continuous function on [0; 1]�U (of course only the continuity over [0; 1]

is meaningful).

One has Z
[0;1]�U

f (t; u) qn (dt; du) =
n�1X
k=0

Z k+1
n

k
n

f
�
t; (�1)k

�
dt:

Suppose �rst that n is even: n = 2m.

As t! f (t; 1) and t! f (t;�1) are continuous over [0; 1], they are uniformly continuous.
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Let � > 0. There is an M > 0 such that

8m �M; jf (t; u)� f (s; u)j < � if jt� sj < 1

m

where u is either 1 or �1.

Fix m �M . Then, for every j = 0; :::;m� 1,

�����
Z 2j+1

2m

2j
2m

f (t; u) dt�
Z 2j+2

2m

2j+1
2m

f (t; u) dt

����� < �

2m

one has
m�1X
j=0

Z 2j+1
2m

2j
2m

f (t; u) dt+
m�1X
j=0

Z 2j+2
2m

2j+1
2m

f (t; u) dt =

Z 1

0

f (t; u) dt

and �����
m�1X
j=0

Z 2j+1
2m

2j
2m

f (t; u) dt�
m�1X
j=0

Z 2j+2
2m

2j+1
2m

f (t; u) dt

����� < �

2

therefore, �����
m�1X
j=0

Z 2j+1
2m

2j
2m

f (t; u) dt� 1
2

Z 1

0

f (t; u) dt

����� < �

2

and �����
m�1X
j=0

Z 2j+2
2m

2j+1
2m

f (t; u) dt� 1
2

Z 1

0

f (t; u) dt

����� < �

2

so �����
2m�1X
k=0

Z k+1
2m

k
2m

f
�
t; (�1)k

�
dt� 1

2

�Z 1

0

f (t; 1) dt+

Z 1

0

f (t;�1) dt
������ < �:

The case n odd is treated in the same way.

Now, we can de�ne a "new" control problem associated to such a measure q, which is

called a relaxed control.

Consider the dynamic

xq (t) = x0 +

Z t

0

Z
U

uq (ds; du)
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and the associated cost is, as before,

J (q) =

Z 1

0

(xq (t))2 dt:

Then it is clear that the previous problem is generalized by the present problem by taking

measures q of the form

q (dt; du) = �ut (du) dt

moreover, if

�q (dt; du) =
1

2
[��1 + �1] (du) dt

we have J (�q) = 0 and so the new problem has �q as an optimal solution.

Remark 3.1.1 We denote by R the collection of all relaxed controls.

By a slight abuse of notation, we will often denote a relaxed control by q instead of spe-

cifying all the components.

Relaxed controls

We could want to take as controls all the measures q (dt; du). However, for our purpose

which is to prove existence of an optimal control, we have in mind to restrict to a compact

space containing "classical" controls. This is why the following de�nition is set.

De�nition 3.1.2 Let U � Rk. A relaxed control with values in U is a measure q over

[0; T ]� U such that the projection on [0; T ] is the Lebesgue measure.

If there exists u : [0; T ]! U such that

q (dt; du) = �u(t) (du) dt;

q is identi�ed with (u (t)) and said to be a control process.

We have an interesting decomposition of such a relaxed control.
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Proposition 3.1.1 Let q be a relaxed control with values in U . Then, for all t 2 [0; T ],

there exists a probability measure qt over U such that

q (dt; du) = dtqt (du) :

The proof is an application of Fubini theorem. The previous Proposition 3:1:1 allows us

to better interpret what a relaxed control is. In a control process, at a time t, we assign

the value u (t). In a relaxed control, the value is "randomly" chosen over the space U with

the probability distribution qt (du).

Another interest of Proposition 3:1:1 is that we can introduce a canonical decomposition

of relaxed controls.

De�nition 3.1.3 Let R be the space of relaxed controls over U . Let � 2 R. There exists

by Proposition 3:1:1 a process (�s) with values in the set of probability measures on U and

such that

� (ds; du) = ds�s (du) :

The process (qt) de�ned on R, which associates the process (�t) to � is said the canonical

process on R.

The �ltration Vt = (qs; s � t) is said the canonical �ltration.

Remark 3.1.2 We can see that Vt is generated by relaxed controls q such that

q[t;T ]�U (ds; du) = �u0 (du) dt

where u0 is an arbitrarily �xed point in U .
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Topology on the space R

R, as a set of measures, is classically equipped with the weak topology.

De�nition 3.1.4 A sequence (qn) in R is said to converge to q 2 R if for any continuous

function with compact support f on [0; T ]� U ,

Z
f (t; u) qn (dt; du)!

Z
f (t; u) q (dt; du) :

This convergence is by de�nition only valid on continuous functions. However, as all the

measures in R have the same marginal on [0; T ] ( Lebesgue measure), it is possible to

considerably improve it.

Proposition 3.1.2 Suppose qn ! q in R.

Then, for every measurable function f (t; u) such that 8t 2 [0; T ], u! f (t; u) is continu-

ous, one has Z
f (t; u) qn (dt; du)!

Z
f (t; u) q (dt; du) :

(stable convergence).

Finally, the following result makes clear that the set of relaxed controls has interesting

compactness properties.

Proposition 3.1.3 Suppose U is a compact set. Then R is compact.

Now, we interest to the relaxed controls of SDE as solutions of a martingale problem for a

di¤usion process whose in�nitesimal generator is integrated against the random measures

de�ned over the action space of all controls. Let V be the set of Radon measures on

[0; 1] � A whose projections on [0; 1] coincide with the Lebesgue measure dt. Equipped

with the topology of stable convergence of measures, V is a compact metrizable space.

Stable convergence is required for bounded measurable functions h(t; a) such that for each

�xed t 2 [0; 1], h(t; :) is continuous.
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De�nition 3.1.5 A relaxed control is the term q = (
;F ;Ft; P;Wt; qt; x (t) ; x0) such that

(1) (
;F ;Ft; P ) is a �ltered probability space satisfying the usual conditions;

(2) (qt) is an P (A)-valued process, progressively measurable with respect to (Ft); and

such for that for each t, 1(0;1]:q is Ft-measurable;

(3) (xt) is Rn-valued, Ft-adapted, with continuous paths, such that x(0) = x0 and

f(xt)�f(x0)�
Z t

0

Z
A

Lf (s; xs; a) qs(w; da)ds is a P -martingale, for each f 2 C2b (Rn;R):

(3.5)

The cost function associated to a relaxed control q is de�ned as

J(u) = E

�Z 1

0

Z
A

h (t; xt; a) qt(da)dt+ g(x1)

�
: (3.6)

The set U of strict controls is embedded into the set R of relaxed controls by the mapping

	 : u 2 U !	(u) (dt; da) = dt�u(t) (da) 2 R;

where �u is the Dirac measure at a single point u.
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3.2 Formulation of the problem

3.2.1 Predictable representation for orthogonal martingale meas-

ures

We �xed a worthy martingale measure M(da; dt) over a measurable space (E; E) de�ned

on the stochastic base (
;F ; (Ft) ; P ) where the starting ���eld F0 is P�trivial and

F = _t�0Ft:

The set of (M�)integrable function PM equals the closure of simple predictable functions

on 
� [0;1)�E with respect to the norm (:; :)1=2K . We restrict to orthogonal martingale

measures.

We denote the set of square-integrable martingales over (
;F ; (Ft) ; P ) byM2.

Proposition 3.2.1 Let N be in M2. Then there exist a unique function n 2 PM such

that

Nt = N0 +

Z t

0

Z
E

n(a; s)M(da; ds) + Lt;

where L is an L2�martingale with


L;
R :
0

R
E
b(a; s)M(da; ds)

�
= 0 for every b 2 PM .

Proof. See L. Overberk [55]:

3.2.2 Representation of relaxed controls

Since the set of a strict control A is compact, than the relaxed control can be given in

the form of Sliding control or chattering control. The Sliding control is a relaxed control

de�ned as
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qt =
nX
i=1

�i(t)�ui(t); ui(t) 2 A; �i(t) � 0;
nX
i=1

�i(t) = 1: (3.7)

If ui(s) =  in [r; r + �] , than:
nX
i=1

�i(t)�(t) = �(t) (3.8)

It is not di¢ cult to show that the solution of the (relaxed) martingale problem (3.5) is the

law of the solution of the following SDE

dx (t) =
nX
i=1

b(t; xt; ui(t))�i(t)dt+

nX
i=1

�(t; xt; ui(t))�i(t)
1=2dW i

t ; x (0) = x0 (3.9)

where the W i�s are n-dimensional Brownian motions on an extension of the initial prob-

ability space. The process M de�ned by

M (A� [0; t]) =
nX
i=1

Z t

0

�i(s)
1=2�ui(s)(A)dW

i
s ; (3.10)

is in fact a strongly orthogonal continuous martingale measure (c.f Walsh [59], El Karoui

and Méléard [22]) with intensity

qt(da)dt =
X

�i(t)�ui(t) (da) dt:

Thus, the SDE in (3.10) can be expressed in terms of M and q as follows

dx (t) =

Z
A

b(t; x (t) ; a)qt(da)dt+

Z
A

�(t; x (t) ; a)M(da; dt): (3.11)

The following theorem due to El Karoui and Méléard [22] shows in fact a general repres-

entation result for solution of the martingale problem (3.5) in terms of strongly orthogonal

continuous martingale measures whose intensities are our relaxed controls.
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Theorem 3.2.1 (1) Let P be the solution of the martingale problem (3.5). Then P is the

law of a d-dimensional adapted and continuous process X de�ned on an extension of the

space (
;F ;Ft) and solution of the following SDE starting at x0

dX i
t =

Z
A

bi(t;Xt; a)qt(da)dt+

nX
k=1

Z
A

�i;k(t;Xt; a)M
k(da; dt); (3.12)

where M =
�
Mk
�n
k=1

is a family of d-strongly orthogonal continuous martingale measures

with intensity qt(da)dt.

(2) If the coe¢ cients b and � are Lipschitz in x, uniformly in t and a, the SDE (3.12) has

a unique pathwise solution.

3.3 Maximum principle for relaxed control problems

In this section we establish optimality necessary conditions for relaxed control problems,

where the system is described by a SDE driven by an orthogonal continuous martingale

measure and the admissible controls are measure-valued processes.

Recall the controlled SDE

dx(t) =

Z
A

b(t; x(t); a)qt(da)dt+

Z
A

�(t; x(t); a)M(da; dt); x(0) = x0 (3.13)

where M(da; dt) is orthogonal continuous martingale measure whose intensity is the re-

laxed control qt(da)dt. The corresponding cost is given by

J(q) = E

�Z 1

0

Z
A

h (t; x(t); a) qt(da)dt+ g(x(1))

�
: (3.14)

We assume that the coe¢ cients of the controlled equation satisfy the following hypothesis
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(H1) b : R+�Rn�A ! R; � : R+�Rn�A !Mn�m (R) ; and h : R+�Rn�A ! R

are bounded measurable in (t; x; a) and twice continuously di¤erentiable functions in x for

each (t; a) and there exists a constant C > 0 such that

jf (t; x; a)� f (t; y; a)j+ jfx (t; x; a)� fx (t; y; a)j � C jx� yj ; (3.15)

f and their �rst and second derivatives are continuous in the control variable a, where f

stands for one of the functions b; �; h.

b; �; bx; �x; hx; gx are bounded by C (1 + jxj) :

g : Rn ! R is bounded and twice continuously di¤erentiable such that

jg (x)� g (y)j+ jgx (x)� gx (y)j � C jx� yj : (3.16)

Under the assumptions above, the controlled equation admits a unique strong solution

such that for every p � 1; E
�
sup0�t�T jxtj

p� < M(p):

3.3.1 Preliminary results

The purpose of the stochastic maximum principle is to �nd necessary conditions for op-

timality satis�ed by an optimal control. Due to the appearance of the control variable

in � (:; :), the usual �rst order expansion approach can�t work. Hence, we introduce a

second-order expansion method, we proceed as the classical maximum principle (Peng

[56]).

Suppose that (x(:); q(:)) is an optimal solution of the problem and let us introduce the

strong perturbed relaxed control in the following way

q�t (A) =

8><>: ��(A) if t 2 E

qt(A) if t 2 Ec
(3.17)
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where E = fr � t � r + �g ; 0 � r < T is �xed and the Ec = [0; T ] nE, � > 0 is su¢ ciently

small, and � is an arbitrary Fr-measurable random variable with values in U , such that

sup
w2


j�(w)j <1:

Let x� be the trajectory of the control system (3.13) corresponding to the control q�: (A);

which is the intensity of the orthogonal continuous martingale measures M �; we create it

of the form

M �
t (A) =

Z t

0

Z
A

1[r;r+�](s)��(da)dWs +

Z t

0

Z
A

1[r;r+�]C (s)M(da; ds): (3.18)

where 0 � r < T is �xed, � > 0 is su¢ ciently small, and � is an arbitrary Fr-measurable

random variable with values in U :

The variational inequality will be derived from the fact that

lim
�!0

1

�

�
J(q� (:))� J(q (:))

�
� 0; (3.19)

to this end, we need the following estimation.

Lemma 3.3.1 We assume (H1), then the following estimate holds

E

�
sup
0�t�T

jx�(t)� x(t)� x1(t)� x2(t)j2
�
� C(�)�2 (3.20)

where lim��!0C(�) = 0 and x1(t), x2(t) are solutions of the SDEs

x1 (t) =

tZ
0

Z
A

�
b(s; xs; a)q

�
s(da)� b(s; xs; a)qs(da) + bx(s; xs; a)x1(s)qs(da)

�
ds

+

tZ
0

Z
A

�
�(s; xs; a)M

�(da; ds)� �(s; xs; a)M(da; ds) + �x(s; xs; a)x1(s)M(da; ds)
�
(3.21)
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x2(t) =

tZ
0

Z
A

��
bx(s; xs; a)q

�
s(da)� bx(s; xs; a)qs(da)

�
x1(s)

�
ds

+

tZ
0

Z
A

�
bx(s; xs; a)x2(s)qs(da) +

1
2
bxx(s; xs; a)qs(da)x1(s)x1(s)

�
ds

+

tZ
0

Z
A

�
�x(s; xs; a)x1(s)M

�(da; ds)� �x(s; xs; a)x1(s)M(da; ds)
�

+

tZ
0

Z
A

�
�x(s; xs; a)x2(s) +

1
2
�xx(s; xs; a)x1(s)x1(s)

�
M(da; ds):

(3.22)

Remark 3.3.1 Equation (3.21) is called the �rst-order variational equation. It is the

variational equation in the usual sense. (3.22) is called the second-order variational equa-

tion, without this equation we can not derive the variational inequality since � depends

explicitly on the control variable.

Notation

1) For simplicity of the notations, we denote by

f (t; x(t); qt) =

Z
A

f (t; x(t); a) qt(da);

and f stands for b; �; h and their �rst and second derivatives.

2) We will generically denote by Ck the positive constants that appear in the estimates

below and may di¤er from line to line and from proof to proof.

Proof. The proof is inspired from [60], Theorem 4.4, page 128. We need to show that

E

�
sup
0�t�T

jx1(t)j2
�
� Ck�; (3.23)

E

�
sup
0�t�T

jx2(t)j2
�
� Ck�

2: (3.24)
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We can write

E
�
jx1(t)j2

�
� 4E

����Z t

0

Z
A

�
b(s; xs; a)q

�
s(da)� b(s; xs; a)qs(da)

�
ds

����2
+4E

����Z t

0

Z
A

�
�(s; xs; a)M

�(da; ds)� �(s; xs; a)M(da; ds)
�����2

+4E

����Z t

0

Z
A

bx(s; xs; a)x1(s)qs(da)ds+

Z t

0

Z
A

�x(s; xs; a)x1(s)M(da; ds)

����2
� E(I1) + E(I2) + E(I3)

Since q� is de�ned as in (3.17), then

E(I1) � 4E
Z t

0

����Z
A

[b(s; xs; a)��(da)� b(s; xs; a)qs(da)] 1E

����2 ds
� CkE

Z r+�

r

�
jb(s; xs; �)j2 +

Z
A

jb(s; xs; a)j2 jqs(da)j2
�
ds

� Ck

Z r+�

r

E
�
1 + jx(t)j2

�
ds

� Ck

Z r+�

r

�
1 + E

�
sup
0�t�T

jx(t)j2
��

ds � Ck(1 + �)�:

E(I2) � CkE

����Z r+�

r

Z
A

[�(s; xs; a)��(da)dBs � �(s; xs; a)M(da; ds)]

����2
� CkE

Z r+�

r

�
j�(s; xs; �)j2 ds+

Z
A

j�(s; xs; a)j2 qs(da)ds
�

� Ck

Z r+�

r

�
1 + E

�
sup
0�t�T

jx(t)j2
��

ds � Ck(1 + �)�

E(I3) � CkE

�Z t

0

Z
A

jbx(s; xs; a)j2 jx1(s)j2 jqs(da)j2 ds+
Z t

0

Z
A

j�x(s; xs; a)j jx1(s)j2 qs(da)ds
�

� CkE

�Z t

0

jx1(s)j2 ds
�
� Ck

Z t

0

E jx1(s)j2 ds

Then, we have

E jx1(s)j2 � CkE

�Z t

0

jx1(s)j2 ds
�
+ Ck(1 + �)�
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By Gronwall Lemma and Burkholder-Davis-Gundy�s inequality, we have

E

�
sup
0�t�T

jx1(t)j2
�
� Ck�:

As precedently, we have

E
�
jx2(t)j2

�
� 6E

�Z t

0

Z
A

[jbx(s; xs; a)x2(s)qs(da)dsj+ j�x(s; xs; a)x2(s)M(da; ds)j]
�2

+ 3E

�Z t

0

Z
A

[jbxx(s; xs; a)x1(s)x1(s)j qs(da)ds+ j�xx(s; xs; a)x1(s)x1(s)jM(da; ds)]
�2

+ 6E

Z t

0

�Z
A

��bx(s; xs; a)x1(s)q�s(da)� bx(s; xs; a)x1(s)qs(da)
���2 ds

+ 6E

�Z t

0

Z
A

���x(s; xs; a)x1(s)M �(da; ds)� �x(s; xs; a)x1(s)M(da; ds)
���2

by (3.17), we have

E
��x2(s)2�� � Ck

�
2

Z t

0

E jx2(s)j2 ds+ 4
Z r+�

r

�ds+

Z t

0

�2ds

�
� Ck

�
2

Z t

0

E jx2(s)j2 ds+ 4
Z r+�

r

�ds+

Z T

0

�2ds

�
� Ck

Z t

0

E jx2(s)j2 ds+ Ck(4 + T )�
2

by Gronwall�s and Burkholder-Davis-Gundy�s inequalities, we obtained the inequalities

(3.21); (3.22).

As in the proof of Lemma 1 in [56], set x3 = x1 + x2; we have

b
�
t; x(t) + x3(t); q

�
t

�
= b

�
t; x(t); q�t

�
+ bx

�
t; x(t); q�t

�
x3(t)

+

Z 1

0

Z 1

0

�bxx
�
t; x(t) + ��x3(t); q

�
t

�
d�d�x3(t)x3(t)

�
�
t; x(t) + x3(t); q

�
t

�
= �

�
t; x(t); q�t

�
+ �x

�
t; x(t); q�t

�
x3(t)

+

Z 1

0

Z 1

0

��xx
�
t; x(t) + ��x3(t); q

�
t

�
d�d�x3(t)x3(t)
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then, we can write

Z t

0

b
�
s; x(s) + x3(s); q

�
s

�
ds+

Z t

0

Z
A

� (s; x(s) + x3(s); a)M
�(da; ds)

= x(t) + x1(t) + x2(t)� x (0) +

Z t

0

B�(s)ds+ ��(t)

where

B�(s) =
1

2
bxx (s; x(s); qs) (x2(s)x2(s) + 2x1(s)x2(s))

+
�
bx
�
s; x(s); q�s

�
� bx (s; x(s); qs)

�
x2(s)

+

Z 1

0

Z 1

0

��
�bxx

�
s; x(s) + �� (x1(s) + x2(s)) ; q

�
t

��
d�d�

(x1(s) + x2(s)) (x1(s) + x2(s))g

�
Z 1

0

Z 1

0

f[bxx (s; x(s); qs)] d�d�

(x1(s) + x2(s)) (x1(s) + x2(s))g

��(t) =
1

2

Z t

0

Z
A

�xx (s; x(s); a) (x2(s)x2(s) + 2x1(s)x2(s))M(da; ds)

+

Z t

0

Z
A

�x (s; x(s); a)x2(s)M
�(da; ds)

�
Z t

0

Z
A

�x (s; x(s); a)x2(s)M(da; ds)

+

Z t

0

Z
A

Z 1

0

Z 1

0

f��xx (s; x(s) + �� (x1(s) + x2(s)) ; a) d�d�

(x1(s) + x2(s)) (x1(s) + x2(s))gM �(da; ds)

�
Z t

0

Z
A

Z 1

0

Z 1

0

f�xx (s; x(s); a) d�d� (x1(s) + x2(s))

(x1(s) + x2(s))gM(da; ds)
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and we can drive

x�(t)� x(t)� x1(t)� x2(t) =

Z t

0

Z
A

[b (s; x�(s); a)� b (s; x(s) + x1(s) + x2(s); a)] q�(da)ds

+

Z t

0

Z
A

[� (s; x�(s); a)� � (s; x(s) + x1(s) + x2(s); a)]M
�(da; ds)

+

Z t

0

B�(s)ds+ ��(t)

since b and � are Lipschitz then

E
�
jx�(t)� x(t)� x1(t)� x2(t)j2

�
� Ck

Z t

0

E jx�(t)� x(t)� x1(t)� x2(t)j2 ds

+ Ck

Z t

0

E
��B�(s)

��2 ds+ CkE
����(t)��2

and since b and bxx are bounded

E
h��B�(s)

��2i � CkE jx2(s)x2(s)j2 + CkE jx1(s)x2(s)j2 + CkE jx2(s)j2

+ CkE j(x1(s) + x2(s)) (x1(s) + x2(s))j2

from (3.23) and (3.24), we can use Cauchy-schwarz�s inequality, we have

E
��B�(s)

��2 � Ck
�
�4 + �3 + �2

�
:

Using the same think for ��, since �x and �xx are bounded and 8t > 0; Mt(:) is a L2�valued

���nite measure than

E
����(s)��2 � Ck

�
�4 + �3 + �2

�
:

From the two last inequalities, we can conclude that

E
�
jx�(t)� x(t)� x1(t)� x2(t)j2

�
� Ck

Z t

0

E jx�(t)� x(t)� x1(t)� x2(t)j2 ds+Ck
�
�4 + �3 + �2

�
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by Gronwall�s lemma, we obtained the inequality

E
�
jx�(t)� x(t)� x1(t)� x2(t)j2

�
� Ck

�
�4 + �3 + �2

�
exp (CkT ) :

Then, (3.20) follows from Burkholder-Davis-Gundy�s inequalities.

We want now to derive a variational inequality which is become from the Taylor expansion

and the cost functional with respect to the perturbation of the control variable.

Since q is an optimal relaxed control and from Lemma 3.3.1 we can derive.

Lemma 3.3.2 Under (3.19), the assumption of Lemma 3.3.1, we have

0 � J
�
q�
�
� J (q) � E

�Z T

0

(h (t; x(t); q�(t))� h (t; x(t); q(t))) dt

�
+E

�
gx(x(T )) (x1(T ) + x2(T )) +

Z T

0

hx (t; xt; q(t)) (x1(t) + x2(t)) dt

�
+1
2
E

�
gxx(x(T ))x1(T )x1(T ) +

Z T

0

hxx (t; x(t); q(t))x1(t)x1(t)dt

�
+ o (�)

(3.25)

Proof. Since (x; q) is optimal, we have

0 � E

�Z T

0

(h (t; x�(t); q�(t))� h (t; x(t); q(t))) dt

�
+ E [g(x�(T ))� g(x(T ))]

we use (3.21)

0 � E

Z T

0

[h (t; x(t) + x1(t) + x2(t); q�(t))� h (t; x(t); q(t))] dt

+E [g(x(T ) + x1(T ) + x2(T ))� g(x(T ))] + � (�)
(3.26)

Then by Taylor expansion in the point x for h (t; x+ x1 + x2; q�) and g (x+ x1 + x2), we
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have by (3.23) and (3.24), (3.26) can be rewritten as

0 � o (�) + �(T ) + E

Z T

0

[h (t; x(t); q�(t))� h (t; x(t); q(t))] dt

+E

Z T

0

[hx (t; x(t); q(t)) (x1(t) + x2(t))] dt

+1
2
E

Z T

0

[hxx (t; x(t); q(t))x1(t)x1(t)] dt

+E [gx(x(T ) (x1(T ) + x2(T ))] +
1
2
E [gxx(x(T ))x1(T )x1(T )]

(3.27)

where �(T ) is given by

�(T ) = E

Z T

0

[hx (t; x(t); q�(t))� hx (t; x(t); q(t))] (x1(t) + x2(t)) dt

+1
2
E

Z T

0

hxx (t; x(t); q(t)) (x1(t)x2(t) + x2(t)x1(t) + x2(t)x2(t)) dt

+1
2
E

Z T

0

[(hxx (t; x(t); q�(t))� hxx (t; x(t); q(t))) (x1(t) + x2(t)) (x1(t) + x2(t))] dt

+1
2
E [gxx(x(T )) (x1(T )x2(T ) + x2(T )x1(T ) + x2(T )x2(T ))]

from q� de�nition and (H1) assumption, we use (3.23), (3.24) and Cauchy-Schwarz�s in-

equalities, then

�(T ) � o (�)

Use this relation and (3.27) to complete the proof.
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3.3.2 Adjoint processes and variational inequality

In this subsection, we will introduce the �rst and second order adjoint processes involved

in the stochastic maximum principle and the associated stochastic Hamiltonian system.

These are obtained from the �rst and second varaitional equations (3.21), (3.22) as well

as (3.25).

First order terms

The �rst order estimation calculate the �rst order derivatives in (3.25). The linear term in

(3.21) and (3.22) may treated in the following way (see [14] ). Let �1 be the fundamental

solution of the linear equation

8><>:
d�1(t) =

Z
A

bx(t; x(t); a)�1(t)qt(da)dt+

Z
A

�x(t; x(t); a)�1(t)M(da; dt)

�1(0) = Id:

This equation is linear with bounded coe¢ cients, then it have a strong unique solution.

Moreover �1 is invertible and it inverse  1 satis�es8>>>>><>>>>>:
d 1(t) =

Z
A

[ 1(t)�x(t; x(t); a)�x(t; x(t); a)�  1(t)bx(t; x(t); a)] qt(da)dt

�
Z
A

 1(t)�x(t; x(t); a)M(da; dt)

 1(0) = Id:

�1 and  1 satisfy

E

"
sup
t2[0;T ]

j�1 (t)j2
#
+ E

"
sup
t2[0;T ]

j 1 (t)j2
#
<1:

We introduce the following processes

�1(t) =  1(t) (x1(t) + x2(t)) ;
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and

X1 = �1(T )gx (x(T )) +

Z T

0

�1(s)

Z
A

hx(s; x(s); a)qs(da)ds

�1(t) = E (X1=Ft)�
Z t

0

�1(s)

Z
A

hx(s; x(s); a)qs(da)ds

then

E [gx(x(T )) (x1(T ) + x2(T ))] = E [�1(T )gx (x(T )) �1(T )] = E [�1(T )�1(T )]

from the orthogonal martingale measure representation (Proposition 3:2:1) we have

E (X1=Ft) = E (X1) +

Z t

0

Z
A

G1(a; s)M (da; ds) + Lt;

where L is an L2�martingale with


L;
R :
0

R
E
b(a; s)M(da; ds)

�
= 0 for every b 2 PM and

such that E [hLti] <1.

Applied Ito�s formula to �1(t)�1(t) and we put

p1(t) =  �1(t)�1(t); (3.28)

Q1(t) =

Z
A

 �1(t)G1(t; a)qt(da)�
Z
A

��x(t; x(t); a)qt(da))p1(t) (3.29)

moreover p1(t), Q1(t) satisfy

E

�
sup
0�t�T

jp1(t)j2 + sup
0�t�T

jQ1(t)j2
�
<1;

the process p1 is called the �rst adjoint process.
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We can derive

E [gx(x(T )) (x1(T ) + x2(T ))] = E

Z T

0

Z
A

p1(t)
�
b(t; x(t); a)q�t (da)� b(t; x(t); a)qt(da)

�
dt

+ E

Z T

0

Z
A

�
Q1(t)

�
�(t; x(t); a)q�t (da)� �(t; x(t); a)qt(da)

��
dt

+
1

2
E

Z T

0

Z
A

p1(t)bxx(t; x(t); a)x1(t)x1(t)qt(da)dt

+
1

2
E

Z T

0

Z
A

Q1(t)�xx(t; x(t); a)x1(t)x1(t)qt(da)dt

� E

Z T

0

Z
A

hx(t; x(t); a) (x1(t) + x2(t)) qt(da)dt

+ E

Z T

0

Z
A

p1(t)
��
bx(t; x(t); a)q

�
t (da)� bx(t; x(t); a)qt(da)

��
x1(t)dt

+ E

Z T

0

Z
A

�
Q1(t)

�
�x(t; x(t); a)q

�
t (da)� �x(t; x(t); a)qt(da)

��
x1(t)dt

� E

Z T

0

Z
A

Q1(t) [�(t; x(t); a) + �x(t; x(t); a)x1(t)] ��(da)1E(t)dt

+ E

Z T

0

Z
A

 1(t) [�(t; x(t); a) + �x(t; x(t); a)x1(t)] ��(da)1E(t)d hBt; Lti

+ o (�) :

To derive our variational inequality, we need to prove the following estimates in the last

equality

E

Z T

0

Z
A

p1(t)
��
bx(t; x(t); a)q

�
t (da)� bx(t; x(t); a)qt(da)

��
x1(t)dt � C�;

E

Z T

0

Z
A

�
Q1(t)

�
�x(t; x(t); a)q

�
t (da)� �x(t; x(t); a)qt(da)

��
x1(t)dt � C�;

E

Z T

0

Z
A

Q1(t) [�(t; x(t); a) + �x(t; x(t); a)x1(t)] ��(da)1E(t)dt � C�

and

E

Z T

0

Z
A

 1(t) [�(t; x(t); a) + �x(t; x(t); a)x1(t)] ��(da)1E(t)d hBt; Lti � C�:
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By (3.23) and applying Young�s inequality, the �rst inequality becomes

E

Z r+�

r

p1(t) [bx(t; x(t); �)� bx(t; x(t); q)]x1(t)dt � CkE

Z r+�

r

�
[p1(t)x1(t)]

2+

[bx(t; x(t); �)� bx(t; x(t); q)]
2	 dt

� Ck

�
� + E

Z r+�

r

�
1 + sup

0�t�T
jx(t)j2

�
dt

�
� Ck�

For the second and the third estimates, we use the same argument as in the �rst one. For

the fourth term we use Kunita-Watanabe inequality

E

�Z r+�

r

Z
A

 1(t) [�(t; x(t); a) + �x(t; x(t); a)x1(t)] ��(da)d hBt; Lti
�
�

E

�Z r+�

r

Z
A

 21(t) [�(t; x(t); a) + �x(t; x(t); a)x1(t)]
2 ��(da)dt

�1=2
E

�Z r+�

r

Z
A

��(da)d hLt; Lti
�1=2

� CkE

�Z r+�

r

 21(t) [�
2(t; x(t); �) + �2x(t; x(t); �)x

2
1(t)] dt

�1=2
E
�
hL;Lir+� � hL;Lir

�1=2
Using the same arguments the inequality holds since E [hLti] <1 .

Let us now de�ne the Hamiltonian

H (t; x; q; p;Q) =

Z
A

h (t; x; a) q(da) + p

Z
A

b (t; x; a) q(da) +Q

Z
A

� (t; x; a) q(da);

Therefore, we use the value ofE [gx(x(T )) (x1(T ) + x2(T ))] and the Hamiltonian de�nition,

(3.25) can be rewritten

0 � J
�
q�
�
� J (q) � E

Z T

0

Z
A

�
H (t; x(t); a; p1(t); Q1(t)) q

�
t (da)�H (t; x(t); a; p1(t); Q1(t)) qt(da)

�
dt

+1
2
E

Z T

0

Z
A

x1(t)Hxx(x(t); a; p1(t); Q1(t))x
�
1(t)qt(da)dt+

1
2
E [x1(T )gxx(x(T ))x

�
1(T )] + o (�) :

(3.30)
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Second order terms

The second order estimation concerns the second order derivatives in (3.30). As in Peng

[56]; let Z = x1x
�
1: By Itô�s formula we obtain

dZ(t) =

Z
A

[Z(t)b�x(t; x(t); a) + bx(t; x(t); a)Z(t)] qt(da)dt+ B� (t; x(t); a)

+

Z
A

�x(t; x(t); a)Z(t)�
�
x(t; x(t); a)qt(da)dt+ A� (t; x(t); a) dt

+

Z
A

(Z(t)��x(t; x(t); a) + �x(t; x(t); a)Z(t))M (da; dt)� B (t; x(t); a) :

(3.31)

For simplicity of notations, we denote by

f (t) =

Z
A

f (t; x(t); a) qt(da); f� (t) =

Z
A

f (t; x(t); a) q�t (da)

in A� and in B�, B by

fdM =

Z
A

f (t; x(t); a)M (da; dt) ; f�dM
� =

Z
A

f (t; x(t); a)M � (da; dt)

f stands for b; � and their �rst derivatives.

Then we have

A� (t) qt(da) = x1(t) (b
�
�(t)� b�(t)) +

�
b�(t)� b(t)

�
x�1(t)� �x(t)x1(t)�

�(t)� �(t)x�1(t)�
�
x(t)

+ [(�x(t)x1(t)�
�
�(t) + ��(t)x

�
1(t)�

�
x(t))� (��(t)��(t) + �(t)���(t))] 1EC (t) + ��(t)�

�
�(t) + �(t)��(t)

B� (t) = ��(t)x
�
1(t) + x1(t)�

�
�(t)dM

�; B (t) = �(t)x�1(t) + x1(t)�
�(t)dM

we remark that

E

Z T

0

A� (t) dt � E

Z T

0

[(��(t)�
�
�(t) + �(t)��(t))� (��(t)��(t) + �(t)���(t)) 1EC (t)] dt+ � (�)

E

Z T

0

B� (t) dM � � � (�) and E
Z T

0

B� (t) dM � � (�) :

As in the �rst order estimation, we consider now the following symmetric matrix-valued
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linear equation associate to (3.31)

8>>>>><>>>>>:
d�2(t) =

Z
A

[�2(t)b
�
x(t; x(t); a) + bx(t; x(t); a)�2(t) + �x(t; x(t); a)�2(t)�

�
x(t; x(t); a)] qt(da)dt

+

Z
A

(�2(t)�
�
x(t; x(t); a) + �x(t; x(t); a)�2(t))M(da; dt)

�2(0) = Id:

This equation is linear with bounded coe¢ cients, hence it admit a unique strong solution.

Moreover �2 is invertible and it inverse  2 satis�es

8>>>>>>>><>>>>>>>>:

d 2(t) =

Z
A

�
(�x(t; x(t); a) + ��x(t; x(t); a))

2  2(t)�  2(t)b
�
x(t; x(t); a)

�
qt(da)dt

�
Z
A

[bx(t; x(t); a) 2(t) + �x(t; x(t); a) 2(t)�
�
x(t; x(t); a)] qt(da)dt

� [ 2(t)��x(t; x(t); a) + �x(t; x(t); a) 2(t)]M (da; dt)

 2(0) = Id:

It is easy to see that �2 and  2 satisfy

E

"
sup
t2[0;T ]

j�2 (t)j2
#
+ E

"
sup
t2[0;T ]

j 2 (t)j2
#
<1:

Using the same arguments as for the �rst order terms, we introduce the processes �2(t) =  2(t)Z(t)

and

X2 = ��2(T )gxx (x(T )) +

Z T

0

��2(s)

Z
A

Hxx(s; x(s); a)qs(da)ds

�2(t) = E (X2=Ft)�
Z t

0

��2(s)

Z
A

Hxx(s; x(s); a)qs(da)ds

We remark from these equality that

E [x1(T )gxx(x(T ))x
�
1(T )] = E [��2(T )gxx (x(T )) �2(T )] = E [�2(T )�2(T )]
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The orthogonal martingale measure representation (Proposition 3:2:1) give us

E (X2=Ft) = E (X2) +

Z t

0

Z
A

G2(a; s)M(da; ds) + L0t (3.32)

where L0 is an L2�martingale with


L0;
R :
0

R
E
b(a; s)M(da; ds)

�
= 0 for every b 2 PM and

such that E [hL0ti] <1:

Apply Itô�s formula to �2(t)�2(t), to obtain

E [x1(T )gxx(x(T ))x
�
1(T )] = �E

Z T

0

Z
A

x1(t)Hxx(t; x(t); a)x
�
1(t)qt(da)dt+

E

Z T

0

Z
A

tr
��
�(t; x(t); a)q�t (da)� �(t; x(t); a)qt(da)

��
p2(t)

�
�(t; x(t); a)q�t (da)� �(t; x(t); a)qt(da)

��
dt

+o (�)

(3.33)

where

p2(t) =  �2(t)�2(t) (3.34)

the process p2 is called the second adjoint process.

Adjoint equations and the maximum principle

By applying Ito�s formula to the adjoint processes p1 in (3.28) and p2 in (3.34); we obtain

the �rst and second order adjoint equations, which have the forms

8>>>>><>>>>>:
�dp1(t) =

Z
A

[b�x (t; x(t); a) p1(t) + ��x (t; x(t); a)Q1(t) + hx (t; x(t); a)] qt(da)dt

�
Z
A

Q1(t)M(da; dt)�  �1(t)dLt

p1(T ) = gx (x(T )) :

(3.35)

with values in Rd, where L is an L2�martingale with


L;
R :
0

R
E
b(a; s)M(da; ds)

�
= 0 for

every b 2 PM , Q1 is given by (3.29) with values in Rd�k. The adjoint equation that p1(:)

satis�es is a linear backward stochastic di¤erential equation. This BSDE has a unique

adapted solution see Elkaroui, Peng and Quenez [25].
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Using Itô�s formula it is easy to see that p2 is matrix valued and satis�es8>>>>>>>>>>>>><>>>>>>>>>>>>>:

�dp2(t) =
Z
A

fb�x (t; x(t); a) p2(t) + p2(t)bx (t; x(t); a)

+��x (t; x(t); a)Q2(t) +Q2(t)�x (t; x(t); a)g qt(da)dt

+

Z
A

[��x (t; x(t); a) p2(t)�x (t; x(t); a) +Hxx (x(t); a; p1(t); Q1(t))] qt(da)dt

�
Z
A

Q2(t)M(da; dt)�  �2(t)dL
0
t

p2(T ) = gxx (x(T )) ;

(3.36)

where L0 is given by (3.32) and Q2 is given by

Q2(t) =

Z
A

[ �2(t)G2(t; a)� p2(t)�x (t; x(t); a) + ��x(t; x(t); a)p2(t)] qt(da) (3.37)

Note that p2(:) is also a backward stochastic di¤erential equation with matrix-valued

unknowns. This BSDE have a unique adapted solution.

Remark 3.3.2 Hxx (x(t); qt; p(t); Q(t)) is the second derivative of the Hamiltonian H at

x and it is given by

Hxx (x(t); qt; p(t); Q(t)) = hxx (t; x(t); qt) + p(t)bxx (t; x(t); qt) +Q(t)�xx (t; x(t); qt) :

We are ready now to state the main result.

Theorem 3.3.1 (The stochastic maximum principle) Let q be an optimal control minim-

izing the cost J over R and x denotes the corresponding optimal trajectory. Then there

are two unique couples of adapted processes (p1; Q1) and (p2; Q2) which are respectively

solutions of the backward stochastic di¤erential equations (3.35) and (3.36) such that

0 � H (t; x(t); �; p1(t); Q1(t))�H (t; x(t); qt; p1(t); Q1(t))

+1
2
tr [(�(t; x(t); �)� �(t; x(t); qt))

� p2(t) (�(t; x(t); �)� �(t; x(t); qt))]

(3.38)
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� is an arbitrary Fr-measurable random variable with values in U , such that

sup
w2


j�(w)j <1:

Proof. From (3.33); (3.30) can be rewritten

0 � J
�
q�
�
� J (q) � E

Z T

0

Z
A

�
H (t; x(t); a; p1(t); Q1(t)) q

�
t (da)�H (t; x(t); a; p1(t); Q1(t)) qt(da)

�
dt

+ 1
2
E

Z T

0

Z
A

tr
��
��(t; x(t); a)q�t (da)� �(t; x(t); a)qt(da)

��
p2(t)�

��(t; x(t); a)q�t (da)� �(t; x(t); a)qt(da)
�	
dt+ � (�) :

This equation is the variational inequation of the second order.

We use the de�nition of q�, the last variational inequality becomes

0 � 1
�

�
J
�
q�
�
� J (q)

�
� 1

�
E

Z r+�

r

[H (t; x(t); �; p1(t); Q1(t))�H (t; x(t); qt; p1(t); Q1(t))] dt+ o (�)

+ 1
2�
E

Z r+�

r

tr [(�(t; x(t); �)� � (t; x(t); qt))
� p2(t) (�(t; x(t); �)� �(t; x(t); qt))] dt;

Then, the desired result follows by letting � going to zero.
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Conclusion

The original version of Pontryagin�s maximum principle was for deterministic prob-

lems, with its key idea coming from the classical calculus of variations. In deriving

the maximum principle, one �rst slightly perturbs an optimal control by means of the so-

called spike variation, then considers the �rst-order term in a sort of Taylor expansion with

respect to this perturbation. By sending the perturbation to zero, one obtains a kind of

variational inequality. The �nal desired result (the maximum principle) then follows from

the duality. If the di¤usion terms also depend on the controls, we encounter an essential

di¢ culty, we we try to do the same idea for control problems, thus the usual �rst-order

variation method can not applied.

To surpass this di¢ culty, one needs to study both the �rst-order and second-order

terms in the Taylor expansion of the spike variation and �nd a stochastic maximum prin-

ciple involving a stochastic Hamiltonian system that consists of two forward-backward

stochastic di¤erential equations. Our result extends Peng�s maximum principle to the

class of measure valued controls.
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Appendix

In this appendix we introduce the integral of Banach space valued functions, the so-called

Bochner integral, de�ne the corresponding Lebesgue and Sobolev spaces.

Bochner integral

The Bochner integral for functions landing in a separable Banach space. This integral was

�rst introduced by Salomon Bochner in his 1933 paper Integration von Functionen [16].

It is a generalization of the Lebesgue integral.

If Y is a normed vector space andM � Y , then the Borel �-algebra B (M) overM is the �-

algebra generated by the system of relatively open subsets of M . We write Bd = B
�
Rd
�

for the Borel �-algebra over Rd. The d�dimensional Lebesgue measure is denoted by dx.

In one dimension we often write dt. The Lebesgue measure of A 2 Bd is denoted by jAj.

We de�ne

Nd = fN 2 Bdj jAj = 0g

as the set of Borel measurable sets of measure zero. For A 2 Bd; a function f : A ! Y

is called (Borel-)measurable if f�1 (B) 2 B (A) for all B 2 B (Y ) : If f : A ! Y is

measurable, then kfk is measurable as well, where kfk (x) = kf (x)k for x 2 A:

Throughout, let E be a complex Banach space. A function f : Rd ! X is called simple,

if there are N 2 N; An 2 Bd and xn 2 E for n = 1; :::; N such that

f =

NX
n=1

1Anxn:
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Observe that simple functions are measurable. We start with the integral over simple

functions.

De�nition 3.3.1 Let f =
PN

n=1 1Anxn be a simple function with jAj < 1 for: n =

1; :::; N . Then the Bochner integral of f is de�ned by

Z
Rd
fdx =

Z
Rd
f (x) dx =

NX
n=1

jAnjxn 2 E:

We note that the above integral is independent of the representation of the simple function

f . It is further clear that the Bochner integral is linear on the vector space of simple

functions whose support has �nite measure. Moreover, as a consequence of the triangle

inequality, for each simple function f we have the estimate

Z
Rd
fdx

 = Z
Rd
kfk dx (A.1)

where the integral on the right-hand side is now the usual scalar-valued Lebesgue integral.

As in the scalar case, we extend the Bochner integral to a larger class of function by

taking limits of simple functions. As it turns out, besides measurability for this procedure

a separability condition is necessary.

Lemma 3.3.3 Let f : Rd ! E be a map. Then the following assertions are equivalent.

a. There is a sequence (fk)k2N of simple functions fk : Rd ! E such that fk (x) ! f (x)

as k !1 for all x 2 Rd:

b. f is measurable and f
�
Rd
�
� E is separable.

If one of the assertions is true, then in a. one can choose (fk)k2N such that

kfk (x)k � 2 kf (x)k ; for all x 2 Rd:
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The lemma suggest the following notion.

De�nition 3.3.2 A map f : Rd ! E is called strongly measurable if there is a sequence

(fk)k2N of simple functions f : Rd ! E such that fk (x)! f (x) as k !1 for all x 2 Rd:

For a strongly measurable f one would like to de�ne the Bochner integral as a limit of

Bochner integrals of simple functions. Fortunately, there is a simple criterion when this is

possible.

Lemma 3.3.4 Let f : Rd ! E be strongly measurable. Then the following assertions are

equivalent.

1. There is a sequence of simple functions (fk)k2N such that fk (x)! f (x) as k !1

for all x 2 Rd and

lim
k!1

Z
Rd
kfk � fk dx = 0:

2. It holds that
R
Rd kfk dx <1:

If one of the assertions is true, then the limit lim
R
Rd fkdx
k!1

exists in E and is independent

of the sequence of simple functions (fk)k2N as in 1.

Now we can de�ne integrability and the Bochner integral for a large class of

functions.

De�nition 3.3.3 A function f : Rd ! E is called Bochner integrable if it is strongly

measurable and if
R
Rd kfk dx <1: In this case one sets

Z
Rd
fdx = lim

k!1

Z
Rd
fkdx

where (fk)k2N is any sequence of simple functions as in 1. of the precedent Lemma. Fur-

thermore, for A 2 Bd a function f : A! E is called Bochner integrable if its extension f0
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by zero to Rd is Bochner integrable, and in this case one de�nes

Z
A

fdx =

Z
Rd
f0dx:

For A 2 Bd one �nally sets

L (A;E)= ff : A! Ej f is integrableg :
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