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0.1 Introduction

In this thesis we consider the optimal stochastic control problems, where the sys-

tems are dynamic, namely, they evolve over time. Moreover, they are described by Itô�s sto-

chastic di¤erential equations, and are sometimes called di¤usion models. Since the systems

are dynamic, the relevant controls, which are made based on the most updated information

available to the controllers, must also change over time. The controllers must select an

optimal decision among all possible ones to achieve the best expected result related to their

goals. Historically handled with Bellman�s and Pontryagin�s optimality principles, the re-

search on control theory considerably developed over these last years, inspired in particular

by problems emerging from mathematical �nance.

The Dynamic Programming Principle. We �rst consider standard control

problem on �nite horizon [0; T ] as follows: Let (
; F; P ) be a probability space, let (Ft)t be

a �ltration satisfying the usual conditions, and B a d-dimensional Brownian motion de�ned

on the �ltered probability space (
; F; P ) ; we consider a model in which the time evolution

of the system is actively in�uenced by another stochastic process us; called a control process.

In this case we suppose that xs satis�es a stochastic di¤urential equation of the form

dxs = b (s; xs; us) ds+ � (s; xs; us) dBs; (1)

with initial data xt = x; the coe¢ cients, b : [0; T ]�Rn�U ! Rn; � : [0; T ]�Rn�U ! Rn�d;

satis�es the usual conditions in order to ensure the existence and unicity of solution to SDE

(1) ; this is typicaly satis�ed when b; and � satis�es a Lipschitz condition on x; uniformly

in a; with linear growth condition. The control process us is a progressively measurable

process valued in the control set A� Rn; satis�es a square integrability condition: We note
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that, for each constant control v; the state process xvs is Markov with in�nitesimal generator

$v: One must also specify what kind of information is available to the controller of time s;

the controller is allowed to know the past history of states xr; for r � s; when control us

is chosen. The Markovian nature of the problem suggests that it should su¢ ce to consider

control processes of the form u (s; xs) ; such a control u is called a Markov control policy.

Formally, we expect that if us = u (s; xs) ; xs should be a Markov process with in�nitesimal

generator acting on function �, coincides on C2b (R
n;R) with partial di¤erential operator

$u� =
nX
i=1

bi (t; x; u (t; x))�xi +
1

2

nX
i;j=1

aij (t; x; u (t; x))�xixj ; (2)

where aij=
�
��T

�
ij
denotes the generic term of the matrix ��T : The control problem on a

�nite time interval [t; T ] is to minimize the functional

J (t; x; u) = E

24 TZ
t

f (s; xs; us) ds+ g (xT )

35 ; (3)

we call f a running cost function and g a terminal cost function. We always assume that

f and g are continuous, together with further integrability assumptions needed to insure

that J is well de�ned. If g (x) = 0 then the problem is said to be in Lagrange form. If

f (t; x; u) = 0; the problem is in Mayer form. The starting point for dynamic programming

is to regard the in�mum of the quantity J , being minimized as a function V (t; x) of the

initial data

V (t; x) = inf
u2U

J (t; x; u) (4)

where xt = x, is the initial state given at time t: the in�mum being over the class of

controls admitted, V is called the value function. The �rst step is to obtain Bellman�s

optimality principle, and also called the dynamic programming principle. This states that
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for t � t+ h � T

V (t; x) = inf
u2U

E

24 t+hZ
t

f (s; xs; us) ds+ V (t+ h; xt+h)

35 ; (5)

not that, the expression in brackets represents the sum of the runing cost on [t; t+ h], withe

(t+ h; xt+h) as initial data. The proof of the dynamic programming principle is technical

and, has been studied by di¤erent methods, we refer the reader to Krylov [83] ; Lions [87],

Fleming and Soner [51] ; and Yong and Zhou [121] : For using dynamic programming, we

are naturally led to vary the probability spaces and so to consider the weak formulation of

the stochastic control problem, for which one shows the dynamic programming principle.

Next, by assuming that the value function is C1;2 ([t; T ]� Rn) ; applying Itô�s for-

mula to V
�
s;Xt;x

s

�
between t and t+ h; and then sending h to zero into (5) ; The classical

HJB equation associated to the stochastic control problem (3) and (4) is given becomes a

partial di¤erential equation of second order for V

�@V
@t
(t; x)� sup

v2A
[$vV (t; x) + f (t; x; v)] = 0; on [0; T )� Rn; (6)

where $v is the in�nitisimal generator associated to the di¤usion X with constant control

v; given by (2) : Equation (6) is to be considered in [0; T ] � Rn whith the terminal data

V (T; x) = g (x) :

The classical veri�cation theorem consists in �nding a smooth solution to the HJB

equation, and to check, if W is a classical solution of the HJB equation, then W equals the

minimum total expected cost among an appropriately de�ned class of admissible control

systems. The proof is quite simple, but the assumption that W is a classical solution is

quite restrictive.
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In the singular cas the state evolves according to the d-dimensional stochastic

di¤erential equation8>><>>:
dXs = b (s; xs; us) ds+ � (s; xs; us) dBs +G (s) d� (s) ; for s 2 [t; T ] ;

Xt = x;

(7)

where b, �, and G are given deterministic functions, x is the initial state, the control variable

is a suitable process (u; �) where u : [0; T ]�
! A1 � Rd; � : [0; T ]�
! A2 = ([0;1))m

are B[0; T ]
F measurable, (Ft) adapted, and � is an increasing process, continuous on the

left with limits on the right with �0 = 0: The cost functional has the form

J (u; �) = E

24 TZ
t

f (s;Xs; us) dt+

TZ
t

k (s) d� (s) + g (XT )

35 ; (8)

As is well known, the Bellman�s dynamic programming pinciple is satis�ed for the classical

stochastic control problem (without the singular control), and under certain regularity con-

ditions the value function it satis�es the HJB equation. This is still the case for singular

stochastic control where the HJB equation is a second order variational inequality, we refer

the reader also to Fleming and Soner [51] : Haussmann and Suo [66], discusses the dynamic

programming principle fo this problem in the case where the coe¢ cients are Lipschitz con-

tinuous in the state variable. By the compacti�cation method, it was shown that, the value

function is continuous and is the unique viscosity solution of the HJB variational inequality

max

�
sup
u
H1
�
t; x;W; @tW;DxW;D

2
xW;u

�
;H2 (t; x;DxW;u) ; l = 1; ::;m

�
= 0; (3.3)

with H1; and H2 are given by

H1
�
t; x;W; @tW;DxW;D

2
xW;u

�
=
@W

@t
(t; x) +$uW (t; x) + f (t; x; u) ;

H2 (t; x;DxW;u) =
nX
i=1

@W

@xi
(t; x)Gil (t) + kl (t) :
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DxW and D2
xW represent respectively, the gradient and the Hessian matrix of W:

Stochastic dynamic programming was introduced into continuous time �nance

by Merton [91; 92] ; who construct explicit solutions of the single agent consumption and

portfolio problem. He assumed that the returns of assetin perfect markets satisfy the

geometric Brownian motion hypothesis, and he considered utility functions belonging to

the hyperbolic absolute risk aversion (HARA) family. Under these assumptions he found

explicit formulae for the optimal consumption and portfolio in both the �nite and in�nite

horizon case. A martingale representation technology has been used by Karatzas, Lehoczky

and Shreve [74] ; to study optimal portfolio and consumption policies in models with general

market coe¢ cients. The cas of the Merton problem with a general utilities was analyzed

by Kratzas et al. in [73; 74] ; who produced the value function in closed form. Models with

general utilities and trading constraints were subsequently studied by varios authors, see

Karatzas et al. [75] ; Zariphopoulou [122] : The notion of recursive utility was �rst by Du¢ e

and Epstein [39], Du¢ e and Skiadas [42] have considered the optimization problem when

the utility is nonlinear. Using BSDE techniques, El karoui et al. [47] have generalized

the characterization of optimality obtained by Du¢ e and Skiadas [42] : Recall that these

BSDE have been introduced by Pardoux and Peng [97] and that theire applications to

�nance have been developed by El Karoui, Peng and Quenez [48] : Variations of the one-

dimensional singular problem have been studied by many authors: It is shown that the

value function satis�es a variational inequality which gives rise to a free boundary problem,

and the optimal state process is a di¤usion re�ected at the free boundary. Bather and

Cherno¤ [13] where the �rst to formulate such a problem: Ben¼es, Shepp and Witsenhaussen
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[14] explicitly solved a one dimensional example by observing that the value function in

their example is twice cotinuously di¤erentiable, since this regularity of the value function

reduces to a condition at the interface, this regularity property is called the principle of

smooth �t. The optimal control can be constructed by using the re�ected Brownian motion

see Lions and Sznitman [89] for more detail. see also Baldursson and Karatzas [10] for the

"social planner�s" problem with the associated "small investor�s" problem, when the authors

considered the capital stock dynamics, corresponding to the cumulative investment process

�. The stochastic control problems that arise in models with transaction costs are of singular

type and their HJB equation becomes a variational Inequality with gradient constraints.

This problem was formulated by Magil and Constantinides [90] ; who conjectured that the

no-transaction region is a cone in the two-dimensional space of position vectors. See., also

Constantinided [30; 31] : Note that in these models, because there is a single risky asset, the

value function depends only on two state variables, say (x; y) ; with x and y special form

of the power utility functions. Davis and Norman [36] obtained a closed form expression

for the value function employing the homogeneity of the problem. They also showed that

the optimal policy con�nes the investor�s portfolio to a certain wedge-shaped region in the

wealth plane and they provided an algorithm and numirical computations for the optimal

investment rules. The same class of utility functions was later further explored by Shreve

and Soner [105] ; who relaxed some of the technical assumptions on the market parameters

of Davis and Norman and provided further results related to the regularity of the value

function. The cas of general utilities was examined through numirical methods by Tourin

and Zariohopoulou [110; 111; 112] who built a coherent class of approximation schemes for
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investment models with transaction costs. We refer the reader to ?ksendal and Sulem [96]

for the same problem with jump di¤usion. For further contributions concerning the singular

stochastic control problem and its applications the reader is referred to [12; 24; 28; 65] :

As it is well-known, it does not follow directly that the value functionis smooth,

and there is not in general a smooth solution of the HJB equation, especially when the

di¤usion coe¢ cient is degenerate, one is forced to use a notion of weak solution such as

viscosity solutionsintroduced by Grandall and Lions [34] ; in the �rst order cas and by

Lions [87] in the second order case. Lions proved that any viscosity solution is the value

function of the related stochastic optimal control problem. Jensen [71] was �rst to prove

uniqueness result for a second orde PDE. Another important step in the development of the

second-order problems is Ishii�s Lemma [68] : For a general overview of the theory we refer

to the "User�s Guide...." by Grandall, Ishii and Lions [32] ; and the book by Fleming and

Soner. Viscosity solutions in stochastic control problems arising in mathematical �nance

were �rst introduced by Zariphopoulou [122] in the context of optimal investment decisions

with trading constraints, see., also Davis, Panas and Zariphopoulou [41] ; Shreve and Soner

[105] ; Barles and Soner [12] ; Du¢ e et al. [40] :

The characterization of the value function as the unique viscosity solution is given

in [121] :

The Stochastic Maximum Principle. An other classical approach for control

problem is to derive necessary conditions satis�ed by an optimal solution, the argument is

to use an appropriate calculus of variations of the cost functional J (u) with respect to the

control variable in order to derive a necessary condition of optimality. The maximum prin-
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ciple initiated by Pontryagin, states that an optimal state trajectory must solve a Hamilton

system together with a maximum condition of a function called a generalized Hamilton.

The Pontryagin�s maximum principle was derived for deterministic problems as in calculus

of variation.

In stochastic control, the measurability assumptions made on the control variables

and the nature of solutions of the underlying SDE, play an essential role in the statement

of the maximum principle. The �rst version of the stochastic maximum principle was

established by Kushner [80] (see also Bismut [19], Bensoussan [15] and Haussmann [58]).

However, at that time, the results where essentially obtained under the condition that �

independent of control is as follows: assume that b, �; f and g are bounded, continuously

di¤erentiable in the space variable with the �rst order derivative satisfying the Lipschitz

condition, we con�ne ourselves to (Ft)-atapted controls ut: The basic idea is to perturb an

optimal control and to use some sort of Taylor expansion of the state trajectory around

the optimal control, by sending the perturbation to zero, and by martingale representation,

the maximum principle is expressed in term of an adjoint process. Let pt; qt be processes

adapted to the natural �ltration of Bt; and satisfying the backward stochastic di¤erential

equation 8>><>>:
dpt = �Hx (t; xt; ut; pt) + qtdBt;

pT = �gx (xT ) ;
(10)

where the Hamiltonian H is de�ned by

H (t; x; u; p) = p:b (t; x; u)� f (t; x; u) : (11)
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The maximum principle then states that, if (x̂t; ût) is an optimal pair, then one must have

max
u

H (t; x̂t; ut; pt) = H (t; x̂t; ût; pt) a:e: t 2 [0; T ] ; P -a.s. (12)

The �rst version of the stochastic maximum principle when the di¤usion coe¢ cient � de-

pends explicitly on the control variable and the control domain is not convex; was obtained

by Peng [98], in which he studied the second order term in the Taylor expansion of the

perturbation method arising from the Itô integral. He then obtained a maximum principle

for control-dependent di¤usion, which involves in addition to the �rst-order adjoint process,

a second-order adjoint process.

In deterministic control, some e¤orts have been made to derive optimality nec-

essary conditions with di¤erentiability assumptions on the data weakened or eliminated,

many authors have developed optimality necessary conditions, incliding Warga [114] : The

most powerful of these results remains the maximum principle developed by Clarke, based

on a di¤erential calculus for locally Lipschitz functions.

Recently, in the stochastic case the smoothness conditions on the coe¢ cients have

been weakened, in this case the �rst result has been derived by Mezerdi [93], in the case

of a SDE with a non smooth drift, by using Clarke generalized gradients and stable con-

vergence of probability measures. The method performed by Bahlali-Mezerdi-Ouknine in

[9] is intimately linked to the Krylov estimate, they proved that (10) and (12) remain true

when the coe¢ cients are only Lipschitz but not necessarily di¤erentiable and the di¤usion

coe¢ cient is uniformly elliptic. However, If b, � are Lipschitz continuous and f and g are

C1 in space variable, Bahlali-Djehiche-Mezerdi [5] proved a stochastic maximum principle

in optimal control of a general class of degenerate di¤usion process, this case is treated
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by using techniques introduced by Bauleau and Hirsch [20; 21], this property (on absolute

continuity of probability measures) was the key fact to de�ne a unique linearized version

of the stochastic di¤erential equation (1) : The objective of the paper Chighoub, Djehiche

and Mezerdi [27] is to extend the results of [7] to the case where f and g are only Lipschitz

continuous, how prove the analogue of (10) and (12) holds. The idea is to de�ne a slightly

di¤erent stochastic di¤erential equation de�ned on an enlarged probability space, where the

initial condition � will be taken as a random elements.

The di¢ culty to get the stochastic maximum principle for the control problems

for systems governed by a forward and bakward SDE for controled di¤usion and non-covex

control domain is how to use spike variation method for the variational equations with

enough higher estimate order and use the duality technique for the adjoint equation. Peng

[99] �rstly studied one kind of FBSDE control system which had the economic background

and could be used to study the recursive utility problem inthe mathematical �nance. He

obtained the maximum principle for this kind of control system with the control domain

being convex . Xu [119] studied the nonconvex control domain case and obtained the

corresponding maximum principle. But he assumed that the di¤usion coe¢ cient in the

forward control system does not contain the control variable, see., also Shi and Wu [118]

for the same problem for fully coupled FBSDE. El Karoui, Peng and Quenez [47] consider

a portfolio consumption model where the objective is to optimize the recursive utility of

consumption and terminal wealth.

The maximum principle for Risk-sensitive control problems have been studied by

many authors including Whittle [115; 116] and Hibey [25] : In [17; 18] the maximum principle
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for bouth full observation and parial observation problems are obtained. In [25] ; a measure-

valued decomposition and weak control variations are used to obtain a minimum principle

for the partial observation problem, see also Lim and Zhou [86] for a new type of the Risk-

sensitive maximum principle by using an approach based on the logarithmic transformation

and the relationship between the adjoint variables and the value function, for this subject,

a kind of portfolio choice problem in certain �nancial market is given by Wang and Wu

[113] :

The �rst version of the stochastic maximum principle that covers singular control

problems was obtained by Cadenillas and Haussmann [22], in which they consider linear

dynamics convex cost criterion and convex state constraints. The method used in [22] is

based on the known principle of convex analysis, related to the minimization of convex,

Gâteaux di¤erentiable functionals de�ned on a convex closed set. A �rst order weak max-

imum principle has been derived by Bahlali and Chala [2], in which convex perturbations

are used for both absolutely continuous and singular components. Another result about the

second order stochastic maximum principle for nonlinear SDEs with a controlled di¤usion

matrix were obtained by Bahlali and Mezerdi [8], extending the Peng maximum principle to

singular control problems, this result is based on two perturbation of the optimal control,

the �rst is a spike variation, on the absolutely continuous component of the control, and

the second one is convex on the singular component. A similar approach has been used by

Bahlali et al. in [5] to study the stochastic maximum principle in relaxed-singular optimal

control in the case of uncontrolled di¤usion. Bahlali et al. in [3] discusses the stochastic

maximum principle in singular optimal control to the case where the coe¢ cients are Lip-
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schitz continuous in x, provided that the classical derivatives are replaced by the generalized

one.

Both maximum principle and dynamic programming can be regarded as some

necessary coditions of optimal controls, under certain conditions they become su¢ cient ones,

the relationship between the maximum principle and dynamic programming is essentially

the relationship between the value function, and the solution of the adjoint equation along

an optimal state, see e.g. [121] in the classical case. More precisely, the solution of the

adjoint process can be expressed in terms of the derivatives of the value function, a vertion

of the SMP and DPP still holds true. However, a weaker notion superdi¤erential and

subdi¤erentiel are needed, see., Yong and Zhou [121].

Chapter 01 and chapter 02: This introductory chapters is intended to give

a through description of the maximum principle. Some basic facts, which are widely used

throughout the thesis, are also presented.

Chapter 03: The results of this chapter were the subject of the following paper

Chighoub, Djehiche, and Mezerdi: The stochastic maximum principle in optimal control of

degenerate di¤usions with non-smooth coe¢ cients, Random Oper. Stochastic Equations,

17, (2009) 35-53

The objective of this chapter is to derive necessary conditions for optimality in sto-

chastic control problems, where the state process is a solution to a d-dimensional stochastic

di¤erential equation, whose coe¢ cients are non smooth. For this model, we use an approxi-

mation argument in order to obtain a sequence of control problems with smooth coe¢ cients,

and we apply Ekeland�s principle in order to establish the necessary conditions satis�ed by a
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near optimal control, to pass to the limit, we will use Egorov and Portmanteau-Alexandrov

Teorems, we will use also the notion of extention of the initial �ltered probability space,

de�ned by Bouleau and Hirsch.

Chapter 04: The results of this chapter were the subject of the following papers

Bahlali, K., Chighoub, F., Djehiche, B., Mezerdi, B.: Optimality Necessary condi-

tions in singular stochastic control problems with non smooth data, J. Math. Anal. Appl.,

355, (2009) 479-494

Chighoub, F., Djehiche, B., Mezerdi B.: A stochastic maximum principle in singu-

lar control of di¤usions with non smooth coe¢ cients (To appear in Australian J. of math.

Anal. and Appl.)

Chapter 05: The results of this chapter were the subject of

Bahlali, K., Chighoub, F., Mezerdi, B.: On the relationship between the SMP and

DPP in singular optimal controls and its applications (Preprint)
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Chapter 1

The Dynamic Programming

Principle

In this Chapter we present the HJB equation which arise in the optimal control of

di¤usion processes in Rn. We introduced the standard class of stochastic control problem,

the associated dynamic programming principle, and the resuting HJB equation describing

the local behavior of the value function of the control problem. Throughout this �rst

introduction to HJB equation the value function is assumed to be as smooth as required.

Further , we established the continuity of the value function when the controls take values

in a bounded domain, we showed how the HJB equation can be written rigorously in the

viscosity sense without any regularity assumption on the value function.

1.1 The Bellman principle
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Let (
; F; P ) be a �ltered probability space with �ltration (Ft)t�0 satisfying the

usual conditions. Let (Bt)t�0 be a Brownian motion valued in Rd de�ned on (
; F; Ft; P ).

We denote by A the set of all progressively mesurable processes futgt�0 valued in U � Rk:

The elements of A are called control processes. We consider the state stochastic di¤erential

equation, for each control process ut

dxt = b (t; xt; ut) dt+ � (t; xt; ut) dBt; t 2 [0; T ] ; (1.1)

where b : [0; T ]�Rn�U ! Rn; � : [0; T ]�Rn�U ! Rn�d; be two given functions satisfying,

for some constant M

jb (t; x; u)� b (t; y; u)j+ j� (t; x; u)� � (t; y; u)j �M jx� yj ; (1.2)

jb (t; x; u)j+ j� (t; x; u)j �M (1 + jxj) : (1.3)

Under (1:2) and (1:3) the above equation has a unique solution x; for a given initial data.

We de�ne the cost functional J :[0; T ]� Rn � U ! R; by

J (u) = Et;x

24 TZ
t

f (t; xt; ut) dt+ g (xT )

35 ; (1.4)

where Et;x is the expectation operator conditional on xt = x; and f : [0; T ]�Rn � U ! R;

g : Rn ! R; we assume that

jf (t; x; u)j+ jg (x)j �M
�
1 + jxj2

�
; (1.5)

for some constant M: The quadratic growth condition (1:5) ; ensure that J is well de�ned.

The purpose of this Section is to study the minimization problem

V (t; x) = inf
u2U

J (t; x; u) ; for (t; x) 2 [0; T )� Rn; (1.6)
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which is called the value function of the problem (1:1) and (1:4) :

The dynamic programming is a fundamental principle in the theory of stochastic

control, we give a version of the stochastic Bellman�s principle of optimality. For mathe-

matical treatments of this problem , we refer the reader to Lions [87], Krylov [83], Yong

and Zhou [121], Fleming and Soner [51].

Theorem 1.1 Let (t; x) 2 [0; T ) � Rn be given. Then, for every h 2 (0; T � t) ;

we have

V (t; x) = inf
u2U

Et;x

24t+hZ
t

f (s; xs; us) ds+ V (t+ h; xt+h)

35 : (1.7)

Proof. Suppose that for h � 0; we given by ûs = û (s; x) the optimal feedback

control for the problem (1:1) and (1:4) over the time interval [t; T ] starting at point xt+h:

i.e.

J (t+ h; xt+h; ût+h) = V (t+ h; xt+h) ; a.s. (1.8)

Now, we consider

~u =

8>><>>:
u (s; x) ; for s 2 [t; t+ h] ;

û (s; x) ; for s 2 [t+ h; T ] :

for some control u: By de�nition of V (t; x) ; and using (1:4), we obtain

V (t; x) � J (t; x; ~u) ;

= Et;x

24t+hZ
t

f (s; xs; us) ds+

TZ
t+h

f (s; xs; ûs) ds+ g (xT )

35 ;



17

By the unicity of solution for the SDE (1:1) ; we have for s � t+ h; xt;xs = x
t+h;xt;xt+h
s ; then

J (t; x; ~u) = E

24t+hZ
t

f (s; xs; us) ds+

TZ
t+h

f

�
s; x

t+h;xt;xt+h
s ; ûs

�
ds+ g

�
x
t+h;xt;xt+h
T

�35 ;
= E

24t+hZ
t

f (s; xs; us) ds+ E

24 TZ
t+h

f (s; xs; ûs) ds+ g (xT )�xt;xt+h

3535 ;
= E

24t+hZ
t

f (s; xs; us) ds+ V
�
t+ h; xt;xt+h

�35 :
So we get

V (t; x) � E

24t+hZ
t

f (s; xs; us) ds+ V
�
t+ h; xt;xt+h

�35 ; (1.9)

and the equality holds if ~u = û; which proves (1:7) :

1.2 The Hamilton Jacobi Bellman equation

Now, we introduce the HJB equation by deriving it form the dynamic programming

principle under smoothness assumptions on the value function. Let G : [0; T ]�R�Rn�Rn�d

into R; be de�ned by

G (t; x; r; p; A) = b (t; x; u)T p+
1

2
Tr
�
��T (t; x; u)A

�
+ f (t; x; u) ; (1.10)

we also need to introduce the linear second order operator Lu associated to the controlled

processes xt; t � 0; we consider the constant control u

Lu' (t; x) = b (t; x; u)T Dx' (t; x) +
1

2
Tr
�
��T (t; x; u)D2

x' (t; x)
�
: (1.11)

where Dx; D2
xx denote the gradient and the Hessian operator with respect to the x variable.

Assume the value function V 2 C ([0; T ] ;Rn) ; and f (:; :; u) be continuous in (t; x) for all
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�xed u 2 A; then we have by Itô�s formula

V (t+ h; xt+h) = V (t; x)+

t+hZ
t

�
@V

@s
+ LuV

��
s; xt;xs

�
ds+

t+hZ
t

DV
�
s; xt;xs

�T
�
�
s; xt;xs ; u

�
dBs;

by taking the expectation, we get

E [V (t+ h; xt+h)] = V (t; x) + E

24t+hZ
t

�
@V

@s
+ LuV

��
s; xt;xs

�
ds

35 ;
thenm, we have by (1:9)

0 � E

241
h

t+hZ
t

�
@V

@s
+ LuV

��
s; xt;xs

�
+ f

�
s; xt;xs ; u

�
ds

35 ;
we now send h to zero, we obtain

0 � @V

@t
(t; x) + LuV (t; x) + f (t; x; u) ;

this provides

�@V
@t
(t; x)� inf

u2A
[LuV (t; x) + f (t; x; u)] � 0; (1.12)

Now we shall assume that û 2 U; and using the same procedure as above, we conclude that

�@V
@t
(t; x)� LûV (t; x)� f (t; x; u) = 0; (1.13)

by (1:12) ; then the value function solves the HJB equation

�@V
@t
(t; x)� inf

u2A
[LuV (t; x) + f (t; x; u)] = 0; 8 (t; x) 2 [0; T ]� R: (1.14)

We give su¢ cient conditions which allow to conclude that the smooth solution of

the HJB equation coincides with the value functionm this is the so-called veri�cation result.

Theorem 1.2 Let W be a C1;2 ([0; T ) ;Rn)\C ([0; T ] ;Rn) function. Assume that

f and g are quadratic growth, i.e. there is a constant M such that

jf (t; x; u)j+ jg (x)j �M
�
1 + jxj2

�
; for all (t; x; u) 2 [0; T )� Rn � U:
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(1) Suppose that W (T; :) � g; and

@W

@t
(t; x) +G (t; x;W (t; x) ; DxW (t; x) ; DxxW (t; x)) � 0; (1.15)

on [0; T )� Rn; then W � V on [0; T )� Rn:

(2) Assume further that W (T; :) = g; and there exists a minimizer û (t; x) of

LuV (t; x) + f (t; x; u) ;

such that

0 =
@W

@t
(t; x) +G (t; x;W (t; x) ; DxW (t; x) ; DxxW (t; x)) ;

=
@W

@t
(t; x) + Lû(t;x)W (t; x) + f (t; x; u) ; (1.16)

the stochastic di¤erential equation

dxs = b (s; xs; û (s; x)) ds+ � (s; xs; û (s; x)) dBs; (1.17)

de�nes a unique solution xt for each given initial data xt = x, and the process û (s; x) is

a well-de�ned control process in U . Then W = V; and û is an optimal Markov control

process.

Proof. The function W 2 C1;2 ([0; T ) ;Rn) \ C ([0; T ] ;Rn), then for all 0 � t �

s � T; by Itô�s Lemma we get

W
�
t; xt;xr

�
+

sZ
t

�
@W

@t
+ LurW

��
r; xt;xr

�
dr +

sZ
t

DxW
�
r; xt;xr

�T
�
�
r; xt;xr ; ur

�
dBr;

the process

sZ
t

DxW
�
r; xt;xr

�T
�
�
r; xt;xr ; ur

�
is a martingal, then by taking expectation, it

follows that

E
�
W
�
s; xt;xs

��
=W (t; x) + E

24 sZ
t

�
@W

@t
+ LurW

��
r; xt;xr

�
dr

35 ;
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by (1:15) ; we get

@W

@t

�
r; xt;xr

�
+ LurW

�
r; xt;xr

�
+ f

�
r; xt;xr ; ur

�
� 0; 8u 2 A;

then

E
�
W
�
s; xt;xs

��
�W (t; x)� E

24 sZ
t

f
�
r; xt;xr ; ur

�
dr

35 ; 8u 2 A;
we now take the limit as s! T; then by the fact that W (T ) � g we obtain

E
h
g
�
xt;xT

�i
�W (t; x)� E

24 TZ
t

f
�
r; xt;xr ; ur

�
dr

35 ; 8u 2 A;
then W (t; x) � V (t; x) ; 8 (t; x) 2 [0; T ] � Rn: Statement (2) is proved by repeating the

above argument and observing that the control û achieves equality at the crucial step (1:15) :

We now state without proof an existence result for the HJB equation (1:14) ;

together with the terminal condition W (T; x) = g (x) :

Theorem.1.3 assume that

9C � 0��T��T (t; x; u) � � C j�j2 ; for all (t; x; u) 2 [0; T ]� Rn � U:

U is compact,

b; � and f are in C1;2b ([0; T ]� Rn) ;

g 2 C3b (Rn) :

Then the HJB equation (1:14), with the terminal data V (T; x) = g (x) ; has a unique

solution V 2 C1;2b ([0; T ]� Rn) :.

Proof. See Fleming and Rischel [52] :

we conclude this section by reviewing brie�y the celebrated Merton�s optimal man-

agement problem.
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Example 1 We consider a market with two securities, a bond whose price solves

dS0t = rS0t dt; S
0
0 = s; (1.18)

and a stock whose price process satis�es the stochastic di¤erentiel equation

dSt = �Stdt+ �StdBt: (1.19)

The market parameters � and � are, respectively, the mean rate of return and the volatility,

it is assumed that � � r � 0; and � � 0: The process Bt is a standard Brownian motion

de�ned on a probability space (
; F; P ) : The wealth process satist�es Xs = p0s + ps; with the

amountes u0s and us representing the current holdings in the bond and the stock accounts.

The state wealth equation is given by

dXs = rXsds+ (�� r)usds+ �usdBt: (1.20)

The wealth process must satisfy the state costraint

Xs � 0; a:e:t � s � T: (1.21)

The control us; is admissible if it is Fs�progressively measurable, it satis�es E
R T
t u2sds �

1; and it is such that the state costraint (1:21) is satis�ed. We denote the set of admissible

policies by ~A: The value function is de�ned by

V (t; x) = sup
~A

E

�
1


X
T�Xt = x

�
: (1.22)

Using stochastic analysis and under appropriate regularity and growth conditions on the
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value function, we get that V solves the associated HJB equation, for x � 0; and t 2 [0; T ] ;8>>>>>>><>>>>>>>:

Vt +max
u

�
1

2
�2u2Vxx + (�� r)Vx

�
+ rxVx = 0;

V (T; x) =
1


x ;

V (t; 0) = 0; t 2 [0; T ] :

(1.23)

The homogeneity of the utility function and the linearity of the state dynamics with respect

to both the wealth and the control portfolio process, suggest that the value function must be

of the form

V (T; x) =
x


f (t) ; with f (T ) = 1: (1.24)

Using the above form in (1:23) ; and after some cancellations, one gets that f must satisfy

the �rst order equation 8>><>>:
f 0 (t) + �f (t) = 0;

f (T ) = 1:

where

� = r +
(�� r)2

2 (1� )�2 : (1.25)

Therefore,

V (t; x) =
x


e�(T�t): (1.26)

Once the value function is determined, the optimal policy may be obtained in the so-called

feedback form as follows: �rst, we observe that the maximum of the quadratic term appearing

in (1:23) is achieved at the point

u� (t; x) = �(�� r)Vx (t; x)
�2Vxx (t; x)

; (1.27)

or, otherwise,

u� (t; x) =
(�� r)
�2 (1� )x; (1.28)
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where we used (1:26) : Next, we recall classical Veri�cation results, which yield that the

candidate solution, given in (1:26) is indeed the value function and that, moreover, the

policy u� (t; x) = � (�� r)
�2 (1� )X

�
t ; is the optimal investment strategy. In the other words,

V (t; x) = sup
~A

E

�
1


X�
T �X

�
t = x

�
:

where X�
s solves

dX�
s =

 
r +

(�� r)2

(1� )�2

!
X�
sds+

(�� r)
� (1� )X

�
sdBs: (1.29)

The solutionof the optimal state wealth equation is, for Xt = x;

X�
s = x exp

" 
r +

(�� r)2

(1� )�2 �
(�� r)2

2 (1� )2 �2

!
(s� t) + (�� r)

� (1� )Bs�t

#
:

The Merton optimal strategy dictates that it is optimal tokeep a �xed proportion, namely

(�� r)
�2 (1� ) ; of the current total wealth invested in the stock account.

Next, we recall the notion of viscosity solutions for non-linear second order partial

di¤erential equation (The HJB equation). For more detail we refer the reader to Crandall,

Ishii and Lion[32], and Fleming and Soner [51].

1.3 Viscosity solutions

It is well known that the HJB equation (1:14) does not necessarily admit smooth

solutios in general. This makes the applicability of the classical veri�cation theorems very

restrictive and is a major de�ciency in dynamic programming theory. In recent years,

The notion of viscosity solutions was introduced by Crandall and Lions [34] for �rst-order

equations, and by Lions [87] for second-order equations. For a general overview of the
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theory we refer to the User�s Guide by Crandall, Ishii and Lions [32] and the book by

Fleming and Soner [51] In this theory all the derivatives involved are replaced by the so-

called superdi¤erentials and subdi¤erentials, and the solutions in the viscosity sense can

be merely continuous functions. The existence and uniqueness of viscosity solutions of the

HJB equation can be guaranteed under very mild and reasonable assumptions, which are

satis�ed in the great majority of cases arising in optimal control problems. For example,

the value function turns out to be the unique viscosity solution of the HJB equation (1:14).

De�nition 1.5 . A function V 2 C ([0; T ]� Rn) is called a viscosity subsolution

of (1:14) ; if V (T; x) � g (x) ; 8x 2 Rn; and for any ' 2 C1;2 ([0; T ]� Rn) ; whenever V � '

attains a local maximum at (t; x) 2 [0; T )� Rn; we have

�@'
@t
(t; x) + sup

u2U
G (t; x; u;�Dx' (t; x) ;�Dxx' (t; x)) � 0: (1.30)

A function V 2 C ([0; T ]� Rn) is called a viscosity supersolution of (1:14) ; if V (T; x) �

g (x) ; 8x 2 Rn; and for any ' 2 C1;2 ([0; T ]� Rn) ; whenever V �' attains a local minimum

at (t; x) 2 [0; T )� Rn; we have

�@'
@t
(t; x) + sup

u2U
G (t; x; u;�Dx' (t; x) ;�Dxx' (t; x)) � 0: (1.31)

Further, if V 2 C ([0; T ]� Rn) is both a viscosity subsolution and viscosity supersolution

of (1:14) ; then it is called a viscosity solution of (1:14) :

Theorem. 1.6 Let (1:2) and (1:3) hold, then the value function V is a viscosity

solution of (1:14) :

Proof. For any ' 2 C1;2 ([0; T ]� Rn) ; let V � ' attains a local maximum at

(s; y) 2 [0; T ) � Rn: Fix a u 2 U; let xt be the state trajectory with the control ut = u:
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Then by the dynamic programming principle, and Itô�s formula, we have for ŝ � s; with

ŝ� s � 0 small enough

0 � 1

ŝ� sE [V (s; y)� ' (s; y)� V (ŝ; xŝ) + ' (ŝ; xŝ)]

� 1

ŝ� sE
�Z ŝ

s
f (t; xt; u) dt� ' (s; y) + ' (ŝ; xŝ)

�
! �@'

@t
(s; y)�G (s; y; u;�Dx' (t; x) ;�Dxx' (t; x)) :

This leads to

�@'
@t
(s; y) +G (s; y; u;�Dx' (s; y) ;�Dxx' (s; y)) � 0;8u 2 U:

Hence

�@'
@t
(s; y) + sup

u2U
G (s; y; u;�Dx' (s; y) ;�Dxx' (s; y)) � 0;8u 2 U: (1.32)

On the other hand, if V � ' attains a local minimum at (s; y) 2 [0; T ) � Rn; then for any

� � 0; and ŝ � s with ŝ� s � 0 small enough, we can �nd a ut = u�ŝ 2 U; such that

0 � E [V (s; y)� ' (s; y)� V (ŝ; xŝ) + ' (ŝ; xŝ)] ;

� �� (ŝ� s) + E
�Z ŝ

s
f (t; xt; ut) dt+ ' (ŝ; xŝ)� ' (s; y)

�
;

dividing by (ŝ� s), and applying Itô�s formula to the process ' (t; xt) ; we get

�� � 1

ŝ� sE
�Z ŝ

s
�@'
@t
(t; xt) +G (t; xt; u;�Dx' (t; xt) ;�Dxx' (t; xt)) dt

�
� 1

ŝ� sE
�Z ŝ

s
�@'
@t
(t; xt) + sup

u2U
G (t; xt; u;�Dx' (t; xt) ;�Dxx' (t; xt)) dt

�
ŝ!s ! �@'

@t
(t; xt) + sup

u2U
G (s; y; u;�Dx' (s; y) ;�Dxx' (s; y)) : (1.33)

Combining (1:32) ; and (1:33) ; we conclude that V is a viscosity solution of the HJB equation

(1:14) :
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The following Theorem is devoted to a proof of uniqueness of the viscosity solution

to the HJB equation

Theorem 1.7. Let V;W 2 C1;2b ([0; T ]�Rn):We suppose that V is a supersolution

of (1:14), with V (T; x) �W (T; x) for all x 2 Rn;then V (t; x) �W (t; x)8(t; x) 2 [0; T ]�Rn:

Proof. Let, for (�;M;N) 2 R�+ � Rn�n � Rn�n; we de�ne

G (x;M) = �tr
h
A (x)A (x)T M

i
;

then, we obtain

G (y;N)�G (x;M) = tr
h
A (x)A (x)T M

i
� tr

h
A (y)A (y)T N

i
;

= tr
h
A (x)A (x)T M �A (y)A (y)T N

i
;

� 3� jA (x)�A (y)j2 ;

because the matrix

C :=

0BB@ A (y)AT (y) A (y)AT (x)

A (x)AT (y) A (x)A (x)T

1CCA ;

is a non negative matrix, we have

tr
h
A (x)A (x)T M �A (y)A (y)T N

i
= tr

2664C
0BB@ M 0

0 �N

1CCA
3775 ;

� 3�tr

2664C
0BB@ In �In

�In In

1CCA
3775 ;

� 3�tr
h
(A (x)�A (y))

�
A (x)T �A (y)T

�i
;

� 3� jA (x)�A (y)j2 : (1.34)
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now, we consider the function

F : Rn � Rn ! F (x; y) = V (x)�W (y)� 1

2�
jx� yj2 ;

with � � 0: Suppose that there exists a point (�x; �y) such that F attaints a maximum at

(�x; �y) ; then x! F (x; �y) attaints a maximum at �x; hence

x! V (x)� 1

2�
jx� �yj2

attaints a maximum at �x. Moreover, y ! �F (�x; y) attaints a minimum at �y; then we have

y !W (y)� 1

2�
j�x� yj2

attaints a minimum at �y. By the de�nition of viscosity subsolution at point �x, we obtain

for V with ' (x) =
1

2�
jx� �yj2 we get

@

@t
V (�x) + sup

u2A

�
�b (�x; u)

�
�x� �y
�

�
� 1
2
tr

�
��T (�x; u)

�
�1
�

��
� f (�x; u)

�
� 0:

by the de�nition of viscosity subsolution at point �y , we obtain for W with ' (y) =

� 1
2�
j�x� yj2 ;we get

@

@t
W (�y) + sup

u2A

�
�b (�y; u)

�
�x� �y
�

�
� 1
2
tr

�
��T (�y; u)

�
�1
�

��
� f (�y; u)

�
� 0:

Hence

@

@t
(V (�x)�W (�y)) �

sup
u2A

�
jb (�x; u)� b (�y; u)j

���� �x� �y�
����+ jf (�x; u)� f (�y; u)j

1

2

����tr���T (�x; u)��1�
��

� tr
�
��T (�y; u)

�
�1
�

������� ;
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the functions b; f; ��T are Lipshitz on x uniformly on u then by (1:34) ; we get

@

@t
(V (�x)�W (�y))

� c
j�x� �yj2

�
+ c j�x� �yj+ 3�� j�x� �yj2 :

on the other hand, F (x; x) � F (�x; �y) ; 8x 2 Rn

V (x)�W (x) � V (�x)�W (�y)� j�x� �yj
2

2�

� V (�x)�W (�y) : (1.35)

Because F (�x; �y) � F (�x; �x) ; we get

V (�x)�W (�y)� j�x� �yj
2

2�
� V (�x)�W (�x) ; (1.36)

then

W (�x)�W (�y)� j�x� �yj
2

2�
� 0; (1.37)

Moreover, F (�x; �y) � F (�y; �y), then

V (�x)� V (�y)� j�x� �yj
2

2�
� 0; (1.38)

This proves that

j�x� �yj2

�
� (V +W ) (�x)� (V +W ) (�y) ; (1.39)

V;W are bonded, then
j�x� �yj2

�
� c; which means that

m (�) = sup fj(V +W ) (x)� (V +W ) (y)j ; jx� yj � �g : m (�)! 0
�!0

:

by (1:39), we get

j�x� �yj2

�
� m (j�x� �yj) ; (1.40)
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under (1:38) ; on has

1

2
j�x� �yj2 � m

�
c
p
�
�
: (1.41)

combining (1:39) ; (1:40) and (1:41) ; we obtain

@

@t
(V (�x)�W (�y)) � c

p
�+ �c�+m

�
c
p
�
�
:

�nally, by (1:35) on has

V (x)�W (y) � V (�x)�W (�y) !
�!0

0; for all x 2 Rn:

hence

V (x) �W (y) :

De�nition 1.8. Let V 2 C ([0; T ]� Rn) ; the right superdi¤erential (resp., subdi¤erential)

of V at (t; x) 2 [0; T )�Rn; denoted by D1;2+
t;x V (t; x)

�
resp., D1;2�

t;x V (t; x)
�
; is a set de�ned

by

D1;2;+
t;x V (t; x) =

8<:(p; q;Q) 2 R� Rn � Rn�n� lim
y!x;s!t
s2[0;T )

sup
I (s; y)

js� tj+ jy � xj2
� 0

9=; ;

D1;2;�
t;x V (t; x) =

8<:(p; q;Q) 2 R� Rn � Rn�n� lim
y!x;s!t
s2[0;T )

inf
I (s; y)

js� tj+ jy � xj2
� 0

9=; ;

where

I (s; y) = V (s; y)� V (t; x)� q (s� t)� hp; y � xi � 1
2
(y � x)T P (y � x) :

De�nition 1.9 A function V 2 C ([0; T ]� Rn) is called a viscosity solution of the
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HJB equation (1:14) if

�p+ sup
u2U

G (t; x; u; q;Q) � 0; 8 (p; q;Q) 2 D1;2;+
t;x V (t; x) ; 8 (t; x) 2 [0; T ]� Rn;

�p+ sup
u2U

G (t; x; u; q;Q) � 0; 8 (p; q;Q) 2 D1;2;�
t;x V (t; x) ; 8 (t; x) 2 [0; T ]� Rn;

V (T; x) = g (x) ; 8x 2 Rn:

Lemma. 1.10 The value function V satis�es

jV (t; x)� V (s; y)j � C
�
jt� sj

1
2 + jx� yj

�
:

Proof. See Zhou [121] :

Corollary.1.11 We have

inf
(p;q;Q)2D1;2;+

t;x V (t;x)�U
f[p�G (t; x; u; q;Q)] � 0;8 (t; x) 2 [0; T )� Rng : (1.42)

Proof. See Zhou [121] :

Lemma 1.12. Let g 2 C [0; T ] : Suppose that there is � 2 L1 [0; T ] such that for

su¢ ciently small h � 0;

g (t+ h)� g (t)
h

� � (t) ; a.e. t 2 [0; T ] : (1.43)

Then

g (t)� g (0) �
Z t

0
lim
h!0+

g (r + h)� g (r)
h

dr; 8t 2 [0; T ] : (1.44)

Proof. First �x t 2 [0; T ) ; By (1:43) we can apply Fatou�s Lemma to getZ t

0
lim
h!0+

g (r + h)� g (r)
h

dr � lim
h!0+

Z t

0

g (r + h)� g (r)
h

dr;

= lim
h!0+

R h+t
h g (r) dr �

R t
0 g (r) dr

h
;

= lim
h!0+

R h+t
h g (r) dr �

R h
0 g (r) dr

h
;

= g (t)� g (0) :
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This proves (1:44) 8t 2 [0; T ] ; �nally, the t = T case is obtained by continuity.

Theorem (verification)1.13. Let W 2 C ([0; T ]� Rn) be a viscosity solution of

the HJB equation (1:14) ; then

(1) W (s; y) � J (s; y;u) for any (s; y) 2 [0; T ]� Rn and any u 2 U:

(2) Let (x̂; û) be a given admissible pair for the problem (1:1) � (1:4) : Suppose

that there exists

�
p̂; q̂; Q̂

�
2 L2F (s; T ;R)� L2F (s; T ;Rn)� L2F

�
s; T ;Rn�d

�
;

such that for a:e: t 2 [s; T ] ;

�
p̂ (t) ; q̂ (t) ; Q̂ (t)

�
2 D1;2;+

t;x W (t; x̂t) ; P-a.s., (1.45)

and

�p̂ (t) +G
�
t; x̂t; ût; q̂t; Q̂t

�
= 0; P-a.s., (1.46)

then (x̂t; ût) is an optimal pair for the problem (1:1)� (1:4) :

Proof. Part (1) is trivial since W = V in view of the uniqueness of the viscosity

solutions. We prove only part (2) of the Theorem, set ' (t; x̂t; ût) = '̂ (t) ; for ' = b; �; f;

ect., to simplify the notation. Fix t 2 [0; T ) such that (1:45) and (1:46) hold. Choose a

test function � 2 C ([t; T ]� Rn) \ C1;2 ((t; T ]� Rn)as determined by
�
p̂ (t) ; q̂ (t) ; Q̂ (t)

�
2

D1;2;+
t;x W (t; x̂t) and Lemma (1:10). Applying Ito�s formula to �; we have for any h � 0;

W (t+ h; x̂t+h)�W (t; x̂t) � � (t+ h; x̂t+h)� � (t; x̂t)

=

Z h+t

h

�
�t (r; x̂r) + �x (r; x̂r) :b̂ (r) +

1

2
tr
�
�̂T (r)�xx (r; x̂r) :�̂ (r)

��
dr: (1.47)

It is well known by the martingale property of stochastic integrals that there are constant



32

C; indepedent of t;such that

E jx̂r � x̂tj2 � C jr � tj ;8r � t; (1.48)

E

"
sup
s�r�T

jx̂rj�
#
� C (�) ;8� � T: (1.49)

hence, in view of Lemma (1:10) ; we have

sup
s�r�T

j�t (r; x̂r)j2 � C2 sup
s�r�T

E

"
1 +

jx̂r � x̂tj2

r � t

#
� C (1.50)

or

sup
s�r�T

E j�t (r; x̂r)j �
p
C;

Moreover, by Lemma 1:12, assumption (1:2) and (1:3); one can show that

sup
s�r�T

E

�����x (r; x̂r) :b̂ (r) + 12 tr ��̂T (r)�xx (r; x̂r) :�̂ (r)�
���� � C:

It then follows from (1:48) that for su¢ ciently small h � 0;

E [W (t+ h; x̂t+h)�W (t; x̂t)]

h
� C: (1.51)

Now we calculate, for any �xed N � 0;

1

h

Z h+t

h
E [�t (r; x̂r)� p̂ (t)] dr =

1

h

Z h+t

h
E
h
(�t (r; x̂r)� p̂ (t)) 1jx̂r�x̂tj�N jr�tj 12

i
dr

+
1

h

Z h+t

h
E
h
(�t (r; x̂r)� p̂ (t)) 1jx̂r�x̂tj�N jr�tj 12

i
dr;

= I1 (N;h) + I2 (N;h) :

By virtue of (1:49) and (1:51) ; we have

I1 (N;h) � 1

h

Z h+t

h
E
h
j�t (r; x̂r)� p̂ (t)j2

i 1
2
h
P
�
jx̂r � x̂tj � N jr � tj

1
2

�i 1
2
dr

� C

N
! 0; uniformly in h � 0 as N !1:
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On the other hand, for �xed N � 0; we apply Lemma 1:12 to get

lim
h!0+

sup
t�r�t+h

h
(�t (r; x̂r)� p̂ (t)) 1jx̂r�x̂tj�N jr�tj 12

i
! 0; as h! 0+; P-a.s.

Thus we conclude by the dominated convergence theorem that

lim
h!0+

I2 (N;h)! 0; as h! 0+; for each �xed N:

Therefore, we have proved that

lim
h!0+

1

h

Z h+t

h
E [�t (r; x̂r)] dr ! E [p̂ (t)] : (1.52)

Similarly (in fact, more easily) ; we can show that

lim
h!0+

1

h

Z h+t

h
E
h
�x (r; x̂r) :b̂ (r)

i
dr = E

h
�x (t; x̂t) :b̂ (t)

i
;

= E
h
q̂ (t) :b̂ (t)

i
; (1.53)

and

lim
h!0+

1

h

Z h+t

h
E

�
1

2
tr
�
�̂T (r)�xx (r; x̂r) :�̂ (r)

��
dr = E

�
1

2
tr
�
�̂T (t)�xx (t; x̂t) :�̂ (t)

��
= E

�
1

2
tr
h
�̂T (t) Q̂ (t) :�̂ (t)

i�
:

Consequently (1:48) gives

lim
h!0+

E [W (t+ h; x̂t+h)�W (t; x̂t)]

h
� E

�
p̂ (t) + q̂ (t) :b̂ (t) +

1

2
tr
h
�̂T (t) Q̂ (t) :�̂ (t)

i�
= �E [ĝ (t)] ; (1.54)

where the last equality is due to (1:47) : Noting (1:52) and applying Lemma 1:10 to the

g (t) = E [W (t; x̂t)] ; we arrive at

E [W (T; x̂T )�W (s; y)] �
Z T

s
E [ĝ (t)] dt; (1.55)
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which leads to W (s; y) � J (s; y; û) : It follows that (x̂; û) is an optimal pair for (1:1) and

(1:4) :

Remark 1.14. In view of Corollary (1:11) ; the condition (1:47) impllies that�
p̂ (t) ; q̂ (t) ; Q̂ (t) ; ût

�
achieves the in�mum of p�G (t; x̂t; u; q;Q) over D1;2;+

t;x V (t; x̂t)�U:

Meanwhile, it also shows that (1:46) is equivalent to

p̂ (t) � G
�
t; x̂t; ût; p̂ (t) ; q̂ (t) ; Q̂ (t)

�
: (1.56)

Remark 1.15. The condition (1:47) implies that

max
u2U

G
�
t; x̂t; u; p̂ (t) ; q̂ (t) ; Q̂ (t)

�
= G

�
t; x̂t; ût; p̂ (t) ; q̂ (t) ; Q̂ (t)

�
: (1.57)

This easily seen by recalling the fact that V is the viscosity solution of (1:14) ;hence

�p̂ (t) + sup
u2U

G
�
t; x̂t; u; p̂ (t) ; q̂ (t) ; Q̂ (t)

�
� 0;

which yields (1:57) under (1:47) :
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Chapter 2

The Stochastic Maximum Principle

The optimal control problems we are interested in, consists to �nd an admissible

control û that minimizes a cost functional subject to an SDE on a �nite time horizon.

If û is some optimal control, we may ask how we can characterize it, in other words,

what conditions must û necessarily satisfy? These conditions are called the stochastic

maximum principle or the necessary conditions for optimality. The original version of

Pontryagin�s maximum principle was derived for deterministic problems, as in classical

calculus of variation. The �rst version of the stochastic maximum principle was extensively

established in the 1970s by Bismut [19] ; Kushner [80] ; and Haussmann [62] ; under the

condition that there is no control on the di¤usion coe¢ cient. Haussmann [59] developed

a powerful form of the stochastic maximum principle for the feedback class of controls by

Girsanov�s transformation, and applied it to solve some problems in stochastic control.

2.1 The �rst-order maximum principle
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Throghout this section, let us suppose that û 2 U is an optimal control and denote

by x̂ the corresponding optimal trajectory, i.e. the solution of the SDE(1:21) controlled by

û. The maximum principale will be proved as follows, �rst we de�ne a family of perturbed

controles u� ,where u� is spike variation of the optimal control û on a small time interval,

further we use some sort of Taylor expantion of the state trajectory and the cost func-

tional around the optimal control. By sending the perturbation to zero, one obtains some

inequality

J(u�)� J(û) � 0;

then by Itô�s representation theorem of martingale Brownian, the maximum prin-

ciple can be expressed in terms of an adjoint process.

We suppose that a d-dimensional Brownian motion B is de�ne on a complete

probability space (
; F; (Ft); P ). where (Ft) is the p-augmentation of the naturel �ltration

(Fwt ) de�ned by F
w
t = �(Bs : 0 � s � t) 8t 2 [0;1]. Let us consider the SDE

dxt = b(t; xt; ut)dt+ �(t; xt)dBt: (2.1)

where b : [0; T ]� Rn � U ! Rn; � : [0; T ]� Rn ! Rn 
 Rd , are given

The control problem which we will be studying is of the form

J(u) = E

�Z T

0
f(t; xt; ut)dt+ g(xT )

�
: (2.2)

where f : [0; T ]� Rd � U ! R; and g : Rd ! R

We might consider strong solution whose existence is given by the work of Itô,

under the condition that b; and � are Lipschitz continuous in x, The following assumptions
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will be in force throughout this chapter:

b; �; f; g are continuously di¤erentiable with respect to x; (2.3)

They and all their derivatives bx; �x; fx; gx are continuous in (x; u) ; (2.4)

The derivatives bx; fx are bounded uniformly in u; (2.5)

The derivatives �x; gx are bounded, (2.6)

b; � are bounded by C (1 + jxj+ juj) ; (2.7)

The problem is to minimize the functional J (u) over all u 2 U; i.e. we seek û such that

J (û) = inf
u2U

J (u) ; (2.8)

such controls û are called optimal controls, x̂ is the corresponding solution of the SDE (2:1) :

Under the above hypothesise, the SDE (2:1) has a unique strong solution, such that for any

p > 0,

E

"
sup
0�t�T

jxtjp
#
<1: (2.9)

and the functional J is a well de�ned.

The stochastic maximum principle is given by the following theorem.

Theorem 2.1. Let û be an optimal control minimizing the cost J over U; and

let x̂ be the corresponding optimal trajectory. Then there exists a unique pair of adapted

processes

(p; q) 2 L2
�
[0; T ] ;Rn�d

�
� L2

�
[0; T ] ;Rn�d

�
which is the solution of the BSDE
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�
�dpt = [fx(t; x̂t; ût) + bTx (t; x̂t; ût) + �Tx (t; x̂t)qt]dt� qtdBt;

pT = gx(x̂t);

such that for all a 2 A;

H(t; x̂t; a; pt) � H(t; x̂t; ût; pt); P � a:e;

2.1.1 Approximation of trajectories.

To obtain the variational inequality in the stochastic maximum principle, we

de�ne the strong perturbation of the control, sometimes called the spike variation

u�t =

8>><>>:
v if t 2 [� ; � + �];

ût otherwise,

(2.11)

where 0 � � < T is �xed, � > 0 is su¢ ciently small, and v is an arbitrary A�valued,

F��measurable random variable such that E[jvj2] < +1. If x�tdenoted the trajectory

associated with u�, then

x�t = xt; t � � ;

dx�t = b (t; x�t; v) dt+ � (t; x
�
t) dBt; � < t < � + �;

dx�t = b (t; x�t; ut) dt+ � (t; x
�
t) dBt; � + � < t < T:

Lemma 2.2. under the assumption (2.3)-(2.7). We have

lim
�!0

E

"
sup
t2[0;T ]

jx�t � x̂tj2
#
= 0: (2.12)



39

Proof. By squaring and taking the expectation we get

E
�
jx�t � x̂tj2

�
� 3E

�Z t

0
jb (s; x�s; u�s)� b (s; x̂s; u�s)j

2 ds

�
+3E

"����Z t

0
b (s; x̂s; u

�
s)� b (s; x̂s; ûs) ds

����2
#

+3E

�Z t

0
j� (s; x�s)� � (s; x̂s)j

2 ds

�
:

by (2:7) we obtain

E

"����Z t

0
b (s; x̂s; u

�
s)� b (s; x̂s; ûs) ds

����2
#
�

�����C
 
1 + E

"
sup
t2[0;T ]

jx̂tj
#!�����

2

�2

� C2 (1 +M)2 �2:

Since b; � are Lipschitz in x; then

E
�
jx�t � x̂tj2

�
� KE

�Z t

0
jx�s � x̂sj2ds

�
+K�2;

Finally, by using Burkholder-Davis-Gundy inequality and Gronwall Lemma we conclude,

since û is optimal, then

J(û) � J (u�) = J(û) + �
dJ(u�)

d�
j�=0 + o(�);

if the indicated derivation exists, thus necessary condition for optimality is that

dJ(u�)

d�
j�=0 � 0:

The �rst of this subsection is devoted to the computation of this derivative. Note

that since b(t; x; u) and f(t; x; u) are su¢ ciently integrable, then the following property

holds:

lim
�!0

1

�

Z t+�

t
E[jh(s; xs; us)� h(s; xs; us)j2]ds = 0; ds� a:e; (2.13)
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where h stands for b or f:

Choose � such that (2.13) holds. We de�ne y as the solution of the linear SDE8>><>>:
dyt = bx(s; xs; us)ysds+ �x(s; xs)ysdBs; � � s � T;

y� = b(� ; x� ; v)� b(� ; x� ; u� ):
(2.14)

and de�ne & by 8>><>>:
d&t = fx(s; xs; us)ysds; � � s � T;

&� = f(� ; x� ; v)� f(� ; x� ; u� ):

We are now able to obtain the following di¤erentiation results,

Lemma 2.3. under the assumption (2.3)-(2.7). We have

lim
�!0

E

"����x�t � x̂t�
� yt

����2
#
= 0; (2.15)

lim
�!0

E

"����1�
Z T

�
(f(t; x̂t; u

�
t)� f(t; x̂t; ût))dt� &T

����2
#
= 0 (2.16)

Proof. Denote

~x�t =
x�t � x̂t

�
� yt

then, we have for t 2 [� ; � + �]

d~x�t =
1

�
[b(t; x̂t + � (yt + ~x

�
t) ; v)� b(t; x̂t; ût)� �bx(t; x̂t; ût)yt] dt

+
1

�
[�(t; x̂t + � (yt + ~x

�
t))� �(t; x̂t)� ��x(t; x̂t)yt] dBt;

~x�� = � [b(� ; x̂� ; v)� b(� ; x̂� ; û� )] ;



41

or also

~x��+� =
1

�

�+�Z
�

[b(s; x̂s + � (ys + ~x
�
s) ; v)� b(s; x̂s; v)] ds

+
1

�

�+�Z
�

[b(s; x̂s; v)� b(� ; x̂� ; v)] ds�
1

�

�+�Z
�

[b(s; x̂s; ûs)� b(� ; x̂� ; û� )] ds

+
1

�

�+�Z
�

[�(s; x̂s + � (ys + ~x
�
s))� �(s; x̂s)] dBt

�
�+�Z
�

bx(s; x̂s; ûs)ysds�
�+�Z
�

�x(s; x̂s)ysdBt:

from which we can deduce

E
��~x��+���2 � KE

"
sup

t2[�;�+�]
jx�t � x̂tj2

#
+KE

"
sup

t2[�;�+�]
jx̂t � x̂� j2

#

+KE

�
�+�R
�
jytj2dt

�
+
K

�
E

�
�+�R
�
jb(t; x̂t; ût)� b(� ; x̂� ; û� )j2dt

�
:

by the choice of � and Lemma (2:2) the last term tendes to 0.

Now, for � + � � t � T;

d~x�t =
1

�
[b(t; x̂t + � (yt + ~x

�
t) ; ût)� b(t; x̂t; ût)� �bx(t; x̂t; ût)yt] dt

+
1

�
[�(t; x̂t + � (yt + ~x

�
t))� �(t; x̂t)� ��x(t; x̂t)yt] dBt;

=
1R
0

bx(t; x̂t + �� (yt + ~x
�
t) ; ût)~x

�
td�dt+

1R
0

�x(t; x̂t + �� (yt + ~x
�
t))~x

�
td�dBt:

Therefore,

E j~x�tj
2 � E

��~x��+���2 +KE
"
TR
�+�

j~x�sj
2 ds

#

+E

24( TR
�+�

jysj :
���� 1R
0

(bx(s; x̂s + �� (x
�
s � x̂s) ; ûs)� bx(s; x̂s; ûs)) d�

���� ds
)235

+E

"
TR
�+�

jysj2 :
���� 1R
0

(�x(s; x̂s + �� (x
�
s � x̂s))� �x(s; x̂s)) d�

����2 ds
#
;
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bx; �x are bounded by the Lipschitz constant, we conclude by Lemma (2:2), and Burkholder-

Davis-Gundy inequality that

lim
�!0

sup
�+��t�T

E
h
j~x�tj

2
i
= 0; :

(2:16) can be proved by the similar way.

2.1.2 Adjoint process and variational inequality

Corollary 2.4. Under the assumption (2.3)-(2.7). We have

dJ(u�)

d�
j�=0 = E[gx(xT ):yT + &T ] (2.17)

:Let us introduce the adjoint process and the �rst variational inequality from (3.6). Let

�(t; �) be the solution of the linear SDE8>><>>:
d�(t; �) = bx(t; x̂t; ût)�(t; �)dt+ �x(t; x̂t)�(t; �)dBt; t > �;

�(� ; �) = Id:

(2.18)

This equation is linear with bounded coe¢ cients. Hence it admits a unique strong solution

which is invertible, and its inverse 	t is the unique solution of8>><>>:
d	t = [�x(t; xt)	t�

�
x(t; xt)�	tbx(t; xt; ut)]dt�	t�x(t; xt)dBt ; t > � ;

	(� ; �) = Id:

(2.19)

Morever �(t; �) satis�es a semigroup property; that is, if t > s > � then �(t; r) =

�(t; s):�(t; r); which implies in particular that �(t; �) = �t:	� , where �(t) = �(t; 0) and

	(t) = 	(t; 0):

By applying the Itô�s formula to process 	tyt; it is easy to check that

yt = �(t; �)(b(� ; x̂� ; v)� b(� ; x̂� ; û� ))
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Then replacing yt with its value in (2.17), it holds that

dJ(u�)

d�
j�=0 = E

�Z T

�
fx(s; x̂s; ûs)�(s; �)(b(� ; x̂� ; v)� b(� ; x̂� ; û� ))ds

�
+E [gx(x̂T ):�(T; �)(b(� ; x̂� ; v)� b(� ; x̂� ; û� ))]

+E [f(� ; x̂� ; v)� f(� ; x̂� ; û� )] :

Now if we de�ne the adjoint process by

pt = E

�
�(T; t)gx(x̂T ) +

Z T

t
�(s; t)fx(s; x̂s; ûs)ds�Ft

�
; (2.20)

it follows that

dJ(u�; �)

d�
j�=0 = E[p� : fb(� ; x̂� ; v)� b(� ; x̂� ; û� )g+ ff(� ; x̂� ; v)� f(� ; x̂� ; û� )g]

If de�ne the Hamiltonian H from [0; T ]� Rn �A� Rn into R by

H(t; x; v; p) = f(t; x; v) + p:b(t; x; v);

Then we get from the optimality of û the variational inequality

0 � E[H(� ; x� ; v; p� )�H(� ; x� ; u� ; p� )]; d� � a:e: (2.21)

We now look for an equation satis�ed by the adjoint process (2:20) ; one has

E

�
�T gx(x̂T ) +

Z T

t
�sfx(s; x̂s; ûs)ds�Ft

�
= E

�
�T gx(x̂T ) +

Z T

0
�sfx(s; x̂s; ûs)ds�Ft

�
�
Z t

0
�sfx(s; x̂s; ûs)ds:

The term

E

�
�T gx(x̂T ) +

Z T

0
�sfx(s; x̂s; ûs)ds�Ft

�
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is a square integrable Ft�martingale, then by the Itô representation of Browanian martin-

gales, we get

E

�
��T gx(x̂T ) +

Z t

0
��thx(t; x̂t; ût)dt�Ft

�
= E

�
��T gx(x̂T ) +

Z t

0
��thx(t; x̂t; ût)dt

�
+

Z t

0
QsdBs;

where Q is an adapted process. Next, by applying Itô�s formula to

pt = 	
�
t :E

�
��T gx(x̂T ) +

Z T

t
��shx(s; x̂s; ûs)dt�Ft

�

it is easy to see that pt satis�es the linear BSDE8>><>>:
�dpt = [fx(t; x̂t; ût) + b

�
x(t; x̂t; ût)pt + �

�
x (t; x̂t) qt] dt� qtdBt;

pT = gx(x̂T ):

(2.22)

Where qt 2 L2([0:T ] ;Rn�d); is given by

qt = 	
�
tQt � ��t (t; x̂t)pt:

Theorem 1.5. (the stochastic maximum principle).Let û be an optimal control

minimizing the cost J over U; and let x̂ be the corresponding optimal trjectory. Then there

exists a unique pair of adapted processes

(p; q) 2 L2
�
[0; T ] ;Rn�d

�
� L2

�
[0; T ] ;Rn�d

�
which is the solution of the BSDE () such that for all a 2 A;

H(t; xt; a; pt)�H(t; xt; a; pt) � 0; P � a:e;

of Theorem 2.1. From (2.21) we get

E [H (t; x̂t; v; pt)�H (t; x̂t; ût; pt)] � 0; dt� a:e;
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for every bounded A-valued, Ft-measurable random variable v such that E jvj2 < +1: Let

a 2 A be a deterministic element and F be an arbitrary element of the �-algebra Ft; and

set

wt = a1F + ût1
�F :

it is obvius that w is an admissible control Applying (2.21) with w we get

E [1F (H (t; x̂t; a; pt)�H (t; x̂t; ût; pt))] � 0; 8F 2 Ft;

which implies that

E [(H (t; x̂t; a; pt)�H (t; x̂t; ût; pt))�Ft] � 0:

The quantity inside the conditional expectation is Ft-measuranle, and thus the result follows

immediately.

2.2 The near maximum principle

Near optimal controls is as important as exact optimal controls for both theory

and applications, Indeed, optimal controls may not even exist in many situations, while

near optimal controls always exist. This section concerns necessary conditions for near

optimality or the maximum principle in near optimal controls, for systems governed by

the Ito stochastic di¤erential equations with di¤usion-independant, and the system are

allowed to be degenerate. It is shown that any near optimal control nearly maximizes the

Hamiltonian. The proof is based on some stability and continuity of the cost functional

and the adjoint process with respect to the control variable, together with the Ekeland�s

principle.For more detail for this subject we refer the reader to Mezerdi [93],Zhou [123].
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De�nition 2.5. For a given � > 0; an admissible control u�: ; is called �� optimal

(or near optimal) if J (u�) � J (u) + �: for all u 2 U

In this section we derive necessary optimality conditions for near optimal controls.

This result is based on Ekeland�s variational principale which is given by the

following.

Lemma 2.6 (Ekland principle). Let(S,d) be a metric space and � : S �! R [

f+1g be lower-semicontinuous and bounded from below .For � > 0; suppose u� 2 S satis�es

�(u�) � infu2S �(u) + �:Then for any � > 0; there exists u� 2 S such that

�(u�) � �(u�):

d(u�; u�) � �:

�(u�) � �(u) +
�
�
:d(u; u�); for all u 2 S:

de�ne a matric on U by

d (u; v) = P f(t; w) 2 [0; T ]� 
 : u (t; x) 6= v (t; x)g

where P is the product measure of the Lebesgue measure and P: Since A is closed,

it can be shown similarly to [50] ; that U [0; T ] is a complete metric space under d:

This Lemma is mainly devoted to investigating certain continuity of the controlled

SDE, the functional J; and the adjoint process (p; q) with respect to the metric d:

Lemma 2.7.
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(1) For any p � 0; there is a constant C > 0 such that, for any u; v 2 U; along

with the corresponding trajectories xu; xv; it holds that

E

"
sup
t2[0;T ]

jxut � xvt j
2p

#
� Cd (u; v)

1
2 :

(2) There is a constant C > 0 such that for any u, v 2 U along with the corre-

sponding adjoints processes pu, pv it holds that

E

24jput � pvt j2 + TZ
0

jqut � qvt j
2 dt

35 � Cd (u; v)
1
2 :

(3) The cost functional J : (U; d) ! R is continuous. More precisely, there is a

constant C2 > 0 for any u, v 2 U such that

jJ (u)� J (v)j � C2d (u; v)
1
2 :

Proof. For(1) and (3), see Mezerdi [93], Zhou [123].

(2) Applying Itô�s formula to jput � pvt j
2 ; it holds that

jput � pvt j
2 +

Z T

t
jqus � qvs j

2 ds = jgx (xuT )� gx (xvT )j
2

+2

Z T

t
hpus � pvs ; F u (s; xus ; pus ; qus ; us)� F v (s; xvs ; pvs ; qvs ; vs)i ds

+

Z T

t
hpus � pvs ; qus � qvs i dWs;

where

F u (s; xus ; p
u
s ; q

u
s ; us) = bx (s; x

u
s ; us) p

u
s + �x (s; x

u
s ) q

u
s + f (s; x

u
s ; us) ;

F v (s; xvs ; p
v
s ; q

v
s ; vs) = bx (s; x

v
s ; vs) p

v
s + �x (s; x

v
s) q

v
s + f (s; x

v
s ; vs) ;
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by using the Young�s inequality and taking expectations in bouth sides, we get

E

�
jput � pvt j

2 +

Z T

t
jqus � qvs j

2 ds

�
� E

h
jgx (xuT )� gx (xvT )j

2
i

+�2E

�Z T

t
jpus � pvs j

2 ds

�
+
2

�2
E

�Z T

t
jF u (s; xus ; pus ; qus ; us)� F u (s; xvs ; pvs ; qvs ; vs)j

2 ds

�
+
2

�2
E

�Z T

t
jF u (s; xvs ; pvs ; qvs ; vs)� F v (s; xvs ; pvs ; qvs ; vs)j

2 ds

�
;

� E
h
jgx (xuT )� gx (xvT )j

2
i
+ �2E

�Z T

t
jpus � pvs j

2 ds

�
+
2

�2
E

�Z T

t
jbx (s; xus ; us)j

2 jpus � pvs j
2 + j�x (s; xus )j

2 jqus � qvs j
2 ds

�
+
2

�2
E

�Z T

t
jbx (s; xus ; us)� bx (s; xvs ; vs)j

2 jpvs j
2 ds

+

Z T

t
j�x (s; xus )� �x (s; xvs)j

2 jqvs j
2 ds

�
+
2

�2
E

�Z T

t
jfx (s; xus ; us)� fx (s; xvs ; vs)j

2 ds

�
:

The result follows from (1) ; the fact that bx; �x; fx and gx are Lipschitz continuous in x

and Gronwall�s Lemma.

De�ne the Hamiltonian H into R by

H (t; x; u; p) = p:f (t; x; u) + q:� (t; x) + f (t; x; u) ; (2.23)

where (pt; qt) is the adjoint equation corresponding to (u; x) :

Theorem 2.8. For any � > 0; let (p�; q�) the solution to (2:22) corresponding to

(u�; x�) an ��optimal pair of the problem (2:1) � (2:2), then for any  2 [0; 1�3) ; there

exists a constant C () > 0; such that

E [H (t; x�t; u
�
t; p

�
t)�H (t; x�t; v; p�t)] � C�; 8v 2 A: (2.24)
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Proof. By lemme 2.7 and the Ekeland�s principle with � = �
2
3 ; there is an admis-

sible pair (~u�; ~x�) such that

d (u�; ~u�) � �
2
3 ; and ~J (~u�) � ~J (u) for any u 2 U;

where

~J (u) = J (u) + �
1
3d (u; ~u�) ;

this means that ~u� is an optimal control for the system (2:1) ; with a new cost function ~J .

Next, we use the spike variation technique to derive a maximum principle for ~u�: To this

end, let � 2 [0; T ] and v 2 A be �xed. For any � > 0; de�ne ~u�;� 2 U; by

~u�;�t =

8>><>>:
~u�t if t 2 [0; T ]�[� ; � + �];

v if t 2 [� ; � + �];
(2.25)

the fact that ~J (~u�) � ~J
�
~u�;�
�
; and d

�
~u�;�; ~u�

�
� �; imply that

J
�
~u�;�
�
� J (~u�) � ��

1
3 �;

therefor the map � ! J
�
~u�;�
�
is di¤erentiable at � = 0; and that

dJ
�
~u�;�
�

d�
j�=0= E [H (t; ~x�t; ~u

�
t; ~p

�
t)]� E [H (t; ~x�t; v; ~p�t)] + �

1
3 � 0;

Now, we are derive an estimate for the terme E [H (t; ~x�t; ~u
�
t; ~p

�
t)�H (t; ~x�t; v; ~p�t)] with all the

~x�; ~u� and ~p� replaced by x�; u� and p�: To this end, we �rst estimate the following di¤erence

E

�Z T

0
~p�t: fb (t; ~x�t; u)� b (t; ~x�t; ~u�t)g dt �Z T

0
p�t: fb (t; x�t; u)� b (t; x�t; u�t)g dt

�
= I1 + I2 + I3;
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where

I1 = E

�Z T

0
f~p�t � p�tg fb (t; ~x�t; u)� b (t; ~x�t; ~u�t)g dt

�
;

I2 = E

�Z T

0
p�t fb (t; ~x�t; u)� b (t; x�t; u)g dt

�
;

I3 = E

�Z T

0
p�t fb (t; ~x�t; ~u�t)� b (t; x�t; u�t)g dt

�
;

so that

I1 �
�
E

�Z T

0
j~p�t � p�tj

2 dt

�� 1
2

:

�
E

�Z T

0
jb (t; ~x�t; u)� b (t; ~x�t; ~u�t)j

2 dt

�� 1
2

;

� Cd (u�; ~u�)
1
4 :

�
CE

�Z T

0
(1 + j~x�tj)

2 dt

�� 1
2

� C� :

Next, by the Schwartz inequality, one has

I1 � E

�Z T

0
jp�tj

2 dt

� 1
2

:E

�Z T

0
jb (t; ~x�t; u)� b (t; x�t; u)j

2 dt

� 1
2

;

� CE

�Z T

0
j~x�t � x�tj

2 dt

� 1
2

;

� Cd (u�; ~u�)
1
4 = C�

Further,

I3 = E

�Z T

0
p�t fb (t; ~x�t; ~u�t)� b (t; ~x�t; u�t)g dt

�
+E

�Z T

0
p�t fb (t; ~x�t; u�t)� b (t; x�t; u�t)g dt

�
;

� E

�Z T

0
jp�tj

2 dt

� 1
2

E

�Z T

0
jb (t; ~x�t; ~u�t)� b (t; ~x�t; u�t)j

2 �~u�t 6=u�tdt

� 1
2

+ C� ;

� Cd (u�; ~u�)
1
4 + C� ;

� C� + C� :

Similarly,

E

�Z T

0
f(f (t; ~x�t; u)� f (t; ~x�t; ~u�t))� (f (t; x�t; u)� f (t; x�t; u�t))g dt

�
� C� :
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2.3 Peng�s maximum principle

The main di¢ culty when facing a general controlled di¤usion is that the Itô integral

term is not of the same order as the Lebesgue term and thus the �rst-order variation method

fails. This di¢ culty was overcomed by Peng [98] ; who studied the second-order term in

the Taylor expansion of the perturbation method arising from the Itô integral. He then

obtained a maximum principle for possibly degenerate and control-dependent di¤usion,

which involves in addition to the �rst-order adjoint process, a second-order adjoint process.

In this Section we consider the stochastic maximum principle in stochastic control

problems of systems governed by a SDE with controlled di¤usion coe¢ cient, Let (
; F; Ft; P )

be a probability space with �ltration. Let Bt be an Rn-valued standard Wiener process.

We assume that Ft = � fBs : 0 � s � tg. Consider the following stochastic control system:

8>><>>:
dxt = b (t; xt; ut) dt+ � (t; xt; ut) dBt; for t 2 [0; T ] ;

x0 = �;

(2.26)

where, b : [0; T ]� Rd � U � 
! Rd; � : [0; T ]� Rd � 
! Rd�d: An admissible control v.

is an Ft-adapted process with values in U such that

sup
0�t�T

E jvtjm � 1; m � 1:

where U is a nonempty subset of Rk. We denote the set of all admissible controls by Uad.
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Our optimal control problem is to minimize the following cost functional over Uad

J (u) = E

�Z T

0
f (t; xt;ut) dt+ g (xT )

�
: (2.27)

where f : [0; T ]� Rd � U � 
! R; g : Rd � 
! R; satisfy the following

(H) b; �; f; g are twice continuously di¤erentiable with respect to x. They and

all their derivatives bx; bxx, �x, �xx; fx; fxx; gx; gxx, are continuous in (x; v). bx; bxx, �x,

�xx; fx; fxx; gx; gxx are bounded, and b,�; fx; gx are bounded by C (1 + jxj+ jvj) :

2.3.1 Second-order expansion

The second order maximum principle is studied by Peng [98] for a general case,

where the di¤usion coe¢ cient can contain the control variable and the domain can be non

convex. In this section we treat this problem by the second order expantion method based

on a kind of variational equation and variational inequality, becausethe usual �rst order

expansion method does not work here. Let (x̂; û) be an optimal solution of the problem.

It is classical to construct a perturbated admissible control in the following way (spike

variation)

u�t =

8>><>>:
v if t 2 [� ; � + �];

ût otherwise,

Where 0 � � < T is �xed, � > 0 is su¢ ciently small, and v is an arbitrary -measurable

random variable with values in U , such that sup!2
 jv (!)j : Let x� be the trajectory of

the control system (2:26) corresponding to the control u�. We would like to derive the

variational inequality from the fact that

J (u�)� J (û) � 0:
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To this end, we need the following estimation.

Lemma.2.9 We suppose (H). Then the following estimate holds

E

"
sup
0�t�T

jx̂t � x�t � �xt � ½xtj
2

#
� C�2: (2.28)

where �xt, ½xt are solutions of

d�xt = fb (x̂t; u�t)� b (x̂t; ût) + bx (x̂t; ût) �xtg dt (2.29)

+ f� (x̂t; u�t)� � (x̂t; ût) + �x (x̂t; ût) �xtg dBt;

d½xt =

�
bx (x̂t; ût) ½xt +

1

2
bxx (x̂t; ût) �xt�xt

�
dt

+

�
�x (x̂t; ût) ½xt +

1

2
�xx (x̂t; ût) �xt�xt

�
dBt

+ fbx (x̂t; u�t) + bx (x̂t; ût)g �xtdt

+ f�x (x̂t; u�t) + �x (x̂t; ût)g �xtdBt; (2.30)

Proof. See Peng [98] :

Lemma.2.10 Under the assumption (H), we have

� (�) � E

�Z T

0

�
fx (x̂t; ût) (�xt + ½xt) +

1

2
fxx (x̂t; ût) �xt�xt

�
dt

�
+E

�
gx (x̂T ) (�xT + ½xT ) +

1

2
gxx (x̂T ) �xT �xT

�
+E

�Z T

0
f (x̂t; u

�
t)� f (x̂t; ût) dt

�
: (2.31)

Proof. See Peng [98] :

Remark.2.11 In the case where � does not contain the control variable v, the

relation (2:31) can be reduced to

O (�) � E

�Z T

0
ffx (x̂t; ût) �xt+g dtgx (x̂T ) �xT

�
+E

�Z T

0
f (x̂t; u

�
t)� f (x̂t; ût) dt

�
: (2.32)
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Thus we need only the �rst-order variational equation (2:29).

2.3.2 Adjoint processes and variational inequality

Equation (2.29) and (2.30) are called the �rst order and the second order varia-

tional equations. We introduce the �rst-order and second-order adjoint processes for (2.29)

and (2.30). With these processes, we can easily derive the variational inequality from (2.31).

The linear terms in the inequality (2.31) can be treated in the following way For simplicity,

we let

&x (t) = &x (t; x̂t; ût) ; and &xx (t) = &xx (t; x̂t; ût) ; for & = b; �; f; g:

Consider a linear stochastic system

dzt = (bx (t) zt � � (t)) dt+ (�x (t) zt +  (t)) dt; z0 = 0; (2.33)

(� (:) ;  (:)) 2 L2F (0; T ;Rn)�
�
L2F (0; T ;Rn)

�d
;

where  (:) = ( 1 (:) ; ::::;  d (:)), and L
2
F (0; T ;Rn) is the space of all Rn-valued adapted

processes such that

E

Z T

0
j� (t)j2 dt � 1:

We can construct a linear functional on the Hilbert space L2(0; T ;Rn)� (L2(0; T ;Rn))d as

follows:

I (� (:) ;  (:)) = E

�Z T

0
fx (t) ztdt+ gx (T ) zT

�
:

It is easy to verify that I(:; :) is continuous. Then by the Riesz Representation Theorem,

there is a unique

(p (:) ; q (:)) 2 L2(0; T ;Rn)� (L2(0; T ;Rn))d; q = (q1; :::; qd) ;
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such that

E

248<:
Z T

0
(p (t) ; � (t)) +

dX
j=1

(qi (t) ;  i (t))

9=; dt

35 = I (� (:) ;  (:)) ; (2.34)

8� (:) ;  (:) 2 L2F (0; T ;Rn) � (L2F (0; T ;Rn))d: With (2:29) and (2:30), we can apply this

result to some of the terms of (2:31)

E

�Z T

0
fx (t) �xtdt+ gx (T ) �xT

�
= E

Z T

0
(pt; (b (x̂t; u

�
t)� b (x̂t; ût))) dt

+E

Z T

0
tr
�
qTt : (� (x̂t; u

�
t)� � (x̂t; ût))

�
dt:

E

�Z T

0
fx (x̂t; ût) ½xtdt+ gx (T ) ½xT

�
= E

Z T

0
pTt (bx (x̂t; u

�
t)� bx (x̂t; ût)) �xtdt

+E

Z T

0

dX
j=1

qjTt
�
�jx (x̂t; u

�
t)� �jx (x̂t; ût)

�
�xtdt

+E

Z T

0

1

2

240@ptbxx (x̂t; ût) + dX
j=1

qjt�
j
xx (x̂t; ût)

1A �xt�xt
35 dt;

Then we can rewrite (2:31) as

o (�) � E

Z T

0
(H (x̂t; u

�
t; pt; qt)�H (x̂t; ût; pt; qt)) dt

+
1

2
E

Z T

0
�xTt Hxx (x̂t; ût; pt; qt) �xtdt

+
1

2
E
�
�xTT gxx (x̂T ) �xt

�
; (2.35)

where the Hamiltonian H is de�ned by

H (x; u; pt; qt) = f (x; u) + (p; b (x; u)) +
dX
j=1

�
qj ; �

j (x; u)
�
:

The interesting thing is that the quadratic terms of (2:35) can still be treated by applying

the Riesz Representation Theorem. Indeed, applying Ito�s formula to the matrix-valued
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processes Xt = �xt�xTt

dXt =

8<:XtbTx (x̂t; ût) + bx (x̂t; ût)XT
t +

dX
j=1

�jxXt�
jT
x (x̂t; ût)

9=; dt

+
�
XT
t �x (x̂t; ût) + �x (x̂t; ût)X

T
t +  

� (t)
	
dBt + �

� (t) dt; (2.36)

where �� and  � are adapted processes given by

�� (t) = �xt (b (x̂t; u
�
t)� b (x̂t; ût))

T + (b (x̂t; u
�
t)� b (x̂t; ût)) �xTt

+�x (x̂t; ût) �xt (� (x̂t; u
�
t)� � (x̂t; ût))

T

+(� (x̂t; u
�
t)� � (x̂t; ût)) �xTt �Tx (x̂t; ût)

+ (� (x̂t; u
�
t)� � (x̂t; ût)) (� (x̂t; u�t)� � (x̂t; ût))

T :

 � (t) = �xt (� (x̂t; u
�
t)� � (x̂t; ût))

T + (� (x̂t; u
�
t)� � (x̂t; ût)) �xTt ;

E

Z T

0
�� (t) dt � E

Z T

0
(� (x̂t; u

�
t)� � (x̂t; ût)) (� (x̂t; u�t)� � (x̂t; ût))

T dt+ o (�) ;

E

Z T

0
 � (t) dt � o (�) :

Consider the following symmetric matrix-valued linear stochastic di¤erential equations:

dZt =

8<:ZtbTx (x̂t; ût) + bx (x̂t; ût)ZTt +
dX
j=1

�jxZt�
jT
x (x̂t; ût)

9=; dt

+
�
ZTt �x (x̂t; ût) + �x (x̂t; ût)Z

T
t +  (t)

	
dBt + � (t) dt;

Z0 = 0:

(� (:) ;  (:)) 2 L2F (0; T ;Rn�n)� (L2F (0; T ;Rn�n))d;  = ( 1; :::;  d) :

where Rn�n is the space of all nxn real symmetric matrices with the following scalar product:

(A1; A2)� = tr (A1; A2) ; 8A1; A2 2 Rn�n:
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Now, let us construct a linear functional via (2:36):

M (� (:) ;  (:)) = E

Z T

0
(Zt;Hxx (t))� dt+ E [(ZT ; gxx (x̂T ))�]

Obviously, M((:); (:)) is a linear continuous functional on

L2F (0; T ;Rn�n)� (L2F (0; T ;Rn�n))d

thus there exists a unique (P;Q) 2 L2F (0; T ;Rn�n)� (L2F (0; T ;Rn�n))d, such that

M (� (:) ;  (:)) = E

Z T

0

24(Pt; � (t))� + dX
j=1

�
Qjt ;  

j (t)
�
�

35 dt: (2.37)

Since for all x 2 Rn; A 2 Rn�n; (xx�; A)� = tr [(xx�)A] = x�Ax; from (2:36) and (2:37) we

can rewrite (2:35) as

o (�) � E

Z T

0
(H (x̂t; u

�
t; pt; qt)�H (x̂t; ût; pt; qt)) dt

+
1

2
E

Z T

0

24(Pt; �� (t))� + dX
j=1

�
Qjt ;  

�j (t)
�
�

35 dt: (2.38)

From the de�nition of,�� and  �, we obtain

o (�) � E

Z T

0
(H (x̂t; u

�
t; pt; qt)�H (x̂t; ût; pt; qt)) dt

+
1

2
E

Z T

0
tr
h
(� (x̂t; u

�
t)� � (x̂t; ût))

T Pt (� (x̂t; u
�
t)� � (x̂t; ût))

i
dt;

Finally, we have

0 � H (x̂� ; v; p� ; q� )�H (x̂� ; û� ; p� ; q� ) (2.39)

+
1

2
tr
n
(� (x̂� ; v)� � (x̂� ; û� ))T P� (� (x̂� ; v)� � (x̂� ; û� ))

o
;
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for all v 2 U; a:e:; a:s:, or, equivalently

0 � H (x̂� ; v; p� ; q� � P�� (x̂� ; û� )) +
1

2
tr
�
��T (x̂� ; v)P�

�
�H (x̂� ; û� ; p� ; q� � P�� (x̂� ; û� )) +

1

2
tr
�
��T (x̂� ; û� )P�

�
;

8v 2 U; a:e:; a:s:

Where the �rst-order adjoint process (p; q) is the unique solution of the folowing BSDE8>>>>>>><>>>>>>>:

�dpt =
 
bx (x̂t; ût)

T pt +
dP
j=1

�jx (x̂t; ût)
T qjt � fx (x̂t; ût)

!
dt

+qtdBt;

pT = �gx (x̂T ) :

(2.40)

The second-order adjoint process (P;Q) is the unique solution of the folowing BSDE8>>>>>>>>>>>><>>>>>>>>>>>>:

�dPt = bx (x̂t; ût)
T Pt + Ptbx (x̂t; ût) +

dP
j=1

�jx (x̂t; ût)
T Pt�

j
x (x̂t; ût)

+
dP
j=1

�jx (x̂t; ût)
T Qjt +

dP
j=1

Qjt�
j
x (x̂t; ût)

T +Hxx (x̂t; ût; pt; qt) dt

+
dP
j=1

QjtdB
j
t ;

pT = �gxx (x̂T ) :

(2.41)

Now we are ready to state The stochastic maximum principle

Theorem 2.12. Let (H) hold. If (x̂t; ût) is a solution of the optimal control

problem (2:26); (2:27), then there exists a �rst order (resp a second order) adjoint process

(p (:) ; q (:)) 2 L2(0; T ;Rn)� (L2(0; T ;Rn))d;

(P (:) ; Q (:)) 2 L2F (0; T ;Rn�n)� (L2F (0; T ;Rn�n))d;

which are, respectively, solutions of (2:40), (resp(2:41)) such that the variational inequality

(2:39) holds.
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2.4 Connection to dynamic programming principle

It is known that is a relation between the maximum principle and dynamic pro-

gramming this relation is essentially connection between the value function and the solution

of the adjoint equation in the optimal state. In this section we treat two cases, the �rst

when the value function V 2 C1;2([0; T ]� Rn), we prove that

(pt; qt) = (DxV (t; x̂t); D
2
xV (t; x̂t)�(t; x̂t; ût)):

But the value function is not in general C1;2([0; T ] � Rn), then by the viscosity solutions

notion can replace the casical derivatives of the value function by superdi¤erentials.

Let us recall the stochastic optimal control problem formulated in Chapter 1.

Consider the stochastic controlled system

8>><>>:
dxt = b (t; xt; ut) dt+ � (t; xt; ut) dBt; for t 2 [0; T ] ;

xs = y;

(2.45)

along with the cost functional

J (u) = E

�Z T

0
f (t; xt;ut) dt+ g (xT )

�
: (2.46)

We denote by U f[s; T ]g the set of all (
; F; Ft; P ); satisfying: (
; F; P ) is a complete prob-

ability space, fBtgt�s is a d-dimensional standard Brownian motion de�ned on (
; F; P )

over [s; T ] ; with B0 = 0 a.s., and Ft = � fxr; s � r � tg :

The optimal control problem can be stated as follows: For given (s; y) 2 (0; T ]�Rn

minimize (2:46) subject to (2:45) over U f[s; T ]g. The value function is de�ned as

V (s; y) = inf
u2U

J (s; y; u) ;
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Recall that the HJB equation associated with the optimal control problem (2:45) and (2:46)

is as follows

�@V
@t
(t; x) + sup

u2U
G (t; x; u;�DxV (t; x) ;�DxxV (t; x)) = 0; (2.47a)

with the terminal condition

V (T; x) = g (x) ;8x 2 Rn: (2.47b)

where the Hamiltonian G is de�ned by

G (t; x; u; p; P ) =
1

2
tr
�
� (t; x; u)T P� (t; x; u)

�
+ p:b (t; x; u)� f (t; x; u) :

On the other hand, let (p; q) be a solution of the BSDE (2:40) associated with the

optimal pair (û; x̂) :We suppose in this Section all conditions of the Chapter 1 are satis�ed.

2.4.1 The smooth case.

We �rst study the case where the value function V is su¢ ciently smooth.

Theorem 2.5. Let (t; x) 2 [0; T ] � Rn be �xed, let (û; x̂) be an optimal solution

of the problem (2:45)� (2:46) ; and W be a classical solution of the HJB (2:47a)� (2:47b),

suppose that W 2 C1;3 ([0; T ]� Rn;R) : Then the solution of the BSDE (2:40) is given by

(pt; qt) =
�
DxW (t; x̂t) ; D

2
xW (t; x̂t)� (t; x̂t; ût)

�
: P-a.s.

Proof. Since W 2 C1;3 ([0; T ]�O;R), we may apply the Itô�s rule to @W
@xk

(t; x̂t),

we obtain

@W

@xk
(T; x̂t) =

@W

@xk
(t; x̂t) +

TZ
t

@2W

@s@xk
(s; x̂s) ds+

TZ
t

nX
i=1

@2W

@xk@xi
(s; x̂s) dx̂i (s)

+
1

2

TZ
t

nX
i;j=1

aij (s; x̂s; ûs)
@3W

@xk@xi@xj
(s; x̂s) ds
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Therefore

@W

@xk
(T; x̂t) =

@W

@xk
(t; x̂t) +

TZ
t

(
@2W

@s@xk
(s; x̂s) +

nX
i=1

bi (s; x̂s; ûs)
@2W

@xk@xi
(s; x̂s)

+
1

2

nX
i;j=1

aij (s; x̂s; ûs)
@3W

@xk@xi@xj
(s; x̂s; ûs)

9=; ds+

TZ
t

nX
i=1

@2W

@xk@xi
(s; x̂s)� (s; x̂s; ûs) dBs(2.48)

On the other hand, de�ne

A (t; x; u) =
@W

@t
(t; x) +

nX
i=1

bi (t; x; u)
@W

@xi
(t; x)

+
1

2

nX
i;j=1

aij (t; x; u)
@2W

@xi@xj
(t; x) + f (t; x; u) :

If we di¤erentiate A (t; x; u) with respect to xk; and evaluate the result at (x; u) = (x̂t; ût)

we get

@2W

@t@xk
(t; x̂t) +

nX
i=1

bi (t; x̂t; ût)
@2W

@xk@xi
(t; x̂t) +

1

2

nX
i;j=1

aij (t; x̂t; ût)
@3W

@xk@xi@xj
(t; x̂t)

= �
nX
i=1

@bi
@xk

(t; x̂t; ût)
@W

@xi
(t; x̂t)�

1

2

nX
i;j=1

@aij
@xk

(t; x̂t; ût)
@2W

@xi@xj
(t; x̂t)

� @f

@xk
(t; x̂t; ût) : (2.49)

Finally, substituting (2:49) into (2:48) which simpli�es to

d

�
@W

@xk
(t; x̂t)

�
= �

(
nX
i=1

@bi
@xk

(t; x̂t; ût)
@W

@xi
(t; x̂t)

+
1

2

nX
i;j=1

@aij
@xk

(t; x̂t; ût)
@2W

@xi@xj
(t; x̂t) +

@f

@xk
(t; x̂t; ût)

9=; dt

+

nX
i=1

@2W

@xk@xi
(t; x̂t)� (t; x̂t; ût) dBt: (2.50)

For each k = 1; ::; n: Clearly,

nX
i=1

@bi
@xk

(t; x̂t; ût)
@W

@xi
(t; x̂t) =

@bT

@xk
(t; x̂t; ût)DxW (t; x̂t) ;
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and

1

2

nX
i;j=1

@aij
@xk

(t; x̂t; ût)
@2W

@xi@xj
(t; x̂t) =

1

2

nX
i;j=1

@

@xk

 
dX
h=1

�ih�jh

!
(t; x̂t; ût)

@2W

@xi@xj
(t; x̂t)

= tr

�
@�T

@xk
(t; x̂t; ût)D

2
xW (t; x̂t)� (t; x̂t; ût)

�
:

Then (2:50) given by the form

d

�
@W

@xk
(t; x̂t)

�
= �

�
@bT

@xk
(t; x̂t; ût)DxW (t; x̂t)

+ tr

�
@�T

@xk
(t; x̂t; ût)D

2
xW (t; x̂t)� (t; x̂t; ût)

�
+

@f

@xk
(t; x̂t; ût)

�
dt

+
nX
i=1

@W

@xk@xi
(t; x̂t)�i (t; x̂t; ût) dBt: (2.51)

Now, by de�nition of the Hamiltonian H we get

@H

@xk
(t; x; u; p; q) =

@bT

@xk
(t; x; u) p+ tr

�
@�T

@xk
(t; x; u) q

�
+

@f

@xk
(t; x; u) ;

and de�ne pkt the kth coordinate of the column vector pt by8>><>>:
dpkt = � @H

@xk
(t; x̂t; ût; pt; qt) dt+ q

k
t dBt; for t 2 [0; T ] ;

pT =
@g

@xk
(x̂T ) ;

with qkt dBt=
P

1�h�d
qkht dBht ; for k = 1; ::; n: Hence, by the uniqueness of the solution to

(2:40) and (2:51) ; we obtain

pkt =
@W

@xk
(t; x̂t) ;

and

qkht =
nX
i=1

@2W

@xk@xi
(t; x̂t)�ih (t; x̂t; ût)

qkht the khth element of qt for k = 1; ::; n, and h = 1; ::; d: In particular, note that (pt; qt)

represents �
DxW (t; x̂t) ; D

2
xW (t; x̂t)� (t; x̂t; ût)

�
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where x̂t is the optimal solution of the controlled SDE (2:45) :

Exemple 2.16. Consider the following control problem U = [�1; 1] ; n = m = 1:8>><>>:
dXt = 2utdt+

p
2dWt; for t 2 [0; T ] ;

Xs = y;

(2.52)

the cost functional is given by

J (s; y; u) = E

�Z T

s

�
u2t + 1

�
dt� log ch (XT )

�
; (2.53)

for any �xed (s; y; u) applying Itô�s formula to the process log ch (Xt) ;

d (log ch (Xt)) = th (Xt) dXt +
1

2
ch�2 (Xt) d hX;Xit

then

log ch (Xt) = log ch (y) +

Z T

s
th (Xt)

h
2utdt+

p
2dWt

i
+

Z T

s
ch�2 (Xt) dt

= log ch (y) +

Z T

s

�
2utth (Xt) + ch

�2 (Xt)
	
dt+

Z T

s

p
2th (Xt) dWt;

combining with (2:53) ; we get

J (s; y; u) + log ch (y) = E

Z T

s

��
u2t + 1

�
� 2utth (Xt)� ch�2 (Xt)

�
dt

= E

Z T

s
(ut � th (Xt))2 dt � 0;

because

1� ch�2 (x) = th (x) ;

and

E

Z T

s
(ut � th (Xt))2 dt � 0
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hence

V (s; y) = � log ch (y)

= � log
�
1

2

�
ey + e�y

��
;

with u�t = th (X�
t ) is an optimal control, and X

�
t satis�es8>><>>:

dX�
t = 2th (X�

t ) dt+
p
2dWt; for t 2 [0; T ] ;

X�
0 = 0;

(2.54)

applying Itô�s formula to the process th (X�
t )

d (th (X�
t )) =

1

ch2 (X�
t )
dX�

t �
th (X�

t )

ch2 (X�
t )
d hX�; X�it ;

=
1

ch2 (X�
t )

�
2th (X�

t ) dt+
p
2dWt

�
� 2th (X

�
t )

ch2 (X�
t )
dt;

=

p
2

ch2 (X�
t )
dWt:

then

d (th (X�
t )) =

p
2 [ch (X�

t )]
�2 dWt; for t 2 [0; T ] ; (2.55)

The uniqueness of the adapted solution (p; q) to the adjoint process (2:40) yields8>><>>:
pt = th (X�

t ) dt; for t 2 [0; T ] ;

qt =
p
2 [ch (X�

t )]
�2 ; for t 2 [0; T ] :

(2.56)

2.4.2 The non smooth case.

Next, we drop the di¤erentiability condition on the value function. It is clear that

the method used earlier will no longer be valid. Now, the idea is based on the viscosity

solution theory for second order PDEs to study the relationship between the maximum

principle and dynamic programming.principle
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1. Di¤erentials in the spatial variable. Let us �rst recall the partial superdif-

ferentials and subdi¤erentials of the value function in the the spatial variable x: Therefore,

we need the following notations

D2;+
x V (t; x) =

�
(p; P ) 2 Rn � Rn�n� lim

y!x
sup

I1 (s; y)

js� tj+ jy � xj2
� 0
�
;

D2;�
x V (t; x) =

�
(p; P ) 2 Rn � Rn�n� lim

y!x
inf

I1 (s; y)

js� tj+ jy � xj2
� 0
�
;

where

I1 (s; y) = V (s; y)� V (t; x)� hp; y � xi � 1
2
(y � x)T P (y � x) :

Theorem.2.17 Let (t; x) 2 [0; T ) � Rn be �xed, let (û; x̂) be an optimal solution of the

problem (2:45)�(2:46) ; andW be a viscosity solution of the HJB equation (2:47a)�(2:47b) :

Then the solution of the BSDE (2:40) along an optimal trajectory, satis�ed

f�ptg � [�Pt;+1) � D2;+
x V (t; x̂) ; 8t 2 [s; T ] ; P-a.s.,

D2;�
x V (t; x̂) � f�ptg � [�1;�Pt) ; 8t 2 [s; T ] ; P-a.s.

Proof. See Zhou [121] :

2. Di¤erentials in the time variable. Now, Let us recall the partial superdif-

ferentials and subdi¤erentials of the value function in the time variable t

D1;+
t+ V (t; x) =

8<:q 2 R� lim
s#t

s2[0;T )

sup
I (s; y)

js� tj � 0

9=; ;

D1�
t+ V (t; x) =

8<:q 2 R� lim
s#t

s2[0;T )

inf
I (s; y)

js� tj � 0

9=; ;

where

I2 (s; y) = V (s; y)� V (t; x)� (q; s� t) :
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De�ne the function H by

H (t; x; u) = G (t; x; u; p; P )� tr (� (t; x; u) [q � P� (t; x̂; û)]) ;

where p; q, and P are the solution to (2:40) ; and (2:41) ; associated with the optimal pair

(x̂; û) : Therefore, the following result appears rather natural.

Theorem.2.18 Under the assumptions of Theorem (2:14), we have

H (t; x̂t; ût) 2 D1;+
t+ V (t; x̂) ; a.e. t 2 [s; T ] ; P-a.s.

Proof. See Zhou [121.] :

Now, let us combine Theorem 2:17; and Theorem 2:18; to get the following result.

Theorem. 2.19 Under the assumptions of Theorem (2:17), we have

[H (t; x̂t; ût) ;1)� f�ptg � [�Pt;+1) � D1;2;+
t;x V (t; x̂t) ; a.e. t 2 [s; T ] ; P-a.s.

and

D1;2;�
t;x V (t; x̂t) � (�1;H (t; x̂t; ût)]� f�ptg � (�1;�Pt] ; a.e. t 2 [s; T ] ; P-a.s.

2.5 The SMP in singular optimal controls

In this section we consider the maximum principle in stochastic control problems

of systems governed by a SDE with uncontrolled di¤usion coe¢ cient (see Bahlali et. al [5]),

where the control variable has two components, the �rst being abselutely continuous and

the second singular, we suppose that an optimal control exists. The expected cost to be

minimized over the class of admissible controls is given by (2:58) : For this subject, the �rst

version of the stochastic maximum principle that covers singular control was obtained by
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Cadenillas and Haussmann in [22] ; the �rst order weak maximum principle has ben derived

by Bahlali and Chala [2] ; see, also Bahlali and Mezerdi [8] for the general maximum principle

in singular controls problem. Our objectif in this section is to establish the optimality

necessary conditions of this kind of problems. First, we formulate the control problem and

describe the assumptions of the model.

Let (
; F; Ft; P ) be a �ltered probability space satisfying the usual conditions, on

which a d-dimensional Brownian motion (Bt) is de�ned with the �ltration (Ft). Let T be

a strictly positive real number, A1 is a non empty subset of Rn and A2 = ([0;1))m : U1

is the class of measurable, adapted processes u : [0; T ] � 
 ! A1; and U2 is the class of

measurable, adapted processes � : [0; T ]� 
! A2:

De�nition 2.20. An admissible control is a pair (u; �) of A1 � A2-valued, mea-

surable Ft-adapted processes, such that

De�nition 2 1. u is absolutely continuous, and � is of bounded variation, non decreas-

ing left-continuous with right limits and �0 = 0;

2. E

"
sup
t2[0;T ]

jutj2 + j�T j2
#
<1:

We denote by U = U1 � U2 the set of all admissible controls.

For (u; �) 2 U , suppose the state xt = x
(u;�)
t 2 Rn is described by the equation8>><>>:

dxt = b (t; xt; ut) dt+ � (t; xt) dBt +G (t) d� (t) ; for t 2 [0; T ] ;

x0 = x;

(2.57)

Where, b : [0; T ] � Rn � A1 ! Rn; � : [0; T ] � Rn ! Rn 
 Rd; G : [0; T ] ! Rd 
 Rm, are

given. Suppose we are given a cost functional J (u; �) of the form
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J (u; �) = E

24 TZ
0

f (t; xt; ut) dt+

TZ
0

k (t) d� (t) + g (xT )

35 ; (2.58)

where, f : [0; T ]� Rd �A1 ! R; g : Rd ! R; and k : [0; T ]! ([0;1))m ; with k (t) d� (t) =
mP
l=1

kl (t) d�l (t) : The following assumptions will be in force throughout this section:

b; �; f; g are continuously di¤erentiable with respect to x; (2.59)

They and all their derivatives bx; �x; fx; gx are continuous in (x; u) ; (2.60)

The derivatives bx; fx are bounded uniformly in u; and �x; gx are bounded,(2.61)

b; � are bounded by C (1 + jxj+ juj) ; (2.62)

G; k are continuous and G is bounded. (2.63)

The problem is to minimize the functional J (u; �) over all (u; �) 2 U; i.e., we seek�
û; �̂
�
2 U such that

J
�
û; �̂
�
= sup
(u;�)2U

J (u; �) ; (2.64)

such controls
�
û; �̂
�
are called optimal controls, x(û;�̂) is the corresponding optimal solution

of the SDE (2:57) : Under the above hypothesise, the SDE (2:57) has a unique strong

solution, such that for any p > 0,

E

"
sup
0�t�T

jxtjp
#
<1; (2.65)

and the functional J is a well de�ned.

The maximum principle will be proved in two steps. First we de�ne a family of

perturbed controls (u�; �̂), where u� is a spike variation of the absolutely continuous part û

on a small time interval [� ; � + �]. The �rst variational inequality is derived from the fact
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that

J(u�; �̂)� J(û; �̂) � 0:

The second step is to introduce another family of perturbed controls (û; ��) , where �� is

a convex perturbation of �̂. The second variational inequality is then obtained from the

inequality

J(û; ��)� J(û; �̂) � 0:

The stochastic maximum principle in its integral form is given by the following

Theorem.

Theorem 2.21 (The strict stochastic maximum principle in integral form). Let

(û; �̂) be a strict optimal control minimizing the cost J over U; and let x̂ be the corresponding

optimal trjectory. Then there exists a unique pair of adapted processes

(p; q) 2 L2 ([0; T ] ;Rn)� L2
�
[0; T ] ;Rn�d

�
which is the solution of the BSDE (3.18), such that for all a 2 A1; and � 2 U2;

H(t; xt; a; pt)�H(t; xt; ût; pt) � 0; P � a:e:;

E

Z T

0
(kt +G

�
t pt)d(� � �̂)t � 0:

2.5.1 The �rst variational inequality

To obtain the �rst variational inequality in the stochastic maximum principle, we

de�ne the strong perturbation of the absolutely continuous parts of the control, sometimes
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called the spike variation

(u�t; �̂t) =

8>><>>:
(v; �̂t) if t 2 [� ; � + �];

(ût; �̂t) otherwise,

(2.66)

where 0 � � < T is �xed, � > 0 is su¢ ciently small, and v is an arbitrary A1�valued,

F��measurable random variable such that E jvj2 < +1. Note that the singular part is not

a¤ected by the perturbation. If x
(u�;�̂)
t denoted the trajectory associated with (u�; �̂), then8>>>>>>><>>>>>>>:

x
(u�;�̂)
t = xt; t � � ;

dx
(u�;�̂)
t = b

�
t; x
(u�;�̂)
t ; v

�
dt+ �

�
t; x

(u�;�̂)
t

�
dBt +Gtd�̂t; � < t < � + �;

dx
(u�;�̂)
t = b

�
t; x

(u�;�̂)
t ; ût

�
dt+ �

�
t; x

(u�;�̂)
t

�
dBt +Gtd�̂t; � + � < t < T:

It is easy to check by standard arguments that

lim
�!0

E

 
sup
t2[0;T ]

jx(u
�;�̂)

t � x̂tj2
!
= 0; (2.67)

Arguing as in the section 1, we de�ne y as the solution of the linear SDE8>><>>:
dyt = bx(s; x̂s; ûs)ysds+ �x(s; x̂s)ysBs; � � s � T;

y� = b(� ; x̂� ; v)� b(� ; x̂� ; û� ):
(2.68)

Let & be de�ned by 8>><>>:
d&t = fx(s; x̂s; ûs)ysds; � � s � T;

&� = f(� ; x̂� ; v)� f(� ; x̂� ; û� ):

We can prove the following approximation result

Lamma 2.22. Under the assumptions (2:59)� (2:63) ; we have

lim
�!0

E

24������x
(u�;�̂)
T � x̂T

�
� yT

������
235 = 0;

lim
�!0

E

"����1�
Z T

�
(f(t; x̂t; u

�
t)� f(t; x̂t; ût))dt� &T

����2
#
= 0:
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Proof. Since x(u
�;�̂)

T � x̂T does not depend on the singular part, the proof follows

that of Lemma 2.2.

Corollary 2.23 Under the assumptions (2:59)� (2:63) ; we have

dJ(u�; �̂)

d�
j�=0 = E[gx(x̂T ):yT + &T ]:

Proof. By using the estimate (2:67) ; the result follows by mimicking the same

proof as in corollary (2:4) :

Let us introduce the adjoint process and the �rst variational inequality from corol-

lary 2.22. We proced as in section 01. Let �(t; �) be the solution of the linear equation8>><>>:
d�(t; �) = bx(t; x̂t; ût)�(t; �)dt+ �x(t; x̂t)�(t; �)dBt; t > �;

�(� ; �) = Id:

(2.69)

By the uniqueness property, it is easy to check that

y(t) = �(t; �)(b(� ; x̂� ; v)� b(� ; x̂� ; û� ));

if we de�ne the adjoint process by

pt = E

�
	�t�

�
T gx(x̂T ) + 	

�
t

Z T

ts
��fx(s; x̂s; ûs)ds�Ft

�
; (2.70)

then we get from the optimality of (û; �̂) the �rst variational inequality

0 � E[H(� ; x̂� ; v; p� )�H(� ; x̂� ; û� ; p� )]; d� � a:e:;

where the Hamiltonian H is given from [0; T ]� Rn �A1 � Rn into R by

H(t; x; v; p) = f(t; x; v) + p:b(t; x; v): (2.71)
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2.5.2 The second variational inequality

To obtain the second variational inequality of the stochastic maximum principle,

we introduce the convex perturbation applied on the singular part of the control process

(ût; �
�
t) = (ût; �̂t + �(�t � �̂t)); (2.72)

where � > 0 and � is an arbitrary element of U2. Note that the �rst part of the control is

not a¤ected by the perturbation . Since (û; �̂) is an optimal control, we�ll derive the second

variational inequality from the fact that

0 � J(û; ��)� J(û; �̂):

Lemma 2.24. Let x(û;�
�)

t be the trajectory associated with (û; ��). then the fol-

lowing estimation holds:

lim
�!0

E

"
sup
t2[0;T ]

���x(û;��)t � x̂t
���2# = 0:

Proof. From assumption (2.60)-(2.61) and by using the Burkholder�Davis�Gundy

inequality for the martingale part, we get

E

"
sup
t2[0;T ]

���x(û;��)t � x̂t
���2# � 6KE

"Z t

0
sup
�2[0;s]

���x(û;��)t � x̂t
���2 ds#

+3M�2E

�����T � �̂T ���2� :
From De�nition 2.20 and using Gronwall�s inequality, the result follows immediately by

letting � go to zero.

Lemma 2.25. Under assumption (2.60) and (2.61); the following estimation

holds:

lim
�!0

E

24�����x(û;�
�)

t � x̂t
�

� zt

�����
2
35 = 0;
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where z the solution of the integral equation

zt =

Z t

0
bx(s; x̂s; ûs)zsds +

Z t

0
�x(s; x̂s)zsdBs +

Z t

0
Gsd(� � �)s: (2.73)

Proof. From De�nition 2.20 and assumption (2.60)-(2.61), it is easy to verify by

Gronwall�s inequality that

E

"
sup
t2[0;T ]

jztj2
#
<1: (2.74)

Let

�t =
x
(u;��)
t � x̂t

�
� zt:

It is easy to see that

E j�tj
2 � 3

Z t

0

����Z 1

0
bx

�
s; x(û;�

�)
s + �

h
x(û;�

�)
s � x̂s

i
; ûs

�
�sd�

����2 ds
+3

Z t

0

����Z 1

0
�x

�
s; x(û;�

�)
s + �

h
x(û;�

�)
s � x̂s

i
; ûs

�
�sd�

����2 ds
+3E j��tj

2 ;

where ��t is given by

��t =

Z t

0

Z 1

0
zs

h
bx

�
s; x(û;�

�)
s + �

h
x(û;�

�)
s � x̂s

i
; ûs

�
� bx(s; x̂s; ûs)

i
d�ds

+

Z t

0

Z 1

0
zs

h
�x

�
s; x(û;�

�)
s + �

h
x(û;�

�)
s � x̂s

i�
� �x(s; x̂s)

i
d�dBs:

Since bx; �x are bounded, it holds that

E j�tj
2 � 6C

Z t

0
E j�sj

2 dt+ 3E j��tj
2 :

By using Lemma 2.24 and (2.74),together with the Dominated Convergence theorem, we

obtain

lim
�!0

E j��tj
2 = 0:
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We conclude by applying Gronwall�s lemma and letting � go to zero.

Lemma 2.26 The following inequality holds:

0 � E [gx(x̂T )zT ] + E

Z T

0
hx(t; x̂t; ût)ztdt+ E

Z T

0
ktd(� � �̂)t: (2.75)

Proof. From the second variational inequality, we have

0 � 1

�
E
h
g
�
x
(û;��)
T

�
� g(x̂T )

i
+
1

�
E

Z T

0

�
f
�
t; x

(û;��)
t ; ût

�
� f(t; x̂t; ût)

�
dt

+E

Z T

0
ktd(�t � �̂t);

= E

Z 1

0

 
x
(û;��)
T � x̂T

�

!
gx

�
x̂T + �

�
x
(û;��)
T � x̂T

��
d�

+E

Z T

0

Z 1

0

 
x
(û;��)
t � x̂t

�

!
fx

�
t; x̂t + �

�
x
(û;��)
t � x̂t

�
; ût

�
d�dt

+E

Z T

0
ktd(� � �̂)t:

Since the derivatives gx and fx are continuous and bounded, by letting � go to 0, we see

that the result follows from Lemma 2.24 and Lemma 2.25. By the same method as in the

last subsection, we are able to derive the second variational inequality from (2.75). If �(t; s)

denotes the solution of (2.69), it is easy to check that zt is given explicitly by

zt =

Z t

0
�(t; s)Gsd(� � �̂)s:

Replacing zt with its value, we obtain the second variational inequality

0 � E

Z T

0
(kt +G

�
t pt)d(� � �̂)t;

where pt is the adjoint process de�ned in the last subsection by (2.70).

2.5.3 The adjoint equation and the stochastic maximum principe
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Applying Itô�s formula to pt given by (2.70), it is easy to see that pt satis�es the

linear backward SDE8>><>>:
�dpt =

�
fx(t; x̂t; ût) + b

T
x (t; x̂t; ût)pt + �

T
x (t; x̂t) qt

	
dt� qtdBt;

pT = gx(x̂T ):

(2.76)

where qt 2 L2
�
[0:T ] ;Rn�d

�
; is given by

qt = 	
T
t Qt � �Tt (t; xt)pt;

and Qt is given by the Itô representation Theorem of Browanian martingales

Z t

0
QsdBs = E

�
�TT gx(x̂T ) +

Z t

0
�Tt fx(t; x̂t; ût)dt�Ft

�
�E

�
�TT gx(x̂T ) +

Z t

0
�Tt fx(t; x̂t; ût)dt

�
;

The stochastic maximum principle in its integral form is given by the following Theorem.

Theorem 3 2.27 (The strict stochastic maximum principle) Let (û; �̂) be an optimal

control minimizing the cost J over U , and let x̂ be the corresponding optimal trajectory.

Then there exists a unique pair of adapted processes

(p; q) 2 L2([0; T ] ;Rn)� L2([0; T ] ;Rn�d);

which is the solution of the BSDE (3.18), such that

H (t; x̂t; ût; pt) = min
a2A1

H (t; x̂t; a; pt) ; dt� a:e:; P � a:s:; (2.77)

P f8t 2 [0; T ] ;8i; ki (t) +G�i (t) pt � 0g = 1; (2.78)

P

(
mX
i=1

1fki(t)+G�i (t)pt�0gd�it = 0
)
= 1: (2.79)
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Proof. To prove (2.78) and (2.79) we follow [5] : Since (û; �̂) is optimal, the

inequality

E

Z T

0
(kt +G

�
t pt)d(� � �̂)t � 0;

holds for every � 2 U2. In particular, let � 2 U2 be de�ned by

d�it =

8>><>>:
0 if ki(t) +G�i (t) pt > 0;

d�̂
t

i otherwise.

then

E

Z T

0
(kt +G

�
t pt)d(� � �̂)t = E

"
mX
i=1

Z T

0
(ki(t) +G

�
i (t) pt) 1fki(t)+G�i (t)pt>0gd

�
��̂it

�#
= 0;

and relation (2.79) follows immediately.

Let us prove (2:78). For each i 2 f1; 2; :::;mg ; let

Ait = f! 2 
 : ki (t) +G�i (t) pt < 0g ;

Ai = f(t; !) 2 [0; T ]� 
 : ki (t) +G�i (t) pt < 0g ;

and de�ne

�it = �̂
i

t +

Z t

0
1Ai(s; !)ds;

It is easy to see that �t =
�
�1t ; �

2
t ; :::; �

m
t

�
is in U2: Moreover

E

Z T

0
(kt +G

�
t pt)d(� � �̂)t = E

"
mX
i=1

Z T

0
(ki(t) +G

�
i (t) pt) 1Aidt

#
< 0;

which contradicts (2.78), unless for every i = 1; 2; :::;m; dt 
 P (Ai) = 0: This proves the

desired result since k;G; and p are continuous.
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Chapter 3

The SMP For Degenerate

Di¤usions With Non Smooth

Coe¢ cients

For a controlled stochastic di¤erential equation with a �nite horizon cost func-

tional, a necessary conditions for optimal control of degenerate di¤usions with non smooth

coe¢ cients is derived in this chapter. The main idea is to show that the SDES admit a

unique linearized version interpreted as its distributional derivative with respect to the ini-

tial condition, de�ned on an enlarged probabilty space, where the initial condition � will

be taken as a random element, we use technique of Bouleau-Hirsch on absolute contunuity

of probability measures in order to de�ne the adjoint process on an extension of the initial

probability space.
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3.1 Assumptions and main result

In this section we will make some preliminaries. First of all, besides the Euclidean

space Rd; for any x; y 2 Rd; we use x:y to denote the inner product of these two vectors. We

put @x =
�

@

@xj

�
j=1;:::;d

; and note that if  : Rd ! Rd then @x ,
�
@xj 

i
�
i;j=1;:::;d

2 Rd�d.

From now on, we let 
 = C0
�
R+;Rd

�
be the space of continuous functions w

such that w (0) = 0; endowed with the topology of uniform convergence on compact subsets

of R+. F is the Borel �-�eld over 
; P is the Wiener measure on (
; F ) ; (Ft)t�0 is the

�ltration of coordinates augmented with P -null sets of F: We de�ne the canonical process

Bt (w) = w (t) ; for all t � 0: Thus,
�

; F; (Ft)t�0 ; P;Bt

�
is a Brownian motion. Let T

be a �xed strictly positive real number, we consider stochastic optimal control problems

by the set of admissible controls U we mean the colluction of
�

; F; (Ft)t�0 ; P;Bt

�
and

A-valued Ft-adapted measurable process u: = fut : 0 � t � Tg. A is a given closed set in

some Euclidean space Rd; we denote (
; F; P;B; u) 2 U the set of all admissible controls,

but occasionall we will write only u 2 U if no ambiguity arises. Now, for each u 2 U let xt

be the solution of the controlled stochastic di¤erential equation8>><>>:
dxt = b (t; xt; ut) dt+ � (t; xt) dBt; for t 2 [0; T ] ;

x0 = �;

(3.1)

and the objective is to minimize over controls u 2 U the cost functional

J (u) = E

�Z T

0
f (t; xt;ut) dt+ g (xT )

�
: (3.2)

We introduce the standing assumptions:

Maps b : [0; T ]�Rd�U�
! Rd; � : [0; T ]�Rd�
! Rd�d; f : [0; T ]�Rd�U�
!

R; g : Rd � 
 ! R; satisfy the following: b; f are B
�
[0; T ]� Rd � U

�

 FT -measurable,
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� is B
�
[0; T ]� Rd

�

 FT -measurable, and g is B

�
Rd
�

 FT -measurable, where B (G) is

the Borel �-�eld of the metric space G. There exist M > 0; such that for all (t; x; y; a) in

R+ � Rd � Rd �A

jb (t; x; a)� b (t; y; a)j+ j� (t; x)� � (t; y)j �M jx� yj ; (3.3)

jf (t; x; a)� f (t; y; a)j+ jg (x)� g (y)j �M jx� yj ; (3.4)

jb (t; x; a)j+ j� (t; x)j �M (1 + jxj) ; (3.5)

jf (t; x; a)j+ jg (x)j �M (1 + jxj) ; (3.6)

and

b (t; x; a) and f (t; x; a) are continuous in a uniformly in (t; x) : (3.7)

Assumptions (3:3) and (3:5) guarantee the existence and uniqueness of strong solution for

(3:1) ; such that for any p > 0,

E

"
sup
0�t�T

jxtjp
#
< +1:

Since b, �j (the jth column of the matrix �), f and g are Lipschitz continuous functions

in the state variable they are di¤erentiable almost everywhere in the sense of Lebesgue

measure (Rademacher Theorem): Let us denote by bx, �x; fx and gx any Borel measurable

functions such that

@xb (t; x; a) = bx (t; x; a) dx-a:e:;

@xf (t; x; a) = fx (t; x; a) dx-a:e:;

@x� (t; x) = �x (t; x) dx-a:e:;

@xg (x) = gx (x) dx-a:e:
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It is clear that these almost everywhere derivatives are bounded by the Lipschitz constante

M: Finally, assume that bx (t; x; a) ; fx (t; x; a) are continuous in a uniformly in (t; x) : We

assume throughout this paper that an optimal control û of the control problem assosiated

with (3:1) and (3:2) exists. That is

J (û) = inf
u2U

J (u) :

Let h be a continuous positive function on Rd such that
R
h (x) dx = 1 and

R
jxj2 h (x) dx <

1:We set D =

�
f 2 L2 (hdx) ; such that @f

@xj
2 L2 (hdx)

�
; where

@f

@xj
denotes the deriv-

ative in the distribution sense. Equipped with the norm

kfkD =

24Z
Rd

f2hdx+
X
1�j�d

Z
Rd

�
@f

@xj

�2
hdx

35 1
2

;

D is a Hilbert space, which is a classical Dirichlet space (see [21]). Moreover D is a subset

of the Sobolev space H1
loc

�
Rd
�
:

Let e
 = Rd�
; and eF the Borel �-�eld over e
 and eP = hdx
P: Let eBt (x;w) =
Bt (w) and eFt the natural �ltration of eBt augmented with eP -negligible sets of eF : It is clear
that

�e
; eF ;� eFt�
t�0

; eP ; eBt� is a Brownian motion. We introduce the process ~xt de�ned on
the enlarged space

�e
; eF ;� eFt�
t�0

; eP ; eBt� solution of the stochastic di¤erential equation
8>><>>:

d~xt = b (t; ~xt; ~ut) dt+ � (t; ~xt) d eBt;
~x0 = �;

(3.8)

associated to the control ~ut (x;w) = ut (w) : Since the coe¢ cients b and � are Lipschitz

continuous and grow at most linearly, equations (3:8) has a unique eFt-adapted solution
with continuous trajectories. Equations (3:1) and (3:8) are almost the same except that
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uniqueness of the solution of (3:8) is slightly weaker, one can easily prove that the uniqueness

implies that for each t � 0; ~xt = xt; eP -a.s:
The main result of this paper is stated in the following Theorem.

Theorem 3.1. (Stochastic maximum principle) Let (û; x̂) be an optimal pair for

the controlled system (3:1) and (3:2) ; then there exist an F -adapted process (the adjoint

process) satisfying

pt := � eE
24 TZ
t

�� (s; t) :fx (s; x̂s; ûs) ds+�
� (T; t) :gx (x̂T )� eFt

35 ; (3.9)

for which the following stochastic maximum principle holds:

H (t; x̂t; ût; pt) = max
a2A

H (t; x̂t; a; pt) dt-a.e; eP -a.s:; (3.10)

where � (s; t) ; (s � t) is the fundamental solution of the linear equation8>>><>>>:
d� (s; t) = bx (s; x̂s; ûs) :� (s; t) ds+

P
1�j�d

�jx (s; x̂s) :� (s; t) d eBjs ;
� (t; t) = Id:

(3.11)

where the Hamiltonian H is de�ned by

H (t; x; u; p) = p:b (t; x; u)� f (t; x; u) : (3.12)

Here �� denotes the transpose of the matrix �:

3.2 Proof of the main result

Let us recall some preliminaries and notation on the Bouleau-Hirsch method which

will be applied in this paper to establish the stochastic maximum principle of the controlled

system (3.1), (3.2).
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Theorem 3.2. (The Bouleau-Hirsch �ow property) For eP -almost every w
(1) For all t � 0; ~xt is in Dd.

(2) There exists a eFt-adapted GLd (R)-valued continuous process �e�t�
t�0

such

that for every t � 0

@

@x
(x�t (w)) = e�t (�;w) dx-a:e:

where
@

@x
denotes the derivative in the ditribution sense.

(3) The distributional derivative e�t is the unique fundamental solution of the linear
stochastic di¤erential equation8>>><>>>:

de� (s; t) = bx (s; ~xs; ~us) :e� (s; t) ds+ P
1�j�d

�jx (s; ~xs) :e� (s; t) d eBjs ; s � t;

e� (t; t) = Id;

(3.13)

where bx and �
j
x are versions of the almost everywhere derivatives of b and �j :

Remark 3.3. It is proved in [21] that the image measure of eP by the map ~xt is

absolutely continuous with respect to the Lebesgue measure.

From now on, let us assume that the initial time s = 0 and initial state � of the

system are �xed. De�ne a metric on the space U of admissible controls

d (u:; v:) = ~P f(t; w) 2 [0; T ]� 
 : ut (w) 6= vt (w)g ; (3.14)

where ~P is the product measure of the Lebesgue measure and P: Since A is closed, it can

be shown similarly to [50] ; that U [0; T ] is a complete metric space under d:

3.2.1 The maximum principle for a Family of perturbed control problems
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Now, let ' be a non negative smooth function de�ned on Rd; with support in the

unit ball such that
Z
Rd

' (y) dy = 1: For n 2 NT de�ne the following smooth functions by

convolution

bn (t; x; a) = nd
Z
Rd

b (t; x� y; a)' (ny) dy;

fn (t; x; a) = nd
Z
Rd

f (t; x� y; a)' (ny) dy;

�j;n (t; x) = nd
Z
Rd

�j (t; x� y)' (ny) dy;

gn (x) = nd
Z
Rd

g (x� y)' (ny) dy:

In the next Lemma we list some properties satis�ed by these functions.

Lemma 3.4. (1) The functions bn (t; x; a), �j;n (t; x) ; fn (t; x; a) ; and gn (x) are

Borel measurable bounded functions and Lipschitz continuous with constant K in x:

(2) There exists a constant C positive independent of t, x and n such that for

every t in [0; T ]

jbn (t; x; a)� b (t; x; a)j+
���j;n (t; x)� �j (t; x)�� � C

n
;

jfn (t; x; a)� f (t; x; a)j+ jgn (x)� g (x)j � C

n
:

(3) The functions bn (t; x; a) ; fn (t; x; a) ; �j;n (t; x) and gn (x) are C1-functions

in x; and for all t in [0; T ] ; we have

lim
n!+1

bnx (t; x; a) = bx (t; x; a) dx-a:e:;

lim
n!+1

fnx (t; x; a) = fx (t; x; a) dx-a:e:;

lim
n!+1

�j;nx (t; x) = �jx (t; x) dx-a:e:;

lim
n!+1

gnx (x) = gx (x) dx-a:e:
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(4) For every p � 1 and R > 0

lim
n!1

ZZ
B(0;R)�[0;T ]

sup
a2A

jbnx (t; x; a)� bx (t; x; a)j
p dxdt = 0;

lim
n!1

ZZ
B(0;R)�[0;T ]

sup
a2A

jfnx (t; x; a)� fx (t; x; a)j
p dxdt = 0:

where B (0; R) denotes a ball in Rd of radius R:

Proof. Statements (1), (2) and (3) are classical facts (see [53] for the proof).

(4) is proved as in [7].

Now, consider the process yt; t � 0; solution of the stochastic di¤erential equation,

de�ned on the enlarged probability space
�e
; eF ;� eFt�

t�0
; eP ; eBt� by

8>><>>:
dyt = bn (t; yt; ut) dt+ �

n (t; yt) d eBt;
y0 = �;

(3.15)

and de�ne the cost functional

Jn (ut) = eE
24 TZ
0

fn (t; yt; ut) dt+ g
n (yT )

35 ; (3.16)

where bn; �n; fn and gn be the regularized functions of b; �; f and g:

The following result gives the estimates which relate the original control problem

with the perturbed ones.

Lemma 3.5. Let (xt) and (yt) the solutions of (3:1) and (3:15) respectively,

corresponding to an admissible control u: Then there exists positive constants M1 and M2

such that:

(1) eE " sup
0�t�T

jxut � yut j
2

#
�M1: (�n)

2 :

(2) jJn (ut)� J (ut)j �M2:�n; where �n =
C

n
:
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Proof. This lemma follows from standard arguments from stochastic calculus and

lemma 3.4:

Let û be an optimal for the original control problem (3:1) and (3:2) : Note that û

is not necessarily optimal for the perturbed control problem (3:15) and (3:16) : However, by

Lemma 3:5 we obtain the existence of (�n) � (2M2:�n) ; a sequence of positive real numbers

converging to 0 such that:

Jn (û) � inf
u2U

Jn (u) + �n:

That is û is �n-optimal for the perturbed control problem. According to Lemma 3:5 it is

easy to see that Jn (:) is continuous on U endowed with the metric d de�ned by (3:14) : By

the Ekeland principle for û with �n = �
2
3
n ; there is an admissible control un such that

d (û; un) � �
2
3
n ;

and

Jn� (u
n) � Jn� (u) ; for any u 2 U;

where

Jn� (u) = Jn (u) + �
1
3
nd (u; u

n) :

This means that un is an optimal for the perturbed system (3:15) with a new cost function

Jn� . Denote by x
n the unique solution of (3:15) corresponding to un; and let �n (s; t) (s � t) ;

be the fundamental solution of the linear equation8>>><>>>:
d�n (s; t) = bnx (s; x

n
s ; u

n
s ) :�

n (s; t) dt+
P

1�j�d
�j;nx (s; xns ) :�

n (s; t) d eBjs ;
�n (t; t) = Id:

(3.17)
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Remark 3.6. Since un is optimal for Jn� ; and the functions b
n; �n; fn and gn

are smooth, we can use the spike variation technique to derive a maximum principle for un:

Proposition 3.7. For each integer n, there exists an admissible control un and a� eFt�-adapted process qnt given by
qnt = � eE

24 TZ
t

�n;T (s; t) :fnx (s; x
n
s ; u

n
s ) ds+�

n;T (T; t) :gnx (x
n
T )� eFt

35 ; (3.18)

and a Lebesgue null set N such that for t 2 N c

eE [Hn (t; xnt ; u
n
t ; q

n
t )] � eE [Hn (t; xnt ; v; q

n
t )]� �

1
3
n ;

for every A-valued Ft-measurable random variable v; where the Hamiltonian Hn is de�ned

by

Hn (t; x; u; p) = p:bn (t; x; u)� fn (t; x; u) : (3.19)

Where �n;� denotes the transpose of the matrix �n:

Proof. Let t0 2 [0; T ] and v a A-valued Ft-measurable random variable. For any

" � 0; de�ne un" 2 U by

un" =

8>><>>:
v t 2 [t0; t0 + "] ;

unt t 2 [0; T ]� [t0; t0 + "] :

The fact that

Jn� (u
n) � Jn� (u

n
" ) ;

and

d (un" ; u
n) � ";

imlpy that

Jn (un" )� Jn (un) � ��
1
3
n :":
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However, according to Lemma 3:5 the data de�ning the perturbed control problem (3.15),

(3.16) are di¤erentiable, therefore the map "! Jn (un" ) is di¤erentiable at " = 0; and that

dJn (un" )

d"
j"=0= eE [Hn (t; xnt ; u

n
t ; q

n
t )]� eE [Hn (t; xnt ; v; q

n
t )] + �

1
3
n � 0;

for every A-valued Ft-measurable random variable v:

Remark 3.8. This inequality can be proved for every near optimal control u�,

using the stability of the state equation and adjoint process with respect to the control variable

(see Zhou [123]).

Let �n (s; t) (s � t) the d�d-matrix valued process, satisfying the following linear

equation8>>><>>>:
d�n (s; t) = bnx (s; x̂

n
s ; ûs) :�

n (s; t) dt+
P

1�j�d
�j;nx (s; x̂ns ) :�

n (s; t) d eBjs ;
�n (t; t) = Id;

(3.20)

where x̂nt is the unique solution of (3:15) corresponding to the optimal control û8>><>>:
dx̂nt = bn (t; x̂nt ; ût) dt+ �

n (t; x̂nt ) d eBt;
x̂n0 = �:

(3.21)

Corollary 3.9. there exists an
� eFt�-adapted process satisfying

pnt := � eE
24 TZ
t

�n;T (s; t) :fx (s; x̂
n
s ; ûs) ds+�

n;T (T; t) :gx (x̂T )� eFt
35 ; (3.22)

and a Lebesgue null set N such that, for t 2 N c;

eE [Hn (t; x̂nt ; ût; p
n
t )] � eE [Hn (t; x̂nt ; v; p

n
t )]� �

1
3
n ; (3.23)

for every A-valued Ft-measurable random variable v:
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3.2.2 Passing to the Limit

Our aim is now to give a maximum principle of di¤usion processes with Lipschitz

coe¢ cients (problem (3.9) and (3.10)). To pass to the Limit in (3.24) and (3.25). We will

use Egorov and Portmanteau-Alexandrov Theorems, we will use also the notion of extension

of the initial �ltered probability space, de�ned by Bouleau and Hirsch.

Lemma 3.10. We have

lim
n!+1

eE " sup
s�t�T

j�n (s; t)� � (s; t)j2
#
= 0; (3.24)

lim
n!+1

eE " sup
0�t�T

jpnt � ptj
2

#
= 0; (3.25)

lim
n!+1

eE [jHn (t; x̂nt ; ût; p
n
t )�H (t; x̂t; ût; pt)j] = 0; (3.26)

where �t; pt and H are determined by the fundamental solution (3.11), the adjoint process

(3.9) and the associated Hamiltonian (3.12), corresponding to the optimal pair (x̂; û) : �nt ;

pnt and Hn are determined by the fundamental solution (3.20), the adjoint process (3.22)

and the associated Hamiltonian (3.19), corresponding to the approximating sequence x̂nt ;

given by (3.21):

Proof. In view of the Burkholder, Schwartz inequalities and the Gronwall Lemma,

we have

eE " sup
t�s�T

j�n (s; t)� � (s; t)j2
#
�

M eE " sup
t�s�T

j�n (s; t)j4
# 1
2

:

8<:eE
"
TR
0

jbnx (t; x̂nt ; ût)� bx (t; x̂t; ût)j
4 dt

# 1
2

+
P

1�j�d
eE "TR

0

���j;nx (t; x̂nt )� �jx (t; x̂t)
��4 dt# 12

9=; ;
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since the coe¢ cients in the linear stochastic di¤erential equation (3.21) are bounded, it is

easy to see that eE " sup
t�s�T

j�n (s; t)j4
#
< +1: To derive (3.24), it is su¢ cient to prove the

following

eE "TR
0

jbnx (t; x̂nt ; ût)� bx (t; x̂t; ût)j
4 dt

#
! 0 as n! +1;

and

eE "TR
0

���j;nx (t; x̂nt )� �jx (t; x̂t)
��4 dt#! 0 as n! +1; j = 1; 2; :::::; d.

Let us prove the �rst Limit. We have

eE "TR
0

jbnx (t; x̂nt ; ût)� bx (t; x̂t; ût)j
4 dt

#
�M (In1 + I

n
2 ) ;

where

In1 =
eE "TR

0

sup
a2A

jbnx (t; x̂nt ; a)� bx (t; x̂nt ; a)j
4 dt

#
;

and

In2 =
eE "TR

0

sup
a2A

jbx (t; x̂nt ; a)� bx (t; x̂t; a)j
4 dt

#
;

Since the law of x̂nt is absolutely continuous with respect to the Lebesgue measure, let �
n
t (y)

its density. Then

In1 =

TZ
0

Z
Rd

sup
a2A

jbnx (t; y; a)� bx (t; y; a)j
4 �nt (y) dydt:

Let us show that, for all t 2 [0; T ]

lim
n!+1

Z
Rd

sup
a2A

jbnx (t; y; a)� bx (t; y; a)j
4 �nt (y) dy = 0:

For each p > 0; eE " sup
0�t�T

jx̂nt j
p

#
< 1: Thus, lim

R!+1
eP  sup

0�t�T
jx̂nt j > R

!
= 0; then it is

enough to show that for every R > 0;

lim
n!+1

Z
B(0;R)

sup
a2A

jbnx (t; y; a)� bx (t; y; a)j
4 �nt (y) dy = 0:
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According to Lemma 3.4

sup
a2A

jbnx (t; y; a)� bx (t; y; a)j
4 ! 0 dy-a:e;

at least for a subsequence. Then by Egorov�s Theorem, for every � > 0; there exists a

measurable set F with � (F ) < �; such that sup
a2A

jbnx (t; y; a)� bx (t; y; a)j converges uniformly

to 0 on the set F c: Note that, since the Lebesgue measure is regular, F may be chosen closed.

This implies that

lim
n

Z
F c

sup
a2A

jbnx (t; y; a)� bx (t; y; a)j
4 �nt (y) dy

� lim
n

 
sup
y2F c

sup
a2A

jbnx (t; y; a)� bx (t; y; a)j
4

!
= 0:

Now, by using the boundness of the derivatives bnx; bx by the Lipschitz constantM , we have

Z
F

sup
a2A

jbnx (t; y; a)� bx (t; y; a)j
4 �nt (y) dy

= eE �sup
a2A

jbnx (t; x̂nt ; a)� bx (t; x̂nt ; a)j
4 �fx̂nt 2Fg

�
� 2M4 eP (x̂nt 2 F ) :

Since (x̂nt ) converges to x̂t in probability, then in distribution. Applying the Portmanteau-

Alexandrov Theorem, we obtain

lim
n!+1

Z
F

sup
a2A

jbnx (t; y; a)� bx (t; y; a)j
4 �nt (y) dy � 2M4 lim sup eP (x̂nt 2 F )

� 2M4 eP (x̂t 2 F )
= 2M4

Z
F

�t (y) dy < ":

where �t (y) denotes the density of x̂t with respect to Lebesgue measure.
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Now, since

Z
B(0;R)

sup
a2A

jbnx (t; y; a)� bx (t; y; a)j
4 �nt (y) dy

=

Z
F

sup
a2A

jbnx (t; y; a)� bx (t; y; a)j
4 �nt (y) dy

+

Z
F c

sup
a2A

jbnx (t; y; a)� bx (t; y; a)j
4 �nt (y) dy;

we get lim
n!+1

In1 = 0:

Let k � 0 be a �xed integer, then it holds that In2 � C
�
Jk1 + J

k
2 + J

k
3

�
; where

Jk1 = eE "TR
0

���bx (t; x̂nt ; ût)� bkx (t; x̂nt ; ût)���4 dt
#
;

Jk2 =
eE "TR

0

���bkx (t; x̂nt ; ût)� bkx (t; x̂t; ût)���4 dt
#
;

Jk3 = eE "TR
0

���bkx (t; x̂t; ût)� bx (t; x̂t; ût)���4 dt
#
:

Applying the same argements used in the �rst limit (Egorov and Portmanteau-

Alexandrov Theorems), we obtain that lim
n!+1

Jk1 = 0: We use the continuity of bkx in x

and the convergence in probability of x̂nT to x̂T to deduce that b
k
x (t; x̂

n
t ; ût) converges to

bkx (t; x̂t; ût) in probability as n ! 1; and to infer by using the Dominated convergence

Theorem that lim
n!+1

Jk2 = 0: Since bkx; bx are bounded by the Lipschitz constant and by

using the absolute continuity of the law of x̂t with respect to the Lebesgue measure, the

convergence of bkx to bx; and the Dominated convergence Theorem, we get lim
n!+1

Jk3 = 0:

Next, let use prove the limit (3:25) : Clearly

eE hjpnt � ptj2i � C1 (�
n
1 + �

n
2 ) ;



92

where

�n1 = eE
24 TZ
t

����n;T (s; t) :fnx (s; x̂ns ; ûs)� �T (s; t) :fx (s; x̂s; ûs)���2 ds
35

and

�n2 = eE h���n;T (T; t) :gnx (x̂nT )� �T (T; t) :gx (x̂T )��2i :
Since fx is bounded by the Lipschitz constant M , and applying the Schwartz inequality, we

obtain for all n 2 N

�n1 � C eE " sup
t�s�T

���n;T (s; t) ds��4# 12 : eE �Z T

0
jfnx (s; x̂ns ; ûs)� fx (s; x̂s; ûs)j

4 ds

� 1
2

+CM: eE " sup
t�s�T

���n;T (s; t)� �� (s; t)��2#

It is easy to see that eE " sup
t�s�T

���n;T (s; t) ds��4# < +1: Applying the same arguments used
in the �rst Limit (Egorov and Portmanteau - Alexandrov Theorems) it holds that

lim
n!+1

eE �Z T

0
jfnx (s; x̂ns ; ûs)� fx (s; x̂s; ûs)j

4 ds

� 1
2

= 0:

On the other hand, since gx is bounded by the Lipschitz constant, and applying the Schwartz

inequality we get

�n2 � C
n eE h���n;T (T; t)��4io 1

2
:
n eE hjgnx (x̂nT )� gx (x̂T )j4io 1

2

+CM: eE h���n;T (T; t)� �T (T; t)��2i ;
where M is a positive constant.

Let k � 0 be a �xed integer, then it holds that

eE hjgx (x̂nT )� gx (x̂T )j4i � eE ����gnx (x̂nT )� gkx (x̂nT )���4�+ eE ����gkx (x̂nT )� gkx (x̂T )���4�
+ eE ����gkx (x̂T )� gx (x̂T )���4� :
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The law of x̂nT is absolutely continuous with respect to the Lebesgue measure, let �
n
T (y)

it is density, and by the same fashion (by applying Egorov and Portmanteau - Alexandrov

Theorems), we get

lim
n!+1

eE ����gnx (x̂nT )� gkx (x̂nT )���4� = lim
n!+1

Z
Rd

���gnx (y)� gkx (y)���4 �nT (y) dy = 0:
We use the continuity of gkx in x and the convergence in probability of x̂

n
T to x̂T to deduce

that gkx (x̂
n
T ) converges to g

k
x (x̂T ) in probability as n ! 1; and to infer by using the

Dominated convergence Theorem that

lim
n!+1

eE ����gkx (x̂nT )� gkx (x̂T )���4� = 0:
Since

eE ����gkx (x̂T )� gx (x̂T )���4� = Z
Rd

���gkx (y)� gx (y)���4 �T (y) dy;
gkx, gx are bounded by the Lipschitz constant, and g

k
x converges to gx dx-a:e; we conclude

by the Dominated convergence Theorem that

lim
n!+1

eE ����gkx (x̂T )� gx (x̂T )���4� = 0:
Finally, by using Burkholder-Davis-Gundy inequality, we obtain (3:25) :

Now, let use prove that

lim
n!+1

eE [jHn (t; x̂nt ; ût; p
n
t )�H (t; x̂t; ût; pt)j] = 0:

Applying the Schwartz inequality we get

eE [jHn (t; x̂nt ; ût; p
n
t )�H (t; x̂t; ût; pt)j] �

n eE jpnt � ptj2o 1
2
:
n eE jbn (t; x̂nt ; ût)j2o 1

2

+
n eE jbn (t; x̂nt ; ût)� b (t; x̂t; ût)j2o 1

2
:
n eE jptj2o 1

2
+ eE jfn (t; x̂nt ; ût)� f (t; x̂t; ût)j :
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Lemma 3.4 and (3.25) imply that the �rst expression in the right hand side converges to 0

as n!1: Since

eE jfn (t; x̂nt ; ût)� f (t; x̂t; ût)j � eE jfn (t; x̂nt ; ût)� fn (t; x̂t; ût)j
+ eE jfn (t; x̂t; ût)� f (t; x̂t; ût)j ;

fn being continuous and bounded, x̂nt converges uniformly in probability to x̂t; we conclude

by the Dominated convergence Theorem that

lim
n!+1

eE jfn (t; x̂nt ; ût)� fn (t; x̂t; ût)j = 0:
Using Lemma 3.5 and the Dominated convergence Theorem to conclude that

lim
n!+1

eE jfn (t; x̂t; ût)� f (t; x̂t; ût)j = 0:
The convergence of the second term in the right hand side can be performed in a similar

way.

Proof of Theorem 3.1.. Use the Corollary 3.9 and the Lamma 3.10.
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Chapter 4

The SMP for singular optimal

control of di¤usions with non

smooth coe¢ cients

Our aim in this Chapter is to extend the stochastic maximum principle in singular

optimal control to the case where the coe¢ cients b; �; f and g are Lipschitz continuous in

x; we prove that the analogue of the section 6 of chapter 2 holds, provided that the classical

derivatives are replaced by the generalized one. We approximate the initial control problem

by smooth ones, and we apply Ekeland�s principle to derive the associated adjoint processes

and use Krylov�s inequality to prove the convergence in the uniformly elliptic case. In the

degenerate case, we use techniques of Bouleau-Hirsch on the di¤erentiability of the solution

of an SDE with Lipschitz coe¢ cients with respect to initial data, in the distribution sense,

and we use Egorov and Portmanteau-Alexandrov Theorems to prove the convergence of the
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derivatives.

4.1 Assumption

Let (
; F; Ft; P ) be a �ltered probability space satisfying the usual conditions, on

which a d-dimensional Brownian motion (Bt) is de�ned with the �ltration (Ft). Let T be

a strictly positive real number, A1 is a non empty subset of Rn and A2 = ([0;1))m : U1

is the class of measurable, adapted processes u : [0; T ] � 
 ! A1; and U2 is the class of

measurable, adapted processes � : [0; T ]� 
! A2:

De�nition 4.1. An admissible control is a pair (u; �) of A1 � A2-valued, mea-

surable Ft-adapted processes, such that u is absolutely continuous, and � is of bounded

variation, non decreasing left-continuous with right limits and �0 = 0:

We denote by U = U1 � U2 the set of all admissible controls. For (u; �) 2 U ,

suppose the state xt = x
(u;�)
t 2 Rd is described by the equation8>><>>:

dxt = b (t; xt; ut) dt+ � (t; xt) dBt +Gtd�t; for t 2 [0; T ] ;

x0 = �;

(4.1)

Since d�t may be singular with respect to Lebesgue measure dt; we call � our singular

control. and the process u is our absolutely continuous control. Suppose we are given a

cost functional J (u; �) of the form

J (u; �) = E

24 TZ
0

f (t; xt; ut) dt+

TZ
0

ktd�t + g (xT )

35 ; (4.2)

Where b : [0; T ]�Rd�A1 ! Rd; � : [0; T ]�Rd ! Rd
Rd; f : [0; T ]�Rd�A1 ! R;

g : Rd ! R; G : [0; T ] ! Rd 
 Rm; and k : [0; T ] ! ([0;1))m : Satisfy the following: b; �,
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f and g are Borel measurable and bounded functions and there exist M > 0; such that for

all (t; x; y; a) in R+ � Rd � Rd �A1

jb (t; x; a)� b (t; y; a)j+ j� (t; x)� � (t; y)j �M jx� yj ; (4.3)

jf (t; x; a)� f (t; y; a)j+ jg (x)� g (y)j �M jx� yj ; (4.4)

b (t; x; a) and f (t; x; a) are continuous in a uniformly in (t; x) ; (4.5)

9c > 0;8� 2 Rd;8 (t; x) 2 [0; T ]� Rd; ��� (t; x)�� (t; x) � � c j�j2 ; (4.6)

and

G; k are continuous and bounded. (4.7)

Find (û; �̂) 2 U such that

J(û; �̂) = min
(u;�)2U

J (u; �) ;

any (û; �̂) satisfying the above is called an optimal control of problem (4.1), (4.2), the

corresponding state process x̂ is called an optimal state process, and û (resp �̂) is called

absolutely continuous (resp singular) optimal control.

Under the above hypothesise, the SDE (4.1) has a unique strong solution xt and

the cost is a well de�ned from U into R: Such that for any p > 0,

E

"
sup
0�t�T

jxtjp
#
< +1:

Since b, �j (the jth column of the matrix �), f and g are Lipschitz continuous

functions in the state variable they are di¤erentiable almost everywhere in the sense of

Lebesgue measure (Rademacher Theorem): Let us denote by bx, �x; fx and gx any Borel
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measurable functions such that

@xb (t; x; a) = bx (t; x; a) dx-a:e:;

@xf (t; x; a) = fx (t; x; a) dx-a:e:;

@x� (t; x) = �x (t; x) dx-a:e:;

@xg (x) = gx (x) dx-a:e:

It is clear that these almost everywhere derivatives are bounded by the Lipschitz

constant M: Finally, assume that bx (t; x; a) and fx (t; x; a) are continuous in a uniformly in

(t; x)

4.2 The non degenerate case

4.2.1 The main result

The main result of this section is stated in the following Theorem.

Theorem 4.2. (Stochastic maximum principle) Let (û; �̂) be an optimal control

for the controlled system (4.1), (4.2) and let x̂ be the corresponding optimal trajectory.

Then there exists a measurable Ft-adapted process pt satisfying

pt := E

24 TZ
t

�T (s; t) :fx (s; x̂s; ûs) ds+�
T (T; t) :gx (x̂T )�Ft

35 ; (4.8)

such that for all a 2 A1 and � 2 U2

0 � H (t; x̂t; a; pt)�H (t; x̂t; ût; pt) dt-a.e; P -a.s:; (4.9)

and

0 � E

Z T

0

�
kt +G

T
t pt
�
d
�
� � �̂

�
t

(4.10)
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where the Hamiltonian H associated to the control problem is

H (t; x; u; p) = p:b (t; x; u) + f (t; x; u) ; (4.11)

and � (s; t) ; (s � t) is the fundamental solution of the linear equation8>>><>>>:
d� (s; t) = bx (s; x̂s; ûs) :� (s; t) ds+

P
1�j�d

�jx (s; x̂s) :� (s; t) dB
j
s ;

� (t; t) = Id:

(4.12)

Theorem 4 Here T denotes the transpose:

4.2.2 Proof of the main result

Let us recall Krylov�s inequality for di¤usion processes which will be used in the

sequel.

Theorem 4.3. (Krylov [17]) Let (
; F; Ft; P ) be a �ltered probability space,

(Bt)t�0 a d-dimensional Brownian motion, b : 
�R+ ! Rd; � : 
�R+ ! Rd
Rd bounded

adapted processes such that: 9c > 0; 8� 2 Rd; 8 (t; x) 2 [0; T ]� Rd; ������ � c j�j2. Let

xt = x+

tZ
0

b (t; w) dt+

tZ
0

� (t; w) dBt;

be an Itô process. Then for every Borel function f : R+ � Rd ! R with support in

[0; T ]�B (0;M) ; the following inequality holds

E

24 TZ
0

jf (t; xt)j dt

35 � K

264 TZ
0

Z
B(0;M)

jf (t; x)jd+1 dtdx

375
1

d+1

;

where K is a constant and B (0;M) is the ball of center 0 and radius M .
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To apply Ekeland�s variational principle in the non degenerate case, we have to

endow the set of controls with an appropriate metric. For any (u; �) ; (�; �) 2 U; we set

d1 (u; v) = P 
 dt f(w; t) 2 
� [0; T ] ; v (w; t) 6= u (w; t)g ; (4.13)

d2 (�; �) =

 
E

"
sup
0�t�T

j�t � �tj2
#! 1

2

; (4.14)

d ((u; �) ; (�; �)) = d1 (u; v) + d2 (�; �) : (4.15)

where P 
 dt is the product measure of P with the Lebesgue measure dt:

Lemma 4.4.

Lemma 5 (1) (U; d) is a complete metric space.

(2) The cost functional J is continuous from U into R:

Proof. (1) It is clear that (U2; d2) is a complete metric space. Moreover, it was

shown in [50] that (U1; d1) is a complete metric space. Hence (U; d) is a complete metric

space.

Item (2) is proved as in [93][123].

Necessary conditions for a family of perturbed control problems

For n 2 N�; let us consider the sequence of perturbed control problems obtained by

replacing b, �; f and g by bn, �n; fn and gn: Let us denote y the solution of the controlled

stochastic di¤erential equation.8>><>>:
dyt = bn (t; yt; ut) dt+ �

n (t; yt) dBt +Gtd�t;

y0 = �;

(4.16)
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The corresponding cost is given by

Jn (u; �) = E

24 TZ
0

fn (t; yt; ut) dt+

TZ
0

ktd�t + g
n (yT )

35 ; (4.17)

Lemma 4.5. Let (u; �) 2 U; xt and yt the solutions of (4:1) and (4:16) respectively

corresponding to the control (u; �) ; then we have

Lemma 6 (1) E

"
sup
0�t�T

jxt � ytj2
#
�M1: (�n)

2 ; where �n =
C

n
:

(2) jJn (u; �)� J (u; �)j � M2:�n:

Proof. Since xt� yt and Jn (u; �)�J (u; �) does not depend on the singular part,

then This lemma follows from standard arguments from stochastic calculus and lemma 3.4:

Let us suppose that
�
û; �̂
�
2 U is an optimal control for the initial control problem

(4:1) and (4:2) : Note that
�
û; �̂
�
is not necessarily optimal for the perturbed control problem

(4:16) and (4:17) : However, by Lemma 4.5 we obtain the existence of (�n) � (2M2:�n) a

sequence of positive real numbers converging to 0, such that

Jn
�
û; �̂
�
� inf
(�;�)2U

Jn (�; �) + �n:

The control
�
û; �̂
�
will be �n-optimal for the perturbed control problem. According

to Lemma 4.4, it is easy to see that Jn (:; :) is continuous on U = U1 � U2 endowed with

the metric d = d1 + d2 de�ned by (4.15). By the Ekeland principle (lemma 3.4) for
�
û; �̂
�

with �n = �
2
3
n : There is an admissible control (un; �n) such that

d
��
û; �̂
�
; (un; �n)

�
� �

2
3
n ;
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and

Jn� (u
n; �n) � Jn� (�; �) ; for a general control (�; �) 2 U;

where

Jn� (�; �) = Jn (�; �) + �
1
3
n :d ((�; �) ; (u

n; �n)) :

This means that (un; �n) is an optimal control for the perturbed system (4.16) with

a new cost function Jn� : The controlled process x
n is then de�ned as the unique solution to

the stochastic di¤erential equation;8>><>>:
dxnt = bn (t; xnt ; u

n
t ) dt+ �

n (t; xnt ) dBt +Gtd�
n
t ;

y0 = �;

(4.18)

We consider �n (s; t) (s � t) ; the fundamental solution of the linear stochastic

di¤erential equation8>>><>>>:
d�n (s; t) = bnx (s; x

n
s ; u

n
s ) :�

n (s; t) ds+
P

1�j�d
�j;nx (s; xns ) :�

n (s; t) dBjs ;

�n (t; t) = Id:

(4.19)

Note that bnx; �
n;j
x (j = 1; ::; d) are respectively the matrices of �rst order partial

derivatives of bn; �n;j (j = 1; ::; d) with respect to x:

Proposition 4.6. For each integer n, there exists an admissible control (un; �n)

and a (Ft)-adapted process pnt given by

pnt = E

24 TZ
t

�n;T (s; t) :fnx (s; x
n
s ; u

n
s ) ds+�

n;T (T; t) :gnx (x
n
T )�Ft

35 ; (4.20)

and a Lebesgue null set N such that for t 2 N c

E [Hn (t; xnt ; �; p
n
t )�Hn (t; xnt ; u

n
t ; p

n
t )] � ��

1
3
n :M1; (4.21)
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and

E

TZ
0

�
kt +G

T
t p

n
t

�
d (� � �n)t � ��

1
3
n :M2: (4.22)

for all � 2 A1; and � 2 U2; where the Hamiltonian Hn is de�ned by

Hn (t; x; u; p) = p:bn (t; x; u) + fn (t; x; u) : (4.23)

Here T denotes the transpose:

Proof. According to the optimality of (un; �n) for the perturbed system with the

cost function Jn� ; we can use the spike variation method to derive a maximum principle for

(un; �n). Let t0 2 [0; T ] ; � 2 A1 and � 2 U2; for any " > 0; de�ne the two perturbations

(un;"t ; �nt ) and (u
n
t ; �

n;"
t ) by

(un;"t ; �nt ) =

8>><>>:
(�; �nt ) t 2 [t0; t0 + "] ;

(unt ; �
n
t ) t 2 [0; T ]� [t0; t0 + "] :

and

(unt ; �
n;"
t ) = (unt ; �

n
t + " (�t � �nt ))

Since (unt ; �
n
t ) is optimal for the cost J

n
� ; then

0 � Jn� (u
n;"
t ; �nt )� Jn� (unt ; �nt )

and

0 � Jn� (u
n
t ; �

n;"
t )� Jn� (unt ; �nt )

this imply that

0 � Jn (un;"t ; �nt )� Jn (unt ; �nt ) + �
1
3
n :d1 (u

n
t ; u

n;"
t ) ;

and

0 � Jn (unt ; �
n;"
t )� Jn (unt ; �nt ) + �

1
3
n :d2 (�

n
t ; �

n;"
t ) ;
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using the de�nitions of d1 and d2 it holds that

0 � Jn (un;"t ; �nt )� Jn (unt ; �nt ) + �
1
3
n :M1"; (4.24)

and

0 � Jn (unt ; �
n;"
t )� Jn (unt ; �nt ) + �

1
3
n :M2": (4.25)

Where Mi (i = 1; 2) is a positive constant. From inequalities (4.24) and (4.25)

respectively we use the same method as in section 5 in chapter 2 to obtain respectively

(4.21) and (4.22).

We use a transformation that makes it possible to apply Krylov�s estimate for

di¤usion processes. De�ne the dynamics b : [0; T ]�Rd�A1 ! Rd; bn : [0; T ]�Rd�A1 ! Rd;

� : [0; T ]� Rd ! Rd 
 Rd; and �n : [0; T ]� Rd ! Rd 
 Rd, by

b (t; x; a) = b

�
t; x+

tR
0

Gsd�s; a

�
;

b
n
(t; x; a) = bn

�
t; x+

tR
0

Gsd�s; a

�
;

� (t; x) = �

�
t; x+

tR
0

Gsd�s

�
;

�n (t; x) = �n
�
t; x+

tR
0

Gsd�s

�
:

Let z the unique solution of8>><>>:
dzt = b (t; zt; ut) dt+ � (t; zt) dBt;

z0 = �:

(4.26)

This implies that xt = zt +
R t
0Gsd�s solves the SDE (4:1) with data (b; �) :

Similary, let zn the unique solution of8>><>>:
dznt = b

n
(t; znt ; ut) dt+ �

n (t; znt ) dBt;

zn0 = �:

(4.27)
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Then xnt = znt +
R t
0Gsd�s solves the SDE (4:16) with data (b

n; �n) :

Note that, b; b
n
; �j ; and �j;n (j = 1; :::; d) are measurable bounded functions and

Lipschitz continuous with constantM in x; we conclude that the generalized derivatives (in

the distribution sense) bx; b
n
x; �

j
x; and �

j;n
x (j = 1; :::; d) are well de�ned:

Lemma 4.7. We have

lim
n!+1

E

"
sup
0�t�T

jxnt � x̂tj
2

#
= 0 (4.28)

lim
n!+1

E

"
sup
t�s�T

j�n (s; t)� � (s; t)j2
#
= 0 (4.29)

lim
n!+1

E

"
sup
0�t�T

jpnt � ptj
2

#
= 0 (4.30)

lim
n!+1

E [jHn (t; xnt ; u
n
t ; p

n
t )�H (t; x̂t; ût; pt)j] = 0: (4.31)

Where �t, pt andH are determined by the fundamental solution (4.12), the adjoint

process (4.8) and the associated Hamiltonian (4.11), corresponding to the optimal state

process x̂t: �nt ; p
n
t and H

n are determined by the fundamental solution (4.19), the adjoint

process (4.20) and the associated Hamiltonian (4.23), corresponding to the approximating

sequence xnt ; given by (4.18).

In what follows, C represents a generic constant, which can be di¤erent from line

to line.

Proof. By squaring and take expectation, we get

E
h
jxnt � x̂tj

2
i
� C

�
An1 +A

n
2 +A

n
3 +M:

�
d2

�
�n; �̂

��2�
;



106

where M is a positive constant, and

An1 = E

�
tR
0

jbn (s; xns ; uns )� bn (s; xns ; ûs)j
2 �fun 6=ûg (s) ds

�
;

An2 = E

�
tR
0

jbn (s; xns ; ûs)� bn (s; x̂s; ûs)j
2 + j�n (s; xns )� �n (s; x̂s)j

2 ds

�
;

An3 = E

�
tR
0

jbn (s; x̂s; ûs)� b (s; x̂s; ûs)j2 + j�n (s; x̂s)� � (s; x̂s)j2 ds
�
:

By using the boundness of the coe¢ cient bn and the fact that d1 (un; û) ! 0 as

n! +1; we have lim
n!1

An1 = 0: Since b
n and �n are Lipschitz in the state variable, then

An2 � CE

�
tR
0

jxns � x̂sj
2 ds

�
:

Finally, we conclude from the Lemma 3:2 that lim
n!+1

An3 = 0: Then by using

Burkholder-Davis-Gundy inequality and the Gronwall Lemma, we obtain (4:28) :

Again, using standard arguments based on Burkholder-Davis-Gundy, Schwartz

inequalities and the Gronwall Lemma, we easily check that

E

"
sup
t�s�T

j�n (s; t)� � (s; t)j2
#
�

CE

"
sup
t�s�T

j�n (s; t)j4
# 1
2

8<:E
"
TR
0

jbnx (t; xnt ; unt )� bx (t; x̂t; ût)j
4 dt

# 1
2

+
P

1�j�d
E

"
TR
0

���j;nx (t; xnt )� �jx (t; x̂t)
��4 dt# 12

9=; ;

since the coe¢ cients in the linear stochastic di¤erential equation (4.19) are bounded it is

easy to see that E

"
sup
s�t�T

j�n (s; t)j4
#
< +1: To obtain the desired result it is su¢ cient to

prove that

lim
n!+1

E

"
TR
0

jbnx (t; xnt ; unt )� bx (t; x̂t; ût)j
4 dt

#
= 0;

lim
n!+1

E

"
TR
0

���j;nx (t; xnt )� �jx (t; x̂t)
��4 dt# = 0; for j = 1; ::; d;
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we have, E

"
TR
0

jbnx (t; xnt ; unt )� bx (t; x̂t; ût)j
4 dt

#
� C (In1 + I

n
2 ) ; where

In1 = E

"
TR
0

jbnx (t; xnt ; unt )� bnx (t; xnt ; ût)j
4 �fun 6=ûg (t) dt

#
;

In2 = E

"
TR
0

jbnx (t; xnt ; ût)� bnx (t; x̂t; ût)j
4 dt

#
:

First, in view of the boundness of the derivative bnx by the Lipschitz constant and

the fact that d1 (un; û)! 0 as n! +1; we obtain lim
n!+1

In1 = 0: Next, Let k � 1 be a �xed

integer, we then get

lim
n!+1

In2 � limn C: fJ
n
1 + J

n
2 + J

n
3 g ;

where

Jn1 = E

"
TR
0

���bnx (t; xnt ; ût)� bkx (t; xnt ; ût)���4 dt
#
;

Jn2 = E

"
TR
0

���bkx (t; xnt ; ût)� bkx (t; x̂t; ût)���4 dt
#
;

Jn3 = E

"
TR
0

���bkx (t; x̂t; ût)� bx (t; x̂t; ût)���4 dt
#
:

Now, let ẑ (resp zn) denotes the unique solution of the SDE (4.26) (resp (4.27))

corresponding to
�
û; �̂
�
(resp (un; �n)); then it holds that

Jn1 = E

"
TR
0

���bnx (t; znt ; ût)� bkx (t; znt ; ût)���4 dt
#
;

and

Jn3 = E

"
TR
0

���bkx (t; ẑt; ût)� bx (t; ẑt; ût)���4 dt
#
;

The following argument is taken as in [83] page 87; let w (t; x) be a continuous
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function such that w (t; x) = 0 if t2 + x2 � 1, and w (0; 0) = 1: Then for M > 0, we have

lim
n
Jn1 � CE

�Z T

0

�
1� w

�
t

M
;
ẑt
M

��
dt

�
+Clim

n
E

�Z T

0
w

�
t

M
;
ẑt
M

�
:
���bnx (t; znt ; ût)� bkx (t; znt ; ût)���4 dt� :

Therefore without loss of generality, we may suppose that for all n 2 N�; the

functions bx; �x b
n
x; and �

n
x have compact support in [0; T ] � B (0;M) : Since the di¤usion

matrix �n satis�es the non degeneracy condition with the same constant as �; then by

applying Krylov�s inequality, we obtain

lim
n
Jn1 � CE

�Z T

0

�
1� w

�
t

M
;
ẑt
M

��
dt

�
+Clim

n

 sup
a2A1

���bnx (t; x; a)� bkx (t; x; a)���4
d+1;M

:

Since bnx converges to bx dx-a:e:; it is simple to see that b
n
x converges to bx dx-a:e:

and

lim
n

 sup
a2A1

���bnx (t; x; a)� bkx (t; x; a)���4
d+1;M

= 0:

Next, let M goes to +1; then from the properties of the function w (t; x) we have

lim
n
Jn1 = 0: Istimating Jn3 similarily, it holds that limn

Jn3 = 0: We use the continuity of

bkx in x. From (4:28) ; and by using the Dominated convergence theorem we deduce that

lim
n
Jn2 = 0: Hence lim

n!+1
In1 = 0: Using the same technique, we prove that

lim
n!+1

E

"
TR
0

���j;nx (t; xnt )� �jx (t; x̂t)
��4 dt# = 0; for j = 1; :::; d:

Now, let us prove that lim
n!+1

E
h
sup0�t�T jpnt � ptj

2
i
= 0: Clearly,

E
h
jpnt � ptj

2
i
� C (�n1 + �

n
2 ) ; (4.32)
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where

�n1 = E

24 TZ
t

���n;T (s; t) :fnx (s; xns ; uns )� �T (s; t) :fx (s; x̂s; ûs)��2 ds
35 ;

and

�n2 = E
h���n;T (T; t) :gnx (xnT )� �T (T; t) :gx (x̂T )��2i

Since fx is bounded by the Lipschitz constant M , and applying the Schwartz

inequality, we get

�n1 � CE

"
sup
t�s�T

���n;T (s; t)��4# 12 :E �Z T

0
jfnx (s; xns ; uns )� fx (s; x̂s; ûs)j

4 ds

� 1
2

+CM:E

"
sup
t�s�T

���n;T (s; t)� �T (s; t)��2# :
Hence, by the continuity and the boundness of derivatives fnx ; fx; relations (4:28) ;

(4:29) and the fact that d1 (un; û)! 0 as n!1; together with the Krylov�s inequality and

the Dominated convergence theorem, for the term involving fnx (s; x
n
s ; u

n
s ) � fx (s; x̂s; ûs) ;

we get by sending n to in�nity lim
n!+1

�n1 = 0:

On the other hand, since gx is bounded by the Lipschitz constant, and applying

the Schwartz inequality we get

�n2 � C
n
E
h���n;T (T; t)��4io 1

2
:
n
E
h
jgnx (xnT )� gx (x̂T )j

4
io 1

2

+CM:E
h���n;T (T; t)� �T (T; t)��2i ;

Since; gnx and gx are bounded by the Lipschitz constant and g
n
x converges to gx,

we conclude by (4:28) and the dominated convergence theorem that

lim
n!+1

E
h
jgnx (xnT )� gx (x̂T )j

4
i
= 0:

From (4:32) ; then by using Burkholder-Davis-Gundy inequality, we obtain (4:30) :
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The Schwartz inequality, gives

E [jHn (t; xnt ; u
n
t ; p

n
t )�H (t; x̂t; ût; pt)j] �

n
E jpnt � ptj

2
o 1
2
n
E jbn (t; xnt ; unt )j

2
o 1
2

+
n
E jbn (t; xnt ; unt )� b (t; x̂t; ût)j

2
o 1
2
n
E jptj2

o 1
2
+ E jfn (t; xnt ; unt )� f (t; x̂t; ût)j :

Lemma 4.5 and (4.30) imply that the �rst expression in the right hand side con-

verges to 0 as n! +1:

Next,

E jbn (t; xnt ; unt )� b (t; x̂t; ût)j
2 � C (�n1 + �

n
2 + �

n
3 ) ;

where

�n1 = E
h
jbn (t; xnt ; unt )� bn (t; xnt ; ût)j

2 �fun 6=ûg (t)
i
;

�n2 = E
h
jbn (t; xnt ; ût)� bn (t; x̂t; ût)j

2
i
;

�n3 = E
h
jbn (t; x̂t; ût)� b (t; x̂t; ût)j2

i
:

The boundness of bn and the fact that d1 (un; û) !
n!1

0; guarantee the convergence

of �n1 to 0 as n ! +1: By virtue of (3:21) ; and the dominated convergence theorem we

get, lim
n!+1

�n2 = 0: In view of the Lemma 3.2, we have lim
n!+1

�n3 = 0:

The term E jfn (t; xnt ; unt )� f (t; x̂t; ût)j can be treated by the same technique.

Proof of Theorem 3.1. Let n goes to +1; then from Proposition 3.7 and Lemma

3.8, we get

E [H (t; x̂t; v; pt)�H (t; x̂t; ût; pt)] � 0; dt-a.e., P -a.s:;

E

TZ
0

(kt +G
�
t pt) d

�
� � �̂

�
t
� 0;

for every A1-valued Ft-measurable random variable v; and � 2 U2:
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Let a 2 A1; then for every At 2 Ft

E
�
(H (t; x̂t; a; pt)�H (t; x̂t; ût; pt))�At

�
� 0; dt-a.e., P -a.s:;

which implies that

E [(H (t; x̂t; a; pt)�H (t; x̂t; ût; pt))�Ft] � 0

Since H (t; x̂t; a; pt) � H (t; x̂t; ût; pt) is Ft-measurable, then the �rst variational

inequality without expectation follows immediately.

4.3 The Degenerate case

In this section we drop the uniform ellipticity condition on the di¤usion matrix.

It is clear that the method used earlier will no longer be valid. Now, the idea is based on

a result by Bouleau and Hirsch [8] on absolute continuity of probability measures, and the

di¤erentiability of the solution of an SDE with Lipschitz coe¢ cients with respect to initial

data in the sense of distributions on an extension of the initial probability space.

Let e
 = Rd�
; and eF the Borel �-�eld over e
 and eP = hdx
P: Let eBt (x;w) =
Bt (w) and eFt the natural �ltration of eBt augmented with eP -negligible sets of eF : It is clear
that

�e
; eF ;� eFt�
t�0

; eP ; eBt� is a Brownian motion. We introduce the process ~xt de�ned on
the enlarged space

�e
; eF ;� eFt�
t�0

; eP ; eBt� solution of the stochastic di¤erential equation
8>><>>:

d~xt = b (t; ~xt; ~ut) dt+ � (t; ~xt) d eBt +Gtd~�t; for t 2 [0; T ] ;
~x0 = �;

(4.33)

associated to the control
�
~ut; ~�t

�
(x;w) = (ut; �t) (w) : Since the coe¢ cients are Lipschitz

continuous and bounded, equations (4:1) has a unique eFt-adapted solution. Equations (2:1) ;
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and (4:1) are almost the same except that uniqueness of the solution of (4:1) is slightly

weaker, one can easily prove that the uniqueness implies that for each t � 0; ~xt = xt;

eP -a.s:
4.3.1 The main result

The main result of this section is stated in the following Theorem.

Theorem 4.8. (Stochastic maximum principle) Let (û; �̂) be an optimal control

for the controlled system (2.1), (2.2) and let x̂ be the corresponding optimal trajectory.

Then there exists a measurable Ft-adapted process pt satisfying

pt := eE
24 TZ
t

�� (s; t) :fx (s; x̂s; ûs) ds+�
� (T; t) :gx (x̂T )� eFt

35 ; (4.34)

such that for all a 2 A1 and � 2 U2

0 � H (t; x̂t; a; pt)�H (t; x̂t; ût; pt) dt-a.e; eP -a.s:; (4.35)

and

0 � eE Z T

0
(kt +G

�
t pt) d

�
� � �̂

�
t

(4.36)

where the Hamiltonian H is de�ned by

H (t; x; u; p) = p:b (t; x; u) + f (t; x; u) ; (4.37)

and � (s; t) ; (s � t) is the fundamental solution of the linear equation8>>><>>>:
d�s = bx (s; x̂s; ûs) :� (s; t) ds+

P
1�j�d

�jx (s; x̂s) :� (s; t) d eBjs ;
� (t; t) = Id:

(4.38)

Theorem 7 Here � denotes the transpose:
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4.3.2 Proof of the main result

Let ~zt = ~xt �
R t
0 Gsd�s the unique solution of the SDE8>><>>:

d~zt = b (t; ~zt; ut) dt+ � (t; ~zt) d eBt;
~z0 = �:

(4.39)

on the enlarged space
�e
; eF ;� eFt�

t�0
; eP ; eBt�, where b and � are de�ned in sebsection 3:2:

Theorem 4.9. (The Bouleau-Hirsch �ow property) For eP -almost every w
(1) For all t � 0; ~zt is in Dd.

(2) There exists a eFt-adapted GLd (R)-valued continuous process �e�t�
t�0

such

that for every t � 0

@

@x
(z�t (w)) = e�t (�;w) dx-a:e:;

where
@

@x
denotes the derivative in the ditribution sense.

(3) The distributional derivative e�t is the unique fundamental solution of the linear
stochastic di¤erential equation8>>><>>>:

de� (s; t) = bx (s; ~zs; ~us) :e� (s; t) ds+ P
1�j�d

�jx (s; ~zs) :e� (s; t) d eBjs ; s � t;

e� (t; t) = Id;

(4.40)

where bx and �
j
x are versions of the almost everywhere derivatives of b and �j :

(4) The image measure of eP by the map ~zt is absolutely continuous with respect

to the Lebesgue measure.
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The maximum principle for a Family of perturbed control problems

Now, consider the process yt; t � 0; solution of the system valued in Rd, de�ned

on the enlarged probability space
�e
; eF ;� eFt�

t�0
; eP ; eBt� by

8>><>>:
dyt = bn (t; yt; ut) dt+ �

n (t; yt) d eBt +Gtd�t;
y0 = �;

(4.41)

and de�ne the cost functional

Jn (ut) = eE
24 TZ
0

fn (t; yt; ut) dt+

TZ
0

ktd�t + g
n (yT )

35 ; (4.42)

where bn; �n; fn and gn be the regularized functions of b; �; f and g:

The following result gives the estimates which relate the original control problem

with the perturbed ones.

Lemma 4.10. Let (xt) and (yt) the solutions of (2:1) and (4:9) respectively,

corresponding to an admissible control (u; �) : Then

(1) eE " sup
0�t�T

jxt � ytj2
#
�M1: (�n)

2 :

(2) jJn (u; �)� J (u; �)j �M2:�n; where �n =
C

n
:

Where M1 and M2 are positive constants.

Let
�
û; �̂
�
be an optimal control for the initial problem (2:1) and (2:2) : Note

that
�
û; �̂
�
is not necessarily optimal for the perturbed control problem (4:9) and (4:10) ;

however, according to Lemma 4:3, there exists (�n) � (2M2:�n) a sequence of positive real

numbers converging to 0, such that

Jn(û; �̂) � inf
(�;�)2U

Jn (�; �) + �n:
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The functional Jn de�ned by (4:10) being continuous on U = U1�U2 with respect

to the topology induced by the metric d0 ((u; �) ; (�; �)) = d01 (u; v) + d
0
2 (�; �) ; for all (u; �) ;

(�; �) 2 U; where

d01 (u; v) = eP 
 dtn(w; t) 2 e
� [0; T ] ; v (w; t) 6= u (w; t)
o
;

d02 (�; �) =

 eE " sup
0�t�T

j�t � �tj2
#! 1

2

;

Then by applying Ekeland principle to Jn for
�
û; �̂
�
with �n = �

2
3
n ; there exists an

admissible control (un; �n) such that

d0
�
(û; �̂); (un; �n)

�
� �

2
3
n ;

Jn� (u
n; �n) � Jn� (�; �) ; for any (�; �) 2 U;

and (un; �n) is an optimal control for the perturbed system (4.9) with a new cost function

Jn� (�; �) = Jn (�; �) + �
1
3
n :d

0 ((�; �) ; (un; �n)) :

Denote by xn the unique solution of (4:9) corresponding to (un; �n)8>><>>:
dxnt = bn (t; xnt ; u

n
t ) dt+ �

n (t; xnt ) d eBt +Gtd�nt ;
xn0 = �;

(4.43)

The controlled process znt = xnt � Gtd�
n
t is then de�ned as the solution to the

stochastic di¤erential equation8>><>>:
dznt = b

n
(t; znt ; u

n
t ) dt+ �

n (t; znt ) d
eBt;

zn0 = �:

(4.44)

where b
n
and �n are de�ned in sebsection 3:2: Let �n (s; t) (s � t) ; be the fundamental
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solution of the linear equation8>>><>>>:
d�n (s; t) = bnx (s; x

n
s ; u

n
s ) :�

n (s; t) ds+
P

1�j�d
�j;nx (s; xns ) :�

n (s; t) d eBjs ;
�n (t; t) = Id:

(4.45)

Proposition 4.11. For each integer n, there exists an admissible control (un; �n)

and a
� eFt�-adapted process pnt given by

pnt =
eE
24 TZ
t

�n;� (s; t) :fnx (s; x
n
s ; u

n
s ) ds+�

n;� (T; t) :gnx (x
n
T )� eFt

35 ; (4.46)

and a Lebesgue null set N such that for t 2 N c

eE [Hn (t; xnt ; �; p
n
t )�Hn (t; xnt ; u

n
t ; p

n
t )] � ��

1
3
n :M1; (4.47)

and

eE TZ
t

(kt +G
�
t p
n
t ) d (� � �n)t � ��

1
3
n :M2; (4.48)

for all � 2 A1; and � 2 U2; where the Hamiltonian Hn is de�ned by

Hn (t; x; u; p) = p:bn (t; x; u) + fn (t; x; u) : (4.49)

Here � denotes the transpose:

By the same method as in the sebsection 3:2, we are able to derive the proof.

Lemma 4.12. We have

lim
n!+1

eE " sup
0�t�T

jxnt � x̂tj
2

#
= 0; (4.50)

lim
n!+1

eE " sup
s�t�T

j�n (s; t)� � (s; t)j2
#
= 0; (4.51)

lim
n!+1

eE " sup
0�t�T

jpnt � ptj
2

#
= 0; (4.52)

lim
n!+1

eE [jHn (t; xnt ; u
n
t ; p

n
t )�H (t; x̂t; ût; pt)j] = 0: (4.53)
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Where �t; pt and H are determined by (4.6), (4.2), and (4.5), corresponding

to the optimal solution x̂t: �nt ; p
n
t and H

n are determined by (4.13), (4.14) and (4.17),

corresponding to the approximating sequence xnt ; given by (4.11):

In the sequel, we denote by C a positive constant which may vary from line to line.

Proof. The limit (4:18) is proved by the same fashion as the limit (3:21) :

In view of the Burkholder, Schwartz inequalities and the Gronwall Lemma, we

obtain

eE " sup
t�s�T

j�n (s; t)� � (s; t)j2
#
�

C eE " sup
t�s�T

j�n (s; t)j4
# 1
2

8<:eE
"
TR
0

jbnx (t; xnt ; ût)� bx (t; x̂t; ût)j
4 dt

# 1
2

+
P

1�j�d
eE "TR

0

���j;nx (t; xnt )� �jx (t; x̂t)
��4 dt# 12

9=; ;

since the coe¢ cients in the linear stochastic di¤erential equation (4.13) are bounded, it is

easy to see that eE " sup
t�s�T

j�n (s; t)j4
#
< +1: To derive (4.19), it is su¢ cient to prove the

following two assertions

eE "TR
0

jbnx (t; xnt ; ût)� bx (t; x̂t; ût)j
4 dt

#
! 0 as n! +1;

and

eE "TR
0

���j;nx (t; xnt )� �jx (t; x̂t)
��4 dt#! 0 as n! +1; for j=1,2,.....,d.

Let us prove the �rst Limit. We have

eE "TR
0

jbnx (t; xnt ; unt )� bx (t; x̂t; ût)j
4 dt

#
� C (In1 + I

n
2 + I

n
3 ) ;
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where

In1 = eE "TR
0

jbnx (t; xnt ; unt )� bnx (t; xnt ; ût)j
4 �fun 6=ûg (t) dt

#
;

In2 = eE "TR
0

jbnx (t; xnt ; ût)� bx (t; xnt ; ût)j
4 dt

#
;

In3 = eE "TR
0

jbx (t; xnt ; ût)� bx (t; x̂t; ût)j
4 dt

#
;

In view of the boundness of the derivative bnx by the Lipschitz constant and the

fact that d01 (u
n; û)! 0 as n! +1; we obtain lim

n!+1
In1 = 0:

Indeed, we have

In2 � eE "TR
0

sup
a2A1

���bnx (t; znt ; a)� bx (t; znt ; a)���4 dt
#
;

=
TR
0

R
Rd
sup
a2A1

���bnx (t; y; a)� bx (t; y; a)���4 �nt (y) dydt;
where znt denotes the unique solution of the SDE (3:20) ; corresponding to (u

n; �n), and

�nt (y) its density with respect to the Lebesgue measure. Let us show

lim
n!+1

Z
Rd

sup
a2A1

���bnx (t; y; a)� bx (t; y; a)���4 �nt (y) dydt = 0:
For each p > 0; eE " sup

0�t�T
jznt j

p

#
< +1: Thus, lim

R!1
eP  sup

0�t�T
jznt j > R

!
= 0; then

it is enough to show that for every R > 0;

lim
n!+1

Z
B(0;R)

sup
a2A1

���bnx (t; y; a)� bx (t; y; a)���4 �nt (y) dy = 0:
According to Lemma 3.2, it is easy to see that

sup
a2A1

���bnx (t; y; a)� bx (t; y; a)���4
= sup

a2A1

�����bnx
 
t; y +

TR
0

Gtd�
n
t ; a

!
� bx

 
t; y +

TR
0

Gtd�
n
t ; a

!�����
4

! 0 dy-a:e;
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at least for a subsequence. Then by Egorov�s Theorem, for every � > 0; there exists a mea-

surable set F with � (F ) < �; such that sup
a2A1

���bnx (t; y; a)� bx (t; y; a)��� converges uniformly to
0 on the set F c: Note that, since the Lebesgue measure is regular, F may be chosen closed.

This implies that

lim
n!+1

Z
F c

sup
a2A1

���bnx (t; y; a)� bx (t; y; a)���4 �nt (y) dy
� lim

n!+1

 
sup
y2F c

sup
a2A1

���bnx (t; y; a)� bx (t; y; a)���4
!
= 0:

Now, by using the boundness of the derivatives b
n
x; bx we have

Z
F

sup
a2A1

���bnx (t; y; a)� bx (t; y; a)���4 �nt (y) dy
= eE � sup

a2A1

���bnx (t; ẑnt ; a)� bx (t; ẑnt ; a)���4 �fẑnt 2Fg
�

� 2M4 eP (ẑnt 2 F ) :
In view of the relation (4:18) ; it is easy to see that znt = xnt �

R t
0Gsd�

n
s converges

to ẑt = x̂t �
R t
0Gsd�̂s in probability, then in distribution. Applying the Portmanteau-

Alexandrov Theorem, we obtain

lim
n

Z
F

sup
a2A1

���bnx (t; y; a)� bx (t; y; a)���4 �nt (y) dy � 2M4 lim sup eP (znt 2 F )
� 2M4 eP (ẑt 2 F )
= 2M4

Z
F

�t (y) dy < ":

where �t (y) denotes the density of ẑt with respect to Lebesgue measure.
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Now, since Z
B(0;R)

sup
a2A1

���bnx (t; y; a)� bx (t; y; a)���4 �nt (y) dy
=

Z
F

sup
a2A1

���bnx (t; y; a)� bx (t; y; a)���4 �nt (y) dy
+

Z
F c

sup
a2A1

���bnx (t; y; a)� bx (t; y; a)���4 �nt (y) dy;
we get lim

n!+1
In2 = 0:

Let k � 0 be a �xed integer, then it holds that In3 � C
�
Jk1 + J

k
2 + J

k
3

�
; where

Jk1 = eE "TR
0

���bx (t; xnt ; ût)� bkx (t; xnt ; ût)���4 dt
#
;

Jk2 =
eE "TR

0

���bkx (t; xnt ; ût)� bkx (t; x̂t; ût)���4 dt
#
;

Jk3 = eE "TR
0

���bkx (t; x̂t; ût)� bx (t; x̂t; ût)���4 dt
#
:

Applying the same arguments used in the �rst limit (Egorov and Portmanteau-

Alexandrov Theorems), we obtain that lim
n!+1

Jk1 = 0: We use the continuity of bkx in x

and the convergence in probability of xnT to x̂T to deduce that b
k
x (t; x

n
t ; ût) converges to

bkx (t; x̂t; ût) in probability as n ! +1; and to infer by using the Dominated convergence

Theorem that lim
n!+1

Jk2 = 0:

Jk3 = eE "TR
0

sup
a2A1

���bkx (t; ẑt; a)� bx (t; ẑt; a)���4 dt
#

=

TZ
0

Z
Rd

sup
a2A1

���bkx (t; y; a)� bx (t; y; a)���4 �t (y) dydt
b
k
x; bx are bounded, by using the convergence of b

k
x to bx; and by using the Dominated

convergence Theorem, we get lim
n!+1

Jk3 = 0:

Proof of Theorem 4.1. Use the Corollary 4.5 and the Lamma 4.6.
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Chapter 5

On the relationship between the

SMP and DPP in singular optimal

controls and its applications

This chapter investigates the relationship between the maximum principle and

dynamic programming for stochastic optimal control problems where the state Xt at time

t of the system is governed by a stochastic di¤erential equation with nonlinear coe¢ cients

and a nonconvex state domain, allowing both regular control and singular control. We prove

that under appropriate di¤erentiability assumptions on the coe¢ cients of the state equation

and the gain functional , the solution of the adjoint equation of such problems coincides

with the derivatives of the value function. We study the case where the value function is

su¢ ciently smooth, generalizing the classical cases. For this situation a veri�cation theorem

is proved and an example is given.
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Lemma 5.1. (The su¢ cients conditions of optimality) Let (u�; ��) be an admissi-

ble control, we denote X� the associated controlled state process. Suppose there exists a so-

lution (p; q) to the correspondingBSDE (2:11) : If we assume that (x; u)! H (t; x; u; pt; qt) ;

and x! g (x) are concave functions, for all t 2 [0; T ] for all v 2 A1; and � 2 U2

H (t;X�
t ; u

�
t ; pt; qt) = sup

v2A1
H (t;X�

t ; v; pt; qt) ; dt-a.e., P-a.s., (5.1)

E

TZ
0

�
k (t) +GT (t) pt

	
d (� � ��)t � 0: (5.2)

then (u�; ��) is an optimal control:

Let (u; �) be an arbitrary admissible pair, and consider

J (u�; ��)� J (u; �) = E

"
TR
0

f (t;X�
t ; u

�
t )� f (t;Xt; ut) dt

#

+E

"
TR
0

k (t) d (�� � �) (t)
#
+ E [g (X�

T )� g (XT )] : (5.3)

Since g is concave, we get

E [g (X�
T )� g (XT )] � E

h
(X�

T �XT )
T rg (X�

T )
i

= E
h
(X�

T �XT )
T pT

i
;

= E

"
TR
0

(X�
t �Xt)

T dpt

#
+ E

"
TR
0

ptd (X
�
t �Xt)

#

+E

"
TR
0

tr
n
(� (t;X�

t )� � (t;Xt))
T qt

o
dt

#
:

With

E

"
TR
0

(X�
t �Xt)

T dpt

#
= E

"
TR
0

(X�
t �Xt)

T (�rHx (t;X�
t ; u

�
t ; pt; qt)) dt

#

+E

"
TR
0

(X�
t �Xt)

T qtdBt

#
;
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and

E

"
TR
0

ptd (X
�
t �Xt)

#
= E

"
TR
0

pt (b (t;X
�
t ; u

�
t )� b (t;Xt; ut))

T dt

#

+E

"
TR
0

pt (� (t;X
�
t )� � (t;Xt))

T dBt

#

+E

"
TR
0

GT (t) ptd (� � ��)t

#
:

On the other hand, the process

tZ
0

n
ps (� (s;X

�
s )� � (s;Xs))

T + (X�
s �Xs)

T qs

o
dBs

is a continuous local martingale for all 0 < t � T; According to (2:9) ; and the fact that

(p; q) 2 L2 ([0; T ] ;Rn) � L2
�
[0; T ] ;Rn�d

�
; together with the Burkholder-Davis-Gundy in-

equality, we deduce that

E

24 tZ
0

sup
0�r�s

���pr (� (r;X�
r )� � (r;Xr))

T + (X�
r �Xr)

T qr

��� ds
35 <1:

Thus, the process

tZ
0

n
ps (� (s;X

�
s )� � (s;Xs))

T + (X�
s �Xs)

T qs

o
dBs

inded a martingale have zero expectation. By the concavity of the Hamiltonian H, we get

E [g (X�
T )� g (XT )] � �E

"
TR
0

(H (t;X�
t ; u

�
t ; pt; qt)�H (t;Xt; ut; pt; qt)) dt

#

+E

"
TR
0

pt (b (t;X
�
t ; u

�
t )� b (t;Xt; ut))

T dt

#

+E

"
TR
0

tr
n
(� (t;X�

t )� � (t;Xt))
T qt

o
dt

#

+E

"
TR
0

GT (t) ptd (� � ��)t

#
:
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By the de�nition of the Hamiltonian H and (2:15) ; we obtain

J (u�; ��)� J (u; �) � 0;

then (u�; ��) is an optimal control for the problem (2:8).

5.1 Relation to dynamic programming

The other major approach for studying singular stochastic control problems is the

Bellman dynamic programming principle, a result about this approach can be found in [17] ;

whoe considered the n-dimensional cas. By the compacti�cation method, it was shown that,

the value function is continuous and is the unique viscosity solution of the HJB variational

inequality (3:2) : An advantage of this approach is that it does not require any regularity of

the value function, and thus needs only very mild hypothesis on the data. Let Xt;x
s be the

solution of the controlled SDE (2:1) for s � t; with initial value Xt = x; and we de�ne the

gain function

J (u; �) = E

24 �Z
t

f (s;Xs; us) ds+

�Z
t

k (s) d� (s) + g (X� )

35 ; (5.4)

We have to impose di¤erentiabilty conditions on the coe¢ cients b; �; f; and g; as

in section 2. Now, since our objective is to maximize this gain function, the value function

of our singular control problem is de�ned as

V (t; x) = sup
(u;�)2U

J (u; �) : (5.5)

for an initial state (t; x) ; we say that (u�; ��) is an optimal control if V (t; x) = J (u�; ��) :
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If we do not apply any singular control, then the in�nitesimal generator Au; as-

sociated with (2:1) ; acting on functions '; coincides on C2b (R
n;R) with partial di¤erential

operator Au given by

Au (t; x) =
nX
i=1

bi (t; x; u)
@'

@xi
(t; x) +

1

2

nX
i;j=1

aij (t; x)
@2'

@xi@xj
(t; x) ;

where aij (t; x) =
�
��T

�
ij
(t; x) denotes the generic term of the symmetric matrix ��T (t; x) :

The variational inequality associated to the singular control problem is

max

�
sup
u
H1
�
t; x;W; @tW;DxW;D

2
xW;u

�
;H2 (t; x;DxW;u) ; l = 1; ::;m

�
= 0; (5.6)

for (t; x) 2 S; with H1; and H2 are given by

H1
�
t; x;W; @tW;DxW;D

2
xW;u

�
=
@W

@t
(t; x) +AuW (t; x) + f (t; x; u) ;

H2 (t; x;DxW;u) =

nX
i=1

@W

@xi
(t; x)Gil (t) + kl (t) :

DxW and D2
xW represent respectively, the gradient and the Hessian matrix of W . The

bondary data satisfying

W (� ; x) = g (x) ; (� ; x) 2 @S: (5.7)

We start with the de�nition of classical solutions of the variational inequality (3:2) :

De�nition 5.2. Let us consider a function W 2 C1;2 (S) \ C
�
S
�
, and de�ne

C (W ) =

(
(t; x) 2 S :

nX
i=1

mX
l=1

�
@W

@xi
(t; x)Gil (t) + kl (t)

�
< 0

)

We say that W is a classical solution of (3:2) if

@W

@t
(t; x) + sup

u2U
fAuW (t; x) + f (t; x; u)g = 0;8 (t; x) 2 C (W ) ; (5.8)

nX
i=1

@W

@xi
(t; x)Gil (t) + kl (t) � 0; for all (t; x) 2 S; l = 1; ::;m; (5.9)

@W

@t
(t; x) +AuW (t; x) + f (t; x; u) � 0; for every (t; x; u) 2 S � U: (5.10)
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The following veri�cation Theorem is very similar to Theorem 6.1. in [8] :We drop

here the convexity condition for the state domain, and we show that the classical solution to

the variational inequality (3:2) with the boundary condition (3:3) coincides with the value

function. To this end we �rst show that W (t; x) majorizes the gain functional J (u; �) for

any control (u; �) ; and if (u�; ��) is an optimal control then W (t; x) = J (u�; ��) : Let us

denote for l = 1; ::;m,

Cl =

(
(t; x) 2 S :

nX
i=1

@W

@xi
(t; x)Gil (t) + kl (t) < 0

)
; (5.11)

Dl =

(
(t; x) 2 S :

nX
i=1

@W

@xi
(t; x)Gil (t) + kl (t) = 0

)
: (5.12)

Theorem 5.3. LetW be a classical solution of (3:2) ; such that for some constants

k � 1; M 2 (0;1) ; jW (t; x)j �M
�
1 + jxjk

�
: Then, for all (t; x) 2 S; and (u; �) 2 U

W (t; x) � J (u; �) :

Furthermore, if there exists (u�; ��) 2 A such that with probability 1

(t;X�
t ) 2 C (W ) ; Lebesgue almost every t � T; (5.13)

u�t 2 argmax
u2A1

fAuW (t;X�
t ) + f (t;X

�
t ; u)g ; (5.14)

mX
l=1

(
nX
i=1

@W

@xi
(t;X�

t )Gil (t) + kl (t)

)
d��l (t) = 0; (5.15)

W
�
t;X�

t+

�
�W (t;X�

t ) = �
mX
l=1

kl (t)��
�
l (t) ; (5.16)

For all jumping times t of �� (t) :; then

W (t; x) = J (u�; ��) :
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Let us de�ne 8 (u; �) 2 U; (t; x) 2 S; and R > 0

�R = �
(u;�)
R = � fR f inf

�
s > t : sup

s
jXsj > R

�
;

lim
R!1

�R = � : Furthermore,
�RR
t

nP
i=1

@W

@xi
(s;Xs)� (s;Xs) dBs is an Itô integral with �nite

quadratic variation, so its expected value is zero. Thus, applying Itô formula and tak-

ing expectation, we get

E [W (�R; X�R)] = W (t; x) + E

24 �RZ
t

�
@W

@s
(s;Xs) +A

uW (s;Xs)

�
ds

35
+E

24 �RZ
t

mX
l=1

nX
i=1

�
@W

@xi
(s;Xs)Gil (s)

�
d�cl (s)

35
+E

24 X
t�s��R

fW (s;Xs+)�W (s;Xs)g

35 :
By (3:6) ; and (3:7) we get

W (t; x) � E

24 �RZ
t

f (s;Xs; us) +

�RZ
t

k (s) d�c (s)

35
�E

24 X
t�s��R

fW (s;Xs+)�W (s;Xs)g

35+ E [W (�R; X�R)] ;

by the mean value theorem and (3:6) ; we have

W (s;Xs+)�W (s;Xs) =

mX
l=1

nX
i=1

@W

@xi
(s; x (s))Gil (s)��l (s) � �k (s)�� (s) ;

where x (s) is some point on the straight line between Xs and Xs+; hence

W (t; x) � E

24 �RZ
t

f (s;Xs; us) +

�RZ
t

k (s) d� (s) +W (�R; X�R)

35 ;
from the dominated convergence Theorem, we so that

E

24 �RZ
t

f (s;Xs; us) +

�RZ
t

k (s) d� (s)

35 !
R!1

E

24 �Z
t

f (s;Xs; us) +

�Z
t

k (s) d� (s)

35
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by the left continuity of X and the continuity of W , we get

lim
R!1

W (�R; X�R) =W (� ;X� ) = g (X� ) ;

W (�R; X�R) is uniformly integrable and the dominated convergence Theorem implies

lim
R!1

E [W (�R; X�R)] = E [g (X� )] ;

hence W (t; x) � J (u; �) :

Now, apply the above argument to (u�; ��) 2 U; with ��R = �
(u�;��)
R : Hence if

(3:10)� (3:13) hold, then by (3:4) and (3:5) ; we get

W (t; x) = E

264 ��RZ
t

f (s;X�
s ; u

�
s) +

��RZ
t

k (s) d�� (s) +W
�
��R; X

�
��R

�375 :
Finally, using the same limiting procedure as above, we conclude that

W (t; x) = J (u�; ��) :

The following result is a generalization to the classical case, [see; e.g., Theorem

4.1.in Chapter 5 of [24]]; and a generalization to linear dynamics, convex cost criterion and

convex state constraints of Theorem 6:2: in [9] : Comparing with the stochastic maximum

principle, one would expect the solution (p; q) of the BSDE (2:11) to correspond to the

derivatives of the classical solution of (3:2)� (3:3) :

Theorem 5.4. LetW be a classical solution of (3:2), with the boundary condition

(3:3) ; suppose that W 2 C1;3 (S) ; with all derivatives are continuous on S; and there exists

(u�; ��) 2 U such that the conditions (3:10)� (3:13) are satis�ed: Then the solution of the

BSDE (2:11) is given by

(pt; qt) =
�
DxW (t;X�

t ) ; D
2
xW (t;X�

t )� (t;X
�
t )
�
;
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with the termial condition is given at the time T = � by p� = Dxg (X
�
� ) :

By the above conditions, we may apply the Itô�s rule for semimartingals to
@W

@xk
(t;X�

t ),

we obtain

@W

@xk

�
T;X�

�R

�
=
@W

@xk
(t;X�

t ) +

��RZ
t

@2W

@s@xk
(s;X�

s ) ds+

��RZ
t

nX
i=1

@2W

@xk@xi
(s;X�

s ) dX
�
i (s)

+
1

2

��RZ
t

nX
i;j=1

aij (s;X
�
s )

@3W

@xk@xi@xj
(s;X�

s ) ds

+
X

t�s���R

(
@W

@xk

�
s;X�

s+

�
� @W

@xk
(s;X�

s )�
nX
i=1

@2W

@xk@xi
(s;X�

s )�X
�
i (s)

)
;

where the sum is taken over all jumping times s 2 (t; ��R] of ��; and

�X�
i (s) = X�

i (s+)�X�
i (s) ;

=

mX
l=1

Gil (s)��
�
l (s) ; for i = 1; ::; n:

where ���l (s) = ��l (s+)� ��l (s) : Therefore

@W

@xk

�
��R; X

�
��R

�
=
@W

@xk
(t;X�

t ) +

��RZ
t

(
@2W

@s@xk
(s;X�

s ) +

nX
i=1

bi (s;X
�
s ; u

�
s)

@2W

@xk@xi
(s;X�

s )

+
1

2

nX
i;j=1

aij (s;X
�
s )

@3W

@xk@xi@xj
(s;X�

s )

9=; ds (5.17)

+

��RZ
t

nX
i=1

@2W

@xk@xi
(s;X�

s )� (s;X
�
s ) dBs +

��RZ
t

nX
i=1

@2W

@xk@xi
(s;X�

s )

mX
l=1

Gil (s) d�
�
l (s)

+
X

t�s���R

(
@W

@xk

�
s;X�

s+

�
� @W

@xk
(s;X�

s )�
nX
i=1

@2W

@xk@xi
(s;X�

s )

mX
l=1

Gil (s)��
�
l (s)

)
;

Now, let ��c (s) denote the continuous part of �� (s) ; i.e.

��c (s) = �� (s)�
X

t�s���R

���l (s) ;
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it holds that

��RZ
t

nX
i=1

@2W

@xk@xi
(s;X�

s )Gil (s) d�
�c
l (s) =

��RZ
t

nX
i=1

@2W

@xk@xi
(s;X�

s )Gil (s) d�
�
l (s)

�
nX
i=1

X
t�s�T

@2W

@xk@xi
(s;X�

s )Gil (s)��
�
l (s) ;

=

��RZ
t

nX
i=1

@2W

@xk@xi
(s;X�

s )Gil (s) 1f(s;X�
s )2Dlgd�

�c
l (s)

+

��RZ
t

nX
i=1

@2W

@xk@xi
(s;X�

s )Gil (s) 1f(s;X�
s )2Clgd�

�c
l (s) ;

For every (t; x) 2 Dl; we have by (3:8)

nX
i=1

@2W

@xk@xi
(t; x)Gil (t) =

@

@xk

(
nX
i=1

@W

@xi
(t; x)Gil (t) + kl (t)

)
= 0; for l = 1; ::;m:

hence
��RZ
t

nX
i=1

mX
l=1

@2W

@xk@xi
(s;X�

s )Gil (s) 1f(s;X�
s )2Dlgd�

�c
l (s) = 0: (5.18)

Furthermore, for every (t; x) 2 Cl; and l = 1; ::;m, we have
nX
i=1

@W

@xk@xi
(t; x)Gil (t) <

0; but the equation (3:12) implies that

mX
l=1

1f(s;X�
s )2Clgd�

�c
l (s) = 0;

hence
��RZ
t

nX
i=1

mX
l=1

@2W

@xk@xi
(s;X�

s )Gil (s) 1f(s;X�
s )2Clgd�

�c
l (s) = 0; (5.19)

By the mean value theorem we have

@W

@xk

�
s;X�

s+

�
� @W

@xk
(s;X�

s ) = Dx

�
@W

@xk

�T
(s; x (s))�X�

s ;
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where x (s) is some point on the straight line between X�
s and X

�
s+: To prove that the right

hand side above vanishes, it is enough to check that, if ���l (s) > 0 then

nX
i=1

@2W

@xk@xi
(s; x (s))Gil (s) = 0; for l = 1; ::;m:

It is clear that

W
�
s;X�

s+

�
�W (s;X�

s ) +
mX
l=1

kl (s)��
�
l (s)

=

mX
l=1

(
nX
i=1

@W

@xi
(s; x (s))Gil (s) + kl (s)

)
���l (s) ;

by (3:13) the laste term vanishes. ���l (s) > 0 then (s; x (s)) 2 Dl; for l = 1; ::;m: According

to (3:9) ; we obtain

nX
i=1

@2W

@xk@xi
(s; x (s))Gil (s) =

@

@xk

(
nX
i=1

@W

@xi
(s; x (s))Gil (s) + kl (s)

)
= 0;

hence X
t�s���R

�
@W

@xk

�
s;X�

s+

�
� @W

@xk
(s;X�

s )

�
= 0: (5.20)

On the other hand, de�ne

A (t; x; u) =
@W

@t
(t; x) +

nX
i=1

bi (t; x; u)
@W

@xi
(t; x)

+
1

2

nX
i;j=1

aij (t; x)
@2W

@xi@xj
(t; x) + f (t; x; u) :

If we di¤erentiate A (t; x; u) with respect to xk; and evaluate the result at (x; u) =

(X�
t ; u

�
t ) we get by (3:4) ; (3:10) ; and (3:11)

@2W

@t@xk
(t;X�

t ) +
nX
i=1

bi (t;X
�
t ; u

�
t )

@2W

@xk@xi
(t;X�

t ) +
1

2

nX
i;j=1

aij (t;X
�
t )

@3W

@xk@xi@xj
(t;X�

t )

= �
nX
i=1

@bi
@xk

(t;X�
t ; u

�
t )
@W

@xi
(t;X�

t )�
1

2

nX
i;j=1

@aij
@xk

(t;X�
t )

@2W

@xi@xj
(t;X�

t )

� @f

@xk
(t;X�

t ; u
�
t ) : (5.21)
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Finally, substituting (3:15) ; (3:16) ; (3:17) and (3:18) into (3:14) which simpli�es

to

d

�
@W

@xk
(t;X�

t )

�
= �

(
nX
i=1

@bi
@xk

(t;X�
t ; u

�
t )
@W

@xi
(t;X�

t )

+
1

2

nX
i;j=1

@aij
@xk

(t;X�
t )

@2W

@xi@xj
(t;X�

t ) +
@f

@xk
(t;X�

t ; u
�
t )

9=; dt

+
nX
i=1

@2W

@xk@xi
(t;X�

t )� (t;X
�
t ) dBt: (5.22)

By the continuity of
@W

@xk
on S; and by the left continuity of X; we get

@W

@xk
(� ;X�

� ) = lim
R!1

@W

@xk

�
��R; X

�
��R

�
=

@g

@xk
(X�

� ) :

for each k = 1; ::; n: Clearly,

nX
i=1

@bi
@xk

(t;X�
t ; u

�
t )
@W

@xi
(t;X�

t ) =
@bT

@xk
(t;X�

t ; u
�
t )DxW (t;X�

t ) ;

and

1

2

nX
i;j=1

@aij
@xk

(t;X�
t )

@2W

@xi@xj
(t;X�

t ) =
1

2

nX
i;j=1

@

@xk

 
dX
h=1

�ih�jh

!
(t;X�

t )
@2W

@xi@xj
(t;X�

t )

= tr

�
@�T

@xk
(t;X�

t )D
2
xW (t;X�

t )� (t;X
�
t )

�
:

Then (3:19) given by the form

d

�
@W

@xk
(t;X�

t )

�
= �

�
@bT

@xk
(t;X�

t ; u
�
t )DxW (t;X�

t )

+ tr

�
@�T

@xk
(t;X�

t )D
2
xW (t;X�

t )� (t;X
�
t )

�
+

@f

@xk
(t;X�

t ; u
�
t )

�
dt

+

nX
i=1

@W

@xk@xi
(t;X�

t )�i (t;X
�
t ) dBt; (5.23)

with the terminal condition

@W

@xk
(� ;X�

� ) =
@g

@xk
(X�

� ) :
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Now, from (3:8) we note that

@H

@xk
(t; x; u; p; q) =

@bT

@xk
(t; x; u) p+ tr

�
@�T

@xk
(t; x) q

�
+

@f

@xk
(t; x; u) ;

and de�ne pkt the kth coordinate of the column vector pt by8>><>>:
dpkt = � @H

@xk
(t;X�

t ; u
�
t ; pt; qt) dt+ q

k
t dBt; for t 2 [0; T ] ;

p� =
@g

@xk
(X�

� ) ;

with qkt dBt=
P

1�h�d
qkht dBht ; for k = 1; ::; n: Hence, by the uniqueness of the solution to (2:9)

and (3:20) ; we obtain

pkt =
@W

@xk
(t;X�

t ) ;

and

qkht =

nX
i=1

@2W

@xk@xi
(t;X�

t )�ih (t;X
�
t )

qkht the khth element of qt for k = 1; ::; n, and h = 1; ::; d: In particular, note that (pt; qt)

represents �
DxW (t;X�

t ) ; D
2
xW (t;X�

t )� (t;X
�
t )
�

where X�
t is the optimal solution of the controlled SDE (2:1) :

5.2 Application to �nance

Suppose the wealth Xt at time t corresponding to initial capital x > 0 is governed

by the linear stochastic di¤erential equation8>><>>:
dXt = �Xtdt+ �XtdBt � d� (t) ; for t 2 [0; T ] ;

X0 = x;

(5.24)
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This problem can be regarded as a special case of the portfolio selection with

transaction costs problem�s in the case of a single push direction [see, e.g., Davis and

Norman]: We concider here, the situation where an investor only invests in a risky stock of

constants rate of return � and volatility � and he may consume continuously and costlessly

from the wealth. The objective of the investor is to maximize the functional

J (�) = E

24 �Z
0

e��tX
t dt+

�Z
0

e��td� (t)

35 ; (5.25)

with  2 (0; 1), �; �; �; � > 0 are given constants. (1� ) is the relative risk aversion of

the consumer, � (t) is an increasing adapted cadlag process satisfying P
n
j� (T )j2 <1

o
= 1

with �0 = 0; representing the total transaction taken out up to time t: � is called admissible

strategy for given initial capital x if the solution of (4:1) satis�es X0 = x; we denote by

�(x) the class of such pairs for x. We want to �nd the optimal strategy �� (:) 2 �(x) which

maximizes the expected total discounted utility of the : This is an example of a singular

stochastic control problem. It is called singular because the investment control measure

d� (t) is allowed to be singular with respect to Lebesgue measure dt: Other applications of

the singular control problems with jump di¤usions in �nance are developed in the recent

textbook [22].

We illustrate a veri�cation result for the maximum principle, in this case the

Hamiltonian gets the form

H (t;X; c; p; q) = �Xtpt + �Xtqt + e
��tX

t : (5.26)

Let �� 2 U be a candidate for an optimal control, and let X� be the corresponding
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wealth process with corresponding solution (p�; q�) of the adjoint equation8>><>>:
dp�t = �

�
�p�t + �q

�
t + e

��tX�1
t

�
dt+ q�t dBt; for t 2 [0; �) ;

p�� at time � ;

(5.27)

with the transversality condition

E[p�� :(X
�
� �X� )] � 0: (5.28)

Here, the conditions (2:14) and () ; gets the form, with probability 1

�p�t + e��t < 0; for all t 2 [0; � ] ; (5.29)

1f�p�t+e��t<0gd�
�
t = 0: (5.30)

Explicit solution of the adjoint equation (4:4) satis�es the conditions () ; () ; and () ;

is a di¢ cult problem, then we use the relation between the value function and the solutions

(p�; q�) of the adjoint equation given on the optimal state to solve the problem. Further,

for any � de�ne

� (t; x) = sup
�2�(t;x)

J (�) :

Note that, the de�nition of �(t; x) is similar to �(x) ; except that the starting

time is t; and the wealth at t is x:

The generator of time-space process if � = 0 is

A� (t; x) =
@�

@t
(t; x) + �x

@�

@x
(t; x) +

1

2
�2x2

@2�

@x2
(t; x) ;

the non-intervention region is described by

C =

�
(t; x) : �@�

@x
(t; x) + e��t < 0

�
: (5.31)
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If we guess C has the form C = f(t; x) : 0 < x < bg for some barrier point b > 0;

then by (3:10)� (3:12) the equation (3:4) gets the form,

@�

@t
(t; x) + �x

@�

@x
(t; x) +

1

2
�2x2

@2�

@x2
(t; x) + e��tx = 0; for 0 < x < b; (5.32)

and

�@�
@x

(t; x) + e��t = 0; for x � b: (5.33)

The linearity of the wealth dynamics with respect to the state and control processes,

together with the form of the utility function enables us to represent the solution � in a

separable form, to this end, We try a solution � of the form � (t; x) = e��t	(x) ; then

A� (t; x) = e��tA0	(x) where 	 remains to be determined. In terms of 	 the equation

(4:7) has following form

��	(x) + �x	0 (x) + 1
2
�2x2	00 (x) + x = 0:

We now choose 	(x) = C1x
r1+C2x

r2+Kx , where C1; C2 are arbitrary constants,

and r1 < 0 < r2; are the solution of the equation

1

2
�2r2 + �r � � = 0;

are given by

ri =
1

�2

0@1
2
�2 � ��

s�
1

2
�2 � �

�2
+ 2��2

1A ;

and the constant K 2 R�+; is given by

K = � 1
1
2�

22 +
�
�� 1

2�
2
�
 � �

:

Outside C we require that �	0 (x) + 1 = 0; or 	(x) = x+M; M is a constant to

be determined. Hence we put

� (t; x) = f
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e��t (C1xr1 + C2xr2 +Kx) for 0 < x < b;
e��t (x+M) for x � b:

(5.1)we put C1 = 0; assuming smooth

�t�s principle at point b; we obtain a system of equations for unknowns C2; M and b: �

continuous at x = b then

C2b
r2 +Kb = b+M; (5.35)

� continuously di¤erentiable at x = b; then

C2r2b
r2�1 +Kb�1 = 1; (5.36)

� twice continuously di¤erentiable at x = b; then

C2r2 (r2 � 1) br2�2 +K ( � 1) b�2 = 0:

Then, we get

M = C2b
r2 +Kb � b; (5.37)

the barrier point is given by

b =

�
K (1� )
C2r2 (r2 � 1)

� 1
r2�

; (5.38)

and

C2 =
1�Kb�1
r2br2�1

;

 < 1; and r2 > 1; then b > 0: Next, we look into the conditions (3:6) and (3:7) : Accordingly

we will study two di¤erent cases, the �rst when x � b; denote by F (x) the function given

by

F (x) = A0	(x) ;

= �� (x+M) + �x+ x ;
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which is a decreasing function in x on [b;+1[ ; if � > �: So we need only to check that

F (b) � 0; but this follows from the fact that A0	(x) � 0 for all x < b; and 	 2 C2: The

second case when 0 < x < b; then 	(x) = Kx + C2x
r2 and the condition (3:6) gets the

form

�
�
C2r2x

r2�1 +Kx�1
�
+ 1 � 0:

Put G (x) = �
�
C2r2x

r2�1 +Kx�1
�
+ 1; from (4:13), we get

G (b) = �
�
C2r2b

r2�1 +Kb�1
�
+ 1 = 0;

and

G0 (b) = �
�
C2r2 (r2 � 1) br2�1 +K ( � 1) b�2

�
= 0;

since  2 (0; 1) ; then �K ( � 1) and C2r2 (r2 � 1) are a positive constants: Thus G0 (x) �

G0 (b) = 0; for all x 2 ]0; b] ; then G is a increasing function, Thus we have established that

G (x) � G (b) = 0 on ]0; b] :

For construction of the optimal control �� (:) ; let us consider the stochastic integral

equation

X�
t = x0 +

tZ
0

�X�
sds+

tZ
0

�X�
sdBs � �� (t) ; (5.39)

X�
t � b; t 2 [0; T ] ; (5.40)
tZ
0

1fX�
s<bgd�

� (s) = 0; t 2 [0; T ] : (5.41)

Here b is given by (4:15) : (4:23)� (4:25) de�ne so-called Skorohod problem, whose

solution is a pair (X�
t ; �

� (t)) ; where X�
t is a di¤usion process re�ected at b: The conditions

(3:10) � (3:13) claim the existence of an increasing process �� (t) such that X�
t stays in C

for all times t. If the initial size x � b; �� (t) increases only when X�
t is at the point b so as
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to ensure X�
t � b, on the other hand, if the initial size x > b then �� (0+) = x � b; that is

X�
0 jumps to point b immediately and such that X

�
0+ = b then evolves on as the case of X�

t

whith the initial point b: Such a singular control is called a local time at b. The existence

and uniqueness of such a local time is proved in [12] : The existence and uniqueness to the

solution of the Skorohod problem (4:23)� (4:25) is established in [21] :

Note that, by construction of ��; or by construction of � all the conditions of the

section 3 are satis�ed and the value function is � (t; x) = � (t; x) :

Now we want to solve the constrainted adjoint equation (4:4), but in order to apply

Theorem 3:2:; we �rst prove that, the solution of the adjoint equation is given by

(p�t ; q
�
t ) =

�
e��t

�
C2r2X

�r2�1
t +KX��1

t

�
; �e��t

�
C2r2 (r2 � 1)X�r2�1

t +K ( � 1)X��1
t

��
;

(5.42)

to this end, we di¤erentiate the process

A (t;Xt) = e��t
�
C2r2X

�r2�1
t +KX��1

t

�
; for t 2 [0; � ] ; (5.43)

using Itô�s rule for semimartingals, we get

Ke��tX�1
t = KX�1

0

+

tZ
0

Ke��s
�
��X�1

s + � ( � 1)X�1
s +

1

2
( � 1) ( � 2)�2X�1

s

�
ds

+

tZ
0

K ( � 1)�e��sX�1
s dBt �

tZ
0

K ( � 1) e��sX�2
s d�c (s)

+
X
0�s�t

n
Ke��s

�
X�1
s+ �X�1

s

�o
: (5.44)

where �c (s) = � (s)�
P

0�s�t
�� (s) denote the continuous part of � (s). Next, consider the case

when Xs = X�
s = X

��(s)
s , for all times s between 0 and at those t = t�; for which X�

t� = b:We
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merely note that t� is �xed because b is deterministic; in this case A (s;Xs) = Ke��sX��1
s

for s 2 [0; t�] ; then we obtain

Ke��t
�
X

��1
t� = KX��1

0

+

t�Z
0

Ke��sX��1
s

�
�� + � ( � 1) + 1

2
( � 1) ( � 2)�2

�
ds

+

t�Z
0

K ( � 1)�e��sX��1
s dBt �

t�Z
0

K ( � 1) e��sX��2
s d�c (s)

+
X

0�s�t�

n
Ke��s

�
X��1
s+ �X��1

s

�o
:

replacing by the value of the constant � we get, the integrant with respect to ds on the last

equality is given by

Ke��sX��1
s

�
�� + ( � 1)�+ 1

2
�2 ( � 1) ( � 2)

�
;

= �Ke��sX��1
s

�
�+ ( � 1)�2

	
: (5.45)

Next, by the mean value theorem, we get

Ke��s
�
X��1
s+ �X��1

s

�
= K ( � 1) e��sy�2s :4X�

s ;

if �X�
s 6= 0; it is necessary that ys � b; then y�2s � b�2; since  2 (0; 1) ; then K ( � 1)

is a negative constant; hence by () we obtain

K ( � 1) y�2s � K ( � 1) b�2 = 0; (5.46)

on the other hand y�2s � 0; then

K ( � 1) y�2s � 0; (5.47)

hence by () and () ; we obtain

K ( � 1) y�2s = 0:
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Then

Ke��s
�
X��1
s+ �X��1

s

�
= 0 (5.48)

Now, the fact that 1fX�
s<bgd�

�c (s) = 0; and by the same argument as above, we

conclude that

t�Z
0

K ( � 1)�e��sX��2
s d��c (s) =

t�Z
0

K ( � 1) e��sX��2
s 1fX�

t �bgd�
�c (s)

+

t�Z
0

K ( � 1) e��sX��2
s 1fX�

t <bgd�
�c (s) :

= 0: (5.49)

By () it is possible to take a terminal condition for the adjoint equation (4:4) at

time � = t�; by p�t� = e��t
�
:

Further, by substituting (4:19) ; (4:20) ; (4:21) and (4:22) into (4:18) ; together with

(). Then the uniqueness of adapted solutions (p�; q�) of the adjoint equation (4:4) implies

(4:16) :

Note thate, by the regularity smooth �t condition, we can extend pt; for t2 [t�; T ]

by pt = e��t
�
: and with this choise all conditions of theorem are satis�ed and the conditions

() and () are coincide with () and () :
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