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Most of faults in three-phase induction motors have relationship with airgap eccentricity.
There are two forms of airgap eccentricity: static (SE) and dynamic (DE). According to the
literatures, the well known signatures of dynamic eccentricity, on the stator current spec-
tra, are sidebands around the principal slot harmonics (PSH). However, many other
researches have shown that DE induces also spectral components around the fundamental,
but few are reported on the sources and the causes of these components. In this direction
and since it is difficult to study experimentally the DE separately from the SE; the present
paper attempts to explain, analytically and by simulation, the generation process of all fre-
quency components that are a function of only DE. For that reason, a detailed analytical
study for three-phase induction motors working under DE is performed. This study is based
on rotating field approach. A general theoretical analysis of the interaction between all har-
monics of the eccentric airgap permeance and the stator and rotor MMF components is put
forward. The simulation results, obtained from an accurate model, confirm the existence of
specific frequency components around the fundamental, caused by the dynamic airgap
eccentricity. The interactions between the DE and the inherent SE are also illustrated using
this mathematical model.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

The three-phase squirrel cage induction motors are the most common prime machines in industrial processes. This is
chiefly due to their low cost, reasonable size, ruggedness and low maintenance. Usually, the induction motors work under
many stresses from various nature (thermal, electric, mechanical and environment) which can affect their lifespan by involv-
ing the occurrence of stator and/or rotor faults [1,2,7,35]. The need for on-line condition monitoring of large induction mo-
tors has increased because a sudden failure of critical motor can cause great economical losses. Therefore, the main goal of
the operator of electrical drives is to reduce the maintenance costs and to prevent unscheduled downtime of these machines.

Machine eccentricity is the condition of the unequal airgap that exist between the stator and rotor [1,10–12,18,22,33]. An
induction machine can fail due to airgap eccentricity. This fault can result from variety of sources such as incorrect bearing
positioning during assembly, worn bearings, a shaft deflection, and so on. There are two forms of airgap eccentricity: static
eccentricity (where the rotor is displaced from the stator bore centre but is still turning upon its own axis) and dynamic
eccentricity (where the rotor is still turning upon the stator bore centre but not on its own centre).

Through the literatures, one can found a lot of techniques used to detect airgap eccentricity. Some techniques are based
on the spectral analysis of some signals sensing from the induction motors, such as the stator core vibration [3,4], airgap and
axial flux [5], instantaneous power [6] and current Park’s vector [19]. Other techniques can be found in [8,23,26,27,29,30].
. All rights reserved.
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The preferred method, used in industry, to diagnose stator and rotor faults in induction motors is the MCSA [7–11,31–34].
This technique is based on the monitoring of stator current spectra. The appearance of new harmonics or increase in mag-
nitude of some other at specific frequencies indicates a fault in the machine. So, the signal given by current sensors must be
correctly analysed in both healthy and faulty conditions.

There have been a number of papers dealing the effect of airgap eccentricity on the airgap flux density and on the stator
currents. Using MCSA, the sideband frequencies associated with an eccentricity are [9–12]
f1 ¼ ðkNr � ndÞ
ð1� sÞ

p
� m

� �
fs ð1Þ
where k is any positive integer, Nr is the number of rotor slots, nd = 0 in case of static eccentricity and nd = 1,2, . . . in case of
dynamic eccentricity (it is known as dynamic eccentricity order), s is the slip, p is the number of pole-pairs, fs is the funda-
mental supply frequency and m = 1,3,5, . . . is the order of the stator time harmonics that are present in the power supply.
Furthermore, if both static and dynamic eccentricities exist together, spectral components can be observed around the fun-
damental, which are given by [1,3,10,12,14,20]
fmix ¼ fs �mfr ð2Þ
with m = 1,2,3, . . . and fr = (1 � s) fs/p the mechanical rotational frequency.
The expression (1) is derived from the MMF-permeance wave approach and it shows that DE induces sidebands around

the rotor slot harmonics (RSH) while the SE can not produce any new components in the stator current spectra; but it causes
only an increase in the magnitudes of the RSH. However, experimental results from laboratory work and industrial case his-
tories [11] show that it was inconclusive to identify static or dynamic eccentricity using expression (1), since a high SE also
produced DE components [17,28]. On the other hand, exploratory tests have shown that DE induces harmonics at (fs ± fr) Hz
in the stator current spectra (like the mixed eccentricity) [11] which, by the classical MMF-permeance wave analysis, should
not be present [3,13]. These experimental observations are also confirmed in many other works [1,8,17,21,25] but few are
reported on the generation process of these components. So, one can note some ambiguities, between the signatures of the
DE and the mixed eccentricity, and these need more explanation and clarification.

For that reason and since a reliable diagnosis requires a good understanding of fault mechanisms and its signatures, this
paper attempts to explain the effect of dynamic eccentricity on the production of specific frequency components around the
fundamental and the PSH. It is important to note that this study is mainly based on the research and results obtained by [15],
which can be classed among the few works dealing this subject. The general form of the present study use the rotating field
approach which considers the airgap flux density as a sum of harmonic fields obtained from the product of the airgap per-
meance and the stator and rotor MMFs. In summary, this analysis is based on the following description (Fig. 1):

The input is assumed to be three-phase sinusoidal supply; while the motor is assumed to have three-phase symmetrical
stator windings. First, the stator main currents set up an MMF across the airgap. This MMF contains the fundamental and an
infinite series of space harmonics which are due to the non sinusoidal spatial distribution of the stator windings. The airgap
permeance consists of a constant term plus a series of harmonic components due to the eccentricity effects. This airgap per-
Fig. 1. Computation of the stator and rotor flux densities.
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meance multiplied by the stator MMF produce the stator flux density with additional components. These stator flux density
waves induce currents in the rotor bars which, in tern, give rise to a rotor MMF that contains supplementary terms due to the
eccentricity fault. The interaction of this rotor MMF with the airgap permeance generates rotor flux density waves with fur-
ther components due to the eccentric part of the airgap permeance. Depending on their number of pole-pairs, the new rotor
flux density waves can induce corresponding current components in the stator windings.

2. Analytical study of healthy induction motor

2.1. The airgap flux density of symmetrical three-phase stator windings

It is well-known that the stator MMF of each phase is the product of the current and the winding function of this phase.
Thus, for a symmetrical three-phase winding, one can write:
FsAðt; hÞ ¼
P

n

bF An½sinðxst � nphÞ þ sinðxst þ nphÞ�

FsBðt; hÞ ¼
P

n

bF Bn sin xst � 2p
3 � n ph� 2p

3

� �� �
þ sin xst � 2p

3 þ n ph� 2p
3

� �� �� �
FsCðt; hÞ ¼

P
n

bF cn sin wst � 4p
3 � n ph� 4p

3

� �� �
þ sin wst � 4p

3 � n ph� 4p
3

� �� �� �

8>>>>><>>>>>:
ð3Þ
with n = 2k + 1 and k = 0,1,2,3, . . .

The general term of the resulting stator MMF, can be written as
Fshðt; hÞ ¼ bF sh sinðxst � hphÞ ð4Þ

with, bF sh the amplitude of the hth space harmonic and p is the number of pole-pairs. It was shown that the 3rd space har-
monic and its multiples do not exist in the resulting stator MMF of balanced three-phase stator windings without neutral
connection, thus: h = 6k ± 1. However, these triplen space harmonics will be present, if the neuter line is connected or there
is any unbalance in the stator windings; in such case: h = 2k + 1 with k an integer.

In the healthy state and neglecting the slots and saturation effects, the airgap permeance function is a constant:
Pðt; hÞ ¼ P0 ð5Þ
The product of the stator MMF (4) with the airgap permeance (5) gives rise to the stator flux density which has the same
waveform as the stator MMF. So, the general term of the stator flux density waves can be written as
BP0
sh ðt; hÞ ¼ bBP0

sh cosðxst � hphÞ ð6Þ
where bBP0
sh is the amplitude of the hth stator flux density harmonic.

2.2. The rotor airgap flux density

A squirrel-cage rotor of Nr bars can be described as Nr identical and equally spaced loops. The hth stator flux density har-
monic induces currents in the rotor loops with electrical pulsation of shxs, where sh = 1 � h(1 � s) and s is the slip. Thus, the
rotor loop currents can be written as8
Irh1ðtÞ ¼ bIrh cosðshxstÞ
Irh2ðtÞ ¼ bIrh cos shxst � hp 2p

Nr

� 	
� � �
IrhNr ðtÞ ¼ bIrh cos shxst � ðNr � 1Þhp 2p

Nr

� 	
>>>>><>>>>>:

ð7Þ
where bIrh is the magnitude of the rotor loop currents induced by the hth stator flux density harmonic. Therefore, the rotor
loop can be assumed as a one-turn coil (wr = 1) with pitch equal to: a = 2p/Nr. If the magnetic axes of the rotor loop1 is in the
centre of the reference frame fixed to the rotor (Fig. 2); then, the distribution function of this loop can be written as
nrd loop1ðhrÞ ¼
1 � p

Nr
< hr < þ p

Nr

0 otherwise

(
ð8Þ
Note that nrd loop1(hr) is a periodic function. So, it can be resolved in Fourier series as follows:
nrd loop1ðhrÞ ¼
1
Nr
þ
X
g

2
gp

sin g
p
Nr


 �
cosðghrÞ ð9Þ
where g = 1,2,3, . . . is the order of the rotor space harmonics and it must be different from kNr, with k an integer.
The winding function, of the first loop, is defined as
Nloop1
rw ðhrÞ ¼ nrd loop1ðhrÞ � hnrd loop1ðhrÞi ð10Þ



Fig. 2. Distribution function of the rotor loop 1.
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where hnrd loop1 (hr)i = 1/Nr is the mean value of the distribution function of the first loop. Since in general case, the induction
motors have p pair of poles, the winding functions of the Nr rotor loops must be expressed in electrical degrees as follows:
Nloop1
rw ðhrÞ ¼

P
g¼1

2
gpp sin gpp

Nr

� 	
cosðgphrÞ

Nloop2
rw ðhrÞ ¼

P
g¼1

2
gpp sin gpp

Nr

� 	
cos gp hr � 2p

Nr

� 	� 	
� � �
NloopNr

rw ðhrÞ ¼
P
g¼1

2
gpp sin gpp

Nr

� 	
cos gp hr � ðNr � 1Þ 2p

Nr

� 	� 	

8>>>>>>>><>>>>>>>>:
ð11Þ
Multiplying (7) by (11) leads to the MMF produced by each rotor loop (referenced to rotor):
Floop1
rh ðt; hÞ ¼

P
g¼1

bFgrhfcosðshxst þ gphrÞ þ cosðshxst � gphrÞg

Floop2
rh ðt; hrÞ ¼

P
g¼1

bFg
rh cos shxst þ gphr � ðgþ hÞ 2pp

Nr

� 	
þ cos shxst � gphr þ ðg� hÞ 2pp

Nr

� 	n o
� � �
FloopNr

rh ðt; hrÞ ¼
P
g¼1

bFg
rh cos shxst þ gphr � ðNr � 1Þðgþ hÞ 2pp

Nr

� 	
þ cos shxst � gphr þ ðNr � 1Þðg� hÞ 2pp

Nr

� 	n o

8>>>>>>>><>>>>>>>>:
ð12Þ
The resulting MMF of the squirrel rotor cage is the sum of the MMFs of all rotor loops. Thus, one can obtain:
Frhðt; hrÞ ¼
XNr

i¼1

X
g¼1

bFg
rh cos shxst þ gphr � ði� 1Þ:ðgþ hÞ2pp

Nr


 �
þ cos shxst � gphr þ ði� 1Þ � ðg� hÞ2pp

Nr


 �� 

ð13Þ
Expression (13) represents the sum of Nr waves shifted regularly in phase by (g ± h)2pp/Nr. As a result, this sum is always
null except three cases, when g = ±h as well as for (g + h)p = kNr and (g � h)p = kNr. Note that g is a positive integer. Conse-
quently, the cage rotor MMF waves exist only for:
g ¼
jhj
j kNr

p � hj

(
ð14Þ
It is so important to note that if the winding functions of the rotor loops (11) are expressed in mechanical degrees, we would
have: g = jhpj and g = jkNr ± hpj which are not the order of the rotor space harmonics but the number of pole-pairs of these
harmonics; and this leads to wrong results. Hence, one can state that each hth stator flux density harmonic produces rotor
MMF harmonics with order numbers given by (14). The harmonics with orders equal to (kNr/p ± h) are usually called rotor
slot harmonics (RSH) which are the consequence of the space distribution of rotor bars. For k = 1 and h = 1, we obtain the
well-known principle slot harmonics (PSH). So, with respect to the rotor, the general term of the squirrel rotor cage MMF
can be written as
Frhðt; hrÞ ¼ bF rh1 cosðshxst � hphrÞ þ bF rhSH1;2 cos shxst �
kNr

p
� h


 �
phr

� �
ð15Þ
To observe (15) from the stator side, we use the transformation given by
hr ¼ h� ð1� sÞ
p

xst ð16Þ
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Thus, one can obtain:
Frhðt; hÞ ¼ bF rh cosðxst � hphÞ
þbF rhSH1;2 cos 1� kNr

p ð1� sÞ
� 	

xst � kNr
p � h

� 	
ph

h i ð17Þ
In healthy state, the airgap permeance is a constant (5). As a result, the rotor flux density will have the same waveform (har-
monics) as the rotor MMF. Hence, the general term of the rotor flux density can be written as
BP0
rh ðt; hÞ ¼ bBP0

rh cosðxst � hphÞ

þbBP0
rhSH1;2 cos 1� kNr

p ð1� sÞ
� 	

xst � kNr
p � h

� 	
ph

h i ð18Þ
The rotor flux waves which can induce electromotive forces (EMF) in stator coils are those that have number of pole-pairs
equal to the pole-pair number of the space harmonics of the resulting stator MMF.

3. Analytical study of induction motor with dynamic airgap eccentricity

3.1. The stator flux density of symmetrical three-phase stator windings under dynamic eccentricity

The occurrence of DE introduces unequal airgap and therefore modifies the expression of the airgap permeance. There-
fore, the stator and the rotor flux densities must be recalculated. The task then is to formulate analytical expression for the
airgap permeance in the case of DE.

Fig. 3 represents an induction machine, with a smooth airgap, supported in its bearings eccentrically with respect to the
stator. The rotor centre is shifted by a distance a from the stator centre. It should be noticed that we consider only the type of
eccentricity where the axis of the rotor is parallel to the stator axis. In this case, if r and R denote the rotor and stator radius,
respectively, the airgap length d can be written as
d ¼ R� r � a � cos a ¼ d0 � a � cos a ð19Þ

With d0 = R � r is the mean airgap length when the rotor is perfectly centred in the stator bore. In the case of DE, the angle a
is a function of the angular displacement h and time t as follows:
a ¼ xrt � h ð20Þ

where xr = xs(1 � s)/p is the mechanical rotational pulsation.

Consequently, the airgap length (referenced to stator) can be written as

dðt; hÞ ¼ d0 � a � cosðxrt � hÞ ¼ d0½1� e cosðxrt � hÞ� ð21Þ
With e = a/d0 the relative eccentricity. Therefore, the airgap permeance is given by
Pdeðt; hÞ ¼
l0

dðt; hÞ ¼
l0

d0½1� e cosðxrt � hÞ� ð22Þ
The airgap permeance can be resolved in a Fourier series as follows:
Pdeðt; hÞ ¼ P0 þ
X1
n¼1

Pn cos nðxrt � hÞ ð23Þ
with n an integer represents the order of the permeance harmonics, P0 ¼ 1
d0
ffiffiffiffiffiffiffiffi
1�e2
p and Pn ¼ 2P0 � 1�

ffiffiffiffiffiffiffiffi
1�e2
p

e

� 	n
.

Fig. 3. Eccentrically supported rotor.
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Expression (23) shows that the airgap permeance has a constant term and infinite series of harmonics due to DE. For a
small values of relative eccentricity (e� 1), the airgap permeance can be restricted to the first harmonic [14,21]. But, in this
study, all the permeance harmonics are considered.

Since the stator windings structure is not affected by DE, the stator MMF is still the same as in the healthy state (4). Con-
sequently, the stator flux density (in the case of DE) is obtained by multiplying the permeance function (23) with the stator
MMF (4). Hence, one can obtain (with respect to the stator):
BPde
sh ðt; hÞ ¼ bBP0

sh cosðxst � hphÞ
þbBPn

sh cos½ðxs � nxrÞt � ðhp� nÞh� þ bBPn
sh cos½ððxs � nxrÞt þ ðhp� nÞhÞ�

ð24Þ
It is clear, from (24), that DE produces new stator flux density components at (fs ± nfr) Hz with corresponding (hp ± n) pole-
pairs.

3.2. The rotor flux density under dynamic eccentricity

The stator flux density harmonics of expression (24) will induce EMFs into the rotor cage, hence generating circulating
rotor currents. In tern, these rotor currents produce rotor MMF waves with further components. So, the general term of
the rotor MMF, in the case of DE, can be expressed as (rotor referenced):
FPde
rh ðt; hrÞ ¼ bF P0

rh cosðshxst � hphrÞ þ bF P0
rhSH1;2 cos½shxst � ðkNr � hpÞhr � þ bF Pn

rhn cos½shxst � ðhp� nÞhr�

þ bF Pn
rhnSH1;2 cos½shxst � ðkNr � ðhp� nÞÞhr � ð25Þ
The interaction of the above expression with the eccentric airgap permeance function represented by (23) gives the rotor flux
density. But note that (23) must be expressed in a rotor reference frame as follows:
Pdeðt; hrÞ ¼ P0 þ
X1
n¼1

Pn cos nðhrÞ ð26Þ
Consequently, the general term of the rotor flux density waves, can be written as:
BPde
rh ðt; hrÞ ¼ bBP0 ;P0

rh cosðshxst � hphrÞ þ bBP0 ;P0
rhSH1;2 cos½shxst � ðkNr � hpÞhr� þ bBPn ;P0

rhn cos½shxst � ðhp� nÞhr �

þ bBPn ;P0
rhnSH1;2 cos½shxst � ðkNr � ðhp� nÞÞhr� þ bBPn ;Pn

rhn cos½shxst � ðhp� n� nÞhr �

þ bBPn ;Pn
rhnSH1;2 cos½shxst � ðkNr � ðhp� n� nÞÞhr� ð27Þ
One can observe the presence of new rotor flux density components with (hp ± n) and (hp ± n ± n) pole-pair numbers. It is
clear that (±n ± n) can be equal to: �2n, 0 or +2n. To observe (27) from the stator side, we use the transformation given
by (16). Hence, one can obtain:
BPde
rh ðt; hÞ ¼ bBP0 ;P0

rh cosðxst � hphÞ
þ bBP0 ;P0

rhSH1;2 cos½ð1� kNrð1� sÞ=pÞxst � ðkNr � hpÞh�
þ bBPn ;P0

rhn cos½ð1� nð1� sÞ=pÞxst � ðhp� nÞh�
þ bBPn ;P0

rhnSH1;2 cos½ð1� ðkNr � nÞð1� sÞ=pÞxst � ðkNr � ðhp� nÞÞh�

þ bBPn ;Pn
rhn cos 1� �n� n|fflfflfflffl{zfflfflfflffl}

A

0@ 1Að1� sÞ=p

0@ 1Axst � hp�n� n|fflfflfflffl{zfflfflfflffl}
B

0@ 1Ah

24 35
þ bBPn ;Pn

rhnSH1;2 cos 1� kNr �n� n|fflfflfflffl{zfflfflfflffl}
A

0@ 1Að1� sÞ=p

0@ 1Axst � kNr � hp�n� n|fflfflfflffl{zfflfflfflffl}
B

0@ 1A0@ 1Ah

24 35 ð28Þ
The above expression shows that the rotor flux density encloses a variety of waves with different frequencies and pole-pair
numbers. So, they must be analysed carefully, in order to identify which waves can induce EMF into the stator windings.
From (28), one can note that the first two waves are due the interactions between the harmonics of (25) containing the
P0 term, and the constant part of the airgap permeance of (26). Since these waves have (hp) and (kNr ± hp) pair of poles, they
can induce EMF in the stator windings even the motor is in healthy state as it mentioned previously.

The second two waves of (28) are due to the interactions between the harmonics of (25) containing the P0 term and the
eccentric part of permeance function in (26). These waves are also produced by the interactions between the constant part of
(26) and the harmonics of (25) having the Pn term. It is obvious that these waves have (hp ± n) and (kNr ± hp ± n) pair of poles
which are clearly depended on n that represents the order of the permeance harmonics. Consequently, they can induce EMF
in the stator windings if only their pole-pair number belongs to the set {hp}. As an example, for a motor with 4-poles and 28
rotor bars without neutral connection, we have: {hp} = {2,10,14,22, . . .2 � (6k ± 1)}. In this case, the second three waves can-
not induce EMF in the stator windings for all n, but only for n = 8,12,20,24,32,36, . . .

Finally, the last two waves of (28) are purely generated by the interactions between harmonics of (25) and (26) that con-

tain the Pn term. As can be clearly seen, these waves have hp�n� n|fflfflfflffl{zfflfflfflffl}
B

0@ 1A and kNr � hp�n� n|fflfflfflffl{zfflfflfflffl}
B

0@ 1A pair of poles which are obvi-
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ously depended on (±n ± n). The corresponding frequencies of these waves are given by: fs � ð�n� nÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
A

fr

0@ 1A Hz and

fRSH � ð�n� nÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
A

fr

0@ 1A Hz. The terms A and B can be equal to: �2n, 0 or +2n, and it is so important to know that all

combinations between A and B are possible. As a result, it is possible to find rotor airgap flux density waves at (fs ± 2nfr)
Hz and (fRSH ± 2nfr) Hz with corresponding (hp) and (kNr ± hp) pole-pairs respectively, which belong to the set {hp} and there-
fore, they induce EMF into the stator windings.

In the light of this analysis, one can state that, due to the dynamic airgap eccentricity, specific components appear in the
stator current spectra, around the fundamental and the PSH, at frequencies given by the two following expressions:
fde1 ¼ jfs � ndefrj ð29Þ
fde2 ¼ jfs � ðNr � ndeÞfr j ð30Þ
with ned = 2,4,6 . . .

Since in practice, the power supply is not purely sinusoidal, currents in phases are also not purely sinusoidal, but contain
time harmonics. Taking into account these harmonics, the expressions (29) and (30) can be written, respectively, as follows:
fde1 ¼ jmfs � ndefr j ð31Þ
fde2 ¼ jmfs � ðNr � ndeÞfrj ð32Þ
where m = 1,3,5, . . . is the order of the time supply harmonics.
4. Simulation results

It is important to note that in practice, induction motors are not perfectly symmetrical. Even in healthy state, they have
some inherent levels of static and dynamic airgap eccentricities. This means that until now, the DE can not be studied exper-
imentally separately from the SE. Consequently, only simulation, based on accurate mathematical models, can provide useful
information about the behaviour of the induction motors under DE condition, and then enables us to identify the line com-
ponents that are only a function of this fault.

4.1. System equations

In this work, the simulation results are obtained from an accurate transient model of squirrel cage induction motors. This
model is based on the multiple-coupled circuits [14,16,21]. As it described previously, the rotor cage can be regarded as a
whole of meshes connected between them electrically and coupled magnetically which can lead to the following voltage
equations:
½Us� ¼ ½Rs�½Is� þ
d½ws�

dt
ð33Þ

½0� ¼ ½Rr �½Ir� þ
d½wr�

dt
ð34Þ
where
½ws� ¼ ½Lss�½Is� þ ½Lsr�½Ir � ð35Þ
½wr� ¼ ½Lrs�½Is� þ ½Lrr�½Ir � ð36Þ
The equation describing the mechanical part of the system is
Ce � Cr ¼ Jr
dxr

dt
ð37Þ
with
Ce ¼
dWco

dhr


 �����
ðIs ;Ir¼constantÞ

ð38Þ
and
Wco ¼
1
2
½Is�T ½Lss�½Is� þ ½Is�T ½Lsr�½Ir � þ ½Ir�T ½Lrr�½Ir �
�
þ½Ir�T ½Lrs�½Is�

	
ð39Þ
where [Us], stator voltages vector; [Is], [Ir], stator and rotor currents vectors; [Rs], (3 � 3) stator resistance matrix; [Lss], (3 � 3)
stator inductance matrix; [Lsr], 3 � (Nr + 1) mutual inductance matrix; [Rr], (Nb + 1) � (Nb + 1) rotor resistance matrix; [Lrr],
(Nb + 1) � (Nb + 1) rotor inductance matrix.
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4.2. Calculation of inductances

It is well known that a successful simulation of the induction motors requires a precise calculation of all motor induc-
tances. For that reason, the Modified Winding Function Approach (MWFA) has been used for determining the self induc-
tances of stator coils and rotor loops as well as the mutual inductances between them in both healthy and airgap
eccentricity conditions. The skewing rotor bars effects and the linear rise of MMF across the slot were also considered thanks
to an extension in 2-D of the MWFA. Using this technique, the resulting inductances expressions are less complicated than
those obtained starting from the expression of inductance per unit of length. This makes easy their implementation into
algorithm and represents a good compromise between the performance of the model and the computation time. For more
details, see [15,16,24].

The simulation tests were performed on an 11 kW, 4-poles, 40 rotor bars three-phase induction motor [25]. The stator
windings are coupled in star with neutral connection. Initially, the motor inductances were calculated for healthy state then
with 50% of DE. Fig. 4 illustrates the effects of DE on the self inductance of the stator phase A (Fig. 4a and b) and on the mu-
tual inductance between phase A and the first rotor loop r1 (Fig. 4c and d).

After that, the motor was simulated in healthy state then with 50% of DE. the Fast Fourier Transform (FFT) was used to
explore the spectral contents of the stator line currents. Fig. 5 confirms that, in healthy state, the stator current spectrum
includes only the fundamental and the principle slot harmonics (PSH). However, when considering 50% of DE, Figs. 6 and
Fig. 4. The effects of DE on the motor inductances. (a) and (c) healthy motor, (b) and (d) 50% of DE.

Fig. 5. Stator current spectrum for healthy motor at rated load.



Fig. 6. Stator current spectrum with 50% of DE, s = 0.0286 (zoom around the fundamental).

Fig. 7. Stator current spectrum with 50% of DE, s = 0.0286 (zoom around the PSH).

Fig. 8. Stator current spectrum with 5% of SE and 50% of DE, s = 0.0245.
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7 show clearly the presence of specific frequency components around the fundamental and the PSH. These components are
in total agreement with the expressions (29) and (30).

Since the motors are not perfectly symmetrical, the effect of the inherent SE must be illustrated. For that reason, a small
level of SE (5%) was introduced in addition to the 50% of DE. Fig. 8 shows clearly that the inherent SE interacts with the DE
and gives rise to spectral components which are related to the mixed airgap eccentricity (at frequencies given by expression
(2)).

5. Conclusion

In this work, the stator line currents of three-phase squirrel cage induction motor, operating under healthy and with dy-
namic airgap eccentricity were analysed using the rotating field approach. This study was performed mainly to show the
exact signatures of the dynamic airgap eccentricity. It was demonstrated that, theoretically, this fault generates spectral
components around the fundamental and the PSH at the frequencies given by the expressions (29) and (30). But, in reality,
the induction motors are not perfectly symmetrical; in this direction, it was shown that an inherent level of SE is sufficient to
interact with DE and produce therefore, spectral components related to the mixed eccentricity (expression (2)).

Finally, this work can be regarded as an important theoretical study, because it provides analytical explanations to some
experimental observations shown in many previous papers and gives answers to some questions about the effect of the DE
on the stator current spectra.

Appendix
Rating power
 11 kW

Rated frequency
 50 Hz

Number of pole-pairs
 2

Number of rotor bars
 40

Number of stator slots
 48

Turns per coil
 28

Length of stator stack
 0.11 m

Rotor bar resistance
 31 lX

End ring resistance
 2.2 lX

Average radius
 0.082 m

Air gap length
 0.0008 m

Phase resistance
 1.75 X

Rotor inertia
 0.0754 kg m2
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