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 ملخص

كًا تى أٌضا اقتشاذ تأثٍش سًك انعٕاصل يضدٔخح , انعانً- kتى اقتشاذ تأثٍش إَٔاع يختهفح يٍ عٕاصل انثٕاتح راخ , فً ْزا انعًم

تى اقتشاذ تأثٍش , تالإضافح إنى رنك, انطثقاخ يع تأثٍش سًك الأكسٍذ انًكافئ نعاصل انثٕاتح ٔكزنك سًك انعٕاصل أحادٌح انطثقح

 عهى أداء ٔيٕثٕقٍح Al2O3عانً يثم - k خُثا إنى خُة يع تأثٍش انعٕاصل انثٍٍُح راخ SiO2يُخفض يثم - kانعٕاصل انثٍٍُح راخ 

a-ITZO TFT . نزنك تى تُفٍز انعذٌذ يٍ انتحهٍلاخ يٍ خلال انًحاكاج انعذدٌح نهدٓاص تٕاسطح تشَايحSilvaco Atlas انزي تى 

. استخذايّ لإخشاء تحهٍم سقًً يفصم نهتحقٍق فً انعلاقح تٍٍ ْزِ انتأثٍشاخ انًختهفح ٔأداء ٔيٕثٕقٍح اندٓاص

 انًشتكض عهى عاصل a-ITZO TFTعانً فً -kانًُخفض تطثقح عاصنح راخ -k راخ SiO2انُتائح أظٓشخ أٌ استثذال طثقح 

 يًاثهح نهتحسٍُاخ انُاخًح عٍ تُاقص انسًك انًادي نعاصل انثٕاتح a-ITZO TFTأحادي انطثقح ٌؤدي إنى تحسٍُاخ يغشٌح فً أداء 

. دٌٔ تأثٍشاخ انتسشب انًشتثطح تٓا

( DDT = 70 nm)يع سًاكح يادٌح أعهى  (SiO2/HfO2) انًشتكض عهى عاصل يضدٔج انطثقح a-ITZO TFTخٓاص , أٌضا

سثع ,  انًشتكض عهى الأكسٍذ انًكافئ يع سًاكح أقمa-ITZO TFTًٌكُّ أٌ ٌقذو َفس انخصائص انكٓشتائٍح انتً ٌقذيٓا خٓاص 

فً حٍٍ ٌقذو خصائص كٓشتائٍح أحسٍ تكثٍش يٍ انخصائص , دٌٔ تأثٍشاخ انتسشب انًشتثطح تٓا (EOT = 10 nm)يشاخ تقشٌثا 

(. DDT = 70 nm)يٍ أخم َفس انسًاكح انًادٌح  (SiO2 ) انًشتكض عهى عاصل أحادي انطثقح a-ITZO TFTانتً ٌقذيٓا 

 PT = 30)يع سًاكح يادٌح  (Al2O3/HfO2) انًشتكض عهى عاصل يضدٔج انطثقح a-ITZO TFTخٓاص , تالإضافح إنى رنك

nm)  ًٌكُّ أٌ ٌقذو خصائص كٓشتائٍح خٍذج أحسٍ يٍ انخصائص انتً ٌقذيٓا خٓاصa-ITZO TFT انًشتكض عهى عاصل يضدٔج 

-k انثٍٍُح راخ SiO2فئَّ لا ًٌكُُا إًْال انذٔس الأساسً نطثقح , يع رنك. يٍ أخم َفس انسًاكح انًادٌح (SiO2/HfO2)انطثقح 

, أٌضا. انتً تًهك تعض انصفاخ اندٍذج فًٍا ٌتعهق تحشكٍح انحايلاخ فً قُاج انتشاَضستٕس, انعانً-kانًُخفض تٍٍ انقُاج ٔانعاصل رٔ 

خاصح يٍ , إلا أٌ تأثٍشِ ضعٍف نهغاٌح عهى أداء اندٓاص ٔيٕثٕقٍتّ, عهى انشغى يٍ ٔخٕد تفأخ فً قًٍح انتسشب تٍٍ اندٓاصٌٍ

 .أخم تٕتشاخ انثٕاتح انًُخفضح

. Silvaco Atlas ؛EOT ؛عانً-k ؛يُخفض-k ؛Al2O3 ؛SiO2 ؛A-ITZO ؛TFT :الكلمات المفتاحية
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Abstract  

This work is mainly focused on a numerical optimization of a-ITZO TFT based on the 

gate dielectric materials. Different types of high-k gate dielectrics are proposed. The effect of 

the thickness of : the double-layered dielectric, the equivalent oxide and the mono-layered 

dielectric of the gate is also presented. In addition, the effect of the interfacial states that can 

subsist between the TFT channel and the gate dielectric is also studied, for first low-k 

dielectrics such as SiO2 and second for high-k dielectrics such as Al2O3. Accurate analyses were 

implemented through numerical simulation of the device by Silvaco Atlas software that was 

used to carry out a detailed numerical analysis for investigating the relationship between these 

different effects and the performance and reliability of the device. 

The results showed that replacing the low-k SiO2 layer by a high-k dielectric layer in TFT 

based on the mono-layered dielectric leads to attractive improvements in the performance of 

a-ITZO TFT similar to the improvements resulting from the decrease in the physical thickness 

of the gate dielectric without the associated leakage effects. 

Also, the TFT device based on the double-layered dielectric (SiO2/HfO2) with a higher 

thickness (DDT = 70 nm) it can provide the same electrical properties that are offered by TFT 

device based on the equivalent oxide with a less thickness, almost seven times (EOT = 10 nm), 

without the associated leakage effects, while provides electrical properties better than 

properties that are offered by TFT based on the mono-layered dielectric (SiO2), for the same 

thickness (MDT = 70 nm). 

In addition, the TFT device based on the double-layered dielectric (Al2O3/HfO2) with a 

physical thickness (PT = 30 nm) it can provide good electrical properties better than the 

properties provided by TFT based on the double-layered dielectric (SiO2/HfO2) for the same 

physical thickness. However, it we cannot neglect the fundamental role of the interfacial low-k 

SiO2 layer between the channel and the high-k dielectric, which has some beneficial qualities 

with regard to the carrier mobility in the transistor channel. Also, although there is a difference 

in the value of leakage between the two devices, its effect is very poor on the performance of 

the device and its reliability, especially for low gate tensions. 

Keywords: TFT; A-ITZO; SiO2; Al2O3; Low-k; High-k; EOT; Silvaco Atlas. 
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Résumé 

Dans ce travail, l’effets des différents types de diélectriques de la grille haute k, l'épaisseur 

diélectriques à double couche, et l'épaisseur d'oxyde équivalente du diélectrique de grille  ainsi 

que de l'épaisseur diélectrique monocouche de la grille ont été suggérés. En plus, l'effet des 

diélectriques interfaciaux à faible k tels que SiO2 a été suggéré, ainsi que l'effet des 

diélectriques interfaciaux à haute k tels que l'Al2O3 sur les performances et la fiabilité de a-

ITZO TCM. Par conséquent, plusieurs analyses ont été réalisées grâce à la simulation 

numérique du dispositif par le logiciel Silvaco Atlas, qui a été utilisé pour effectuer une analyse 

numérique détaillée afin d’étudier la relation entre ces différents effets et les performances et 

la fiabilité du dispositif. 

Les résultats ont montré que le remplacement de la couche de SiO2 à faible k par une 

couche diélectrique { haute k dans l’a-ITZO TCM basé sur la diélectrique monocouche conduit à 

des améliorations intéressantes dans les performances de l’a-ITZO TCM qui sont similaires aux 

améliorations résultant de la diminution de l’épaisseur du diélectrique de grille sans les effets 

de fuite associés. 

De même, le dispositif l’a-ITZO TCM basé sur le diélectrique à double couche (SiO2 / HfO2) 

avec une épaisseur plus élevée (DDT = 70 nm) peut fournir les mêmes propriétés électriques 

offertes par le dispositif a-ITZO TCM basé sur l’oxyde équivalent avec un épaisseur inférieure, 

presque sept fois (EOE = 10 nm), sans les effets de fuite associés, tout en offrant des propriétés 

électriques de bien meilleures que celles offertes par un a-ITZO TCM basé sur le diélectrique 

monocouche (SiO2), pour la même épaisseur (MDT = 70 nm). 

En outre, le dispositif a-ITZO TCM basé sur le diélectrique à double couche (Al2O3 / 

HfO2) avec une épaisseur physique (PT = 30 nm) peut offrir de meilleures propriétés 

électriques que les propriétés fournies par a-ITZO TCM basé sur diélectrique à double couche 

(SiO2 / HfO2) pour la même épaisseur physique. Cependant, nous ne pouvons pas ignorer le 

rôle fondamental de la couche interfaciaux à faible k SiO2 entre le canal et le diélectrique à 

haute k, qui présente des avantages en ce qui concerne la mobilité de la porteuse dans le canal 

du transistor. En outre bien qu'il y ait une différence de valeur de fuite entre les deux appareils, 

sauf que son effet est très faible sur les performances de l'appareil et sa fiabilité, en particulier 

pour les faibles tensions de la grille. 

Mots clés: TCM; A-ITZO; SiO2; Al2O3; faible k; haute k; EOE; Silvaco Atlas. 
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Amorphous oxide semiconductors (AOS) have attracted considerable attention for 

various electronic device applications [1] such as solar cells, transparent electrodes, touch 

screen panels, optoelectronic devices, in flat panel displays, and often used as a channel in the 

thin-film transistors (TFTs) [2]. Although several materials such as amorphous silicon (a-Si), 

polycrystalline silicon (pc-Si), organic semiconductors (OS), and ZnO which is formed as a 

polycrystalline structure can be used as active layers for  thin film transistor (TFT), there is 

growing interest in AOS based on zinc oxide because considered as promising materials for the 

channel of thin film transistor (TFT) in the next generation display backplanes because they 

can accomplish high mobility and large-area uniformity at low-temperature process as well as 

the use of plastic substrate [3]. Most prominent of these materials is amorphous indium-

gallium-zinc-oxide (a-IGZO) [4] who has several attractive advantages which include high 

transparency to visible light [5], uniform deposition at low temperature [6], good 

controllability of carrier concentration [7]. Recently, amorphous indium-tin-zinc-oxide (a-

ITZO) has attracted considerable attention as a new AOS material because it also requires low 

process temperature [8], it has a wide band gap (>3.02 eV) [9], shows good performance with 

high mobility (µFE ~30 cm2V-1s-1) [10], high work function (4.9-6.1 eV) [11], and a high 

transparency (>85 %) in the visible range [12]. Amorphous-ITZO with a mobility higher than a-

IGZO and lower cost has become one of the most promising materials which have been 

developed for future advanced to the backplanes in ultra-high-definition and high-frame-rate 

displays for replacing the a-IGZO [13].  

Historically, the dielectric most often used in TFT technology was SiO2, has been used 

as a gate oxide material for decades [14, 15].  In order raise the performance of TFT devices, 

researchers sought to reduce the thickness of the SiO2 gate dielectric for increase the gate 

capacitance per unit area, which will lead to lifting current and then raising transistor 

performance [15]. 
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But the problem is that the SiO2 gate dielectric thickness has steadily decreased until it 

arrived a level where the SiO2 will not be able to provide adequate reliability due to the 

increased of the direct tunneling gate leakage current, leading to higher power consumption 

and then to lower transistor reliability [16].  

Therefore, there has been a continuous search for dielectric materials that will offer a 

high capacitance per unit area and at the same time with a relatively large thickness, which can 

prevent or reduces the current leakage through the gate dielectric. 

It appears that, after investigating a multitude of materials, found that this is possible by 

increasing the 𝑘 of the material and that by replacing a high-k dielectric in place a low-k 

dielectric such as SiO2 (𝑘 = 3.9). Because higher-k material by the relative approximation of 

old/new 𝑘 can be physically thicker without being electrically thicker. This leading to 

increased or maintain the gate capacitance per unit area without the associated leakage effects. 

For example, a high-k dielectric material with dielectric constant (k=39) compared to 3.9 

for SiO2 can be made ten times thicker than SiO2  which helps to reduce the leakage of electrons 

across the dielectric pad of gate with achieving the same capacitance per unit area, and at the 

same time retaining the fast response of the transistor (retaining the switching speed of the 

device). 

The other problem here is that most of the high-k dielectric materials have much poorer 

properties than the conventional SiO2 [17], such as low interface quality, a poor morphological 

properties, and low thermal stability, in addition, the interface and oxide trap densities larger 

than those in SiO2 as well as the energy band gap is less than SiO2. It is known that the energy 

band gap can control the leakage of the gate current by a mechanism different from the 

thickness mechanism. Because the dielectric materials that have a higher band gap energy can 

prevent or reduce the current leakage through the gate dielectric with less thickness than the 

dielectrics that have a lower band gap energy [18]. 
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The ideal solution would be to using a double-layered dielectric consisting of a very thin 

dielectric layer possesses good morphological properties such as SiO2 (𝑘 = 3.9) in order to 

raise the quality of the interface and then obtaining a low interface traps density. Also, another 

dielectric layer is more thickness (compared to very thin SiO2 layer) with a high-k such as HfO2 

(𝑘 = 35) in order obtaining a lower electrical dielectric thickness (a lower effective gate 

dielectric thickness) that is referred to as the equivalent oxide thickness (EOT). Thus obtaining 

a higher capacitance per unit area and at the same time with a great physical thickness, which 

can prevent or reduces the direct tunneling current leakage through gate dielectric. 

This work consists of three main chapters; the content of each part is briefly described 

below: 

Chapter I: a-ITZO TFT overview 

The main purpose of this chapter is to conduct a comprehensive theoretical study. For 

this purpose we have carried out a bibliographic study provides general information about the 

a-ITZO, low-k dielectrics, high-k dielectrics, double-layered dielectrics, TFT and the method of 

extracting some output parameters of TFT such as the gate capacitance per unit area (𝐶𝑖), 

threshold voltage (VT), subthreshold swing (SS), field-effect mobility (µFE), on-current (Ion), on-

off current ratio (Ion/Ioff) and turn-on voltage (Von) of a-ITZO TFT as well as the resistivity (ρ) of 

the a-ITZO active channel layer. As this part also contains the definitions and equations as well 

as materials that will be used in our researches. 

Chapter II: Silvaco Atlas for TFT simulation 

The main purpose of this chapter is focused on Silvaco Atlas software and its uses in the 

numerical simulations of TFT. For this purpose we have carried out a bibliographic study 

provides general information about the TFT simulators by Silvaco TCAD Atlas software [19]. 

Chapter 3: Results and discussions 
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The main purpose of this chapter is to: 

- Elucidate the relation between the dielectric constant (k) effect of a range of the dielectric 

materials such as SiO2, Si3N4, Al2O3, Y2O3, Gd2O5, ZrxSi1-xOy, ZrO2,CeO2 La2O3, Ta2O5, HfO2, TiO2, 

Nb2O5, SrZrO3, BaSrTiO3 and SrTiO3, and the change in the electrical characteristics and then 

the electrical properties of a-ITZO TFT. 

- Elucidate the relation between the effect of the different types of the gate dielectric 

thicknesses and the change in the electrical properties of a-ITZO TFT. 

- Conduct a comparative study in order to highlight the impact of the interfacial high-k 

dielectrics such as Al2O3 compared to the interfacial low-k dielectrics such as SiO2, the existing 

between the a-ITZO active layer and high-k HfO2 layer in a-ITZO TFT based on the double-

layered dielectric. 

For this purpose, several different effects on the electrical properties of the a-ITZO TFT 

were suggested. 

In this part, depending on these different effects, we will study and discuss the electrical 

characteristics as the transfer (𝐼𝐷𝑆 − 𝑉𝐺𝑆) and output (𝐼𝐷𝑆 − 𝑉𝐷𝑆) characteristics, in addition to 

the electrical properties such as parameters : the 𝐶𝑖 , 𝑉𝑇 , 𝑆𝑆, 𝜇𝐹𝐸 , 𝐼𝑜𝑛 , 𝐼𝑜𝑛 𝐼𝑜𝑓𝑓  and 𝑉𝑜𝑛  of a-ITZO 

TFT as well as the 𝜌 of the a-ITZO active channel layer. 
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I.1 Introduction 

Although several materials can be used as active layers for thin film transistors (TFTs), 

there is growing interest in amorphous indium-tin-zinc-oxide (a-ITZO) because it has many 

good properties [1-3] such as a low process temperature [4], it has a wide band gap (≥ 3.02 eV) 

[5], shows a good performance with a high mobility (µFE ~ 30 cm2V-1s-1) [6], a high work 

function (4.9-6.1 eV) [7] and a high transparency (> 85 %) in the visible range [7]. 

Researchers sought to reduce the thickness of the SiO2 gate dielectric for raising TFT 

performance. But the SiO2 thickness has decreased until it arrived to a level where the SiO2 will 

not be able to provide adequate reliability.  

The solution to this problem will be by replacing SiO2 with one of the high-k dielectrics. 

These materials can be physically thicker without being electrically thicker, leading to 

increased or maintain the good performance of the device, with improving its reliability.  

The main purpose of this chapter is to conduct a comprehensive theoretical study. For 

this purpose we have carried out a bibliographic study on TFT, a-ITZO, and dielectrics, in 

addition to the method of extraction of some parameters such as threshold voltage (VT), 

subthreshold swing (SS), field-effect mobility (µFE), on-current (Ion), on-off current ratio 

(Ion/Ioff), turn-on voltage (Von) of a-ITZO TFT and the resistivity (ρ) of the a-ITZO active channel 

layer. 

I.2 The density of states (DOSs) for amorphous semiconductors 

The total density of states (DOS) for as-deposited amorphous semiconductor materials 

(before annealing) is presented in Figure I.1.a. DOS is composed  of : 

- states of two tail bands (a donor-like valence band and an acceptor-like conduction 

band). 
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- States of two deep level bands (one acceptor-like and the other donor-like), localized 

trap states, trap states in H-poor disordered materials (passivated by H), which are 

modeled using a Gaussian distribution. 

-  Other dee levels which may be either uniform or modeled using Gaussian 

distribution  in addition to doping levels and isolated states. 

Figure I.1.b shows that the subgap density of states (DOS)  after annealing (g(E)) is 

composed of four bands : acceptor-like exponentially conduction band tail states (gTA(E)), 

donor-like exponentially valence band tail states (gTD(E)), acceptor-like Gaussian deep levels 

band states (gGA(E)) and donor-like Gaussian deep levels band states (gGD(E)) [8]. These DOS 

can be modeled as [9]: 

𝒈 𝑬 =  𝒈𝑻𝑨 𝑬 + 𝒈𝑻𝑫 𝑬 + 𝒈𝑮𝑨 𝑬 + 𝒈𝑮𝑫 𝑬   (I.1) 

Here: 

𝒈𝑻𝑨 𝑬 =  𝑵𝑻𝑨𝒆𝒙𝒑  
𝑬−𝑬𝒄

𝑾𝑻𝑨
   (I.2) 

𝒈𝑻𝑫 𝑬 =  𝑵𝑻𝑫𝒆𝒙𝒑  
𝑬𝒗−𝑬

𝑾𝑻𝑫
   (I.3) 

𝒈𝑮𝑨 𝑬 =  𝑵𝑮𝑨𝒆𝒙𝒑  −  
𝑬𝑮𝑨−𝑬

𝑾𝑮𝑨
 
𝟐

   (I.4) 

𝒈𝑮𝑫 𝑬 =  𝑵𝑮𝑫𝒆𝒙𝒑  −  
𝑬−𝑬𝑮𝑫

𝑾𝑮𝑫
 
𝟐

   (I.5) 

where E is the trap energy, Ec is the conduction band energy, Ev is the valence band energy and 

the subscripts (T, G, A, D) stand for tail, Gaussian (deep level), acceptor and donor states, 

respectively, while as shown in Figures I.1.a and I.1.b that NTA and NTD are the densities of 

acceptor and donor-like states in the tail distribution, respectively at the conduction and 

valence band edges, respectively. NGA and NGD are the maximum densities of acceptor and 

donor-like states in Gaussian distribution, respectively. WTA and WTD are the characteristic 

decay energies for the tail distribution of acceptor and donor like states, respectively. WGA and 
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WGD are the characteristic decay energies for Gaussian distribution of acceptor and donor like 

states, respectively. EGA and EGD are the energies that correspond to the Gaussian distribution 

peak for acceptor and donor like states, respectively, these energies are measured from the 

conduction and valence band edges, respectively. 
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Figure I.1 Schematic electronic structure of a-IGZO where (a) shows the total density of states 

(DOS) within the band gap of as-deposited a-IGZO [10-13], while (b) shows the density of 

states (DOS) within the subgap of disordered materials after annealing (g(E))[14]. 

(a) 
 

(b) 
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I.3 The a-ITZO in the In2O3-SnO2-ZnO System 

The a-ITZO is a potential replacement for the currently used a-IGZO as a transparent 

conducting oxide (TCO) for the channel of thin film transistor (TFT). At the present time, a-

IGZO is the material of choice for the channel layer, but the increasing cost of gallium metal and 

the advent of new technologies will require alternative TCOs.  

Although several materials can be used as active layers for thin film transistors (TFTs), 

there is growing interest in amorphous indium-tin-zinc-oxide (a-ITZO) (Figure I.2.a) because 

considered as promising new AOS materials for the channel of TFT in the next generation 

display backplanes because it has high properties [1-3]: it requires a low process temperature, 

it has a wide band gap, shows a good performance with a high mobility, a high work function 

and a high transparency in the visible range [4-7]. 

Over the past years, thin film studies have been amassed that report the electrical and 

optical properties of various ITZO compositions [15]. To better understand the equilibrium 

phases that form in the ITZO multi-component system, we first briefly review the following 

end-points: 

Amorphous indium-tin-zinc-oxide (a-ITZO), a compound of indium oxide (In2O3), tin 

oxide (SnO2) and zinc oxide (ZnO) [16]. They are all n-type semiconductors. In2O3 has a 

bixbyite-type cubic crystal structure, which is also known as the C-type modification of the 

rare-earth sesquioxides [17]. Bixbyite is described as a fluorite-type structure with one-

quarter of the anions “missing” in an ordered fashion. The cations reside at the body-center of a 

cube with anions occupying the corners. The two “missing” anions are located either across the 

body-diagonal of the cube (b site) or the face-center of the cube (d site) as shown in (Figure 

I.2.b) [15], and SnO2 has a rutile crystal structure, where tin is coordinated by six oxygen atoms 

and oxygen is coordinated by three tin atoms [18]. Rutile is described by a hexagonal close 

packing of the anions with half of the octahedral holes filled by the cations (Figure I.2.c) [15], 
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while ZnO has a wurtzite crystal structure, which is a tetrahedral structure where zinc is 

coordinated by four oxygen atoms and oxygen is coordinated by four zinc atoms [19]. The 

structure consists of a hexagonal close packing of oxygen anions with zinc cations filling half of 

the tetrahedral holes, all of which exhibit the same orientation (Figure I.2.d) [15]. 

 

 
Figure I.2 Structures for each of a-ITZO, In2O3, SnO2, and ZnO, respectively, where (a) shows the 

amorphous structure of ITZO [20], (b) shows bixbyite-type cubic crystal structure of In2O3[21], 

(c) shows a rutile crystal structure of SnO2[22], and (d) shows a wurtzite crystal structure of 

ZnO [23]. 

Figure I.3 summarizes the widely recognized n-type TCOs encompassing the In2O3–

SnO2–ZnO system for practical applications [24]. Binary compounds such as In2O3, SnO2 and 

(a) 
 

(b) 
 

(c) 
 

(d) 
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ZnO, ternary compounds such as ITO, and IZO, quaternary compounds such as ITZO and multi-

component oxides including (ZnO)1−x(In2O3)x, (In2O3)x(SnO2)1−x and (ZnO)1−x(SnO2)x are also 

the subject of investigation [15, 25]. Among all the compounds for ZnO-based TCOs, a-ITZO is 

thought to be the best candidates so far. 
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Figure I.3 The ternary diagram of TCOs in In2O3-SnO2-ZnO system where (a) shows crystalline 

phase diagram of TCOs in In2O3-SnO2-ZnO system and (b) shows some TCO semiconductors of 

this material family [15, 25]. 

(a) 
 

(b) 
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I.4 Thin film transistors (TFTs) 

TFTs are a class of field effect transistors (FETs), which the current through the device 

is modulated on the same basic principle as the metal oxide semiconductor field effect 

transistor (MOSFET) [26]. Because its structure and operation principles are similar to those of 

MOSFETs, which is the most critical device component in modern integrated circuits (ICs) [27].  

TFTs are three terminal devices based on field effect with insulated gate built on an 

insulating substrate or surface.  The current flowing between drain and source electrodes of a 

TFT  is modulated by the capacitive injection of carriers close to the dielectric/semiconductor 

interface, known as field effect  [26, 28].  The operation principle of TFTs is the same as that for 

MOSFETs.  MOSFETs are normally fabricated on a mono-crystalline Si substrate,  while TFTs 

are often fabricated on insulating glass substrates with a  thin polycrystalline or amorphous 

film as the active layer.  The fabrication of TFTs is more flexible than MOSFETs because of the 

additional freedom in the choice of a semiconductor other than Si. For example, large band gap 

semiconductors such as  CdSe and CdS may be used.  With the large band gap semiconductors 

as the active layer, the density of thermally generated carriers can be very small compared to 

the density of majority carriers [26, 29]. 

I.4.1 History of TFTs 

Just years ago, it would have been hard to predict that TFTs would become so 

widespread in society and necessary in our daily life [30]. The time taken from the start of the 

research and development of TFTs to their expansion has been unexpectedly short [30].  

Therefore, we cannot easily predict the future prospects of the development of TFT 

technologies; however, it will be beneficial for constructing future strategies to review the 
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history of the development of TFT technologies and study how they have developed [30]. The 

development histories of TFTs and MOSFETs are similar, as shown in Figure I.4 [26, 27]. 

 

Figure I.4  History of oxide thin - film transistors (TFTs), IC development and flat panel displays 

using a transparent amorphous oxide semiconductor (TAOS) TFT backplane [26, 27]. 
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The metal insulator semiconductor field effect transistor (MISFET) conceptually was 

born in 1925 [27, 31]. The early popular TFT versions were made of compound 

semiconductors, such as CdS or CdSe [32, 33]. This kind of TFT has a high field effect mobility, 

μeff, e.g., > 40 cm2/Vs [27].  

The first attempt for implementing a TFT device is traced back to the 40‘s and it was a 

thin film field effect device used a germanium film (Bardeen and Brattain, 1948) [26].  

The history and the structure of the TFTs, as it is known today, began with the work of 

Weimer (P. K. Weimer, 1962). Polycrystalline cadmium sulfide (CdS) was the material that 

used for the thin-film and silicon monoxide as the insulator [26]. The analysis of the device 

characteristics was realized by Borkan and Weimer (Borkan and Weimer, 1963), based on 

Shockley‘s JFET analysis [26, 34]. 

In the 70‘s, two very important events changed dramatically the prospects for TFTs.  

The first was the implementation of a thin-film semiconductor instead of crystalline bulk 

silicon material, like Cadmium Selenide (CdSe). The impact of this implementation was the 

reduction of the fabrication cost and the decrease of the transistor size. The second landmark 

was the Active Matrix addressing method proposed by (Lechner et al., 1971) and the fact that 

the switch device needed in each pixel of the matrix can be materialized with the use of a TFT 

device [26, 34].  

The CdSe TFT LCD was first demonstrated in 1973 [27, 34]. However,  mass production 

of this kind of LCD  on large-area substrates has never been realized. Among many possible 

reasons,  complications in controlling the compound semiconductor thin film material 

properties and device reliability over large areas are often discussed [27]. 
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In 1975, they demonstrated that the p/n channels of an amorphous semiconductor thin 

film deposited by glow discharge plasma chemical vapor deposition (CVD) can be controlled. 

This indicated that the electrical characteristics of the a-Si semiconductor can be controlled by 

doping phosphorus (P) or boron (B) impurities because dangling bonds are terminated by 

hydrogen in the a-Si:H thin film [30, 35]. 

In 1981, they showed that a-Si TFTs can be used to drive liquid crystal displays (LCDs) 

[30, 36]. This finding greatly accelerated the research and development of a-Si TFTs. Since 

1982, many prototypes a-Si TFT LCDs have continuously been put out by various panel 

manufacturers. In 1983, Sharp released a prototype 3-in. full-color LCD panel. With the aim of 

mass production and practical application, the 3-in. the color TV was developed in 1986, and 

its production and sale were started in 1987. Furthermore, in 1988, Sharp developed a 14-in. 

TFT LCD and demonstrated that a-Si TFT LCDs are flat panel displays (FPDs) that will replace 

cathode ray tube (CRT) displays and become the mainstream of next-generation displays [30]. 

The production of the first-generation (G1)-size TFT LCD panels was started in 1987. In 

2009, Sharp Sakai Factory (Osaka) started producing LCD panels using G10-size glass [30]. 

I.4.2 TFT structure 

TFTs can be seen as a class of FETs where comprising three terminals (gate, source, and 

drain) and including semiconductive, dielectric, and conductive layers. The semiconductor is 

placed between source/drain electrodes and the dielectric. This last is located between the 

gate electrode and the semiconductor. The main idea in this device is to control the current 

between drain and source (IDS) by varying the potential between gate and source (VGS), 

inducing free charge accumulation at the dielectric/semiconductor interface [37, 38]. 



 

Chapter I                                             a-ITZO TFT overview                                           Page 22 
 

 

 

 

Due to the flexibility in the thin film deposition process, TFTs can be prepared as 

various structures,  e.g., depending on the relative position of the gate and the source/drain 

electrodes and whether a channel passivation layer is required leading to two basic types of 

TFT structures [26]. 

The first major structural distinction in the TFTs is the arrangement of the electrodes [26]: 

- Coplanar where the source and drain electrodes are located on the same side as the gate 

electrode. 

- Staggered where the source and the drain electrodes are located at the opposite side to the 

gate electrode separated with the semiconductor layer. 

The second major distinction of the TFT is the level of the gate electrode [26]: 

- The top gate where the gate is located above the semiconductor layer. 

-  The bottom gate where the gate is located below the semiconductor layer. 

With these two distinctions, depending on the location of the layers, the basic TFT 

structures are divided into four sections as shown in  Figure I.5 [39]. They can either be 

staggered or coplanar (whether drain/source and gate are on opposite or on the same side 

regarding the semiconductor) and, inside them, top or bottom gate (according to the location 

of the gate) [39].  
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Figure I.5 The most typical TFT structures depending on the positioning of layers: (a) top-gate 

staggered, (b) top-gate coplanar, (c) bottom-gate staggered, (d) bottom-gate coplanar TFT 

configurations [39]. 

The flat panel manufacturers mainly use the bottom gate TFT technology because this 

structure is made with fewer lithography masks which lowering production costs [26]. 

In general, the TFT-fabrication process can be classified and described as follows [37, 

40]: formation of the gate electrode, gate oxide, active layer, and source-drain electrodes. 

I.4.3 Output parameters 

The principal electrical characteristics of TFT are the drain current-gate voltage 

(𝐼𝐷𝑆 − 𝐼𝐺𝑆) at a different drain voltage (𝑉𝐷𝑆), known by transfer characteristic and the drain 

current-drain voltage (𝐼𝐷𝑆 − 𝑉𝐷𝑆) at a different gate voltage (𝑉𝐺𝑆), known by output 

characteristic. From the transfer characteristic, a number of output parameters are extracted 

as shown in Figure I.6 where [41-43]: 
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- The threshold voltage (𝑉𝑇) is turn-on voltage in transfer characteristic of the transistor at the 

semi-logarithmic corresponds to minimum gate voltage required to create a strong inversion 

and thus achieving the conduction between drain and source. When the 𝑉𝐺𝑆 = 𝑉𝑇 , only 

conduction channel is formed close to the semiconductor/dielectric interface between the 

source and drain electrodes and conduction takes place where an inversion layer forms at the 

interface between the insulating layer (oxide) and the substrate (gate) of the transistor. It can 

be positive or negative [44]. 

It can be extracted in several ways, such as a constant-current (CC) method, a match-

point (MP) method, a second-derivative (SD) method, a third-derivative (TD) method, a 

current-to-square-root-transconductance ratio (CTSRTR) method and a linear extrapolation 

(LE) method [45]. The latter was used to calculate 𝑉𝑇[46]: 

For the linear region: it consists of finding the gate voltage axis intercept (i.e., 𝐼𝐷𝑆 = 0) of 

the 𝐼𝐷𝑆 − 𝑉𝐺𝑆  curve linear extrapolation at its maximum first derivative point. Then the value of 

𝑉𝑇  is often calculated by subtracting 𝑉𝐷𝑆 2  from the resulting gate voltage axis intercept.  

For the saturation region: the LE method, is similar to that in the linear region but it 

uses the 𝐼𝐷𝑆
1 2 

− 𝑉𝐺𝑆  characteristics instead.  

This case (saturation), we can do without them in this study because it is considered 

filler. 

- Subthreshold swing (𝑆𝑆) is the inverse of the maximum slope of the transfer characteristic. 

typically small values, 𝑆𝑆 ≪ 1, result in higher speeds and lower power consumption. It can be 

written as follows [47, 48]: 

𝑺𝑺 =  𝜸′  −𝟏 =   𝒕𝒈(𝜸 )𝒎𝒂𝒙 
−𝟏  =   

𝝏𝒍𝒐𝒈 𝑰𝑫𝑺 

𝝏𝑽𝑮𝑺
 
𝒎𝒂𝒙

 
−𝟏

  ≪ 𝟏 ≠ 𝟎  (I.6) 

- Field-effect mobility (µ𝐹𝐸) at the linear regime and saturation mobility (µ𝑆𝑎𝑡 ) at the saturation 

regime when the semiconductor close to the drain region becomes depleted. This mobility for 
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as-deposed a-ITZO TFT can exhibit poorer values [47, 49-51] while good quality a-ITZO that 

undergoes an annealing treatment (at 300 𝐶° and over) or an optimized deposition condition 

exhibits higher saturation mobility [52]. µ𝐹𝐸  is calculated in the linear regime (for 𝑉𝐷𝑆 = 0.1 ≪

𝑉𝐺𝑆) from the slope of the transfer (𝐼𝐷𝑆 − 𝑉𝐺𝑆) characteristic curve of the transistor at the linear 

plot as follows [47]: 

𝑰𝑫𝑺 =  𝜶′ 𝑽𝑮𝑺 − 𝑽𝑻   (I.7) 

Where 

𝜶 ′ =
𝝁𝑭𝑬∙𝑾∙𝑪𝒊

𝑳
 ∙ 𝑽𝑫𝑺  (I.8) 

Then: 

𝝁𝑭𝑬 =
𝜶′ ∙𝑳

𝑾∙𝑪𝒊∙𝑽𝑫𝑺
  (I.9) 

Here, 𝐿 and 𝑊 are the length and width of the channel, respectively, while 𝐶𝑖  is the capacitance 

per unit area that is given by [47]: 

𝑪𝒊 =
𝜺𝟎∙𝒌𝒐𝒙

𝑻𝒐𝒙
  (I.10) 

where 𝑘𝑜𝑥  is the relative permittivity of the dielectric oxide, 𝜀0 is the permittivity of free space 

(the vacuum permittivity) and 𝑇𝑜𝑥  is the dielectric oxide thickness. 

While 𝜇𝑆𝑎𝑡  is calculated in the saturation regime (for 𝑉𝐷𝑆 = 10𝑉 ≫ 𝑉𝐺𝑆) from the slope 

of the linear 𝐼𝐷𝑆

1
2 (𝑉𝐺𝑆) curve as follows [47]: 

𝑰
𝑫𝑺

𝟏
𝟐 = 𝜷′ 𝑽𝑮𝑺 − 𝑽𝑻   (I.11) 

where 

𝜷′ =  𝑪𝒊 ∙ 𝝁𝑺𝒂𝒕 ∙
𝑾

𝟐𝑳
  (I.11) 

Then: 

𝝁𝑺𝒂𝒕 =
𝟐𝜷′ 𝟐∙𝑳

𝑪𝒊∙𝑾
  (I.13) 
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This case (saturation), we can also be dispensed in this study because it is considered 

filler. 

- The on-state current (𝐼𝑜𝑛 ) is the maximum 𝐼𝐷𝑆  in transfer characteristic at the semi-

logarithmic plot [53]. 

- The off-state current (𝐼𝑜𝑓𝑓 ) is the minimum 𝐼𝐷𝑆  in transfer characteristic at the semi-

logarithmic plot [54]. 

- The on-off current ratio (𝐼𝑜𝑛 /𝐼𝑜𝑓𝑓 ) is the characterizes how much the difference between the 

on state current (𝐼𝑜𝑛 ) and off-state current (𝐼𝑜𝑓𝑓 ) in transfer characteristic at the semi-

logarithmic plot [55]. A ratio above 106 is typically obtained in TFT and a large value is 

required for their successful usage as electronic switches  [56]. 

- Turn-on voltage (𝑉𝑜𝑛 ) is a much more precise parameter to quantify the drain current onset 

than 𝑉𝑇  [57]. Additional of Figure I.6 shows there is no compelling justification for selecting 𝑉𝑇  

as a meaningful indicator of the onset of the drain current. 

Figure 1.6 is a brief reminder of the extraction method of these parameters. 
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Figure I.6 The extraction methods of the a-ITZO TFT output parameters. 

- The resistivity (𝜌) of a-ITZO films is evaluated from the current-voltage (𝐼 − 𝑉) measurement 

plot. In this measurement, weestablished the current-voltage measurement and estimated the 

resistivity of the single layer of a-ITZO using the following equation [59]: 

𝝆 =
𝑽

𝑰
∙
𝑾

𝑳
∙ 𝑻  (I.14) 

Where 𝑉 and 𝐼 are the input voltage and the output current, respectively, 𝑊 and 𝐿 are the 

width and length of the electrode, respectively, while 𝑇 is the thickness of the a-ITZO layer. 

I.5 Low-k dielectric materials 

There are two primary approaches to achieve low-k dielectric materials. The first one is 

to lower the electronic contribution by the addition of fluorine (𝐹) [60] and/or carbon (𝐶) [61], 

which will provide the material with an inherently lower electronic polarizability. The second 

one is to lower the contribution due to the orientation and or the ionic contribution. This can 
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be done by the introduction of a free volume in a material, which will decrease the number of 

polarizable groups per unit volume and will lower the atomic or dipolar contributions. 

Generally, the low-k materials fall into three categories, namely inorganic, organic, and hybrid 

(organo-silicates). Dielectric materials due to their hydrophobic nature and low polarizability, 

organic dielectric materials show lower k values than inorganic materials. However, inorganic 

materials retain a SiO2-like matrix, which helps them to integrate easily into the existing SiO2-

like processes. Hybrid materials, on the other hand, are typically doped with 𝐶 to take 

advantages of both organic and inorganic regimes[62].  

The variation in the dielectric constant is attributed to the frequency dependence of the 

polarization mechanisms that contribute to 𝑘. The polarizability and the 𝑘 value of a dielectric 

material are generally results of the addition of three components (i.e., electronic + atomic + 

dipolar). One approach to reducing the 𝑘 value of a dielectric is to introduce 𝐶 or 𝐹 atoms to 

increase the free volume of the matrix which will decrease the number of polarizable groups 

per unit volume. For example, in SiO2 (𝑘 = 3.9), the introduction of 𝐶 atoms to form SiCOH (𝑘 is 

between 2.7 and 3.3), and 𝐹 atoms to form fluoro-silicate glass (𝑘 is between 3.2 and 4.0), and 

fluorinated polymides (𝑘 is in between 2.5 and 2.9), reduces its 𝑘 value. On the other hand, 

hydroxyl and carbonyl groups are polar functional groups which can attract water via 

hydrogen bonding and thus drastically increase the dielectric constant (𝑘 of water ∼ 78.5). 

Thus to formulate a low-k material polar functionality containing elements like oxygen or 

nitrogen should be avoided. The other approach that has been successfully implemented to 

reduce the k value is by introducing an air gap (𝑘 of air is 1) or pores [62].  

 The addition of pores in a dielectric material is particularly challenging because the 

percentage of pores needed for low-k dielectric materials is not an absolute number that can be 

applied to the film. Thus the overall dielectric constant of a material can be varied from that of 
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a dense material down to the value of air (𝑘 = 1) [63-65]. However, the porosity of a foam 

(static mixture) depends upon many factors, for example, pore diameter, distribution of 

microstructure, and thickness of the pores (Figure I.7). 

 

Figure I.7 Different sizes, distribution, and structure of pores inside a low-k porous dielectric 

material [66]. 

Table I.1 shows some of the promising low-k dielectric materials and their suitable 

deposition methods. 
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Table I.1 Comparative analysis of deposition processes and dielectric constants of some low-k 

dielectric materials [67]. 

I.6 High-k dielectric materials 

The term high-k dielectric refers to a material with a high dielectric constant, as 

compared to silicon dioxide, used in semiconductor manufacturing processes which replaces 

the silicon dioxide gate dielectric. the implementation of high-k gate dielectrics is one of the 

several strategies developed to allow further miniaturization of microelectronic components. 

Industry for semiconductors based devices in a combination with dielectrics, such as 

TFT, mainly depend on the gate dielectric material type, which will provide a very high-k, low 

leakage current and a low equivalent oxide thickness (𝐸𝑂𝑇) compared to silicon dioxide (SiO2) 

[60, 68-70]. The search is spurred by the urgency of minimizing power consumption, 

particularly in battery-driven high-performance 𝑠𝑢𝑏 − 100 𝑛𝑚 devices [71-73]. As the 

thickness of SiO2approaches < 1.5 𝑛𝑚, the leakage current becomes > 1 𝐴/𝑐𝑚2and the tunnel 

Dielectric material Dielectric constant Deposition process 

Silicon dioxide (SiO2) 3.8 − 3.9 PECVD 

Carbon doped SiO2 2.2 − 2.7 PECVD 

Bezocyclobutane (BCB) 2.49 − 2.65 Spin-on 

HSSQ 2.9 Spin-on 

MSSQ 2.7 Spin-on 

Polyarelene (PAE) 2.8 Spin-on 

Parylene-N 2.8 CVD 

Parylene-F 2.3 − 2.5 CVD 

Teflon AF 1.89 − 1.93 Spin-on 

Diamond like carbon (DLC) 2.7 − 3.4 PECVD 

Fluorinated DLC 2.4 − 2.8 PECVD 

Aromatic thermosets (SiLK) 2.6 − 2.8 Spin-on 
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current is seen to increase significantly. Therefore, it is expected that the future high-k 

materials for 𝑠𝑢𝑏 − 100 𝑛𝑚 node technology should provide excellent electrical characteristics 

such as dielectric constant (𝑘) > 30, interface density < 1 × 1011  𝑐𝑚−2/𝑒𝑉, tunneling current 

< 1 𝑚𝐴/𝑐𝑚2, and negligible hysteresis [74–76]. An important issue preventing the 

implementation of high-k gate material is charge trapping in pre-existing traps inside the 

dielectric material, which affects the threshold voltage [17]. 

Replacing the silicon dioxide gate dielectric with another material adds complexity to 

the manufacturing process. Silicon dioxide can be formed by oxidizing the underlying silicon, 

ensuring a uniform, conformal oxide and high interface quality [77]. As a consequence, 

development efforts have focused on finding a material with a requisitely high dielectric 

constant that can be easily integrated into a manufacturing process. Other key considerations 

include band alignment to silicon (which may alter leakage current), film morphology, thermal 

stability, Maintain a high mobility of charge carriers in the channel and minimization of 

electrical defects in the film and interface. Materials which have received considerable 

attention are HfSiO4, ZrSiO4, HfO2, and ZrO2, typically deposited using atomic layer deposition 

[77]. 

 Table I.2 shows the comparative analysis of band gaps and dielectric constants of 

different promising high-k materials. 
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Table I.2 Comparative analysis of band gaps and dielectric constants of some high-k dielectric 

materials. 

I.7 Quantum mechanical tunneling and gate leakage 

Gate leakage in a modern transistor occurs through a process called quantum 

mechanical tunneling [102-105]. Under normal condition, all the electrons are on the upstream 

side of the gate. Quantum mechanical tunneling occurs when the gate dimension is so thin that 

the electrons (or holes) have a certain statistical probability of being on the downstream side 

of the gate without actually sloshing over the gate. In modern transistors, the gate thickness is 

about five atomic layers. The thinner gate leads to a larger tunneling current and then higher 

power consumption [106-108]. 

The tunneling current can be reduced by increasing the physical thickness of the gate 

dielectric [109-112]. The problem here is that the increase of the physical thickness of the SiO2 

Dielectric material Band gap(𝒆𝑽) Dielectric constant Ref 

Si3N4 5 7.5 [78, 79] 

Al2O3 8.7 8.5-10.5 [80] 

ZrSiO4 ∼ 6 10-12 [80] 

HfxSi1-xOy 6 15-25 [81] 

ZrO2 5.8 25 [82-84] 

HfO2 5.7 35 [82] 

LaAlO3 5.7 25 [85] 

La2O3 4.3 27 [78, 79] 

Ta2O5 4 − 4.5 20-35 [86-89] 

CeO2 5.5 26 [90-92] 

Y2O3 5.6 12-20 [93,94] 

Nb2O5 - 50-200 [95-97] 

TiO2 3 − 3.5 30-100 [93, 98-101] 

https://www.intel.com/pressroom/kits/advancedtech/doodle/ref_HiK-MG/ref_HiK-MG1.htm
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gate dielectric means that the electrical oxide thickness is increased, which reduces the 

transistor performance [113].  

High-k dielectrics are used in the semiconductor-based device to replace SiO2 gate 

dielectric or another dielectric layer of the device, as one of the several methods developed to 

allow further miniaturization of the device, colloquially referred to as extending Moore’s Law 

[114-118]. 

SiO2 used conventionally as a gate oxide material has a low 𝑘 of 3.9. Many high-k (higher 

than 3.9) materials can be cited, such as oxides of the transition metals such as TaO2, TiO2, 

Al2O3, ZrO2, and HfO2, ferroelectric materials such as BaSrTiO3, and metal silicates such as 

ZrSiO4 and HfSiO4.  

Different parameters of TFTs such as channel length, channel width, gate oxide 

thickness, and other dimensions have been scaled down for improving performances. When 

the sizes approach 𝑠𝑢𝑏 − 22 𝑛𝑚 range, several issues arise to make further scaling difficult. As 

transistors have decreased in size, the thickness of the SiO2 gate dielectric has steadily 

decreased to increase the gate capacitance and thereby the current and performance of the 

device [118, 119].  

However, as mentioned above, with thinner oxide the rate of tunneling gate leakage 

rises, which contributes to power dissipation and the device reliability is affected. 

Besides the gate dielectric thickness, there are many other scaling problems, such as 

sensitivity to doping fluctuations, interface state and surface charges, different kinds of short-

channel effects, quantum confinement in the inversion layer, and source-drain series resistance 

... etc, which can affect transistor characteristics in the sub-nm range. With planar technology, a 

channel length of 20 𝑛𝑚 is possible, but for practical application, most likely a 10 𝑛𝑚 channel 

length is the scaling limit, even for three-dimensional structures [120-122]. 
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The rapid scaling of TFTs can be obtained by substituting the traditional gate oxide, 

SiO2, with high-k dielectrics, which can maintain the same capacitance with much lower 

leakage current [123, 124].  

I.8 Equivalent oxide thickness of the mono-layer dielectrics 

By substituting a high-k dielectric material instead of the SiO2 we can obtain a lower 

effective thickness (electrical thickness) of the gate dielectric that is referred to as the 

equivalent oxide thickness (EOT). EOT is a distance, usually given in nanometer (nm), which 

indicates how thick a SiO2 film should be to produce the same effect as in use high-k material 

[125]. The term is often used to describe field effect transistors, which contain a dielectric 

material between the gate and the active channel region. 

The conceptual advantage of a high-k dielectric can be monitored by considering a 

simple parallel plate capacitor as shown in Figure I.8(a, b). 

 

Figure I.8 Simplified representation of the three-dimensional structure of a simple parallel 

plate capacitor with (a) low-k dielectric and (b) high-k dielectric. 

The capacitance of the structure in case (a) can be calculated according to the following 

equation [126]: 

𝑪𝒐𝒙 = 𝑪𝑺𝒊𝑶𝟐
=  

𝜺𝟎∙𝒌𝑺𝒊𝑶𝟐
∙𝑳∙𝑾

𝑻𝑺𝒊𝑶𝟐

=  
𝜺𝑺𝒊𝑶𝟐

∙𝑳∙𝑾

𝑻𝑺𝒊𝑶𝟐

=  
𝜺𝑺𝒊𝑶𝟐

∙𝑨

𝑻𝑺𝒊𝑶𝟐

= (𝑪𝒐𝒙)𝑼𝑨 ∙ 𝑨 = (𝑪𝑺𝒊𝑶𝟐
)𝑼𝑨 ∙ 𝑨 (I.15) 



 

Chapter I                                             a-ITZO TFT overview                                           Page 35 
 

 

 

 

where 𝐶𝑜𝑥  is the overall capacitance of the dielectric oxide, 𝐶𝑆𝑖𝑂2
 is the capacitance of SiO2, 𝜀0 is 

the permittivity of free space (vacuum permittivity), 𝑘𝑆𝑖𝑂2
 is the dielectric constant (relative 

permittivity) of SiO2, 𝜀𝑆𝑖𝑂2
 is the permittivity (absolute) of SiO2, 𝑇𝑆𝑖𝑂2

 is the thicknesses of SiO2, L 

and W are, respectively, the length and width of the dielectric oxide (or plates), A is the cross-

section area of the dielectric oxide (or plates), (𝐶𝑜𝑥 )𝑈𝐴  is the capacitance per unit area for 

dielectric oxide and (𝐶𝑆𝑖𝑂2
)𝑈𝐴  is the capacitance per unit area for SiO2. 

In this case, the equivalent oxide capacitance is given by the following expression [126]: 

𝑪𝑬𝑶𝑻 = 𝑪𝑺𝒊𝑶𝟐
=  

𝜺𝟎∙𝒌𝑺𝒊𝑶𝟐
∙𝑳∙𝑾

𝑬𝑶𝑻
=  

𝜺𝑺𝒊𝑶𝟐
∙𝑳∙𝑾

𝑬𝑶𝑻
=  

𝜺𝑺𝒊𝑶𝟐
∙𝑨

𝑬𝑶𝑻
= (𝑪𝒐𝒙)𝑼𝑨 ∙ 𝑨 = (𝑪𝑺𝒊𝑶𝟐

)𝑼𝑨 ∙ 𝑨 (I.16) 

where 𝐶𝐸𝑂𝑇  and (𝐶𝐸𝑂𝑇)𝑈𝐴  are the capacitance and capacitance per unit area for the equivalent 

oxide thickness (𝐸𝑂𝑇). 

For SiO2 dielectric: 

𝑬𝑶𝑻 =  
𝜺𝟎∙𝒌𝑺𝒊𝑶𝟐

∙𝑳∙𝑾

𝑪𝑺𝒊𝑶𝟐

=  
𝜺𝑺𝒊𝑶𝟐

∙𝑳∙𝑾

𝑪𝑺𝒊𝑶𝟐

=  
𝜺𝑺𝒊𝑶𝟐

∙𝑨

𝑪𝑺𝒊𝑶𝟐

=
𝜺𝑺𝒊𝑶𝟐

∙𝑨

 
𝜺𝑺𝒊𝑶𝟐

∙𝑨

𝑻𝑺𝒊𝑶𝟐

=  𝑻𝑺𝒊𝑶𝟐
 (I.17) 

In the case of the use of a high-k  dielectric (Figure I.8.b) 𝐸𝑂𝑇 decreases while the 

capacitance increases for the same physical thickness as shown by the following expression: 

𝑪𝒐𝒙 = 𝑪𝒉𝒊𝒈𝒉−𝒌−𝒐𝒙 =  
𝜺𝟎∙𝒉𝒊𝒈𝒉−𝒌∙𝑳∙𝑾

𝑻𝒉𝒊𝒈𝒉−𝒌−𝒐𝒙
=  

𝜺𝒉𝒊𝒈𝒉−𝒌−𝒐𝒙∙𝑳∙𝑾

𝑻𝒉𝒊𝒈𝒉−𝒌−𝒐𝒙
=  

𝜺𝒉𝒊𝒈𝒉−𝒌−𝒐𝒙∙𝑨

𝑻𝒉𝒊𝒈𝒉−𝒌−𝒐𝒙
= (𝑪𝒉𝒊𝒈𝒉−𝒌−𝒐𝒙)𝑼𝑨 ∙ 𝑨 (I.18) 

Then : 

𝑻𝒉𝒊𝒈𝒉−𝒌−𝒐𝒙 =
𝜺𝟎∙𝒉𝒊𝒈𝒉−𝒌∙𝑳∙𝑾

𝑪𝒉𝒊𝒈𝒉−𝒌−𝒐𝒙
=  

𝜺𝒉𝒊𝒈𝒉−𝒌−𝒐𝒙∙𝑳∙𝑾

𝑪𝒉𝒊𝒈𝒉−𝒌−𝒐𝒙
=  

𝜺𝒉𝒊𝒈𝒉−𝒌−𝒐𝒙∙𝑨

𝑪𝒉𝒊𝒈𝒉−𝒌−𝒐𝒙
 (I.19) 

Consequently, for the same physical thickness of the high-k dielectric and SiO2 we 

found: 

𝑪𝒉𝒊𝒈𝒉−𝒌−𝒐𝒙 =
𝒉𝒊𝒈𝒉−𝒌

𝒌𝑺𝒊𝑶𝟐

∙ 𝑪𝑺𝒊𝑶𝟐
  (I.20) 

The 
𝒉𝒊𝒈𝒉−𝒌

𝒌𝑺𝒊𝑶𝟐

 ratio is greater than one, which implies that the capacitance for the high-k dielectric 

is greater than the capacitance for SiO2 for the same physical thickness.  
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On the other hand, the most high-k dielectrics have smaller band gap energy than SiO2, 

which implies that more current can leak between the plates if the high-k dielectric is not thick 

enough [126, 127]. Therefore, it is necessary to increase the physical thickness of the high-k 

dielectric. 

 

Figure I.9 Simplified representation of the three-dimensional parallel plate capacitor (a) with a 

low-k dielectric and (b) with a high-k thicker dielectric. 

The equivalent oxide thickness 𝐸𝑂𝑇 of a high-k dielectric can then be written as follows 

[104]: 

𝑬𝑶𝑻 =  
𝜺𝟎∙𝒌𝑺𝒊𝑶𝟐

∙𝑨

𝜺𝟎∙𝒉𝒊𝒈𝒉−𝒌∙𝑨

𝑻𝒉𝒊𝒈𝒉−𝒌−𝒐𝒙

=  
𝒌𝑺𝒊𝑶𝟐

𝒉𝒊𝒈𝒉−𝒌
∙ 𝑻𝒉𝒊𝒈𝒉−𝒌−𝒐𝒙  (I.21) 

For example, a high-k dielectric with a dielectric constant (𝑘 = 39) can be 10 times more 

thickness than SiO2, which helps to reduce the current leakage and at the same time maintain 

the same capacitance per unit area (Figure I.9). Furthermore, by using a high-k dielectric with a 

wide band gap such as Al2O3 (𝐸𝑔 = 8.7 𝑒𝑉, 𝑘 = 9.5) it is possible to increase the capacitance 

per unit area in addition to the current leakage reduction.  

I.9 Equivalent oxide thickness of bi-layer gate dielectrics 
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As is well known, the proper choice of a dielectric material is crucial to define the 

performance/reliability of any TFT technology. As well, the semiconductor films deposited by 

lower temperature processes are more prone to have higher densities of defects and reduced 

compactness, which can be compensated by the larger capacitive injection of high-dielectric-

constant (high-k) dielectrics [128]. 

On the other hand, dielectrics with good capacitance per unit area can still be achieved 

even if their thickness is increased, compensating the degraded insulating properties of 

dielectrics fabricated at lower temperatures [128]. 

Generally, the formation of a bi-layer dielectric structure by adding a high-k dielectric 

oxide layer to a low-k dielectric oxide layer provides a lower effective thickness (a lower 

electrical thickness) of the gate dielectrics that is referred to as the equivalent oxide thickness 

(EOT). At the same time a large physically thickness is obtained with a good 

semiconductor/dielectric interface quality, which preserves the gate capacitance or even 

increase it with preventing (or reducing) the gate current leakage then get a better 

performance of the TFT. 

The equivalent capacitance for an oxide consists of two different dielectric layers in 

series is given by [129]: 

𝟏

𝑪𝒐𝒙
=  

𝟏

𝑪𝒍𝒐𝒘−𝒌−𝒐𝒙
+

𝟏

𝑪𝒉𝒊𝒈𝒉−𝒌−𝒐𝒙
  (I.22) 

Then: 

𝑪𝒐𝒙 =  
𝟏

𝟏

𝑪𝒍𝒐𝒘−𝒌−𝒐𝒙
+

𝟏

𝑪𝒉𝒊𝒈𝒉−𝒌−𝒐𝒙

  (I.23) 

Here: 

𝑪𝒐𝒙 = 𝑪𝑬𝑶𝑻 =  
𝜺𝟎∙𝒍𝒐𝒘−𝒌∙𝑳∙𝑾

𝑬𝑶𝑻
=  

𝜺𝒍𝒐𝒘−𝒌−𝒐𝒙∙𝑳∙𝑾

𝑬𝑶𝑻
=  

𝜺𝒍𝒐𝒘−𝒌−𝒐𝒙∙𝑨

𝑬𝑶𝑻
= (𝑪𝒐𝒙)𝑼𝑨 ∙ 𝑨 = (𝑪𝑬𝑶𝑻)𝑼𝑨 ∙ 𝑨  (I.24) 

𝑪𝒍𝒐𝒘−𝒌−𝒐𝒙 =  
𝜺𝟎∙𝒍𝒐𝒘−𝒌∙𝑳∙𝑾

𝑻𝒍𝒐𝒘−𝒌−𝒐𝒙
=  

𝜺𝒍𝒐𝒘−𝒌−𝒐𝒙∙𝑳∙𝑾

𝑻𝒍𝒐𝒘−𝒌−𝒐𝒙
=  

𝜺𝒍𝒐𝒘−𝒌−𝒐𝒙∙𝑨

𝑻𝒍𝒐𝒘−𝒌−𝒐𝒙
= (𝑪𝒍𝒐𝒘−𝒌−𝒐𝒙)𝑼𝑨 ∙ 𝑨  (I.25) 
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𝑪𝒉𝒊𝒈𝒉−𝒌−𝒐𝒙 =  
𝜺𝟎∙𝒉𝒊𝒈𝒉−𝒌∙𝑳∙𝑾

𝑻𝒉𝒊𝒈𝒉−𝒌−𝒐𝒙
=  

𝜺𝒉𝒊𝒈𝒉−𝒌−𝒐𝒙∙𝑳∙𝑾

𝑻𝒉𝒊𝒈𝒉−𝒌−𝒐𝒙
=  

𝜺𝒉𝒊𝒈𝒉−𝒌−𝒐𝒙∙𝑨

𝑻𝒉𝒊𝒈𝒉−𝒌−𝒐𝒙
= (𝑪𝒉𝒊𝒈𝒉−𝒌−𝒐𝒙)𝑼𝑨 ∙ 𝑨  (I.26) 

where 𝑘 is the dielectric constant of the material, 𝜀0 is the permittivity of free space (vacuum), 

𝜀 is the permittivity of the dielectric material, 𝐶𝑜𝑥  is the equivalent capacitance of the bi-layer 

dielectric oxide, 𝐶𝐸𝑂𝑇  is the capacitance of the equivalent oxide of the gate dielectrics, (𝐶𝑜𝑥 )𝑈𝐴  

and (𝐶𝐸𝑂𝑇)𝑈𝐴   are the capacitances per unit area for each of the dielectric oxide layers and the 

equivalent oxide of the bi-layer dielectric, respectively, 𝐶𝑙𝑜𝑤 −𝑘−𝑜𝑥  and 𝐶𝑖𝑔−𝑘−𝑜𝑥  are the 

capacitances for each of the low-k dielectric oxide and high-k dielectric oxide, respectively, 

𝜀𝑙𝑜𝑤 −𝑘−𝑜𝑥  and 𝜀𝑖𝑔−𝑘−𝑜𝑥  are the low-k dielectric oxide and high-k dielectric oxide 

permittivity’s, respectively, 𝐿 and 𝑊 are, respectively, the length and width of the dielectric 

oxide and 𝐴 is the cross-section area of the dielectric oxide while 𝑇𝑙𝑜𝑤 −𝑘−𝑜𝑥  and 𝑇𝑖𝑔−𝑘−𝑜𝑥  are 

the low-k dielectric oxide and high-k dielectric oxide thicknesses, respectively. 

From this standpoint we can derive the general expression of 𝐸𝑂𝑇 for an oxide consists 

of two dielectrics in series, which is given by [129]: 

𝑬𝑶𝑻 = 𝑻𝒍𝒐𝒘−𝒌−𝒐𝒙 +
𝒍𝒐𝒘−𝒌

𝒉𝒊𝒈𝒉−𝒌
∙ 𝑻𝒉𝒊𝒈𝒉−𝒌−𝒐𝒙  (I.27) 

While the general expression of the physical thickness (𝑃𝑇) of the gate dielectric of TFT 

for an oxide consists of two dielectrics in series is given by: 

𝑷𝑻 = 𝑻𝒍𝒐𝒘−𝒌−𝒐𝒙 + 𝑻𝒉𝒊𝒈𝒉−𝒌−𝒐𝒙  (I.28) 

Then: 

𝑷𝑻 = 𝑻𝒐𝒙  (I.29) 

where Tox is the thickness of the bi-layer dielectric oxides. 

For example, for SiO2/Si3N4 dielectric, the expression of EOT is written as follows: 

𝑬𝑶𝑻 = 𝑻𝑺𝒊𝑶𝟐
+

𝒌𝑺𝒊𝑶𝟐

𝒌𝑺𝒊𝟑𝑵𝟒

∙ 𝑻𝑺𝒊𝟑𝑵𝟒
  (I.30) 
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where 𝑘𝑆𝑖𝑂2
 and 𝑘𝑆𝑖3𝑁4

 are the dielectric constants for each of SiO2 and Si3N4, respectively. 𝑇𝑆𝑖𝑂2
 

and 𝑇𝑆𝑖3𝑁4
 are the thicknesses of SiO2 and Si3N4, respectively. 

In this case, the overall capacitance for the SiO2/Si3N4 is given by: 

𝑪𝒐𝒙 =  
𝜺𝟎∙𝒌𝑺𝒊𝑶𝟐

∙𝑨

𝑬𝑶𝑻
=  

𝜺𝑺𝒊𝑶𝟐
∙𝑨

𝑬𝑶𝑻
  (I.31) 

where 𝜀𝑆𝑖𝑂2
 is permittivity of SiO2. 

While the expression of the physical thickness (𝑃𝑇) of the gate dielectric (SiO2/Si3N4) in 

TFT is given by: 

𝑷𝑻 = 𝑻𝑺𝒊𝑶𝟐
+ 𝑻𝑺𝒊𝟑𝑵𝟒

  (I.32) 

Despite the fact that most of the bi-layer dielectric oxides have a relatively large EOT, 

but that this technology high relevant not only for scaling down transistor sizes, but also low-

temperature technologies, without neglecting the fundamental role of the interfacial layer of 

low-k dielectric oxide between the high-mobility channel and the high-k dielectric oxide layer, 

which has some beneficial qualities with regard to carrier mobility in the device channel [130-

137]. 

An overall picture without overlooking some of the negative aspects of this technology, 

the combination of all these factors that we have mentioned previously enables low-

temperature TFTs with low operating voltage, steep subthreshold regions and high-mobility 

[138, 140]. 
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Figure I.10 The energy band diagram of the semiconductor/dielectric interface in a-ITZO TFT  

where (a) shows the energy band diagram of the semiconductor/double-layered dielectric 

oxide (a-ITZO/SiO2/Si3N4) interface in a-ITZO TFT while (b) shows the energy band diagram of 

the semiconductor/mono-layer equivalent dielectric oxide (a-ITZO/equivalent SiO2) interface 

in a-ITZO TFT [1]. 
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II.1 Introduction 

Silvaco Atlas is a physically-based device simulator. Physically-based device simulators 

predict the electrical characteristics that are associated with specified physical structures and 

bias conditions. This is achieved by approximating the operation of a device onto a two or 

three-dimensional grid, consisting of a number of grid points called nodes. By applying a set of 

differential equations, derived from Maxwell’s laws, to this grid, we can simulate the transport 

of carriers through a structure [1].  

Physically-based simulation has become very important because of it quicker and 

cheaper than performing experiments, as it also provides information that is difficult or 

impossible to measure them empirically [1].   

The main purpose of this chapter is to conduct a comprehensive theoretical study on the 

numerical simulation of TFT by Silvaco Atlas. For this purpose, we have carried out a 

bibliographic study on Silvaco Atlas and numerical simulation for TFT. 

II.2 Amorphous semiconductors and defect states 

Silvaco Atlas it can simulate the disordered material systems and the structure of TFT 

devices based on these material systems [2, 3]. We can also by Atlas define an energy 

distribution of continuous defect states in the band gap of amorphous semiconductor materials 

and use them in the simulation [4]. This is necessary for the accurate treatment of the electrical 

properties of materials (as a-Si:H, a-IGZO, and a-ITZO) and devices based on them. 

Disordered materials contain a large number of defect states within the band gap of the 

material [5]. To accurately model devices made of amorphous materials, use a continuous 

density of states as a combination of exponentially decaying band tail states and Gaussian 
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distributions of mid-gap states [6]. In addition, We may need to interface model as a 

thermionic field emission boundary [7]. 

II.3 The nature of the physically-based simulation 

Atlas is a physically-based device simulator. Physically-based device simulation is not a 

familiar concept for all engineers. Physically-based device simulators predict the electrical 

characteristics that are associated with specified physical structures and bias conditions. This 

is achieved by approximating the operation of a device onto a two or three-dimensional grid, 

consisting of a number of grid points called nodes. By applying a set of differential equations, 

derived from Maxwell’s laws, to this grid, we can simulate the transport of carriers through a 

structure. Physically-based simulation is different from empirical modeling. The goal of 

empirical modeling is to obtain analytic formulae that approximate existing data with good 

accuracy and minimum complexity [1].  

Physically-based simulation has become very important for two reasons. One, it is 

almost always much quicker and cheaper than performing experiments. Two, it provides 

information that is difficult or impossible to measure.  The drawbacks of the physically-based 

simulation are that all the relevant physics must be incorporated into a simulator. Also, 

numerical procedures must be implemented to solve the associated equations. These tasks 

have been taken care of for Atlas users. Those who use physically-based device simulation 

tools must specify the problem to be simulated [1]. In Atlas, specify device simulation problems 

by defining [1]: 

- The physical structure to be simulated. 

- The physical models to be used. 

- The bias conditions for which electrical characteristics are to be simulated. 
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To define a device through the Atlas command language, we must first define a mesh. 

This mesh or grid covers the physical simulation domain. The mesh is defined by a series of 

horizontal and vertical lines and the spacing between them. Then, regions within this mesh are 

allocated to different materials as required to construct the device. After the regions are 

defined, the location of electrodes is specified. The final step is to specify the doping in each 

region [1]. 

II.4 Atlas inputs and outputs 

Figure II.1 shows the types of information that flow in and out of Atlas. Most Atlas 

simulations use two input files. The first input file is a text file that contains commands for 

Atlas to execute. The second input file is the structure file that defines the structure that will be 

simulated. Atlas produces three types of output files. The first type of output file is the run-time 

output, which gives we the progress and the error and warning messages as the simulation 

proceeds. The second type of output file is the log file, which stores all terminal voltages and 

currents from the device analysis. The third type of output file is the solution file, which stores 

two-dimensional (2D) and three-dimensional (3D) data relating to the values of solution 

variables within the device at a given bias point [1]. 

 
Figure II.1 Atlas inputs and outputs [1]. 
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II.5 Transport models 

There are many different transport models such as the drift-diffusion model, the drift-

diffusion model, the advanced energy balance transport model or the hydrodynamic model. 

Although the simplest model of charge transport that is useful is the drift-diffusion model, but 

Atlas supplies both drift-diffusion and advanced energy balance transport models because they 

possess attractive advantages [1]. 

II.5.1 Drift-diffusion transport model 

Atlas supplies drift-diffusion transport model Although it is less accurate for smaller 

feature sizes (for simulating deep submicron devices) because it is adequate for nearly all 

devices that were technologically feasible [8]. 

Derivations based upon the Boltzmann transport theory shown that the current 

densities in the continuity equations may be approximated by a drift-diffusion model [8]. 

In this case, the current densities are expressed in terms of the quasi-Fermi levels ɸn 

and ɸp as [9]: 

𝒋 𝒏 =  −𝒒𝝁𝒏𝒏𝜵ф
𝒏

 (II.1) 

𝒋 𝒑 =  −𝒒𝝁𝒑𝒑𝜵ф
𝒑

  (II.2) 

Where 𝑗 𝑛  and 𝑗 𝑝  are the electron and hole current densities, respectively, q is the electron 

charge, 𝜇𝑛  and 𝜇𝑝  are the electron and hole mobilities, respectively, n and p are free electron 

and hole carrier concentrations, respectively. 

The quasi-Fermi levels are linked to the carrier concentrations and the potential 

through the two Boltzmann approximations as [9]: 

𝒏 =  𝒏𝒊𝒆𝒙𝒑  
𝒒(Ѱ−ф𝒏)

𝒌𝑻𝑳
  (II.3) 

𝒑 =  𝒏𝒊𝒆𝒙𝒑  −
𝒒(Ѱ−ф𝒑)

𝒌𝑻𝑳
   (II.4) 
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where ni is the intrinsic carrier concentration, 𝛹 is the electrostatic potential and  𝑇𝐿  is the 

lattice temperature. 

These two equations may then be re-written to define the quasi-Fermi potentials (the 

quasi-Fermi levels) as [9]: 

ф
𝒏

=  Ѱ −
𝒌𝑻𝑳

𝒒
𝒍𝒏

𝒏

𝒏𝒊
 (II.5) 

ф
𝒑

=  Ѱ +
𝒌𝑻𝑳

𝒒
𝒍𝒏

𝒑

𝒏𝒊
 (II.6) 

By substituting these equations into the current density expressions, the following 

adapted current relationships are obtained [1]: 

𝒋 𝒏 = 𝒒𝑫𝒏𝛁𝐧 − 𝒒𝒏𝝁𝒏𝛁Ѱ− 𝝁𝒏𝒏 𝒌𝑻𝑳𝛁 𝒍𝒏𝒏𝒊   (II.7) 

𝒋 𝒑 = −𝒒𝑫𝒑𝛁𝐩 − 𝒒𝒑𝝁𝒑𝛁Ѱ + 𝝁𝒑𝒑 𝒌𝑻𝑳𝛁 𝒍𝒏𝒏𝒊   (II.8) 

Where Dn and Dp are the diffusion coefficients for electrons and holes, respectively. 

We can express current densities in terms of electron and hole effective electric fields 

(𝐸  𝑛and 𝐸  𝑝) by a more conventional formulation of drift-diffusion equations as [10]: 

𝒋 𝒏 = 𝒒𝒏𝝁𝒏𝑬   𝐧 + 𝒒𝑫𝒏𝛁𝐧 (II.9) 

𝒋 𝒑 = 𝒒𝒑𝝁𝒑𝑬   𝐩 − 𝒒𝑫𝒑𝛁𝐩 (II.10) 

Here, the effective electric field equations are given by [10]: 

𝑬   𝒏 = −𝛁(Ѱ+
𝑲𝑻𝑳

𝒒
𝒍𝒏𝒏𝒊)  (II.11) 

𝑬   𝒑 = −𝛁(Ѱ+
𝑲𝑻𝑳

𝒒
𝒍𝒏𝒏𝒊) (II.12) 

It should be noted That the derivation of the drift-diffusion model has tacitly assumed 

that the Einstein relationship holds [11, 12]. 

II.5.2 Advanced energy balance transport model 

Energy balance transport model a more advanced drift-diffusion transport model, thus 

becoming more popular for simulating deep submicron devices [1]. 
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In this model, are modified to include this additional physical relationship to electron 

and hole current flux densities expressed as [1, 10]: 

𝒋 𝒏 = 𝒒𝑫𝒏𝜵𝒏 − 𝒒𝒏𝝁𝒏𝜵 Ѱ + 𝒒𝒏𝑫𝒏
𝑻 𝜵𝑻𝒏 (II.13) 

𝒋 𝒑 = 𝒒𝑫𝒑𝜵𝒑 − 𝒒𝒑𝝁𝒑𝜵 Ѱ − 𝒒𝒑𝑫𝒑
𝑻 𝜵𝑻𝒑 (II.14) 

Here,  𝑇𝑛  and 𝑇𝑝  are the carrier temperatures for electrons and holes, respectively. 𝐷𝑛  and 𝐷𝑝  

are the thermal diffusivities for electrons and holes, respectively. 𝐷𝑛
𝑇  𝛻𝑇𝑛  and 𝐷𝑝

𝑇  𝛻𝑇𝑝  are the 

net thermal diffusivities for electrons and holes, respectively. 

II.6 The order of Atlas commands  

The order in which statements occur in an Atlas input file is important. There are five 

groups of statements that must occur in the correct order (Table II.1). Otherwise, an error 

message will appear, which may cause incorrect operation or termination of the program. For 

example, if the material parameters or models are set in the wrong order, then they may not be 

used in the calculations. The order of statements within the mesh definition, structural 

definition, and solution groups is also important. Otherwise, it may also cause incorrect 

operation or termination of the program [1]. 
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Group Statements 

Structure specification MESH 

REGION 

ELECTRODE 

DOPING 

Material models specification MATERIAL 

MODELS 

CONTACT 

INTERFACE 

Numerical method Selection METHOD 

Solution specification LOG 

SOLVE 

LOAD 

SAVE 

Results analysis EXTRACT 

TONYPLOT 

Table II.1 Atlas command groups with the primary statements in each group [1]. 

II.6.1 Structure specification 

It is the first group in the Atlas commands file that contains four statements. These 

statements should be arranged as follows: 

- MESH 

- REGION 

- ELECTRODE 

- DOPING 

II.6.1.1 Mesh 

The specification of meshes involves a trade-off between the requirements of accuracy 

and numerical efficiency. Accuracy requires a fine mesh that can resolve all significant features 

of the solution. Numerical efficiency requires a coarse mesh that minimizes the total number of 
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grid points. This trade-off between accuracy and numerical efficiency is frequently a source of 

problems for beginners. Fortunately, enough experience to define reasonable meshes is soon 

acquired [1]. 

Atlas uses triangular meshes. Some triangulations yield much better results than others. 

Mesh generation is still an inexact science. Guidelines and heuristics, however, for defining 

satisfactory meshes exist. Good triangulations have the following features [1]: 

- They contain enough points to provide the required accuracy. 

- They do not contain too many unnecessary points that impair efficiency. 

- They avoid or at least minimize, the number of obtuse triangles. Obtuse triangles tend to 

impair accuracy, convergence, and robustness. 

- They avoid or at least minimize, the number of long, thin triangles. These triangles also tend 

to impair accuracy, convergence, and robustness. 

- They allow the average size of triangles to change smoothly in the transition from a region 

where very small triangles must be used to a region where the use of much larger triangles is 

acceptable. 

The error associated with a mesh can be investigated systematically by repeating a 

calculation using a sequence of finer meshes. This is very time consuming and is hardly ever 

done. The typical approach is to adequately resolve structural features, including doping, with 

an initial or base mesh, and then add nodes as required to resolve significant features of the 

solution. The insertion of additional nodes (re-gridding) is normally done by the program using 

user-specified criteria [1].  

II.6.1.1.1 WIDTH parameter in MESH statement 

The WIDTH is the device width (the width of the layers) in microns defined on the 

MESH statement. The electrode current is multiplied by the value of WIDTH before being saved 

in the logfile.  When the WIDTH parameter in the MESH statement is used, the current is scaled 
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by this factor and is in Amperes. This is an optional parameter. All currents through Atlas 

device terminals calculated using the 2D Atlas model will be multiplied by this parameter to 

account for the third dimension of the device. width can still be used as a multiplier to the Atlas 

current if a 3D Atlas structure is used [1].  

The WIDTH in the MESH statement is defined as follows: 

MESH  WIDTH=<n> 

For example: 

MESH  WIDTH=10 

II.6.1.1.2 Mesh definition 

The Mesh can be defined as follows: 

x.m l=<n> s=<n> 
x.m l=<n> s=<n> 
.   .     . 

.   .     . 

.   .     . 

y.m l=<n> s=<n> 
y.m l=<n> s=<n> 
.   .     . 

.   .     . 

.   .     . 

For example, the MESH shown in Figure II.2 can be defined as follows: 

x.m l=0 s=0.25 

x.m l=25 s=0.25 

y.m l=0 s=0.0005 

y.m l=0.020 s=0.005 

y.m l=0.120 s=0.01 
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Figure II.2: Schematic diagram of the mesh generated by Silvaco Atlas. 

II.6.1.2 Region 

II.6.1.2.1 REGION definition 

REGION is an integer parameter taking only integer numbers as input. Specifies the X 

and Y coordinates as cross-hairs to pin-point a region. Region numbers must start at 1 and are 

increased for each subsequent region statement. We can have up to 15000 different regions in 

Atlas. A large number of materials is available [1].  

II.6.1.2.2  Specifying regions and materials  

The region is specified by a REGION statement. REGION specifies the location of 

materials in a previously defined mesh. A region is a volume that has a uniform material 

composition. In the REGION statement, the material composition is specified by the MATERIAL 
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parameter. Can also use the X.MIN, X.MAX, Y.MIN, Y.MAX, Z.MIN, and Z.MAX parameters to 

specify the location, extent of the region and its geometry, in microns [1]. 

X.MAX: Specifies the X coordinate to specify the maximum X-value. 

X.MIN: Specifies the X coordinate to specify the minimum X-value. 

Y.MAX: Specifies the Y coordinate to specify the maximum Y-value. 

Y.MIN: Specifies the Y coordinate to specify the minimum Y-value. 

Z.MAX: Specifies the Z coordinate to specify the maximum Z-value. 

Z.MIN: Specifies the Z coordinate to specify the minimum Z-value. 

Once the mesh is specified, every part of it must be assigned a material type. This is 

done with REGION statements as follows [1]:  

REGION NUM=<integer> MATERIAL=<material_type> <position parameters> 

In the case of a new material not recognized by Atlas, we replace the MATERIAL 

parameter with the USER.MATERIAL parameter in REGION statements [1]. 

In this case, the REGION statements is written as follows: 

REGION NUM=<integer> USER.MATERIAL=<material_type> <position parameters> 
.                  .                               .                                                                      . 
.                  .                               .                                                                      . 
.                  .                               .                                                                      . 

For example, a two-dimensional structure consisting of three regions (Figure II.3) can 

be defined as follows: 

REGION NUM=1 USER.MATERIAL=a-ITZO    X.MIN=0    X.MAX=25    Y.MIN=0    Y.MAX=0.005 

REGION NUM=2 MATERIAL=SiO2 X.MIN=0    X.MAX=25   Y.MIN=0.005    Y.MAX=0.0075 

REGION NUM=3 MATERIAL=HfO2 X.MIN=0    X.MAX=25   Y.MIN=0.0075    Y.MAX=0.075 
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Figure II.3: Schematic diagram of a structure consisting of three regions generated by Silvaco 

Atlas. 

II.6.1.3 Electrode 

II.6.1.3.1 ELECTRODE definition 

Device electrodes are specified using the ELECTRODE statement. ELECTRODE specifies 

the locations and names of electrodes in a previously defined mesh. ELECTRODE should be an 

n-digit integer, where each of the digits is a separate electrode number [1].  

II.6.1.3.2 Specifying electrodes  

Once we have specified the regions and materials, we define at least one electrode. This 

is done with the ELECTRODE statement.  Can specify up to 100 electrodes in both 2D and 3D 

Atlas. The position parameters are specified in microns using the X.MIN, X.MAX, Y.MIN, and 
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Y.MAX parameters. Also can use the RIGHT, LEFT, TOP, and BOTTOM parameters in 

ELECTRODE statement to define the location [1].  

Example: 

ELECTRODE NUM=<n> [NUMBER=<n>] NAME=<en> [NAME=<electrode name>] 

[SUBSTRATE] <pos>[<position_parameters>] <reg>  

In this case, the electrodes shows in Figure II.4 can be defined as follows: 

ELECTRODE NUM=1 NAME=Gate BOTTOM Y.MAX =0.0 X.MIN=0.0  X.MAX=25 

ELECTRODE NUM=2 NAME=Source Y.MAX=0.0 X.MIN=0.0  X.MAX=10.0 

ELECTRODE NUM=3 NAME=Drain  Y.MAX =0.0 X.MIN=15.0 X.MAX=25.0 

 

Figure II.4: Schematic diagram of a structure consisting of three regions with the source, drain 

and gate electrodes generated by Silvaco Atlas. 
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II.6.1.4 Doping 

The DOPING statement is used to define doping profiles in the device structure. 

Typically a sequence of DOPING statements is given each building on the others [1]. 

For example: 

DOPING <distribution_type> <dopant_type> <position_parameters> 

The statement is DOPING. All other items are parameters of the DOPING statement. 

UNIFORM and N.TYPE are logical parameters. CONCENTRATION is a real parameter and takes 

floating point numbers as input values. REGION is an integer parameter taking only integer 

numbers as input [1].  

We defined one of the doping cases of the active layer of a-ITZO TFT we used in 

simulators as follows: 

DOPING UNIFORM N.TYPE CONCENTRATION=4.62E15  REGION=1  

The position parameters X.MIN, X.MAX, Y.MIN, and Y.MAX can be used instead of a 

region number. 

II.6.2 Material models specification 

This group includes four main statements: 

- Material 

- Models 

- Contact 

- Interface 

II.6.2.1 Material 

We can use the MATERIAL statement to specify the material properties of the defined 

regions as follows [1]:  

MATERIAL <localization> <material_definition> 
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But we must complete the entire mesh and doping definition before any MATERIAL 

statements can be used [1].  

II.6.2.1.1 Specifying material properties  

The MATERIAL statement is used for set basic material parameters. All materials are 

split into three classes: semiconductors, insulators, and conductors [1]. Each class requires a 

different set of parameters to be specified: 

For semiconductors, these parameters include the following: 

EG300: Specifies the value of bandgap of the material at 300K.  

AFFINITY: Specifies the electron affinity of the material. 

MUN: Specifies low-field electron mobility.  

MUP: Specifies low-field hole mobility. This parameter is only used if no concentration-

dependent mobility model is specified. 

The MUN and MUP parameters are only used if no concentration-dependent mobility model is 

specified. 

PERMITTIVITY: Specifies relative dielectric permittivity of the material. All materials in an 

Atlas structure must have a defined permittivity.  

NC300: Specifies the conduction band density at 300K.  

NV300: Specifies valence band density at 300K. 

TAUN0: Specifies SRH lifetime for electrons. 

TAUP0: Specifies SRH lifetime for holes. 

SOPRA: Identifies the name of a file from the SOPRA database. 

II.6.2.1.2 Specifying unknown or defined materials in Atlas 

As mentioned previously, all materials in Atlas are classified as a semiconductor, an 

insulator, or a conductor. These classes are termed user groups. In order to correctly define a 

new material in Atlas, we must specify [1]: 
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- The name of the new material (not recognized by Atlas) that was previously specified in the 

REGION statement using the USER.MATERIAL parameter. 

- The user group it belongs to.  

- The known Atlas material it is to take as a default material. 

Once we set these three elements up in their appropriate places in the input deck, we 

can change the specific properties of them using MATERIAL statements. 

A user group takes for semiconductors the following definitions: 

MATERIAL MATERIAL=<>  USER.GROUP=<>  USER.DEFAULT=<> EG300=<> AFFINITY=<> 

MUN=<> MUP=<> PERMITTIVITY=<> NC300=<> NV300=<> TAUN0=<> TAUP0 

INDEX.FILE=<> 

Here in this case [1]: 

MATERIAL: specifies the name of the new material that was previously specified in the REGION 

statement using the USER.MATERIAL parameter. 

USER.MATERIAL: Specifies a user-defined material name. The specified material name can be 

any name except that of a default material, such as a-ITZO. We should define each material with 

an accompanying definition in the MATERIAL statement. We can define up to 50 user-defined 

materials. For example, USER.MATERIAL =<material_name>. 

USER.GROUP: Specifies the material group for the user-defined material. USER.GROUP can be 

either SEMICONDUCTOR, INSULATOR, or CONDUCTOR. For example, USER.GROUP 

=<material_group>. 

USER.DEFAULT: Specifies which material the user-defined material should use for its default 

parameters. For example, USER.DEFAULT = <known_atlas_material_name>. 

As an example of the syntax required to define a new material, we will define a new 

material called a-ITZO. For simplicity, we will omit all the other code for the complete Atlas 

deck and only include code for deck structure purposes. 
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GO ATLAS 

MESH 

. 

. 

. 

REGION NUM=1 USER.MATERIAL =a-ITZOY.MIN =0    Y.MAX=0.005 

 

ELECTRODE ... 

DOPING ... 

MATERIAL MATERIAL=a-ITZO USER.GROUP=semiconductor USER.DEFAULT=igzo  

EG300=3.02  AFFINITY=4.65  MUN=30 MUN=0.1  NC300=1.59e19  NV300=1.21e21  

INDEX.FILE=ITZO.nk     

. 

. 

. 

II.6.2.2 Models 

MODELS specifies model flags to indicate the inclusion of various physical mechanisms, 

models, and other parameters for the simulation. 

II.6.2.2.1 Defining material parameters and models  

Atlas provides a comprehensive set of physical models. Once we define the mesh, 

geometry, and doping profiles, modifying the characteristics of electrodes, change the default 

material parameters, we can choose which physical models Atlas will use during the device 

simulation. The physical models can be grouped into five classes: mobility, recombination, 

carrier statistics, impact ionization, and tunneling. All models with the exception of impact 

ionization are specified on the MODELS statement. Impact ionization is specified on the 
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IMPACT statement. To choose these physical models, we use the MODELS statement. the 

density of states models can be enabled using the DEFECTS statement [1]. Interface properties 

are set by using the INTERFACE statement. 

II.6.2.2.2 Models of the density of state (DOS) used in the simulation 

Silvaco Atlas its can simulates the disordered material systems and the structure of TFT 

devices based on these material systems [13]. We can also by Atlas define an energy 

distribution of defect states in the band gap of semiconductor materials and used in the 

simulation [14]. This is necessary for the accurate treatment of the electrical properties of such 

materials as a-ITZO. 

Disordered materials contain a large number of defect states within the band gap of the 

material. To accurately model devices made of amorphous materials, use a continuous density 

of states as a combination of exponentially decaying band tail states and Gaussian distributions 

of mid-gap states [15-17].  

The models of the density of states (DOSs) of the a-IGZO and a-ITZO used in the 

simulation are shown in Figure II.5, while the input parameters of DOS models are summarized 

in Table II.2.  
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Figure II.5: Schematic of DOS models used in the simulation of the total subgap energy range of 

(a) a-IGZO and (b) a-ITZO [10, 14]. 
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Trough Figure II.5 it is assumed that the subgap DOS (g(E)) for both the a-IGZO and a-

ITZO is composed of three bands : acceptor-like exponentially conduction band tail (CBT) 

states (gTA(E)), donor-like exponentially valence  band tail (VBT) states (gTD(E)) and donor-like 

Gaussian shallow levels band states (gGD(E)) [14-18]. This DOS can be modeled as [14, 19-22]: 

𝒈 𝑬 =  𝒈𝑻𝑨 𝑬 + 𝒈𝑻𝑫 𝑬 + 𝒈𝑮𝑫 𝑬  (II.17) 

The acceptor-like exponentially 𝐶𝐵𝑇 states density is given by [23, 24]: 

𝒈𝑻𝑨 𝑬 =  𝑵𝑻𝑨𝒆𝒙𝒑  
𝑬−𝑬𝑪

𝑾𝑻𝑨
  (II.18) 

where 𝐸 is the trap energy, 𝐸𝐶  is the conduction band energy, 𝑁𝑇𝐴  is the effective density at 𝐸𝐶  

and 𝑊𝑇𝐴  is the characteristic slope energy of the conduction band tail states while the 

subscripts (𝑇 and 𝐴) are stand for tail and acceptor states, respectively. 

The donor-like exponentially 𝑉𝐵𝑇 states density is also given by a similar expression [1, 

25]: 

𝒈𝑻𝑫 𝑬 =  𝑵𝑻𝑫𝒆𝒙𝒑  
𝑬𝑽−𝑬

𝑾𝑻𝑫
  (II.19) 

where 𝐸 is the trap energy, 𝐸𝑉  is the valence band energy, 𝑁𝑇𝐷  is the effective density at 𝐸𝑉  and 

𝑊𝑇𝐷  is the characteristic slope energy of the valence band tail states while the subscripts (𝑇 

and 𝐷) are stand for tail and donor states, respectively. 

The donor-like Gaussian levels band states density is given by [26]: 

𝒈𝑮𝑫 𝑬 =  𝑵𝑮𝑫𝒆𝒙𝒑  −  
𝑬−𝑬𝑮𝑫

𝑾𝑮𝑫
 
𝟐

  (II.20) 

where 𝐸 is the trap energy, 𝑁𝐺𝐷  is the maximum density of donor-like states in Gaussian 

distribution, 𝐸𝐺𝐷  is the peak energy of donor-like Gaussian distribution and 𝑊𝐺𝐷  is the 

characteristic decay energy for Gaussian distribution of donor-like states while the subscripts 

(𝐺 and 𝐷) are a stand for Gaussian and donor states, respectively. 
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Ref Value Description Parameter Region 

[14] 1.55/1.55 The density of acceptor-like states at 𝐸𝑐  and 
donor-like states at 𝐸𝑉 , respectively 

𝑁𝑇𝐴/𝑁𝑇𝐷   × 1020  𝑐𝑚−3𝑒𝑉−1  a-IGZO (n-
type 
channel) [14] 1.3/1.2 The characteristic decay energy of the CBT and 

VBT, respectively 
𝑊𝑇𝐴/𝑊𝑇𝐷 × 10−2 𝑒𝑉  

[27] 6.5 × 1018  The maximum density of the shallow donor-like 
Gaussian states 

𝑁𝐺𝐷 𝑐𝑚−3𝑒𝑉−1  

[14] 0.1 The characteristic deviation of the shallow donor-
like Gaussian states 

𝑊𝐺𝐷 𝑒𝑉  

[14] 2.9 The energy that corresponds to the maximum 
density of the shallow donor-like Gaussian states 

𝐸𝐺𝐷 𝑒𝑉  

[14] 1/1 Capture cross-section for electrons/holes in 𝐶𝐵𝑇 SIGTAE/SIGTAH  × 10−15  𝑐𝑚2  
[14] 1/1 Capture cross-section for electrons/holes in 𝑉𝐵𝑇 SIGTDE/SIGTDH  × 10−15  𝑐𝑚2  
[14] 1/1 Capture cross-section for electrons in the shallow 

donor-like Gaussian states 
SIGGDE/SIGGDH  × 10−15  𝑐𝑚2  

[28] 122/1.30 The density of acceptor-like states at 𝐸𝑐  and 
donor-like states at 𝐸𝑉 , respectively 

𝑁𝑇𝐴/𝑁𝑇𝐷   × 1020  𝑐𝑚−3𝑒𝑉−1  a-ITZO (n-
type 
channel) [28] 1.6/2.0 The characteristic decay energy of the CBT and 

VBT, respectively 
𝑊𝑇𝐴/𝑊𝑇𝐷 × 10−2 𝑒𝑉  

[28] 1.19 × 1016  The maximum density of the shallow donor-like 
Gaussian states 

𝑁𝐺𝐷 𝑐𝑚−3𝑒𝑉−1  

[28] 8.3 × 10−2 The characteristic deviation of the shallow donor-
like Gaussian states 

𝑊𝐺𝐷 𝑒𝑉  

[28] 2.9 The energy that corresponds to the maximum 
density of the shallow donor-like Gaussian states 

𝐸𝐺𝐷 𝑒𝑉  

[29] 1/100 Capture cross-section for electrons/holes in 𝐶𝐵𝑇 SIGTAE/SIGTAH  × 10−16  𝑐𝑚2  
[29] 100/1 Capture cross-section for electrons/holes in 𝑉𝐵𝑇 SIGTDE/SIGTDH  × 10−16  𝑐𝑚2  
[29] 100/1 Capture cross-section for electrons in the shallow 

donor-like Gaussian states 
SIGGDE/SIGGDH  × 10−16  𝑐𝑚2  

Table II.2 The input parameters of the  DOS models for both the a-IGZO and a-ITZO. 

The DEFECT statement is used to specify the density of defect states (DOS) as a 

combination of exponentially decaying band tail states and Gaussian distributions of mid-gap 

states [1].  

The density of state models shown in Figure II.5 are defined by using the DEFECTS 

statement in the MODELS as follows: 

For a-IGZO: 

MODELS Fermi 

DEFECTS NTA=1.55e20 NTD=1.55e20 WTA=0.013 WTD=0.12 \ 

 NGA=0.0 NGD=6.5e18 EGD=2.9 WGD=0.1 \ 
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 SIGTAE=1e-15 SIGTAH=1e-15 SIGTDE=1e-14 SIGTDH=1e-16 \ 

 SIGGAE=1e-15 SIGGAH=1e-15 SIGGDE=1e-15 SIGGDH=1e-15 \ 

 dfile=tft_don.dat afile=tft_acc.dat  

For a-ITZO: 

MODELS Fermi 

DEFECTS NTA=1.22e18 NTD=1.30e20 WTA=0.016 WTD=0.20 \ 

 NGA=0.0 NGD=1.19e16 EGD=2.87 WGD=0.083 \ 

 SIGTAE=1e-16 SIGTAH=1e-14 SIGTDE=1e-14 SIGTDH=1e-16 \ 

 SIGGAE=1e-16 SIGGAH=1e-14 SIGGDE=1e-14 SIGGDH=1e-16 \ 

 dfile=tft_don.dat afile=tft_acc.dat  

FERMI: Specifies that Fermi-Dirac carrier statistics be used. 

The resultant distribution of defects versus energy can be plotted in the files, don.dat 

and acc.dat. 

II.6.2.3 Contact  

CONTACT specifies the physical attributes of an electrode. If the CONTACT statement is 

not used for a given electrode an electrode in contact with semiconductor material is assumed 

by default to be ohmic. We can assign the WORKFUNCTION parameter on the CONTACT 

statement. If a work function is defined, the electrode is treated as a Schottky contact. The 

CONTACT statement is used to specify the metal work function of one or more electrodes. The 



 

Chapter II                            Silvaco Atlas and numerical simulation                          Page 80 
 

 

 

NAME parameter is used to identify which electrode will have its properties modified. The 

NUMBER parameter is used to identify a contact number for which electric field lines are 

calculated [1]. 

The syntax is as follows: 

CONTACT NUMBER=<n> NAME=<ename> WORKFUNCTION=<n> 

For example, the contacts for molybdenum are defined as follows: 

CONTACT NUMBER=1 NAME=gate  WORKFUNCTION=4.53 

CONTACT NUMBER=1 NAME=source WORKFUNCTION=4.53 

CONTACT NUMBER=1 NAME=drain WORKFUNCTION=4.53 

II.6.2.4 Interface  

The INTERFACE statement consists of a set of boundary condition parameters for the 

interface and a set of parameter to localize the effect of these parameters. INTERFACE specifies 

interface parameters at semiconductor/insulator boundaries. The INTERFACE statement is 

used to define the interface charge density and surface recombination velocity at interfaces 

between semiconductors and insulators [1].  

Syntax 

INTERFACE [<params>] 

In many cases, the interface of interest is restricted to a specific region. This can be 

accomplished with the X.MIN, X.MAX, Y.MIN, and Y.MAX parameters on the INTERFACE 

statement. These parameters define a rectangle, where the interface properties apply, restricts 

the interface charge to the semiconductor-insulator boundary within the specified rectangle. In 

addition to fixed charge, surface recombination velocity and thermionic emission are enabled 

and defined with the INTERFACE statement [1]. 

By default, the INTERFACE statement is applied to semiconductor-insulator interfaces. 

Interface charge can, however, be added at the interfaces between two semiconductor regions 
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or at the edges of semiconductor regions. The CHARGE parameter defines the interface charge 

value in cm-2. The S.I, S.S, and S.X parameters control whether the charge is placed between 

semiconductor-insulator regions, semiconductor-semiconductor regions or at the 

semiconductor domain edges. We can control the location of the added charge by using the 

position parameters [1]. 

  INTTRAP activates interface defect traps at discrete energy levels within the bandgap 

of the semiconductor and sets their parameter values [1].  

Syntax 

INTTRAP <type> E.LEVEL=<r> DENSITY=<r> <capture parameters> 

For example: 

INTTRAP DONOR E.LEVEL=2.9 DENSITY=5.e10 DEGEN=1 \ 

SIGN=1.00e-16 SIGP=1.00e-14 

INTTRAP ACCEPTOR E.LEVEL=0.4 DENSITY=1.e10 DEGEN=12 \ 

SIGN=1.00e-14 SIGP=1.00e-16 

Where:  

DEGEN: Specifies the degeneracy factor of the trap center.  

DONOR: Specifies a donor-type trap level. 

ACCEPTOR: Specifies an acceptor-type trap level. 

ACCEPTOR: Specifies a uniform density of ionized acceptors in the quantum wells. 

E.LEVEL: Sets the energy of the discrete trap level. For acceptors, E.LEVEL is relative to the 

conduction band edge. For donors, it depends on the valence band edge. 

DENSITY: Sets the maximum density of states of the trap level. 

SIGN: Specifies the capture cross-section of the trap for electrons. 

SIGP: Specifies the capture cross-section of the trap for holes. 
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The I.C, I.I, I.M, S.C, S.I, S.M, and S.S parameters can be written in an INTTRAP statement 

for Insulator-Conductor, Insulator-Insulator, Insulator-Metal, semiconductor-Conductor, 

semiconductor-insulator, semiconductor-Metal, and semiconductor- semiconductor interface 

states, respectively [1]. 

We can control the location of the added traps by using the position parameters (the 

X.MIN, X.MAX, Y.MIN, and Y.MAX parameters). 

II.6.3  Numerical method selection 

This group includes main one statement which is METHOD. 

II.6.3.1 Method 

METHOD sets the numerical methods to be used to solve the equations and parameters 

associated with algorithms. The METHOD statement is used to set the numerical methods for 

subsequent solutions. All structure and model definitions should precede the METHOD 

statement and all biasing conditions should follow it. Parameters in the METHOD statement are 

used to set the solution technique, specify options for each technique and tolerances for 

convergence. Several different numerical methods can be used for calculating the solutions to 

semiconductor device problems. Numerical methods are given in the METHOD statements of 

the input file [1].  

Different combinations of models will require ATLAS to solve up to six equations. For 

each of the model types, there are basically three types of solution techniques: (a) decoupled 

(GUMMEL), (b) fully coupled (NEWTON) and (c) BLOCK. The GUMMEL method will solve for 

each unknown, in turn, keeping the other variables constant, repeating the process until a 

stable solution is achieved. The NEWTON method solves the total system of unknowns 

together. The BLOCK methods will solve some equations fully coupled while others are de-

coupled [1]. 
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Generally, the GUMMEL method is useful where the system of equations is weakly 

coupled but has only linear convergence. The NEWTON method is useful when the system of 

equations is strongly coupled and has quadratic convergence. The NEWTON method may, 

however, spend extra time solving for quantities, which are essentially constant or weakly 

coupled. NEWTON also requires a more accurate initial guess to the problem to obtain 

convergence. Thus, a BLOCK  method can provide for faster simulations times in these cases 

over NEWTON. GUMMEL can often provide better initial guesses to problems. It can be useful 

to start a solution with a few GUMMEL iterations to generate a better guess [1]. 

Then, switch to NEWTON to complete the solution. Specification of the solution method 

is carried out as follows [1]: 

METHOD GUMMEL BLOCK NEWTON 

The exact meaning of the statement depends on the particular models it applied to [1]. 

II.6.4 Solution specification 

This group also includes four main statements: 

- LOG 

- SOLVE 

- LOAD 

- SAVE 

II.6.4.1 Log 

LOG specifies the filename for the circuit voltages and currents that will be saved [86]. 

LOG allows all terminal characteristics of a run to be saved to a file. Any DC, transient, or AC 

data generated by SOLVE statements after the LOG statement is saved [1].  

Syntax 

LOG [OUTFILE=<filename>]  

For example: 
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LOG OUTF=myfile.log 

This example saves all I-V data in a file, myfile.log. 

The contents of LOG files varies for different types of simulations (e.g., DC, transient, 

AC). The content is set by the first SOLVE statement after the LOG statement [1].  

Correct transient parameters would have not been stored if the LOG statement had been 

placed before the first SOLVE statement, which is DC [1]. 

The LOG statements are used to save the Id/Vds curve from each gate voltage to 

separate files. We recommend that we save the data in this manner rather than to a single LOG 

file [1]. 

Log files store the terminal characteristics calculated by ATLAS. These are current and 

voltages for each electrode in DC simulations. In transient simulations, the time is stored. In AC 

simulations, the small signal frequency and the conductances and capacitances are saved [1]. 

II.6.4.2 Solve 

SOLVE instructs Atlas to perform a solution for one or more specified bias points [1]. We 

can syntax as follows: 

SOLVE VGATE=0.0 VSTEP=-0.1 VFINAL=-5.0 NAME=gate 

SOLVE VGATE=0.1 VFINAL=5.0 NAME=gate 

This example is very useful during bias ramps in overcoming convergence difficulties 

around transition points such as the threshold voltage [1]. 

Each SOLVE statement must specify an initial bias condition. Once any DC condition has 

been solved, either a transient or AC analysis may be performed. We may also solve for carrier 

generation due to incident light under DC, or AC analysis transient conditions [1]. 

One important rule in Atlas is that when the voltage on an electrode is not specified in a 

given SOLVE statement, the value from the last SOLVE statement is assumed [1].  
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When the voltage on a particular electrode is never defined on any SOLVE statement 

and voltage is zero, we don’t need to explicitly state the voltage on all electrodes on all SOLVE 

statements [1].  

Atlas also supports the reverse case through current boundary conditions. The current 

through the electrode is specified in the SOLVE statement and the voltage at the contact is 

calculated. Current boundary conditions are set using the CONTACT statement. The syntax of 

the SOLVE statement is altered once current boundary conditions are specified [1]. 

II.6.4.3 Load 

LOAD loads previous solutions from files as initial guesses to other bias points. The 

LOAD statement requires that one of the following file parameter syntax be used [1]. 

LOAD INFILE=<filename>  

INFILE name of a file (file name) to be loaded as an initial guess for further simulation. 

II.6.4.4 Save 

SAVE saves all node point information into an output file, simulation results into files for 

visualization or for future use as an initial guess [1]. 

Syntax 

SAVE OUTFILE=<filename>. 

Example 

SAVE OUTFILE=my_filename.str 

OUTFILE: Specifies that after the simulation is finished the solution is to be written to a file 

called my_filename.str. In other words, only one structure file will output after the simulation 

has finished. Even if we have several [1]. 

II.6.5 Results analysis 

This group includes two main statements: 

II.6.5.1 Extract 
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Atlas does not support arithmetic expressions in the syntax. We can, however, evaluate 

and use expressions by using the EXTRACT statements. EXTRACT statements are used to 

measure parameters from both log and solution files. It allows we to extract device parameters. 

The command has a flexible syntax that allows we to construct specific EXTRACT routines. 

EXTRACT operates on the previous solved curve or structure file. By default, EXTRACT uses the 

currently open log file [1].  

A typical example of using EXTRACT is the extraction of the threshold voltage of an 

transistor. In the following example, the threshold voltage is extracted by calculating the 

maximum slope of the Id/ Vg curve, finding the intercept withthe X axis and then subtracting 

half of the applied drain bias [1]. 

EXTRACT NAME="nvt" XINTERCEPT(MAXSLOPE(CURVE (V."GATE", (I."DRAIN"))) \-

(AVE(V."DRAIN"))/2.0) 

To extract peak drain current from a run immediately after solution, type: 

LOG OUTF=myfile.log 

SOLVE ... 

EXTRACT NAME="peak Id" max(i."drain") 

Extractions can only be done after completion of the simulation. Therefore, EXTRACT 

should be specified after re-initialization of Atlas (go atlas) [1]. 

The results of the extraction will be displayed in the run-time output and will be by 

default stored in the file results [1]. 

II.6.5.2  Tonyplot 

TONYPLOT starts the graphical post-processor TonyPlot. All graphics in Atlas is 

performed by saving a file and loading the file into TonyPlot. The TONYPLOT command causes 

Atlas to automatically save a structure file and plot it in TonyPlot. The TonyPlot window will 
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appear displaying the material boundaries. Use the Plot: Display menu to see more graphics 

options [1].  

tonyplot -overlay tft_1a.log tft_1b.log tft_1.dat -set tft_1.set 

tonyplot -overlay tft_don.dat -set tft_don.set 

tonyplot -overlay tft_acc.dat -set tft_acc.set 
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III.1 Introduction 

Although several AOS materials based on zinc oxide can be used as active layers for  

TFT, there is growing interest in a-ITZO because it is considered as promising material for the 

channel of TFT in the high-performance electronic devices for the next generation because it 

has many good features [1]. It can accomplish a mobility higher than amorphous indium-

gallium-zinc-oxide (a-IGZO) that is considered the most prominent of these materials, a high 

transparency to visible light, a lower cost than a-IGZO and large-area uniformity at the low-

temperature process as well as the use of the plastic substrate [2-5]. 

In order to significantly improve the performance of the TFT devices, researchers 

sought to reduce the physical thickness of the gate dielectric. But the problem is that the 

physical thickness of the gate dielectric has been significantly reduced to a certain extent 

where the reliability of the TFT devices is severely affected, due to increased leakage current 

[6-8]. 

In this chapter, we will simulate the a-IGZO TFT and a-ITZO TFT  devices and we will 

compare the performance of both devices. Then we will focus on the performance and 

reliability of a-ITZO TFTs by simulating the effect of high-k gate dielectrics, the physical 

thickness of the gate dielectric, the effective thickness (equivalent oxide thickness) of the gate 

dielectric, the bi-layer dielectrics, the mono-layer dielectrics, and the interfacial dielectrics on 

the performance of the a-ITZO TFT and its reliability, in addition, we studied the effect of the 

defects of the semiconductor-dielectric and dielectric-dielectric interfaces as well as the oxide 

on the performance a-ITZO TFT. 

III.2 a-IGZO TFT VS a-ITZO TFT performance 

Two-dimensional cross-section of the a-IGZO and a-ITZO TFTs structure used with 

regions, materials, and dimensions is shown in Figure III.1, while the input parameters of 

transistors structure are summarized in Table III.1. 
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Table III.1 The input parameters of the a-IGZO and a-ITZO TFT devices. 

 

Ref Value Description Parameter Region 

[9] 25/10/5 Length/Width/Thickness  𝐿(µ𝑚)/𝑊(µ𝑚)/𝑇(𝑛𝑚) a-IGZO (n-
type 
channel) 

[9] 4.62 × 1015  n doping concentration 𝑁𝑑 𝑐𝑚
−3  

[10] 3.2 Band gap 𝐸𝑔 𝑒𝑉  

[11] 4.60 Electronic affinity 𝜒 𝑒𝑉  
[12] 15/0.1 Low-field electron/hole mobility µ𝑛/µ𝑝   𝑐𝑚2𝑉−1𝑠−1  

[12] 5/5 Conduction/valence band density at 300𝐾 𝑁𝐶/𝑁𝑉   × 1019  𝑐𝑚−3  
[10] 1/1 Capture cross-section for electrons/holes 

in 𝐶𝐵𝑇 
σ𝑇𝐴𝐸/σ𝑇𝐴𝐻   × 10−15  𝑐𝑚2  

[10] 1/1 Capture cross-section for electrons/holes 
in 𝑉𝐵𝑇 

σ𝑇𝐷𝐸 /σ𝑇𝐷𝐻   × 10−15  𝑐𝑚2  

[10] 1/1 Capture cross-section for electrons in the 
shallow donor-like Gaussian states 

σ𝐺𝐷𝐸 /σ𝐺𝐷𝐻   × 10−15  𝑐𝑚2  

[9] 25/10/5 Length/Width/Thickness  𝐿(µ𝑚)/𝑊(µ𝑚)/𝑇(𝑛𝑚) a-ITZO (n-
type 
channel) 

[9] 4.62 × 1015  n doping concentration 𝑁𝑑 𝑐𝑚
−3  

[9] 3.02 Band gap 𝐸𝑔 𝑒𝑉  

[13] 4.65 Electronic affinity 𝜒 𝑒𝑉  
[9] 30/0.1 Low-field electron/hole mobility µ𝑛/µ𝑝   𝑐𝑚2𝑉−1𝑠−1  

[9] 1.59/121 Conduction/valence band density at 300𝐾 𝑁𝐶/𝑁𝑉   × 1019  𝑐𝑚−3  
[14] 1/100 Capture cross-section for electrons/holes 

in 𝐶𝐵𝑇 
σ𝑇𝐴𝐸/σ𝑇𝐴𝐻   × 10−16  𝑐𝑚2  

[14] 100/1 Capture cross-section for electrons/holes 
in 𝑉𝐵𝑇 

σ𝑇𝐷𝐸 /σ𝑇𝐷𝐻   × 10−16  𝑐𝑚2  

[14] 100/1 Capture cross-section for electrons in the 
shallow donor-like Gaussian states 

σ𝐺𝐷𝐸 /σ𝐺𝐷𝐻   × 10−16  𝑐𝑚2  

[9] 25/10/70 Length/Width/Thickness 𝐿(µ𝑚)/𝑊(µ𝑚)/𝑇(𝑛𝑚) SiO2 
[9] 9 Band gap 𝐸𝑔 𝑒𝑉  

[9] 3.9 The relative permittivity  𝑘SiO 2
  

[9] 10/10/0.1 Length/Width/Thickness  𝐿(µ𝑚)/𝑊(µ𝑚)/𝑇(𝑛𝑚) Mo source 
and drain 
contacts 

[9] 5 The source-drain spacing 𝐿𝑆𝐷 µ𝑚  
[15] 4.53 The work function of  Mo Ф𝑀𝑜  𝑒𝑉  

[9] 25/10/0.1 Length/Width/Thickness  𝐿(µ𝑚)/𝑊(µ𝑚)/𝑇(𝑛𝑚) Mo gate 
electrode 
contact 

[9] 10 The gate-to-S/D overlap length 𝐿𝑂𝑉 µ𝑚  
[15] 4.53 The work function of  Mo Ф𝑀𝑜  𝑒𝑉  
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Figure III.1 Schematic diagram of a two-dimensional cross-section of the bottom-gate TFTs 

structure, dimensions, regions, and materials depending on the types of channel material: (a) 

a-IGZO and (b) a-ITZO. 

The evolution of the transfer characteristics of the a-IGZO and a-ITZO TFTs in the linear 

and semi-logarithmic plots is shown in Figure III.2. 

 

Figure III.2 The calculated of transfer (𝐼𝐷𝑆 − 𝑉𝐺𝑆) characteristics of the a-IGZO and a-ITZO TFTs 

where (a) shows the evolution of the transfer characteristics in the linear plot while (b) shows 

the evolution of the transfer characteristics in the semi-logarithmic plot. 
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Through these results shown in Figure III.2, we note that replacing a-IGZO by a-ITZO in 

TFT improves transistor properties through raising the current (the drain current) of TFT as 

well as cancel the hump that appears in the transfer characteristic curve of TFT caused by the 

predominance of defects in the semiconductor bulk and the semiconductor-dielectric interface. 

From the transfer characteristic curves in the linear plot (Figure III.2.a) we calculated 

the threshold voltage (VT) and the field-effect mobility (µFE), while we calculated Ion, Ion/Ioff 

ratio, subthreshold swing (SS), and turn-on voltage (Von) using the transfer characteristic 

curves in the semi-logarithmic plot (Figure III.2.b). All the obtained results for the previous 

parameters (Output parameters) of  TFT devices as well as the capacitance per unit area (Ci) 

that was calculated using Equation I.16, are shown in Table III.2. 

Table III.2 The variations of the extracted parameters: 𝑉𝑇 , 𝑆𝑆, µ𝐹𝐸 , 𝐼𝑜𝑛 , 𝐼𝑜𝑛 /𝐼𝑜𝑓𝑓  and 𝑉𝑜𝑛  as well 

as 𝐶𝑖  depending on the types of channel material. 

The results show a-ITZO TFT superiority on a-IGZO TFT, where it has higher 

performance with significantly higher mobility than the a-IGZO TFT for the same value of the 

gate capacitance per unit area. 

Figure III.3 represents the evolution of output (𝐼𝐷𝑆 − 𝑉𝐷𝑆) characteristics, which was 

used in the calculation of the electrical resistivity for the active layers of the TFTs (a-IGZO and 

a-ITZO layers) in different gate tensions (𝑉𝐺𝑆) where these evolutions also show that a-ITZO 

TFT is superior in performance by raising current. 

Case 𝑪𝒊 𝑭/𝒄𝒎𝟐  𝑽𝑻 𝑽  𝑺𝑺 𝑽/𝒅𝒆𝒄𝒂𝒅𝒆  𝝁𝑭𝑬 𝒄𝒎
𝟐𝑽−𝟏𝒔−𝟏      𝑰𝒐𝒏 𝑨  𝑰𝒐𝒏/𝑰𝒐𝒇𝒇 𝑽𝒐𝒏 𝑽  

a-IGZO 4.93×10-8 0.56 7.63×10-2 14.86 2.76×10-6 3.36×107 -1.01 

a-ITZO 4.93×10-8 -0.50 6.80×10-2 29.96 6.15×10-6 6.97×107 -0.80 
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Figure III.3 The evolution of output (𝐼𝐷𝑆 − 𝑉𝐷𝑆) characteristics of the a-IGZO and a-ITZO TFTs. 

From the output characteristic curves, especially in the linear region, we calculated the 

electrical resistivity values of the active layers of the a-IGZO and a-ITZO TFT devices that have 

been obtained from the drain current-drain voltage (𝐼𝐷𝑆 − 𝑉𝐷𝑆) measurements at a different 

gate tensions (𝑉𝐺𝑆) using Equation I.14 for an input voltage ≈ 0 𝑉 (Linear region) [16, 17], 

results are listed in Table III.3.     

Table III.3 The variations of 𝜌 and 𝐶𝑖  depending on the types of channel material. 

𝑽𝑮𝑺 𝑽  𝟎 𝑽 𝟒 𝑽 𝟏𝟎 𝑽 𝟐𝟎 𝑽 

a-IGZO     
𝝆(𝜴𝒄𝒎) 6.09×10-1 4.41×10-2 1.57×10-2 7.40×10-3 

𝑪𝒊 𝑭/𝒄𝒎𝟐  4.93×10-8 

a-ITZO     
𝝆(𝜴𝒄𝒎) 1.48×10-1 1.54×10-2 6.43×10-3 3.27×10-3 

𝑪𝒊 𝑭/𝒄𝒎𝟐  4.93×10-8 
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From Table III.3, we note that the a-ITZO active layer exhibits much less resistivity than 

a-IGZO. In all cases these the resistivity increase with the increase of the gate tension. 

III.3 Effect of high-k gate dielectrics 

A good solution to the leakage current associated with the thinner thickness of the SiO2 

would be by increasing the physical thickness without increasing the effective thickness of the 

gate dielectric (the electrical thickness of gate dielectric). This is referred to what is known by 

the equivalent oxide thickness (EOT) which reduces the gate leakage current and at the same 

time keep an adequate gate capacitance per unit area [18]. 

The increase of the physical thickness without increasing the effective thickness of the 

gate dielectric can be achieved by replacing the low-k dielectric SiO2 (k=3.9) with a high-k 

dielectric. According to relative approximation, the high-k dielectric can be physically thick 

without being electrically thick, leading to an increase of the gate capacitance per unit area 

without the associated leakage effects [19, 20]. For example, a high-k dielectric material with 

dielectric constant (k=39) compared to 3.9 for SiO2 can be ten times thicker than SiO2 which 

helps to reduce the leakage of electrons across the dielectric pad of gate.  

III.3.1 Device structure 

A simplified two-dimensional cross-section of the staggered bottom-gate a-ITZO TFT 

device structure used in this work is shown in Figure III.4(a, b). The device structure input 

parameters are summarized in Table III.4 for the case (a) when the SiO2 is used as a gate 

dielectric. For the case (b) many high-k materials are used as a gate dielectric in the aim to 

study in more detail the effect of the corresponding 𝐸𝑂𝑇 on the TFT performance. The 

structural and physical parameters of the used high-k materials are presented in Table III.3. 
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 Figure III.4 Schematic diagram of a two-dimensional cross-section of the staggered bottom-

gate a-ITZO TFT; dimensions, regions, and materials used in the simulation for (a) low-k SiO2 

gate dielectric and (b) high-k gate dielectric. 

 

The generated structure and mesh of the a-ITZO TFT by Atlas from Silvaco is presented 

in Figure III.5. 
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Figure III.5 The two-dimensional cross-section of the staggered bottom-gate a-ITZO TFT 

generated by Silvaco Atlas for (a) low-k SiO2 gate dielectric and (b) high-k gate dielectric. 
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Ref Value Description Parameter Region 

[9] 25/10/20 Length/Width/Thickness  𝐿(µ𝑚)/𝑊(µ𝑚)/𝑇(𝑛𝑚) a-ITZO (n-
type 
channel) 

[9] 4.62 × 1015  n doping concentration 𝑁𝑑 𝑐𝑚
−3  

[9] 3.02 Band gap 𝐸𝑔 𝑒𝑉  

[13] 4.65 Electronic affinity 𝜒 𝑒𝑉  
[9] 30/0.1 Low-field electron/hole mobility µ𝑛/µ𝑝   𝑐𝑚2𝑉−1𝑠−1  

[9] 1.59/121 Conduction/valence band density at 
300𝐾 

𝑁𝐶/𝑁𝑉   × 1019  𝑐𝑚−3  

[14] 1/100 Capture cross-section for 
electrons/holes in 𝐶𝐵𝑇 

σ𝑇𝐴𝐸/σ𝑇𝐴𝐻   × 10−16  𝑐𝑚2  

[14] 100/1 Capture cross-section for 
electrons/holes in 𝑉𝐵𝑇 

σ𝑇𝐷𝐸 /σ𝑇𝐷𝐻   × 10−16  𝑐𝑚2  

[14] 100/1 Capture cross-section for electrons in 
the shallow donor-like Gaussian states 

σ𝐺𝐷𝐸 /σ𝐺𝐷𝐻   × 10−16  𝑐𝑚2  

[9] 25/10/Variable Length/Width/Thickness 𝐿(µ𝑚)/𝑊(µ𝑚)/𝑇(𝑛𝑚) SiO2 
[9] 9 Band gap 𝐸𝑔 𝑒𝑉  

[9] 3.9 The relative permittivity  𝑘SiO 2
  

[9] 10/10/0.1 Length/Width/Thickness  𝐿(µ𝑚)/𝑊(µ𝑚)/𝑇(𝑛𝑚) Mo source 
and drain 
contacts 

[9] 5 The source-drain spacing 𝐿𝑆𝐷 µ𝑚  
[15] 4.53 The work function of  Mo Ф𝑀𝑜  𝑒𝑉  

[9] 25/10/0.1 Length/Width/Thickness  𝐿(µ𝑚)/𝑊(µ𝑚)/𝑇(𝑛𝑚) Mo gate 
(G) 
electrode 
contact 

[9] 10 The gate-to-S/D overlap length 𝐿𝑂𝑉 µ𝑚  
[15] 4.53 The work function of  Mo Ф𝑀𝑜  𝑒𝑉  

Table III.4 The input parameters of the a-ITZO TFT devices. 

Relative permittivity  Band gap energy  𝐞𝐕  𝐋 µ𝐦 /𝐖 µ𝐦 /𝐓 𝐧𝐦  High-k materials 

7.5 [21] 5 [21] 25/10/100  Si3N4 

8.5-10.5 [22, 23] 8.7 [22, 23] 25/10/100  Al2O3 

12-20 [21, 24] 5.6 [21, 24] 25/10/100  Y2O3 

12-23 [25] 5.4 [25] 25/10/100  Gd2O5 

15-25 [25] 6 [25] 25/10/100  ZrxSi1-xOy 

25 [26] 5.8 [26] 25/10/100  ZrO2 

26 [27] 5.5 [27] 25/10/100  CeO2 

27 [21] 4.3 [21] 25/10/100  La2O3 

20-35 [28, 29] 4-4.5 [28, 29] 25/10/100  Ta2O5 

35 [30] 5.7 [30] 25/10/100  HfO2 

30-100 [28] 3-3.5 [28] 25/10/100  TiO2 

50-200 [31, 34] 3.32-4.8 [31-34] 25/10/100  Nb2O5 

180 [35] 5.4 [35] 25/10/100  SrZrO3 

200-300 [37] 3.03-3.4 [36, 37] 25/10/100 BaSrTiO3 

300 [37] 3.27 [38] 25/10/100  SrTiO3 

Table III.5 Band gap energy and relative permittivity of the used high-k dielectric materials to 

study the 𝐸𝑂𝑇 effect. 
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III.3.3 Effect of the physical thickness of the gate dielectric 

Figure III.6 shows the effect of the SiO2 gate dielectric thickness decrease on the transfer 

(𝐼𝐷𝑆 − 𝑉𝐺𝑆) characteristics of a-ITZO TFT (in the linear and semi-logarithmic plots). 

 

 

Figure III.6 The transfer (𝐼𝐷𝑆 − 𝑉𝐺𝑆) characteristics of the a-ITZO TFT depending on the SiO2 

gate dielectric thicknesses; (a) in the linear plot and (b) in the semi-logarithmic plot. 
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The obtained results approve the fact that the decrease of the SiO2 gate dielectric 

thickness improves the transfer characteristic of the a-ITZO TFT by raising the source-drain 

current in the channel. 

From the transfer characteristics in the linear plot (Figure III.6.a) are extracted 𝑉𝑇  and 

µ𝐹𝐸 , while 𝐼𝑜𝑛 , 𝐼𝑜𝑛 /𝐼𝑜𝑓𝑓  ratio, 𝑆𝑆, and 𝑉𝑜𝑛  are calculated from the transfer characteristic curves 

in the semi-logarithmic plot (Figure III.6.b). The outputs obtained in addition to 𝐶𝑖 , calculated 

using Equation I.16, are summarized in Table III.6.  

Table III.6 The effect of the SiO2 dielectric gate thickness (𝑇𝑆𝑖𝑂2
) reduction on the extracted 

parameters: 𝑉𝑇 , µ
𝐹𝐸

, 𝐼𝑜𝑛 , 𝐼𝑜𝑛 /𝐼𝑜𝑓𝑓 , 𝑉𝑜𝑛 , 𝑆𝑆 and 𝐶𝑖 . 

From the obtained results, the decrease in the SiO2 gate dielectric thickness 𝑇𝑆𝑖𝑂2
 from 

500 𝑛𝑚 to 15 𝑛𝑚 improves significantly the a-ITZO TFT response since it leads to: 

- The increase in 𝐼𝑜𝑛  and 𝐼𝑜𝑛 /𝐼𝑜𝑓𝑓  ratio, respectively, from 𝐼𝑜𝑛 = 8.86 × 10−7 𝐴 and 

𝐼𝑜𝑛 /𝐼𝑜𝑓𝑓 = 8.19 × 106  to 𝐼𝑜𝑛 = 2.76 × 10−5 𝐴 and 𝐼𝑜𝑛 /𝐼𝑜𝑓𝑓 = 2.55 × 108 .  

(𝒏𝒎) 

𝑻𝑺𝒊𝑶𝟐
   𝑪𝒊 

(𝑭/𝒄𝒎𝟐) 

𝑽𝑻(𝑽) µ𝑭𝑬 

(𝒄𝒎𝟐𝑽−𝟏𝒔−𝟏)  

 

𝑰𝒐𝒏(𝑨) 𝑰𝒐𝒏/𝑰𝒐𝒇𝒇 𝑽𝒐𝒏(𝑽) 𝑺𝑺 

(𝑽/𝒅𝒆𝒄𝒂𝒅𝒆) 

500 6.91×10-9 -1.15 29.93 8.86×10-7 8.19×106 -1.54 7.74×10-2 

400 8.63×10-9 -1.05 29.89 1.10×10-6 1.02×107 -1.39 7.63×10-2 

300 1.15×10-8 -0.91 29.83 1.45×10-6 1.34×107 -1.30 7.56×10-2 

200 1.73×10-8 -0.75 29.78 2.15×10-6 1.99×107 -1.08 7.45×10-2 

100 3.45×10-8 -0.60 29.75 4.26×10-6 3.94×107 -0.90 7.36×10-2 

50 6.91×10-8 -0.51 29.69 8.42×10-6 7.80×107 -0.88 7.23×10-2 

40 8.33×10-8 -0.50 29.57 1.05×10-5 9.72×107 -0.83 7.18×10-2 

30 1.15×10-7 -0.48 29.47 1.40×10-5 1.30×108 -0.81 7.14×10-2 

20 1.73×10-7 -0.46 29.33 2.06×10-5 1.91×108 -0.79 7.10×10-2 

15 2.30×10-7 -0.44 29.21 2.76×10-5 2.55×108 -0.75 6.09×10-2 
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- The increase in the capacitance per unit area from 𝐶𝑖 = 6.91 × 10−9 𝐹/𝑐𝑚2 to 𝐶𝑖 = 2.30 ×

10−7 𝐹/𝑐𝑚2.  

- A significant decrease in the threshold voltage from 𝑉𝑇 = −1.15 𝑉 to 𝑉𝑇 = −0.44 𝑉. 

- A decrease in the subthreshold swing from the value 𝑆𝑆 = 7.74 × 10−2 𝑉/𝑑𝑒𝑐𝑎𝑑𝑒 to the 

value 𝑆𝑆 = 6.09 × 10−2 𝑉/𝑑𝑒𝑐𝑎𝑑𝑒. 

- A reduction in the turn-on voltage from the value 𝑉𝑜𝑛 = −1.54 𝑉 to the value 𝑉𝑜𝑛 = −0.75 𝑉. 

  However, the field-effect mobility seems to be slightly influenced by the SiO2 thickness 

reduction since it decreases slightly from the value µ𝐹𝐸 = 29.93 𝑐𝑚2𝑉−1𝑠−1
 to the value 

µ𝐹𝐸 = 29.21 𝑐𝑚2𝑉−1𝑠−1. 

We can confirm that the decrease of the SiO2 thickness is beneficial for the TFT 

performance improvement. However, if the thickness is more reduced (to 2~1 𝑛𝑚), this leads 

to the appearance of the quantum effect such as the current leakage toward the gate. This 

induces power dissipation through the device and consequently it reliability becomes unstable. 

III.3.4 Effect of the effective thickness of the gate dielectric 

To avoid this issue the SiO2 is replaced by high-k dielectric materials that can be thicker 

physically without being thicker electrically. However, most of the high-k dielectric materials 

have band gap energy lower than SiO2 gap energy (Figure III.7), since there is almost an 

inverse relationship between the dielectric constant (𝑘) and the band gap energy (𝐸𝑔). 

Therefore, it is preferred to use dielectric materials having a band gap energy larger enough to 

reduce the current leakage through the gate dielectric. The values of the dielectric constant (𝑘) 

and the band gap energy 𝐸𝑔  for different dielectric materials are shown in Figure III.7. 
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Figure III.7 Band gap energy as a function of the dielectric constant for different dielectric 

materials [17, 23-42]. 

Consequently, the optimal dielectric materials are those that have a high dielectric 

constant and a wide band gap. Most of the prominent materials for this purpose (From Figure 

III.7) are Al2O3, CaO, MgO, YAlO3, HfSiO4, GdScO3, GdScO3, ZrO2, HfxSi1-xOy, LaLuO3, LaAlO3, 

SrZrO3, CeO2, HfO2, and Sr2TiO4.  

In order to confirm the relationship between the dielectric constant, the 𝐸𝑂𝑇 and the a-

ITZO TFT performance, the SiO2 is replaced by a number of dielectric materials that are given 

in Table III.7.  

Figure III.8 shows the evolution of the transfer characteristics of the a-ITZO TFT using 

the gate dielectrics given in Table III.7. The extracted outputs are summarized in Table III.8. 
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Dielectric materials Dielectric constant (𝒌) Band gap energy (𝑬𝒈) 

SiO2 3.9 9 

Si3N4 7.5 5 

Al2O3 9.5 8.7 

Y2O3 16 5.6 

Gd2O5 18 5.4 

ZrxSi1-xOy 20 6 

ZrO2 25 5.8 

CeO2 26 5.5 

La2O3 27 4.3 

Ta2O5 27.5 4.25 

HfO2 35 5.7 

TiO2 65 3.25 

Nb2O5 125 4.06 

SrZrO3 180 5.4 

BaSrTiO3 250 3.21 

SrTiO3 300 3.27 

Table III.7 Dielectric constants and band gap energies for a set of gate dielectrics. 
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Figure III.8 The transfer (𝐼𝐷𝑆 − 𝑉𝐺𝑆) characteristics of the a-ITZO TFT depending on the 

dielectric constant; (a) linear plot and (b) semi-logarithmic plot. 
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Table III.8 The variations of the extracted parameters: 𝐸𝑂𝑇, 𝐶𝑖 , 𝑉𝑇 , µ
𝐹𝐸

, 𝐼𝑜𝑛 , 𝐼𝑜𝑛 /𝐼𝑜𝑓𝑓 , 𝑉𝑜𝑛 , and 𝑆𝑆, 

respectively, depending on the dielectric constant (k). 

When the dielectric constant increases from 39 to 300, the obtained results indicate that 

this leads to the increase in 𝐼𝑜𝑛 , 𝐼𝑜𝑛 /𝐼𝑜𝑓𝑓  ratio and 𝐶𝑖  and a decrease in 𝐸𝑂𝑇, 𝑉𝑇 , µ
𝐹𝐸

, 𝑉𝑜𝑛 , and 𝑆𝑆. 

In more details: 

- The equivalent oxide thickness decreases, according to Equation I.21, from 𝐸𝑂𝑇 =

100 𝑛𝑚 to 𝐸𝑂𝑇 = 1.3 𝑛𝑚. 

- The capacitance per unit area increases from the value 𝐶𝑖 = 3.45 × 10−8 𝐹/𝑐𝑚2 to the 

value 𝐶𝑖 = 2.66 × 10−6 𝐹/𝑐𝑚2, according to Equation I.24, due to the decrease of 𝐸𝑂𝑇. 

- The current 𝐼𝑜𝑛  and the 𝐼𝑜𝑛 /𝐼𝑜𝑓𝑓  ratio increase significantly from the values Ion = 

2.23×10-6 A and 𝐼𝑜𝑛 /𝐼𝑜𝑓𝑓 = 2.06 × 107 , respectively, to the values Ion = 2.86×10-4 A and 

𝐼𝑜𝑛 /𝐼𝑜𝑓𝑓 = 2.65 × 109. This is due to the increase in capacitance per unit area and leads 

to a high response velocity (fast reaction) of the device. 

- The threshold voltage decreases from the value 𝑉𝑇 = −0.610 𝑉 to the value 

𝑉𝑇 = −0.428 𝑉. 

dielectric 𝒌 𝑬𝑶𝑻 
(𝒏𝒎) 

𝑪𝒊 
(𝑭/𝒄𝒎𝟐) 
 × 10−8  

𝑽𝑻(𝑽) µ𝑭𝑬 

(𝒄𝒎𝟐𝑽−𝟏𝒔−𝟏) 

𝑰𝒐𝒏 
(µ𝑨) 

𝑰𝒐𝒏/𝑰𝒐𝒇𝒇 𝑽𝒐𝒏(𝑽) 𝑺𝑺 
(𝑽/𝒅𝒆𝒄) 
× 10−2 

SiO2 3.9 100 3.45 -0.610 29.75 2.23 2.06×107 -0.957 7.59 

Si3N4 7.5 52 6.64 -0.559 29.73 8.08 7.48×107 -0.937 6.91 

Al2O3 9.5 41.05 8.41 -0.544 29.71 10.2 9.44×107 -0.874 6.60 

Y2O3 16 24.37 14.2 -0.527 29.69 17.0 1.57×108 -0.835 6.35 

Gd2O5 18 22.28 15.9 -0.520 29.68 18.6 1.72×108 -0.833 6.31 

ZrxSi1-xOy 20 19.5 17.7 -0.511 29.67 21.4 1.98×108 -0.821 6.30 

ZrO2 25 15.6 22.1 -0.501 29.65 26.5 2.46×108 -0.813 6.21 

CeO2 26 15 23.0 -0.493 29.64 27.4 2.54×108 -0.800 6.14 

La2O3 27 14.44 23.9 -0.485 29.63 28.6 2.65×108 -0.796 6.02 

Ta2O5 27.5 14.18 24.3 -0.480 29.62 29.2 2.70×108 -0.793 5.98 

HfO2 35 11.14 31.0 -0.471 29.59 36.7 3.40×108 -0.790 5.96 

TiO2 65 6 57.5 -0.460 29.42 67.3 6.23×108 -0.783 5.86 

Nb2O5 125 3.12 111 -0.449 29.38 126 1.17×109 -0.775 5.79 

SrZrO3 180 2.17 159 -0.443 29.22 178 1.65×109 -0.764 5.63 

BaSrTiO3 250 1.56 221 -0.435 29.11 241 2.23×109 -0.750 5.27 

SrTiO3 300 1.3 266 -0.428 29.03 286 2.65×109 -0.749 5.04 
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- The subthreshold swing decreases from the value 𝑆𝑆 = 7.59 × 10−2 𝑉/𝑑𝑒𝑐𝑎𝑑𝑒 to the 

value 𝑆𝑆 = 5.04 × 10−2 𝑉/𝑑𝑒𝑐𝑎𝑑𝑒. 

- The turn-on voltage decreases from the value 𝑉𝑜𝑛 = −0.957 𝑉 to the value 𝑉𝑜𝑛 =

−0.749 𝑉. 

However, the field-effect mobility exhibits less sensitivity since it decreases slightly 

from the value µ
𝐹𝐸

= 29.75 𝑐𝑚2𝑉−1𝑠−1 to the value µ
𝐹𝐸

= 29.03 𝑐𝑚2𝑉−1𝑠−1. This is due to the 

presence of similar changes in the capacitance per unit area and the maximum slope of the 

transfer characteristic in the linear plot. 

As results indicate above, the more influenced parameters by the increase of the 

dielectric constant (k) are the capacitance per unit area and the source-drain current while the 

other parameters present slight variations. This can be attributed to the fact that the transfer 

characteristics of a-ITZO TFTs were calculated in the ideal case without taking into account the 

presence of possible defects at the semiconductor/dielectric (a-ITZO/dielectric) interface 

namely in case of high-k dielectrics. Because practically, the situation is more complicated for 

the devices that use high-k dielectrics in combination with semiconductors such as TFT, which 

requires the search for an experimental model for the density of interface trap states for each 

high-k dielectric material to extract the device parameters, which can vary greatly depending 

on the density value of the semiconductor/dielectric (a-ITZO/dielectric) interface defects. In 

this case, it is expected that besides the channel current and the capacitance more effects will 

occur in the other output parameters, especially in 𝑉𝑇  and 𝑉𝑜𝑛 , which can be severely affected 

by this type of defect. 

III.4 Effect of  bi-layer dielectrics 

The band gap energy of the chosen high-k dielectrics should be high enough to prevent 

again the current leakage. The chosen high-k dielectrics are oxides of the transition metals such 

as TaO2, TiO2, Al2O3, ZrO2, and HfO2, ferroelectric materials such as BaSrTiO3, and metal 
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silicates such as ZrSiO4 and HfSiO4. Promising results, namely a significant increase of the 

channel current, were obtained especially when the dielectric constant (k) exceeds 200 with a 

band gap energy > 3 eV.  

In the future, there is hope to introduce high-k dielectric materials with a larger energy 

band gap and a higher dielectric constant, in addition to a good quality interface, a low 

interface trap density, and good morphological properties as well as a good thermal stability, 

which are indispensable in the TFT technology of the next generation. 

However, another problem has to be mentioned which is that most of the high-k 

dielectric materials have much poorer properties than the conventional SiO2, such as a low 

interface quality (larger interface and bulk trap density compared to SiO2), poor morphological 

properties, and a low thermal stability [39]. In addition, the most high-k dielectrics have 

energy band gap less than that of SiO2, while it is known that the dielectric materials that have 

higher band gap energy can prevent or reduce the current leakage through the gate dielectric 

with less thickness than the dielectrics that have a lower band gap energy [40]. 

A better solution would be to using a bi-layer dielectric consisting of a very thin 

dielectric layer which possesses good morphological properties such as SiO2 (𝑘 = 3.9) and 

another thicker dielectric layer with high-dielectric constant (high-k) such as HfO2 (𝑘 = 35). 

This design gives a better interface quality (low interface traps density) and a lower effective 

gate dielectric oxide. 

The used dielectric oxides (low-k/high-k) in this work are SiO2/HfO2, with a large 

physically thickness and relatively small 𝐸𝑂𝑇. Despite the fact that most of the bi-layer 

dielectric oxides have a large physically thickness, they have relatively small EOT. As it is a 

technology of a great interest not only for scaling down transistor sizes but also because it is a 

low-temperature technology. In addition, the fundamental role of the interfacial layer of low-k 
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dielectric oxide between the high-mobility channel and the high-k dielectric oxide layer, which 

has some beneficial qualities with regard to carrier mobility in the device channel [41, 42]. 

However, if we consider the poor quality of the interface of the high-k materials, we will 

get much less performance. This is the reason why we used a capacitor based on a bi-layer 

dielectric (SiO2/HfO2) with a higher total physical thickness (70 𝑛𝑚). The addition of the SiO2 

layer is in the aim to prevent the poor quality of the HfO2 interface. This bi-layer region is 

equivalent electrically to a thinner SiO2 layer (10 nm), without the associated leakage effects 

(ALE).  

This means as shown in Figure III.9.a, that a capacitor based on the bi-layer dielectric 

(SiO2/HfO2) with a total physical thickness of 70 𝑛𝑚, can provide the same electrical 

characteristics and then the same electrical properties that are offered by capacitor based on 

the equivalent oxide to a thinner SiO2 (𝐸𝑂𝑇 = 10 𝑛𝑚), Figure III.9.b, without ALE.  

It also provides electrical properties better than the capacitor based on the mono-layer 

SiO2 dielectric, for the same physical thickness, 70 𝑛𝑚, presented in Figure III.9.c. 

 

Figure III.9 Schematic diagram of the three-dimensional structure of a simple parallel plate 

capacitor depending on the different types of gate dielectrics: (a) 70 nm of a bi-layer dielectric 

oxide (SiO2/HfO2), (b) 10 nm of SiO2 without associated leakage effect (ALE) and (c) 70 nm of 

SiO2. 
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III.4.1 Device structure  

Two-dimensional cross-section of the bottom-gate a-ITZO-based TFT devices structure, 

regions, materials, and dimensions are shown in Figure III.10, while a schematic structure of 

the simulated a-ITZO TFTs produced by Atlas is shown in Figure III.11. The input parameters 

of the devices are summarized in Table III.9. 

 

Figure III.10 Schematic diagram of a two-dimensional cross-section of the bottom-gate a-ITZO 

TFTs structure, dimensions, regions, and materials depending on the different types of gate 

dielectrics. 
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Figure III.11 Schematic diagram of the two-dimensional cross-section of the bottom-gate a-

ITZO TFT structures generated by Silvaco Atlas depending on the different types of gate 

dielectrics: (a) 70 nm of the bi-layer low-k(SiO2)/high-k(HfO2) gate dielectric, (b) the 

equivalent 10 nm of SiO2 without ALE and (c) 70 nm of low-k SiO2 gate dielectric. 
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Ref Value Description Parameter Region 

[9], Con 25/10/5 Length/Width/Thickness  𝐿(µ𝑚)/𝑊(µ𝑚)/𝑇(𝑛𝑚) a-ITZO  
(n-type 
channel) 

[9] 5.14 × 1015 The n doping concentration 𝑁𝑑 𝑐𝑚−3  
[9] 3.02 Band gap 𝐸𝑔 𝑒𝑉  

[13] 4.65 Electronic affinity 𝜒 𝑒𝑉  
[9] 30/0.1 Low-field electron/hole mobility µ𝑛/µ𝑝   𝑐𝑚2𝑉−1𝑠−1  

[9] 25/10/Var Length/Width/Thickness 𝐿(µ𝑚)/𝑊(µ𝑚)/𝑇(𝑛𝑚) SiO2 
[9] 9 Band gap 𝐸𝑔 𝑒𝑉  

[9] 3.9 The relative permittivity  𝑘SiO 2
  

[9], Con 25/10/67.5 Length/Width/Thickness 𝐿(µ𝑚)/𝑊(µ𝑚)/𝑇(𝑛𝑚) HfO2 
[30] 5.7 Band gap 𝐸𝑔 𝑒𝑉   

[30] 30 The relative permittivity  𝑘HfO 2
   

[9, 10] 10/10/0.1 Length/Width/Thickness  𝐿(µ𝑚)/𝑊(µ𝑚)/𝑇(𝑛𝑚) Mo source 
and drain 
contacts 

[9] 5 The source-drain spacing 𝐿𝑆𝐷 µ𝑚  
[15] 4.53 The work function of  Mo Ф𝑀𝑜 𝑒𝑉  

[9, 10] 25/10/0.1 Length/Width/Thickness  𝐿(µ𝑚)/𝑊(µ𝑚)/𝑇(𝑛𝑚) Mo gate 
electrode 
contact 

[9] 10 The gate-to-S/D overlap length 𝐿𝑂𝑉 µ𝑚  
[15] 4.53 The work function of  Mo Ф𝑀𝑜 𝑒𝑉  

Table III.9 Structure input parameters of the a-ITZO-based TFT. 

III.4.2 Effect of equivalent oxide thickness (EOT) of the gate dielectric 

A bi-layer dielectric is employed which consists of a very thin low-k SiO2 dielectric layer 

(𝑘 = 3.9) that ensures a low interface traps density with the channel in the juxtaposition of a 

high-k HfO2 (𝑘 = 35) dielectric layer relatively thicker. This bi-layer provides a lower electrical 

dielectric thickness (a lower effective gate dielectric thickness) (Figure III.12). 
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Figure III.12 Schematic band energy diagram of the channel/dielectric interface in the a-ITZO 

TFT with (a) 70 nm of the bi-layer SiO2/HfO2 gate dielectric, (b) the equivalent 10 nm of SiO2 

without ALE and (c) 70 nm of SiO2 mono-layer. 

Figure III.13 presents the transfer (𝐼𝐷𝑆 − 𝑉𝐺𝑆) characteristics (linear plot and semi-

logarithmic plot) for the three cases considered in this study and a fourth additional case for 

comparison:  

- a bi-layer (SiO2/HfO2) with a total thickness of 70 𝑛𝑚 (named case (a)). This bi-layer 

oxide is equivalent to 10 nm of SiO2 without the associated leakage current. 

- a 10 nm of a single thinner layer of SiO2 (named case (b)). 

- a thicker SiO2 layer of 70 𝑛𝑚 (named case (c)).  

- a thicker SiO2 layer of 70 nm but with a-IGZO as channel material (named case (d)). 

This case has been added to position the performance of the TFTs studied compared 

to the conventional a-IGZO TFT. The material and structure input parameters used 

for the a-IGZO are identical to those given in [4]. 
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Figure III.13 The simulated a-ITZO TFT transfer (𝐼𝐷𝑆 − 𝑉𝐺𝑆) characteristics for the different 

types of the gate dielectrics: (a) in the linear plot and (b) in the semi-logarithmic plot. 
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From the obtained curves the a-ITZO TFTs exhibits better performance than the 

conventional a-IGZO TFT. The cases (a) and (b) provide the same electrical characteristics 

which are better than the case (c). However in fact for the case (b) if we take into account the 

associated leakage current the real transfer characteristic will be poorer. In this case, the 

situation is more complex, requiring correction of quantum mechanics to extract the 

cumulative capacitance and extracting the parameters of the device which will greatly depend 

on the leakage current value.  

Then the use of the bi-layer dielectrics (case (a)) is more suitable in comparison to a 

single thinner layer of SiO2 (case (b)) with the associated leakage current. It is also preferred 

than 70 nm of pure SiO2 (case(c)) with the related capacitance decrease. The case (a) with a 

total physical thickness of 70 nm and electrical thickness of 10 nm prevent at the same time the 

leakage current and the capacitance reduction. This leads to raising the current with lowering 

energy consumption and then raising transistor performance as well as improving device 

reliability. This will be confirmed by the electrical output extraction in the next. 

From the transfer characteristic curves in the linear plot (Figure III.13.a), we calculated 

both 𝑉𝑇  and µ𝐹𝐸 , while from the transfer characteristic curves in the semi-logarithmic plot 

(Figure III.13.b) we calculated the following parameters: 𝑆𝑆, 𝑉𝑜𝑛 , 𝐼𝑜𝑛  and 𝐼𝑜𝑛 /𝐼𝑜𝑓𝑓  ratio. 

All the results obtained for the previous parameters (output parameters) of the a-ITZO 

TFT devices as well as the gate capacitance per unit area  are presented in Table III.10. 
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Table III.10 The a-ITZO TFT parameters extracted for cases (a), (b) and (c). Case (d) is 

extracted parameters for the conventional a-IGZO TFT. 

Indeed from the obtained results, summarized in Table III.10, the cases (a) and (b) gives 

almost the same optimum electrical outputs. But we remember that for the case (b) these 

results are ideal (since the ALE is not taking into account). For the a-IGZO TFT (case (d)), the 

obtained results confirm that its electrical outputs are poorer than that of a-ITZO TFTs. 

Returning to the three first cases, degradation is noticed in case (c) particularly in the 

capacitance which decreases from 3.45×10-7 to 4.93×10-8 𝐹/𝑐𝑚2 and in both 𝐼𝑜𝑛  and 𝐼𝑜𝑛 /𝐼𝑜𝑓𝑓  

ratio that decrease respectively from ~4.1×10-5 to 6.15×10-6 A and from 4.6×108 to 6.97×107. 

While for the other parameters the variations are practically insignificant.  

The optimum values of 𝐶𝑖 , 𝐼𝑜𝑛  and 𝐼𝑜𝑛 /𝐼𝑜𝑓𝑓  ratio leads to a higher transfer speed (fast 

response) of the transistor. 

Figure 14.a and 14.b show, respectively, the calculated EOT and Ci depending on the 

dielectric constant k and the physical thickness of the dielectric material.   

The EOT decreases by increasing k and/or by decreasing the physical thickness of the 

dielectric material. Similarly by doing this Ci increases. 

Case 𝑪𝒊 𝑭/𝒄𝒎𝟐  𝑽𝑻 𝑽  𝑺𝑺 𝑽/𝒅𝒆𝒄𝒂𝒅𝒆  𝝁𝑭𝑬 𝒄𝒎
𝟐𝑽−𝟏𝒔−𝟏      𝑰𝒐𝒏 𝑨  𝑰𝒐𝒏/𝑰𝒐𝒇𝒇 𝑽𝒐𝒏 𝑽  

(a) 3.45×10-7 -0.45 6.42×10-2 29.34 4.12×10-5 4.67×108 -0.79 

(b) 3.45×10-7 -0.45 6.45×10-2 29.36 4.08×10-5 4.62×108 -0.79 

(c) 4.93×10-8 -0.50 6.80×10-2 29.96 6.15×10-6 6.97×107 -0.80 

(d) 4.93×10-8 0.56 7.63×10-2 14.86 2.76×10-6 3.36×107 -1.01 
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Figure III.14 The evolutions of (a) the EOT and (b) Ci depending on k and the physical thickness 

of the dielectric material. 

Figure III.15 presents the evolution of the 𝐼𝐷𝑆 − 𝑉𝐷𝑆  characteristics for different gate 

voltages (𝑉𝐺𝑆). Cases (a) and (b) gives almost identical variations while case (c) shows a lower 

feature. Taking into account that the (𝐼𝐷𝑆 − 𝑉𝐷𝑆) characteristic of the case (b) is ideal (since the 

ALE is neglected), it is obvious that the case (a) is more suitable then (b) and (c) to achieve a 

better response of the TFT. 
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Figure III.15 The evolution of the 𝐼𝐷𝑆 − 𝑉𝐷𝑆  characteristics of the a-ITZO TFTs depending on the 

different types of the gate dielectrics: bi-layer dielectric thickness (Bi-D T), equivalent SiO2 

thickness (EQ- SiO2 T) and monolayer SiO2 thickness (Mono-SiO2 T). 

From the 𝐼𝐷𝑆 − 𝑉𝐷𝑆  characteristics, we calculated the electrical resistivity of the active 

layer of a-ITZO TFT. Results are listed in Table III.11.  

Table III.11 The calculated 𝜌 and 𝐶𝑖  for the cases (a), (b) and (c). 

𝑽𝑮𝑺 𝑽  𝟎 𝑽 𝟒 𝑽 𝟏𝟎 𝑽 𝟐𝟎 𝑽 

𝑪𝒂𝒔𝒆 (𝒂)     
𝝆(𝜴𝒄𝒎) 2.60×10-2 2.36×10-3 9.68×10-4 4.87×10-4 

𝑪𝒊 𝑭/𝒄𝒎𝟐  3.45×10-7 

𝑪𝒂𝒔𝒆 (𝒃)     
𝝆(𝜴𝒄𝒎) 2.64×10-2 2.40×10-3 9.86×10-4 4.96×10-4 

𝑪𝒊 𝑭/𝒄𝒎𝟐  3.45×10-7 

𝑪𝒂𝒔𝒆(𝒄)     
𝝆(𝜴𝒄𝒎) 1.48×10-1 1.54×10-2 6.43×10-3 3.27×10-3 

𝑪𝒊 𝑭/𝒄𝒎𝟐  4.93×10-8 
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Indeed from the obtained results, the case (a) gives the lower resistivity values which 

ensure the better response of the TFT. 

III.4.3 Effect of the oxide and interface states 

We finish this study by examining separately the effect of the interface states that may 

be between the two dielectrics SiO2 and HfO2 of the a-ITZO bi-layer dielectrics and the defect 

states that can be in the SiO2. The last one can interact with free carriers in the channel and 

induce a charge trapping in the oxide. 

Figure III.16 shows the transfer (𝐼𝐷𝑆 − 𝑉𝐺𝑆) characteristics (linear plot and semi-

logarithmic plot) for different interface state densities. The output parameters extracted in this 

case are summarized in Table III.12. 
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Figure III.16 Transfer (𝐼𝐷𝑆 − 𝑉𝐺𝑆) characteristics of the a-ITZO TFT with bi-layer (SiO2/HfO2) 

gate dielectric: (a) linear plot and (b) semi-logarithmic plot, for different SiO2/HfO2 interface 

state densities. 
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Table III.12 The extracted output parameters of the a-ITZO TFT with bi-layer (SiO2/HfO2) gate 

dielectric for different SiO2/HfO2 interface state densities. 

From the obtained results the increase of the SiO2/HfO2 interface state density upper 

1012  𝑐𝑚−2 induces a slight decrease in the mobility and namely a shift of the threshold voltage 

toward negative voltages. This means that the presence of this type of states with a 

considerable high density can destabilize the performance of the a-ITZO TFT based on bi-layer 

dielectric. But with good fabrication conditions, the interface state density should not exceed 

1010 ~ 1011  𝑐𝑚−2 and it is expected that its effect on the TFT performance will be minor. 

However, the effect of defects in SiO2 and in the a-ITZO/SiO2 interface that can result 

from different stresses during operation is more serious. These defects affect significantly the 

electrical properties of a-ITZO TFT, as shown in Figures III.17 and III.18, and then on the 

electrical properties as summarized in Tables III.12 and III.13 respectively.  

𝑵𝑫.𝑫
𝑴𝒂𝒙(𝒄𝒎−𝟐) 𝑽𝑻 𝑽  𝑺𝑺 𝑽/𝒅𝒆𝒄𝒂𝒅𝒆  𝝁𝑭𝑬 𝒄𝒎

𝟐𝑽−𝟏𝒔−𝟏  𝑰𝒐𝒏 𝑨  𝑰𝒐𝒏/𝑰𝒐𝒇𝒇 𝑽𝒐𝒏 𝑽  

Initial model -0.45 6.42×10-2 29.34 4.12×10-5 4.67×108 -0.79 

1×1010 -0.46 6.65×10-2 29.21 4.12×10-5 4.67×108 -0.83 

5×1010 -0.47 6.68×10-2 29.09 4.12×10-5 4.67×108 -0.84 

1×1011 -0.49 6.69×10-2 28.97 4.12×10-5 4.67×108 -0.85 

5×1011 -0.57 6.71×10-2 28.79 4.12×10-5 4.67×108 -1.04 

1×1012 -0.72 6.75×10-2 28.62 4.12×10-5 4.67×108 -1.24 

5×1012 -1.07 6.82×10-2 28.41 4.13×10-5 4.68×108 -3.12 

1×1013 -1.87 6.93×10-2 28.13 4.14×10-5 4.69×108 -5.46 
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Figure III.17 Transfer characteristics of the a-ITZO TFT with bi-layer SiO2/HfO2 gate dielectrics: 

(a) linear plot and (b) semi-logarithmic plot, for different densities of trapped charge states in 

SiO2. 
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Table III.13 The extracted output parameters of the a-ITZO TFT with bi-layer (SiO2/HfO2) gate 

dielectric for different densities of trapped charge states in SiO2. 

𝑵𝑻𝑪
𝑴𝒂𝒙(𝒄𝒎−𝟐) 𝑽𝑻 𝑽  𝑺𝑺 𝑽/𝒅𝒆𝒄𝒂𝒅𝒆  𝝁𝑭𝑬 𝒄𝒎

𝟐𝑽−𝟏𝒔−𝟏      𝑰𝒐𝒏 𝑨  𝑰𝒐𝒏/𝑰𝒐𝒇𝒇 𝑽𝒐𝒏 𝑽  

Initial model -0.45 6.42×10-2 29.34 4.12×10-5 4.67×108 -0.79 

1×1010 -0.47 6.67×10-2 29.18 4.13×10-5 4.68×108 -0.84 

5×1010 -0.50 6.71×10-2 29.05 4.14×10-5 4.69×108 -1.00 

1×1011 -0.54 6.75×10-2 28.93 4.15×10-5 4.70×108 -1.10 

5×1011 -0.62 6.80×10-2 28.73 4.18×10-5 4.74×108 -1.50 

1×1012 -0.85 6.86×10-2 28.55 4.23×10-5 4.79×108 -1.94 

5×1012 -2.84 6.93×10-2 28.43 4.62×10-5 5.23×108 -5.45 

1×1013 -5.30 7.05×10-2 28.04 5.10×10-5 5.78×108 -10.06 
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Figure III.18 Transfer characteristics of the a-ITZO TFT with bi-layer SiO2/HfO2 gate dielectrics: 

(a) linear plot and (b) semi-logarithmic plot, for different densities of the a-ITZO/SiO2 interface 

states. 
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Table III.14 The extracted output parameters of the a-ITZO TFT with bi-layer (SiO2/HfO2) gate 

dielectric for different densities of the a-ITZO/SiO2 interface states. 

Therefore, it is recommended to use dielectrics that have good thermal stability in order 

to avoid the instability in the electrical properties of the device caused by trapped charges in 

the dielectric oxide and in the semiconductor/dielectric interface, resulting from stresses on 

the device during operation. 

III.5 Effect of the interfacial dielectrics 

In this section SiO2 is replaced totally with an other dielectric material possessing higher 

properties which is Al2O3. It has a relatively high dielectric constant (𝑘 = 9.5), a very wide 

band gap (𝐸𝑔 = 8.7 𝑒𝑉) close to the energy band gap of SiO2, a good semiconductor/dielectric 

interface quality, a low density of semiconductor/dielectric interface traps, a good 

morphological properties and a good thermal stability [45-48]. 

 

 

 

𝑵𝑺.𝑫
𝑴𝒂𝒙(𝒄𝒎−𝟐) 𝑽𝑻 𝑽  𝑺𝑺 𝑽/𝒅𝒆𝒄𝒂𝒅𝒆  𝝁𝑭𝑬 𝒄𝒎

𝟐𝑽−𝟏𝒔−𝟏      𝑰𝒐𝒏 𝑨  𝑰𝒐𝒏/𝑰𝒐𝒇𝒇 𝑽𝒐𝒏 𝑽  

Initial model -0.45 6.42×10-2 29.34 4.12×10-5 4.67×108 -0.79 

1×1010 -0.48 6.69×10-2 29.14 4.13×10-5 4.68×108 -0.90 

5×1010 -0.54 6.72×10-2 29.04 4.14×10-5 4.69×108 -1.01 

1×1011 -0.59 6.75×10-2 28.89 4.15×10-5 4.70×108 -1.02 

5×1011 -0.98 6.82×10-2 28.61 4.19×10-5 4.75×108 -1.51 

1×1012 -1.55 6.89×10-2 28.46 4.24×10-5 4.81×108 -2.29 

5×1012 -3.09 6.98×10-2 28.34 4.64×10-5 5.26×108 -7.80 

1×1013 -5.69 7.20×10-2 27.92 5.12×10-5 5.80×108 -14.79 
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Ref Value Description Parameter Region 

[9], Var 25/10/10 Length/Width/Thickness 𝐿(µ𝑚)/𝑊(µ𝑚)/𝑇(𝑛𝑚) SiO2 
25/10/0 

[9] 9 Band gap 𝐸𝑔 𝑒𝑉  

[9] 3.9 The relative permittivity  𝑘SiO 2
 

[54] 0.9 Electronic affinity 𝜒 𝑒𝑉   
[55] 0.42/0.33 The relative effective mass for electron/hole 𝑚𝑒

∗/𝑚
∗   

[56, 57] 0.08/316 The electron/hole trapping density in bulk 
dielectric layer 

𝑁𝑒
𝐵𝑢𝑙𝑘 /𝑁

𝐵𝑢𝑙𝑘 (× 1017𝑐𝑚−3)  

[9], Var 25/10/0 Length/Width/Thickness 𝐿(µ𝑚)/𝑊(µ𝑚)/𝑇(𝑛𝑚) Al2O3 

25/10/10 
[22, 23] 8.7 Band gap 𝐸𝑔 𝑒𝑉  

[22, 23] 9.5 The relative permittivity 𝑘Al 2O3
 

[58] 1.7 Electronic affinity 𝜒 𝑒𝑉   
[59] 0.4/0.36 The relative effective mass for electron/hole 𝑚𝑒

∗/𝑚
∗   

[60, 61] 25/260 The electron/hole trapping density in bulk 
dielectric layer 

𝑁𝑒
𝐵𝑢𝑙𝑘 /𝑁

𝐵𝑢𝑙𝑘 (× 1017  𝑐𝑚−3)  

[9], Can 25/10/20 Length/Width/Thickness 𝐿(µ𝑚)/𝑊(µ𝑚)/𝑇(𝑛𝑚) HfO2 
25/10/20 

[30] 5.7 Band gap 𝐸𝑔 𝑒𝑉   

[30] 35 The relative permittivity   𝑘HfO 2
  

[62] 2.25 Electronic affinity 𝜒 𝑒𝑉   
[63] 0.7/0.3 The relative effective mass for electron/hole 𝑚𝑒

∗/𝑚
∗   

[64, 65] 136/0.23 The electron/hole trapping density in bulk 
dielectric layer 

𝑁𝑒
𝐵𝑢𝑙𝑘 /𝑁

𝐵𝑢𝑙𝑘 (× 1017  𝑐𝑚−3)  

Table III.15 The input parameters for the dielectrics used. 

Figure III.19.a represents the evolution of the transfer characteristics in the linear plot, 

while Figure III.19.b represents the evolution of the transfer characteristics in the semi-

logarithmic plot. Where we note that the TFT based on the bi-layer dielectric (Al2O3/HfO2) with 

a physical thickness (𝑃𝑇 = 30 𝑛𝑚) it can provide electrical characteristics higher than TFT 

device based on the bi-layer dielectric (SiO2/HfO2) for the same physical thickness. This is due 

to the fact that the dielectric constant of Al2O3 (𝑘 = 9.5) is higher than the dielectric constant of 

SiO2 (𝑘 = 3.9). This leads, according to the relative approximation of Al2O3/HfO2 k, to obtain a 

lower effective gate dielectric thickness, which is known as the equivalent oxide thickness 

(𝐸𝑂𝑇 = 10 𝑛𝑚). Thus, obtaining a high capacitance per unit area without the associated 

leakage effects (ALE). This will leads to raising the current and then the performance of the 

transistor. Because high-k dielectric materials using the relative approximation of low/high 𝑘 

can be physically thicker without being electrically thicker, which leads to the increase of the 

gate capacitance per unit area without ALE. 
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Figure III.19 The calculated of transfer (𝐼𝐷𝑆 − 𝑉𝐺𝑆) characteristics of the a-ITZO TFT depending 

on the different types of the interfacial dielectrics: (a) transfer characteristics in the linear plot 

and (b) transfer characteristics in the semi-logarithmic plot. 
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From the transfer characteristic curves in the linear plot (Figure III.19.a), we calculated 

the field effect mobility (µ
𝐹𝐸

) while from the transfer characteristic curves in the semi-

logarithmic plot (Figure III.19.b) we calculated each of 𝐼𝑜𝑛  and 𝐼𝑜𝑛 /𝐼𝑜𝑓𝑓  ratio. 

All the results obtained for the previous parameters of the a-ITZO TFT devices, in 

addition to the equivalent oxide thickness (𝐸𝑂𝑇) and the gate capacitance per unit area  as well 

as the physical thickness of gate dielectric (𝑃𝑇) are presented in Table III.16.   

Table III.16 The variations of the extracted parameters: 𝑃𝑇, 𝐸𝑂𝑇, 𝐶𝑖 , 𝐼𝑜𝑛 , 𝐼𝑜𝑛 /𝐼𝑜𝑓𝑓  and µ
𝐹𝐸

. 

Our results show that TFT based on the bi-layer dielectric (Al2O3/HfO2) with a physical 

thickness (𝑃𝑇 = 30 𝑛𝑚) can provide electrical properties better than properties provided by 

the TFT device based on the bi-layer dielectric (SiO2/HfO2) for the same physical thickness 

where: 

Equivalent oxide thickness decreases from the value 𝐸𝑂𝑇 = 12.23 𝑛𝑚 in the TFT based 

on the bi-layer dielectric (SiO2/HfO2) with a physical thickness (𝑃𝑇 = 30 𝑛𝑚) to the value 

𝐸𝑂𝑇 = 6.33 𝑛𝑚 in the TFT based on the bi-layer dielectric (Al2O3/HfO2) for the same physical 

thickness. This is due to the decrease of the low/high𝑘 ratio because of the increase of 𝑘 

(because the dielectric constant of the interfacial dielectric layer increases from the value 

𝑘 = 3.9 for SiO2 to the value 𝑘 = 9.5 for Al2O3) [66]. 

In addition, we note an increase in the capacitance per unit area from the value 

𝐶𝑖 = 2.82 × 10−7𝐹/𝑐𝑚2 to 𝐶𝑖 = 5.45 × 10−7𝐹/𝑐𝑚2. This is due to the decrease in the effective 

thickness of the gate dielectric, which is known as the electrical thickness of the gate dielectric 

and also 𝐸𝑂𝑇 because the TFT based on the bi-layer  dielectric (Al2O3/HfO2) with a physical 

thickness (𝑃𝑇 = 30 𝑛𝑚) has an equivalent oxide thickness (𝐸𝑂𝑇 = 6.33 𝑛𝑚) smaller than EOT 

𝒅𝒊𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄 𝑷𝑻 (𝒏𝒎) 𝑬𝑶𝑻 (𝒏𝒎) 𝑪𝒊 𝑭/𝒄𝒎𝟐  𝑰𝒐𝒏 𝑨  𝑰𝒐𝒏/𝑰𝒐𝒇𝒇 𝝁𝑭𝑬 𝒄𝒎
𝟐𝑽−𝟏𝒔−𝟏  

SiO2/HfO2 30 12.23 2.82 × 10−7 8.54 × 10−6 8.27 × 108 29.31 

Al2O3/HfO2 30 6.33 5.45 × 10−7 1.61 × 10−5 1.56 × 109 24.11 
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of the TFT based on the bi-layer dielectric (SiO2/HfO2) (𝐸𝑂𝑇 = 12.23 𝑛𝑚)  for the same 

physical thickness [67].  

Also, The current 𝐼𝑜𝑛  and the 𝐼𝑜𝑛 /𝐼𝑜𝑓𝑓  ratio, both increase from the values 𝐼𝑜𝑛 = 8.54 ×

10−6𝐴 and 𝐼𝑜𝑛 /𝐼𝑜𝑓𝑓 = 8.27 × 108  to 𝐼𝑜𝑛 = 1.61 × 10−5𝐴 and 𝐼𝑜𝑛 /𝐼𝑜𝑓𝑓 = 1.56 × 109, 

respectively. This is due to the increase in the capacitance per unit area because of the 

decrease in 𝐸𝑂𝑇, which leads to the raising of the current (drain current) and then increasing 

both 𝐼𝑜𝑛  and 𝐼𝑜𝑛 /𝐼𝑜𝑓𝑓  ratio. The increase in this ratio leads to a higher switching speed (fast 

reaction) and then higher performance of the transistor [30, 68]. 

However, the field effect mobility decreases from the value µ
𝐹𝐸

= 29.31 𝑐𝑚2𝑉−1𝑠−1 to 

µ
𝐹𝐸

= 24.11 𝑐𝑚2𝑉−1𝑠−1. This is due to the increase in the gate capacitance per unit area [69]. 

III.6 Effect of the leakage current 

It is known that most of the TFT devices based on dielectrics with high thicknesses 

display very small values to the charge leakage through the gate dielectric. However, the 

current leakage may be noticeable when a relatively high electrical voltage is applied to the 

gate. This leakage in current through the gate dielectric is due to many different leakage 

mechanisms, which may all contribute to leakage of current at the same time. This can affect 

the performance of any TFT device, especially its reliability, which are very important for the 

applications of dielectrics-based devices in combination with semiconductors such as TFT. 

Because a study of different leakage mechanisms through the gate dielectric is of great 

importance to the success of any TFT device. Therefore, the leakage current must be below a 

certain level to meet the specific reliability standards under normal operation of the device. 

Most leakage mechanisms that can contribute to the leakage of current through the gate 

dielectric are shown in Figure III.20. 
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Figure III.20 The energy band diagram of the semiconductor/dielectric interface in TFT 

depending on the type of gate bias with most leakage mechanisms that can contribute to the 

charge leakage through the gate dielectric. 

Figure III.21 represents the energy band diagram of the semiconductor/bi-layer 

dielectric oxide interface in TFT devices and the different band offsets where we note that 

there is a clear contrast between the band offsets. This variation can clearly affect the leakage 

value between the two devices, which varies depending on the leakage mechanism. 
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Figure III.21 The energy band diagram of the semiconductor/bi-layer dielectric oxide interface 

in a-ITZO TFTs and the different band offsets where (a) and (b) show the energy band 

diagrams of a-ITZO/SiO2/HfO2 and a-ITZO/Al2O3/HfO2 interfaces, respectively, and (c) shows 

comparative diagram of the energy bands while (d) shows the different band offsets in a-ITZO 

TFTs. 

Figure III.22 represents the evolution of the leakage current density in the linear and 

logarithmic plots depending on the quality of the interfacial dielectric layer. This evolution 

shows that a-ITZO TFT device based on Al2O3/HfO2  gives a leakage current density higher than 

the density provided by a-ITZO TFT based on SiO2/HfO2, which means that there is a difference 

in reliability between the two devices. 
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Figure III.22 The calculated of the leakage current density of the a-ITZO TFTs depending on the 

different types of the interfacial dielectrics: (a) the evolutions of the leakage current density in 

the linear plot while (b) the evolutions of the leakage current density in the semi-logarithmic 

plot. 

Although there is a clear disparity in the leakage value between the two devices, this 

does not mean that it has a significant impact on the reliability of the devices. The leakage 
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mechanisms that contribute to the charge leakage through the gate dielectric are shown in 

Figure III.23. 

 
Figure III.23 The energy band diagram of the semiconductor/dielectric interface in TFTs with 

different leakage mechanisms that contribute to the charge leakage through the gate dielectric 

depending on the different types of the interfacial dielectrics: (a) with an interfacial low-k SiO2 

and (b) with an interfacial high-k Al2O3. 
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In order to investigate the impact of this leakage on reliability, we performed a 

comparative study of the effect of the leakage current on the performance of the devices to 

determine whether it has a significant impact on reliability. 

Figure III.24 represents the evolution of the transfer characteristics of a-ITZO TFT 

devices with the associated leakage effects (ALE) along with the transfer characteristics of a-

ITZO TFT devices without ALE depending on the quality of the interfacial dielectric material. 
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Figure III.24 The calculated of transfer (𝐼𝐷𝑆 − 𝑉𝐺𝑆) characteristics of the a-ITZO TFTs 

with/without ALE depending on the different types of the interfacial dielectrics: (a) transfer 

characteristics in the linear plot and (b) transfer characteristics in the semi-logarithmic plot. 
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Although there is a difference in the value of leakage between the two devices, its effect 

is very poor on the performance of the device and its reliability, especially for low gate 

tensions. 

III.6 Conclusion 

In the TFT based on bi-layer, without neglecting the fundamental role of the interfacial 

low-k dielectric layer (SiO2) between the channel and the high-k dielectric, which has some 

beneficial qualities with regard to the carrier mobility in the transistor channel, through 

replacing the interfacial low-k dielectric oxide layer such as SiO2 between the high-mobility 

channel and the high-k dielectric oxide layer by an interfacial high-k dielectric such as Al2O3, 

we can continue to reduce the effective dielectric oxide thickness, which is referred as 𝐸𝑂𝑇, 

while at the same time using a physically thicker dielectric with almost maintaining low 

density of the interface and oxide traps. Thus raising transistor performance with high 

reliability through increasing the capacitance per unit area, raising the drain current, reducing 

or preventing the current leakage and reducing the energy consumption with almost 

maintaining low trapping rate of the carriers in the oxide and interface. 

However, we can continue to raise the transistor performance to higher values for the 

same physical thickness by replacing the HfO2 layer with a dielectric material having a higher 

dielectric constant (higher than 35) and a wide energy band gap as well as a good thermal 

stability. Recently, the most prominent among these materials are: Sr2TiO4 (𝐸𝑔 = 5.2 𝑒𝑉, 

𝑘 = 50), SrZrO3 (𝐸𝑔 = 5.5 𝑒𝑉, 𝑘 = 180) and TiO2 (𝐸𝑔 = 3.5 𝑒𝑉, 𝑘 = 170). And the hope remains 

for the next generation TFT is to introduce dielectrics with many attractive features such as a 

higher dielectric constant, a wider energy band gap and a good interface quality as well as good 

thermal stability, which are indispensable in the technology of the devices based on dielectrics 

in combination with semiconductors such as TFT in the future. 
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In this work we have already found and confirmed that the correct selection of the dielectric 

material is very important in determining the performance/reliability of any device based on 

semiconductors in combination with dielectrics such as TFT where: 

The performance of any TFT device is increased by: 

- Increasing the dielectric constant of the dielectric material, which leads to the reduction of the 

electric thickness of the gate dielectric or the so-called EOT, the increasing the gate capacitance per 

unit area and then the current (drain current). 

- Minimize the defects of the semiconductor/dielectric interface and the dielectric oxide by adding an 

interfacial low-k dielectric layer between the a-ITZO channel and the high-k dielectric layer, having 

very wide band gap and good morphological characteristics such as SiO2. Or replacing it with 

another dielectric layer having high-k and other good properties similar to those owned by SiO2 as 

very wide band gap, good quality of the interface and oxide (the density of oxide traps and low 

interface), and a good thermal stability, such as Al2O3. This leading to the reduction of the trapping 

rate of free carriers in the interface and oxide and then to increase current. Without neglecting the 

basic role of the SiO2 layer in the raising the mobility of free carriers at the transistor channel.  

The reliability of the device (TFT) is improved by: 

- Increase the physical thickness of the gate dielectric to a certain extent to allow for the reduction or 

prevention of the direct tunneling current leakage (preventing the leakage of the carriers from the 

gate to the a-ITZO-based channel and vice versa through the gate dielectric) and thereby reducing 

the power consumption as well as the decrease in temperature. 

- Increase the band gap energy of the dielectric material as it is known that the wide energy band gap 

can prevent the current leakage through gate dielectric with a mechanism different from the thickness 

mechanism that we talked about. 

Currently, the dielectric material that can achieve all these good specifications; high 

performance, high reliability and good stability at the same time is Al2O3.  
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However, we can continue to raise the transistor performance to higher values for the 

same physical thickness by replacing the bottom layer of the high-k HfO2 with a dielectric 

material having a higher dielectric constant (higher than 35) and a wide energy band gap as 

well as a good thermal stability. Recently, the most prominent among these materials are: 

Sr2TiO4 (𝐸𝑔 = 5.2 𝑒𝑉, 𝑘 = 50), SrZrO3 (𝐸𝑔 = 5.5 𝑒𝑉, 𝑘 = 180) and TiO2 (𝐸𝑔 = 3.5 𝑒𝑉, 𝑘 = 170). 

The hope remains for the next generation a-ITZO TFT is to introduce the double-layer 

dielectrics with a relatively large physical thickness that improves the reliability of TFT and a very 

small electric thickness that raises the performance of TFT to more higher values with good stability 

of electrical properties which are indispensable in the technology of the devices based on dielectrics 

in combination with semiconductors such as TFT in the future. 

 

 
 


