REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE Ministere de l'Enseignement Supérieur et de la Recherche Scientifique.

Université MOHAMED KHIDER BISKRA

Faculté des Sciences et de la Technologie

Departement de Génie Mécanique

 $N^{\circ}d$ 'ordre :

Serie :

Mémoire Presenté Par MENASRIA Fouad. Pour obtenir le diplôme de Magistère en Génie Mécanique Option : Énergétique

Modélisation des échanges par convection dans un canal rectangulaire munis d'ailettes

Soutenue le / /2009

Devant le jury :

Dr, M.Debabeche,	Professeur, Université de Biskra	Président
Dr. A.Moummi	Maître de conférences, Université de Biskra	Rapporteur
Dr. N.Moummi,	Maître de conférences, Université de Biskra	Examinateur
Dr. B.Agoudjil	Maître de conférences, Université de Batna	Examinateur
Dr, S.Ali Youcef	SNC, frères Ali Youcef, Constantine	Invité

Remerciements

Je remercie dieu le tout puissant de m'avoir donner le courage et la patience pour accomplir ce modeste travail.

Je tiens en premier à exprimer ma grande gratitude envers mon encadreur Dr.A.Moummi, enseignant au département de Génie mécanique à l'Université Med Khider de Biskra, qui m'a apporté son aide et ces précieux conseils pour l'aboutissement de ce travail.

Je tiens à remercier, Dr.M.Debabeche Professeur à l'université de Biskra en sa qualité de président de jury.

Mes vifs remerciements vont également à Messieurs les membres de jury, Dr N.Moummi. Maître de conférences à L'université de Biskra, Dr.B.Agoudjil Maître de conférences à l'université de Batna et notre invité d'honneur Dr.Sabri Ali youcef, d'avoir accepter d'examiner mon mémoire de Magister, et qui me font l'honneur de juger ce modeste travail.

Il convient de ne pas oublier tous ceux qui m'ont aidé d'une manière ou d'une autre, je tiens à signaler en particulier :

- * Zedayria merwane
- ✤ Mabrouk gastel
- ✤ Et tous mes parents

Enfin, à tous ceux et celles qui de prés ou de loin ont contribué à la réalisation de ce travail, Je dis à tous et toutes merci infiniment.

Résumé :

Résumé - L'objectif de cette étude, consiste à établir un model empirique de calcul du coefficient d'échange thermique par convection, lors de l'écoulement de l'air dans un conduit rectangulaire, dont le plan inférieur est muni de chicanes de formes rectangulaires disposées en quinconce. Par la méthode de l'analyse dimensionnelle, on a pu mettre en relation tout les paramètres physiques, thermophysiques et les caractéristiques géometriques des chicanes, et en fonction du régime d'écoulement on estime un coefficient d'échange par convection dans l'espace d'écoulement du fluide.

Mots clés : corrélation, coefficient d'echange, convection, rugosité artificielle, chicane, écoulement turbulent, capteur solaire plan à air.

Summary-The objective of this study, consists in establishing an empirical model calculation of the coefficient of thermal exchange by convection, during the air flow in a rectangular conduit, whose lower plan is provided with baffles of rectangular forms laid out in quincunx.

By the method of the dimensional analysis, one could connect all the physical, thermophysical parameters and the geometrical characteristics of the baffles, and according to the mode of flow one estimates a coefficient of exchange by convection in the space of flow of the fluid.

Key words: correlation, coefficient of exchange, convection, artificial roughness, baffle, turbulent flow, solar air flat plate.

خلاصة - إن هذه الدراسة تهدف إلى إنشاء نموذج عددي لمعامل الحمل الحراري لسريان الهواء داخل قناة مستطيلة الشكل سطحها السفلي مزود بخشونة إصطناعية (زعانف) مستطيلة الشكل ذات طرف علوي مائل، موضوعة بطريقة متداخلة. بأسلوب التحليل البعدي تمكنا من وضع علاقة تربط معامل الحمل الحراري بالخصائص الفيزيائية و الثر موفيزيائية للهواء والمميز ات،الهندسية للزعانف وحسب أسلوب سريان معين.

كلمات مفتاحية: إرتباط, معامل التبادل, حمل حراريّ, خشونة اصطناعيّة, حاجز, سريان مضطرب, لاقط شمسي هوائي

Nomenclature

Paramètre sans dimension

|--|

Dénominations

$Re = rac{ ho.u.D_h}{\mu}$	Nombre de Reynolds
$Pr = \frac{\mu . C_P}{\lambda}$	Nombre de Prandtl
$Br = \left(\frac{\lambda \Delta T}{\mu u^2}\right)^{-1}$	Nombre de Brinkman
Pe = Re.Pr	Nombre de Peclet
$Ec = \frac{Br}{Pr}$	Nombre d'Eckert
$Nu = \frac{h_c.D_h}{\lambda}$	Nombre de Nusselt
$J = \frac{Nu}{Re.Pr^{1/3}}$	Facteur deColburn
$\alpha = s/h$	Rapport entre l'espacement ' ail-ail' et l'hauteur d'une ailette
$\delta = t/l$	Rapport entre l'épaisseur et la longueur des ailettes
$\gamma = t/s$	Rapport entre l'épaisseur d'une ailette et l'espacement
$f=\frac{\tau_v}{0.5\rho.u^2}$	Coefficient de frottement

$S^{\#} = rac{Surface \, d' \acute{e} change \, thermique \, mouill \acute{e} \, totale}{Surface \, de \, captation \, face \, \grave{a} \, l' insolation}$

Lettres latines

<u>Symboles</u>	<u>Dénominations</u>	<u>Unités</u>
C _P	Chaleur massique de l'air	[J/Kg.K]
u	Vitesse moyenne du fluide	[m/s]
L _{ch}	Longueur de chicane	[m]
l _c	Largeur du capteur	[m]
P_{e-c}	Pas entre deux chicanes	[m]
P_{e-r}	Pas entre deux rangées de chicanes	[m]
L _c	Longueur de la conduite rectangulaire	[m]
D_h	Diamètre hydraulique de la conduite utile munis de chicanes	[m]
$A_c = L_c. \ l_c$	Surface de l'absorbeur	[m ²]
A	Section de passage de l'air dans la veine	[m ²].
T _e	Température à l'entrée du capteur	[°C]
T _s	Température à la sortie du capteur	[°C]
Ι	Flux solaire reçu par la face supérieure du capteur	[W/m ²]
$\Delta T = T_s - T_e$	Différence de température	[°C]
$\Delta P = P_s - P_e$	Différence de pression	[Pas]
x	Longueur d'ailette dans la direction x	[m]
D	Le diamètre hydraulique	[m]
t	Epaisseur d'une ailette	[m]
Q_V	Débit volumique	[m ³ /s]
P(Z)	Pression à l'altitude Z	[Pas]
Z	Altitude	[Km]
<i>P</i> ₀	La pression standard au niveau de la mer $(1.013.10^5 \text{ Pascal à})$	288 K)
T _{sV}	Température à la sortie du ventilateur	[K]

T _{pis}	Température de la plaque métallique placée sur l'isolation	[K]
C _{pf}	Chaleur massique de l'air	[J/Kg.K]
L	Longueur totale parcourue par l'air	[m]
$T_1 et T_2$	Les températures des surfaces concernées par l'échange	[K]
$\varepsilon_1 et \varepsilon_2$	Les émissivités des surfaces d'échange.	
$S_1 et S_2$	Surfaces d'échange considérées	[m ²]
T _m	Température moyenne de l'air	[K]
Q_u	Flux de chaleur utile	[W]
T _p	Température de parois	[K]
T _f	Température du fluide	[K]
h _{exp}	Coeficient d'échange thermique expérimentale	[W/m ² .K]
h _c	Coeficient d'échange thermique par convection	$[W/m^{2}K]$
'n	Débit massique de l'air	[Kg/s]
S _{min}	Surface transversale minimale du capteur	[m ²]
T _{ef}	Température d'entrée du fluide	[K]
T _{sf}	Température de sortie du fluide	[K]
δx	Longueur d'une tranche fictive	[m]
T_{fm}	Température du fluide moyenne (expérimentale)	[K]
Р	Périmètre mouillé	[m]
Ν	Nombre total de chicane	
n	Nombre de chicanes par rangée	

Lettres grecques

Symboles	Dénominations	<u>Unités</u>
λ	Coefficient de conductibilité thermique de l'air	[w/m.K]
ρ	Masse volumique de l'air	[Kg/m ³]
μ	Viscosité dynamique	$[Kg.m^{-1}.s^{-1}]$
ε	Hauteur absolue ou rugosité absolue d'une chicane	[m]
$ ho_f$	Masse volumique de l'air à l'altitude (Z)	$[Kg/m^3]$
$ ho_0$	Masse volumique de l'air (= 1.293 Kg/m^3) à Po	[Kg/m ³]
$\boldsymbol{\varepsilon}_{ab_pis}$	Émissivité de l'absorbeur côté plaque métallique.	
\mathcal{E}_{pis}	Émissivité de la plaque métallique côté absorbeur.	
$\sigma = 5,67.10^{-8}$	Constante de Stephan Boltzmann	$[W/(m^2.K^{-4})]$
Cp _f	Chaleur spécifique de l'air	[J/Kg .K]
α	angle incidences	[°]
$\eta = \frac{Q_u}{I_G.A_G}$	Rendement thermique	[%]
ξ	Coefficient de pertes de charge	

Indices

<u>Symboles</u>	<u>Dénominations</u>
ab_f	Absorbeur fluide
is_f	Isolant fluide
e-ch	Entre chicanes
e-ra	Entre rangées
ch	Chicane
ins	Insolation
pis	Plaque placée sur l'isolant
ab	Absorbeur
min	Minimum
C	Capteur
e	Entrée
S	Sortie
f	Fluide

Table des matières

Remerciements	XI
Résumé	XI
Nomenclature	XI
Table des matières	XI
Introduction générale	1

Chapitre I

Etude Bibliographique

I-1 Introduction	3
I-2 Etude Bibliographique	5
I-3 Démarche	19

Chapitre II

Paramètres de performance des capteurs solaires à air

II-1- Introduction	20
II-2- Description de capteur	.21
II-3- Le bilan thermique	22
II-3-1 Distribution de la température suivant la direction de l'écoulement de l'air	22
II-4- Effet des obstacles sur les échanges convectifs	24
II-5- Effet des obstacles sur les échanges radiatifs	. 28
II-6- Amélioration du couple « Rendement - Ecart de Température »	.29

Chapitre III Modélisation de coefficient d'échange

III-1- Introduction	.32
II1-2- Exposé du problème	32
III-3-Détermination des groupements	34
III-3-1-Calcul de coefficient d'échange convectif global	34
III-3-2-Calcul de nombre de <i>Nusselt</i>	36
III-3-3-Calcul de facteur de <i>Colburn</i>	37
III-4-Principe de calcul expérimental du cœfficient d'échange	37
III-5-Description du dispositif expérimental	37

Chapitre IV Étude numérique

IV-1 Avant Propos	39
IV-2-Organigramme du calcul Numérique	40
IV-3- Validation des résultats	41
IV-4-Exposition des résultats	42
IV-4-1- Premier cas, chicanes disposées en quinconce	42
IV-4-1-1- En régime laminaire	43
IV-4-1-1-2- Calcul de nombre de Nusselt	43
IV-4-1-1-3- Calcul de facteur de <i>Colburn</i>	43
IV-4-1-2 : En régime turbulent	47
IV-4-1-2-1- Calcul du nombre de Nusselt	47
IV-4-1-2-2-Calcul du facteur de Colburn	47
IV-4-2- Deuxième cas, chicanes disposées en quinconce	51
IV-4-2-1- Régime laminaire	52

IV-4-2-1-1- Calcul de nombre de <i>Nusselt</i>	52
IV-4-2-2- Calcul de facteur de <i>Colburn</i>	52
IV-4-2-2- Régime turbulent	56
IV-4-2-2-1- Calcul de nombre de Nusselt	56
IV-4-2-2- Calcul de facteur de Colburn	56
IV-5- Discussion et interprétation des résultats	60
IV-5-1-L'influence de nombre de Reynolds sur l'échange de chaleur dans la veine	60
IV-5-1-1-sur le coefficient d'échange thermique	60

Chapitre V

Simulation dynamique et thermique de l'écoulement de l'air

V-1- Introduction	62
V-2- Modélisation mathématique	62
V-3- Définition du problème	64
V-4- Présentation graphique	71
V-5- Résultats numériques obtenus	73
V-6- Comparaison entre l'expérimentale et la simulation numérique	74

Conclusion générale

Conclusion générale

Annexe 1

Résultats expérimentaux

Annexe 1	
Bibliographie	

Introduction Générale

L'amélioration des performances thermiques des capteurs solaires plans à air et les échangeurs de chaleur, repose sur plusieurs techniques, parmi elles celle qui consiste à accroître la surface d'échange totale par introduction de surfaces secondaires sous forme d'obstacles métalliques dites chicane, fixées solidairement sur le plan d'écoulement inférieur ou même sur l'absorbeur. Ces chicanes sont découpées en de tôles d'aluminium ou d'acier galvanisé d'épaisseur 0,4 à 0,5 mm, disposées en plusieurs rangées alignées en fil ou en quinconce. Les chicanes introduites dans la veine d'air mobile permettent de perturber l'écoulement que dans un capteur solaire sans chicanes, obligent le fluide de parcourir de longues trajectoires et assurent par conséquent un séjour plus important du fluide caloporteur en contact avec la surface chaude pour extraire d'avantage de calories.

Les chicanes étudiées sont de forme rectangulaire de 70 mm de longueur, et qui comportent deux parties ; une partie inférieure de 10 mm de hauteur encastrée perpendiculairement sur le plan d'écoulement, joue le rôle d'obstacle devant le fluide et oblige celui-ci de changer de direction, une partie supérieure de 15 mm inclinée par rapport au plan d'écoulement. Elles sont disposées en quinconce de sorte à obtenir des tourbillons dus aux élargissements et aux rétrécissements brusques.

Cependant, par le fait d'introduire des chicanes, implique des pertes de charge considérables depuis l'entrée jusqu'à la sortie du conduit, et implique par conséquent une puissance mécanique et électrique importante.

Pour mettre en évidence l'effet induit par les chicanes sur les pertes de charge occasionnées, un travail de recherche expérimental **[9]** a été effectué au département de génie mécanique, qui a eu pour objectif de trouver des ajustements semi empiriques, qui permettent de mettre en liaison, l'influence des paramètres physiques du fluide et géométriques du canal et des chicanes sur la chute de pression engendrée. Des relations empiriques ont été établit, qui permettent d'estimer la dépression produite en fonction des caractéristiques géométriques des chicanes, et des configurations de disposition de celles-ci dans le conduit utile.

Dans cette étude, on s'intéresse à la modélisation des échanges thermiques par convection, dans un conduit utile, muni de chicanes de même forme que celles citées auparavant, disposées en quinconce. Plusieurs manipulations ont été effectuées sur ce modèle de chicanes, ou on s'est intéressé à mesurer les performances thermiques. La banque de mesure nous a permis de trouver des groupements adimensionnels, qui permettent en fonction du régime d'écoulement, d'estimer le coefficient d'échange convectif aux caractéristiques géométriques des chicanes et aux propriétés thermophysiques du fluide.

Pour réaliser ce travail, on a structuré ce mémoire en quatre chapitres essentiels.

Dans le premier chapitre, une étude bibliographique a été entamée, à travers une série d'articles publiés dans des revues internationales spécialisées ainsi que des travaux de recherche dans le cadre de préparation des mémoires de magister et de doctorat. On a cité également quelques travaux intéressants qui se sont investi dans l'étude des échanges thermiques en présence d'ailettes.

Le second chapitre a été réservé à l'étude des performances thermiques des capteurs solaires plans à en particulier, et aux méthodes et techniques utilisées pour l'amélioration de ces performances, en agissant sur l'intensification de la surface d'échange globale.

A partir de l'inventaire des principaux paramètres qui interviennent, et par la théorie de l'analyse dimensionnelle, on a essayé de trouver des groupements adimensionnels qui relient tout les paramètres. Des relations adimensionnelles prêtes à l'emploi on été établies. Ceci à fait l'objet du troisième chapitre

Le quatrième chapitre comporte l'étude numérique, en partant des résultats expérimentaux, et après identification de touts les paramètres figurants dans l'expression adimensionnelle, on a obtenu un système d'équation complexe, dont la résolution à fait appel à des méthodes et des techniques numériques les plus fréquemment utilisé. On définitive on a pu développer des expressions semi empiriques qui permettent d'estimer le cœfficient d'échange par convection dans un conduit rectangulaire, dont la surface d'échange est muni des chicanes étudiées.

Le cinquième chapitre a été réservé pour la simulation par le logiciel Fluent 6.1, pour comparer et valider l'ensemble des travaux numériques et graphiques obtenu. Des résultats remarquables ont été acquis, distinctement la possibilité de visualiser le contour des lignes de courant à travers les rangées des chicanes, le profiles des températures et l'évolution de la pression depuis l'entrée du conduit jusqu'à sa sortie.

On définitive, on termine par une conclusion générale, ou a rappelle les principaux résultats trouvés.

- [1] **R.M.Manglik and A.E.Bergles,**Heat Transfer and Pressure Drop Correlations for the Rectangular Offset Strip Fin Compact Heat Exchanger,Experimental Thermal and Fluid Science,10.PP.171-180 (1995).
- [2] A.R.Wieting, Empirical Correlations for Heat Transfer and Flow Friction Characteristics of Rectangular Offset-Fin Plate–Fin Heat Exchangers, Trans. ASME J. Heat Transfer 97,488-490 (AUGUST1975).
- [3] H.M.Joshi and R.L.Webb, Heat transfer and friction in the offset strip-fin heat exchanger.Int.J.heat Mass Transfer **30**,69-84(1987).
- [4] W.M.Kays, and A.L.London, Heat transfer and flow friction characteristics of some compact heat exchanger surfaces, J.Engng Power January, 27-34(1960).
- [5] Sen Hu and Keith E.Herold, Prandtl number effect on offset fin heat exchanger performance: experimental results. Int. J. heat Mass Transfer **38**, 1053-1061.
- [6] A.E.Bergles Heat Transfer Enhancement The Encouragement and Accommodation of High Heat Fluxes Trans.ASME J.Heat Transfer **119**,9-19(FEBRUARY 1997).
- [7] FIEBIG,M ,Vortice Tools to Influence Heat Transfer, Recent Developments."Proceedings of the 2nd European Thermal-Sciences and 14th UTT National Heat Transfer Conference,Edizoioni FTS,Pisa,Italy 1.P.41-56 (1996).
- [8] Amon,C.H, "Spectral Element Fourier Method for Transtional Flows in Complex Geometries, "AlAA Journal, 6. No. 1, PP42-48(1993).
- [9] N.Chouchane, A.Moummi, N.Moummi, K.Oues, Modelisation des Pertes de Charge dans un Cconduit Rectangulaire Garni de Rugosites Artificielles avec une Partie Superieure Inclinée.
- [10] A.Aben,V.Dubois,M. Le Ray,A.Ouagued,Study of a solar air flrt plate collector : use of obstacles and application for the drying of grape,Journal of Food Engineering,65,15-22(2004).
- [11] Mohammed.Alia, Modelisation des Capteurs Solaire à air distinées au séchage (convection forcée) these de Magistère (2005).

- [12] Ben Slama Romdhane, The air solar collectors : Comparative study, introduction of baffles to favor the heat transfer, J Solar Energy **81**, 139-149 (2007).
- [13] Sabri Youcef-Ali,Etude numerique et expérimentale des séchoirs solaires indirects à convection forcée :Application à la pomme de terre, these de doctorat (2001).
- [14] A.Ahmed-Zaïd,A.Moulla,M.S.Hantala et J.Y.Desmons,Amélioration des Performances des Capteurs Solaires Plan à air:Application au Séchage de l'Oignon Jaune et du Hareng.Rev.energ.Ren.4.69-78(2001).(shema perte de charge).
- [15] Yves Jannot, Transfert Thermique (2008).
- [16] Abdelmalek Zitouni,Rabie Ait Cheâlalet,les capteurs solaire, mémoire d'ingéniorat,Jijel(2008)
- [17] **Derouiche Younes, Medjouri Mohamed Ali,**Etude de l'evolution de la difference temperature en fonction des parametres geometriques et physiques dans un capteur solaire plan a air, mémoire d'ingéniorat, Biskra(2007).
- [18] Rachid Saim Said Abboudi Boumediène Benyoucef Ahmed Azzi, Analyse numérique la convection forcée turbilente dans les tubes muni des chicanes transversales, 13 Journées internationales de thermique, Albi, France (2007).
- [19] Nazih Marzouqui, T.P. Fluent, Cours Mécanique des fluides (2006).
- [20] Balima Olivier, Fontfryde Thomas, George Erwin, Marinhas Sandrine, Rezgui Azdine,Etude de la convection naturelle dans une cavité carrée en 2D et 3D sous Fluent et Gambit

V-1- Introduction

Dans ce chapitre, on essayera d'utiliser les potentialités du logiciel Fluent, connu par sa puissance dans la simulation en mécanique des fluides. Le recours au logiciel Fluent, est pour de multiples raison, particulièrement la possibilité de visualiser le contour des lignes de courants, de température et de la dépression entre l'amont et l'aval du conduit occupé par des obstacles de géométrie et de formes diverses, et de voir l'effet des paramètres considérés dans les précédents chapitres, à noter la longueur des chicanes, le pas entre deux chicanes, le pas entre deux rangées, d'autre part, les modules intégrés dans le logiciel Fluent, permettent de visualiser par des illustrations graphiques l'effet de ses paramètres sur les performances thermique du capteur solaire.

Dans la présente étude, on considère la simulation numérique du transfert thermique par convection forcée tridimensionnelle, dans une veine rectangulaire horizontale muni des chicanes (particulièrement dans les capteurs solaire plan), traversée par l'air, dont la vitesse varie suivant le régime d'écoulement soit laminaire ou turbulent.

La simulation numérique des paramètres, a été réalisée en utilisant le code puissant de la dynamique des fluides offerte par Fluent. Ce programme est basé sur le travail décrit par Patankar [18].

La définition de la géométrie et la génération du maillage ont été réalisées à l'aide du code générateur de mailles Gambit [19].

V-2- Modélisation mathématique :

Les principes physiques qui régissent ce problème, sont modélisés par les équations de conservation de la masse, des quantités de mouvements et de l'énergie.

Les équations représentant l'écoulement d'un fluide newtonien compressible sont données par les équations suivantes :

• Equation de continuité :

Cette équation exprimant la conservation de la masse est donnée comme suit :

$$\frac{\partial \rho}{\partial t} + div(\rho \mathbf{u}) = 0 \tag{V-1a}$$

Chapitre V

(V-2)

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = div(\mathbf{u})$$
(V-1b)

• Equations de transport de quantité de mouvement :

Suivant l'axe x- le mouvement des particules fluides est régit par $\frac{\partial(\rho u)}{\partial t} + div(\rho u \mathbf{u}) = -\frac{\partial p}{\partial x} + div(\mu gradu) + S_{Mx}$

y- mouvement,

$$\frac{\partial(\rho v)}{\partial t} + div(\rho v \mathbf{u}) = -\frac{\partial p}{\partial y} + div(\mu gradv) + S_{My}$$
(V-3)

z- mouvement,

$$\frac{\partial(\rho w)}{\partial t} + div(\rho w \mathbf{u}) = -\frac{\partial p}{\partial z} + div(\mu gradw) + S_{Mz}$$
Avec :

$$S_{Mx} = -\rho g = , S_{My} = 0, S_{Mz} = 0,$$
(V-4)

Une équation de type « Poisson » pour la correction de la pression, dérivée de l'équation de continuité et les équations de quantité de mouvement linéarisées, sera résolue pour obtenir les corrections des champs de pression et de vitesse nécessaires pour satisfaire la condition de continuité.

• Equation de conservation de l'énergie :

$$\frac{\partial(\rho i)}{\partial t} + div(\rho i\mathbf{u}) = -pdiv\mathbf{u} + div(\lambda gradT) + \mathbf{\Phi} + S_i$$
(V-5)

Sachant que, $div\mathbf{u} = \mathbf{0}$ pour un fluide incompressible. S_i , s'annule dans notre cas, puisqu'on est concerné par une seule phase sans réaction chimique et sans transfert radiatif. L'équation générale de transport s'écrit de la manière suivante :

$$\frac{\partial(\rho\Phi)}{\partial t} + div(\rho\Phi\mathbf{u}) = div(\lambda grad\Phi) + S_{\Phi}$$
(V-6)

On utilise la méthode des volumes finis pour la résolution numérique de ces équations. Les détails de l'application de cette méthode numérique sont expliqués dans l'ouvrage de **Patankar** [18].

La forme intégrée de l'équation (V-5) à l'état stationnaire, en utilisant le développement de Taylor est donnée par l'équation (V-6).

$$\int_{A} \mathbf{n} (\rho \Phi \mathbf{u}) dA = \int_{A} \mathbf{n} (\lambda g r a d \Phi) dA + \int_{CV} S_{\Phi} dV$$
 (V-7)

La méthode des volumes finis, est basée sur l'algorithme SIMPLE [21], est utilisée pour résoudre le système (V-1b), (V-2), (V-3), (V-4), (V-5), & (V-7) muni des conditions aux limites ci-dessous :

- 1. A l'entrée : velocity_inlet
- 2. A la sortie : pressure_outlet (101380Pas)
- 3. Au niveau des autres parois : wall

V-3- Définition du problème :

On considère une veine rectangulaire de longueur 140 cm et de 88 cm de largeur. Les chicanes sont de forme rectangulaire avec une partie supérieure inclinée, dont l'incidence est de 60° , la partie encastrée orthogonalement sur le plan d'écoulement est d'une hauteur de 1cm, par contre la partie inclinée est de 1.5 cm, comme il est indiqué dans **Fig. (V -1)**

Fig. (V-1) présentation d'une chicane en3D

Fig. (V-2) Présentation du plan d'écoulement muni de plusieurs rangées de chicanes disposées en quinconce.

	L _{ch}	P_{e-c}	P_{e-r}	L'espacement (maillage)	Type de maillage	Nombre de mailles
Cas1	7 cm	4 cm	10 cm	0.8 cm	Tétraédrique	465252
Cas2	7 <i>cm</i>	4cm	20 <i>cm</i>	0.6 <i>cm</i>	Tétraédrique	1162694

La disposition des chicanes est conçue pour de multiples raisons :

Les parties inclinées des chicanes forment des rétrécissements et des élargissements brusques vis-à-vis du plan supérieur à l'écoulement, contribuent à la création des tourbillons à :

• Axes verticaux par rapport au plan d'écoulement Fig. (V-3)

Fig. (V-3) Tourbillons à Axes verticaux

• Axes horizontaux par rapport au plan d'écoulement Fig. (V-4)

Fig. (V-4) Tourbillons à Axes horizontaux (lignes de courant)

Chapitre V

La disposition en quinconce des chicanes, est dans la création des tourbillons à axe horizontaux et verticaux en vue d'optimiser les performances thermiques des capteurs solaires plans à air en particulier.

Fig. (V-5) contour de la température

La Fig. (V-5) présente les champs de température le long du plan d'écoulement, Les caractéristiques 3D sont clairement visibles sur les champs de température, en effet la température augmente sensiblement lorsque les particules fluides se trouvent juste à proximité immédiate des limites des chicanes.

Fig. (V-6) contour de la pression

D'autre part la **Fig. (V-6)** montre présente les champs de pression le long du plan d'écoulement, la pression diminue, ce qui implique qu'il y a une perte de charge entre l'entrée et la sortie du conduit utile. Cette perte de charge est induite par les obstacles interposés devant le passage du fluide (chicanes).

Pour une étude spécifique, il faut crée un plan au sein de notre domaine d'écoulement, à savoir que le plan de base considéré avait les coordonnées spatiales suivantes :

X[m]	0	1.4	1.4	0
Y[m]	0	0	0.025	0.025
Z[m]	0.5	0.44	0.44	0.44

Fig. (V-7) présentation de la surface a étudiée

Fig. (V-8) contour des vitesses au niveau de la surface étudiée.

Fig. (V-10) contour de la pression au niveau de la surface étudiée

La Figure **Fig. (V-9)**, illustre les contours des profils de températures dans le plan orthogonal, et longitudinalement par rapport au conduit utile.

On constate que dans la région située juste après la chicane la température augmente, par contre la figure **Fig. (V-10)** montre que la pression diminue.

V-4-_Présentation graphique

Fig. (V-11a) Evolution du nombre de *Nusselt* le long de la conduite utile $L_{ch} = 7cm$, $P_{e-c} = 4cm$, $P_{e-r} = 10 cm et Re < 2100$

les figures Fig. (V-11a), et Fig. (V-11b) représentes successivement l'évolution du coefficient d'échange par convection et du nombre de Nusselt en fonction de la vitesse moyenne locale (au niveau de la surface étudié), dans le conduit muni de chicanes définies par : $L_{ch} = 7cm$, $P_{e-c} = 4cm$, $P_{e-r} = 10 cm$

 $L_{ch} = 7 cm, P_{e-c} = 4 cm, P_{e-r} = 10 cm et Re < 2100$

Les pertes de charge calculées par FLUENT, peuvent être représentées dans la figure **Fig. (V-11d)** et valent environ (**29.56Pa**) On constate, par conséquent que la valeur de perte de charge retrouvée numériquement, coïncide pratiquement avec celle calculée par les approches semi empiriques établit sur la base d'une séries de mesures expérimentales.

La discontinuité des graphes implique la discontinuité d'écoulement à cause de l'existence des obstacles.

Comme, le nombre de Reynolds est élevé, cela prouve que l'écoulement n'est pas du tout laminaire. On utilisera par conséquent un modèle de turbulence. Contrairement au cas laminaire, les solutions sont plus dépendantes du maillage, et une attention particulière doit être portée sur la vérification a posteriori de la finesse du maillage près des parois, afin de s'assurer que tous les phénomènes sont capturés. Nous allons utiliser le modèle de turbulence le plus simple qui existe : dite, modèle de $k - \varepsilon$.

V-5- Résultats numériques obtenus :

Pour un flux solaire incident égale à 482 $[W/m^2]$, la simulation avec Fluent nous donne les résultats numériques suivants :

Chicanes en quinconces	La nature d'écoulement	Débit d'air [Kg/h]	T _e [K]	T _s [K]	∆P [pas]	V _e [m /s]	V _s [m/s]
$L_{ch} = 7 \ cm$ $P_{e-c} = 4 \ cm$	Ecoulement laminaire	55.1811	300.46	333.02	29.56	0.57995492	0.91728508
$\boldsymbol{P}_{\boldsymbol{e}-\boldsymbol{r}}=10\ cm$	Ecoulement turbulent	70	300.08	322.50	44.68	0.74402392	1.1324842
$L_{ch} = 7 \ cm$ $P_{ch} = 4 \ cm$	Ecoulement laminaire	55.1811	300.10	334.08	14.94	0.58908927	0.76737958
$P_{e-r} = 20 \ cm$	Ecoulement turbulent	72.7941	300.07	327.60	23.47	0.74768609	0.9396168

Chapitre V

L'existence des obstacles oblige l'écoulement de crée une structure tourbillonnaire (des tourbillons) au niveau des chicanes qui permet d'obtenir une qualité de transfert de chaleur satisfaisant.

V-6- Comparaison entre l'expérimentale et la simulation numérique

Temps	Ф [w/m²]	Pression [Pa]				Therm	nocoup	oles [°	C]			V de	Débit [m³/h]
			n°1	n°2	n°3	n°4	n°5	n°6	n°7	n°8	Tamb	vent	
09h20	482	34	27	36	39	45	43	44	28	42	23.5	3.60	65

POUR Tableau N°: 03 Date: 19/04/2008

La simulation numérique donne les résultats suivante et pour le même débit massique

Chicanes en quinconces	Ecoulement laminaire	Débit d'air [Kg/h]	T _e [K]	T _s [K]	ΔP [pas]
$L_{ch} = 7 \ cm$ $P_{e-c} = 4 \ cm$	Simulation avec fluent	55.1811	300.10	318.94	29.56
$\boldsymbol{P}_{e-r} = 10 \ cm$	L'expériment ale	55.1811	300	318	34

Étude numérique et l'exposition des résultats :

IV-1 Avant Propos

Avant d'exposer les résultats obtenus dans cette partie, nous représenterons les expressions utilisées pour le calcul de chaque paramètre de notre étude :

1)- Les tableaux expérimentaux qui contiennent les données nécessaires sont représentés dans la partie [Annex1], ces tableaux de mesures renferment les informations suivantes:

- Le flux solaire horaire dans la première colonne en $[W/m^2]$.
- La perte de charge dans la deuxième colonne en [Pas].
- Les colonnes 3, 4, 5, 7, 8, et 10 représentent les températures indiquées par les sondes des mesures (thermocouples) placées le long de la veine d'écoulement en [°C].
- La colonne 6 représente la température de la paroi (l'absorbeur) en [°C].
- La colonne 13 représente le débit volumique de l'air (horaire) en $[m^3/s]$.
- La colonne 14 représente la vitesse de l'air en [m/s].
- La colonne 11 représente la température de l'air ambiant en [°C].

2)- Les propriétés thermo physique de l'air: dans l'intervalle des températures de travail, considérés, varient linéairement avec sa température, elles s'écrivent comme suit :

• La conductivité thermique de l'air en [W/m.K]

$$\lambda_f = 0.02624 + 0.0000758(T_m - 27) \tag{IV-1}$$

• La viscosité dynamique de l'air en [Kg/m.s]

$$\mu_f = [1,983 + 0,00184(T_m - 27)]. \ 10^{-5}$$
 (IV-2)

• La chaleur spécifique de l'air en [J/Kg .K]

$$Cp_f = 1005,7 + 0,066(T_m - 27) \tag{IV-3}$$

• La masse volumique de l'air en [Kg/m³]

$$\rho_f = 1,1774 + 0.00359(T_m - 27) \tag{IV-4}$$

Où, T_m étant la température moyenne du fluide en [°C].

3)- Les propriétés géométriques de la veine de l'écoulement :

Les chicanes sont disposées en quinconce voir chapitre (II), sont définies par les caractéristiques géométriques suivantes:

l _{ch} [cm]	P_{e-c} [cm]	P_{e-r} [cm]	п	<i>α</i> [°]	<i>ε</i> [m]	<i>D_h</i> [m]
7	4	10	8	60	0.0230	0.0169
7	4	20	8	60	0.0230	0.0169

Tableau (VI-1) caractéristiques géométriques des chicanes.

Tel que :

- α : Angle d'incidence de la partie supérieure inclinée d'une chicane en [°]
- La rugosité artificielle est caractérisé par une hauteur absolue désignée par ε ,

$$\varepsilon = 1 + 1.5\sin\left(\alpha + \pi\right) \tag{IV-5}$$

• Le nombre de chicanes par rangée

$$n = \frac{l_c}{P_{e-c} + P_{e-r}} \qquad n \in N \tag{IV-6}$$

IV-2-Organigramme du calcul Numérique :

- Notre programme est basé sur l'organigramme suivant :
- Calcul de coefficient d'échange (h_c) à partir des équations suivantes :

$$Q_u = h_{exp} A_c (T_p - T_f)$$
(IV-7)

D'autre part, on :

$$Q_u = \dot{m}. C_p. (T_{sf} - T_{ef}) \tag{IV-8}$$

Les deux entités sont identiques par conséquent on peut écrire établir l'égalité :

$$h_{exp}.S(T_p - T_f) = \dot{m}.C_p.(T_{sf} - T_{ef})$$
 (IV-9)

Par conséquent le coefficient d'échange h_{exp} vaut :

$$h_{exp} = \frac{\dot{m}.C_{p}.(T_{sf} - T_{ef})}{S(T_p - T_f)}$$
(IV-10)

En considérant que :

$$\dot{m} = \rho. u. S_{min} \tag{IV-11}$$

$$T_f = \frac{T_{ef} + T_4 + T_5 + T_7 + T_8 + T_{sf}}{6}$$
(IV-12)

Soit :

 A_c : La surface globale de l'absorbeur en $[m^2]$.

 S_{min} : La surface transversale minimale du capteur en $[m^2]$.

 T_{ef} : La température d'entrée du fluide représentée par la colonne 3 dans le tableau de mesure expérimental.

 T_{sf} : C'est la température de la sortie du fluide représentée par la colonne 8 dans le tableau de mesure expérimental.

« ρ » et « C_p » sont calculés à partir des équations (IV-3), (IV-4), ou T_m la température moyenne du fluide :

$$T_m = \frac{T_f + T_p}{2} \tag{IV-13}$$

• Calcul des nombre adimensionnels de chacun des paramètres pour différentes températures mesurées, ces nombres sont :

$$\begin{cases} \frac{\rho \cdot u \cdot D_h}{\mu} = Re\\ Pr = \frac{\mu \cdot C_P}{\lambda}\\ \left(\frac{\lambda \cdot \Delta T}{\mu \cdot u^2}\right)^{-1} = Br \end{cases}$$

Pour déterminer les valeurs de h_{exp} il faut remplacer chaque terme de l'équation (III-8) par sa valeur numérique correspondante, ce qui permet d'obtenir un système d'équation dont la résolution est obtenue par la méthode dite pseudo inverse [17].

IV-3- Validation des résultats :

Au départ nous considérons 03 paramètres au moins, comme conditions aux limites on considère la température d'entrée, la température de la paroi et le débit massique du fluide qui est l'air dans notre cas.

La boucle « for » doit être satisfaite, est qui va stabiliser après quelques itération, à suivre les étapes précédentes

Maintenant il faut remplacer chaque terme de l'équation (III-8) par sa valeur numérique figurant dans le tableau de mesure expérimental.

IV-4-Exposition des résultats :

IV-4-1- Premier cas, chicanes disposées en quinconce : en considérant les paramètres géométriques suivants :

Longueur d'une chicane	$l_{ch} = 7cm$
Pas entre deux chicanes de même rangées	$P_{e-c} = 4cm$
Pas entre deux rangées successives	$P_{e-r} = 10cm$

IV-4-1-1- En régime laminaire Pour ce régime, on se fixe uniquement aux essais ou les vitesses d'écoulement de l'air dans le conduit utile correspondent à un écoulement laminaire.

L'équation (III-7) pour un écoulement laminaire devient

$$h_{c} = \frac{A_{c} \cdot \rho \cdot C_{P} \cdot u}{D_{h}^{2}} Re^{1.2414} \cdot Pr^{11.5536} \cdot Br^{-0.5811} \cdot \left(\frac{\varepsilon}{D_{h}}\right)^{-0.1074} \cdot \left(\frac{P_{e-c}}{D_{h}}\right)^{-0.3022} \cdot \left(\frac{P_{e-r}}{D_{h}}\right)^{-0.6246} \cdot \left(\frac{l_{ch}}{D_{h}}\right)^{-0.4991} \cdot \left(\frac{I}{\rho \cdot u^{3}}\right)^{-0.0375} \cdot \left(\frac$$

Ou bien sous la forme de base, l'équation (III-8) devient :

$$h_{c} = \frac{A_{c} \rho C_{P} u}{D_{h}^{2}} R e^{-9.7311} \cdot P e^{10.9725} \cdot E c^{-0.5811} \cdot \left(\frac{\varepsilon}{D_{h}}\right)^{-0.1074} \cdot \left(\frac{P_{e-c}}{D_{h}}\right)^{-0.3022} \cdot \left(\frac{P_{e-r}}{D_{h}}\right)^{-0.6246} \cdot \left(\frac{l_{ch}}{D_{h}}\right)^{-0.4991} \cdot \left(\frac{I}{\rho u^{3}}\right)^{-0.0375} \cdot \left(\frac{P_{e-r}}{D_{h}}\right)^{-0.6246} \cdot \left(\frac{I_{ch}}{D_{h}}\right)^{-0.4991} \cdot \left(\frac{I}{\rho u^{3}}\right)^{-0.0375} \cdot \left(\frac{I}{\rho u^{3}}\right)^{-0.0375} \cdot \left(\frac{I_{ch}}{D_{h}}\right)^{-0.4991} \cdot \left(\frac{I}{\rho u^{3}}\right)^{-0.0375} \cdot \left(\frac{I}{\rho u^{3}}\right)^{$$

IV-4-1-1-2- Calcul de nombre de Nusselt :

De la même manière que précédemment pour le calcule du nombre de **Nusselt**, on devrait tenir compte de la relation :

$$Nu = \frac{h_c \cdot D_h}{\lambda}$$

Par conséquent le nombre de *Nusselt*, peut être caractérisé par l'expression numérique décrite par l'équation (III-8), prend la forme :

$$Nu = \frac{A_c \rho. C_{P.u}}{D_h \lambda} Re^{1.2414} \cdot Pr^{11.5536} \cdot Br^{-0.5811} \cdot \left(\frac{\varepsilon}{D_h}\right)^{-0.1074} \cdot \left(\frac{P_{e-c}}{D_h}\right)^{-0.3022} \cdot \left(\frac{P_{e-r}}{D_h}\right)^{-0.6246} \cdot \left(\frac{l_{ch}}{D_h}\right)^{-0.4991} \cdot \left(\frac{I}{\rho. u^3}\right)^{-0.0375}$$

Qui, sous la forme donnée exprimée par l'équation (III-10), on aura :

$$Nu = \frac{A_{c} \cdot \rho \cdot C_{P} \cdot u}{D_{h} \lambda} Re^{-9.7311} \cdot Pe^{10.9725} \cdot Ec^{-0.5811} \cdot \left(\frac{\varepsilon}{D_{h}}\right)^{-0.1074} \cdot \left(\frac{P_{e-c}}{D_{h}}\right)^{-0.3022} \cdot \left(\frac{P_{e-r}}{D_{h}}\right)^{-0.6246} \cdot \left(\frac{l_{ch}}{D_{h}}\right)^{-0.4991} \cdot \left(\frac{I}{\rho \cdot u^{3}}\right)^{-0.0375} \cdot \left(\frac{I}{$$

IV-4-1-1-3- Calcul de facteur de Colburn : donné par l'expression suivante :

$$J = \frac{Nu}{Re. Pr^{1/3}}$$

A partir de l'équation (III-11), le facteur de *Colburn* devient :

$$J = \frac{A_c}{D_h^2} Re^{1.2414} \cdot Pr^{12.2203} \cdot Br^{-0.5811} \cdot \left(\frac{\varepsilon}{D_h}\right)^{-0.1074} \cdot \left(\frac{P_{e-c}}{D_h}\right)^{-0.3022} \cdot \left(\frac{P_{e-r}}{D_h}\right)^{-0.6246} \cdot \left(\frac{l_{ch}}{D_h}\right)^{-0.4991} \cdot \left(\frac{I}{\rho \cdot u^3}\right)^{-0.0375}$$

Fig. (IV-1) Evolution de coefficient d'échange en fonction de nombre de Reynolds (Re<2100)

Fig. (IV-2) Evolution de coefficient d'échange en fonction de nombre de Prandtl (Re<2100)

Fig. (IV-3) Evolution de coefficient d'échange en fonction de débit massique (Re<2100)

Fig. (IV-4) Evolution de nombre de Nusselt en fonction de nombre de Reynolds (Re<2100)

Fig. (IV-5) Evolution de facteur de Colburn en fonction de nombre de Reynolds (Re<2100)

IV-4-1-2 : En régime turbulent :

De la même façon, on ne considère que les essais, ou les vitesses d'écoulement de l'air dans le conduit utile correspondent au régime turbulent, par conséquent l'équation (III-7) devient :

$$h_{c} = \frac{A_{c} \rho \cdot C_{P} \cdot u}{D_{h}^{2}} Re^{0.4523} \cdot Pr^{-1.6114} \cdot Br^{-0.9945} \cdot \left(\frac{\varepsilon}{D_{h}}\right)^{-0.1449} \cdot \left(\frac{P_{e-c}}{D_{h}}\right)^{-0.4078} \cdot \left(\frac{P_{e-r}}{D_{h}}\right)^{-0.8428} \cdot \left(\frac{l_{ch}}{D_{h}}\right)^{-0.6735} \cdot \left(\frac{I}{\rho \cdot u^{3}}\right)^{-0.5924} \cdot \left(\frac{I$$

Sous sa forme de base, l'équation (III-8) est décrite par l'expression :

$$h_{c} = \frac{A_{c} \cdot \rho \cdot C_{P} \cdot u}{D_{h}^{2}} Re^{-3.0581} \cdot Pe^{-2.6059} \cdot Ec^{-0.9945} \cdot \left(\frac{\varepsilon}{D_{h}}\right)^{-0.1449} \cdot \left(\frac{P_{e-c}}{D_{h}}\right)^{-0.4078} \cdot \left(\frac{P_{e-r}}{D_{h}}\right)^{-0.8428} \cdot \left(\frac{l_{ch}}{D_{h}}\right)^{-0.6735} \cdot \left(\frac{I}{\rho \cdot u^{3}}\right)^{-0.5924} \cdot \left(\frac{1}{\rho \cdot u^{3}}\right)^{-0.5924} \cdot \left($$

IV-4-1-2-1- Calcul du nombre de Nusselt :

Tout en considérant la relation de base de Nusselt,

$$Nu = \frac{h_c \cdot D_h}{\lambda}$$

En régime turbulent, par identification à la relation adimensionnelle établit par l'équation (III-9), l'expression du *Nusselt* serait :

$$Nu = \frac{A_c \rho. C_{P.u}}{D_h \lambda} Re^{0.4523} \cdot Pr^{-1.6114} \cdot Br^{-0.9945} \cdot \left(\frac{\varepsilon}{D_h}\right)^{-0.1449} \cdot \left(\frac{P_{e-c}}{D_h}\right)^{-0.4078} \cdot \left(\frac{P_{e-r}}{D_h}\right)^{-0.8428} \cdot \left(\frac{l_{ch}}{D_h}\right)^{-0.6735} \cdot \left(\frac{I}{\rho. u^3}\right)^{-0.5924}$$

Ou bien sous une autre forme, en considérant le développement donné par l'équation (III-10), on aura :

$$Nu = \frac{A_{c,\rho,C_{P},u}}{D_{h}\lambda} Re^{-3.0581} \cdot Pe^{-2.6059} \cdot Ec^{-0.9945} \cdot \left(\frac{\varepsilon}{D_{h}}\right)^{-0.1449} \cdot \left(\frac{P_{e-c}}{D_{h}}\right)^{-0.4078} \cdot \left(\frac{P_{e-r}}{D_{h}}\right)^{-0.8428} \cdot \left(\frac{l_{ch}}{D_{h}}\right)^{-0.6735} \cdot \left(\frac{I}{\rho,u^{3}}\right)^{-0.5924} \cdot \left(\frac{I}{\rho$$

IV-4-1-2-2-Calcul du facteur de Colburn : désigné par la relation :

$$J = \frac{Nu}{Re. Pr^{1/3}}$$

En considérant l'expression décrite par l'équation (III-11) le facteur de Colburn devient:

$$J = \frac{A_c}{D_h^2} Re^{0.4523} \cdot Pr^{-0.9447} \cdot Br^{-0.9945} \quad \cdot \left(\frac{\varepsilon}{D_h}\right)^{-0.1449} \cdot \left(\frac{P_{e-c}}{D_h}\right)^{-0.4078} \cdot \left(\frac{P_{e-r}}{D_h}\right)^{-0.8428} \cdot \left(\frac{I_{ch}}{D_h}\right)^{-0.6735} \cdot \left(\frac{I}{\rho \cdot u^3}\right)^{-0.5924}$$

Fig. (IV-6) Evolution de coefficient d'échange en fonction de nombre de Reynolds (Re>2100)

Fig. (IV-7) Evolution de coefficient d'échange en fonction de nombre de Prandtl (Re>2100)

Fig. (IV-8) Evolution de coefficient d'échange en fonction de débit massique (Re>2100)

Fig. (IV-9) Evolution de nombre de Nusselt en fonction de nombre de Reynolds (Re>2100)

Fig. (IV-10) Evolution de facteur de *Colburn* en fonction de nombre de *Reynolds* (Re>2100)

IV-4-2- Deuxième cas, chicanes disposées en quinconce : en considérant les paramètres géométriques suivants :

Longueur d'une chicane	$l_{ch} = 7cm$
Pas entre deux chicanes de même rangées	$P_{e-c} = 4cm$
Pas entre deux rangées successives	$P_{e-r} = 20cm$

IV-4-2-1- Régime laminaire : même remarque comme dans le précédent, on ne considère que les mesures ou les vitesses d'écoulement de l'air correspondent à un régime laminaire

L'équation (III-7) décrivant la relation dimensionnelle du coefficient d'échange convectif en régime laminaire devient :

$$h_{c} = \frac{A_{c}\rho.C_{P.u}}{D_{h}^{2}}Re^{1.0920} \cdot Pr^{1.9756} \cdot Br^{-0.3195} \cdot \left(\frac{\varepsilon}{D_{h}}\right)^{-0.0627} \cdot \left(\frac{P_{e-c}}{D_{h}}\right)^{-0.1763} \cdot \left(\frac{P_{e-r}}{D_{h}}\right)^{-0.5067} \cdot \left(\frac{l_{ch}}{D_{h}}\right)^{-0.2912} \cdot \left(\frac{I}{\rho.u^{3}}\right)^{-0.1416}$$

Qui peut être aussi représenté sous sa forme de base donnée par l'équation (III-8) :

$$h_{c} = \frac{A_{c} \cdot \rho \cdot C_{P} \cdot u}{D_{h}^{2}} Re^{-0.5641} \cdot Pe^{1.6560} \cdot Ec^{-0.3195} \cdot \left(\frac{\varepsilon}{D_{h}}\right)^{-0.0627} \cdot \left(\frac{P_{e-c}}{D_{h}}\right)^{-0.1763} \cdot \left(\frac{P_{e-r}}{D_{h}}\right)^{-0.5067} \cdot \left(\frac{l_{ch}}{D_{h}}\right)^{-0.2912} \cdot \left(\frac{I}{\rho \cdot u^{3}}\right)^{-0.1416} \cdot \left(\frac$$

IV-4-2-1-1- Calcul de nombre de Nusselt : même remarque que dans le cas précédent :

$$Nu = \frac{h_c \cdot D_h}{\lambda}$$

Par identification à l'équation (III-8) le nombre de Nusselt serait :

$$Nu = \frac{A_c \rho . C_{P.u}}{D_h \lambda} Re^{1.0920} . Pr^{1.9756} . Br^{-0.3195} \cdot \left(\frac{\varepsilon}{D_h}\right)^{-0.0627} . \left(\frac{P_{e-c}}{D_h}\right)^{-0.1763} . \left(\frac{P_{e-r}}{D_h}\right)^{-0.5067} . \left(\frac{l_{ch}}{D_h}\right)^{-0.2912} . \left(\frac{I}{\rho . u^3}\right)^{-0.1416} . C_{P_{e-r}}^{-0.1416} . C_{P_{e-r}}^{-0.141$$

D'autre par, le nombre de Nusselt décrit par l'équation (III-10) est :

$$Nu = \frac{A_{c} \cdot \rho \cdot C_{P} \cdot u}{D_{h} \lambda} Re^{1.0920} \cdot Pr^{1.9756} \cdot Br^{-0.3195} \cdot \left(\frac{\varepsilon}{D_{h}}\right)^{-0.0627} \cdot \left(\frac{P_{e-c}}{D_{h}}\right)^{-0.1763} \cdot \left(\frac{P_{e-r}}{D_{h}}\right)^{-0.5067} \cdot \left(\frac{l_{ch}}{D_{h}}\right)^{-0.2912} \cdot \left(\frac{I}{\rho \cdot u^{3}}\right)^{-0.1416} \cdot \left(\frac{I}{\rho$$

IV-4-2-2- Calcul de facteur de Colburn : donné par la relation :

$$J = \frac{Nu}{Re. Pr^{1/3}}$$

A partir de l'équation adimensionnelle (III-11), le facteur de Colburn devient :

$$J = \frac{A_c}{D_h^2} Re^{1.0920} \cdot Pr^{2.6423} \cdot Br^{-0.3195} \cdot \left(\frac{\varepsilon}{D_h}\right)^{-0.0627} \cdot \left(\frac{P_{e-c}}{D_h}\right)^{-0.1763} \cdot \left(\frac{P_{e-r}}{D_h}\right)^{-0.5067} \cdot \left(\frac{l_{ch}}{D_h}\right)^{-0.2912} \cdot \left(\frac{I}{\rho \cdot u^3}\right)^{-0.1416} \cdot \left(\frac{P_{e-r}}{D_h}\right)^{-0.1416} \cdot \left(\frac{P_{e-r}}{D_h}\right)^{-0.1416} \cdot \left(\frac{I_{ch}}{D_h}\right)^{-0.2912} \cdot \left(\frac{I_{ch}}{P_{e-r}}\right)^{-0.1416} \cdot \left(\frac{I_{ch}}{D_h}\right)^{-0.2912} \cdot \left(\frac{I_{ch}}{P_{e-r}}\right)^{-0.1416} \cdot \left(\frac{I_{ch}}{P_{e-r}}\right)^{-0.1416} \cdot \left(\frac{I_{ch}}{P_{e-r}}\right)^{-0.2912} \cdot \left(\frac{I_{ch}}{P_{e-r}}\right)^{-0.1416} \cdot \left(\frac{I_{ch}}{P_{e-r}}\right)^{-0$$

Fig. (IV-11) Evolution de coefficient d'échange en fonction de nombre de Reynolds (Re<2100)

Fig. (IV-12) Evolution de coefficient d'échange en fonction de nombre de Prandtl (Re<2100)

Fig. (IV-13) Evolution de coefficient d'échange en fonction de débit massique (Re<2100)

Fig. (IV-14) Evolution de nombre de *Nusselt* en fonction de nombre de *Reynolds* (Re<2100)

Fig. (IV-15) Evolution de facteur de *Colburn* en fonction de nombre de *Reynolds* (Re<2100)

IV-4-2-2- Régime turbulent : En considérant que les vitesses de l'air en régime turbulent, par conséquent l'équation (III-7) serait de la forme :

$$h_{c} = \frac{A_{c} \cdot \rho \cdot C_{P} \cdot u}{D_{h}^{2}} Re^{0.9182} \cdot Pr^{-2.2610} \cdot Br^{-0.5105} \cdot \left(\frac{\varepsilon}{D_{h}}\right)^{-0.0401} \cdot \left(\frac{P_{e-c}}{D_{h}}\right)^{-0.1130} \cdot \left(\frac{P_{e-r}}{D_{h}}\right)^{-0.3246} \cdot \left(\frac{l_{ch}}{D_{h}}\right)^{-0.1866} \cdot \left(\frac{I}{\rho \cdot u^{3}}\right)^{0.0891} \cdot \left(\frac{P_{e-r}}{\rho \cdot u^{3}}\right)^{-0.1130} \cdot \left(\frac{P_{e-r}}{D_{h}}\right)^{-0.1130} \cdot \left(\frac{P_{e-r}}{D_{h}}\right)^{-$$

Par la relation dimensionnelle de base, décrite par l'équation (III-8) on obtient :

$$h_{c} = \frac{A_{c} \cdot \rho \cdot C_{P} \cdot u}{D_{h}^{2}} Re^{-3.6897} \cdot Pe^{-2.7715} \cdot Ec^{-0.5105} \cdot \left(\frac{\varepsilon}{D_{h}}\right)^{-0.0401} \cdot \left(\frac{P_{e-c}}{D_{h}}\right)^{-0.1130} \cdot \left(\frac{P_{e-r}}{D_{h}}\right)^{-0.3246} \cdot \left(\frac{l_{ch}}{D_{h}}\right)^{-0.1866} \cdot \left(\frac{I}{\rho \cdot u^{3}}\right)^{0.0891} \cdot \left(\frac{P_{e-r}}{D_{h}}\right)^{-0.1130} \cdot \left(\frac{P_{e-r}}{D_{h}}\right)^{-0.1$$

IV-4-2-2-1- Calcul de nombre de Nusselt : qui est donné par l'expression :

$$Nu = \frac{h_c \cdot D_h}{\lambda}$$

Le nombre de Nusselt à partir de l'équation (III-9) est :

$$Nu = \frac{A_c \rho . C_{P.u}}{D_h \lambda} Re^{0.9182} . Pr^{-2.2610} . Br^{-0.5105} \quad . \left(\frac{\varepsilon}{D_h}\right)^{-0.0401} . \left(\frac{P_{e-c}}{D_h}\right)^{-0.1130} . \left(\frac{P_{e-r}}{D_h}\right)^{-0.3246} . \left(\frac{l_{ch}}{D_h}\right)^{-0.1866} . \left(\frac{l_{ch}}{\rho . u^3}\right)^{-0.0891} . C_{L_{ch}}^{-0.01130} . C_{L_{ch}}^$$

Autrement caractérisé par l'équation (III-10) on aura :

$$Nu = \frac{A_c \rho . C_{P.u}}{D_h \lambda} Re^{-3.6897} . Pe^{-2.7715} . Ec^{-0.5105} . \left(\frac{\varepsilon}{D_h}\right)^{-0.0401} . \left(\frac{P_{e-c}}{D_h}\right)^{-0.1130} . \left(\frac{P_{e-r}}{D_h}\right)^{-0.3246} . \left(\frac{l_{ch}}{D_h}\right)^{-0.1866} . \left(\frac{I}{\rho . u^3}\right)^{0.0891} .$$

IV-4-2-2- Calcul de facteur de Colburn :

$$J = \frac{Nu}{Re.Pr^{1/3}}$$

Par l'équation adimensionnelle (III-11) le facteur de Colburn devient :

$$J = \frac{A_c}{D_h^2} Re^{0.9182} \cdot Pr^{-1.5943} \cdot Br^{-0.5105} \cdot \left(\frac{\varepsilon}{D_h}\right)^{-0.0401} \cdot \left(\frac{P_{e-c}}{D_h}\right)^{-0.1130} \cdot \left(\frac{P_{e-r}}{D_h}\right)^{-0.3246} \cdot \left(\frac{I_{ch}}{D_h}\right)^{-0.1866} \cdot \left(\frac{I_{\rho u^3}}{P_{e^{-1}}}\right)^{-0.0891} \cdot \left(\frac{P_{e^{-1}}}{P_{e^{-1}}}\right)^{-0.0891} \cdot \left(\frac{P_{e^{-1}}$$

Fig. (IV-16) Evolution de coefficient d'échange en fonction de nombre de Reynolds (Re>2100)

Fig. (IV-17) Evolution de coefficient d'échange en fonction de nombre de Prandtl (Re>2100)

Fig. (IV-18) Evolution de coefficient d'échange en fonction de débit massique (Re>2100)

Fig. (IV-19) Evolution de nombre de Nusselt en fonction de nombre de Reynolds (Re>2100)

Fig. (IV-20) Evolution de facteur de Colburn en fonction de nombre de Reynolds (Re>2100)

IV-5- Discussion et interprétation des résultats :

IV-5-1-L'influence de nombre de Reynolds sur l'échange de chaleur dans la veine:

IV-5-1-1-sur le coefficient d'échange thermique :

En régime d'écoulement laminaire (Re < 2100), concernant l'influence du nombre de Reynolds sur le coefficient d'échange thermique convectif, nous pouvons constater que le coefficient d'échange thermique (**h**) varie dans l'intervalle 4 à 45 [W/m².K], pour le premier cas ou le pas entre rangée**per = 10 cm**, comme démontre la Fig. (IV-1), d'autre part il varie de 4 à 35 [W/m²], dans le deuxième cas, ou le pas entre rangée augmente **per = 20 cm**, voir Fig. (IV-2), ce qui montre l'effet significatif du pas entre rangée, ou on pourrait améliorer l'échange convectif lorsque le pas entre rangée diminue.

.En Régime turbulent Re > 2100, l'écart est plus significatif, le coefficient d'échange thermique varie de 40 à 70 [W/m².K] dans le premier cas Fig. (IV-11), par contre il ne varie que de 35 à 55 [W/m².K] dans le deuxième cas Fig. (IV-16).

L'analyse des résultats numériques, montre que les améliorations apportés au coefficient d'échange convectif sont plus importantes et devient presque le double en régime turbulent dans les deux cas étudiées, notamment en présence de la configuration des chicanes, ou le pas entre rangée est de 10 cm.

Quand au nombre de **Nusselt**, les figures (IV-4-9-14-19) nous montrent que sa variation en fonction du nombre de Reynolds. En régime laminaire, le *Nusselt* varie de 05 à 28 pour le premier cas per = 10 cm, et de 2 à 24 pour le deuxième cas ou le pas entre rangée*per* = 20 cm.

En régime turbulent, le nombre de *Nusselt* varie de22 à 42 dans le cas ou le pas entre rangée est per = 10 cm, alors qu'il ne varie que de 20 à 35 pour le second ou per = 20 cm.

Les graphiques qui montrent l'évolution du coefficient d'échange en fonction du nombre du Prandtl sont représentés sur les figures (IV-2, 7, 12 et17), on note que l'échange thermique est pratiquement dépendant du nombre de Prandtl, l'effet de l'augmentation du coefficient d'échange commence à être ressenti pour des nombre de Prandtl comprise entre 0.69 et 0.75 pour l'air, on constate qu'à partir de cet intervalle, la qualité de l'échange thermique est nettement meilleure pour les grands valeurs de Prandtl.

Pour ce qui concerne l'effet du débit massique sur l'échange thermique convectif, les graphiques montre que l'intensification des échanges dépendent de l'augmentation du débit massique injecté dans la veine mobile, ceci est constaté pratiquement dans les deux cas étudiées, que ce soit en régime laminaire ou turbulent.

Fig. (VI-21) : rendement en fonction du flux solaire incident

Pour une puissance de rayonnement solaire incidente donnée, le rendement varie en fonction de la différence de la température entre le fluide en circulation le long du capteur et la température ambiante.

I-1 Introduction :

Les échangeurs thermiques compacts sont utilisés dans une large variété d'applications typiques, tels que les radiateurs d'automobiles, les évaporateurs de climatisation et les condenseurs, appareils de refroidissement électroniques, les récupérateurs, les régénérateurs et les échangeurs cryogéniques.

Pour satisfaire des contraintes technico-économiques, les échangeurs de chaleurs devraient avoir un poids léger, tout en occupant que des espaces relativement réduits, ce qui a conduit les ingénieurs thermiciens de concevoir des échangeurs thermiques avec des surfaces d'échanges plus compactes. Le radiateur automobile moderne est le meilleur exemple de l'avancement et du développement technologique des échangeurs thermiques compacts depuis son prédécesseur antique du début des années 1900.

Actuellement, la conservation des ressources énergétiques est devenue une priorité à l'échelle planétaire, d'autre part, vue la demande vertigineuse en matière d'énergie, ce qui a poussé les spécialistes à trouver de nouvelles techniques, telles que les énergies renouvelables (solaire, éolien et géothermie).

Les échangeurs thermiques compacts sont généralement caractérisés par des surfaces prolongées (étendues) avec de grandes proportions de volume de superficie qui sont souvent configurées sous forme d'ailettes fixées solidairement sur des plaque figure (I-1), ou d'ailettes sur des tubes

Fig. (I-1) : Echangeur de chaleur à plaque avec ailettes de formes diverses.

Fig. (I-2) : Ailettes fixées sur les parois externes des tubes.

La géométrie des ailettes peut être fine et simple (plate), ailettes ordinaires, ailettes de compensation, ailettes perforées, ailettes ondulées, ailettes en forme d'épingle et ailettes à clairevoie comme décrit par MANGLIK et BERGLES [1] Figure (I-3).

Ailettes à clair-voie plate

Ailettes ondulées

Ailettes perforées

Ailettes à claire-voie

Fig. (I-4) : Tubes avec ailettage externe à ailerons circulaires et en forme de bande.

L'efficacité des échangeurs thermiques à plaques est généralement médiocre, due principalement à un mauvais coefficient du transfert thermique par convection (entre les parois d'échange et le fluide caloporteur, tel que l'air dans les réchauffeurs solaires par exemple), et qui se manifeste par des pertes thermique plus élevée. Le principal but d'utiliser des surfaces prolongées est d'augmenter le taux le transfert de chaleur tout en maintenant des pertes de charge induites par le pompage aussi basses que possible.

I-2 Etude Bibliographique

Plusieurs études basées sur des méthodes de calcul numérique de transfert thermique, ont montré le bon accord avec des mesures superficielles expérimentales de la température. Les résultats modèles ont été utilisés pour guider les procédures de calcul plus complexes en vue de réduire le nombre de données. Comparé à des travaux de recherche utilisant l'air, très peu de travail expérimental qui ont été publié utilisant des fluides caloporteurs liquides dans les échangeurs thermiques à ailettes.

La comparaison entre plusieurs résultats expérimentaux obtenus sur des modèles d'échangeurs de chaleur, utilisant l'air comme fluide caloporteur, ont montré que le nombre de Prandtl a un grand effet sur le nombre du Nusselt, calculé en présence de configurations et de géométrie d'ailettes de formes variées.

WEITING 1975 [2], avait pour objectif de trouver des corrélations empiriques à partir de plusieurs données expérimentales, obtenus sur des échangeurs thermiques à plaque munies de plusieurs ailettes de forme rectangulaires. Un calcul similaire des performances thermiques a été exécuté sur des ailettes de géométries différentes, tout en utilisant des approches empiriques obtenues, a montré qu'il est possible de prévoir exactement dans la marge de validité des corrélations, les performances induites par les paramètres géométriques des diverses formes et configurations d'ailettes qui ont été étudiées.

Des rapports empiriques ont été développés en corrélation avec les données expérimentales du transfert thermique et de friction lors de l'écoulement d'un fluide dans un échangeur de chaleur muni de 22 configurations d'ailettes rectangulaires en fonction du régime d'écoulement.

Pour *Re*_{*D*} ≤1000

$$f = 7.661(x/D)^{-0.348}(\alpha)^{-0.092} Re_D^{-0.712}$$
$$J = 0.483(x/D)^{-0.162}(\alpha)^{-0.184} Re_D^{-0.536}$$

Pour *Re*_{*D*}≥1000

$$f = 1.136(x/D)^{-0.781}(t/D)^{0.534} Re_D^{-0.198}$$
$$I = 0.242(x/D)^{-0.322}(t/D)^{0.089} Re_D^{-0.368}$$

Où,

f : étant le facteur de friction.

- *x* : étant la longueur d'ailette dans la direction x en [m].
- D : étant le diamètre hydraulique en [m].
- α : étant le rapport entre l'épaisseur et le diamètre hydraulique.
- *t* : étant l'épaisseur de l'ailette en [m].

La comparaison entre les corrélations empiriques, correspondantes aux 22 configurations sont montrée d'après la figure (I-5) respectivement pour des nombres de Reynolds ($Re_D \le 1000$)et ($Re_D \ge 2000$).

Dans une première remarque, on observe que dans la marge des écoulements laminaires ($Re_D \le 1000$), le paramètre (t/D) ne figure pas dans les corrélations voir figure. (I-5),

par conséquent l'effet sur le coefficient de friction (f) et le facteur de Colburn (J) ou est presque insignifiant.

Pour $Re_D \le 1000$ Pour $Re_D \ge 2000$ Fig. (I-5) : Comparaison entre les rapports empiriques et l'expérience.

D'autre part, la même remarque peut être aussi adopté au sujet du paramètre (α) dans l'intervalle des écoulements turbulents ($Re_D \ge 2000$). Cette dernière conclusion a été indiquée analytiquement pour les conduits rectangulaires.

En outre, une diminution en valeur de (x/D) a comme conséquence une augmentation sur (f) et (J), ceci a été montré analytiquement pour les conduits. D'autre part l'augmentation du paramètre (α) pourrait entraîner une diminution sur (f) et (J) par conséquent l'augmentation de (t/D) provoquerait une augmentation sur (f) et (J), entraînant ainsi un effet de turbulence additionnelle de type «*jet -libre*».

Les rapports des paramètres géométriques, prévoient de bonnes performances dans l'éparpillement de données et sont donc considérés comme probants. Ils permettent également de faire apparaître l'effet des paramètres géométriques, notamment la longueur des ailettes, la largeur, l'épaisseur, la hauteur du conduit et du diamètre hydraulique sur les performances thermiques. Ces rapports indiquent également que l'allongement du passage d'écoulement est significatif, particulièrement dans la gamme des nombres de Reynolds qui correspondent aux écoulements laminaires. Par contre le rapport d'épaisseur des ailettes définit par (t/D) est plutôt significatif dans l'intervalle des écoulements turbulents $Re_D \ge 2000$.

A noter, que ces corrélations peuvent être appliqué uniquement pour l'air ou les gaz, et qui devraient être employés seulement pour l'extrapolation.

JOSHI et WEBB [3], ont menés une étude comparative entre des données expérimentales et les modèles empiriques de WIETING [2] obtenus avec deux fluides différents l'air et l'eau. Les deux modèles testés sont basés sur les résultats expérimentaux de KAYS et LONDON [4], obtenus par des essais réalisés sur des écoulements à surface libre, dont la température superficielle est maintenue constante [5].

La figure (I-6) représente les résultats des modèles empiriques et expérimentaux pour une température aux environ de 10 °C.

Fig.(I-6) : Comparaison entre expérimentation et modèle empiriques obtenus avec de l'air et de l'eau dans un milieu maintenu à température constante de 10 °C.

La comparaison entre les modèles empiriques obtenus en présence de l'air avec les résultats expérimentaux montre qu'ils ne peuvent pas être appliqués aux fluides liquides. La figure (I-6) montre que le facteur de Colburn pour les liquides est inférieur à celui de l'air. La différence est principalement du aux effets du nombre de Prandtl. En considérant le facteur de Colburn définit par :

$$J = \frac{Nu}{Re. Pr^{1/3}}$$

Qui pour un grand nombre de Prandtl donnerait pratiquement une valeur plus basse du paramètre (*J*), même lorsque le nombre de Reynolds et le nombre de Nusselt sont indépendant du nombre de Prandtl.

En présence des ailettes, il a été démontré que le nombre de Nusselt augmente avec le nombre de Pandtl, mais avec un taux moins que $Pr^{1/3}$. Ainsi le facteur Colburn diminue quand le nombre Prandtl augmente.

Dans la figure (I-6), le paramètre (J) de PAO (polyalphaolefinyl) est inférieur que le paramètre (J) de l'air, cependant le coefficient d'échange thermique du PAO est environ 5 fois plus grand que celui de l'air. A travers une simple comparaison, on peut conclure que le facteur Colburn pour l'air est approximativement le double du facteur de Colburn pour les liquides au même nombre de Reynolds.

La longueur d'échange nécessaire pour réaliser un bon coefficient de transfert thermique, est en fonction du nombre de Reynolds, à partir de la figure (I-6) on observe que l'évolution du coefficient d'échange thermique est plus important pour le PAO que pour l'eau, ce qui signifie que pour des coefficients d'échanges thermiques plus hauts, pourrait engendrer une augmentation du paramètre (J).

Dans la figure (I-7), une comparaison entre les résultats expérimentaux pour des températures différentes du PAO et de l'eau avec le modèle empirique proposé, on constate que pour un écoulement à température plus élevé avec nombre de Reynolds plus bas, implique plus grand (*J*), qui est en raison du changement de nombre de Prandtl avec la température de liquide.

Fig. (I-7) (a) : Effet de la température sur les performances thermique d'une plaque munie d'ailettes - cas du PAO

Fig. (I-7) (b) : Effet de la température sur les performances thermiques d'une plaque munie d'ailettes - cas de l'eau.

Dans la figure (I-7) (a), où PAO est utilisé comme liquide de refroidissement, les gammes de nombre de Prandtl sont de 40 à 150 et ceci entre un intervalle de température allant de 10 à 60 °C. Ces courbes montrent l'effet d'un nombre de Prandtl significatif, comme l'indique l'intersection des courbes qui montre l'évolution du paramètre (J) pour les températures de 10 et 60 °C. Par conséquent, un fluide qui a simultanément un nombre de Prandtl et Reynolds élevé, correspond à un (J) significatif à cause des effets de la longueur d'entrée.

Dans la figure (I-7)(b), où l'eau est utilisée comme liquide de refroidissement, avec des nombre de Prandtl de 10 à 3 et dont la température est dans la gamme de 10 à 60 °C, du fait des plus petit nombre Prandtl (10 et 3) en comparaison avec le premier cas du PAO, ou aucune interférence entre les courbes de (J) n'est observée. Le facteur de Colburn croit avec l'augmentation du nombre de Prandtl. Les résultats des modèles empiriques sont représentés pour bien assimiler et à comprendre le mécanisme de l'effet du nombre de Prandtl sur les performances et les échanges thermiques.

D'autre part le facteur de friction induit par la friction superficielle par la traînée de la géométrie des ailettes, dépend aussi de Reynolds. Cependant, pour une certaine géométrie d'ailette et pour un nombre de Reynolds quelconque, le facteur de friction pour des différents nombres de Prandtl reste pratiquement invariable.

Pour les liquides, le facteur de frottement mesuré expérimentalement s'avère plus élevé que celui estimé par les modèles empiriques réalisés avec de l'air, en première approximation ceci est dû

aux effets de bavures sur les ailettes qui sont induites lors du processus de fabrication des ailettes. Les bavures accroissent la traînée de forme qui amplifie le facteur de frottement global

MANGLIK et BERGLES [1] ont accomplis une étude bibliographie très étendue, bien que les investigations expérimentales soient prédominantes dans la littérature que les modèles analytiques et les solutions numériques qui sont souvent très délicates.

Fig. (I-8) : Comparaison entre les corrélations empiriques de (*f*) et (*J*) avec les données expérimentales en fonction du Reynolds de KAYS & LONDON [4]

La figure (I-8) montre l'évolution de (f) et (J) pour deux types de surfaces, qui ont la même valeur (t/l) mais la proportion de l'aspect (s/h) est différente. L'analyse de la figure (I-8), montre que l'influence du paramètre géométrique (s/h) est clairement perceptible, l'effet est presque le même dans les écoulements laminaires et turbulents, avec en particulier une élévation sensible de (f) et (J) pour les plus petites valeurs de (s/h). Où on notera que l'épaisseur des ailettes introduit une résistance supplémentaire dû à la forme qui se manifeste par un effet sur le transfert thermique. D'autre part cette même étude montre que la couche limite s'est interrompue à la fin de l'ailette de longueur (l). On remarque qu'il est évident que (f) et (j) sont fonctionnellement en rapport avec le nombre de Reynolds (*Re*) et des paramètres géométriques ($\alpha = s/h$), ($\delta = t/l$) et ($\gamma = t/s$) tel que représenté par les corrélations suivantes :

$$f = A \operatorname{Re}^{a1}(\alpha)^{a2}(\delta)^{a3}(\gamma)^{a4}$$
$$i = B \operatorname{Re}^{b1}(\alpha)^{b2}(\delta)^{b3}(\gamma)^{b4}$$

 α : étant le rapport entre l'espacement 'entre deux ailettes' et l'hauteur d'une ailette.

 δ : étant le rapport entre l'épaisseur et la longueur des ailettes.

 γ : étant le rapport entre l'épaisseur d'une ailette et l'espacement 'entre deux ailettes'.

Une analyse de régression multi variable a donnée les résultats suivants :

$$f = 9.6243 Re^{-0.7422} \alpha^{-0.1856} \delta^{0.3053} \gamma^{-0.2659}$$
$$i = 0.6522 Re^{-0.5403} \alpha^{-0.1541} \delta^{0.1499} \gamma^{-0.0678}$$

JACOBI et SHAH [6] ont montré que l'écoulement turbulent conduit à l'élévation du coefficient de transmission de chaleur, tel que montré sur la [Figue 8]

Fig. (I-9) : Majoration de transfert thermique comme une fonction de proportion d'aspect $\alpha = 30^{\circ} Re = 1815$ [6]

Parmi les difficultés est comment obtenir une corrélation « universelle » qui permet de contourner à la fois l'écoulement laminaire et turbulent. En raison du comportement laminaire complexe, il est difficile de développer une équation qui peut passer par la région de transition.

Par commodité, nous proposons une corrélation graphique où le comportement laminaire et turbulent est très simplement reliés par une ligne droite Figue. (I-10)

Fig. (I-10) : Les caractéristiques de transfert thermique dans des écoulements laminaires; et turbulent, dans des tubes circulaires rugueux et uniformément chauffés [6]

Les caractéristiques de transfert thermique dans les écoulements laminaire, transitoire et turbulents, dans les tubes circulaires chauffé uniformément avec tordre-attachent du ruban adhésif à des insertions (MANGLIK et BERGLES 1993) [1]

L'effet de base de remous explique plusieurs centaines de pour cent d'amélioration dans le coefficient de transmission de chaleur moyen en régime laminaire, avec propriétés variables, gradient de température radial et convection libre (dans la gamme pratique du Re et du Ra), sont plutôt des effets de 10 pour cent.

La cannelure des canaux rectangulaires figure (I-11) pourrait être considérée comme un cas particulier pour exploiter des instabilités, par exemple,

Fig. (I-11) : Canal à rainure ou à cannelure

Il s'agit d'une variation de vibration en milieu liquide, L'oscillation peut être créée par pulsation d'écoulement ou insertions transversales qui produisent des Vortexes d'oscillation. Comme Il a été remarquablement signalé par FIEBIG (1996) [7], les cannelures sont les générateurs de tourbillons transversaux et bidimensionnels. À la résonance, le fluide dans les cannelures est périodiquement éjecté, causant un perfectionnement substantiel de transfert de chaleur pour la surface entière, des données numériques typiques sont montrées dans la figure (I-12)

Fig.(I-12) : Simulation de l'écoulement d'un fluide dans un canal à cannelure

Fig. (I-13) : Evolution de transfert thermique numériquement calculée et expérimentalement observée (Re = 525, Pr = 7, $\eta = 0.2$) [6]

Les prévisions numériques sont comparées aux données expérimentales (pour des caractéristiques géométriques peu différentes), on observe un perfectionnement brusque qui se fait par une pointe près de la fréquence du mode normal ou la plupart de l'écoulement est instable. La résonance hydrodynamique augmente le mélange dans le canal qui voit son coefficient de transmission de chaleur doublé. Beaucoup de progrès a été accompli en prévoyant ce comportement par la simulation numérique, AMON (1993) [6]. Généralement il s'avère que cette technique est plus adaptée pour des écoulements à vitesse réduite le cas écoulement laminaires.

MOCAN et REVSINA [6] ont établis un formulaire plus détaillés pour calculer le coefficient des pertes de charge dans une veine d'écoulement à travers des obstacles uniformément repartis, dans un faisceau de tubes disposés en ligne et en quinconce en fonction des distances transversales, longitudinales, diagonales et entre les axes de deux tubes voisins d'un faisceau, dans l'intervalle des nombres de Reynolds de 30000 et 100000

Finalement N CHOUCHANE, MOUMMI.A & N [9] leur travail consiste à établir un modèle empirique de calcul des pertes de charge, tout en les reliant aux caractéristiques géométriques

des rugosité artificielle (chicanes), aux différentes modes de dispositions en ligne ou en quinconce fig.(I-14) et fig.(I-15) de celles-ci sur le plan d'écoulement dans la veine fluide d'un canal rectangulaire, et ceci pour des écoulements laminaires et turbulents. L'objectif de cette étude est d'optimiser les performances thermiques des échangeurs de chaleur et particulièrement les capteurs solaires plans à air.

Fig.(I-14) : Chicanes rectangulaires avec partie supérieure inclinée

Chicanes rectangulaires avec partie supérieure inclinée

Chicanes triangulaires avec partie supérieure inclinée

Chicanes en forme d'Ogive avec partie supérieure inclinée

Fig. (I-15) : Modèles de chicanes utilisés dans les capteurs solaires à air [10]

Fig.(I-18) : Impact de l'air en présence de chicanes de forme rectangulaires avec partie inclinée

Fig. (I-19) : Pertes de charge pour les incidences de 30° et 60° de la partie inclinée des chicanes rectangulaires de longueur 5 et 7 cm, disposées en quinconce en comparaison avec un capteur sans chicanes.

Les résultats obtenus montrent que les pertes de charge enregistrées sont de plus en plus importantes avec la rugosité absolue des chicanes, notamment pour les incidences de 60 et 120°, lorsque le pas relatif entre les chicanes et les rangées se trouve réduit tel que avec le pas entre rangées de 5cm, d'autre part, elles sont plus importantes en présence de la disposition en quinconce que lorsque celles-ci sont alignées en plusieurs rangées

Les résultats numériques obtenus sont [9] :

1) Disposition en ligne ou en rangées des chicanes :

A)- En régime d'écoulement laminaire :

$$\Delta P = \frac{1}{2} \frac{L_{cd}}{D_H} \rho. \left[(Re)^{0.167} \left(\frac{\varepsilon}{D_H} \right)^{0.19925} \left(\frac{P_{e-ch}}{D_H} \right)^{-0.28664} \left(\frac{P_{e-ra}}{D_H} \right)^{-1.2206} \left(\frac{L_{ch}}{D_H} \right)^{-0.24339} \right] V^2$$

B)- En régime d'écoulement turbulent :

$$\Delta P = \frac{1}{2} \frac{L_{cd}}{D_H} \rho. \left[(Re)^{0.17443} \left(\frac{\varepsilon}{D_H} \right)^{0.20161} \left(\frac{P_{e-ch}}{D_H} \right)^{-0.3056} \left(\frac{P_{e-ra}}{D_H} \right)^{-1.2348} \left(\frac{L_{ch}}{D_H} \right)^{-0.25152} \right] V^2$$

2)- Disposition en quinconce des chicanes :

A)- En régime d'écoulement laminaire :

$$\Delta P = \frac{1}{2} \frac{L_{cd}}{D_H} \rho. \left[(Re)^{0.1715} \left(\frac{\varepsilon}{D_H} \right)^{0.1080} \left(\frac{P_{e-ch}}{D_H} \right)^{-0.3155} \left(\frac{P_{e-ra}}{D_H} \right)^{-1.1318} \left(\frac{L_{ch}}{D_H} \right)^{-0.2725} \right] V^2$$

B)- En régime d'écoulement turbulent :

$$\Delta P = \frac{1}{2} \frac{L_{cd}}{D_H} \rho. \left[(Re)^{0.2206} \left(\frac{\varepsilon}{D_H} \right)^{0.2268} \left(\frac{P_{e-ch}}{D_H} \right)^{-0.3639} \left(\frac{P_{e-ra}}{D_H} \right)^{-1.2438} \left(\frac{L_{ch}}{D_H} \right)^{-0.2925} \right] V^2$$

I-3 Démarche :

A travers cette étude bibliographique consacré aux échangeurs de chaleur et aux capteurs solaires plans à air, on a pu constater que le transfert thermique au niveau de la lame fluide en écoulement le long du conduit utile d'un capteur à air, dépend essentiellement des paramètres physiques et thermophysiques du fluide caloporteur, ainsi que des caractéristiques géométriques du conduit, support d'écoulement et de transfert thermique. Vu l'intérêt scientifique, on a jugé utile d'entamer une étude dans ce sens, qui aura pour objectif l'élaboration d'ajustements semiempiriques qui permettent de corréler les propriétés physiques du fluide aux caractéristiques géométriques du conduit utile.

Cette étude constituera dans un premier temps un repère consistant, pour de futurs travaux de recherches au sein du laboratoire de génie mécanique, équipe ; optimisation des procédés de conversion de l'énergie solaire, de l'université Mohamed khider de Biskra.

II-1- Introduction :

Les capteurs solaires plans à air, qui sont l'objet de notre étude transforment l'énergie solaire incidente solaire en énergie thermique extraite par l'air en écoulement dans le capteur. Cette énergie et ensuite utilisée dans diverses application, à savoir ; le chauffage la réfrigération, le séchage, etc.

L'étude du comportement thermique de notre capteur relativement aux configurations utilisée, est une étude parmi d'autres déjà élaborées dans divers laboratoire de recherche. L'objectif principal de cette étude est de mettre en évidence les paramètres de performances, à noter l'optimisation des échanges convectifs dans le conduit utile du capteur, et la modélisation de ces échanges en fonction de plusieurs variables, notamment les paramètres géométriques.

Il existe plusieurs modèles qui décrivent la variation du rendement thermique en fonction des paramètres physiques, géométriques et optique, tel que le nombre de Reynolds (débit du fluide caloporteur), nature des matériaux utilisés, du fluide caloporteur et du type des vitrages, ainsi que des dimensions de différentes pièces constituantes.

Plusieurs types de capteurs à air on été construits et testés. Il se différent par leurs configurations, du mode d'écoulement de l'air, du type et du nombre de vitrage utilisé, par la nature de l'absorbeur ainsi que par le mode d'adjonction de tôles minces placées en ligne ou en quinconce entre l'absorbeur et l'isolant « sur l'isolant » figure (II-1) (disposition en en ligne et en quinconce).

Les couvertures transparentes externes des capteurs sont généralement en verre, qui a la propriété d'être plus opaque au rayonnement infrarouge, elle réalise l'effet de serre nécessaire pour le piégeage du rayonnement solaire et par conséquent de réchauffer l'absorbeur.

Plusieurs capteurs peuvent être reliés de manières différentes pour répondre aux besoins demandés, on observe que leur combinaison en série est plus performante que celle en parallèle ou le montage mixte en série et parallèle.

II-2- Description de capteur :

Il s'agit d'un capteur solaire plan à air à simple passe entre l'absorbeur et la plaque absorbante en acier galvanisé ou en aluminium. En vue d'améliorer les performances thermiques du capteur solaire, on a introduit des obstacles métalliques très minces d'épaisseur **0,4** mm, assimilés à des rugosités artificielles dites chicanes dans la veine d'air utile. La figure suivante représente les éléments de l'insolateur a étudie :

Fig. (II-2) : Schéma d'un capteur solaire plan à air

Chapitre II

Fig(II-3) : capteur solaire plan à air exposé au soleil (photo dgm.Univ de Biskra 2007)

En raison de l'insuffisance de l'échange thermique réalisé dans le capteur solaire plan à air entre le fluide et l'absorbeur l'utilisateur est amené à apporter des améliorations pour de meilleures performances ou une meilleure efficacité thermique. Dans cette étude expérimentale, par la simulation de l'énergie solaire, nous avons cherché à améliorer le couple <<Rendement – Ecart de température >> du capteur en introduisant des chicanes (obstacles), qui sont disposées dans la veine dynamique du capteur. Les échanges thermiques, la température de sortie et le rendement du capteur se trouvent nettement améliorés.

L'amélioration des performances des capteurs solaires plans, consiste à limiter les pertes thermiques entre l'absorbeur et l'environnement extérieur. Plusieurs approches ont été développées.

II-3- Le bilan thermique

Le bilan thermique d'un insolateur au niveau de la veine d'air mobile rapporté à l'unité de surface, se résume ainsi par la quantité d'énergie utile Q_u emportée par le fluide caloporteur, dans notre cas il s'agit de l'air.

II-3-1 Distribution de la température suivant la direction de l'écoulement de l'air :

On considère la tranche $\delta x''$ voir figure (II-4), La température est supposée uniforme au niveau de la section de la veine d'air mobile de l'insolateur démuni des chicanes.

Fig.(II-4) : Tranche fictive " δx " du volume de contrôle.

La conservation de l'énergie dans cette tranche nous donne avec l'étant de largeur du capteur [11] :

$$\dot{m}C_pT_f + Q_u \cdot l \cdot \delta x = \dot{m}C_p \left(T_f + \frac{dT_f}{dx}\delta x\right)$$
(II-1)

Après simplification on obtient :

$$\frac{dT_f}{dx} = \frac{Qu.l}{mC_p} \tag{II-2}$$

Nous supposons comme $\$ on le fait généralement, que le transfert de chaleur avec l'air de température T_f est uniforme le long du capteur de longueur L.

$$T_f(x) = \left(\frac{Qu \, l}{mC_p}\right)x + T_{fe} \tag{II-3}$$

L'intégration de l'équation (II-3) entre les deux pole du capteur nous permis d'obtenir l'expression :

$$T_{fs} = \frac{Qu.l.L}{\dot{m}C_p} + T_{fe} \tag{II-3}(a)$$

Où, T_{fe} et T_{fs} sont respectivement la température à l'entrée et à la sortie de l'air dans le capteur.

Supposons aussi que la température du fluide varie linéairement le long du capteur, la valeur moyenne de la température est par conséquent étant égale à la moyenne arithmétique entre

l'entrée et la sortie, par conséquent :

$$T_f = \frac{(T_{fs} + T_{fe})}{2} \tag{II-4}$$

Ou d'une manière générale :

$$T_f = \sum_{i=1}^{i=k} T_{fi} / k \tag{II-5}$$

Donc on peut calculer la température moyenne du fluide d'après la relation suivante

$$T_{fm} = \frac{T_f + T_p}{2} \tag{II-6}$$

A partir des deux dernières équations, on déduit :

$$Qu = \frac{2 \dot{m} C_p(T_{fm} - T_{fe})}{A} \tag{II-7}$$

Dans le cas des obstacles fixés sur l'isolant, le choix des formes géométriques d'obstacles utilisées doit satisfaire certains critères. En effet, la forme et la déposition affectent l'écoulement de l'air durant son acheminement. Les obstacles assurent une bonne irrigation de l'absorbeur, assurent un écoulement turbulent et réduisent l'existence des zones inactives (mortes) dans le collecteur figures (II-5) et (II-6) **[12].**

Fig. [II-5] : Visualisation de l'écoulement d'un jet de fumée dans un capteur sans chicanes

Fig. [II-6] : Visualisation de l'écoulement d'un jet de fumée dans un capteur en présence de chicanes triangulaires

II-4- Effet des obstacles sur les échanges convectifs :

L'introduction d'obstacles dans la veine d'air dynamique nécessite un choix judicieux du mode de fixation, il est possible qu'ils soient fixés sur l'isolant ou sous l'absorbeur, ou les combinaisons ensemble. Dans tous les cas les performances thermiques sont nettement

améliorés, du fait que la surface d'échange totale mise en jeu se trouve augmentée et la section de passage offerte devant le passage du fluide qui et par conséquent réduite.

Dans la veine d'air mobile, le calcul du nombre de Reynolds (Re) est obtenu par le calcule de la vitesse maximale de l'air (V_{max}) correspondant à la section de passage minimale (S_{min}), qui est exprimé par la relation suivante :

$$Re = \frac{V_m D_h}{v} = \frac{Q_V D_h}{v S_{min}}$$
(II-8)

Ou, D_h est le diamètre hydraulique, définit comme étant le rapport de 4 fois la section de passage sur le périmètre mouillé, autrement :

$$D_h = \frac{4.section \, de \, passage}{p\acute{e}rimètre \, mouill\acute{e}} \tag{II-9}$$

Dans le cas d'une veine rectangulaire muni de chicanes figure (II-7), le diamètre hydraulique est calculé à partir du schéma équivalent suivant, ou on tient compte de la section obturée transversale par une rangée constituée de «n» obstacles de chicanes disposées devant le passage du fluide.

Fig.(II-7) : coupe transversale d'un capteur muni de chicanes

(disposition en ligne)

Fig.(II-8) : coupe transversale d'un capteur muni de chicanes

(disposition en quinconce "2ieme rangées")

A: Section de passage de l'air dans la veine $[m^2]$.

L_c : Longueur du capteur [m].

l_c : Largeur du capteur [m].

e : Épaisseur de la veine d'air mobile du capteur pour le passage d'air [m].

 $\boldsymbol{\varepsilon}$: Hauteur d'une chicane (rugosité absolue artificielle) [m].

n : Nombre de chicanes sur une rangée.

k: Nombre des essais ou bien nombre des sondes de mesure de la température.

Soit Q_V : le débit volumique de l'air en écoulement dans la veine d'air mobile $[m^3/s]$.

u : La vitesse d'écoulement de l'air [m/s]

La section de passage du fluide est :

$$A = e. l - n. \varepsilon. L_{ch} \tag{II-10}$$

Le périmètre mouillé est :

*Dans le cas où les chicanes sont disposées en ligne le périmètre mouillé est :

$$P = 2(l + e + n.\varepsilon) \tag{II-11}(a)$$

*Dans le cas où les chicanes sont disposées en quinconce le périmètre mouillé est :

$$P = 2(l + e + (n - 1).\varepsilon)$$
(II-11)(b)

Sachant que l'expression du diamètre hydraulique est :

$$D_h = \frac{4.A}{P}$$

En se référant au schéma de la figure (II-7), on aurait :

$$D_h = \frac{2[e.l - n.\varepsilon.L_{ch}]}{l + e + n.\varepsilon}$$
(II-12)(a)

Et en se référant au schéma de la figure (II-8), on aurait :

$$D_h = \frac{2[e.l - n.\varepsilon.L_{ch}]}{l + e + (n-1).\varepsilon}$$
(II-12)(b)

Sachant que la section minimale offerte $estS_{min} = A$,

Par conséquent la vitesse maximale V_m est :

$$V_m = \frac{Q_V}{S_{min}} = \frac{Q_V}{A} \tag{II-13}$$

Le nombre de Reynolds serait alors :

Soit dans la veine où les chicanes sont disposées en ligne est :

$$Re = \frac{2.Q_V}{\nu[l+e+n.\varepsilon]}$$
(II-14)(a)

Soit dans la veine où les chicanes sont disposées en quinconce est :

$$Re = \frac{2.Q_V}{\nu[l+e+(n-1).\varepsilon]}$$
 (II-14)(b)

Le coefficient d'échange thermique h entre l'absorbeur et l'air dépend notamment du nombre Reynolds. On déduit alors que l'augmentation de la rugosité absolue « ε » entraîne celle de R_e et h. La section minimale 'A' est fonction de la forme des obstacles, de leurs dimensions et de leur disposition.

Dans la veine d'air mobile, la convection forcée dans le cas des conduites rectangulaires l'échange entre l'absorbeur et le fluide caloporteur est caractérisé par un coefficient d'échange convectif définit par :

$$h_{ab_f} = \frac{N_u \lambda_f}{D_h} \tag{II-15}$$

D'autre part, le coefficient d'échange entre le fluide caloporteur et la plaque inférieure isolante est pratiquement peu différent de celui entre l'absorbeur et l'air h_{ab_f} , généralement considéré de même valeur pour simplifier le calcul. Par conséquent, le coefficient d'échange convectif du côté isolant h_{is_f} est donné par les mêmes corrélations que celui entre le fluide et l'absorbeur [13].

$$h_{ab_f} = h_{is_f} \tag{II-15}(a)$$

Pour le cas d'un capteur muni de rugosité artificielle (chicanes), h_{ab_f} est considéré comme le coefficient d'échange moyen, calculé par la relation précédente. Le nombre de Nusselt est déterminé par la corrélation de Kays **[13]** (pour un absorbeur avec chicane) suivante :

$$Nu = 0,0158. Re^{0.8}$$
 Pour $(L/D_{\rm h}) > 10$

Fig. (II-9) : capteur solaire muni de chicanes.

Pour les capteurs à absorbeurs muni de chicanes, on utilise le facteur de Colburn «J» [13]. Pour 120 < Re < 10000

Avec Pr = 0,66 à 0,7 pour l'air comme fluide caloporteur dans les capteurs solaires.

$$J = \frac{Nu}{Re.Pr^{1/3}} \tag{II-16}$$

II-5- Effet des obstacles sur les échanges radiatifs :

Les éléments qui constituent les capteurs plans à air (vitrage, absorbeur et isolant) ont une forme géométrique commune rectangulaire. Toutes ces surfaces sont en parallèles entre elles à des distances relativement faible, se qui nous permet de simplifier les facteurs de formes et de prendre les températures moyennes de ces éléments afin d'exprimer les coefficients radiatifs. Pour cela, par conséquent en utilisant la formulation classique suivante on obtient **[11]**:

$$h_r = \frac{\sigma.(T_1 + T_2).(T_1^2 + T_2^2)}{\frac{1 - \varepsilon_1}{\varepsilon_1} + \frac{1}{F_{1,2}} + \frac{1 - \varepsilon_2}{\varepsilon_2} (\frac{S_1}{S_2})}$$
(II-17)

Avec :

 $\sigma = 5,67.10^{-8}$ est la constante de Stephan Boltzmann en [W/ (m².K⁻⁴)].

 T_1 et T_2 : sont les températures des surfaces concernées par l'échange en [K].

 $\varepsilon_1 \ et \ \varepsilon_2$: Les émissivités des surfaces d'échange.

 $F_{1,2}$: Facteur de forme relatif aux surfaces qui dépend de leur position l'une par rapport à l'autre (pour les capteurs plans à air $F_{1,2} = 1$).

 S_2 et S_2 : étant les surfaces d'échange mise en jeu en $[m^2]$.

a) Cas ou le capteur sans chicanes :

Echange radiatif entre l'absorbeur et la plaque métallique placée sur l'isolant :

$$h_{ab_pis} = \frac{\sigma.(T_{pis} + T_{ab}).(T_{pis}^2 + T_{ab}^2)}{\frac{1}{\varepsilon_{ab_pis}} + \frac{1}{\varepsilon_{pis}} - 1}$$
(II-17)(a)

b) Cas ou le capteur est muni des chicanes :

$$h_{ab_pis} = \frac{\sigma.(T_{pis}+T_{ab}).(T_{pis}^{2}+T_{ab}^{2})}{\frac{1}{\varepsilon_{ab_pis}} + \frac{1}{\varepsilon_{pis}} - \frac{S_{ab}}{S_{pi} + N.S_{ch}}}$$
(II-17)(b)

 $\varepsilon_{ab pis}$: Émissivité de l'absorbeur coté plaque métallique.

 ε_{pis} : Émissivité de la plaque métallique coté absorbeur.

 T_{pis} : Température de la plaque métallique placée sur l'isolation en [K].

N: le nombre total de chicane

II-6- Amélioration du couple « Rendement - Ecart de Température »

Nous présentons d'abord les résultats obtenus avec le capteur sans chicanes et avec le capteur muni de chicane.

Pour calculer le rendement (η) du capteur solaire, la densité du flux horaire globale est prise constante. Nous rappelons que le débit d'air (Q_V) est exprimé par unité de surface de l'absorbeur :

$$\eta = \frac{Q_u}{I_G.A_G} = \frac{Q_{mf}.C_{pf}.(T_s - T_e)}{I_G.A_C} = \frac{\rho_{f}.Q_{Va}.C_{pf}(T_s - T_e)}{I_G.A_C}$$
(II-18)(a)

$$\eta = \frac{\rho_f \cdot Q_V \cdot C_{pf}(T_s - T_e)}{I_G}$$
(II-18)(b)

Avec T_e et T_s en [K]

$$\rho_f = \rho_0 \cdot \frac{273}{273 + T_{sV}} \cdot \frac{P(Z)}{P_0} \tag{II-19}$$

Soit la forme de la relation $\frac{P(Z)}{P_0}$ est :

$$\frac{P(Z)}{P_0} = (0.89)^Z$$
 (II-20)

Pour les altitudes (Z) inférieures à 3 Kms

P(Z): La pression a l'altitude Z [Km].

 P_0 : La pression standard au niveau de la mer (1.013.10⁵ Pascal à 288 K).

 T_{sV} : La température a la sortie du ventilateur [K].

 ρ_f : La masse volumique de l'air à l'altitude (Z) de l'endroit considéré [Kg/m³].

 ρ_0 : La masse volumique de l'air (1.293 Kg/m³) correspondant à Po.

Dans la couche de l'atmosphère dénommé ''troposphère'' la température décroît de 6.5°C par kilomètre d'altitude.

L'effet d'obturation avec les obstacles est un avantage pour créer un courant très turbulent. Ainsi, nous aurons un très bon échange thermique, malheureusement, avec des pertes de charges très importantes Fig. (II-9) **[10]**.

Fig. (II-9) pertes de charge pour les incidences de 30° et 60° de la partie inclinée des chicanes rectangulaires de longueur 5 et 7 cm, disposées en quinconce en comparaison avec un capteur sans chicanes.

Fig. (II-10) Variation du rendement (η) et des pertes de charge (ΔP) en fonction du débit (Q_V) Ces pertes de charge que nous avons déterminées expérimentalement s'expriment en théorie par l'expression suivante [14]:

$$\Delta P = \frac{1}{2} \cdot C_{pf} \cdot S^{\#} \rho_f \cdot L \cdot Q_V^2 = \xi \cdot Q_V^2$$
(II-21)

Où

$$C_{pf} = 0,085.\,Re - 0,25 + 0,01625.\,(\frac{D_h}{L})$$
 (II-22)

 C_{pf} : C'est la chaleur massique de l'air ici.

L : Longueur totale parcourue par l'air depuis l'entrée jusqu'à la sortie du capteur.

$$S^{\#} = \frac{Surface \ d'échange \ thermique \ mouillée \ totale}{Surface \ de \ captation \ face \ a \ l'insolation}$$

Avec $S^{\#} = 2$ Cas du capteur sans chicanes.

 $S^{\#} > 2 + N \cdot \frac{S_{ch}}{S_{ins}}$ Cas du capteur muni de chicanes.

III - MODELISATION DU COEFFICIENT D'ECHANGE PAR CONVECTION DANS UN CONDUIT RECTANGULAIRE MUNIS DE CHICANES AVEC UNE PARTIE SUPERIEURE INCLINEE

III-1- Introduction :

Dans ce chapitre on essayera de d'établir des relations qui permettent de mettre en évidence des modèles de calcul du coefficient d'échange par convection « h_c », dans le conduit rectangulaire d'un capteur solaire, dont le plan supérieur est parfaitement rayonné par un flux solaire incident. Le conduit utile est muni de plusieurs rangées de chicanes, qui sont disposées suivant plusieurs configurations. Ces chicanes sont insérées directement sur le plan inférieur d'écoulement de la veine fluide.

II1-2- Exposé du problème :

Avant de procédés à l'élaboration du modèle de calcul du coefficient convectif, qui est dans notre cas basé sur la méthode de l'analyse dimensionnelle, Il fallait préalablement déterminer l'inventaire de tous les paramètres dont dépend la densité de flux de chaleur qui est donnée par l'expression($\Phi = h_c$. ΔT):

a)- Propriétés thermophysiques du fluide :

- 1. λ : coefficient de conductibilité thermique de l'air en [w/m.K].
- 2. *C_P* : chaleur massique de l'air en [J/Kg.K].
- 3. ρ : masse volumique de l'air en [Kg/m³].
- 4. $\boldsymbol{\mu}$: viscosité dynamique en [Kg.m⁻¹.s⁻¹].

b)- Les caractéristiques du l'écoulement :

1. **u** : vitesse moyenne du fluide.

c)- Caractéristiques géométrique de la surface d'échange :

- 1. $\boldsymbol{\varepsilon}$: hauteur absolue ou rugosité absolue d'une chicane [m].
- 2. *L_{ch}*: longueur de chicane [m].
- 3. l_c : largeur du capteur [m].
- 4. P_{e-c} : pas entre deux chicanes [m].
- 5. P_{e-r} : pas entre deux rangées de chicanes [m].

- 6. L_c : longueur de la conduite rectangulaire. (capteur solaire) [m].
- 7. D_h : diamètre hydraulique de la conduite utile munis de chicanes [m].
- 8. $A_c = L_c$. l_c : la surface de l'absorbeur [m²].

e)- L'écart de température entrée-sortie de fluide ∆T.

- 1. T_e : température à l'entrée du capteur [°C]
- 2. T_s : température à la sortie du capteur [°C]

f)- Paramètres externes :

I : flux solaire reçu par la face supérieure (l'absorbeur ici) du conduit (capteur solaire plan). [W/m²]

D'après le théorème de l'analyse dimensionnelle de « Vashy-Bukingham» [15] on peut adopter l'écriture suivante :

$f(\rho, u, D_h, \mu, \varepsilon, P_{e-ch}, P_{e-ra}, L_{ch}, L_c, l_c, I, \lambda, C_P, \Delta T) = 0$

Le théorème de π ou de **Vashy-Bukingham** est basé sur les dimensions fondamentales des grandeurs physiques intervenant dans cette relation générale. Pour cela il faut écrire l'équation aux dimensions fondamentales M, L, T, θ de chacune de grandeurs cité dans l'équation fondamentales voir Tableau (III-1).

Grandeur	Unité	Dimension
ρ	Kg.m ⁻³	M.L ⁻³
u	$\mathrm{m.s}^{-1}$	L.T ⁻¹
D _h	М	L
μ	Kg.m ⁻¹ .s ⁻¹	$M.L^{-1}.T^{-1}$
$\varepsilon, P_{e-ch}, P_{e-ra}, L_{ch}, L_{c}, l_{c}$	М	L
ΔΤ	°K	Θ
Ι	w.m ⁻²	$M.T^{-3}$
λ	$w.m^{-1}.k^{-1}$	M.L.T ⁻³ . θ^{-1}
h	$w.m^{-2}.k^{-1}$	M.T ⁻³ . θ^{-1}
C _P	j.kg ⁻¹ .k ⁻¹	$L^2.T^{-2}.\theta^{-1}$

Tableau (III-1) : unité et dimension des grandeurs physiques

III-3-Détermination des groupements :

III-3-1-Calcul de coefficient d'échange convectif global

Pour relier le coefficient d'échange de chaleur par convection dans le conduit rectangulaire muni de plusieurs rangées de chicanes, aux caractéristiques géométriques ainsi qu'aux paramètres physiques du fluide en écoulement, on s'y servi de la méthode de l'analyse dimensionnelle (théorème de **Vashy-Bukingham**), ce qui nous a permis d'établir une relation générale basée sur les dimensions fondamentales de la forme :

 $h_{c} = h_{c}(\rho, u, D_{h}, \mu, \varepsilon, P_{e-ch}, P_{e-ra}, L_{ch}, L_{c}, l_{c}, I, \lambda, C_{P}, \Delta T) = 0$

Il faut maintenant choisir X équations de base (toutes les dimensions fondamentales qui ont été utilisées) de façon à ce que les X dimensions fondamentales figurent au moins une seule fois dans l'ensemble des équations.

D'après le théorème de π (de **Vashy-Bukingham**), on ne peut voir que 09 groupements indépendants, adoptons alors l'écriture suivante, avec (L_c, l_c) qui sont respectivement la longueur et la largeur du canal rectangulaire constituant le conduit du capteur, par conséquent on obtient :

$$\frac{h_c}{L_c.l_c} = \pi. k. \rho^a. u^b. D_h^c. \mu^d. \varepsilon^e. P_{e-c}^f. P_{e-r}^g. l_{ch}^h. I^i. \lambda^j. C_P^k. \Delta T^l$$
(III-1)

L'écriture de l'équation précédente compte tenu les dimensions fondamentales devient :

$$\frac{M \cdot T^{-3} \cdot \theta^{-1}}{L^2} = \pi \cdot k \cdot ([M \cdot L^{-3}]^a \cdot [L \cdot T^{-1}]^b \cdot [L]^c \cdot [M \cdot L^{-1} \cdot T^{-1}]^d \cdot [L]^e \cdot [L]^f \cdot [L]^g \cdot [L]^h$$
$$\cdot [M \cdot T^{-3}]^i \cdot [M \cdot L \cdot T^{-3} \cdot \theta^{-1}]^j \cdot [L^2 \cdot T^{-2} \cdot \theta^{-1}]^k \cdot [\theta]^l)$$
(III-2)

Après développement on obtient :

$$\frac{M \cdot T^{-3} \cdot \theta^{-1}}{L^2} = \pi \cdot k \cdot ([M]^{a+d+i+j} \cdot [L]^{-3a+b+c-d+e+f+g+h+j+2k} \cdot [T]^{-b-d-3i-3j-2k} \cdot [\theta]^{-j-k+l}$$
(III-3)

$$\begin{cases}
a = 1 - d - i - j \\
b = 3 - d - 3i - 3j - 2k \\
c = -2 - d - e - f - g - h - j \\
j + k = 1 + l
\end{cases}$$
(III-4)

L'écriture de l'équation (III-1) compte tenu les dimensions fondamentales, et après développement de (III-2) à (III-3), et identification on obtient un système (III-4) de 03 équations, dont la résolution aboutit à une expression générale sous la forme :

$$\frac{h_c}{L_c.l_c} = \pi. \, k. \, (\rho^{1-d-i-j}. \, u^{3-d-3i-3j-2k}. \, D_h^{-2-d-e-f-g-h-j}. \, \mu^d. \, \varepsilon^e. \, P_{e-c}^f. \, P_{e-r}^g. \, l_{ch}^h. \, I^i. \, \lambda^j. \, C_P^k. \, \Delta T^l) \, (\text{III-5})$$

Après simplification, en considérant que j + k = 1 + l l'équation précédente redevient :

$$\frac{h_c}{L_c \cdot l_c} = \frac{\rho \cdot C_P \cdot u}{D_h^2} \left(\frac{\rho \cdot u \cdot D_h}{\mu}\right)^{-d-j} \cdot \left(\frac{\mu \cdot C_P}{\lambda}\right)^{l-j} \cdot \left(\frac{\lambda \cdot \Delta T}{\mu \cdot u^2}\right)^{l} \cdot \left(\frac{\varepsilon}{D_h}\right)^{e} \cdot \left(\frac{P_{e-c}}{D_h}\right)^{f} \cdot \left(\frac{P_{e-r}}{D_h}\right)^{g} \cdot \left(\frac{l_{ch}}{D_h}\right)^{h} \cdot \left(\frac{I}{\rho \cdot u^3}\right)^{l}$$
(III-6)

Sachant que :

$$Re = \frac{\rho.V.D_h}{\mu}$$
, étant le nombre de ***Reynolds*** (***Re***).

$$Pr = \frac{\mu . C_P}{\lambda}$$
, étant le nombre de *Prandtl (Pr)*.

Pe = Re.Pr, étant le nombre de **Peclet** (**Pe**).

Le nombre adimensionnel de *Prandtl* « *Pr* » pour un fluide quelconque est indépendant des conditions expérimentales (il ne dépend que de la température) et caractérise l'influence de la nature de fluide sur le transfert de chaleur par convection.

Dans la dernière équation (III-6), on voit apparaître deux nouveaux nombres adimensionnels qui sont le nombre *Brinkman* et le nombre *d'Eckert* qui sont définis par les rapports suivants :

Le nombre de **Brinkman** : $Br = \frac{\mu V^2}{\lambda \Delta T}$

Le nombre *d'Eckert* : $Ec = \frac{Br}{Pr}$

Les nombres de *Reynolds*, *Brinkman*, et *d'Eckert* sont aussi calculables pour un fluide donné mais dépendamment des conditions expérimentales (ils dépendent de la température).

Le nombre de *Brinkman*, représente le rapport entre la dissipation mécanique et la diffusion de la chaleur.

$$\begin{cases} \frac{\rho \cdot u \cdot D_h}{\mu} = Re\\ Pr = \frac{\mu \cdot C_P}{\lambda}\\ \left(\frac{\lambda \cdot \Delta T}{\mu \cdot u^2}\right)^{-1} = Br \end{cases}$$

Par conséquent l'expression du coefficient d'échange par convection prend la forme suivante :

$$h_{c} = \frac{A_{c} \cdot \rho \cdot C_{P} \cdot u}{D_{h}^{2}} Re^{-d-j} \cdot Pr^{l-j} \cdot Br^{-l} \cdot \left(\frac{\varepsilon}{D_{h}}\right)^{e} \cdot \left(\frac{P_{e-c}}{D_{h}}\right)^{f} \cdot \left(\frac{P_{e-r}}{D_{h}}\right)^{g} \cdot \left(\frac{l_{ch}}{D_{h}}\right)^{h} \cdot \left(\frac{I}{\rho \cdot u^{3}}\right)^{l}$$
(III-7)

Qui peut être réécrite sous la forme :

$$h_{c} = \frac{A_{c} \cdot \rho \cdot C_{P} \cdot u}{D_{h}^{2}} Re^{-d} \cdot Pe^{-j} \cdot Ec^{-l} \cdot \left(\frac{\varepsilon}{D_{h}}\right)^{e} \cdot \left(\frac{P_{e-c}}{D_{h}}\right)^{f} \cdot \left(\frac{P_{e-r}}{D_{h}}\right)^{g} \cdot \left(\frac{l_{ch}}{D_{h}}\right)^{h} \cdot \left(\frac{l}{\rho \cdot u^{3}}\right)^{l}$$
(III-8)

III-3-2-Calcul de nombre de Nusselt :

De la même façon précédemment, on calcul le nombre de *Nusselt*, en considérant les deux expressions suivantes :

$$\begin{cases} h_{c} = \frac{A_{c} \cdot \rho \cdot C_{P} \cdot u}{D_{h}^{2}} Re^{-d-j} \cdot Pr^{l-j} \cdot Br^{-l} & \left(\frac{\varepsilon}{D_{h}}\right)^{e} \cdot \left(\frac{P_{e-c}}{D_{h}}\right)^{f} \cdot \left(\frac{P_{e-r}}{D_{h}}\right)^{g} \cdot \left(\frac{l_{ch}}{D_{h}}\right)^{h} \cdot \left(\frac{I}{\rho \cdot u^{3}}\right)^{i} \\ h_{c} = \frac{A_{c} \cdot \rho \cdot C_{P} \cdot u}{D_{h}^{2}} Re^{-d} \cdot Pe^{-j} \cdot Ec^{-l} & \left(\frac{\varepsilon}{D_{h}}\right)^{e} \cdot \left(\frac{P_{e-c}}{D_{h}}\right)^{f} \cdot \left(\frac{P_{e-r}}{D_{h}}\right)^{g} \cdot \left(\frac{l_{ch}}{D_{h}}\right)^{h} \cdot \left(\frac{I}{\rho \cdot u^{3}}\right)^{i} \end{cases}$$

Soit, le nombre de Nusselt donné par l'expression :

$$Nu = \frac{h_c \cdot D_h}{\lambda}$$

En considérant le coefficient d'échange convectif, l'expression de nombre de *Nusselt* devient :

$$Nu = \frac{A_c \cdot \rho \cdot C_P \cdot u}{D_h \cdot \lambda} Re^{-d-j} \cdot Pr^{l-j} \cdot Br^{-l} \cdot \left(\frac{\varepsilon}{D_h}\right)^e \cdot \left(\frac{P_{e-c}}{D_h}\right)^f \cdot \left(\frac{P_{e-r}}{D_h}\right)^g \cdot \left(\frac{l_{ch}}{D_h}\right)^h \cdot \left(\frac{l}{\rho \cdot u^3}\right)^i$$
(III-9)

Réécrit autrement sous la forme :

$$Nu = \frac{A_{c} \cdot \rho \cdot C_{P} \cdot u}{D_{h} \cdot \lambda} Re^{-d} \cdot Pe^{-j} \cdot Ec^{-l} \cdot \left(\frac{\varepsilon}{D_{h}}\right)^{e} \cdot \left(\frac{P_{e-c}}{D_{h}}\right)^{f} \cdot \left(\frac{P_{e-r}}{D_{h}}\right)^{g} \cdot \left(\frac{l_{ch}}{D_{h}}\right)^{h} \cdot \left(\frac{l}{\rho \cdot u^{3}}\right)^{i}$$
(III-10)

III-3-3-Calcul de facteur de Colburn :

Donné par l'expression :

$$J = \frac{Nu}{Re. Pr^{1/3}}$$

En tenant en considération du nombre de *Nusselt*, de *Reynolds* et de *Prandtl*, le facteur de *Colburn* :

$$J = \frac{A_c}{D_h^2} R e^{-d-j} \cdot P r^{l-j+\frac{2}{3}} \cdot B r^{-l} \cdot \left(\frac{\varepsilon}{D_h}\right)^e \cdot \left(\frac{P_{e-c}}{D_h}\right)^f \cdot \left(\frac{P_{e-r}}{D_h}\right)^g \cdot \left(\frac{l_{ch}}{D_h}\right)^h \cdot \left(\frac{I}{\rho \cdot u^3}\right)^i$$
(III-11)

III-4-Principe de calcul expérimental du cœfficient d'échange :

Dans ce travail, on étudie numériquement le comportement dynamique et thermique d'un écoulement d'air (laminaire et turbulent) en convection forcé, à bas nombre de Reynolds, dans un canal horizontale en présence de chicanes rectangulaires munies d'une partie supérieure inclinée.

Cette étude peut être considérer comme une application réelle dans le domaine des échangeurs de chaleur, tel que les capteurs solaire plans à air.

Le principe de cette étude expérimentale consiste à effectuer de nombreux calcules du coefficient d'échange de chaleur globale dans la veine d'air mobile, pour différentes valeurs de débit volumiques, à différentes température mesurées, et pour diverses modes de dispositions et configurations de chicanes.

Les résultats obtenus à partir d'une série de mesures, effectuée au département de génie mécanique de l'université de Biskra **[16]**, figurent sur des tableaux de mesures qui montrent l'évolution des différentes températures en fonction du débit [Annex1].

III-5-Description du dispositif expérimental

Le schéma simplifier du dispositif expérimental est présentée sur la Fig. (III-1). Il s'agit d'un conduit rectangulaire muni de plusieurs rangées de chicanes de forme rectangulaire, dont la partie supérieure est inclinée. Les chicanes sont implantées sur le plan d'écoulement inférieur, traversé par un écoulement d'air stationnaire.

Le plan d'écoulement inférieur est confectionné d'acier galvanisé de dimension égale à de1.4m * 0.88m, l'épaisseur de la veine d'air mobile est de2.5cm, qui correspond à l'espace compris entre le plan inférieur et l'absorbeur.

L'entrée d'air dans le capteur se fait à travers des orifices circulaires localisés et centrées à l'arrière du capteur, de telle sorte à assurer au moyen d'une pompe muni d'un variateur de vitesse, l'aspiration en permanence d'un flux d'air.

Fig. (III-1) Schéma simplifié du dispositif expérimental.

Conclusion générale

Ce travail comporte cinq chapitres essentiels, le premier chapitre est dédié à une synthèse bibliographique, ou on a cité plusieurs travaux qui se sont intéressé à l'amélioration des échanges thermiques par convection dans les échangeurs de chaleurs, et précisément dans les capteurs solaires plans à air. Le recours aux rugosités artificielles pour optimiser les surfaces d'échanges en question, est en vue de remédier aux propriétés thermophysiques médiocres de l'air, par rapport aux autres fluides caloporteurs.

Les chicanes utilisées dans ce travail, sont de formes rectangulaires avec une partie inclinée, de longueur 07 cm, disposées en quinconce, le pas entre deux chicanes est de 04 cm, par contre on a considéré deux pas entre les rangées qui sont de 10 cm et 20 cm. La configuration en quinconce offre la possibilité d'avoir des rétrécissements et des élargissements brusques qui se manifestent par la formation d'une structure tourbillonnaire à axe verticale. D'autre part, les parties supérieures des chicanes qui sont inclinées de 60 °, permettent d'avoir un espace réduit vis à vis du plan d'écoulement supérieur (absorbeur), s'implique par la formation des tourbillons à axes horizontaux, qui se développent à l'aval des arrêtes supérieures des ailettes. L'alternance conjuguée de ce doublet de tourbillons à axe verticaux et horizontaux assure un écoulement désordonné et par conséquent un échange convectif très intense.

En utilisant le théorème de l'analyse dimensionnelle, une corrélation est développée, qui permettrai de rapporter touts les paramètres physiques, thermophysiques et géométriques, et en fonction du régime d'écoulement on estime un coefficient d'échange par convection, qui correspond à un nombre de **Nusselt** et à un facteur de **Colburn** spécifique à cette variante de chicanes disposées en quinconce

Pour déterminer les exposants des groupements adimensionnels de la corrélation, issue par le *théorème de Vashy Buckingham*, on a eu recours à l'expérimentation Un nombre important de données nous a été fournit par une série de manipulation effectuée sur un capteur solaire plan à air, dont le plan inférieur du conduit utile, est occupé de plusieurs rangées de chicanes de formes rectangulaires.

Après, linéarisation de la relation développée, qui caractérise l'échange convectif et identification des différents paramètres mise en jeu à leurs valeurs expérimentales correspondantes, on a obtenu un système d'équation très complexe, dont la résolution numérique est obtenue par la méthode dite pseudo inverse. Un programme informatique a été

développé, écrit sous l'environnement *Matlab 6.5*, ce qui nous a permis d'obtenir plusieurs informations, en fonction du régime d'écoulement laminaire ou turbulent, et du pas relatif séparant deux rangées successives.

Des illustrations graphiques, qui montrent l'évolution du coefficient d'échange en fonction des nombres de **Reynolds** et de **Prandtl**, ainsi que l'évolution du **Nusselt** et du **facteur de Colburn** en fonction de **Reynolds**, respectivement en comparaison avec les résultats expérimentaux, ont permis de juger la validité des corrélations avec la théorie.

Comme résultats important à signaler, concernant l'influence du nombre de Reynolds sur le coefficient d'échange thermique convectif, nous pouvons constater qu'en régime laminaire, le coefficient de transfert convectif (h) varie dans l'intervalle de 4 à 45 [W/m².K], dans le cas ou le pas entre rangée $P_{e-r} = 10 \ cm$, d'autre part il ne varie que de 4 à 35 [W/m².K], dans le second cas, ou le pas entre rangée $P_{e-r} = 20 \ cm$, ce qui montre l'effet significatif du pas entre rangée

En régime turbulent (Re > 2100), l'écart est plus significatif, le coefficient d'échange thermique varie de 40 à 70 [W/m².K] dans le premier, par contre il ne varie que de 35 à 55 [W/m².K] dans le deuxième cas.

Les résultats obtenus par la simulation numérique assistée par Fluent 6.1, nous ont permis de comprendre et de visualiser de façon détaillée le comportement dynamique et thermique de l'écoulement de l'air, particulièrement à proximité des chicanes. Les profils de distribution de la vitesse axiale, montrent une zone de recirculation relativement intense après les rétrécissements et élargissements brusques en présence de la disposition en quinconce des ailettes.

L'analyse des modèles empiriques qui ont été ajustés pour le calcul des pertes de charge en 2003 [9] dans le cadre d'une thèse de magistère, et ceux développés dans ce travail, nous laisse pensé qui il existerait une solution intermédiaire à approfondir ultérieurement.

D'autre part, nous envisageons d'étudier les autres formes de rugosités artificielles, en vue de généraliser ce modèle, afin d'établir des corrélations empiriques à développées dans de futurs travaux de recherches.

Résumé - L'objectif de cette étude, consiste à établir un model empirique de calcul du coefficient d'échange thermique par convection, lors de l'écoulement de l'air dans un conduit rectangulaire, dont le plan inférieur est muni de chicanes de formes rectangulaires disposées en quinconce. Par la méthode de l'analyse dimensionnelle, on a pu mettre en relation tout les paramètres physiques, thermophysiques et les caractéristiques géometriques des chicanes, et en fonction du régime d'écoulement on estime un coefficient d'échange par convection dans l'espace d'écoulement du fluide.

Mots clés : corrélation, coefficient d'echange, convection, rugosité artificielle, chicane, écoulement turbulent, capteur solaire plan à air.

Summary-The objective of this study, consists in establishing an empirical model calculation of the coefficient of thermal exchange by convection, during the air flow in a rectangular conduit, whose lower plan is provided with baffles of rectangular forms laid out in quincunx.

By the method of the dimensional analysis, one could connect all the physical, thermophysical parameters and the geometrical characteristics of the baffles, and according to the mode of flow one estimates a coefficient of exchange by convection in the space of flow of the fluid.

Key words: correlation, coefficient of exchange, convection, artificial roughness, baffle, turbulent flow, solar air flat plate.

خلاصة - إن هذه الدر اسة تهدف إلى إنشاء نموذج عددي لمعامل الحمل الحر اري لسريان الهواء داخل قناة مستطيلة الشكل سطحها السفلي مزود بخشونة إصطناعية (زعانف) مستطيلة الشكل ذات طرف علوي مائل، موضوعة بطريقة متداخلة.

بأسلوب التحليل البعدي تمكنا من وضع علاقة تربط معامل الحمل الحر اري بالخصائص الفيزيائية و الثر موفيزيائية للهواء والمميز ات الهندسية للز عانف، و حسب طبيعة السريان.

كلمات مفتاحية: إرتباط, معامل التبا دل, حمل حراري, خشونة اصطناعية, حاجز, سريان مضطرب, لاقط شمسي هوائي

Les tables de 01à 09 pour le premier cas ou

$l_{ch} = 7cm$
$P_{e-c} = 4cm$
$P_{e-r} = 10cm$

Tableau N°: -01-Date: 15 -04-2008

	Ф	Duesdien			T	herm	ocou	ples	[°C]			V	Dál:4	V de
Temps	Φ [w/m ²]	[Pa]	n°1	n°2	n°3	n°4	n°5	n°6	n°7	n°8	Tamb	de vent	[m ³ /h]	L'air [m/s]
9h40	570	10	34	50	55	65	50	54	24	52	19.5	1.5	20	3.60
9h50	595	13	32	50	52	63	55	60	25	55	20	03	13	2.50
10h00	624	14	32	49	53	65	58	60	25	55	20.50	3.40	15	2.84
10h10	652	11	34	51	59	70	65	68	25	60	20.50	7.40	10	1.84
10h20	677	12	34	52	55	71	68	65	23	62	21	2.42	08	1.20
10h30	701	11	35	55	59	74	66	67	26	64	22.50	4.10	03	0.66
10h40	720	11	35	55	59	75	67	69	26	66	22	1.79	05	0.90
10h50	738	13	36	55	57	75	69	70	28	67	22.50	03	15	2.66
11h00	765	13	46	57	67	77	70	72	27	68	23	4.10	03	0.55
11h10	782	15	36	58	60	77	71	72	28	69	23	2.75	15	2.75
11h20	800	12	37	59	63	80	73	75	29	72	23.50	4.70	08	2.23
11h30	817	13	38	60	68	82	74	75	30	73	23.50	0.61	18	2.56
11h40	837	13	39	62	68	84	75	76	29	63	24	3.40	12	1.91
11h50	849	13	39	63	65	85	75	77	30	63	24.50	3.80	13	2
12h00	863	18	40	62	68	83	76	79	30	74	25	1.38	13	2.32
12h10	868	17	32	62	69	82	76	78	31	74	24.50	1.73	14	2.40
12h20	878	18	39	60	69	80	75	76	31	74	25	2	12	2.62
12h30	883	20	38	59	62	78	75	77	31	73	26	2.60	03	0.61
12h40	879	18	39	62	65	84	76	79	34	75	26	3.10	03	0.70
12h50	877	18	39	61	65	82	77	79	34	75	26	3.60	03	0.75
13h00	877	18	39	61	65	81	77	80	34	76	26.50	5.40	04	0.82
13h10	877	17	39	62	66	81	78	80	34	75	27	6.40	05	0.92
13h20	877	17	40	62	66	81	79	80	33	75	27	9.50	05	0.91
13h30	861	17	39	66	68	81	77	79	35	76	27	1.34	05	0.92
13h40	851	16	40	64	65	82	79	80	35	75	27.50	6.90	05	0.93
13h50	847	15	40	63	70	83	79	80	34	75	27	7.10	05	0.93
14h00	832	15	40	63	67	82	78	80	34	74	27	5.20	05	0.92
14h10	817	15	40	63	64	80	76	80	35	74	27	7.60	03	0.65
14h20	797	15	40	63	68	80	76	78	35	74	27.50	1.67	03	0.60

Tableau N°:-02-
Date:16/04/2008

	Ф	Pression	Thermocouples [°C]							V	V Débit			
Temps	[w/m ²]	[Pa]	n°1	n° 2	n°3	n°4	n°5	n°6	n°7	n°8	Tamb	de	[m ³ /h]	L'air
9h00	457	05	28	<u>4</u> 7	53	50	42	47	23	41	20	9 50	15	2 55
9h10	491	10	20	48	51	53	47	49	$\frac{23}{24}$	46	20	07	17	3.00
9h20	523	10	28	45	58	56	49	51	24	47	21	4.20	18	3.20
9h20	555	12	28	46	49	59	52	54	27	50	21	8.50	20	3.70
9h40	587	11	30	48	52	63	54	56	25	53	21	1.32	15	2.43
9h50	613	14	30	50	53	64	56	58	26	55	22	0.83	13	2.50
10h00	633	11	31	50	54	65	58	59	26	55	22	8.30	17	3.10
10h10	656	11	32	52	55	67	60	61	26	58	22.5	9.50	14	2.56
10h20	679	12	32	54	58	70	62	64	26	60	22.5	9.80	12	2.12
10h30	707	11	33	55	58	72	62	64	27	61	23.5	5.30	08	1.58
10h40	722	15	33	55	58	71	64	65	27	64	24	3.50	09	1.78
10h50	756	13	34	56	59	74	66	68	27	64	23.5	1.17	08	1.28
11h00	798	14	34	56	67	76	68	70	28	66	24.5	10.9	03	0.62
11h10	775	14	35	55	62	72	69	72	28	67	25	8.01	04	0.69
11h20	624	15	35	55	57	72	66	67	29	65	25.5	11.03	07	1.27
11h30	730	15	35	55	53	75	67	69	29	65	27	6.40	08	1.34
11h40	765	16	35	53	56	69	64	65	30	63	27	5.40	11	2.10
11h50	463	16	34	48	52	59	56	56	29	55	25.5	1.85	20	3.50
12h00	423	16	34	46	47	56	54	54	28	53	26	8.20	22	04
12h10	408	16	34	47	51	58	55	55	29	54	25	1.75	23	3.9
12h20	564	17	34	48	50	60	55	56	28	54	25	4.1	18	3.3
12h30	662	16	34	49	56	64	58	59	30	57	24.5	2.3	19	3.4
12h40	586	14	35	50	55	65	59	60	30	58	24.5	2.62	13	2.35
12h50	435	14	35	49	53	61	57	58	30	56	25	3	17	3.1
13h00	427	15	34	47	52	58	55	55	30	53	24.5	08	22	04
13h10	321	14	34	43	48	51	51	50	28	48	25.5	3.7	20	3.4
13h20	306	16	32	41	45	47	46	45	28	45	26	7.6	29	5.2
13h30	325	15	32	41	42	48	47	47	28	45	27	10.58	33	5.8
13h40	328	16	32	45	43	49	46	46	29	46	26.5	12.1	30	5.3
13h50	353	16	32	42	48	50	47	48	29	46	25	7.4	36	6.3
14h00	408	15	34	43	46	53	48	49	30	48	25.5	3.7	34	06
14h10	450	16	34	45	47	47	53	55	32	52	26.5	1.35	26	4.7
14h20	311	16	33	43	50	50	49	49	30	48	27	3.2	30	5.4
14h30	368	17	34	44	45	51	49	49	29	47	27.5	2.3	30	4.5

Annexe1 Tableau N°: 03 Date: 19/04/2008

	Ф	Pressio			Th	erma	cou	oles [°C]			V	Dábit	V de
Temps	$[W/m^2]$	n	n°1	n°	n°3	n°4	n°5	n°6	n°7	n°8	Tamb	de	[m ³ /h]	L'air
0.01.1.0		[Pa]	•••	2							Tanto	vent	[]	[m/s]
09h10	457	34	28	36	37	43	42	43	27	41	23	3	66	11.8
09h20	482	34	27	36	39	45	43	44	28	42	23.5	3.60	65	11.5
09h30	503	35	29	38	40	47	45	46	28	44	23.5	2.10	60	10.5
09h40	547	35	30	39	41	49	46	47	29	45	24	2.03	58	10.2
09h50	568	33	30	39	43	50	47	49	29	46	24.5	1.24	57	10.1
10h00	524	30	31	41	45	52	48	51	28	47	24.5	1.26	56	9.90
10h10	612	32	33	43	45	54	51	53	30	49	24.7	0.44	50	8.60
10h20	634	29	34	43	46	55	52	54	29	51	25.5	2.37	49	8.40
10h30	654	32	34	44	48	57	53	55	30	53	25.5	7.80	45	8.10
10h40	647	32	34	45	52	58	55	47	31	53	26.5	0.88	42	7.40
10h50	690	28	36	47	50	58	59	89	32	55	27	1.51	36	6.30
11h00	699	31	36	48	52	63	59	61	33	57	28	0.50	29	5.20
11h10	707	28	38	50	55	56	60	63	34	60	28	0.21	25	4.50
11h20	710	31	39	51	55	58	63	65	34	61	29.5	0.80	20	3.30
11h30	720	31	39	51	55	68	64	65	35	67	30	0.23	18	3.30
11h40	719	31	41	54	58	71	61	69	35	65	29	0.70	10	1.50
11h50	744	31	41	54	58	72	66	69	35	65	30	1.54	11	20.0
12h00	748	32	42	54	60	72	67	70	35	66	31	1.48	08	1.45
12h10	763	31	42	55	59	73	69	71	37	66	31	0.96	05	1.30
12h20	775	31	43	56	62	75	70	74	38	69	31	1.12	04	0.73
12h30	786	31	43	57	61	75	70	72	39	70	30	3.10	02	0.40
12h40	790	31	43	57	61	74	70	73	38	69	31	7.50	02	0.38
12h50	780	29	45	58	60	75	70	73	39	69	32	13.2	03	0.66
13h00	788	32	45	56	62	74	70	73	38	69	31	2.50	04	0.75
13h10	790	32	45	47	61	73	69	72	39	67	32	3.60	05	1.06
13h20	759	28	46	57	62	74	70	72	40	68	31.5	12.7	04	0.71
13h30	740	31	46	56	62	73	69	71	39	67	31	10.5	06	1.05
13h40	714	30	46	47	61	72	68	70	40	66	33	08	09	1.22
13h50	674	31	45	55	60	70	68	70	40	66	32	11.9	08	1.48
14h00	622	31	45	54	58	69	66	67	39	64	33	5.50	12	2.22
14h10	644	31	45	54	57	69	65	67	41	64	33	4.70	13	2.40
14h20	615	30	45	54	57	67	65	66	40	63	35	0.55	13	2.39
14h30	616	30	44	52	55	65	63	64	39	62	34	0.30	16	2.92
14h40	519	30	43	50	53	61	60	61	38	58	35	0.22	26	4.70

Tableau N°: 04
Date: 20/04/2008

	Ф	Pression			Th	erm	ocou	ples	[°C]			V	Déhit	V de
Temps	[w/m ²]	[Pa]	n°1	n°	n°3	n°4	n°5	n°6	n°7	n°8	Tamb	de	$[m^{3}/h]$	L'air
00500	224	27	20	2	20	45	41	12	27	41	21.5	vent	60	$[\mathbf{m}/\mathbf{s}]$
091100	360	37	20	37	30	45	41	43	27	41	21.5	2.30	54	9.50
09110 09h20	446	33	30	37	40	43	42	45	29	42	22	1.35	54 64	9.50
09h30	440	37	32	38	40	43	45	45	31	45	22	0.31	69	11.4
09h/10	525	<u> </u>	34	40	<u>–1</u> <u>/1</u>	48		40	31	45	22	3.40	63	12.4
09h50	553	41	34	41	43	49	48	49	32	46	22.5	3 30	66	11.1
10h00	579	36	35	43	44	52	48	51	33	48	23.5	8.70	64	11.7
10h10	607	41	36	44	46	54	51	53	33	50	24	01	63	11.01
10h20	640	41	37	45	46	55	52	54	34	50	25	4.30	55	9.7
10h30	657	41	37	44	46	55	53	54	34	52	25	18.3	52	9.2
10h40	674	36	38	46	38	57	53	55	34	52	26	5.10	52	9.1
10h50	714	40	39	46	49	59	55	58	35	54	26	07	49	8.6
11h00	676	40	38	46	47	55	53	55	34	52	26	1.57	51	09
11h10	640	40	38	45	46	54	53	54	35	50	26.5	6.30	57	10
11h20	405	38	39	49	50	60	57	60	35	55	27	2.20	40	6.1
11h30	786	39	40	50	52	62	59	61	37	58	28	8.80	39	6.9
11h40	735	39	40	49	51	61	59	60	36	55	28	1.84	38	07
11h50	370	40	40	46	47	55	54	55	36	52	27	9.10	53	9.4
12h00	840	35	40	50	52	63	59	61	37	57	28	4.50	36	6.4
12h10	805	40	41	51	54	64	61	63	39	59	28	03	26	4.6
12h20	760	40	42	53	56	67	93	65	39	60	29	1.07	16	2.80
12h30	709	41	44	54	58	69	65	67	39	62	29	1.67	18	3.30
12h40	784	40	44	52	55	65	63	64	39	60	29.5	2.27	22.4	04
12h50	832	39	43	52	54	64	63	64	39	59	29.5	15	26	7.7
13h00	698	39	42	51	53	62	60	61	39	57	30	0.70	28	7.1
13h10	675	38	42	50	52	61	59	60	38	57	31	3.40	34	6.1
13h20	700	33	42	51	53	62	60	61	39	57	31	12.1	33	5.9
13h30	710	33	42	51	53	63	61	62	39	57	31	0.88	32	5.7
13h40	695	38	43	52	54	64	61	62	39	58	31	2.80	30	5.3
13h50	684	33	43	51	53	62	61	62	40	58	30.5	9.03	30	5.5
14h00	688	33	43	52	54	63	61	62	40	57	30	11.9	29	5.2
14h10	673	33	44	52	54	63	61	62	41	59	31	6.40	29	5.2
14h20	635	38	44	52	54	62	61	63	41	59	31	11	35	04
14h30	640	38	44	52	55	63	61	62	41	59	31	1.05	28	4.9

Tableau N°: 05
Date:22/04/2008

	Ф	Prossion			Th	erm	ocou	ples	[°C]			V	Dáhit	V de
Temps	Ψ [w/m²]	[Pa]	n°1	n° 2	n°3	n°4	n°5	n°6	n°7	n°8	Tamb	de vent	[m ³ /h]	L'air [m/s]
09h40	602	45	28	36	37	43	39	42	28	40	20.5	7.8	52	16.1
09h50	646	48	33	43	45	56	49	51	28	48	21	1.5	78	13.8
10h00	637	45	33	42	43	52	49	51	29	47	21	1.05	70	12.3
10h10	663	44	35	45	46	59	54	55	30	5	20.5	3.2	62	10.9
10h20	687	45	35	45	46	57	54	55	31	52	21.5	6.2	56	9.9
10h30	705	47	37	47	48	61	56	59	30	54	21	2.33	48	8.4
10h40	728	47	41	51	52	68	60	63	30	56	21	8.1	38	7.6
10h50	747	40	42	52	53	68	62	64	31	59	21.5	0.38	33	5.8
11h00	757	40	44	55	57	73	64	57	30	62	22	10.3	22	04
11h10	783	45	38	46	48	60	56	59	34	55	23	5.1	45	08
11h20	797	44	38	47	48	60	56	60	32	54	23	2.01	46	8.1
11h30	810	45	40	48	50	63	60	62	32	56	23.5	5.7	36	6.3
11h40	825	45	43	53	55	71	64	68	32	62	23.5	0.13	26	4.6
11h50	831	45	45	55	60	75	68	70	32	64	24.5	41	20	3.6
12h00	837	40	42	52	55	68	65	67	33	61	24	9.2	24	4.2
12h10	835	45	43	53	55	69	65	68	33	63	24.5	8.4	17	03
12h20	831	44	43	53	55	69	65	67	34	62	24.5	9.4	17	3.1
12h30	835	39	48	60	63	75	68	71	33	65	25	0.75	14	2.70
12h40	832	45	48	56	60	72	68	70	36	65	24.5	0.82	12	2.15
12h50	829	45	47	56	60	73	69	71	36	66	25	0.45	04	0.85
13h00	822	42	46	54	58	71	68	69	35	64	24.5	3.7	14	2.9
13h10	820	41	50	60	65	76	70	73	37	67	26	7.8	05	0.24
13h20	820	39	47	56	60	72	68	70	38	65	27	6.2	07	1.23
13h30	812	41	48	58	61	73	70	72	38	66	26	0.63	09	1.13
13h40	802	40	50	60	63	75	71	74	39	68	28	0.49	03	0.59
13h50	794	43	49	58	60	72	70	71	39	66	28	1.66	07	1.40
14h00	780	45	48	54	65	74	60	66	38	65	27	1	16	2.75

Tableau N°: 06	
Date: 23/04/2008	

	Ф	Pression			Th	erm	ocou	ples	[°C]			V	Débit	V de
Temps	[w/m ²]	[Pa]	n°1	n° 2	n°3	n°4	n°5	n°6	n°7	n°8	Tamb	de vent	[m ³ /h]	L'air [m/s]
09h40	571	25	45	45	44	47	30	30	45	30	21	32.1	45.6	10.6
09h50	598	17	46	45	44	50	31	32	48	31	22	0.48	53	9.3
10h00	612	41	47	45	44	50	31	32	48	31	23	3.5	50	8.9
10h10	639	37	49	45	44	51	31	32	49	30	22.5	7.5	54	9.3
10h20	668	35	49	45	44	52	31	32	49	30	23	6.6	50	8.9
10h30	691	38	50	47	46	53	31	33	51	31	23	2.82	50	8.8
10h40	700	37	52	48	48	55	32	34	52	31	23	7.4	47	5.9
10h50	725	36	53	49	49	55	32	35	54	33	22.5	0.67	45	08
11h00	738	37	54	49	49	58	33	35	54	34	23	3.6	44	7.8
11h10	761	35	54	50	50	59	33	35	55	33	23	4.1	41	7.2
11h20	776	35	57	51	51	59	34	36	57	34	23.5	4.9	38	6.8
11h30	820	34	57	50	49	58	33	35	55	34	24	0.78	43	7.5
11h40	828	33	56	49	49	57	33	34	55	33	24	0.96	46	8.1
11h50	832	33	55	50	49	58	34	36	57	34	25	0.52	41	7.2
12h00	845	32	58	52	53	61	35	37	59	35	25.5	1.53	36	6.3
12h10	845	31	59	52	52	61	35	38	59	35	26	1.02	38	6.7
12h20	846	30	59	52	52	61	36	38	60	36	26	0.70	40	07
12h30	850	29	59	53	53	61	42	44	59	42	27	0.51	44	7.9
12h40	833	28	62	56	57	65	38	39	63	38	28	11.2	29	5.0
12h50	834	31	62	53	53	62	39	41	61	40	28	0.6	35	6.3

Tableau N°: 07
Date:26/04/2008

	Ф	Pression			Th	erm	ocou	ples	[°C]			V	Déhit	V de
Temps	Φ [w/m ²]	[Pa]	n°1	n° 2	n°3	n°4	n°5	n°6	n°7	n°8	Tamb	de vent	[m ³ /h]	L'air [m/s]
09h10	470	15	34	37	37	42	29	30	38	30	21.5	0.02	67	11.7
09h20	497	55	41	41	41	44	30	32	43	30	22	2.43	57	10
09h30	535	55	43	42	42	42	33	33	45	31	22	0.39	55	09.7
09h40	600	58	45	44	45	50	32	35	48	32	22	0.54	60	10.6
09h50	640	59	46	43	44	46	31	33	46	31	24	5.60	55	9.7
10h00	662	59	48	44	45	47	32	33	48	31	23	1.66	55	9.7
10h10	685	58	49	45	46	50	32	32	50	32	23.5	1.50	54	9.5
10h20	705	58	50	46	46	50	33	35	52	32	23.5	0.71	53	9.3
10h30	722	56	53	48	49	52	34	36	54	34	24	0.88	50	8.8
10h40	746	51	53	49	50	53	35	37	54	34	24.5	1.03	48	8.5
10h50	769	50	55	50	50	54	34	37	55	34	25	7.30	45	08
11h00	777	56	56	51	51	54	34	37	56	34	25	1.11	44	7.7
11h10	793	62	56	51	51	55	35	37	58	35	25	6.70	42	7.5
11h20	814	53	56	52	52	55	35	38	56	35	25.5	2.95	44	7.7
11h30	824	58	57	52	53	55	36	38	58	36	25	3.20	40	07
11h40	835	53	59	52	54	58	36	39	60	36	26.5	1.21	36	6.3
11h50	843	58	60	54	54	58	36	38	60	35	27	2.58	39	6.9
12h00	848	48	60	54	54	59	37	40	60	37	27	7.00	34	6.1
12h10	848	38	60	53	54	60	38	42	60	37	27	6.80	38	1.99
12h20	850	35	60	53	54	60	38	42	59	37	26.5	8.30	41	7.3
12h30	848	33	60	54	55	62	40	44	60	38	28	5.10	34	06
12h40	846	25	60	54	55	61	39	43	60	37	28.5	1.75	38	6.8
12h50	840	29	60	54	54	61	40	44	60	38	29	8.30	36	6.3
13h00	840	23	60	54	55	60	40	43	60	38	28.5	0.90	39	6.9
13h10	832	_	60	52	52	57	37	38	60	37	29	2.75	35	6.1
13h20	823	_	60	51	51	57	37	38	60	37	30	0.90	36	6.4
13h30	810	_	60	52	51	57	37	38	60	37	31	1.51	36	6.4
13h40	802	_	60	52	52	58	38	39	60	38	31.5	0.99	33	5.9
13h50	792	_	60	52	51	56	36	37	58	36	30.5	0.50	40	07
14h00	778	_	60	60	52	56	38	39	60	39	31	0.40	34	6.1
14h10	749	_	60	53	52	59	40	40	61	39	30	1.95	37	5.5
14h20	739	_	59	53	52	58	38	39	60	38	29.5	0.54	37	6.5
14h30	717	_	59	52	51	58	39	39	60	38	29.5	0.61	35	6.2
14h40	697	_	58	51	51	56	38	39	57	38	30	4.30	40	7.1

Tableau N°:08 Date:27/04/2008

	Ф	Pression			Th	erm	ocou	ples	[°C]			V	Déhit	V de
Temps	₩ [w/m ²]	[Pa]	n°1	n°	n°3	n°4	n°5	n°6	n°7	n°8	Tamb	de	$[m^{3}/h]$	L'air
001.00			25	2	41	1.0	20	20	20	20	0.1	vent		[m/s]
09h00	556		35	41	41	46	29	29	38	28	21	1.80	45	7.80
09h10	470		39	40	39	44	27	28	41	27	21	2.51	47	7.30
09h20	497	_	41	40	39	44	27	28	42	27	21	1.20	44	7.80
09h30	727	_	43	42	41	46	27	28	44	27	21	08	45	08
09h40	555	_	45	43	42	47	27	28	45	27	21.5	3.60	40	7.10
09h50	584	_	46	44	43	49	29	30	47	28	21.5	2.85	41	7.20
10h00	613	_	49	45	44	51	28	30	48	28	23	07	41	7.30
10h10	641	_	50	46	44	52	28	31	49	29	22	2.42	39	6.90
10h20	675	_	52	47	46	54	29	31	52	29	23	5.80	37	6.60
10h30	699	_	52	48	47	54	29	31	53	30	23	7.20	36	6.30
10h40	712	_	54	50	48	55	30	33	54	30	23	9.20	34	6.10
10h50	731	_	55	51	49	57	31	33	56	31	23	7.60	32	5.70
11h00	747	_	56	51	49	58	31	33	55	32	23.5	1.30	33	5.80
11h10	769	_	58	52	50	60	32	35	58	34	24	7.20	27	4.80
11h20	784	_	60	54	53	63	32	34	60	32	25	1.44	25	4.50
11h30	796	_	60	55	55	60	33	34	60	33	24	2.38	24	4.30
11h40	804	_	61	55	54	64	32	35	60	32	24	1.20	26	4.60
11h50	823	_	61	54	53	63	34	35	60	34	25	1.70	21	3.80
12h00	830	_	61	55	54	64	34	36	61	34	25	3.50	22	04
12h10	834	_	62	55	53	64	34	36	62	33	26	3.90	22	04
12h20	836	_	62	55	54	63	35	37	63	35	26.5	2.50	23	3.60
12h30	842	_	64	56	54	64	35	37	62	35	27	2.01	21	3.80
12h40	843	_	63	58	55	65	35	38	64	35	27	11	20	3.50
12h50	838	_	64	58	55	65	35	37	64	36	27	1.51	20	3.50
13h00	831	_	64	58	55	65	36	38	64	37	27	7.60	20	3.50
13h10	833	_	64	58	55	66	35	38	64	35	27.5	8.60	20	3.70
13h20	820	_	64	58	56	67	37	38	64	36	28.5	8.10	17	2.54
13h30	820	_	64	58	56	66	36	38	64	36	28	9.40	17	03
13h40	795	_	64	58	56	66	36	37	64	36	28	6.60	14	2.54
13h50	780	_	65	58	56	66	37	38	64	36	25	17.4	16	2.90
14h00	764	_	64	57	55	64	37	38	63	37	29	0.53	16	2.75
14h10	730	_	64	58	56	65	37	38	64	37	32	6.70	14	2.47
14h20	704	_	64	57	55	64	37	38	64	37	30	1.33	16	2.78
14h30	692		63	55	53	62	37	38	62	37	29	0.83	22	04

Tableau N°:09 Date: 28/04/2008

	Ф	Pression			Th	erm	ocou	ples	[°C]			V	Déhit	V de
Temps	• [w/m ²]	[Pa]	n° 1	n°2	n°3	n°4	n°5	n°6	n°7	n°8	Tamb	de vent	[m ³ /h]	L'air [m/s]
08h50	424	19	30	35	36	39	26	27	34	26	19.5	5.10	35	6.20
09h00	445	21	36	37	38	40	26	27	38	27	19.5	6.90	38	6.70
09h10	471	18	37	38	37	42	26	27	39	27	19.5	2.50	36	6.40
09h20	511	18	42	37	39	43	25	27	42	26	19.5	0.23	33	5.80
09h30	518	18	43	40	40	45	26	27	43	27	20	1.21	34	6.10
09h40	545	27	46	42	40	47	26	28	46	25	20	1.80	32	5.60
09h50	577	27	47	42	41	48	27	28	46	26	20	6.70	31	5.50
11h50	803	28	64	53	53	62	32	35	63	31	23	2.08	17	3.20
12h00	812	28	65	54	50	62	32	35	63	31	23.5	1.47	17	3.10
12h10	821	29	65	54	53	63	33	36	65	32	25	1.22	12	2.22
12h20	822	29	66	54	53	64	34	36	64	32	25	4.40	15	2.55
12h30	826	29	66	55	54	64	35	36	65	3	24	5.25	13	2.48
12h40	828	29	67	56	55	65	35	37	66	34	24	7.80	12	2.90
12h50	828	30	68	55	55	65	35	38	65	35	24	1.19	12	2.30
13h00	828	31	68	55	54	64	35	38	65	35	25.5	07	14	2.51
13h10	820	31	68	55	55	64	34	38	64	35	27.5	1.09	17	03
13h20	812	30	68	55	55	65	35	38	65	35	27	7.50	16	2.90
13h30	793	29	68	57	56	65	38	39	65	38	27	08	12	2.22
13h40	777	31	68	55	55	64	36	38	64	36	26	8.30	17	3.10
13h50	766	20	65	55	54	63	36	38	64	36	27	0.69	18	3.30
14h00	756	33	65	54	54	63	35	38	63	36	27	0.90	16	3.50
14h10	726	27	65	54	54	62	38	39	63	38	27	12.1	18	3.30
14h20	705	29	65	55	54	69	37	39	63	37	28	1.06	15	2.72

Les tables de 1à 7 pour le Deuxième cas ou

$l_{ch} = 7cm$
$P_{e-c} = 4cm$
$P_{e-r} = 20cm$

Tableau N°: -1-Date: 17/05/2008

	Ф	Pression			Th	erm	ocou	ples	[°C]			V	Dáhit	V de
Temps	[w/m ²]	[Pa]	n°1	n°2	n°3	n°4	n°5	n°6	n°7	n°8	Tamb	de vent	[m ³ /h]	L'air [m/s]
09h30	422	43	45	45	45	45	32	33	45	32	22	0.99	41	7.3
09h40	448	41	47	43	43	45	32	33	48	32	22	1.04	39	6.9
09h50	476	38	49	45	45	46	33	34	49	33	22	1.39	37	6.6
10h00	501	41	51	46	46	47	33	34	50	33	28	1.44	33	5.8
10h10	504	40	52	46	46	48	33	34	51	33	29	1.65	35	6.2
10h20	555	38	54	48	48	49	33	34	53	34	28	1.10	37	6.5
10h30	566	41	55	48	48	50	34	35	54	35	29	0.81	31	5.5
10h40	590	37	48	48	50	33	34	33	53	33	28	1.40	32	5.7
10h50	606	40	55	48	48	50	33	34	54	35	28	0.72	28	4.9
11h00	626	39	58	50	50	54	35	36	55	35	29	8.8	35	5.4
11h10	638	41	59	51	51	53	36	36	57	36	29	1.75	26	3.7
11h20	660	42	60	52	52	54	36	36	58	36	30	1.30	26	4.6
11h30	664	39	60	52	53	54	35	36	59	36	30	2.35	21	3.9
11h40	681	39	61	33	53	55	36	37	59	36	30	6.5	23	4.1
11h50	685	38	62	54	54	56	37	38	60	38	30	0.75	22	3.9
12h00	694	39	63	54	54	56	37	38	60	38	31	2.12	22	3.9
12h10	700	27	63	55	55	56	36	38	61	38	31	0.73	20	3.6
12h20	705	44	64	55	55	58	37	38	60	38	31	3.4	22	3.9
12h30	701	43	64	55	56	58	39	39	63	39	31	2.32	16	2.75
12h40	704	43	64	56	56	56	38	39	65	39	31	1.03	15	03
12h50	698	44	64	58	55	59	39	41	63	39	32	3.2	15	2.66
13h00	695	44	65	59	54	56	38	42	64	40	32	15.7	15	2.57
13h10	691	44	65	58	58	60	40	41	65	41	33	6.5	13	2.33
13h20	691	44	65	57	57	60	40	41	65	41	33	7.9	13	2.11
13h30	776	41	65	55	55	60	40	41	65	41	34	14.3	12	2.18
13h40	668	40	65	55	54	56	38	39	61	40	33	2.89	20	3.5
13h50	660	40	63	55	55	56	38	39	60	38	33	1.64	21	3.7
14h00	644	41	63	56	57	58	40	40	62	40	34	1.04	16	2.84
14h10	632	42	63	55	55	57	40	41	61	41	34	2.3	15	2.6
14h20	630	43	63	55	55	57	40	40	60	40	34	0.98	15	2.4
14h30	611	42	63	55	55	58	39	41	61	40	34	1.07	15	3.02

	Φ	Pression			Th	erm	ocouj	ples	[°C]			V	Déhit	V de
Temps	[w/m ²]	[Pa]	n°1	n°2	n°3	n°4	n°5	n°6	n°7	n°8	Tamb	de vent	[m ³ /h]	L'air [m/s]
09h30	421	20	43	47	46	50	32	34	44	34	27	0.35	32	5.6
09h40	436	21	48	47	46	49	33	34	48	34	27	2.54	28	4.9
09h50	466	21	50	48	47	51	33	34	50	34	27	1.17	23	5.3
10h00	484	21	53	50	48	52	34	35	51	35	26	3.7	28	4.9
10h10	503	22	55	51	50	55	35	36	54	35	28	1.75	24	4.2
10h20	531	19	57	53	52	57	35	36	56	36	27	1.16	20	3.6
10h30	544	19	60	55	54	57	35	37	57	36	29	6.7	21	3.8
10h40	568	17	60	55	54	58	35	37	57	36	30	1.57	24	4.2
10h50	586	18	63	56	55	58	36	37	58	37	30	0.70	22	4
11h00	660	19	63	58	55	60	36	37	59	37	30	4.8	21	3.7
11h10	619	20	64	59	58	63	37	39	62	38	31	9.5	17	2.99
11h20	631	20	65	60	58	51	38	40	61	39	31	7.12	17	3.1
11h30	634	20	65	60	60	63	38	40	63	39	31	1.04	15	6.66
11h40	647	19	66	61	60	64	38	40	62	39	31	1.12	16	2.9
11h50	636	20	68	62	59	64	39	39	63	39	31	4.6	14	2.45
12h00	684	22	67	59	55	60	37	38	59	37	31	7.4	16	2.9
12h10	663	22	66	58	56	59	38	39	62	39	31	2.71	16	3.3
12h20	664	21	66	60	59	60	36	39	60	39	31	4.4	20	3.5
12h30	656	21	65	60	59	60	39	40	60	40	32	4.3	18	3.3
12h40	614	22	65	60	58	60	39	40	60	40	31	6.3	18	2.9
12h50	614	21	65	60	58	60	39	40	60	40	31	7.45	19	3.1
13h00	565	22	65	60	55	60	39	40	60	40	32	31	20	3.5
13h10	555	22	64	58	57	60	38	39	59	39	32	14.6	18	3.2
13h20	520	18	61	55	54	45	38	38	56	38	32	10.9	18	3.6
13h30	492	19	61	55	54	45	37	38	54	38	32	16.8	19	3.5
13h40	483	19	60	56	54	54	38	39	55	38	33	4.9	19	3.4
13h50	480	19	60	56	54	45	37	38	55	38	33	2.7	19	3.4
14h00	468	20	60	54	53	45	37	38	55	38	33	4.2	24	4.2
14h10	424	20	60	54	53	66	39	39	55	38	33	1.84	22	3.9
14h20	417	19	60	55	54	60	38	40	56	38	33	06	22	04
14h30	473	22	60	54	55	65	38	39	56	38	34	2.75	21	4.4

Tableau N°: -2-Date: 18/05/2008

Tableau N°: -3-Date: 20/05/2008

	Ф	Pression			Th	erm	ocou	ples	[°C]			V	Déhit	V de
Temps	[w/m ²]	[Pa]	n°1	n°2	n°3	n°4	n°5	n°6	n°7	n°8	Tamb	de vent	[m ³ /h]	L'air [m/s]
09h40	500	18	37	43	45	48	30	31	39	30	22	0.29	28	4.9
09h50	563	20	50	47	48	50	30	31	48	30	22	1.5	25	4.5
10h00	520	21	53	48	49	50	30	30	50	30	23	1.94	24	4.2
10h10	611	19	55	49	50	53	30	30	52	30	23	1.03	24	4.2
10h20	590	19	58	50	51	53	30	31	53	30	23	7.6	21	3.8
10h30	642	20	60	51	52	55	30	30	54	30	23	2.30	21	3.7
10h40	630	21	61	51	51	53	29	35	53	29	23	2.98	22	3.9
10h50	526	21	60	50	48	50	27	35	50	27	23.5	1.6	22	04
11h00	570	19	55	46	46	48	28	28	49	28	23	10	22	04
11h10	458	21	55	45	45	47	28	28	48	26	24	1.90	26	4.6
11h20	746	20	60	51	54	56	32	33	55	33	25	0.5	20	3.6
11h30	778	22	65	57	60	62	35	35	53	35	25	3.3	12	2.16
11h40	728	20	67	58	59	62	33	35	63	35	26	2.66	12	2.21
11h50	858	07	72	61	63	66	36	38	68	37	26	32	06	1.7
12h00	315	20	66	53	52	60	31	32	59	31	26	7.6	18	3.2
12h10	930	21	65	55	60	62	35	36	63	36	26	1.20	11	1.8
12h20	513	21	61	50	50	61	30	31	64	31	26	0.65	20	3.6
12h30	560	21	60	50	51	60	31	30	64	31	26	1.20	16	2.1
12h40	916	24	62	54	58	60	32	35	60	35	26	1.44	14	2.48
12h50	908	24	61	54	57	61	34	36	62	33	27	1.31	14	2.5
13h00	921	24	67	59	61	64	36	37	66	37	27	0.26	05	02
13h10	460	23	63	50	50	60	32	33	56	33	28	02	10	2.5
13h20	636	23	60	50	52	54	33	34	55	34	28	3.6	18	3.3
13h30	663	22	63	54	55	54	53	34	58	34	28	0.81	17	3.1
13h40	617	22	60	50	50	54	32	33	54	33	28	1.25	17	3.1
13h50	600	22	56	49	50	60	33	33	53	32	28	2.05	17	3.2
14h00	626	21	59	52	50	56	32	33	52	32	27	0.93	20	3.6
14h10	660	22	60	50	50	51	32	33	54	32	27	1.27	18	3.3
14h20	362	22	60	50	50	51	32	33	54	32	27	0.30	20	3.5
14h30	743	23	60	51	51	52	32	33	55	35	28	1.17	20	3.2

Tableau N°: -4-Date: 31/05/2008

	Ф	Pression			Th	erm	ocou	ples	[°C]			V	Déhit	V de
Temps	• [w/m ²]	[Pa]	n°1	n°2	n°3	n°4	n°5	n°6	n°7	n°8	Tamb	de vent	[m ³ /h]	L'air [m/s]
10h30	642	64	40	51	52	55	60	60	38	57	30	2.9	32	5.6
10h40	650	64	40	51	51	56	59	60	38	58	30	1.7	32	5.6
10h50	630	64	40	51	52	55	60	62	38	58	30	1.31	32	5.7
11h00	540	64	40	49	49	55	57	58	38	55	31	0.96	33	5.9
11h10	397	57	40	48	48	53	35	55	44	53	31	1.08	38	6.6
11h20	535	57	40	48	48	52	55	55	37	53	32	1.45	37	6.5
11h30	570	65	40	48	48	52	55	55	37	53	34	04	37	6.6
11h40	476	65	42	52	52	60	62	62	38	59	34	0.80	23	4.4
11h50	534	64	40	45	45	50	53	53	38	51	34	4.6	36	6.4
12h00	573	59	40	48	48	53	55	55	38	53	33	1.93	35	6.2
12h10	753	65	43	52	53	60	62	63	40	59	34	1.58	20	3.6
12h20	730	67	43	53	53	60	61	62	40	59	32	2.31	20	3.6
12h30	730	66	44	54	54	62	64	63	40	60	34	1.28	16	2.75
12h40	693	65	45	55	55	63	65	65	41	61	35	0.89	15	2.93
12h50	774	62	45	55	55	64	66	66	42	63	35	1.75	18	5.6
13h00	755	60	45	45	55	63	65	66	42	63	36	3.8	16	4.1
13h10	745	58	46	55	55	63	65	65	42	63	36	2.38	12	2.19
13h20	744	63	46	55	55	63	65	66	42	62	36	1.04	12	2.19
13h30	432	64	44	49	49	53	55	55	40	53	36	1.35	36	6.3
13h40	727	57	44	50	50	57	57	57	41	55	35	3.1	15	2.6
13h50	288	63	44	47	47	50	53	52	40	50	35	2.88	27	4.8
14h00	283	63	42	46	46	50	52	51	40	50	35	3.01	43	7.6
14h10	338	61	40	45	45	47	47	47	40	46	37	1.89	22	8.9
14h20	520	63	42	47	48	50	51	51	41	49	37	0.95	45	08
14h30	534	63	42	47	48	51	52	53	40	50	37	1.36	45	7.9

Tableau N°: -5-Date: 02/06/2008

	Ф	Drossion			Th	erm	ocou	ples	[°C]			V	Dáhit	V de
Temps	Φ [w/m ²]	[Pa]	n°1	n°2	n°3	n°4	n°5	n°6	n°7	n°8	Tamb	de vent	[m ³ /h]	L'air [m/s]
10h00	492	37	35	45	42	52	52	52	34	48	28	0.77	34	06
10h10	500	37	35	45	47	52	52	53	34	49	28	1.71	32	5.7
10h20	530	34	37	48	49	56	56	57	34	55	30	1.59	25	4.5
10h30	558	36	39	50	51	59	59	60	35	58	38	0.50	18	3.3
10h40	580	36	40	50	53	60	61	62	32	60	31	0.29	14	2.60
10h50	608	37	41	51	54	63	63	64	35	61	32	1.97	11	2.04
11h00	611	36	41	51	55	64	64	65	35	62	32	1.11	12	2.12
11h10	624	37	41	51	53	63	64	64	35	61	32	1.70	11	02
11h20	643	37	42	52	55	64	65	66	38	63	33	1.03	07	1.38
11h30	648	34	43	53	55	65	65	66	38	65	32	1.70	07	1.24
11h40	664	35	44	54	56	66	67	68	36	65	32	1.23	05	1.01
11h50	663	38	44	54	56	66	67	68	36	65	32	1.29	05	0.96
12h00	667	37	44	54	55	66	67	67	35	64	31	1.33	05	0.93
12h10	672	39	45	55	58	68	69	70	40	68	33	1.63	03	0.45
12h20	670	47	46	56	59	69	69	70	40	68	33	0.60	02	0.40
12h30	669	47	46	56	59	68	69	70	40	68	34	0.75	05	0.89
12h40	672	47	46	56	59	68	69	70	41	68	34	2.51	03	0.50
12h50	674	48	46	56	60	69	69	71	41	69	34	3.86	03	0.86
13h00	675	47	48	58	60	68	69	70	42	66	36	0.55	02	0.37
13h10	630	47	49	60	62	70	70	71	44	68	36	0.75	01	0.28
13h20	632	47	50	61	62	70	71	70	44	69	36	0.38	02	0.38
13h30	631	47	49	59	69	70	72	71	43	69	36	0.55	02	0.40
13h40	630	47	49	57	60	69	70	71	44	67	36	0.88	03	1.80
13h50	580	45	48	55	59	65	58	59	35	65	32	2.85	11	1.90
14h00	638	46	47	55	58	65	67	68	35	65	32	1.25	13	2.40
14h10	604	45	48	55	58	65	66	67	44	65	33	0.86	05	0.97
14h20	601	45	48	56	58	65	66	67	45	65	33	0.95	05	1.02
14h30	597	45	48	55	59	65	67	67	45	65	33	1.13	05	1.82

Tableau N°: -6-Date: 03/06/2008

	Ф	Drossion			Th	erm	ocou	ples	[°C]			V	Dáhit	V de
Temps	Φ [w/m ²]	[Pa]	n°1	n°2	n°3	n°4	n°5	n°6	n°7	n°8	Tamb	de vent	[m ³ /h]	L'air [m/s]
10h10	527	16	32	49	50	58	50	54	30	50	27	0.7	10	1.9
10h20	572	10	34	54	54	64	62	65	32	60	28	1.05	08	1.58
10h30	581	11	35	55	55	65	64	66	31	61	28	0.97	10	1.9
10h40	591	12	36	56	56	67	66	69	32	64	28	1.09	06	1.07
10h50	625	18	38	59	59	70	70	71	32	66	28	1.54	02	0.45
11h00	626	19	38	60	60	70	70	73	32	66	28	0.92	02	047
11h10	661	19	40	60	60	72	73	74	32	68	29	1.99	01	0.25
11h20	666	19	40	60	60	71	72	73	34	68	29	1.72	01	0.20
11h30	624	20	40	62	62	72	74	75	34	72	29	304	01	0.20
11h40	694	20	41	62	62	74	75	74	36	72	29	3.3	02	0.50
11h50	703	19	41	62	62	74	75	77	35	72	29	1.16	02	0.43
12h00	717	21	44	63	63	73	75	76	38	72	31	1.1	03	0.56
12h10	693	20	44	62	62	73	75	76	38	71	31	2.3	03	0.60
12h20	389	19	43	60	60	69	72	72	36	66	32	1.50	03	0.80
12h30	567	21	44	61	61	70	74	75	37	68	32	02	02	0.42
12h40	617	21	48	60	62	71	73	75	37	69	32	1.4	03	0.54
12h50	725	22	47	67	67	79	81	83	41	76	32	1.17	02	0.50
13h00	737	22	47	66	66	79	81	83	40	76	32	1.08	03	0.66
13h10	734	18	47	67	68	80	81	83	39	74	32	1.20	05	0.90
13h20	733	17	46	67	67	79	80	81	38	74	32	1.08	04	0.88
13h30	716	16	47	62	64	76	77	79	39	70	31	1.99	03	0.76
13h40	711	18	45	62	64	75	77	39	71	31	0.87	03	0.59	0.59
13h50	708	18	45	62	64	74	75	75	38	71	31	0.92	03	0.45
14h00	680	18	45	64	64	75	76	75	40	70	31	0.7	04	0.86
14h10	676	19	46	64	64	74	75	76	39	69	31	0.61	09	2.06
14h20	679	18	46	64	64	74	75	76	39	70	32	1.22	11	2.06
14h30	674	18	46	65	65	74	75	76	41	70	32	1.36	07	1.35
Tableau N°: -7-Date: 04/06/2008

Temps	Ф [w/m ²]	Pression [Pa]	Thermocouples [°C]									V	Déhit	V de
			n°1	n°2	n°3	n°4	n°5	n°6	n°7	n°8	Tamb	de vent	[m ³ /h]	L'air [m/s]
10h00	380	06	39	51	56	62	43	47	32	44	22	2.31	16	2.90
10h10	370	07	39	52	56	64	45	51	32	46	22	1.71	16	2.91
10h20	600	08	37	55	59	70	58	58	32	55	28	1.65	08	1.70
10h30	622	08	37	56	59	65	61	61	31	55	28	2.55	10	1.74
10h40	440	09	38	58	60	68	62	63	32	56	28	01	09	1.57
10h50	685	09	39	61	64	73	67	68	32	61	29	3.11	11	1.66
11h00	694	09	39	61	64	74	67	68	32	62	29	2.58	11	1.86
11h10	432	09	39	59	60	68	64	64	33	68	29	1.47	09	1.66
11h20	237	07	38	51	52	57	57	56	32	51	29	1.26	10	1.78
11h30	244	09	37	50	51	55	55	54	32	50	29	1.67	12	2.32
11h40	720	09	42	65	69	86	71	74	35	66	30	2.32	03	0.42
11h50	739	09	42	65	70	81	72	74	35	66	31	0.33	04	0.66
12h00	307	11	42	62	65	73	70	69	35	43	31	0.65	06	1.11
12h10	305	11	42	60	61	67	67	65	35	60	31	0.5	05	01
12h20	270	11	40	56	55	60	61	602	34	55	30	1.53	12	2.17
12h30	388	10	40	53	56	62	60	60	35	55	31	0.53	10	0.78
12h40	602	10	41	54	55	61	60	60	34	55	32	0.5	11	01
12h50	166	10	37	46	46	50	52	50	34	46	30	0.26	18	3.2
13h00	156	10	37	46	46	52	50	50	34	46	30	1.67	20	2.6
13h10	185	08	35	45	45	48	47	47	34	47	30	1.89	21	37
13h20	196	09	35	44	44	48	48	47	34	47	30	2.08	21	3.8
13h30	140	09	35	43	44	46	47	46	34	44	30	1.17	20	3.4
13h40	120	08	35	41	42	44	45	44	33	42	30	1.98	21	3.7
13h50	178	09	34	39	40	43	42	43	33	41	30	1.24	18	3.3
14h00	187	09	34	39	41	44	43	43	33	41	30	0.96	20	3.5
14h10	176	09	35	42	43	46	45	45	34	43	30	0.80	21	3.8
14h20	181	09	35	42	43	46	45	45	34	43	30	0.67	22	04
14h30	177	08	36	44	43	48	45	45	35	43	30	1.64	20	3.6