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General Introduction 

 

In the recent years, Growing request for clean source of energy has increased the 

industry of solar cells for converting sun energy directly into electricity. Transparent and 

conductive oxides (TCO) are remarkable materials in many areas. The existence of their 

double property, electrical conductivity and transparency in the visible, makes them ideal 

candidates for Optoelectronics, photovoltaic or electrochromic windows. 

Research has been carried out around the world to make a cheaper and more efficient 

solar cell technology by employing new architectural designs and developing new materials to 

serve as light absorbers and charge carriers.  

In this context, advances have been made in the field of solar cells. Zinc oxide (ZnO) 

is a material belonging to the family of transparent oxides Conductors (TCO). The non-

toxicity and abundance on Earth of its components make it an ideal candidate as transparent 

electrical contact for solar cells in layers thin films of amorphous and / or microcrystalline 

silicon. 

The technique of spray pyrolysis deposition makes it possible to obtain layers of ZnO 

Rough and thus efficiently diffusing the light that passes through them. This high power 

Diffusing layers of ZnO makes it possible to lengthen the path that the light travels in the 

Solar cell, and thus to increase the optical absorption and the photogenerated current in the 

cell. 

The present education incorporates the recognition of critical spray parameters and 

redress issues concerning to these parameters to optimize the interpretation of the spray 

pyrolysis unit. thereby this study being for demonstrating the optumal parameters for 

obtaining of thin films of transparent conducting oxide for various applications, via two kinds 

of spray pyrolysis method which are pneumatic spray pyrolysis and ultrasonic spray pyrolysi 

Worth knowing to indicate that transparent conductive Oxides (TCO) thin films are used 

as a window material in the solar cell these days. Its increased stability in the reduced 

ambient, less expensive and more abundance make it popular among the other TCO’s. It is the 

aim of this work to obtain a significantly low resistive ZnO doped thin film with good 

transparency. Detailed electrical and materials studies is carried out on the film in order to 
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expand knowledge and understanding, where The work  reported  in  this  thesis  sets  out  to  

answer  three  questions : 

- What are the apropriate conditions for synthesis thin films via Spray Pyrolysis and 

pneumatic spray pyrolysis? 

- Does the relationship between the deposition pressure and the solution flow rate be 

strong, and what is optimum point for the best properties? 

- What is the best doping rate of fluorine and aluminium concerning zinc oxide thin 

films and what are their affected on the electrical properties? 

This thesis consist of four chapters ; where the first chapter presents a review about the 

general properties of transparent conductive oxides (TCO's)and zinc oxide and their doping 

trends. 

The second chapter titled by Realization and characterization Of thin films, where we 

bring a detail informations about Spray pyrolysis system also the Empirical conditions 

occured in our laboratory, then we listed the characterization methods which have used for  

Microstructural, optical, and electrical measerments. 

In the third chapter which is titled by results and discussions, our study were about the 

pneumatic spray pyrolysis where we devided it into two sections; the first on the impact of 

solution flow rate on the whole properties of zno thin films, the second section was about the 

effect of the deposition pressure on the structural, optical and electrical properties, and at the 

end we indicate the nature of relation between the both parameters.  

Chapter  four  presents  a  description  of  the  experimental  ultrasonic spray  pyrolysis  

and  its  method  of use, where the investigations of ZnO thin films were into two parts, the 

first was about the substrate temperature, where We studied the influence of substrate 

temperature  on the properties of the zinc oxide thin films, we carried out a serie from 250 to 

500 
o
C when the whole parameters are fixed  all samples have characterized on the optical, 

structural, and electrical, the second part to carried out the effect of aluminum and flourine 

doping on the properties of zinc oxide thin films.    

Finally we will conclude our work by a general conclusion including details results of 

characterization of zinc oxide thin films which we have found through our experimental work 

and their behavior with a five factors which are the solution flow rate, deposition air pressure, 

substrate temperature, aluminum and fluorine doping concentration. 
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I.1.Transparent conducting oxides  

Transparent conducting oxides (TCOs) are a specific category of materials that can be 

electrically conducting and optically transparent and, as such, are a critical component in 

almost all thin-film photovoltaic devices. TCOs are very useful materials to transparent 

optoelectronics because they have unique features of optical properties in the visible light 

region such as the transparency over ~ 85%  and optical band gap greater than 3 eV and 

controllable electrical conductivity such as carrier concentrations of at least 10
20

 cm
-3

 and 

resistivity of about 10
-4

 Ω.cm [1]. Notwithstanding their extraordinarily wide controllable 

conductivity range including that of semiconductor behavior, their applications are limited to 

transparent electrodes ,TCO's consists of a group of materials that can be thought of as 

‘conjugate property materials’ in which one property, [in this case conductivity], is strongly 

coupled to a second property, namely, the extinction coefficient, Their resistivity could be as 

low as 10
-4 

Ω.cm, and their extinction coefficient k in the optical visible range (VIS) could be 

lower than 0.0001, owing to their wide optical band gap (Eg) that could be greater than 3 eV 

[2].The challenge for achieving materials that are both electrically conducting and optically 

transparent is to understand the fundamental material structure/property relationships that 

control these properties so that they may be decoupled such that the material retains 

transparency while becoming electrically conductive; furthere, (TCO) are binary or ternary 

compounds, containing one or two metallic elements.  

The most widely studied  TCO semiconductors are impurity-doped ZnO, In2O3, SnO2 

and CdO, as well as the ternary compounds Zn2SnO4, ZnSnO3, Zn2In2O5, Zn3In2O6, In2SnO4, 

CdSnO3, andmulti-component oxides consisting of combinations of ZnO,In2O3 andSnO2 [3]. 

Later, it was recognized that thin films of ZnO, SnO2, In2O3 and their alloys were also TCOs. 

Doping these oxides resulted in improved electrical conductivity without degrading their 

optical transmission. Tin doped  In2O3 (ITO), Al doped ZnO (AZO)  and antimony or fluorine 

doped SnO2 (ATO and FTO), are among the most utilized TCO thin films in modern 

technology. In particular, ZnO is used extensively.  

The actual and potential applications of TCO thin films include: transparent electrodes 

for flat panel displays, transparent electrodes for photovoltaic cells, low emissivity windows, 

window defrosters, transparent thin films transistors, light emitting diodes, and semiconductor 

lasers. 
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I.2.Trends in the development of TCO materials 

low resistivity and low optical absorption are always significant,when the 

development of new TCO materials is mostly dictated by the requirements of specific 

applications, basically, The most widely used for manufacturing TCO films have been made 

using indium or tin based oxides[4]. Indium is in limited supply and relatively expensive, and 

the price of tin has risen rapidly in the past few years [5]. Whereas, Tin doped Indium oxide 

(ITO) is the most commonly produced TCO followed by fluorine doped tin oxide (FTO) [6]. 

Thus, there is a need to find alternative materials that can be employed in optoelectronic 

devices. However, Zinc oxide films have been recognised as suitable alternatives based on the 

low cost, greater earth abundance and comparable optoelectronic properties. As shown in 

Table 1.1. The master strategy dopes known binary Transparent Conductive Oxides with 

other elements, which can increase the density of conducting electrons, more than 20 different 

doped binary TCOs were produced and characterized,  of which ITO was preferred, while 

AZO , GZO and AZO come close to it in their electrical and optical performance. Doping 

with low metallic ion concentration generates shallow donor levels, forming a carrier 

population at room temperature. for example in FZO, fluorine is known to improve electrical 

conductivity.  Fluorine is incorporated into the lattice by substituting an O
2-

 site with F
-
, 

where  O
2- 

: 1.24 Å; F
- 
: 1.17 Å , resulting in one more free electron making fluorine a suitable 

dopant for n-type, The concentration of  F
-
 dopant ions should not exceed an upper limit, 

which is studied in part two chapter III, as an increase in carrier scattering by F ions led to a 

decrease in the conductivity [7]. Similarly, aluminum is often used for intentional n-type 

doping of ZnO, but other group III impurities, such as Ga and In, and group IV, such as Sn 

and Ge, also work. Doping by Al produced the relatively high conductivity AZO [8]. Doping 

with non-metallic elements is also common, e.g., ZnO:Ge (GZO), SnO2:F (FTO) and SnO2:Sb 

(ATO). lately, AZO films with resistivity  ~8.5.10
-5 

Ω.cm was reported by Agura et al [9]. 

FZO, with lower resistivity    ~10
-5

 Ω.cm, was also reported. This value is approaching to the 

lowest resistivity of ITO of 7.7.10
-5

 Ω.cm. 
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Table 1.1 : TCO Compounds and Dopants [10]  

TCO Dopants 

ZnO  Al, Ga, B, In, Y, Sc, F, V, Si, 

Ge,Ti, Zr, Hf, Mg, As, H  

SnO2 Sb, F, As, Nb, Ta 

In2O3 Sn, Mo,Ta, W, Zr, F, Ge, Nb 

Hf, Mg 

CdO In, Sn 

GaInO3 Sn, Ge 

CdSb2O3 Y 

 

I.3.Zinc oxide (ZnO) Properties  

I.3.1.Basic informations 

Zinc oxide is an inorganic compound with ZnO formula. Where, commonly appears as 

a white powder, almost insoluble in water, basic properties of Zinc Oxide are tabulated in 

Table 1.2. The powder is widely used as an additive into many materials such as ceramics, 

glass, cement, rubber (car tyres), lubricants, paints ointments, adhesives, sealants, pigments, 

foods (source of Zn nutrient), batteries, ferrites, fire retardants, etc. ZnO is present in the 

Earth crust as a mineral zincite; however, most ZnO used commercially is produced 

synthetically. 

In materials science, Zinc oxide is an attractive material for applications in electronics, 

acoustics, photonics, and sensing. In optical emitters, its high exciton binding energy (60 

meV) gives ZnO an edge over other semiconductors such as GaN if reproducible and reliable 

p-type doping in ZnO were to be achieved. ZnO is a semiconductor named a II-VI due to the 

zinc and oxygen belong to the second and sixth groups of the periodic table, respectively. 

ZnO has various favorable properties: high electron mobility, wide bandgap, good 

transparency, strong roomtemperature luminescence, etc. Those properties are already used in 

emerging applications for transparent electrodes in liquid crystal displays and in energy-

saving or heat-protecting windows, and On the electronic side, zinc oxide holds many 

potential in transparent thin film transistors due to its high optical transmissivity and high 

conductivity. Among the other promising areas of application for ZnO are acoustic wave 

devices, due to large electromechanical coupling in ZnO, and devices utilizing 

nanowires/nanorods such as biosensors and gas sensors and solar cells. 
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Table 1.2 : Properties of Zinc Oxide  

Properties 

     Molecular formula ZnO 

     Molar mass 81.408 g/mol 

     Appearance White solid 

     Odor odorless 

     Density 5.606 g/cm
3
 

     Melting point 1975 °C (decomposes) 

     Boiling point 2360 °C 

     Solubility in water 0.16 mg/100 mL (30 °C) 

     Band gap 3.3 eV (direct) 

     Refractive index (nD) 2.0041 

 

I.3.2.Structural Properties 

Zinc oxide is a wide-bandgap II-VI compound semiconductor. It may have crystal 

structures of three forms: the rarely observed cubic rocksalt, cubic zincblende and hexagonal 

wurtzite. Which are illustrated in figure1.1, a, b and c, respectively. It has been theoretically 

found that the wurtzite structure is energetically a more favorable structure of ZnO compared 

to rock salt and zinc blende structures. The zinc blende ZnO structure can be stabilized only 

by the growth on cubic substrates, the rocksalt NaCl-type structure is only observed at 

relatively high pressures (~10 GPa).  

 

 

Figure 1.1 : Crystal structures of ZnO (a) cubic rocksalt , (b) cubic zinc blende  and 

(c) Hexagonal wurtzite, O atoms are shown as white large spheres, Zn atoms are small black 

spheres [11]. 
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Figure 1.2 The wurtzite lattice of ZnO: small circles represent zinc atoms, whereas large 

circles depict oxygen atoms. The tetrahedral coordination of Zn–O is shown; it has a polar 

hexagonal axis, the c-axis, chosen to be parallel to Z. 

The hexagonal lattice is characterized by two interconnecting sublattices of Zn
2+

 and 

O
2-

, in such a way that each Zn
2+

 ion is surrounded by a tetrahedron of O
2-

 ions, and vice-

versa. The tetrahedral coordination in ZnO results in non-central symmetric structure which 

subsequently results in strong piezoelectric, pyroelectric effects and spontaneous polarization 

which is also a key factor in crystal growth, etching and defect generation [12,13]. 

In the hexagonal wurtzite structure. It has a polar hexagonal axis, the c-axis, chosen to 

be parallel to Z (0001) .The zinc atoms locate almost in the position of hexagonal close 

packing, as shown in following figure1.2: 

 

 

In the wurtzite structure each sublattice includes four atoms per unit cell and every 

atom of one kind (group II) is surrounded by four atoms of the other kind (group VI), or vice 

versa, which are coordinated at the edges of a tetrahedron. In a real ZnO crystal, where the 

wurtzite structure may deviates from the ideal arrangement, and by varying the value 

u parameter which is defined as the length of the bond parallel to the c axis, in units of c; or 

the c∕a ratio [14]. The following formula describes a strong correlation exists beween the c/a 

ratio and u parameter: 

 

 = (1/3) (a/c)
 2
 +14          (1.1) 

 

z 

P 
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It is obviously that, when the (c ∕ a) ratio decreases, the   parameter increases. In other 

context, and through the deformation of tetrahedral angles due to long-range polar 

interactions, those four tetrahedral distances remain almost constant. 

I.3.3.Optical Properties 

The important optical properties of ZnO thin film are: 

                 Transmission,   

                 Reflection,   

                 Absorption,    

                 Refraction Index,   

                 Extinction Coefficient,   

                 Band Gap,    

                 Geometry 

Geometry is an extrinsic property which encompasses the physical attributes of the 

film, including thickness, uniformity and surface roughness.  

Transmission, reflection and absorption are intrinsic properties of the film dependant 

on the chemical composition; they are determined by the resultant two properties refractive 

index, extinction, band gap and geometry. The properties of ZnO that differentiate it from 

other semiconductors or oxides or render it useful in many applications: 

 Large exciton binding energy: ZnO has some significant advantages in its large free 

exciton binding energy (60 meV compared to 21-25 meV for GaN) [15, 16], that 

allows for efficient excitonic emission in ZnO can persist at room temperature and 

higher [15].  

            Since the oscillator strength of excitons is typically much larger than that of direct  

            electron–hole transitions in direct gap semiconductors [17], the large exciton binding 

            energy makes ZnO a promising material for optical devices that are based on excitonic 

            effects. 

 Direct and wide band gap : ZnO has a band gap of 3.44 eV at low temperatures and 

3.37 eV at room temperature [18], which corresponds to emission in the UV region. 

This band gap is very close to that of GaN (3.39eV), and GaN has been the subject of 

much research over the past years, even being incorporated into the recent Blu-Ray 

drives. For comparison, the respective values for wurtzite GaN are 3.50 eV and 3.44 

eV [19]. this enables applications in optoelectronics in the blue UV region, including 

laser diodes, light-emitting diodes and photodetectors [20,21]. Optically pumped 
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lasing has been reported in ZnO platelets [15], thin films [16], ZnO nanowires [22] 

and clusters consisting of ZnO nanocrystals [23]. Recently a many of reports on p–n 

homojunctions have appeared [24,25,26], but stability and reproducibility have not 

been established. 

 

I.3.4.Electrical properties 

Many reports have made alot of studies on the electrical properties of Zinc oxides 

films for understanding the conduction behavior, due to two reasons. First, n and μ cannot be 

independently increased for practical TCOs with relatively high carrier concentrations. At 

high electron density, carrier transport is limited primarily by ionized impurity scattering i.e., 

the Coulomb interactions between electrons and the dopants. Higher doping concentration 

reduces carrier mobility to a degree so that the conductivity cannot be increased.  

Most Zinc oxide has n-type character, even in the absence of intended doping. Native 

defects such as oxygen vacancies or zinc interstitials are often assumed to be the origin of 

this, an alternative explanation has been proposed, based on theoretical calculations, that 

unintentional substitutional hydrogen impurities are responsible.  

Controllable n-type doping is easily achieved by substituting Zn with group-III 

elements Al, Ga, In ; then major of reports in ZnO films, deposited using various methods, 

resistivity and mobility were nearly independent of the deposition method and limited to 

about 2×10
-4

 Ωcm and 50 cm
2
/Vs, respectively [27,28]. Furthermore, it is difficult to be sure 

about ZnO in p-type, this problem originates from low solubility of p-type dopants and their 

compensation by abundant n-type impurities, and it is pertinent not only to ZnO, but also to 

similar compounds GaN and ZnSe. Measurement of p-type in "intrinsically" n-type material is 

also not easy because inhomogeneity results in spurious signals. However such high levels of 

p-conductivity are questionable and have not been experimentally verified [29].   

Moreover it decreases the optical transmission at the near-infrared edge. With the 

increase in dopant concentration, the resistivity reaches a lower limit, beyond which it cannot 

decrease.  
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I.4.Review of doped zinc oxide thin films  

Many types of dopants have been used (Al [30], In [31], As [32], S [33], Sn [34], Mn 

[35], etc.) for many important applications in ZnO thin films;  these dopant elements offer a 

manner  to regulate the electrical, optical, and magnetic properties, which are make Doped 

ZnO films are promising candidates as conductors with high transparency in the visible light 

range and high conductivity. Even though the standard transparent conductors in industry are 

ITO and FTO, there is huge interest in finding more stable and cheaper alternatives.  

In Table 1.3  some doped films are summarized, and their transmittance in the visible 

range, and lowest resistivity values too, There are a Typical dopants that have been used to 

increase the conductivity of ZnO are group III (B, Al, In, Ga) and group IV (Pb, Sn) elements 

of the periodic table.  

 

Table 1.3 :  Summary of different doped ZnO thin films as transparent conductors. 

Dopant Methods Transmittance in 

visible range 

Lowest 

resistivity 

Al 

Pulsed laser deposition (PLD) 

[ 36,37]  

∼90% ∼10
−4

Ωcm Radio-frequency (RF) 

magnetron sputtering [38] 

Solution processed [39] 

Ga 
PLD [40] 

∼85% ∼10
−3

Ωcm 
Solution processed [41] 

In Solution processed [42] ∼80% ∼20   Ωcm 

N 

Plasma-assisted molecular 

beam epitaxy [43] 
∼80% ∼10

−2
 Ωcm 

RF magnetron sputtering [44] 

Solution processed [45] 

 

I.5.Major applications of zinc oxide thin films 

It might come as a shock but over 50% of that Zinc Oxide used is in the rubber 

industry. ZnO along with stearic acid is used in the vulcanization of rubber to produce such 

things as tires, shoe soles, and even hockey pucks.  

A very important use is that Zinc Oxide is widely used as the buffer layer in CIGS 

(Copper Indium Gallium Selenide) solar cells. Some current experiments are focusing on the 

effect of the thickness of ZnO on maximum power output for the cells. 

http://www.sciencedirect.com/science/article/pii/S1369702107700780#bib20
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Another main use in concrete manufacture, the addition of Zinc Oxide aids the 

processing of concrete and also improves water resistance.  

Zinc Oxide also has antibacterial and deodorizing peroperties. For this reason it is 

employed in medical applications such as in baby powder and creams to treat conditions such 

as diaper rash, other skin irritations and even dandruff.  Due to its reflective properties it is 

also used in sunblocks and can often be seen on the nose and lips of lifeguards at the beach. 

I.6.Thin Film Deposition Techniques 

The thin film deposition can be broadly classified into two major processes: chemical 

deposition and physical deposition processes [46]. The chemical methods comprise gas phase 

deposition methods and solution techniques. The gas phase methods which are employ 

precursor solutions as: chemical vapour deposition (CVD) [47,48] and atomic layer epitaxy 

(ALE) [49], while spray pyrolysis [50], sol-gel [51], spin-coating [51] and dip-coating [51]. 

The physical methods include physical vapour deposition (PVD), laser ablation, molecular 

beam epitaxy, and sputtering.  

For selecting of the deposition method there are many factors should be taking into account: 

 Nature of the substrate on which the film is to be deposited 

 Material to be deposited. 

 Thickness of the film required. 

 Structure of the film expected. 

 Application of the thin film. 

Careful selection of the appropriate deposition technique is essential for control over the 

properties of the resultant films, the following figure 1.3 shows the classification of methods :  

 

 

 

 

 

 

 



Chapter I Conductive Transparent Oxides             

13 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: The classification of deposition methods. 

 

Thin film deposition techniques 

Chemical methods 

Radio frequency (RF) heating 

Resistive heating 

Electron beam evaporation 

Arc evaporation 

Magnetron sputtering 

 
Triode sputtering 

Getter sputtering 

Radio frequency (RF) sputtering 

Face target sputtering 

Ion beam sputtering 

Glow discharge DC sputtering 

 
AC sputtering 

Physical methods 

Sputtering  Vacuum evaporation 

deposition techniques 

Flash evaporation 

Spray pyrolysis 

Chemical bath deposition 

Liquid phase epitaxy 

Electrodeposition 

 Successive ionic layer adsorption 

Anodization 

Eletroless deposition 

Sol-gel process 

Liquid phase 

Chemical vapor deposition 

Laser chemical vapor deposition 

Photochemical vapor deposition 

Metal –organo chemical vapor deposition 

Gas phase 

Plasma-enhanced chemical vapor deposition 
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I.6.1.Physical vapor deposition 

Physical Vapour deposition techniques are the range of techniques used to deposit thin 

films onto a substrate using purely physical processes, PVD processes are environmentally 

friendly vacuum deposition techniques consisting of three fundamental steps Figure 1.4: 

 Vaporization of the material from a solid source assisted by high temperature vacuum or 

gaseous plasma. 

 Transportation of the vapor in vacuum or partial vacuum to the substrate surface. 

 Condensation onto the substrate to generate thin films. 

 

 

Figure 1.4: Physical vapour deposition method.  

 

The choice of deposition PVD techniques used in production are basically two in nature: 

 Thermal evaporation by resistively heating or by using an electron-beam heating 

 Sputtering, a non-thermal process 

And may depend more on what technology is available for the specific material at the 

time: 

The two most common PVD processes are thermal evaporation and sputtering. Sputtering 

is a plasma-assisted technique that creates a vapor from the source target through 

bombardment with accelerated gaseous ions (typically Argon). Thermal evaporation is a 

deposition technique that relies on vaporization of source material by heating the material 

using appropriate methods in vacuum.  
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 Evaporation condensation of metal vapor in high vacuum to deposit a thin film on 

wafer.The vacuum is required to allow the molecules to evaporate freely in the chamber, 

and they subsequently condense on all surfaces. This principle is the same for all 

evaporation technologies, only the method used to the heat (evaporate) the source material 

differs. There are two popular evaporation technologies: e-beam evaporation and resistive 

evaporation [52].  

 Sputtering   is a process that uses plasma and acceliration of ion towards a surface of solid 

target material. Material sputtered from the target and deposited on wafer the atoms are 

deposited to form an extremely thin coating on the surface of the substrates. It is a 

technique often used to deposit thin films of semiconductors, CDs, disk drives, and optical 

devices. Extensively used Si technology moderate step coverage. Sputtered films exhibit 

excellent uniformity, density, purity and adhesion. It is possible to produce alloys of 

precise composition with conventional sputtering, or oxides, nitrites and other compounds 

by reactive sputtering. 

     Process of sputtering: 

 Ions of inert gas are accelerating into target. 

 Target is eroded by the ions via energy transfer and is ejected in the form of neutral 

particles.        

 Neutral particles from the target traverse and are deposited as a thin film onto the 

surface     of the substrates. 

 

I.6.2.Pulsed laser deposition (PLD) 

With the pulsed laser deposition (PLD) method, thin films are prepared by the ablation 

of one or more targets illuminated by a focused pulsed-laser beam (see figure 1.5).  

It is a physical vapor deposition process, carried out in a vacuum system, which shares some 

process characteristics common with molecular beam epitaxy and some with sputter 

deposition. 

In laser ablation, each ablation pulse will typically provide material sufficient for the 

deposition of only a submonolayer of the desired phase. The amount of film growth per laser 

pulse will depend on many experimental parameters, which have a strong influence on film 

properties. Laser related parameters such as laser fluence, including target–substrate 

separation; background gas pressure and laser spot size, and laser energy density. Under 

typical conditions, the deposition rate per laser pulse can range from 0.001 to 1A˚ per pulse 

[53]. 
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Figure 1.5: The pulsed laser deposition (PLD) method. 

 

Another potential issue with PLD is the ejection of micron-size particles in the 

ablation process. This is often observed when the penetration depth of the laser pulse into the 

target material is large. If these particles are deposited onto the substrate, they present obvious 

problems in the formation of multilayer device structures.  

The use of highly dense ablation targets and ablation wavelengths that are strongly 

absorbed by the target tends to reduce or eliminate particle formation. Mechanical techniques 

have been developed to reduce particle density in the event that target density and laser 

wavelength optimization fails to eliminate particulates [54]. 

The advantages of PLD are the simplicity and versatility of the experiments. By using 

high-power pulsed UV-lasers and a vacuum chamber, a variety of stoichiometric oxide films 

can be grown in a reactive oxygen background gas without the need for further processing. 

 

I.6.3.Chemical vapor deposition (CVD) 

CVD is one of the important techniques for producing thin film of semiconductor 

material, the chemical vapor deposition technique involves reaction of one or more gaseous 

species reacting on a solid surface (substrate), typically, a material in its solid form is 

vaporized and diluted with an organic reactant, which will assist the material’s surface 

mobility. The chemical combination is transported to the heated surface where it decomposes, 



Chapter I Conductive Transparent Oxides             

17 
 

leaving the material on the heated surface to migrate to the growing film as shown in figure 

1.6. Nature of the decomposition process varies according to the composition of the volatile 

transporting species. The decomposition condition should be such that the reaction occurs 

only at or near the substrate surface and not in the gaseous state to avoid formation of the 

powdery deposits which may result in haziness in the films, this process requires volatile and 

stable precursors. The precursors usable for CVD can be categorized as halides, hydrides,  

metal organic compounds,  alkyls,  alkoxides, carbonyls, dialylimides,  and diketonates, to 

name a few. 

The chemical vapor deposition used to deposit thin film of solid material in various 

applications like fabrications of novel powder, fiber, preforms of ceramic composites, 

coatings for corrosion and wear resistance, and synthetic diamond. It is the most widely used 

technique in IC microfabrication for the oxide and nitride layers of the wafers.  

 

 

 

Figure 1.6: Steps of chemical vapor deposition technique [55]. 

 

I.6.4.Wet chemical Sol-gel 

Including, amongst others, chemical bath techniques and Sol–Gel techniques, which 

are a wet chemical process that involve the use of a chemical precursor solution, The sol-gel 

process, as the name implies, involves the evolution of inorganic networks through the 

formation of a colloidal suspension (sol) and gelation of the sol to form a network in a 

continuous liquid phase (gel) [56]. 
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The precursors for synthesizing these colloids consist of a metal or metalloid element 

surrounded by various reactive ligands. Metal alkoxides are most popular because they react 

readily with water. When monolithic inorganic gels were formed at low temperatures and 

converted to glasses without a high temperature melting process [57]. Through this process, 

homogeneous inorganic oxide materials with desirable properties of hardness, optical 

transparency, chemical durability, tailored porosity, and thermal resistance, can be produced 

at room temperatures, as opposed to the much higher melting temperatures required in the 

production of conventional inorganic glasses [57,58].  

The specific uses of these sol-gel produced glasses and ceramics are derived from the 

various material shapes generated in the gel state, i.e., monoliths, films, fibers, and monosized 

powders. Many specific applications include optics, protective and porous films, optical 

coatings, window insulators, dielectric and electronic coatings, high temperature 

superconductors, reinforcement fibers, fillers, and catalysts [58].  

 Dip Coating [59] : In a dip-coating process, a substrate is dipped into a liquid coating 

solution and then is dragging from the solution with controlling withdrawal speed as 

discribed in figure 1.7. Generally the thickness increases at faster dragging speed. The 

measurement of thickness by the equilibrium of forces at the stagnation point on the liquid 

surface. The thickness is primarily affected by fluid viscosity, fluid density, and surface 

tension. 

 

 

 

Figure 1.7: Schematic model describing the film formation during the dip-coeting process. 

 

Therefore, a faster dragging speed pulls more fluid up onto the substrate before it has time 

to flow back down into the solution, should be occur. While excellent for producing high-
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quality, uniform coatings, requires precise control and a clean environment. The applied 

coating may remain wet for several minutes until the solvent evaporates. This process can be 

accelerated by heated drying 

  Spin Coating [60]- The precursor is dropped onto the centre of a spinning substrate which 

then spreads out quickly and evaporates the solvent,see figure 1.8. The Spin coating an 

exemplary process includes depositing a small puddle of a solution onto the center of a 

substrate and then spinning the substrate at high speed (typically around 3000 rpm). 

Centripetal acceleration will cause most of the resin to spread to, and eventually off, the 

edge of the substrate, leaving a thin film of material on the surface.  

 

 

 

Figure 1.8: Schematic model describing the film formation during the sping-coating process. 

 

Final film thickness and other properties will depend on the nature of the fluid material 

(viscosity, drying rate, percent solids, surface tension, etc.) and the parameters chosen for the 

spin process. Factors such as final rotation speed, acceleration, and fume exhaust affect the 

properties of the coated films. One of the most important factors in spin coating is 

repeatability, as subtle variations in the parameters that define a spin-coating process can 

result in drastic variations in the coated film. 
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I.6.5.Spray Pyrolysis  

I.6.5.1.Working principle  

Spray Pyrolysis (SP) This coating technique was the predecessor of the chemical 

vapor deposition (CVD) techniques [61]. The coating is applied at elevated temperatures by 

spraying droplets of liquid precursors onto hot substrates. The method is considered a 

modification of vapour deposition, again using a fine spray of precursor solution (generated 

by a spray nozzle using compressed gas) which delivers the precursor metal organic 

molecules to the substrate surface for thermal reaction and film formation figure 1.9 shows 

the schematic of spray pyrolysis process. 

 

 

 

Figure 1.9: General schematic of a spray pyrolysis deposition process [62]. 

  

The droplet size depends on the process of atomization; aerosol and ultrasonic 

spraying produce larger and smaller initial droplets, respectively.  

Spray pyrolysis is based on the pyrolytic decomposition of a metallic compound 

dissolved in a liquid mixture when it is sprayed onto a preheated substrate. In CSP, doping 

process is rather simple; just by varying the concentration of the dopant in the solution; one 

can vary the percentage of doping in the sample. A major drawback of this technique is that it 

cannot be used for the deposition of very thin films. Another shortcoming lies in the selection 

of substrate since it is a high temperature process. Effects of substrate temperature on the 

structural, electrical and optical properties of ZnO films, prepared using CSP technique had 

been studied [63]. 
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The major advantages of spray pyrolysis are that the coatings are more durable than 

vacuum deposited coatings, the variety of precursors could be used, and the process can be 

employed at lower cost than CVD or vacuum deposition. 

The disadvantage is that the coatings are not uniform in thickness. CVD consists of 

vaporizing the precursors and directing the resultant gases onto a hot substrate. 

 

I.6.5.2.Advantages of Spray Pyrolysis Technique 

The main advantages of spray pyrolysis over other similar techniques are: 

 Spray pyrolysis is cost effective and can be easily performed. 

 Substrates with complex geometries can be coated. 

 Spray pyrolysis deposition leads to relatively uniform and high quality coatings. 

 No high temperatures are required during processing (up to ~ 500 °C). 

 Films deposited by spray pyrolysis are reproducible, giving it potential for mass 

production. 

The major interest in spray pyrolysis is due to its low cost, while it is increasingly being 

used for some commercial processes, such as the deposition of a transparent layer on 

glass [64], the deposition of a SnO2 layer for gas sensor applications [65], the deposition of a 

YSZ layer for solar cell applications [66], anodes for lithium-ion batteries [67], and 

optoelectronic devices [68]. 

  The composition of the film can be adjusted by changing the precursor solutions. The 

method used for the deposition of dense films, porous films, and for powder production. Even 

multi-layered films can be easily prepared using this versatile technique, Spray pyrolysis has 

been used for several decades in the glass industry [69] and in solar cell production to deposit 

electrically conducting electrodes [70].  

One of the major advantages of spray pyrolysis over the vapor-phase routes is the 

possibility of producing multicomponent particles with exact desirable stoichiometry in the 

final product.  
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II.1.Introduction  

Spray pyrolysis usually involves atomizing a precursor solution to an aerosol, which is 

then directed to a heated substrate where a thin film is formed. This thin film deposition 

method is simple, cost-effective, and a wide choice of precursors can be used. The 

composition of the film can be easily controlled by the precursor solution. Both, dense and 

porous structures can be deposited by spray pyrolysis, even on large substrates when scaling 

up the equipment. Different types of atomizers such as air blast, ultrasonic, or electrostatic can 

be part of spray pyrolysis equipment. The technique of atomization determines the droplet 

size and size distribution, the rate of atomization, and the spray angle, as we mention in 

chapter I.  

Depend on the available equipment in our laboratory of thin solid films and 

semicoductor of university of biskra, which is able to supply suitable conditions for synthesis 

via Spray Pyrolysis (SP) and further treatments of the desired product. The present work is an 

attempt to summarize the basic types of equipment, and conditions for obtaining of thin films 

for various applications, via two kinds of spray pyrolysis method which are pneumatic spray 

pyrolysis and ultrasonic spray pyrolysis.  
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II.2.Decomposition of precursor 

  Thin film deposition using spray pyrolysis can be divided into four main steps: 

atomization of the precursor solution, transportation of the resultant aerosol and 

decomposition of the precursor on the substrate. However, four types of processes that may 

occur during deposition are shown in Figure 2.1; in the first process, the droplet reaches the 

substrate and thereby the solvent evaporates leaving a precipitate which is then decomposition 

in the solid state.  

In the second process, the solvent evaporates before the droplet reaches the surface 

and the precipitate stubs upon the substrate where decomposition occurs. In the third process, 

when the droplet approaches the substrate, the solvent vaporizes, then the solid melts and 

sublimes and the vapor distributes to the substrate to undergo a heterogeneous reaction. In the 

fourth process, at high temperatures, the solution vaporizes before it reaches the substrate and 

the chemical reaction occurs in the vapor phase [1]. 

 

 

 

 

Figure 2.1: Schematic depicting different deposition processes that occur as the nozzle-to-

substrate distance and deposition temperature change [2]. 
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II.3.Spray pyrolysis system set-up 

The schematic experimental set-up of our spray pyrolysis system which is built in our 

(( laboratory of material and physics of semiconductors and thin films )) in university of 

biskra, is shown below in figure 2.4, it consists of spray nozzle with two types of nozzle 

which are a pneumatic and ultrasonic (see figure 2.3), substrate heater, automatic temperature 

control unit, air compressor, pressure regulator, thermocoupl, stepper motor with controller 

and power supply, the heater is stainless metal block furnace electrically controlled by an 

automatic temperature controller unit to attain the required substrate temperature to an 

accuracy of ± 5 
0
C, the resulting temperature on the surface of the substrate is measured with 

a chromel-alumel thermocouple, hazardous fumes evolved during the decomposition of the 

precursor are driven out through an exhaut system attached to the spray pyrolysis unit, the 

spray nozzle in our system, having  two diffrent types ultrasonic and pneumatic, the spray 

nozzle is fixed at an appropriate distance from the substrate for each process, in the same time 

the nozzle is moving toward the X and Y axis, as shown in figure 2.2 to cover the entire of the 

substrate, to achiave uniform diposition. 

 

 

 

 

 

 

 

 

 

  

 

 

The X – Y movement is controlled by using a stepper motor driver, and while the 

spray nozzle is free the substrate is kept stationary. The precursor solution was sprayed on to 

the substrate in air as small droplets with a solution flow rate controlled, the processes are 

made closed room, i.e, around a high temperature zone where thermal decomposition and 

possible reaction between solutions occur, through compressed, the latest  is used as carrier 

gas air in pneumatic case with pressure controlled. 

X  
y 

Nozzle 

Substrate 

Figure 2.2: The nozzle movement toward the X and Y axis. 
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The types of Nozzle used in this study is included two kind :  

 

 

 

                        Pneumatic Nozzle                                                 Ultrasonic Nozzle 

 

 

 

In these processes, the precursor solution is sprayed onto a preheated substrate, each 

atomized droplet serves as a microreactor which is delivered by carrier gas (air) to the 

reaction site and undergoes solvent evaporation, decomposition and precipitations to form the 

final product films. The ratio of deposition temperature to solvent boiling point is found to be 

the most important processing parameter that determines whether a homogeneous and 

coherent film is obtained [3]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Spray nozzles with two types of pneumatic and ultrasonic. 
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II.3.1.Empirical conditions 

For the manufacture of thin films with different properties, and in order to custom 

applications, we must know the characteristics that can be changed in the approved technical,  

The spray pyrolysis method is an experimental process, the solution flow rate, pressure of the 

carrier gas (air), the substrate temperature, the properties of the precursor (doped and 

undoped) and percentage of the dopant in the precursor solution, in doping process is rather 

simple; just by varying the concentration of the dopant in the solution, one can vary the 

percentage of doping in the sample. A major drawback of this technique is that it cannot be 

used for the deposition of very thin films. Another shortcoming lies in the selection of 

substrate since it is a high temperature process, these parameters which mentioned befor, have 

different effects, and this is what we are going to study. 

In the experimental study and by dividing the work into two chapters, we will see the 

relationship between the parameters and their effects on the thin-film structure, optical 

properties and electrical properties. For any deposit process, pressure, the solution flow rate, 

substrate temperature and the solution composition (doped, undoped), are the main 

parameters. 

 

II.3.2.Empirical details  

II.3.2.1.Pneumatic spray pyrolysis 

ZnO films were grown on 2×2 Cm
2
 glass substrates ultrasonically cleaned for five 

minutes also in acetone followed by deionized water for that time too, at room temperature 

and finally, the substrates were dried, the precursor solution were investigated using zinc 

chloride ZnCl2 dissolved in methanol with molar concentration of 0.1 mol/l, with adding a 

few drops of acetic acid to the starting solution, ZnO thin films were prepared at 350 
0
C, for a 

deposition time of 10 min. whereas, each sample which mentioned before was located from 

the nozzle at 11.5 Cm, above the deposition. The x-y movement of nozzle is 30 and 5 mm.s
-1

 

respectively during the deposition, using pneumatic spray pyrolysis technique (HOLMARK 

equipment). That and in order to optime the pneumatic paramaters, we have divided the 

deposition process into two sections: 

 

 Section one: included undoped-ZnO thin films, investigating with various values of 

solution flow rate from 100µl/min to 400µl/min with 100µl/min of step, at pressure 1 bar.  

 Section two: included undoped-ZnO thin films deposited with different air pressure 

values from 0.5 bar to 2 bar of 0.5 step, at solution flow rate of 300 µl/min. 
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These parameters and their variations are reported on the following Table 2.1: 

 

Table 2.1: Experimental conditions for pneumatic process. 

 

II.3.2.2.Ultrasonic spray pyrolysis  

In this technique, we investigate undoped ZnO and ZnO doped thin films by ultrasonic 

spray pyrolysis, and to reveal  the effect of substrate temperature and the dopant, on Zinc 

Oxide thin films properties, we divided our work into two parts : 

In the first one we have an undoped ZnO thin film, which basically for appearing the 

effect of substrate temperature and the sconde one is for studying the effect of fluorine and 

aluminum as dopants on Zinc oxide thin films. 

 Part one: In this study and for investigating in the effect of substrate temperature on 

undoped ZnO thin films properties, the ZnO solution was prepared by dissolving 

0.1mol/l of Zn (CH3COO)2, 2H2O in the solvent containing equal volumes absolute 

ethanol solution (99.995%) purity, then we have added drops of mono ethanolamine 

solution as a stabilizer, the mixture solution was stirred at 70 
o
C for 2 hours to yield a 

clear and transparent solution. 

The resulting solutions were sprayed on the heated glass substrates by ultrasonic spray 

pyrolysis system, which transforms the liquid to a stream formed with uniform and  fine 

droplets of 35µm average diameter (given by the manufacturer) with solution flow rate 0,5 

Pneumatic spray pyrolysis  

Solution 

concentration 

0.1mol/l 
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(Bar) 
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( µl.min
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( mm.s
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Nozzle-

substrate 

(Cm) 

 

Section one 1 

1 

1 
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100 

200 

300 

400 

350 

 

10 

 

30 - 5 

 

11.5 

 

Section two 0.5 300 

300 

300 

300 

1 

1.5 

2 
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ml/min . The deposition was performed at different substrate temperatures of 250, 300, 350, 

400, 450 and 500 
o
C with 10 min of deposition time. Whole of experimentale factors are 

shown the following table: 

 

Table 2.2: Experimental conditions for undoped ZnO thin films. 

Ultrasonic spray pyrolysis method 

S
o
lu

ti
o
n
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o
n

ce
n

tr
a
ti

o
n

  
0
.1

  
m

o
l/

l 

Solution flow 

rate 

( ml.min
-1

 ) 

Substrate 

temperature 

(
o 
C) 

Deposition 

time  

(min) 

Speed 

movement  

X – Y 

( mm.s
-1

) 

Distance 

Nozzle-

substrate 

     (Cm) 

 

0,5 250 10 30 – 5 4 

0,5 300 10 30 – 5 4 

0,5 350 10 30 – 5 4 

0,5 400 10 30 – 5 4 

0,5 450 10 30 – 5 4 

0,5 500 10 30 – 5 4 

 

 

 Part two : In the second section of studying and in order to know the effect of two 

types of dopants, on zinc oxide thin films, which are aluminum  and fluorine, on ZnO 

thin films properties. To achieve our doped ZnO thin films, aluminum chloride (Al 

Cl 3) and zinc acetate Zn (CH3COO)2 2H2O, were used as the precursor for AZO 

deposition, also ammonium floride (NH4F) with zinc acetate were used as precursor 

for FZO deposition. Both of deposition precursors were investigated by dissolving in 

methanol with a few droplets of acetic acid as a stabilizing agent [4]. 

The concentration of the solution precursor is 0.1 mol/l, to obtain the optimum 

deposition rate and material quality.  

Also, the doping ratio was varied from 0 (undoped ZnO) to 5% for FZO thin films and 

to 8% for AZO thin films, by altering the atomic percent of aluminum and fluorine relative to 

zinc for each diposition. The zinc oxide thin films was deposited on clean 2×2 Cm
2
 soda lime 

glass substrates heated at 350 
0
C for AZO thin films, and at 420 

0
C for FZO thin films, with 

solution flow rate 0,5 ml/min in both dipositions the glass substrates were ultrasonically 
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cleaned, and stationary at fixed distance during each deposite from the ultrasonic nozzle, the 

latest  is moveing towards x and y axis for speed  30 and 5 mm.s
-1

 respectively during the 

deposition processes. 

Table 2.3: Experimental conditions for ZnO doped with fluorine and aluminum. 

Ultrasonic spray pyrolysis method 
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 -1
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Aluminum 

chloride 

 (Al Cl 3) 

0 5 350 10 30 – 5 0.5 

1 5 350 

2 5 350 

3 5 350 

4 5 350 

5 5 350 

6 5 350 

7 5 350 

8 5 350 

Ammonium 

fluorine 

(NH4F) 

 

0 9 420 

1 9 420 

2 9 420 

3 9 420 

4 9 420 

5 9 420 

 

In these techniques, effects of solution flow rate and air pressure, substrate 

temperature and dopant on the structural, optical properties and electrical of ZnO films, 

prepared using Chemical spray pyrolysis technique had been studied. 
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II.4.Characterization methods 

This section aims to introduce the techniques by which deposited thin films were 

analysed.  Further experimental details will be given in this Chapter.  The two methods of 

film characterisation most widely used were, scanning electron microscopy and X-ray 

diffraction spectroscopy.  A large proportion of films were also examined by UV-VIS 

spectroscopy, Hall effect, and four point probe for electrical measurements. 

II.4.1.Microstructural and Phase Characterization  

II.4.1.1.Scanning electron microscope SEM 

 

This method is commonly used to characterise thin films, since inspection of SEM 

micrographs provides valuable information on the topology of the diamond films. Generally 

two views of the film are examined: 

 

 Top View: gives an indication of the surface crystallinity (and therefore quality) of the 

diamond film. 

 Cross-section: used to measure the thickness (and therefore growth rate) of the thin 

films. 

The morphology of the films were studied using, scanning electron microscopy 

(SEM), this technique is useful for monitoring the surfaces with grain size above about 10 nm,  

Electrons have very short wavelengths, the resolution of a scanning electron microscope can 

be ~ 0.1 nm. In electron microscopy magnetic fields are used to focus the electron beam, but 

in an optical microscope lenses are used to focus the light. The Figure 2.5 shows how a SEM 

works, in scanning electron microscopy; the substrate is analyzed using a finely focused 

electron beam [5].  

The primary reflected electron beam and the low energy secondary electrons which are 

emitted by the sample because of the initial electron beam are the detected, as shown in figure 

2.4. 
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Figure 2.4: SEM setup, Electron/Specimen interactions. When electron beam strikes the 

sample, both phonon and electron signals are emitted [5]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After that it maps the sample topography is mapped according to those detected beams 

(as shown in figure 2.5) from Samples for the traditional scanning electron microscopy should 

be conductive. 

Furthermore charging can occur on the substrate and can be causes a reduce in the 

intensity of electrons thereby the surface resolution. For getting an image of sample with high 

resolution, there should be more backscattered electrons and secondary electrons near the 

surface. By this manner the morphology of the surface, crystal size, surface defects... become 

clear [6].  
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Figure 2.5: Shematic of Scanning electron mictoscope [7]. 

 

II.4.1.2.Energy dispersive X ray-spectroscopy 

 

Energy Dispersive X-ray Spectroscopy (EDS) is an analytical capability that can be 

coupled with several applications including Scanning Electron Microscopy, Transmission 

Electron Microscopy (TEM) and Scanning Transmission Electron Microscopy.  

EDS makes use of the X-ray spectrum emitted by a solid sample bombarded with a 

focused beam of electrons to obtain a localized chemical analysis, all elements atomic number 

can be detected in principle. Figure 2.6 shows e.g. for EDS equipment. 
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Figure 2.6: Exemple of energy despersive X-ray spectroscopy. 

 

Accuracy of EDS spectrum can be affected by various factors. Many elements will 

have overlapping peaks (e.g., Ti Kβ and V Kα, Mn Kβ and Fe Kα), see figure 2.7; the accuracy 

of the spectrum can also be affected by the nature of the sample. X-rays can be generated by 

any atom in the sample that is sufficiently excited by the incoming beam. These X-rays are 

emitted in any direction, and so they may not all escape the sample. The likelihood of an X-

ray escaping the specimen, and thus being available to detect and measure depends on the 

energy of the X-ray and the amount and density of material it has to pass through. This can 

result in reduced accuracy in inhomogeneous and rough samples. 

 

 

Figure 2.7: X-rays generation by the incoming beam and their emitting  direction . 
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Energy Dispersive X-ray Spectroscopy can provide elemental analysis on areas as 

small as nanometers in diameter. The impact ofthe electron beam on the sample produces X-

rays that are characteristic of the elements present on the sample. EDS Analysis can be used 

to determine the elemental composition of individual points or to map out the lateral 

distribution of elements from the imaged area. 

 

II.4.1.3.X-ray diffraction  

X-ray diffraction equipment that we used is shown in figure 2.8, X rays are a radiation 

source with wavelengths which interact with crystals containing symmetrical arrays of atoms 

within rows or planes to form constructive and destructive interference, i.e. diffraction results.  

This occurs when X-rays of a specified frequency hit an atom, leading to an interaction with 

its electrons causing them to vibrate with the same frequency as the incident X-ray beam.  

This results in the vibrated electron radiating the X-ray with no change in its frequency, in all 

directions as shown in figure 2.9. 

 

 

 

Figure 2.8: X-ray diffraction equipment. 
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Diffraction occurs within favourable orientated planes of atoms according to Bragg‘s 

law [8]: 

         



Where d is the vertical spacing between planes of atoms,  λ is the wavelength of the 

source, n is an integer and θ is the angle of the incident radiation. 

 

 

 

 

 

 

 

 

 

 

Figure 2.9 Interaction of x-rays with planes of atoms. 

 

Using monochromatic Cu-Kα of wavelength 1.54 Å, diffraction patterns for each 

sample were measured by X-ray diffraction. A tube current of 40 mA was utilized, with a tube 

voltage of 40 kV. Rocking curve of each sample was obtained from the 2θ scan (2θ =20-100˚) 

with scan step size of 0.02˚ using a Philips Xpert set for 2θ scan. 

The average sizes of crystallites (D) were calculated from the full width at half 

maximum (FWHM) of the diffraction peaks from the (002) plane of the films with the help of 

Scherrer formula [9]. 

 

                                               
       

     
                (2.3) 

 

Where D is the crystallite size, λ is the wavelength of X-ray (λ= 1.5406 A˚), β is the 

full width at half-maximum (FWHM), and θ is the half diffraction angle of the centroid of the 

peak, as shown in figure 2.10. 
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Figure 2.10: The exraction of the full width at half maximum (β) from X-ray diffraction peak. 

 

II.4.2.Thickness measurements 

II.4.2.1. Measurement by scanning electron microscopy 

Indeed, knowledge of thin film thickness in semiconductores is very useful. That 

because provide us some informations about the structural and optical properties. In this step, 

the thickness was determined from scaning electron microscopy image, which is used to 

calculate the thickness with computer assisted by a visiometer programme, which is help to 

select the scale of SEM image for measureing the thickness by visiometer Ruler, by the latter 

we take the average of thickess measurements at different places from the films, in order to 

find an accuracy values, the following figure 2.11 shows the manner of thickness 

measurement: 

 

           

 

 

 

 

 

Figure 2.11: The method of thickness measurement by SEM. 
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II.4.2.2. Optical interference  

In this method, the ditermination of thickness, is by using the optical curves that 

became so easy when our thin films have an uniform surface, However, the thin films with 

thickness (D) which has a refraction index n, where the air index is n0 = 1, and the glass 

substrate with thickness so bigger than D and with refraction index (s) and absorption 

coefficient (αs = 0), the figure 2.12 shows form apears how does the optical radiation pass the 

sample: 

 

 

 

 

 

 

 

Figure 2.12: Appearing form of radiation pass through the sample. 

 

As we see in the following figure 2.13, T is the transmission coefficient, α is the 

absorption coefficient of the film, λ is the wavelength of the incident light. 

N1 and n2 are the refractive index of the layer for two adjacent maxima, TM1 and TM2, 

corresponding to the wavelengths λ1 and λ2, the minimum transmission and Tm which lies 

between the two.  
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 Figure 2.13: The ditermination of thickness using Optical interference curves. 
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From the curve, the thickness is given by [10]: 

                                                (2.4) 

Where the    and    , which are corresponding to the wavelengths  λ1 and λ2 , are determined 

by following relation : 

                                 (2.5) 

N1 and N2  are calculated by relation : 

                                             (2.6) 

II.4.2.3.Weight difference method 

In this method the film thickness was calculated using following the steps, the first : measure 

mass of the film before and after deposition process. The second : the difference will give the 

mass of the film (m) , the area of the film  (A) and density (d) of the film material. By using 

following relation we can find out thickness (t): t = m/Ad , the estimated thickness will be not 

be accurate as density of the material in bulk and thin film is different.  

II.4.2.4. Profilometry 

For films thickness measurements, above to the deposition process a platinum strip 

was placed across the centre of a substrate (figure 2.14).  

 

 

 

 

 

 

Figure 2.14: Schematic representation of the thickness monitor. 

The platinum strip was removed, leaving a step in the film. The step height gives a 

measure of the thinckness of the films, determined using a profilometer. The profilometer 

consists of a diamond tip that travels across the sample along its length, and vertical 

downward movement of the tip at the step gives a measure of the step height which represents 
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the thickness of thin film. The sensitivity of the profilometer was approximately10 nm (figure 

2.15). 

 

Figure 2.15: Dektak XT stylus profiler (Bruker). 

 

II.4.3.Stress measurement 

There are intrinsic and extrinsic stresses in a thin film. Intrinsic stress comes from 

defects such as dislocations in the film. The origin of extrinsic stress in a thin film comes 

mainly from adhesion to its substrate. The differential thermal extension between the film and 

its substrate, and chemical reaction with its substrate when the intermitallic compound formed 

is coherent to the film, can be introduced extrinsic Stress in a thin film. It has also been 

suggested that the elimination of grain boundaries and hence the reduction of the excess 

volume in the grain boundaries will induce stress in the film when it is obliged by the 

substrate, that may be causes. 

The stresses which are resulting by the deflection or curvature that the film induces to 

the substrate can be measured by a Profilometer.  

 

 

 

  

 

 

 

 

 

 

Figure 2.16: Representation of the deformation of the substrate and films due to the    

deposition of a thin film under stress, and associated conventions [11]. 
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This measurement has to be before the stress inducing process and after the process to 

find the change in curvature due to the stress (see figure 2.16).  

The calculation of the mean film stress Cfilm is based on the biaxial strain model. The 

strain ezz in the C-axis, i.e., perpendicular to the substrate surface (our case), the following 

formula is used, which is valid for a hexagonal lattice [12]: 

 

 

                             (     
((       )    

    
)

   
)                     (2.7) 

 

With  

 

   
    

 
        

(     )
 
  [13],     

           

     
 and C11 = 209.7 GPa, C12 = 121.1 GPa, C13  

 

=105.1 GPa, and C33 = 210.9 GPa are the elastic stiffness constants of the ZnO [14]. 

With Cbulk and Cfilm are the constants of the strain-free bulk ZnO and the lattice constant of 

ZnO film, respectively. 

 

II.4.3.Optical transmittance 

Optical transmission measurement of the undoped and doped ZnO on glass substrates 

were carried out using a UV-VIS (UV-3101 PC -SHIMADZU) spectrophotometer (see figure 

2.17). Ultraviolet and visible light can cause electronic transitions.  

When a molecule absorbs energy, it excites an electron into a higher empty orbital. 

Therefore energy absorbance can be plotted versus the wavelength to obtain a UV-Visible 

spectrum. Both the shape of the peak and the wavelength of the maximum absorbance (λ 

max) give information about the structure of the sample. UV light has a wavelength of 

200~400 nm and visible light has wavelengths of 400~800 nm. Also the optical band gap can 

also be ascertained from the spectra graph. The wavelength was varied between 300-1000 nm 

at 0.5 nm intervals. 
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Figure 2.17: Principle spectrophotometer UV-VIS. 

 

In the past, the determination of the optical band gap (Eg) was often necessary to 

develop the electronic band structure of a thin-film material. However, using extrapolation 

methods, the Eg values of thin films can be determined from the absorption edge for direct 

interband transition. The absorption coefficient α was calculated using Lambert's law as 

follows: 

                                                        α = ln (1/T)/d               (2.8) 

 

Where T and d are the thin film's transmittance ratio and thickness. The absorption has 

a maximum at a high energy and decreases with optical energy in a manner similar to the 

absorption edge of semiconductors. Assuming that transition becomes constant at the 

absorption edge, the absorption coefficient α for simple parabolic scheme can be ascribed as a 

function of incident photon energy as [15]. 

 

                                                       α ν  (     )
 

         (2.9) 

 

Where n is a constant, n = 1/2 is the allowed direct transition and n = 2 is the allowed 

indirect transition, hν is the photon energy, and Eg is the optical band gap. Figure 2.18 shows 



Chapter II Realization and Characterization Of Thin Films 

46 
 

the typical (αhν)
2
 versus hν plots of the AZO thin films at 3at% of aliminum concentration. 

the linear dependence of (αhv)
2
 on hν indicates that the doped ZnO thin films are direct 

transition type semiconductor. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 2.18: The energy gap by extrapolation from the variation  depending on 

for ZnO thin film. 

 
II.4.4.Electrical characterization techniques 
 

II.4.4.1.Four probes technique 

For electrical resistance measurement for thin films, the four -probe method is the 

most extensively used in thin films. This technique forces a fixed current through the sample, 

using two outer probes as shown in the figure, and measures the resulting voltage between the 

two inner probes.   

Method is used when the specimen is in parellelopiped form of a thin wafer, such as a 

thin semiconductor material deposited on a glass substrate. The sample is millimeter in size 

and having a thickness (w). At similar distance (S) between of four probes arranged linearly 

in a straight line. 
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Figure 2.19: The arrangements of four probes that measure voltage (V) and supply current (A) 

to the surface of the crystal. 

The advantage of such an arrangement over two probe experiments is that the effect of 

any contact resistance between the sample and probes is cancelled out.  As a result of the 

electrical contacts being made to the surface of the film, such measurements are prone to give 

results more representative of the surface, rather than the bulk of the sample [16].  When this 

technique is applied to polycrystalline films as the surface electrical conduction is controlled 

by factors, there are particular problems, such as surface termination and grain boundary 

content, which can vary from film to film.   

However, the four brope technique does give an impression of how the electrical properties of 

films change with deposition conditions. 

 

 At a constant temperature, the resistance, R of a conductor is proportional to its length L 

and inversely proportional to its area of cross section A [16].  

 

 

                                                                        
 

 
          (2.10) 

 

 

Where   is the resistivity of the conductor and its unit is ohmmeter. 

If the side boundaries are adequately far from the probes, the die may be considered to 

be identical to a slice [17].  

For this case of a slice of thickness   and the resistivity is given as 
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 (
 

 
)
         (2.11) 

Where f(w/S) is a divisor for computing resistivity which depends on the value of w 

and S if the size of the metal tip is infinitesimal and sample thickness is bigger than the 

distance between the probes,  according the following relation. 

                                                                     
 

 
              (2.12) 

Where V is the potential difference between inner probes in volts, I is the Current through the 

outer pair of probes in ampere, S is the Spacing between the probes in meter. 

 

 At temperature varied the resistivity and its dependence with Temperature of 

semiconductors, rises exponentially on decreasing the temperature. Where, the electrical 

conductivity is the whole of the conductivities of the valence band (Ev) and conduction 

band (Ec) carriers [18]. Resistivity is the reciprocal of conductivity and its temperature 

dependence is given by: 

                                                                        (
  

   
)        (2.13) 

Where Eg is the band gap of the material, T is the  Temperature in kelvin, K is the 

Boltzmann constant, K  8,6.10
-5

 eV/K. 

II.4.4.2.Two probes technique 

For a long parellelopiped shaped sample of uniform cross-section, the resistivity   can 

be measuring voltage drop across the sample due to passage of known (constant) current 

through the sample, as shown in figure 2.20 the generator E supplies current in through probe 

1 and out through probe 2. 

 

 

 

 

 

 

 

 

 

Figure 2.20: Two probes technique. 
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Let the current in the specimen is I (ampere). It is measured by the ammeter A.the 

potential difference between the two contacts (probe 1 and probe 2) at the ends of the sample 

is V (volt). It is measured by the Voltmeter V. let L is length of the specimen between the two 

probes and S its area of cross-section, then, the resistivity of the specimen is:  

 

                                                                 
   

    
      (2.14) 

 

II.4.5.Hall measurement 

Hall effect measurements are important to semiconductor material characterization 

The designed automatic measuring system can be used to determine several material 

parameters: Hall coefficient (RH ), type (n or p), carrier concentration (n), the Hall voltage 

(VH ) and the conductivity are all extracted from the Hall voltage measurement. In order to 

obtained carrier mobility (μ) it is needful to measure also the resistivity of the sample ( ). Due 

to the required contact node arrangement shown in Figure 2.21.a, a contact configuration 

gives current and voltage perpendicular to each other. 

 

 

 

 

 

 

 

 

 

 

 

 

The van der Pauw method has been extensively used, to calculate the sample 

resistivity in the Hall measurement apparatus, the Hall voltage can be measured using the 

configurations shown in figure 2.21.b. 

For ideal square symmetry samples the measured voltage at zero magnetic field should 

be 0 independently of the used current [19,20]. 

VH 

I 

A 

B C 

D A 

B C 

D IAD 

VBC 

I 

VH 

Generation of tension  

Figure 2.21: a-contact node arrangement, b-schemat shows hall volage measurement,  

 

a  b  
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For Hall effect measurements, a voltage is applied between the contacts placed at 

diagonally opposite corners and the current I flowing between them is measured. 

 

 

Figure 2.22 : The Hall effect (a) - a current flowing through a piece of semiconductor 

material, (b) - the electrons flowing due to the current, (c) - the electrons accumulating at  

one edge due to the magnetic field, and (d) - the resulting electric field and Hall voltage VH. 

 

In addition, a magnetic field B is applied in the direction perpendicular to the sample 

and the change in Hall voltage VH between the contacts in opposite corners is measured. 

Resistivity  , carrier density n, and mobility μ are calculated from the measured values, 

applied magnetic field B and the film thickness d of the measured sample [21]. The Hall 

effect systeme is shown in figure 2.23. 

 

From the Hall voltage measurements it is possible to determine Hall coefficient using 

equation : 

                                                            RH   =   
       

    
         (15) 

 

Also we can specify the type of semiconductor (n or p) by the sign of the (B . RH),  

 

where: 
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B . RH   ........we have   P-type semiconductor 

B . RH   ........we have  N-type semiconductor 

 

 

 

Figure2.23: The hall effect system. 

 

And consequently carrier concentration can be determined. 

                                                                  n  
 

   
           (16) 

Where q is the elementary charge. Finally, Hall coefficient and resistivity are used to 

determine hall mobility. 

                                                                     
  

 
              (17) 

For getting a well accuracy of obtained parameters it is necessary to ensure some basic 

conditions during the measurement. The most crucial one is to have good ohmic contacts.  

Very important is also to ensure negligible heating of the sample during the 

measurements, sensitive current measurement, and good symmetry and homogeneity of the 

sample. 
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III.1.Pneumatic spray pyrolysis 

In this part of the study, we will discuss the deposition of undoped zinc oxide thin 

films, by the pneumatic spray pyrolysis technique, to study the effect of solution flow rate and 

the air pressure on the structural, optical and electrical properties. 

III.1.1.Section one - Effect of solution flow rate  

In order to find out the impact of solution flow rate, we have deposited undoped-ZnO 

samples on glass substrates by pneumatic spray technique, the effects of solution flow rate on 

the structural, optical and electrical characteristics of undoped ZnO thin films were obtained 

among this section. However, in other context, which value of solution flow rate is 

appropriate to that pressure, on undoped ZnO properties, whole of thin films have analyzed 

and discussed. 

II.1.1.1.Thickness calculation 

A series of undoped ZnO thin films were prepared with various solution flow rate on 

glass substrate at 1 bar of deposition air pressure by pneumatic spray pyrolysis deposition. As 

seen in figure 3.1, it's clear that the film thickness increasing from 214 nm to 336 nm when 

the solution flow rate increased from 100 µl/min to 300 µl/min. 
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Figure 3.1: The variation of thickness of ZnO thin films 
deposited at different solution flow rates. 
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where It can be explained  by amount of solution deposited was sufficient  for having a good 

deposition on the substrate surface as the figure of deposition rate described, in other context 

the rise in the solution flow rate lead for increasing the solution volume sprayed  onto 

substrate surface [1]. In addition to that,  from figure 3.1 we illustrated also if the amount of 

the deposition solution (Solution flow rate)  more than 300 l/min the film thickness decrease 

to lowest value 100 nm, what means that there is  deterioration in film thickness may be 

associated with the kinetics of atomic arrangements during deposition process; caused by 

rapid surface diffusion process of the solution from the strained surface  regions at the grain 

centers to the grain boundary areas [2]. 

 

III.1.1.2.Structural properties 

 

In general, from the X-ray diffraction patterns by exploiting the peak position we can 

estimate that the properties of our cristallographies films, are depending on the experimental 

conditions for the deposition. When in the crystal case, the layers show a preferential 

orientation along c-axis (002) - Wurtzite structure, figure 3.2 show the diffraction spectra of 

X-rays of our samples. 

The X -ray diffraction spectrum of our glass substrate glass, indicated the presence of 

bumps located almost between the two values 2θ = 20 ° and 2θ = 30 °, which describe the 

amorphous structure of the glass [3]. 

XRD measurements indicated that the films were crystalline with a hexagonal 

structure and a preferred orientation with the c-axis perpendicular to the substrate. The only 

diffraction peak observed was the (002) peak at a location of  2θ ~ 34,60
0
 for the  whole thin 

films , instead of the unstressed position of 3.37 
0
, this small difference is due to the 

diffraction angle corresponding to the peak of the (002) plane, and this is owing to the stress 

arising between the joints of grains of the sample to each other, that notice by the difference 

the flow rate value, However, when the flow rate increases the (002) peak intensity is 

increased, this means that a large number of atoms move towards the (002) plane which 

corresponds to the favorable energy for the formation or the crystal growth of zinc oxide 

(ZnO). except the point of 400 ul/min, we have observed that the intensity of the peak was 

decreased which means that the crystallite has a weakness. 
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Figure 3.2: Diffraction spectra X-ray obtained from the films deposited at deposition air 

pressure 1 bar with different solution flow rates. 
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this behavior can be explained by the amount of solution flow rate (400μl/min) does not allow 

ZnO atoms to choose orientation [002] which corresponds to favorable energy to the 

formation or growth of crystals Zinc Oxide, then the increased number of the solution 

particles, which cause the random deposition of zinc oxide molecules (ZnO). 

So when increasing the solution flow rate of 400 μl/min or more, we can predict that the (002) 

peak intensity decrease to the amorphous state. Therefore our thin layers consist of two 

phases, the first poly-crystalline and this was a hexagonal structure (Wurtzite) and the second 

is amorphous with intensity was varied from sample to another, due to the difference in the 

solution flow rate with deposition air pressure.  

The following figure 3.3 shows the variation of the crystallite size as a function of 

solution flow rate.  
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Figure 3.3: The variation of the grain size and peak intensity as a function of solution flow 

rate deposited at 1 bar. 

The average crystallite size is between 10 nm and 40 nm were calculated form the full 

width at half maximum, where we can show that the increment of crystal size related to 

increasing of the spraying flow rate, the similar behavior  described in the figure of peak 

intensity, in addition to that we can note that the amount of the solution deposited at substrate 

surface, was appropriateness for crystal growth process, once the solution flow rate is more 

than 300μl /min, the speed spreading process of the solution affect is the main reason the 

decreas of grains size [2], as shown on the following Table 3.1: 
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Table 3.1 Results of undoped ZnO deposited with different solution flow rates.   

 

All the samples have a negative stresses which indicated a compressive stresses in the 

films. Basically, and from the figure 3.4 this stress included a thermal stress originating from 

thermal mismatch between films and heated substrates, and another intrinsic stress originating 

from the film structure defects, this is attributed to a variation in the lattice parameters in the 

ZnO crystalline structure [4], that obviously from the shifting of the preffered peak from   

2  = 34.54° to 34.66
o
, which clearly showed in the figure of peak position.  
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Figure 3.4:  The variation of the Stress and peak position as a function of solution  flow rate 

deposited at 1 bar. 
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-2.522 10.060 (002) 0.864 34.669 1 100 

-1.283 30.172 (002) 0.288 34.565 1 200 

-2.252 40.238 (002) 0.216 34.646 1 300 

-0.031 30.163 (002) 0.288 34.464 1 400 
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We calculated the strains in various undoped-ZnO films, where we observed that the 

grain size was increased when the solution flow rate was increasing. But  at 100 µl/min of 

solution flow rate value, the crystal size takes the  lowest value, that because the grain size is 

created a high negative stress due to grain boundaries and their impact on defects increasing, 

on parallel, as we seen, that there is an increase  in the value of stresses depending on the 

solution flow rate of the solution, this can be due to increasing the crystal size (grain size) by 

the growth mechanism,  and the larger grain size means a decrease in the number of grain 

boundaries [5], and thus a reduction in the creation of crystal defects leads to decrease the 

value of compressive stresses between the grains [6]. 

III.1.1.3.Optical properties 

Transmission spectra obtained for the films indicated that all films were highly 

transparent in the 280-900 nm wavelength range. Figure 3.5 shows a typical optical 

transmission (T %) spectrum of a 2×2 cm
2
 ZnO films. The spectra were taken using air as the 

optical reference. The average of transmittance in the visible range for all the films is about 90 

%. Then, and from the spectra of our films, we observed that all spectra apears a bump 

(bosse) between wavelength 290 nm to 350 nm, which means that our films have included a 

porosity, the latter due to, two or may be three phenomena: 

- The thickness effects. 

- The light scattering due to the difference of the quality of the layer surface. 

- Grain size. 
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Figure 3.5: Transmittance spectra of ZnO thin films prepared at pressure of 1 bar with 

different solution flow rates. 

 

We also note that the intensity of the transmittance bump has different values, which 

explain that the thickness of thin layers of our samples, and the number of pores exist vary 

from sample to another, according to the following equation [7]:  

 

Porosity% = (Tmin/Tmax)×100       (3.1)  

 

The optical transmission spectrum shows that the porosity increases in the visible 

range with solution flow rate. Where the deposited with solution flow rate 200 µl/min is too 

porous, this is linked with the reduction in the thickness of the deposits, because the pressure 

forced the zinc oxide molecules to  deposition randomly. 

The direct optical gap was determined from the α
2 

versus photon energy graphs. For 

which the variation in the absorption coefficient with the photon energy hν is given by: 

Porosity %=(Tmin/Tmax).100 
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    (αhν) = A(hν-Egap)
1/2 

               (3.2) 

 

Egap denotes the optical energy gap between the valence and the conduction band. Plots of α
2
 

versus hν were given by extrapolation of the linear region of the resulting curve.  
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The optical band gap value Egap is shown in figure 3.6. The variations of the optical 

energy gap could be attributed to changes in the deposition air pressure.  

 

Generally, it can be stated that the reduced band gap energy of ZnO may be due to the 

extent of non-stoichiometry of the deposited layers. Which may be due to the various lattice 

associated atomic interaction phenomena come into play from its ionic crystalline lattice 

nature [8]. ZnO thin films deposited at 1 bar of deposition air pressure have a variations of the 

optical energy gap could be from 3.36 eV to 3.39 eV with increasing solution flow rate. those 

variations can be explained by the increased concentration of free electrons and probably due 

to the occupation of interstitial zinc atoms because these native latter represent the main 

Figure 3.6: The variation of optical band gap and porosity of thin films as a function of 

solution flow rate deposited at 1 bar. 
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donors in the ZnO films [9]. In  addition to that, we can show reduction in the porosity which 

can be returned to presence of oxygen on the film-substrate related to solution flow rate, 

furthermore it is evident that for the highest solution flow rate, the most dense ZnO structures 

of highest porosity were obtained containing the grains with a dimension of 30 nm, it was 

related to the fact that only for the highest O2  caused by solution flow rate  does the highest 

amount of oxygen prevent the growth mechanism and coalescence of Zn crystallites by 

raiseing new nucleation centers at the crystalit growth front in the presence of oxygen atoms. 

This leads to a decrease in the crystallite size (see figure 3.3) [10]. 

III.1.1.4.The electrical conductivity of ZnO thin films 

The variation of the electrical conductivity of ZnO films deposited at 1bar of 

deposition air pressure with varied solution flow rate value, is shown in figure 3.7, revealed 

an decearing in electrical conductivity  with  increasing solution  flow rate values, up to 300 

µl/min where took a lowest value 0.12×10
3
 (Ω.cm)

-1
 and then going toward the highest value 

which is 0.46×10
3
 (Ω.cm)

-1
 at 400 µl/min of solution flow rate, that decreasing in condutivity 

may be due to an increase in the grain size; therefore decrease in the number of grains which 

leads to decrease of number of the grain boundaries which operate as a trap for free carriers 

by created barriers prevent the transport of free charge [11]. 
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Figure 3.7: The variation of electrical conductivity of undoped ZnO films deposited at 1 bar. 
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That increase of the electrical conductivity with increasing of solution flow rate is 

explained by decreasing grain numder which increases the probability of grain boundary 

scattering, the latter  causes increasing of the disorder in the films hence the potential barriers 

increased [12]. That means an increase in the carrier concentration, the similar results has 

been explaining by displacement of the electrons or may be due to the interstitial defect of 

zinc atoms which provide the free carriers, so the reduction in electrical resistivity occur. 

Where the maximum resistivity value was 8.3×10
-3

 Ω.cm, which obtained at 300 µl/min [13]. 

III.1.2.Section two - Effect of deposition air pressure 

Pressure carrier gaz (air) or air pressure is an important factor in the pneumatic spray 

pyrolysis process, that because, as we listed in the preceded chapter, the pneumatic nozzle 

employed as a reactor to create aerosol from the precursor solution, and droplets size is 

relating strongly with air pressure from side, and the nozzle rediu from other side, where,  we 

have to use a nozzle with 2.5 × 10
-3

 m Diameter given by manufactory, in this study and in 

physical mechanism, we can just playing in the air pressure to improve the aerosol, hence  a 

good properties of ZnO thin film. So in this deposition all parameters are remaining constant, 

as well the solution flow rate at 300µl/min, except the deposition air pressure which is varied 

from 0.5 bar to 2 bar with 0.5 bar as step, and as mentioned above, for checking on the effect 

of air pressure on growth of ZnO thin films, the undoped ZnO films are deposited and 

characterized below. 

II.1.2.1.Thickness calculation  

The undoped Zinc oxide film thickness increased from 100 nm to 336 nm when 

deposition air pressure varied from 0.5 to 2 bar. the calculation film thickness was also 

investigated from the transmittance spectrum  as shown in figure 3.8:  
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Figure 3.8: The variation of film thickness and deposition rate  of ZnO thin films deposited at 

different deposition air pressures  

from the figure 3.8 It can be observed that the films deposited for various deposition 

air pressure show an increment of thickness from 100 to 336 nm  as the pressure increase 

from 0.5 bar  to 1.5bar, this can be explained by the grain size distribution on the substrate 

surface, where we observed that the increment of the thickness extend to take the highest 

value of 336nm at1.5bar of deposition air pressure then come back to 178nm value at 2 bar 

[2].  

However, according to deposition rate curve and the film thickness results we observe 

that, there is an appropriate deposition air pressure value for improving the characteristic of 

ZnO thin films deposited using pneumatic spray pyrolysis. 

III.1.2.2.Structural properties 

 

Figure 3.9 presents the XRD patterns obtained for the undoped ZnO samples, the 

characteristic diffraction peaks of the hexagonal ZnO structure can be observed opviously, 

evidencing a strong orientation in the [0 0 2] direction. all of crystalline planes appears at the 

positions corresponding to the wurtzite phase on whole of ZnO samples, but  with different 

relative intensities with respect to the air pressure variation, where we can estimate that peak 

intensity (002) increases to the highest value 128 (u.a) with increasing the deposition  air  
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Figure 3.9: Diffraction spectra X-ray obtained from the films prepared at solution flow rate of 

300µl/min with different deposition air pessures. 
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pressure, where was increasing to the highest in 1 bar of depoition air pressure, which 

indicates that the ZnO thin film prepared with air pressure of 1 bar is monocrystaline, then 

return to decrease, where the intensity of the diffraction  peak becomes valueless, moreover 

no peak shown, and thereby the layer becomes amorphous in the pressure value of 2 bar.  

 

As result and from the patterner of X-ray diffraction   we can say, that the structure of 

ZnO thin films deposited with pressure 1 bar, have good structural quality.  

Whole of The X -ray diffraction spectrum shown a boss (thoroughly as been disscused 

in the section one), located almost between the two values 2θ = 20 ° and 2θ = 30 °, however, 

we can say that the boss in each patterner evidences a change in the ZnO structure, At the 

same time, a shifting of the (0 0 2) peak from 2  = 34.69° to 34.66°, respectively with 

increasing of deposition air pressure. 

This is attributed to a variation of the lattice parameters in the ZnO crystalline 

structure[14]. This analysis proceeds by means of the equation: 

 

                                                    
 

    
  

 

 

        

  
 
  

  
        (3.3) 

 

Where (h k l) are the Miller indices of the respective crystalline planes, a = b and c 

stand for the lattice parameters of the hexagonal ZnO structure and d(hkl) is the distance 

between (hkl) planes. In this way, we found that the parameter c increases from 5,171 Å to 

5,176 Å. This change was attributed to Zn vacancies formed in the ZnO crystalline structure; 

means the increase in the formation of Zn vacancies influences the c lattice parameter [15]. 

Therefore, the presence of Zinc vacancies tends to make the structure more randomly into the 

ZnO crystalline structure, yielding an increasing of the c lattice parameter [14]. 

In figure 3.10 we show the variation of crystallite size for the [2 0 0] orientation, 

obtained for all undoped ZnO films. As can be seen, the increment of deposition air pessure 

results in an increase of the cyrstallite size from 39,70 nm to 89,19 nm. 

That, at higher deposition air pressure (1.5 bar) the droplet becomes more fine which makes 

the reaction droplets-substrate occur, thereby film growth efficiency. 

In addition to that, we ca estimate, that 1.5 bar of deposition air pressure, is appropriate to 

achieve a thin films of Zinc Oxide with crystalline structure. 
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Figure 3.10:  The variation of the grain size and peak position as a function of deposition air 

pressure. 

The  figure 3.10 shows the increment of crystallite size as the air pressure increases. 

As we metion before, a shifting of the (002) peak from 2  = 34.69° to 34.66
o 

(see the peak 

position figure), this is attributed to a variation in the lattice parameters in the ZnO crystalline 

structure, due to intrinsic stresses, which are created fundamentally from the grain boundaries 

which exhibit strong participation  on defects. [15].  

All measurements of the stresses and grain size are appearing on the following table. 

Table 3.2 Results of undoped ZnO deposited with different deposition air pressures. 

 

stress 

 

(GPa) 

Grain 

size 

(nm) 

Plane 

 

(hkl) 

FWHM 

 

(°) 

2θhkl 

 

(°) 

Solution  

flow rate 

(µl/min) 

Air  

pressure 

(bar) 

-2,978 39,702 (002) 0,213 34,69 

300 

0.5 

-2,564 39,976 (002) 0,211 34.66 1 

-2,564 89,180 (002) 0,095 34.66 1.5 

- - - - - 2 
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Figure 3.11:  The variation of the stress and peak position as a function of deposition air 

pressure.  

However, from the figure 3.11, is obviously that, whole of stresses have a negative 

signal that means compressive stresses occur; as the peak position described. Whereas, the 

stresses in increment as the deposition air pressure increases, where the decrease of grain 

boundaries means the increment grain size, and stress becomes less [6]. 

 

III.1.2.3.Optical properties 

Figure 3.12 shows the optical transmittance at room temperature. The transmittance 

spectrum indicates a high degree of optical transparency close to 95% in the visible region 

with steps due to the band-edge absorptions by undoped-ZnO prepared at diffrent air 

peassure. From the transmittance spectra of ZnO films, we note that all spectra have a bosse 

between wavelength 290 nm to 360 nm, as we have seen in the section one. 
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Figure 3.12: Transmittance spectra of ZnO thin films prepared with different deposition air 

pressures. 

The optical transmission spectrum shows, that there is an increment in the porosity as 

air presuure increases. Where the ZnO film deposited at air pressure of 2 bar is too porous 

compare the other films at lower pressure, this is explained the state of thickness and its 

reduction of the deposits, because the pressure forced the zinc oxide molecules to deposition 

randomly, the latter, is affected on the trends of grains and their growth, thereby leaving a 

relative porosity. 

 

We applied the (αhν)
2
 vs hν plot for the transmittance curve in the staircase regions, 

and The optical energy gap value Egap for the undoped ZnO, is shown in figure 3.13. 

From the curve it is clear that the Eg of ZnO thin films varied from one deposition air pressure 

to another.  Where the behavior of the optical band gap could be attributed by changes in the 

deposition air pressure.  

In other context, there is a diminish in the optical gap as the deposition air pressure 

varied from 0.5 bar to 2 bar, this results can be explain by physical mechanism of the solution 

reaction at substrate surface; which has an important affect [16]. 

Porosity%=(Tmin/Tmax)x100 
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Where in the lower pressure the size of droplets is may be bigger than what happen in 

higher pressure. However, the function of air pressure (as mentioned befor in chapter II) is the 

generate of droplets, the size of the droplets is strongly related with air pressure, when the 

aerosol as fine the interaction between aerosol- substrate well occur [17]. 

But in the same time, the aerosol undergo of the air pressure (as carrier gaz), in this 

case the function of the pressure is unfavorable for getting an uniforme optical options. on 

other hand and in thermal mechanism, the effect of air pressure compare to substrate 

temperature is slightly small, and as we have mentioned in the decomposition of precursor, 

that  when the droplet approaches the substrate, the solvent vaporizes, then the solid melts and 

sublimes and the vapor distributes to the substrate to undergo a heterogeneous reaction, the 

latter provides defects interstitial of Zin Oxide, these native latter represent the main donors in 

the ZnO films, that defects, diminish in the optical gap from side, also from another side to be 

cause to random structure or amorph phase [18]. 

However, ZnO thin films deposited with diffrent air pressures shown variations of the 

optical energy gap could be from 3.36 to 3.39 eV. 

 

 

Figure 3.13: The variation of optical band gap and porosity of thin films as a function of 

deposition air pressure. 
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III.1.2.4.The electrical conductivity of ZnO thin films 

From the figure 3.14, we can estimate that the conductivity affected with variation of 

deposition air pressure, where it is obvious that there is a reduce in the conductivity up to the 

lowest value of 0.18×10
3 

(Ω.cm)
-1

 at deposition air pressure of 1 bar, then has a increment 

after 1 bar, towards the highest value of 0.9×10
3
 (Ω.cm)

-1
. 
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Figure 3.14: The variation of electrical conductivity of ZnO films deposited at different 

deposition air pressures. 

that reduction in the resistivity can be for two or may be three reasons, the extent of the grain 

size, the interstitial ZnO, or free carriers concentration, the first one means that the structre is 

trends to be monocrystaline, furthere a decreasing of deffects, the second exhibit more 

randomly in the distribution of  ZnO films, so the potential barriers increased the same 

phenomena with similar results was observed [12]; or there is an increasing in the carriers 

concentration by electron displacement [13]. 
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III.2.Conclusion 

       Dedova et al studied the effect of the solution flow rate on the growth of undoped ZnO 

films prepared from ZnCl2 solution and reported that the solution flow rate influences the 

surface topology. Concluded that the solution spray rate affects the surface morphology and 

roughness of undoped ZnO thin films produced by spraying Zn acetate solutions [18]. 

        In conclusion, we have studied the effect of pressure and its relation with the variation of 

solution flow rate on Structural, optical and electrical properties of ZnO thin films deposited 

using pneumatic spray pyrolysis. The structural and optical properties become worse when the 

flow rate value is above 200 µl/min.  

In our study and when the solution flow rate is bigger than 200 µl/min, we have observed that 

the solution flow rate value is more effective during low pressure and The X-ray diffraction 

spectrum indicated that the films were crystalline with hexagonal structure with the only 

diffraction peak. However, in lower pressure we estimate that the (002) diffraction peak was 

going to high intensity, with low solution flow rate, compare with higher pressure value. So 

the impact of the solution flow rate has weak effect on the optical, structural and electrical 

properties at lower and higher pressure. Then, we observed that the optical band gap value Eg 

has less variation with solution flow rate increasing, whereas, the films processed at 0.5 up to 

1.5 bar the optical band gap were remained about 3.3965 to 3.3968 eV, and has been 

decreasing at 2 bat, to 3.394 with 300µl/min of solution flow rate. We conclude that there is a 

very important factor to get the best properties between pressure and solution flow rate , affect 

directly on the structural , optical and electrical characteristics, this brings us to choose an 

appropriateness solution flow rate value having an agreement to the deposition air pressure.  
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Chapter IV 

Effect of substrate temperature and dopants  

on ZnO properties deposited using utrasonic  spray 

pyrolysis 
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IV.1 Ultrasonic spray pyrolysis 

In this chapter of the study, we will deposit of zinc oxide thin films using the 

ultrasonic spray pyrolysis technique; in order to find out the impact of two diffrent doping of 

fluorine and aluminum and their concentrations and the influence of substrate temperature on 

the structural, optical and electrical properties. 

IV.1.1. Part one- Effect of substrate temperature  

IV.1.1.1.The growth rate calculation  

ZnO thin films with various thicknesses were deposited by varying the deposition 

temperature of spraying solution on glass substrates. Thicknesses of the ZnO thin films are 

computed from transmission data (see chapter II ). 

The calculation of growth rate of the film  were from the thickness values for 10 min of time 

of deposition process, where its variations with substrate temperature is shown in figure 4.1, 

from which it is seen that film growth of these films are between 4 nm and 8 nm.  

The expected reason for such behavior is the supply of more number of ingredient ions with 

increase in substrate temperature.   

 

 

Figure 4.1: The variation of growth rate of ZnO thin films 

deposited at different substrate temperatures. 
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IV.1.1.2.The crystalline structure of ZnO thin films  

The XRD patterns of ZnO thin films are presented in figure 4.2, Here the films were 

deposited on glass substrates at different substrate temperatures.  

 

 

Figure 4.2: XRD spectra of ZnO thin films deposited at different substrate temperatures. 
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Ranging between 250 
o
C and 500 

o
C in the scale of 50 

o
C. As can be seen, the diffraction 

peaks were observed at 2θ =32.0
o
, 34.6

o
, 36.5

o
 and 47.3

o
 which are related to the following 

plans (100), (002), (101) and (102), respectively. The obtained XRD spectra matched well 

with the space group P63mc (186) (No. 36–1451) of the wurtzite ZnO structure [1].  

From analysis data, all deposited films have different orientations of ZnO films, which were 

related to the higher and sharper diffraction peaks. Moreover, single significant (100) 

diffraction peak, with height intensity, was observed for deposited film at 250 
o
C, which 

indicates that the film has preferential a-axis orientation along the (100) plane. 

Whereas for other films, it was observed that (002) and (101) planes are prominent. So the 

films exhibit polycrystalline structure it is hexagonal wurtzite structure from these spectra [2]. 

In order to evaluate the preferred orientation of the ZnO films, we use the texture coefficient 

TC(hkl) which represents the texture of the particular plane, deviation of which from unity 

implies the preferred growth. The texture coefficient TC(hkl) can be calculated from the X-

ray data using the well-known formula of the intensity peaks corresponding to the (100), 

(002), (101) and (102) planes [3]: 

                                                 (   )  
 (   )   (   )⁄

   ∑  (   )   (   ) 
       (4.1) 

where I(hkl) is the measured relative intensity of a plane (hkl), I0(hkl) is the standard 

intensity of the plane (hkl) taken from the JCPDS data card 36–1451, N is the reflection 

number and n is the number of diffraction peaks. The texture coefficient related to the atomic 

densities corresponds to that plane as X-ray intensities, which correspond to planar densities. 

The evolution of TC(hkl) values of the four major peaks of the films is shown in figure 4.3 

and Table 4.1.  

 

 Figure 4.3: The texture coefficient TC(hkl) variation of (100),(002), (101) and (100) peaks 

with substrate temperatures of ZnO thin films. 
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One can observe that the texture coefficient of (100) peak decreases with increasing 

substrate temperature, whereas the texture coefficient of (002) and (101) peaks is highest in 

each temperature variation from 300 
o
C to 500 

o
C. The growth at 350 

o
C and 400 

o
C indicates 

that the films have preferential orientation along the (101) plane, the films deposited at 300 

o
C, 450 

o
C and 500 

o
C show that the texture coefficient of (002) is the highest one, which 

indicates that the films have preferential c-axis orientation along the (002) plane.  
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Table 4.1: The evolution of TC(hkl) values of the four major peaks. 
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This observation shows that the films have a high crystallinity with high temperature. 

The crystalline quality of thin films enhanced with increasing substrate temperature.  

The exact reason for this behavior of texture coefficient is decrease at (100) peak and 

increase at (002) and (101) peaks at 300 – 500 
o
C which could be understood as follows; it is 

a well-known fact that the various factors such as crystallinity and morphology, increase the 

texture coefficient of (002) and (101) which results in reduced planar densities on (100), as 

discussed with Othmane et all [4] this is an increase in film thickness of ZnO thin films. 

The variation of the crystallite size of the ZnO thin films with substrate temperature was 

calculated from the four diffraction peaks, using the full width at half maximum (FWHM) in 

conjunction with the Debye–Scherer formula. 

 

According to the hexagonal symmetry, the lattice constant can be calculated by the following 

formula: 

 

                                              (
 

 

        

  
 
  

  
)
 
 

 
         (4.2) 

 

 

Where a, c are the lattice parameters, (h, k, l) are the Miller indices of the planes and dhkl is 

the interplanar spacing.  

 

 Figure 4.4 presents the variation of crystallite size as a function of substrate 

temperatures. As can be seen, the crystallite sizes were varied in the range of 5.93–22.19nm 

(see Table 4.1). 

Upon approximation, the crystallite sizes of (100) and (102) plans are smaller than the 

others. It can be seen, that the crystallite sizes of (002) and (101) plans increase with 

increasing substrate temperature. 
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Figure 4.4: The variation of crystallite size G as a function of substrate temperatures, in the 

inset the variation of c - c0 of (002) peak. 

 

On the other hand, it can be noted that the optimal values of the average crystallite size of the 

ZnO films were obtained after increase of substrate temperature 350 
o
C. The inset of figure 

4.4 shows that the lattice constant c of ZnO thin films was approached to the lattice constant 

of bulk c0 indicating the strain is along the c-axis. The increase of the crystallite size has been 

indicated by the enhancement of the crystallinity and c-axis orientation of ZnO thin films, 

these phenomena were observed with [5]. 

IV.1.1.3.The microstructural and morphology properties 

Scanning electron microscopy analysis revealed that the structural properties of the 

ZnO thin films were found polycrystalline with a hexagonal wurtzite-type structure, as we can 

see from the images.  
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Figure  4.5 : The SEM micrograph of crystalline undoped ZnO thin film  deposited at 

differente substrate temperatures a : T=250°c, b : T=300°c, c : T=400°c, d : T=500°c.             

The accurate particle size and morphology of undoped ZnO were confirmed by 

Scanning electron microscopy SEM, where we can observe the morphology of highly 

crystalline of undoped ZnO nanoparticles. The SEM micrograph clearly showed 

nanostructural homogeneities and remarkably different morphologies of the undoped ZnO 

nanoparticles prepared by the ultrasonic spray pyrolysis technique.  
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The Scaning electron microscopy result showed the presence of conglomerate 

nanospheres with an average diameter of 10 –20 nm. Therefore, from these results we can 

only observe the rough morphology was found. 

IV.1.1.4.The optical properties of ZnO thin films 

The optical transmission of ZnO films was determined from the transmission 

measurement in the range of 300–1300 nm. Figure 4.6 shows the optical transmission of the 

ZnO thin films deposited at different substrate temperatures, where for the longer wavelengths 

(  > 400 nm) all the films become transparent. It is found that all the films show a high 

optical transmission, around 85%, in the visible region. Where the film exhibits significant 

oscillations in long wavelength, such oscillation may be due to the roughness of the top 

surface of ZnO film. Which can generate interference phenomenon, even with naked eye one 

can see that the ZnO lattice is very smooth. Then the transmission decreased because of the 

onset of fundamental absorption in the region between 370nm and 390nm as shown in the 

inset of figure 4.6, which shows a plot of (Ahν)
2
 versus photon energy hν. 

 

 

Figure 4.6: Transmission spectra of ZnO thin films for different  substrate temperatures, in the 

inset the typical variation of (Ahν)
2
 as a function of photon energy. 
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One can note that the effect of substrate temperatures is clearly observed in the layer 

quality such as in the average between 370 nm and 390 nm; a blue shift of the absorption edge 

was observed revealing Burstein–Moss [6]. As mentioned in the inset of figure 4.6, it was 

demonstrated by the decrease in the curve tendency with increasing temperatures. We can 

attribute this evolution to a change in the optical bandgap and the decrease in defects of the 

Urbach energy.  

Based on the transmittance spectra in figure 4.6, the optical bandgap Eg was obtained 

by extrapolating the linear portion of the plot (Ahν)
2
 versus (hν) to A =0 (see inset of figure 

4.6) according to the following equation [7]: 

                                                                                  (4.3) 

               (   )2   (    𝑔)          (4.4) 

Where A is the absorbance, d is the film thickness; T is the transmission spectra of thin films; 

α is the absorption coeffcient values; C is a constant,    is the photon energy and  𝑔 the 

bandgap energy of the semiconductor. The values of    and     are listed in table 4.1. 

On the other hand, we have used the Urbach energy (  ), which is related to the disorder in 

the film network, as it is expressed below [8]: 

                                                                    (     )         (4.5) 

Where    is a constant    is the photon energy and    is the Urbach energy, as presented in 

Table 4.1. 

 

Figure 4.7. The variation as a function of substrate temperatures the optical bandgap    and 

Urbach energy  . 
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As clearly seen in figure 4.7, the optical gap energy increases as a function of substrate 

temperatures, which can be explained by the Burstein–Moss effect, which causes the 

widening of the energy band (blueshift). This is the phenomenon that the fermi level merges 

into the conduction band with an increase in the carrier concentration.  

This can be explained by increasing the crystallite size (see figure 4.4), as reported in 

the literatures [1,9]. As can be seen in figure 4.7, a minimum Urbach energy was reached at 

longer temperatures due to the high crystallinity, which can be explained by the oxygen 

diffusion and is related to the approach of the lattice constant c of ZnO thin films of the lattice 

constant of bulk c0 (see inset of figure 4.4) [5,10]. 

Oxygen vacancies in crystal have important impacts on the electronic properties of 

ZnO. In the synthesis of ZnO thin film, we believe that after deposition of ZnO at a higher 

temperature, we introduce a less concentration of oxygen vacancies into ZnO successfully. At 

a higher temperature, ZnO exhibits a broadening of the bandgap (see figure 4.7). The loss of 

lattice oxygen atoms at a higher temperature weakens the Zn–O–Zn bonds, which can be the 

reason for lowering of O 1S binding energies and can explain the stability of Urbach energy at 

0.06meV. 

In figure 4.8, we present the description of the variation of Optical bandgap energy as 

a function of substrate temperature, which is related by the band tail width. The decreases in 

the disorder lead to increase of optical gap, because of the less concentration of oxygen 

vacancy. 

 

 

 

Figure 4.8: The description of the variation of optical band gap energy of ZnO thin films as a 

function of substrate temperature. 
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Bandgap broadening is important and advantageous for potential visible light 

photocatalytic applications involving metal oxide nanostructures. We can find a linear fitting 

for the proposed model to correlate the optical gap energy with Urbach energy for all 

substrate temperatures, the proposed model is expressed as (see Figure 4.9): 

 

                                                                                 (4.6) 

 

From figure 4.9, we found that the broadening of optical bandgap should be explained 

by the narrowing in the conduction band    and the valence band    which causes the motion 

of    upward and    downward. 

 

 

 

 

Figure 4.9: The correlation between optical band gap and Urbach energy of ZnO thin films. 

 

IV.1.1.5.The electrical conductivity of ZnO thin films 

Figure 4.10 shows the variation of electrical conductivity σ of ZnO films as a function 

of substrate temperatures. As it can be seen, for the small substrate temperature (T), the 

electrical conductivity of ZnO films was varied between 10
-3

 (Ωcm)
-1

 and 4  10
-3

 (Ω.cm)
-1

, 
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Figure 4.10: Variation of electrical conductivity σ of ZnO thin films with substrate 

temperature. 

 

Then increases from 3.87   10
-3

 (Ω.cm)
-1

 to 41.58 (Ω.cm)
-1

 with the increasing of substrate 

temperature from 350 
o
C to 500 

o
C (see table 4.1).  

 

Zaier et al [11]. studied the effect of substrate temperature on electrical and structural 

properties of ZnO films deposited by spray pyrolysis, and showed that the resistivity of ZnO 

films was decreased due to an increase in the regular sites of the Zn atoms in the film's 

network, which might be attributed to intrinsic donor defects such as donor vacancies and Zn 

interstitials and can also be due to increases in electron mobility. The increases in the 

electrical conductivity at longer temperatures are influenced by the oxygen diffusion with 

high crystallinity, which can be explained by decreasing of the potential barriers. This 

interpretation is consistent with the authors [12], who obtained similar results. This behavior 

is due to the increases of the crystallite size and less defects in the surface morphology of ZnO 

thin films. In order to increase the substrate temperatureto 700 
o
C the electrical conductivity 

of the film will increase until it reaches the optimum value.  
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IV.1.1.6.Conclusion 

In conclusion, highly transparent conductive ZnO thin films has been deposited on 

glass substrate by Ultrasonic spray at different substrate temperatures from of 250 
o
C to 500 

o
C. The crystalline structure, conductivity and optical properties were investigated.  

The DRX analyses indicated that ZnO films have polycrystalline nature and a hexagonal 

wurtzite structure with (100) and (002) preferential orientation corresponding to ZnO films 

was observed at high temperature.  

The optimal values of the average crystallite size of the ZnO films under consideration 

are observed beginning at 350 
o
C of substrate temperature. All films exhibit an average 

optical transparency of about 85% in the visible range. The shift of optical transmittance 

toward higher wavelength can be shown by the increase of bandgap energy from 3.245 eV to 

3.281 eV with increasing of substrate temperature of 250 
o
C to 500 

o
C. The observed Urbach 

energy of ZnO thin films decreases from 0.11311 eV to 0.04974 eV. At high temperature, the 

electrical conductivity of ZnO films was increased from 3.87×10
-3

 (Ω.cm)
-1

 to 41.58 (Ω.cm)
-1

 

with the increasing of substrate temperature from 350 
o
C to 500 

o
C. 
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IV.1.2.Part two - Effect of dopants on ZnO thin films 

Nowadays, the effect of several technological parameters (zinc source and 

concentration, dopant type and concentration, solvent, growth temperature, etc.) on the 

properties of sprayed ZnO films have been studied [13,14] to determine the optimal 

deposition conditions to obtain as high electrical conductivity and optical transparency as 

possible.  

Earlier studies have shown that the preferred crystallite orientation of intrinsic ZnO 

and flourine and aluminum-doped ZnO is along c-axis [15, 16,17] while the preferred 

crystallite orientation of indium-doped ZnO film is (101) plane parallel to the substrate 

[18,16,19]. The use of F or Al as a dopant leads to smaller grains than the use of In as a 

dopant [13, 18, 16]. Additionally, the density and the optical transmittance of sprayed ZnO 

film is controlled by the dopant type and concentration [18]. It has been reported that an 

optimal growth temperature for sprayed ZnO films is in the range of 350–500°C. Independent 

of dopant, the optical transmittance is about 85% [18, 16,  20, 21] while the lowest 

resistivities of sprayed indium-doped and gallium-doped ZnO thin films are in the order of  

8×10
-4

 Ω.cm [20, 22] and in the order of 10
-3

 Ωcm for aluminum-doped ZnO [21]. 

Among mentioned technological parameters, the solution spray rate (or solution flow 

rate) and its effect on ZnO thin films have received little attention. Ebothé et al. [14]. 

Recently, we showed that the electrical resistivity of chemically sprayed In-doped ZnO thin 

films grown at 400°C can be altered within an interval of  10
-2

 – 10
-3

 Ω.cm by varying the 

solution spray rate [19]. In this study we will not focus on obtaining the highest electrical 

conductivity or optical transmittance; we study the effect of the concentration rate of dopant 

on the structural, morphological, optical, and electrical properties of ZnO:Al and ZnO:F thin 

films deposited by ultrasonic spray pyrolysis. The aim is to find the optimal concentration rate 

to deposit transparent and conductive AZO, FZO thin films. The experimental set-up has been 

previously described in chapter II. 
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IV.1.2.1.Effect of Aluminum doping on ZnO thin films 

Many factors strongly influence both the physical and chemical properties of ZnO 

films, such as the type of doping, film thickness, substrate type and the growth temperature. 

Recently, several studies have focused on the influence of doping levels on the 

electrical properties of the films [23]. More recently, Doped ZnO films revealed electrical and 

optical properties similar to indium tin oxide (ITO) films. However, they take more 

advantages than ITO due to good stability at high temperatures and lower cost to manufacture 

[24]. 

In our work, ZnO: Al films have been studied for looking at the influence of the Al 

doping concentrations on the optical, structural and electrical properties. 

 

IV.1.2.1.1.Thickness calculation  

From transmission spectrum the thicknesses of aluminum doping ZnO thin films are 

observed between 160 nm and 550 nm. It is clear that the concentration of aluminum doping 

has a strong effect on the increment of thickness, whereas taking a highest value 554,78 nm at 

5 at% of aluminum doping, due to the increment in the concentration of aluminum that leads 

the increasing in Al ions [25].  
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Figure 4.11: The thickness variation and deposition rate  graph of ZnO: Al. 
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after that, the figure shows film thickness decrease as the aluminum doping increase, we can 

explain this by increasing the grain size obtained gradually decreased (see figure 4.11), which 

return into two possible reasons:  the disturbance of grain growth due to the difference in ion 

radius between zinc and aluminum or the increasing number of nucleation leading to the 

formation of small grains during incorporation of the dopant into the host material [26].  

 

IV.1.2.1.2.The crystalline structure of ZnO: Al thin films  

The crystal structure and crystallinity of the prepared AZO thin films were 

characterized by X-ray diffraction (XRD) with CuKα radiation (k = 0.154056 nm). Figure 

4.12 shows the XRD spectra of the AZO samples at different concentrations of Al. The 

spectra showed very sharp diffraction peaks that indicate high crystallinity [27], The sharp 

diffraction peaks corresponding to (100), (002) and (101) planes indicate the crystalline ZnO 

with hexagonal wurtzite structure, which are in close agreement with the standard card 

(JCPDS Code No. 36-1451). Whole of AZO thin films exhibited an intensive hexagonal ZnO 

(002) plane. Though, the apearance of any secondary phase means a decrease on the 

diffraction peak intensity of Al doped ZnO thin films. As the Al concentration rate increases 

the intensity of diffraction peaks decrease profoundly and this may be attributed to the 

defects of the crystalline structure due to the incorporation of aluminum, However, the peaks 

intensity decreased with the further increase in Al doping concentrations except the (002) 

diffraction  peack is going optimum compare the others, where It is clear from the XRD 

pattern that, when the Al doping level increases the orientation of ZnO thin films changes 

from (101) reflection peack to (002) peack, The intensive diffraction from (002) plane 

indicate that the growth direction of Al doped ZnO thin films is oriented along c-axis. The 

similar observation has been indicated by many authors [28, 29].   
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Figure 4.12: Evolution of the X-ray diffraction spectra of ZnO thin films as a function of Al 

doping rate. 
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The redirection of the reflection peak from (101) to (002) peack causes by increasing 

of the stress in the lattice. When we know, that the ion size differences between Al
3+

 (0.054 

nm) and  Zn
2+

 (0.060 nm), this phenomenon was expected [30]. As well as the formation, 

separation or segregation of aluminum in the grain boundaries at higher doping 

concentrations [31]. 

The average crystallite size of undoped and ZnO doped thin films is showing in figure 

4.13 with Al atomic concentration from 0 at% to 8 at%, and are estimated using Scherre’s 

formula. 

Improvement of structural quality of the AZO thin film reached on the lowest value 

of the full width at half maximum (FWHM) of the (002) peak, the grain size of the films are 

increased with the increasing in doping atomic percentage of Al up to 5 at% where it take a 

high value of 35.80 nm, and when the Al concentrations are lower than 5 at%, we observed 

that the grain size decreased, indicating thereby that the number of the crystal depends on the 

microstress within  crystallite size [32]. 
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Figure 4.13: The variation of grain size and (002)  peak intensity of ZnO doped Al thin films. 
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The corresponding (002) peak location, full width at half maximum of X-ray 

diffraction spectra, stress and crystallite size are listed in Table 4.2. 

Table 4.2: Results of ZnO doped deposited with different Aluminum rates.    

Doping 

Al 

(at%) 

FWHM 

 

(°) 

2 θhkl 

 

(°) 

Grain size 

 

(nm) 

Plane 

 

(hkl) 

stress 

 

(GPa) 

1 0,41373 34,88 20,490 002 -2,565 

2 0,384 35,12 22,091 002 -1,33 

3 0,25827 35,12 32,845 002 -1,05 

4 0,2419 34,88 34.125 002 -1,565 

5 0,23692 35,12 35,805 002 -1,002 

6 0,27637 35,12 30,694 002 -1,03 

7 0,29299 35,12 28,953 002 -1,15 

8 0,37394 35,12 22,685 002 -1,036 

 

the grain size of our  AZO thin films is found to decrease due to the grain growth during 

processing is blocked by resistance of the motion of the grain boundaries via the secondary 

phases, Al2O3, which should have occurred at high doping  of  Al. When the motion of the 

grain boundaries are prevented by secondary phase, they give a retarding force on the 

boundaries and this force resist the driving force of grain growth hence the crystallite size gets 

decreased [33].  

And this what the curve of the stress described (figure 4.14), as well from figure of X-

ray diffraction we observed that there is a variation of the position of (002) peak from 34.88
o
 

to 35.12
o
. 
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Figure 4.14: The variation of stress and (002) peak position of ZnO doped with different Al 

concentrations. 

Which means and confirms that stresses of our Zinc oxide thin films are compressive 

stress, those stress are defined to be  which grow through the deposition process, many 

mechanisms generating compressive stress result in a variation in quantity that  produce 

stresses due to the force of the substrate or other layers [34], the latest affect directly on the 

grain size; where the grain edges and their increasing  leading increasing compressive stress 

this what being clear in the Al doping rate up to 5at%.  Moreover, the XRD patterns show 

clearly that the secondary phase of Aluminum Al2O3 be occur among grain edges towards the 

(110) orientation, which may be the cause of increase in the stresses depending on the 

Aluminum concentrations [5]. 

IV.1.2.1.3.The microstructural and morphology properties 

Scanning electron microscopy analysis revealed that the structural properties of the 

AZO films were found polycrystalline with a hexagonal wurtzite-type structure. The  

Morphologies of ZnO thin films prepared with different doping concentration of 

Aluminum from 1 to 8 at% aluminum are shown in Figures 4.15: A.B. 
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Figure 4.15.A:  SEM images at level of 1 µm for ZnO doped Al from 1at% to 8at% respectively. 
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Figure 4.15.B:  SEM images at level of 100nm for ZnO doped Al from 1at% to 8at% respectively. 
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These SEM images show that the surface morphology of the films is strongly 

dependent on the doping rate of aluminum.Films exhibit a granular surface morphology with 

a grain size notoriously increase and dense microstructure are observed in Figure.4.15(A,B) 

for the whole of ZnO thin films. In addition to that the pyramid-shaped grains were observed  

at  aluminum concentration rate of 2 at% and 3at%, When the doping concentration is 1 at%, 

6 at%, 7at% and 8at% the films exhibit a dense microstructure and the spherical crystalline 

particle size is approximately 20 nm; whereas the particle size decreases lead  the films 

become denser. The surface morphology of 5at% and 6at% doped films are similar with 

average of particle size of about 30 nm, however the difference in the surface morphology 

may be due to a high difference in ionic radius between zinc and aluminum [35]. 

 

Nevertheless, we can see that the increase of the number of the spherical like features 

is obvious from 1 to 8 at% of aluminum doping rate, except at 4at%, 5at% and 6at% of 

aluminum doping. In the three cases, the results can be return to two reasons the first one due 

to the different spherical like features ZnO with different diameters have been reported [36], 

sconde one  the increment in particle size  due to the formation of stress resulting from a high 

difference in ionic radius between aluminum (0.057 nm) and zinc (0.074 nm) [35]. 

SEM micrographs of the surfaces for foursamples of AZO thin films and the Energy 

X-ray Dispersive Spectroscopy (EDS) spectra of their chemical composition are shown in 

following Figure 4.16. 

The aim from using this technique (EDS) is a confirmation of the existence of Al. 

Where, All spectra show the presence of this element from doping, where has been an 

increase in the percentage of Al with increasing doping rate.  

However in the surface of the films EDS analysis showed that these particles have the 

same composition, as well as the presence of such particles contributes to the increase of the 

roughness of the film surfaces. 
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Figure 4.16: Energy X-ray Dispersive Spectroscopy spectra of  four samples of AZO 
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IV.1.2.1.4.The optical properties of ZnO: Al thin films 

The optical transparency of the ZnO: Al thin film is one of the important factors which 

need to be taken into consideration for a better TCO. The percentage of transmission is 

measured using UV-Vis Spectrophotometer. 
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Figure 4.17: Variation of the transmittance of the ZnO films doped with Al  depending on the 

wavelength. 

 The transmittance spectrum of undoped – doped ZnO thin films in the wavelength 

range 300-1000 nm are shown in the figure 4.17, optical properties of the zin oxide thin films 

were studied with the help of transmission spectrum in the UV-visible region. The spectrum 

shows a maximum transparency  bigger than 80% at wavelength about 600 nm and 75% at 

wavelength about 500 nm for undoped ZnO and ZnO doped with Al percentage of 2 at%. 

From  the transmittance spectrum we observed that the transparency of our AZO thin films 
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was reduced, with increaring Al doping, that can be explained by existence of Al atoms 

among grain boundaries, which prevent of grain growth size for extensively, that leads to 

diminish of the crystallinity growth [33]. 

   Based on the location of the absorption edge of about 350 to 400 nm, the optical 

energy gaps appeared in the range from 3.27 to 3.38 eV for ZnO and the AZO thin films.  
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Figure 4.18: The variation of optical  band gap of ZnO doped with different Al 

concentrations. 

At first the energy gap Eg increased when the Al concentration was increased up to 5 

at% then decreased when the Al doping was more than 5 at%, this result has been indicated 

by other authors [37, 38]. 

The variation of direct band gap for different Al doping concentration was shown in 

figure 4.18, and  from the curve the increment in band gap was observed, when the 

concentration was changed from 1 to 5 at%, this result might be due to the effect of energy 

gap widening, which is apeared the shifts of the optical band gap to 3.39 eV, this can be 

explained by the effect of  Burstein-Moss, which is occured during the Al doping of ZnO 

because the aluminum atoms replaced Zn in the ZnO lattice. The aluminum atoms behave as 

donor ions, where provide one extra electron, this electron occupied the bottom of the 

conduction band. Thus, the number of electrons increased as the doping concentration was 

increased; thereby the optical band gap become wider [39].  
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IV.1.2.1.5.The electrical conductivity of ZnO :Al thin films 

 The deposited ZnO: Al thin films as described above are measured for the sheet 

resistance using 4-probe measurement device. Later, the conductivity of the material is 

calculated.  
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Figure 4.19: The variation of electrical conductivity of ZnO doped at different Al 

concentrations. 

Many various applications in transparent conducting films required that electrical 

conductivity should be as high as possible. This is particularly important for solar cell 

applications because high optical transmission in the visible region enhances the 

photogenerated current and low sheet resistance reduces the series resistance of the cell, but in 

many applications of transparent conductive films either the electrical or optical properties are 

more critical [40]. 

Figure 4.19 shows the change in the electrical conductivity of undoped ZnO and 

doping with aluminum for (1 to 8 at%). The effect of Aluminum doping on the electrical 

conductivity was obtained at differents doping percentages and it was shown in figure 4.19 

that doping had a significant effect of the electrical conductivity of ZnO doped with 

aluminum. in our experiments ZnO films showed that the electrical conductivity increase with 

increasing the concentration of Al  in ZnO thin films, where at 5at% of Al doped ZnO showed 

4.31×10
2
 (Ω.cm)

-1
.  
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The increase in conductivity with Al doping is due to the fact that Al
+3

 going into Zn
+2

 

sites will have one extra electron and these electrons were used as conduction electrons 

[13,41]. where the aluminum atoms compensate the Zn locations in the Alzn lattice acting as 

donors as shown in the following formula: 

 

                                                 Al 
3+

                       Al 
2+

 +  e 

 

Al
2+

 occupies the locations in the ZnO lattice and (e) the free electrons that participate in 

electrical conductivity. When doping with aluminum from percentages of 1at% to 5at% there 

was an increase in the electrons with the increase in the values of mobility ; The results 

indicate that the increase in the percentages of Al doping to 5 at%  has lead to the increase in 

the donor levels and which in turn led to an increase in the number of atoms that donate 

electrons and become ions, the value of electric conductivity of thin films is changed from 

0.60×10
2
 (Ω·cm)

-1
 for ZnO undoped  to 4.31×10

2
 (Ω·cm)

-1 ; in case of ZnO doped with 5 at%. 

And if the percentage of Al doping is more than 6 at%, the crystallite size became smaller, 

with increasing Al contents, this results an increasing the grain boundaries, which makes the 

structure more deteriorated, and then the electrical conductivity go to the lowest values [39].    

 

IV.1.2.1.6.Conclusion 

 

Al-doped ZnO (AZO) thin films were deposited on glass substrates; the influence of 

the doping level of the ZnO: Al films were investigated. The results of  X-ray diffraction and 

scanning electron microscopy analysis revealed that the structural properties of the AZO films 

were found polycrystalline with a hexagonal wurtzite-type structure along the (002) plane. 

The grain size of the AZO films was observed as approximately 30 nm in the film doping 

with 5 at% ZnO :Al concentration. The thin films also exhibited an optical transmittance as 

high as 85% in the wavelength range of 350 – 1000 nm. There is a diminish in the optical 

band gap from 3. 38 to 3. 27 eV. Based of four probes studies, the lowest resistivity (2.32 × 

10
-3

 Ω.cm) was observed for the film doping with 5 at% ZnO: Al concentration. These  results 

showed improvements in the properties of AZO thin films.
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IV.1.2.2.Effect of fluorine doping on ZnO thin films 

A renewed interest in the study of zinc oxide thin films exists due to the simultaneous 

properties of low resistivity and high transmittance besides chemical stability under strong 

reducing environments. Despite the extensive investigations on this material, there are still 

some unknown points related with the effect of fluorine doping in the transport, structural and 

electrical properties. 

The case of fluorine doped ZnO thin films is an example for this. Apart from the 

academic interest, the fluorine doping has several potential advantages over the well-known 

and successful In-doping, such as low cost and abundance. More over fluorine does not 

introduce significant perturbation into the conduction band, due to the size compatibility of 

the oxygen and fluorine atoms. 

 
IV.1.2.2.1.Thickness calculaion 

 

The Thickness of thin films, has varied clearly, with the flourine doping concentration 

as shown in figure 4.20. When  there is an increasing  with increasing of flourine presentaion 

in the films up to 467,57 nm then decreasing to the lowest value 170,43 nm at maximum 

flourine doping rate. 

 

0 1 2 3 4 5

100

150

200

250

300

350

400

450

500
 thickness

 deposition rate

Fluorine doping rate (at%)

T
h
ic

k
n

e
s
s
 (

n
m

)

10

15

20

25

30

35

40

45

50

55

60

D
e

p
o
s
it
io

n
 r

a
te

 (
n
m

/m
in

)

 

Figure 4.20: The variation of thickness and deposition rate graph of ZnO: F. 
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Probably, the substutation of fluorine atoms in  the Zinc atoms sites initially, this leads 

an increase in film thickness and that means the film growth remains towards a c-axis 

perpendicular to the substrate (this obvious in the X-ray spectra), and may be the substrate 

temperature afficiency at  substrate surface with the lowest fluorine doping percentage, and 

thereby  favorable  growth occur, then the extent of non-stoichiometry occur on the top of the 

films, which makes random growth  of the films [42], which leading the films thickness  into  

the lowest value (170,43 nm) when the fluorine concentration is more than 4 at%. 

IV.1.2.2.2.The crystalline structure of ZnO:F thin films 

 
X-ray diffraction patterns are used to study the crystal structure and orientation of 

undoped and fluorine doped ZnO thin films. Figure 4.21 depicts the X ray diffraction pattern 

for ZnO: F thin films: 

All the peaks correspond to the hexagonal wurtzite structure of ZnO. For undoped 

ZnO and fluorine doped ZnO films, the dominant diffraction peak at around  2θ = 34.50° and 

is very close to the standard bulk ZnO crystal, that means 2θ value is not much changed with 

the doping concentration of fluorine, similar struture has also observed by Maldonado et al  

using spray pyrolysis method [43], taking into consideration the preferential growth shown in 

figure 4.21, it can be concluded that fluorine incorporation in the ZnO thin films with F
-1

 are 

substituted at O
-2

 sites without changing the ZnO structure as also reported by A. Sanchez-

Juarez et al [44] using chemical spray pyrolysis and H.Liang et all [45] by chemical vapor 

deposition technique. 

 



Chapter IV Results And Discussion                                                                                 Effect Of Fluorine Doping 

105 
 

0 30 60 90
0

38

76

114

0

38

76

114

0

38

76

114

0

38

76

114

0

38

76

114

0

38

76

114

0 30 60 90

(002)

 

2(deg)

 undoped

(002)
 

 1at%

(002)

 

in
te

n
s
it
y
 (

a
,u

)

 2at%

 

 3at%
(002)

(002)

 

 4at%

(002)

 

 5at%

 

Figure 4.21: X-ray diffraction patterns for undoped ZnO and ZnO doped with different 

fluorine concentrations. 
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Whole of ZnO doped fluorine films show preferential growth along (002) diffraction 

plane irrespective of the doping concentration. At initial stage, the intensity of (002) peak was 

increased with F doping, reached to its optimum value for 2 at% and then suppressed for 

excess F doping, this indicates, on one hand, that fluorine doping deteriorated the crystallinity 

of ZnO thin films causing to be incorporated at the grain boundaries or at the film surface, the 

same results of deterioration in crystallinity with increase in F content observed by S. Ilican 

[46] above 10% of doping volume proportions prepared by sol gel method and B. N. Pawar 

[47] observed the similar above 4 at% doping, on the other hand, by the substitution process 

of  O by F species and this process could only be partial leading to the formation of a specific 

configuration like ZnF
x
O

1-x 
[48], this could be the reason for reduced intensity of XRD peak 

of ZnO: F thin films. 

The average sizes of crystallites (G) were calculated from the full width at half 

maximum (FWHM) of the diffraction peaks from the (002) plane of the films with the help of 

Scherrer formula [49] (see chapter III).  
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Figure 4.22:  The average of crystallite size and peak intensity of FZO thin films. 

 

The average crystallite size is between 23 and 58 nm were calculated for the fluorine 

doped ZnO thin films. It was found that the grain size of the FZO thin films increased with 
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increasing the concentration of the fluorine percentage, where take up to the highest value of 

58,81 nm at  2 at%, and return to decrease this is obviously in figure 4.22. 

Another important observation which is on the position corresponding of (002) peak, as we 

can see in the Table 4.3  where the diffraction peak was slightly shifted to lower 2θ values, 

34.54
 o

 to 34.78
o
 at very high doping concentrations as shown in figure 4.23, while it 

remained unaffected at lower concentration. 

Table 4.3: Results of doped ZnO deposited with different fluorine rates.    

Doping 

F 

(at%) 

FWHM 

 
 

        (°) 

2 θhkl 

 

 

(°) 

Grain size 

 
 

(nm) 

Plane 

 
 

(hkl) 

stress  

 
 

(GPa) 

0 0,236 34,540 35,85 002 -0,991 

1 0,18 34,785 47,08 002 -4,246 

2 0,144 34,558 58,81 002 -1,234 

3 0,216 34,530 39,20 002 -0,868 

4 0,288 34,501 29,40 002 -0,502 

5 0,3542 34,593 23,914 002 -1,686 
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Figure 4.23: The variation of stress in ZnO thin film doped with different fluorine 

concentrations. 
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This variation of position of the diffraction peak is corresponding with increasing of 

lattice strain values from 0,50  to  4.24  GPa ( see figure 4.23) along c-axis was also observed. 

The increase in lattice strain may be due to the increase in interstitial fluorine atoms at higher 

doping concentrations. 

IV.1.2.2.3.The optical properties of ZnO: F thin films 

Optical transmission spectra were recorded in the wavelength range 300-1000 nm 

from the figure 4.24, the transmission spectra as a function of the wavelength of the pure ZnO 

films and the ZnO films doped with (1, 2, 3, 4, 5%) fluorine, in the visible region with 

oscillations due to interference fringe pattern in transmission spectrum. This revealed the 

smooth reflecting surfaces of the film and there was not much scattering loss at the surface. 

Interestingly, ZnO doped fluorine 5 at% and undoped ZnO samples exhibited the highest 

optical transmission in the visible region, and this due to the increase in the concentration of 

doping fluorine which is improve the crystal structure. However, which the energy of the 

incident photon is low and the (ZnO:F) film is transparent to this range and the absorption is 

lowest.  
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   Figure 4.24: Transmission spectra of the pure ZnO thin films and the ZnO films doped with 

1, 2, 3, 4 and 5% of fluorine concentrations. 



Chapter IV Results And Discussion                                                                                 Effect Of Fluorine Doping 

109 
 

We can see from the figure 4.24 that the increase in the percentage of fluorine added to the 

ZnO leads to the shift in the absorption towards the short wavelengths, a shift that is termed 

(Burstein-Moss) shift. This type of shift leads to an increase in the optical energy gap, the 

decrease of wave length, optical spectrum radiation, which indicates that these films have 

large energy gap to allow most of the visible light to pass. The results show that the 

transmittance is higher than 92 % in all thin films. 

The optical energy gap (Eg) is defined as the lowest energy required for the electron to 

travel from the peak of the valence band to the peak of conduction band.  

Optical band gap was determined from the plot of (αhν)
2 

vs hν, the following figure is 

showing the evaluation of energy band gap of FZO thin films: 
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Figure 4.25: Optical band gap graph of ZnO: F 

The variations of the optical energy gap the band gap energy values (Eg) slightly 

decreases while the concentration of doping increased from 2 to 5 at%, generally, it can be 

stated that the reduced band gap energy of FZO may be due to the extent of non-stoichiometry 

of the deposited thin films [42] .   

IV.1.2.2.4.The electrical conductivity of ZnO:F thin films 

To characterise the electrical properties of the thin films, at room temperature were 

employed, figure 4.27  presents the electrical behavior of the thin films as a function of the 

fluorine content, where we can observed that the highest electrical condutivity was achvieved 
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with the fluorine concentration of  5 at% correspoding to a resistivity of 5,9×10
-3

 Ω.cm, The 

improvement in the electrical properties is attributed to the ionic radius of F (1.36 Å) is 

slightly lower than that of O
2−

 (1.40 Å). 
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Figure 4.26: The variation of electrical conductivity with atomic doping rate of fluorine. 

 

So when the fluorine atoms replace of oxygen provide one free electron/ molecule, 

therefore the hybrid orbital configuration of fluorine is 2S
2
2P

5 
and oxygen is  2S

2
2P

4 
, so the 

fluorine atoms are more electronegative than the oxygen atoms, therefore the fluorine 

substitutes the oxygen sites more easily. That means a higher carrier concentration occur.  

This behavior of doping in our ZnO thin films, suggesting that the electrical resistivity related 

inversely to the concentration of the fluorine [50]. 

 

IV.1.2.2.5.Conclusion 

It is clear that, the effect of fluorine doping ZnO thin films on the structural, electrical, 

and optical properties is slightly obvious after our study. Where the FZO films deposited at 

different percentage of fluorine then characterized using a various methods.  

The results of X-ray diffraction showed that FZO thin films have peaks correspond to 

the hexagonal wurtzite structure of ZnO. Where  the intence diffraction peak  is around    2θ 

=34.50° and is very close to the standard bulk ZnO crystal, that means 2θ value is not much 
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changed with the doping concentration of fluorine, after 2 at% of fluorine the grain 

size grows and surface becomes denser for all FZO films, the stuctural properties bring us to 

mentioned the electrical conductivity,  we observed that,  it has an increment as the fluorine 

doping increases, where took a highest value 1,68×10
2 
 (Ω.cm )

-1 at doping with 5 at%. 
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General Conclusion and perspectives 

 

In this work we have demonstrated  the existence  of the common  features  of the 

growth  of undoped  and  doped  ZnO  by  two kinds of spray  pyrolysis, our results were 

devided into two types the fisrt from the pneumatic spray pyrolysis the second from the 

ultrasonic spray pyrolysis technique, where we have studied the effect of pressure and its 

relation with variation of solution  flow rate on Structural, optical and electrical properties of 

undoped  ZnO thin films deposited using pneumatic spray pyrolysis. We conclude the 

properties become worse when the flow rate value is above 200 µl/min. and when the solution 

flow rate is bigger than 200 µl/min, we have observed that the solution flow rate value is more 

effective at low deposition pressure. And The X-ray diffraction spectrum indicated that the 

films were crystalline with hexagonal structure with the only diffraction peak. However, at 

lower pressure we estimate that highest transparance indicated about 95%. And the (002) 

diffraction peak was going to high intensity, with low solution flow rate, compare with higher 

pressure value. 

In the other side of this thesis, thin films of undoped and doped zinc oxide were 

investigated using the ultrasonic spray pyrolysis, where we observed that undoped ZnO thin 

films have polycrystalline nature and hexagonal wurtzite structure with (100) and (002) 

preferential orientation at high substrate temperature, and all the thin films showed an average 

of optical transparency   of about 85 in the visible range, then the increase of the optical band 

gap from the 3.24 eV to 3.28 eV lead a shift in the optical transmittance to highest value ,that 

when the substrate temperature increasing from 250 
o
C to 500

o
C, also we can observe, that 

there is an increment on the electrical conductivity of ZnO films was from 3.87×10
-3

 (Ω.cm)
-1

 

to 41.58 (Ω.cm)
-1

 when the  substrate temperature increased from 350 
o
C to 500 

o
C. As for the 

other process when ZnO thin films are doped with aliminium and fluorine by ultrasonic spray 

pyrolysis, its clear that the effect of fluorine is slightly obvious on the ZnO thin films 

properties, compare  to the ZnO doped by aliminium , where whole of AZO thin films were 

polycrystalline with a peaks (002) correspond to the hexagonal wurtzite stucture, with 

diffraction peak of about 34
o
 on X-ray diffraction results, also when Aliminiume 

concentration rate was 5 at%, we observed that all of AZO thin films have a high optical 

transmittance bigger than 85% with  crystal size of about 3.5 µm; that lead us to speech on 

electrical resistivity,where we observed a decrease on its value as the alimniume doping 

increase, whereas it has the lowest value 2.32×10
-3

(Ω.cm) at 5at% of aluminum concentration. 
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However, as we mentioned in chapter III, the influence of the doping level of the 

ZnO:F films was investigated also, using ultrasonic spray pyrolysis technique . the results 

were maybe slightly different ; where as X-ray diffraction  revealed that the structural of FZO 

thin films was hexagonal wurtzite towards (002) peak, and after 2 at% the crystal size was 

growing to make the surface of FZO thin film more denser, also FZO have exhibited an 

optical transmittance  as high as 90% in the wavelength range of UV-VIS, the electrical 

conductivity has increased as the concentration rate of fluorine on the ZnO films increased, 

until to the highest value of 1,68×10
2
  (Ω.cm )

-1
 at 5 at%.  

In  the  early  part  of the  work effort  was  concentrated  on  an  extensive  investigation  of 

the  growth  and  properties  of undoped films  grown from  Zn acetate  under a  wide  range 

of conditions, deposited using pneumatic spray pyrolysis.  The effects of variety in the 

solution flow rate as well as the deposition pressure were then examined and the solution flow 

rate proved to be the most effective at lower pressures. Also the highest conductivity value of 

ZnO thin films prepared using ultrasonic spray pyrolysis were at highest substrate 

temperatures.  

At the end we conclude that there is a very important factor to get the best properties 

between dopeds and doping rate, affect directly on the structural, optical and electrical 

characteristics, this brings us to choose an appropriate concentration rate values. However, 

based to our results AL or F Doped ZnO films have similar electrical and optical properties 

and they have more advantages than the other due to good stability at high temperatures and 

lower cost to manufacture. 

 

 

 

 

 

 

 

 



 

 
 

Abstract: 

     In our study we were deposited a transparent oxide conducting thin films by two different 

methods the first one is the pneumatic spray pyrolysis and the second one is the ultrasonic 

spray pyrolysis, for investigating on five factors and thier effect on zinc oxide thin films 

characteristics. In  the pneumatic spray pyrolysis we have deposited  undoped zinc oxide thin 

films for checking on the effect of spraying flow rate and the deposition air pressure. In  the 

ultrasonic spray pyrolysis we have divided our study into two parts the first was for studying 

the effect of substrate temperature  on the undoped zinc oxide thin films properties the second 

part was for studying how much the extent of the dopants effect aluminum and fluorine on the 

zinc oxide thin films. The  whole of the zinc oxide thin films were analyzed by many different 

techniques  X-ray diffraction, scanning electron microscopy UV-Vis,  Hall effect, four and 

two probes technique. in the pneumatic spray method we have observed that the films the 

films processed at 0.5 up to 1.5 bar showed optical band gap of  about 3.3965 with electrical 

conductivity of 0.9×10
3
 (Ω.cm)

-1
, The X-ray diffraction spectrum indicated that the films 

were crystalline with hexagonal structure with the only diffraction peak (002).We conclude 

that there is a very important factor to get the best properties between deposition air pressure 

and solution flow rate. In  the second part we observed that the appropriate substrate 

temperature is 350° for getting good reaction on top of the substrate, in addition to that  the 

XRD patterns showed that the ZnO films have polycrystalline nature and a hexagonal 

wurtzite structure with (100) and (002) preferential orientation at high temperature, where the 

electrical conductivity of ZnO films was increased from 3.87×10
-3

 (Ω.cm)-1 to41.58 (Ω.cm)
-1

. 

As well in the study of  aluminum doping ZnO, the X-ray diffraction and SEM analysis 

exhibited that the AZO films were found polycrystalline structure with a hexagonal wurtzite 

structure along the (002) growth orientation, moreover  there is a decreasing in the optical 

band gap from 3. 38 to 3. 27  eV, the lowest resistivity (2.32 × 10
-3

 Ω.cm) was observed for 

AZO films processing with 5 at% ratio. In addition  the effect of fluorine doping on  ZnO thin 

films properties is obvious in our study. Where the FZO films  showed that the films have 

peaks correspond to the hexagonal wurtzite structure of ZnO. Where  the intense diffraction 

peak  is  the (002),the whole of FZO films become denser after 2 at% of fluorine, in the 

electrical study,  we observed that, the electrical conductivity increasing as the fluorine 

doping increases, where the highest value is 1,68×102  (Ω.cm )
-1

 at 5 at% of fluorine doping. 

 

 



 

 
 

Résumé 

     Dans notre étude, nous avons déposé un film transparent d'oxyde transparent par deux 

méthodes différentes, la première est la pyrolyse par pulvérisation pneumatique et la seconde 

est la pyrolyse par pulvérisation ultrasonique, pour étudier cinq facteurs et leurs effets sur les 

caractéristiques des couches minces d'oxyde de zinc. Dans la pyrolyse par pulvérisation 

pneumatique, nous avons déposé des films minces d'oxyde de zinc non dopés pour vérifier 

l'effet du débit de pulvérisation et de la pression de l'air de dépôt. Dans la pyrolyse par 

pulvérisation ultrasonique, nous avons divisé notre étude en deux parties. La première était 

d'étudier les effets de la température du substrat sur les propriétés des films minces d'oxyde de 

zinc non dopé et d'étudier l'effet des dopants en aluminium et en le fluor sur des films minces 

d'oxyde de zinc. L'ensemble des films minces d'oxyde de zinc a été analysé par de 

nombreuses techniques : la diffraction des rayons X, la microscopie électronique à balayage 

UV-Vis, l'effet Hall, la technique à quatre et deux pointes. Dans le procédé de pulvérisation 

pneumatique, nous avons observé que les films déposés à 0,5 jusqu'à 1,5 bar présentés une 

bande interdite d'environ 3,369 eV avec une conductivité électrique de 0,9 × 10
3
 (Ω.cm)

-1
. Le 

spectre de diffraction des rayons X indiquait que les films étaient cristallins avec une structure 

hexagonale avec le seul pic de diffraction (002). Nous concluons qu'il existe un facteur très 

important pour obtenir les meilleures propriétés entre la pression de l'air de dépôt et le débit 

de la solution. Dans la deuxième partie, nous avons observé que la température du substrat 

était de 350 °C pour obtenir de bonne réaction sur le substrat, en plus que les diagrammes 

XRD montraient que les films ZnO avaient une nature polycristalline et une structure wurtzite 

hexagonale d’orientation préférentielle avec (100) et ( 002) à haute température, où la 

conductivité électrique des films ZnO est passée de 3,87 × 10
-3

 (Ω.cm)
-1

 à 41,58 (Ω.cm)
-1

. 

Ainsi  que dans l'étude du dopage avec de l'aluminium ZnO, la diffraction des rayons X et 

l'analyse MEB ont montré que les films AZO sont été cristallisés en structure polycristalline 

avec une structure wurtzite hexagonale selon  l'orientation de croissance (002), en outre il y a 

une diminution de la bande interdite de 3. 38 à  3. 27 eV, le plus faible une résistivité (2,32 x 

10
-3

 Ω.cm) a été observée pour les films AZO avec 5 at%. En outre, l'effet du dopage au 

fluorine sur les propriétés des couches minces de ZnO est évident dans notre étude. Les films 

FZO ont montré que les films ont des pics qui correspondent à la structure wurtzite 

hexagonale de ZnO. Là où le pic de diffraction est le (002), l'ensemble des films FZO se 

densifient après 2% atomique de fluorine. Dans l'étude électrique, on observe que la 

conductivité électrique augmente lorsque le dopage augmente, 1.68 × 10
2
 (Ω.cm)

-1
 à 5at% de 

dopage au fluorine. 



 

 
 

 ملخص

 ثبٌشش اٌحشاسٞ الأحلاي ٘ٛ أٌّٚٙب ، ِخزٍفز١ٓ ثطش٠مز١ٓ شفبف ٔبلً اٌشل١مخ  لأوس١ذ الأغش١خ لّٕب ثإ٠ذاع  دساسزٕب فٟ     

 صخصبئ ػٍٝ ٚرأث١ش٘ب ػٛاًِ خّسخ فٟ ٌٍزحم١ك ، اٌصٛر١خ فٛق ثبٌّٛجبد اٌحشاسٞ الأحلاي ٘ٛ ٚاٌثبٟٔ ، اٌٙٛائٟ

 غ١ش اٌضٔه أوس١ذ ِٓ سل١مخ أغش١خ ثزشس١ت لّٕب ، اٌٙٛائٟ ثبٌشش اٌحشاسٞ الأحلاي فٟ. اٌضٔه لأوبس١ذ اٌشل١مخ الأغش١خ

 لّٕب اٌصٛر١خ فٛق ثبٌّٛجبد اٌحشاسٞ الأحلاي اٌزشس١جٟ، فٟ اٌٙٛاء ٚضغظ اٌشش رذفك ِؼذي رأث١ش ِٓ ٌٍزحمك اٌّطؼُ

 اٌضٔه لأوس١ذ اٌشل١مخ اٌطجمخ خصبئص ػٍٝ اٌشو١ضح حشاسح دسجخ رأث١ش ٌذساسخ الأٚي وبْ إٌٝ جضأ٠ٓ ح١ث دساسزٕب ثزمس١ُ

 رح١ًٍ رُ. اٌشل١مخ اٌضٔه أوس١ذ أغش١خ ػٍٝ ٚاٌفٍٛس٠ٓ اٌزطؼ١ُ ثبلأ١ٌَّٕٛ رأث١ش ِذٜ ٌذساسخ وبْ اٌثبٟٔ اٌجضء ٚ اٌّطؼُ غ١ش

 الإٌىزشٟٚٔ ثبٌّٕظبس اٌضٛئٟ ٚاٌّسح اٌس١ٕ١خ لأشؼخا : ح١ٛد  اٌّخزٍفخ اٌزم١ٕبد ِٓ ثبٌؼذ٠ذ اٌشل١مخ اٌضٔه أوس١ذ أغش١خ ج١ّغ

UV-Vis  ٚ أْ لاحظٕب ، اٌٙٛائٟ اٌشش أسٍٛة فٟ. ِسبث١ش ٚ ِسجبس٠ٓ ٌٍذساسخ اٌىٙش٠بئ١خ أسثؼخ رم١ٕبد ٚ ِفؼٛي ٘ٛي  

 اٌزٛص١ً ِغ 3.3.3 ِّٕٛع حٛاٌٟ ٔطبق فجٛح أظٙشد ثبس 5.0 إٌٝ 5.0 ِٓ ِؼبٌجزٙب رّذ اٌزٟ الأفلاَ

10×0.9اٌىٙشثبئٟ
3
 (Ω.cm)

-1
 رسٚح ِغ سذاس١خ ث١ٕخ ِغ ثٍٛس٠خ وبٔذ الأفلاَ أْ إٌٝ اٌس١ٕ١خ الأشؼخ ح١ٛد ط١ف ٚأشبس ، 

 اٌٙٛاء ضغظ ث١ٓ اٌخصبئص أفضً ػٍٝ ٌٍحصٛي جذا ُِٙ ػبًِ ٕ٘بن أْ إٌٝ ٔخٍص ح١ث (550)ٔحٛ فمظ أؼشاج

 ٌٍحصٛي دسجخ ِئ٠ٛخ 305 ٟ٘ إٌّبسجخ اٌشو١ضح حشاسح دسجخ أْ لاحظٕب اٌثبٟٔ اٌجضء فٟ. اٌّحٍٛي رذفك ِٚؼذي اٌزشس١جٟ

 ِزؼذدح طج١ؼخ ٌٙب أوس١ذ اٌضٔه أفلاَ أْ أظٙشد XRD أّٔبط أْ إٌٝ ثبلإضبفخ ، اٌسف١ٍخ اٌطجمخ فٛق ج١ذح ِلاءِخ ػٍٝ

 ١خإٌبلٍ صادد ح١ث ، اٌؼب١ٌخ اٌحشاسح دسجخ ػٕذ اٌزفض١ٍٟ اٌزٛجٗ( 550)  ٚ( 555) ِغ سذاس١خ wurtzite ٚث١ٕخ اٌجٍٛساد

10×3.87 ِٓ أوس١ذ اٌضٔه لأغش١خ اٌىٙشثبئ١خ
-3

 (Ω.cm)
-1

(Ω.cm) 41.58 .إٌٝ 
-1

دساسخ أوس١ذ اٌضٔه  فٟ ٚوزٌه 

 اٌجٍٛساد ِزؼذد شىً ػٍٝ ػ١ٍٙب اٌؼثٛس رُ AZO أفلاَ أْ SEM ٚرح١ًٍ اٌس١ٕ١خ الأشؼخ ح١ٛد أظٙش ، اٌّطؼُ ثلأ١ٌَّٕٛ

  ِٓ  اٌضٛئٟ إٌّّٛع إٌطبق فجٛح فٟ أخفبض ٚجٛد إٌٝ بلإضبفخث ،( 550) ارجبٖ طٛي ػٍٝ سذاس١خ wurtzite ث١ٕخ ِغ

10 × 2.32) خ١ِمبِٚ أدٔٝ ٌٛحظذ ، eV 3.03 إٌٝ 3.33
-3

 Ω.cm)   ِٓ ًأج AZO  رسح 0 ثٕسجخ الأفلاَ اٌّطؼّخ% .

 ظٙشدأ ح١ث. دساسزٕب فٟ ٚاضح ZnO اٌشل١مخ الأغش١خ خصبئص ػٍٝ اٌفٍٛس٠ٓ طؼ١ُر رأث١ش فإْ ، رٌه إٌٝ ثبلإضبفخ

 ،( 550) ٟ٘ الأؼشاج رسٚح رىْٛ ػٕذِب سذاس١خاٌ wurtzite ZnO ١٘ىً ِغ رزٛافك لُّ ٌذ٠ٙب الأفلاَ أْ FZO أفلاَ

 اٌىٙشثبئ١خ إٌبل١ٍخ أْ اٌىٙشثبئ١خ لاحظٕب اٌذساسخ فٟ ، ثبٌفٍٛس٠ِٓٓ اٌزطؼ١ُ   %رسح 0 ثؼذ وثبفخ أوثش FZO أفلاَ وً رصجح

-1  وبٔذ  ل١ّخ أػٍٝ ح١ث أْ ، ثبٌفٍٛس٠ٓ زطؼ١ُ إٌسجخ اٌزس٠خ ٌٍ ص٠بدح ِغ رضداد
.cm )Ω( 

2 
 ِٓ %رسح  0 ف10ٟ×1,68

 .ثبٌفٍٛس٠ٓ زطؼ١ُاٌ

 

 

 


