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 صخمل
 

 فإن ، ذ� ومع. مراقب �بر النظام �ا� تقد�ر الهندس�یة المش�ت من العدید تتطلب
 ،الصعو�ت هذه موا�ة في. الخطیة �ير لٔ�نظمة صعبة �ام تصبح �لمراقب والتولیف ا�نمذ�ة

 .ال�ذج م�عدد نهج اس�ت�دام يمكن

 الممث� الخطیة �ير لٔ�نظمة الحا� تقد�ر �لى أ�طرو�ة هذه في المقدم البحثي العمل �ركز
 بفضل ا�تمثیل هذا �لى الحصول یتم. المقترن Takagi-Sugeno نوع من ضبابیة م�عددة ب�ذج

 في الجدید النظام كتابة ٕ��ادة لنا �سمح مما الخطیة �ير القطا�ات في الت�لل اس�ت�دام
 ف� قوي مراقب لتر�یب ذ� بعد مف�د ا�نموذج هذا. المعلومات فقدان دون  polytopesشكل
 .المعروفة �ير والمد�لات النظام �الات بناء إ�ادة ٔ��ل من المعروفة �ير �لمد�لات یتعلق

 �ير لٔ�نظمة الحا� تقد�ر مشكلة معالجة تتم ، ال�ذج م�عدد �لنهج موجزة مقدمة بعد
 مراقبي لتجمیع خوارزم�ات نقدم ، ذ� بعد. مقترنة �امضة م�عددة نماذج بواسطة الموصوفة الخطیة
 المتكام� ال�س��ة المكاسب من نو�ين اس�ت�دم�ا. المعروفة �ير المد�لات ضد أ�قو�ء الحا�

 الممانعة ذات المتزام�ة ا�ٓ� نموذج �لى أ�سالیب هذه نطبق ، ٔ��يرًا. المتعددة المكاسب ومراق�ين
  .المتغيرة

  

 ممانعة محرك ، سوج�نو-�كا� م�عدد نموذج ، الخطي �ير النظام  : الكلمات المف�اح�ة
  .الخطیة المصفوفة مساواة �دم ، الحا� تقد�ر ، متزامن

  

 

 



AbstractAbstract

S evral problems require the state estimation of system via an observer. However,

modeling and synthesizing the observer become challenging tasks for non-linear

systems. In response to these difficulties, a multi-model approach can be utilized.

The research presented in this thesis focuses on the state estimation of non-linear

systems represented by coupled Takagi-Sugeno fuzzy multi-models. This representation

is achieved through the use of non-linear sector decomposition, which allows us to rewrite

the new system in the form of polytopes without loss of information. This form is then

useful for synthesizing a robust observer with respect to unknown inputs in order to

reconstruct the system’s states and unknown inputs.

After a brief introduction to the multi-model approach, the problem of state estimation

for non-linear systems described by coupled fuzzy multi-models is addressed. We then

present algorithms to synthesize a robust unknown input observers. We have used two

types of observers such as proportional-integral gains and multi-integral gains. Finally,

we apply these approaches to the model of a variable reluctance synchronous machine.

Key words: Non-linear system, Takagi-Sugeno multi model, Synchronous reluctance

motor, state estimation, Linear Matrix Inequality, unknown inputs.



RésuméRésumé

N ombreux sont les problèmes en ingénierie nécessite l’estimation de l’état d’un

système via un observateur. Cependant, la modélisation et la synthèse de l’observateur

deviennent des taches difficiles pour des systèmes non linéaires. Face à ces difficultés,

l’approche multimodèle peut être mise à profit.

Les travaux de recherche présentés dans cette thèse portent sur l’estimation d’état

des systèmes non linéaires représentés par des multimodèles flous de type Takagi-Sugeno

couplé. Cette représentation est obtenue grâce à l’utilisation de la décomposition en

secteurs non linéaire qui nous permettant de réécrire le nouveau système sous forme de

polytopes sans perte d’information. Cette forme est ensuite utile pour la synthèse d’un

observateur robuste vis-à-vis des entrées inconnues afin de reconstruire les états du système

et les entrées inconnues.

Après une brève introduction à l’approche multimodèle, le problème de l’estimation

d’état des systèmes non linéaires décrits par les multimodèles flous couplés est abordé.

Ensuite, nous présentons des algorithmes pour synthétiser des observateurs d’état ro-

bustes face à des entrées inconnues. Nous avons utilisé deux types d’observateurs à gains

proportionnel-intégral et à gains multi-intégral. Finalement, nous appliquons ces ap-

proches au modèle d’une machine synchrone à réluctance variable.

Mots-Clés: Système non linéaire, multi-modèle de Takagi-Sugeno, estimation de l’état,

moteur synchrone à réluctance variable, inégalités matricielles linéaire, entrées inconnues.
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General Introduction

General presentation

I n control theory, modeling a process proves to be an indispensable and fundamental

task. A physical system can be described according to two types of representations,

the first is called implicit, and the second, most often used, is called explicit. These

representations, which should aim to resemble reality as closely as possible, link output

and input variables through a state vector describing the evolution of the system.

Real processes are often of a nonlinear nature, this nonlinearity is due either to the

complexity of the phenomena described, or to the nature of the feedback loops used. The

complexity of these systems thus leads to the development of representation approaches

suited to linear models, among these techniques, the Takagi-Sugeno (TS) fuzzy multi-

model representation. This is based on obtaining a set of polytopes interconnected by

nonlinear functions, verifying the convex sum property. Each sub-model describes the

behaviour of the nonlinear system in a particular operating zone. Two major families

of TS fuzzy models are widely used in the literature, the first is known as coupled TS

models, this is obtained by four methods, the first one is the identification approach

[BMR99], [Gas00], which used in cases where there is a difficulty in describing the nonlin-

ear system using an analytical model, the second method is based on the linearisation of

the system around different operating points [MSH98], and the third technique is based

on the convex polytopic transformation of the system’s nonlinear terms, is called also

the sectors nonlinearities transformation [KTIT92],[TW04], [Bez13], it allows to obtain

a representation to the nonlinear model without any information losses compared to the

other two approaches. Note that this last approach will be used in this thesis. The last

one is based on the neural approach [EDBB10] ,[CB12]. The second family is known as

heterogeneous TS fuzzy multi-models [Fil91], this representation is dedicated to complex

systems presenting structural changes induced by their operating mode, each sub-model

has its own state space in which it evolves independently, this type of model introduces

4



a certain flexibility in the identification problems. The activation functions (nonlinear

functions) depend on variables known as decision variables or premise variables, these

can be measurable (VDM) or non-measurable (VDNM).

After the modeling phase, the estimation of the state variables of the system is an

essential step for the synthesis of control laws or for the diagnosis of industrial processes.

This estimation is carried out through a dynamic system, often called a state estimator or

observer. The observer is an auxiliary system that dynamically reconstructs the internal

state of the system. Its inputs are the measured (input-output) variables of the system,

and its outputs are the estimated state variables. When a part (or all) of the inputs is not

available, the observer is said to have unknown inputs. The problem to be solved then

becomes more complex, as it involves estimating the system’s state, despite the presence

of inputs that effectively intervene in the system’s dynamics but cannot be included in the

observer’s dynamics, or estimating both the state and the unknown inputs. The design of

unknown input observers is a major subject in two fields: robust systems control, where

disturbances can degrade the performance of control systems [ZZOL19, LLYL19, KPS18],

and fault detection based on an analytical model, which transforms fault detection into

an estimation problem [YCKW17, KPS18, ALA20].

One of the most successful approaches in the estimation of unknown inputs is the

use of a proportional integral observer (PIO). This approach allows for the simulta-

neous estimation of states and unknown inputs [YCKW17]. Furthermore, it exhibits

strong robustness to disturbances, sensitivity to noise, and favorable real-time perfor-

mance [YIO+14, IMRM09].

The great interest to the synchronous reluctance motor (SynRM) is linked to its advan-

tage such as, robust structure, fast dynamic response, and high reliability. The absence

of permanent magnetic material in SynRM makes it suitable for high speed applications,

low cost compared to similar sized permanent magnet synchronous motor and operates in

high temperature environments [LCC11, AKK+15]. The magnet-free rotor eliminate cop-

per losses, for this reason the SynRM produces higher torque and efficiency compared to

similar sized induction motors [AKNM17]. All this make the SynRM looked as a serious

alternative to permanent magnet synchronous motor and inductance motor [AKK+15].



Contributions

The main contribution of this thesis is to propose an extension of the conventional

tools of nominal estimation to the robust estimation of systems described by Takagi-

Sugeno multi-models, particularly those with non-measurable decision variables. Our

approach is exclusively based on Lyapunov’s second method and its formulation around

Linear Matrix Inequalities (LMI). The interest in LMI-based methods stems from the

fact that they can be resolved using convex programming. With this approach, we are

no longer confined to problems with an analytical solution. By solving these inequalities,

we obtain a domain of feasible solutions, that is, solutions satisfying these LMIs, which

is larger than that generated by seeking analytical solutions. This is due to the fact that

an inequality possesses more solutions than an equality. The problem of state estimation

in the presence of unknown inputs is addressed for the synchronous reluctance machine.

Generally, we have directed our work in several directions, which have resulted in the

following contributions:

• We presented the model of the synchronous reluctance machine using the Takagi-

Sugeno multi-model, which was obtained through the transformation of the nonlin-

ear sector.

• We focused on the problem of robust estimation for nonlinear systems described by

the TS multi-model, within the context of both academic examples and practical

applications such as the SynRM machine.

• Preliminary results on the robust state estimation of the SynRM machine have been

validated in real-time using the Hardware-in-the-Loop platform.

Organization of the thesis

This thesis is organized into four primary chapters, each discussing a different aspect

of the research topic.

Chapter 1 delves into the concept of the Synchronous Reluctance Machine (SynRM),

comparing it with other types of electrical machines. This chapter explores the history of

SynRM development, its operating principles, and the impact of the Ld/Lq parameter on

machine performance. It further examines different types of rotor geometry. A comparison



of various rotor types is undertaken, followed by an extensive discussion on the dynamic

model of the synchronous reluctance motor, which includes its electrical and mechanical

equations. The chapter concludes with a brief exploration of voltage inverter modeling.

Chapter 2 focuses on modeling using a multi-model approach, introducing key concepts

such as operating space and zone, sub-model, premise variable, activation function, and

multi-model. Various multi-model structures, such as coupled structure and decoupled

structure, are discussed in detail. This chapter also explains different methods for obtain-

ing multi-models and provides a thorough analysis of the stability of dynamic systems.

The chapter wraps up by discussing the stability of Takagi-Sugeno fuzzy systems.

Chapter 3 begins with an introduction and then delves into the state of the art on the

observability of non-linear systems. It looks at different types of observers of non-linear

systems and specifically discusses the Takagi-Sugeno multi-model State Observer. The

chapter discusses state reconstruction with unmeasurable decision variables and presents

the structure of the proportional integral (PI) observer and the proportional multi integral

(PMI) observer.

Chapter 4 applies the knowledge from the previous chapters to the synchronous re-

luctance motor. The TS model design of SynRM is discussed, and Hardware-in-the-loop

validation is performed. The chapter discusses the multi gain observer and PI observer

for the SynRM and concludes with a comparative analysis and final remarks.
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1.1 Introduction

In recent years, the demand for energy-efficient and cost-effective electric machines has

increased significantly due to growing environmental concerns and the need for sustainable

energy solutions. This chapter aims to provide an overview of various electric machines,

focusing on the Synchronous Reluctance Machine (SynRM) and its comparison to other

electrical machine types. The chapter begins with a brief introduction to different types of

electric machines, including DC Machines, Induction Machines (IM), Switched Reluctance

Machines (SRM), and Permanent Magnet Synchronous Machines (PMSM). It then delves

into the history, operating principles, and rotor geometry types of SynRMs. The impact

of the Ld/Lq parameter on machine performance is discussed, followed by a comparison

of rotor types. A dynamical model of synchronous reluctance motors is presented, along

with voltage inverter modelling. The chapter concludes with a summary of the key points

and the potential future developments in the field of electric machines.

1.2 Electric machines

Electric machines, essential in converting electrical energy to mechanical energy and

vice versa, are categorized into several types, including Induction Machines (IM), Per-

manent Magnet Synchronous Machines (PMSM), Switched Reluctance Machines (SRM),

and Synchronous Reluctance Machines (SynRM). Figure 1.1 illustrates the classification

of electric machines based on their rotor and stator configurations. The primary clas-

sifications of electric machines are DC machines, induction machines, and synchronous
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machines. Understanding their distinctions is vital for choosing the most appropriate

machine for a given application.

Fig 1.1: Classification of radial flux motor types

1.2.1 DC Machine

DC machines, which have been utilized for various applications since their inception,

are well-known for their simplicity and versatility. They are an attractive choice for

adjustable speed applications due to their mature properties, such as control simplicity,

good speed regulation, frequent starting ability, simple braking and reversing, and proper

torque-speed characteristics.

The operating principle of a DC machine is straightforward, relying on the interaction

between the armature flux, which is determined by the input voltage and back electromo-

tive force (EMF), and the field flux created by field current or magnetic material. There

are four types of wound-field DC motors based on the interconnection between the field

and armature windings: separately excited, shunt excited, series excited, and compound
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excited.

Separately excited DC machines controlled by a DC-DC chopper are commonly used in

traction applications, offering several advantages such as control flexibility of the armature

and field voltage, higher efficiency, fast dynamic response, and small size. However, the

presence of a commutator in the armature structure is a significant drawback. It leads to

increased operating costs due to regular maintenance and reduced machine reliability.

Despite the limitations associated with the commutator-brush assembly, which re-

quires additional maintenance and is less suited for medium power applications, DC ma-

chines continue to be employed in various low power applications. One such example

is shutter actuators that regulate the air flow in various systems. The power converter

for these machines, an H-bridge, is simple to develop, further highlighting the benefits of

using DC machines in certain applications [Tag15, Rod15].

In conclusion, DC machines provide a mature, simple, and versatile solution for var-

ious applications that require adjustable speed and reliable performance. However, the

presence of a commutator necessitates regular maintenance, making it less suitable for

higher power applications and limiting its overall efficiency and reliability.

1.2.2 Induction machine (IM)

Induction machines (IM) have become a popular choice in various industries due to

their numerous advantages over conventional DC commutator drives. These benefits,

which are particularly important for a wide range of applications, include high efficiency,

low cost, high power density, robustness, ruggedness, and the ability to operate in hostile

environments.

As an AC machine with an asynchronous topology, the induction machine features

a stator and rotor field rotating at different speeds. The slip, which is generally small,

influences the output power and the torque developed by the machine. Induction machines

can be divided into squirrel cage and wound rotor types. The squirrel cage rotor is the

most common type used in traction applications, while the wound rotor type is less popular

due to its higher cost and maintenance requirements.

Asynchronous machines, such as cage induction machines, are widely produced and

available in an extensive power range. They require minimal maintenance and have a very

low failure rate. These machines are employed in various applications, including inertial
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energy storage systems. One notable advantage of asynchronous machines is their wide

speed variation range for a constant power regime, with a ratio of maximum to minimum

speed of about 1 to 5.

Double-fed asynchronous machines, which are wound-rotor asynchronous machines

with a stator coupled to a transformer and a rotor connected to a static converter, have also

been used in variable-speed wind energy production. While they have some disadvantages,

such as power dissipation in resistive elements and reduced robustness due to the presence

of the ring and brush system, their variable speed operation offers sufficient benefits to

be utilized by various manufacturers [Tag15, Bel08].

1.2.3 Switched Reluctance Machine (SRM)

Switched Reluctance Machines (SRMs) are a type of permanent magnet-free motor

that has gained interest for various applications. SRMs have a unique stator design,

utilizing step-by-step control to generate torque, resulting in high specific power and

high-speed capabilities. Their robust structure, consisting of steel in the rotor, adds to

their appeal [Yam15].

SRMs are double salient single excited motors, featuring simple concentric windings

on the stator and a rotor without windings, magnets, commutators, or brushes. Their

low rotor moment of inertia allows for fast dynamic response and rapid acceleration.

Additionally, SRMs have a high starting torque and high torque to inertia ratio. Some

of the benefits of SRMs include low cost, a wide speed range, high efficiency, simple

and rugged structure, simplicity in control, high-speed operation capability, reliability,

fault-tolerant operation, and easy cooling with insensitivity to high temperatures.

However, there are several drawbacks to SRMs that may limit their adoption in cer-

tain applications. These technical issues include high torque ripple, acoustic noise gener-

ation, significant DC bus current ripple, electromagnetic interference (EMI) noise gener-

ation, the need for a special converter topology, and complexity in design. Furthermore,

SRMs require non-standard inverters for operation and control, which may pose challenges

[Tag15, MC17].
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1.2.4 Permanent Magnet Synchronous Machine (PMSM)

Permanent Magnet Synchronous Machines (PMSMs) have gained significant attention

in various applications due to their high efficiency, high power density, and low mainte-

nance requirements. There are different types of PMSMs, such as machines with radial

magnetization, discoidal generators with axial field, and those with external rotors.

PMSMs can be classified into two main configurations based on the location of the

permanent magnets: Interior Permanent Magnet (IPM) and Surface-mounted Permanent

Magnet (SPM). IPMs offer better overload capability and mechanical robustness, while

SPMs usually have less complex structures. Additionally, PMSMs can be categorized

based on the shape of the produced electromotive force (back-emf) as Sinusoidal Perma-

nent Magnet Synchronous Machines and Brushless DC (BLDC) machines [Tag15].

The advantages of PMSMs include high efficiency, wide speed range, low noise, absence

of Joule losses in the rotor, compactness, fast torque response, and low maintenance.

However, these machines also have some drawbacks. The PMSMs have a more limited

constant power speed range, with the maximum speed typically twice the base speed. Any

increase in speed above the base speed is accompanied by a weakening of the permanent

magnet flux, leading to reduced machine efficiency. The presence of permanent magnets,

especially in the rotor, makes them highly sensitive to temperature changes, which can lead

to decreased performance and potential demagnetization at high temperatures. The cost

of high-temperature permanent magnets, such as Sm-Co, remains high. Furthermore, the

mechanical complexity associated with certain structures is increased due to the fragility

of permanent magnets [Bel08, YM22].

Rare Earth PMSMs offer high-intensity fields in the air gap without the need for

excitation, providing a high power density. However, they are temperature-sensitive and

vulnerable to demagnetization at high temperatures. Non-Rare Earth PMSMs, which use

materials with lower remanent field densities, can serve as a more cost-effective alternative,

but this technology is not yet widely used [Yam15].

Externally Excited Synchronous Machines (EESMs) do not contain permanent mag-

nets and require additional DC/DC conversion for rotor excitation. While these machines

have a robust structure and can achieve high speeds, they also have higher Joule losses

in the rotor windings, which need to be dissipated [Yam15].

13



Chaptre 1. State of the Art for Synchronous Reluctance Motor (SynRM)

1.2.5 Synchronous reluctance Machine (SynRM)

Synchronous Reluctance Machines (SynRMs) are an alternative motor technology that

operates based on the reluctance concept to create motion and torque. Similar to Switched

Reluctance Machines (SRMs), SynRMs do not contain permanent magnets and are fed

by sinusoidal currents to generate a rotating magnetic field. They have a robust structure

with a stator resembling that of an induction motor and a rotor without magnets or

copper windings. These machines have the potential to be a low-cost solution for various

applications.

Advantages of SynRMs include:

• Low cost.

• High efficiency due to the absence of Joule losses in the rotor.

• High torque per ampere capability.

• Insensitivity to operating temperature.

• Simplicity in control and easy field weakening capability.

• Identical topology for stator and inverter power circuits to induction motors.

• Short time overload capability.

• Simple and rugged structure.

• Reliability.

However, SynRMs also have some drawbacks:

• Low power factor.

• Limited speed range.

• Torque ripple.

The rotor geometry plays a crucial role in the design and optimization of synchronous

reluctance machines for various applications. Despite the drawbacks, the interest in Syn-

RMs is rapidly increasing due to their potential to provide similar performance character-

istics as induction motors and brushless DC motors but at a lower cost [Tag15, Yam15].
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1.3 A comparative analysis of SynRM and other elec-

trical machine types

In this section, we provide a detailed comparison of various electrical machines, focus-

ing on their performance, efficiency, and manufacturing aspects. The analysis includes

Induction Machines (IM), Permanent Magnet Synchronous Machines (PMSM), Switched

Reluctance Machines (SRM), and Synchronous Reluctance Machines (SynRM), highlight-

ing their advantages and disadvantages in different applications.

1. Induction Machines (IM) Induction Machines are the most common type of

electrical machine, mainly due to their simplicity, robustness, and low cost. They

are widely used in many industrial applications [Yam15, BP08].

Advantages:

• Easy starting and open-loop speed regulation

• Low torque ripple

• Simple and robust construction

• Lower cost compared to other machine types

Disadvantages:

• Higher rotor losses, leading to lower efficiency in some applications

• Low power factor at high speeds

• Slip-dependent operation, which can result in lower performance compared to

synchronous machines

2. Permanent Magnet Synchronous Machines (PMSM) Permanent Magnet

Synchronous Machines are increasingly used in applications requiring high efficiency

and compact size, such as electric vehicles and robotics [TRU16].

Advantages:

• High power-to-volume ratio

• High efficiency due to the absence of rotor losses
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• Excellent torque and speed control capabilities

• Low maintenance and longer lifespan due to the absence of brushes

Disadvantages:

• High cost due to the use of rare earth permanent magnets

• Complex rotor construction, which may lead to manufacturing challenges

• Demagnetization risk under high temperatures or strong external magnetic

fields

3. Switched Reluctance Machines (SRM) Switched Reluctance Machines are

gaining attention for their unique characteristics, such as a simple construction

and the absence of magnets or windings on the rotor [VL18].

Advantages:

• Competitive specific power and high torque density

• Robust construction without permanent magnets

• High fault tolerance due to the independent phase windings

• Potential for lower cost compared to PMSM machines

Disadvantages:

• Noisy operation due to the high torque ripple

• Complex design and control requirements

• Lower efficiency compared to PMSM machines due to higher copper losses

4. Synchronous Reluctance Machines (SynRM) Synchronous Reluctance Ma-

chines are emerging as an alternative to traditional electrical machines, offering a

balance between performance, efficiency, and cost [Yam15, BP08].

Advantages:

• Competitive performance compared to other machine types

• Easy to manufacture and use of standard materials

• Good efficiency and high reliability
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• Cost reduction due to the absence of permanent magnets

• 10-15% higher rated torque and 1.5% higher efficiency than IMs

Disadvantages:

• Reduced torque density compared to PM motors

• Less robust rotor compared to solid rotor or switched reluctance machines

• Requires more sophisticated control strategies for optimal performance

In Conclusion based on the detailed comparison of Induction Machines (IM), Per-

manent Magnet Synchronous Machines (PMSM), Switched Reluctance Machines (SRM),

and Synchronous Reluctance Machines (SynRM), it is clear that each type of electrical

machine has its own advantages and disadvantages, depending on the specific application

and requirements.

Synchronous Reluctance Machines (SynRM) stand out as a promising alternative due

to their competitive performance, ease of manufacturing, and cost-effectiveness. While

they may not offer the highest torque density or power-to-volume ratio, their absence of

rotor losses, use of standard materials, and good efficiency make them a suitable choice for

a wide range of applications. Further research and development into SynRM technology

can potentially lead to even more enhanced performance and efficiency, making them an

even more attractive option for various industries.

1.4 History of the development of (SynRM)

The development of synchronous reluctance motors (SynRM) can be traced back to

the 1930s, when researchers began studying "unexcited salient pole synchronous motors"

(variable reluctance synchronous motors) for applications requiring precise and constant

speed along with autonomous startup. These early motors had limited use due to their

low power factor and efficiency [SMW93, Lub03]. In the 1960s, interest in these motors

was renewed, particularly in England, leading to the emergence of segmented rotor, flux

barrier, and axially laminated rotor designs, which aimed to increase the saliency ratio

and improve performance. At the same time in France, the Vernier reluctance motor

with a large number of teeth and high torque density became popular for low-speed direct

drive applications. The term "Switched Reluctance Motor" was introduced in 1969, and
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in the 1990s, electronic-controlled double saliency reluctance machines gained traction in

academia and industry, with companies like Allenwest Ltd. in the UK and Sicme-Motori

in Italy commercializing them. In recent years, SynRM has garnered interest due to its

simple structure, high efficiency, low manufacturing cost, and robust operation. However,

challenges remain in reducing noise and increasing efficiency, prompting the need for

ongoing research and optimization in design and control methods. Current applications

of SynRM include the textile industry, machine tools, high-speed applications, and more

recently, electric vehicles, pumping, and ventilation systems[TRU16, TP15].

Fig 1.2: History of SynRM development[TRU16].

1.5 Operating principle

1.5.1 Reluctance Concept

The operating principle of SynRM is based on two main concepts:

• the reluctance effect.

• The application of a rotating sinusoidal magneto-mortice force generated by the

stator of a three-phase induction type machine.
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The main idea of the variable reluctance concept is shown in figure (1.3). Objects

(a) and (b) are made by isotropic magnetic material and are exposed to a magnetic field

Ψ. Object (a) does not generate a couple since it has the same geometric dimensions in

all directions and hence the same reluctances in the d-axis and q-axis. This is called an

isotropic object, whereas object (b) has different geometric dimensions in the d and q-axis

which refer to different reluctances; this is called an anisotropic object. If the d-axis of

the object has a misalignment angle of ε with the magnetic field, this will introduce a field

distortion that is aligned with the q-axis and will increase the reluctance in the d-axis;

see the field solution in Figure (1.3) (right). As a result, an electromagnetic potential

energy is created that can develop an electromechanical torque to force the object to

be aligned with the minimum reluctance at the field direction (d-axis) of the object (b)

[RM11, Tag15].

Fig 1.3: Two objects in a magnetic field Ψ a) isotopic geometry b) anisotropic geometry [Tag15].

In the case of SynRM, this same principle of reluctance variation will create the couple.

The rotor will try to align with the magnetic field created by the stator coils. As the stator

has a rotating magneto-mortice force, the rotor will also rotate generating the movement

[Mar16].

1.5.2 Functioning

The SynRM (Synchronous Reluctance Motor) is a type of electric motor that operates

on the principle of reluctance torque. It has a stator with windings that produce a rotating
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magnetic field, similar to that of an induction motor. It consists of a three-phase winding

with p pairs of poles, which is fed by a balanced three-phase current system of pulsating

currents ws and distributed to create a rotating magneto-motive force (mmf) that is as

sinusoidal as possible. However, unlike a conventional salient-pole synchronous motor,

the SynRM does not have an excitation winding in the rotor. The rotor is constructed

solely of salient poles using air gaps and steel segments and is designed with a special

shape to induce torque through reluctance. This geometric anisotropy of the rotor causes

it to continuously follow the rotating field in a steady state, resulting in a highly efficient

motor that provides high torque and precise control at low speeds. SynRM technology

is becoming increasingly popular in various industrial applications such as compressors,

pumps, and fans due to its high efficiency, low maintenance, and reliable performance

[Tag15, Ram06, Mar16].

1.6 Impact of the Ld/Lq parameter on machine per-

formance

One of the most critical parameters for assessing the performance of a SynRM is the

saliency ratio, given by equation (1.1). To design a high-performance SynRM, the primary

objective is to achieve a high Ld value and a low Lq value, resulting in maximum flux in

the d-axis and minimum flux in the q-axis.

ζ = Ld
Lq

(1.1)

The vector diagram is a vital tool for visualizing and comprehending the SynRM’s op-

erational principles and performance characteristics. The d-axis and q-axis components

of the rotor’s magnetic flux are distinguished in the vector diagram, with the d-axis repre-

senting the high reluctance path and the q-axis corresponding to the low reluctance path.

Torque is generated by altering the reluctance between these axes. In the vector diagram,

the stator current vector is decomposed into its d-axis and q-axis components, which play

a crucial role in determining the motor’s torque production and overall performance.
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Fig 1.4: Vector diagram of SynRM in steady-state

The electromagnetic torque produced by this machine in steady-state is expressed as:

Te = np.(Ld − Lq).Isq.Isd (1.2)

In equation (1.2), np denotes the number of pole pairs, while Isd and Isq represent the

stator current components in the d− q frame linked to the rotor. The inductances of the

d-axis and q-axis stator are represented by Ld and Lq, respectively. To increase the torque

without altering the current value, the difference between the direct-axis inductance (Ld)

and the quadrature-axis inductance (Lq) must be increased. In other words, to boost

torque, the saliency ratio (ζ) must be increased [Ham09].

The angle θ, which identifies the stator current vector’s position (Is) in relation to the

d-axis (current angle), is depicted in figure (1.5). The stator current vector remains fixed

in a steady state.
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Fig 1.5: Stator current position in (d− q) axis.

The stator current’s magnitude is determined by the following equation:

Is =
√
I2
sq + I2

sd (1.3)

The electromagnetic torque can be expressed in terms of θ and the stator current Is:

Te = 1
2np.(Ld − Lq)I

2
s . sin 2θ (1.4)

From the previous relations, it can be shown that when the stator current is set to a

specific value, the maximum torque is achieved at θ = π/4, corresponding to Isd = IsqTe,

a mode of operation associated with a particular control strategy. By setting θ = π/4 in

equation (1.4), equation (1.5) is obtained, revealing the saliency ratio ζ.

Te = 1
2np.Ld.I

2
s .
(

1− 1
ζ

)
(1.5)

The synchronous reluctance machine is an AC machine intended to be powered by

three-phase sinusoidal currents in a steady state. The power factor of the machine, defined

as the phase difference between the fundamental of the line current and the corresponding

phase-to-neutral voltage, can be determined. This factor also represents the ratio between

the active power and the apparent power absorbed by the machine. It is crucial for this

ratio to be as close as possible to 1 to limit the electrical power of the source supplying

the machine. By neglecting the losses in the machine model, we can obtain a simple

expression for the power factor:

cosϕ = (ζ − 1). sin θ√
(ζ)2 + tan2 θ

(1.6)
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By employing a specific control strategy (imposing tan θ =
√
ζ), the power factor is

maximized and depends only on the Ld/Lq ratio. The power factor’s expression is then

given by the following relation[BLJ+93, Lub03]:

(
cosϕ

)
max

= ζ − 1
ζ + 1 (1.7)

Figure (1.6) illustrates the variations in the power factor as a function of the saliency

ratio Ld/Lq. It can be observed that the power factor becomes more significant for saliency

ratios exceeding 8. According to Equations (1.5) and (1.7), to optimize the performance

of the machine, the rotor structure should be designed to achieve the maximum possible

Ld value and the largest feasible Ld/Lq ratio [Lub03].
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Fig 1.6: Power factor as a function of the saliency ratio Ld/Lq

1.7 Types of rotor geometry

In this section, rotor architectures that allow for a higher salience ratio have been

mentioned. We will introduce various structural types identified in the literature, compare

them, and highlight their primary benefits and drawbacks.
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1.7.1 Solid rotor
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Fig 1.7: Different types of solid rotor

The solid rotor, also known as the simple saliency rotor, is a solid block of ferromag-

netic material with cut-outs made to create protrusions on the rotor. This structure is the

simplest and most economical to manufacture, and also the most robust since it consists

of a single, unassembled block. It is ideal for high-speed operation due to its mechanical

sturdiness. Additionally, the rotor can be slightly saturated as the passage section of the

d-axis flux is wide enough. During asynchronous regime, eddy currents can circulate axi-

ally in the rotor, eliminating the need for a starting cage. To reduce aerodynamic losses,

the rotor can be shrouded by non-magnetic material or perforated, as shown in Figure

1.7. However, the main drawback of this rotor type is the relatively weak salience ratio

(Ld/Lq), which is around 4.5, and a power factor that is less than 0.65 [Mar16].

1.7.2 Segmented rotor

These structures consist of segmented iron components assembled onto a non-magnetic

section, making them suited for compact motor applications(small motor sizes). Figure

1.8 presents a cross-sectional representation of this machine’s model, along with an axial

view of a prototype. Due to the insertion of pole pieces, the rotor’s mechanical strength

is not as robust as that of a solid rotor. Nevertheless, this design attains a maximum

saliency ratio of 5.1, offering performance benefits for the motor [Rod15].
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Fig 1.8: Segmented rotor

1.7.3 Axially laminated anisotropic rotor (ALA)

The Axially Laminated Anisotropic (ALA) rotor design is used in Synchronous Reluc-

tance Motors (SynRM) to improve their performance and efficiency. Unlike the Transver-

sally Laminated Anisotropic (TLA) rotor design, the ALA rotor uses non-laminated mas-

sive blocks held together by a screw. The rotor’s laminations are arranged axially to

reduce eddy current losses, and its anisotropic nature is achieved by stacking ferromag-

netic and non-magnetic sheets together. The thickness of these sheets can be adjusted to

create a preferred direction of magnetic flux, leading to increased torque density.

Research has demonstrated that the ALA rotor design can significantly enhance the

performance of SynRM motors. For example, Monsieur Boldea [BFN94] successfully

designed a high-efficiency motor with a power factor of 0.91 and an efficiency of 84 %

using an ALA rotor with a saliency ratio of 16. However, the ALA rotor design has a

low mechanical strength, which limits its use to low-speed and low-power applications.

Despite this limitation, the ALA rotor design can achieve a high saliency ratio of up

to 20 in a two-pole motor and 10 in a four-pole motor, making it a promising solution

for specific applications. Nevertheless, there are two challenges associated with the ALA

rotor design. Firstly, the structure is complex, requiring the stacking of axial lamination

layers and axial insulation layers alternately. Secondly, the industrial manufacturing and

assembly costs are high, making mass production in the industry challenging.
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Fig 1.9: Transversally laminated anisotropic rotor

In conclusion, the ALA rotor design is a viable option for improving the performance

and efficiency of SynRM motors. Its axial laminations and anisotropic design minimize

eddy current losses and increase the motor’s torque density. However, the ALA rotor’s

low mechanical strength must be taken into account when choosing the appropriate rotor

design for a given application. Despite this limitation, the ALA rotor design can still

achieve a high saliency ratio, making it a suitable option for specific low-speed and low-

power applications [Rod15, Mar16, Tag15, Yam15].

1.7.4 Transversally laminated anisotropic (TLA) rotor

Fig 1.10: Transversally laminated anisotropic rotor
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The transversely laminated (TLA) rotor, also known as the multiple-flux barrier rotor,

is a next-generation rotor design for SynRM. This design features multiple flux barriers

per pole, which limit the circulation of flux in the q-axis without hindering the circulation

in the d-axis. The rotor lamination is transversely oriented and connected by thin ribs

that act as magnetic short circuits. As a result, the TLA rotor design ensures the me-

chanical feasibility and strength of the rotor, even for large rotor diameters or high-speed

applications. Moreover, the TLA rotor design is easy and cheap to manufacture, and it

is suitable for rotor skewing. Proper shaping of the flux barriers and their access points

at the air-gap can also optimize the TLA rotor to minimize airgap harmonics and their

effect on torque ripple [RM11]. However, the TLA rotor design does have some draw-

backs, including the need for bridges to ensure mechanical strength, which can decrease

the machine’s performance. Studies have been conducted to improve the TLA rotor’s per-

formance by selecting the appropriate number of flux barriers relative to the number of

stator slots to reduce torque ripple [Rod15]. Nevertheless, the TLA rotor design remains

the most adopted topology in the construction of SynRMs, offering a promising solution

for future motor design improvements . The TLA rotor design can increase the salience

ratio of a SynRM to up to approximately 13 in a two-pole motor, making it a valuable

option for high-performance applications [Ram06, HS00].

1.7.5 Permanent magnet assisted rotor

The Permanent Magnet Assisted Rotor of Synchronous Reluctance Motors (PM-

SynRM) is an innovative rotor design that aims to enhance the motor’s performance

by incorporating permanent magnets into the flux barriers. This design increases the

saliency ratio and overall torque production, resulting in a higher efficiency, improved

power density, and a wider constant power speed range compared to traditional SynRM

motors. The use of permanent magnets in the rotor structure, such as rare-earth or

ferrite-type magnets, also increases the power factor, addressing a common issue in stan-

dard synchronous reluctance motor designs [Rod15, Mar16]. However, the incorporation

of permanent magnets adds to the manufacturing cost and can lead to dependence on

rare-earth materials and potential demagnetization issues. Despite these challenges, PM-

SynRM motors have garnered significant interest in various applications, particularly in

the automotive and industrial sectors, due to their enhanced performance and efficiency
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[Mar16, LK22].

Fig 1.11: permanent magnet assisted synchronous reluctance motor

The magnets in the Permanent Magnet Assisted Rotor of Synchronous Reluctance

Motors (PMSynRM) consistently prevent the circulation of flux in the q-axis while min-

imally affecting the flux in the d-axis. This characteristic leads to an increase in power,

efficiency, and torque for the motor. Figure (1.12) illustrates the principle of operation

for the magnets positioned within the rotor.

Fig 1.12: Mounting the magnets to the rotor

1.7.6 Rotor with superconductor assistance

Also to prevent the passage of flux in the q axis, superconducting materials were used.

This type of machine makes it possible to conserve the inductance of the d axis and to

considerably reduce the inductance in the q axis. The results are very impressive; the
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d−q axes inductance difference Ld−Lq and saliency ratio Ld/Lq have increased, and as a

consequence, the torque and power factor have increased quite well. The superconducting

material acts as a real magnetic insulator, which means that this type of motor can still

work in both directions. The main disadvantages of this machine are the price and the

complexity of implementing the cooling of the superconducting material [CT05, Mar16].

Superconducting 
material

Ferromagnetic
material

d

q

Fig 1.13: Rotor with superconductor assistance

1.8 Rotor types comparison

The table below compares various types of synchronous reluctance motor (SynRM)

rotors based on several important factors: cost, saliency ratio, torque ripple, mechanical

strength, manufacturing complexity, iron losses, and efficiency.

1. Solid rotor: This rotor performs well in terms of cost, mechanical strength, and

manufacturing complexity. However, it has a lower saliency ratio, higher torque

ripple, and higher iron losses compared to some other rotor types.

2. Segmented rotor: The segmented rotor offers a good balance between cost,

saliency ratio, torque ripple, mechanical strength, and manufacturing complexity.

It has moderate iron losses and efficiency compared to the other rotor types.

3. Axially Laminated Anisotropic (ALA) rotor: This rotor type boasts the high-

est saliency ratio among the options and offers good performance in terms of torque
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ripple and mechanical strength. However, it has a higher cost and more manufac-

turing complexity, as well as moderate iron losses.

4. Transversally Laminated Anisotropic (TLA) rotor: This rotor type provides

a good balance in cost, saliency ratio, torque ripple, and mechanical strength. Its

manufacturing complexity is relatively low, making the production process easier

compared to other rotor types. This rotor has the lowest iron losses and excellent

efficiency among all rotor types.

5. Permanent magnet assisted rotor: This rotor type has the highest saliency ratio

and good performance in torque ripple and mechanical strength. It has moderate

cost and manufacturing complexity, but it also has higher iron losses compared to

the TLA rotor, although its efficiency is still excellent.

6. Rotor with superconductor assistance: Although this rotor type has a higher

cost, it achieves the highest saliency ratio, good torque ripple, and moderate me-

chanical strength. Its manufacturing complexity is also higher, and it has higher

iron losses compared to the TLA rotor, but it still boasts the best efficiency among

all rotor types.

In summary, the table provides an overview of various SynRM rotor types, highlighting

their respective strengths and weaknesses based on key parameters, including iron losses

as a negative aspect. This information can be helpful in deciding which rotor type is best

suited for a specific application or design.
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Table 1.1

SynRM Cost
Saliency

ratio

Torque

ripple

Mechanics

straight

Manufacturing

complicating

Iron

losses
Efficiency

Solid rotor XXXX X X XXX XXXX X X

Segmented

rotor
XXX XX XX XX XX XXX XX

Axially

laminated

anisotropic

rotor (ALA)

X XXXX XX XX X XX XXXX

Transversally

laminated

anisotropic

(TLA) rotor

XXX XXX XXX XXX XXX XXXX XXX

Permanent

magnet

assisted rotor

XX XXXX XX XXX XX XXX XXXX

Rotor with

superconductor

assistance

X XXXX XX X X XXXX XXXX

1.9 Dynamical model of synchronous reluctance mo-

tor

A three-phase synchronous reluctance motor with symmetrically distributed stator

windings has been modelled in the synchronous reference frame. The validity of the

model is presented in several papers [SOK+20] [LCC11].

1.9.1 Simplifying Assumptions

To develop the equivalent electrical model of the machine, certain assumptions need

to be made. In the case of SynRM, the modelling relies on the following simplifying

assumptions:

• The hysteresis in the magnetic parts as well as the iron losses are neglected.

• Assuming the magnetic circuit is unsaturated.

• Not considering notch and gap harmonics.

• Assuming the spatial distribution of the magneto-mortice forces in the air gap is

sinusoidal.

• Neglecting the effect of temperature on the resistance values.
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1.9.2 Electrical equations of the synchronous reluctance ma-

chine in the abc frame

The electrical equations governing the operation of a SynRM machine in a fixed frame

linked to the stator are written in the following form[Ngu15]:

[Vabc] = [Rs].[Iabc] + d

dt
[Ψabc] (1.8)

with
[
Vabc

]
=


va

vb

vc

 ;
[
Iabc

]
=


ia

ib

ic

 ;
[
Ψabc

]
=


Ψa

Ψb

Ψc

 ;
[
Rs

]
=


Rs 0 0

0 Rs 0

0 0 Rs



The totalized fluxes of the stator phases are written in the reference linked to the

stator in the following matrix form:

[Ψabc] = [L].[Iabc] (1.9)

where [L] is the inductance matrix which depends on the angle θ

[L] =


La(θ) Mab(θ) Mac(θ)

Mba(θ) Lb(θ) Mbc(θ)

Mca(θ) Mcb(θ) Lc(θ)

 (1.10)

With the hypothesis of the first space harmonic, the terms of (1.10) are written:



La(θ) = Lf + L0 + L2 cos(2θ)

Lb(θ) = Lf + L0 + L2 cos(2θ + 2π/3)

Lc(θ) = Lf + L0 + L2 cos(2θ − 2π/3)

Mab(θ) = Mba = M0 +M2 cos(2θ − 2π/3)

Mac(θ) = Mca = M0 +M2 cos(2θ + 2π/3)

Mbc(θ) = Mcb = M0 +M2 cos(2θ)

Lf is the leakage inductance of a phase. In the same framework of assumptions, we have

the following relations:

M0 = −1
2L0 et M2 = L2 (1.11)
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1.9.3 Electrical equations of the SynRM in the frame d− q

The system of electrical equations (1.9) represents a system with parameters that vary

periodically over time. Solving this system requires inverting the inductance matrix at

each calculation step, which can be cumbersome. Furthermore, this inconvenience hinders

the synthesis of control laws. Therefore, there is a need to search for an equivalent model

with constant parameters. The Park transformation addresses this issue.

The Park matrix is [Ngu15, Ham09]:

[P ] = 2
3


cosθ cos(θ − 2π

3 ) cos(θ + 2π
3 )

−sinθ − sin(θ − 2π
3 ) − sin(θ + 2π

3 )
1√
2

1√
2

1√
2

 (1.12)

The calculation of the inverse of [P ] is immediate, it comes:

[P ]−1 =


cosθ − sinθ 1

cos(θ − 2π
3 ) − sin(θ − 2π

3 ) 1

cos(θ + 2π
3 ) − sin(θ + 2π

3 ) 1

 (1.13)

If we project all the quantities into the reference frame d− q linked to the rotor using

the Park transformation, we then write, in the general case:
xa

xb

xc

 = [P ]−1


xd

xq

xh

 (1.14)

The equation (1.8) becomes:

[P ]−1[Vdqh] = [Rs][P ]−1[Idqh] + [P ]−1d[Ψdqh]
dt

+ d[P ]−1

dt
[Ψdqh] (1.15)

where [Xdqh] designates any vector of quantities expressed in the frame of reference

linked to the rotor.
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The multiplication of the two members of (1.15) by [P ] gives us:

[Vdqh] = [Rs][Idqh] + d[Ψdqh]
dt

+ npΩ[P ]d[P ]−1

dθ
[Ψdqh] (1.16)

with [P ]d[P ]−1

dθ
=


0 − 1 0

1 0 0

0 0 0



We finally arrive at the following equations:

[Vdqh] = [Rs][Idqh] +


Ld 0 0

0 Lq 0

0 0 Lh


d[Idqh]
dt

+ npΩ


0 − Lq 0

Ld 0 0

0 0 0

 [Idqh] (1.17)

with 
Ld 0 0

0 Lq 0

0 0 Lh

 =
[
P

] [
L

] [
P

]−1
(1.18)

where 

Ld = Lf + 3
2(L0 + L2)

Lq = Lf + 3
2(L0 − L2)

Lh = Lf

The neutral of the machine being isolated, which naturally implies ih = 0, we can

write: Vd
Vq

 =

Rs − npΩLq
npΩLd Rs


id
iq

+

Ld 0

0 Lq

 d

dt

id
iq

 (1.19)

The stator voltage equations of the SynRM can be described in rotational d− q refer-

ence frames as follows:


Vd = Rsid −ΩnpLqiq + Ld

did
dt

Vq = Rsiq +ΩnpLdid + Lq
diq
dt

(1.20)

Or, in the form of state equations:
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d

dt

id
iq

 =


−Rs

Ld

npΩLq
Ld

−npΩLd
Lq

− Rs

Lq


id
iq

+


1
Ld

0

0 1
Lq


Vd
Vq

 (1.21)

1.9.4 Mechanical equations

The electromagnetic torque calculation of the machine is based on knowledge of the

total instantaneous power Pt(t), i.e. [Ngu15]:

Pt = 3
2Rs(i2d + i2q) + 3

2(dΨd
dt

id + dΨq
dt

iq) + 3
2npΩ(Ψdiq + Ψqid) (1.22)

Such as:

Pj = 3
2Rs(i2d + i2q)

represents the Joule effect losses in the stator windings;

Pw = 3
2(dΨd

dt
id + dΨq

dt
iq)

represents the variations of the magnetic energy stored in the machine;

Pe = 3
2npΩ(Ψdiq + Ψqid)

represents the electrical power transformed into mechanical power inside the machine

or electromagnetic power. The electromagnetic power results from the interaction of a

flux term and a current term.

The electromagnetic torque is stated as:

Te = 3
2np(Ld − Lq)idiq (1.23)

and

Te = 3
2np(Ψdiq − Ψqid) (1.24)

The electromagnetic torque is stated as:

Te = 3
2np(Ld − Lq)idiq (1.25)

The motor dynamic equation is expressed by:

Te = J
dΩ

dt
+ fΩ + TL (1.26)
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Combining equations (1.20-1.26) the mathematical dynamic model of the SynRM can

be described by the differential equation (1.27) [SOK+20]:



Ld
did
dt

= Vd −Rsid +ΩnpLqiq

Lq
diq
dt

= Vq −Rsiq −ΩnpLdid

J
dΩ

dt
= 3

2np(Ld − Lq)idiq − fΩ − TL

(1.27)

The systems shown in equation (1.27) can be written as a linear parameter-varying (LPV): ẋ(t) = A(x(t)).x(t) +B.u(t) + E.δ(t)

y(t) = C.x(t)
(1.28)

where

x(t) = [id, iq, Ω]T , u(t) = [ud, uq]T ,δ(t) = TL , y(t) = [id, iq]T ,

A(x(t)) =



−Rs

Ld
0 Lq

Ld
iqnp

−Ld
Lq
Ωnp

−Rs

Ld
0

3
2.J np(Ld − Lq)iq 0 −f

J

 , B =



1
Ld

0

0 1
Lq

0 0

 ,

C =


1 0 0

0 1 0

0 0 1

 , E =


0

0

− 1
J

 .

1.10 Voltage inverter modelling

The voltage inverter is a static converter ensuring the transformation of a DC voltage

Ebus into an AC voltage. It is made up of three arms, each comprising two switching

cells mounted in series, generally at IGBT or MOSFET for low and medium powers

and GTO for high powers, equipped with an anti- parallel according to the power to be

transmitted.

The states of the switches are imposed by the command PWM . The figure (1.14)

illustrates the structure of a three-phase inverter - synchronous reluctance machine asso-

ciation.
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Fig 1.14: Diagram of a three-phase voltage inverter - synchronous reluctance machine association.

Assumptions or choices are made in order to model the voltage inverter, such as:

• The DC voltage source is modelled as an ideal source, without losses and of constant

value.

• The output voltages of the inverter are referenced with respect to a midpoint of a

fictive bridge divider input O.

• The neutral of the machine is not connected to the middle point O of the inverter.

• The dead times necessary to avoid short circuits are neglected.

The voltage supplied by the three-phase inverter, instantaneously varies from zero to

the value of the DC bus voltage and vice versa, making it non-linear from the instanta-

neous point of view.

The expression of the output voltages in terms of the stator voltages and the neutral

potential VN0 is given by: 
Van = Vao − Vno
Vbn = Vbo − Vno
Vcn = Vco − Vno

(1.29)

Where Vno represents the fictitious voltage between the neutral of the load and the ficti-

tious point O.

For a balanced system:

Vno = 1
3(Vao + Vbo + Vco) (1.30)
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The phase-neutral point voltages N can be written as following form:
Van = 2

3Vao −
1
3Vbo −

1
3Vco

Vbn = −1
3Vao + 2

3Vbo −
1
3Vco

Vcn = −1
3Vao −

1
3Vbo + 2

3Vco

(1.31)

The switches Ti, T̄i i ∈ {1, 2, 3} are complementary, and the logic control pulses

Sa, Sb, Sc are transmitted to the triggers of the static switches of the three inverter arm

[Kou08]. The determination of Si(i = a, b, c) depends on the control strategy used.

In this work we will choose the voltage inverter controlled by the technique of Pulse

Width Modulation (PWM), the sine-delta modulation was chosen for the generation of

the supply voltages of the synchronous reluctance machine .

The state si = 1 represents the passing mode of the switch Ti, and the state si = 0 it

is the blocked mode of Ti:

 1 Si Ti est fermé

0 Si Ti est ouvert

If the neutral of the machine is isolated, the phase-to-neutral stator voltages are de-

duced by:


va

vb

vc

 = Ebus
3


2 −1 −1

−1 2 −1

−1 −1 2




Sa

Sb

Sc

 (1.32)

The direct current at the input of the inverter will have the expression:

if = Saia + Sbib + Scic (1.33)

1.11 Conclusion

Throughout this chapter, we have explored the characteristics and functionality of

various electric machines, with a particular focus on Synchronous Reluctance Machines

(SynRM). The SynRM has emerged as a promising technology due to its energy efficiency,

low cost, and simple structure. Despite some drawbacks, such as torque ripple and low

power factor, the SynRM’s advantages make it a viable alternative to other electric ma-

chines, such as Induction Motors and Permanent Magnet Synchronous Machines.
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We have also discussed the importance of rotor geometry and the Ld/Lq parameter

in the design and optimization of SynRMs for various applications. The development of

advanced rotor geometries, such as axially and transversally laminated anisotropic rotors,

has led to improved machine performance. Voltage inverter modeling is essential for

the effective control of SynRMs, which is crucial for their successful implementation in

real-world applications.

In conclusion, the Synchronous Reluctance Machine has the potential to play a sig-

nificant role in the future of electric machines, offering energy-efficient and cost-effective

solutions for a wide range of applications. Further research and development in this area

will undoubtedly lead to improved performance, novel rotor designs, and expanded ap-

plication possibilities, contributing to a more sustainable and environmentally friendly

future for electric machines.
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2.1 Introduction

This chapter focuses on the multi-model approach for modelling non-linear systems.

The multi-model approach involves developing multiple models, each representing the be-

haviour of the system in a specific operating zone. These models are then combined to

create a comprehensive model that can accurately represent the non-linear system. The

chapter covers different multi-model structures, including coupled, decoupled, and hier-

archical structures. The methods for obtaining multi-models are also discussed, including

identification, linearisation, neural approach, and sector non-linearity approach. Addi-

tionally, the chapter covers stability analysis of dynamic systems, with a specific focus on

the stability of Takagi-Sugeno fuzzy systems.

2.2 Modelling by multi-model approach

Control and observation of a process are generally based on a good model of the sys-

tem; the latter becomes more delicate when it comes to complex and highly non-linear

systems. This is why there are two situations: either using simplifying assumptions, in

which case the model obtained does not take into account all the complexity of the sys-

tem, or else obtaining a very complex model, which sometimes makes it unusable for the

control. Indeed, the multi-model representation is a practical and alternative approach to

apprehending the behaviour of a process in different operating zones [Ham15]. There are

currently two methods for representing a system using a multi-model structure [Nag10]:

direct construction of the multi-model form, which has the disadvantage of losing infor-

mation due to system linearisation, or the sector non-linearity approach[TW04], which is

the most commonly used.
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Fig 2.1: Complexity and precision of the representation of non-linear systems

Currently, the multi-model (MM) approach is a widely used tool for modelling non-

linear systems. In the literature, several terminologies, which are equivalent, are used

to define this type of model, as shown in figure 2.2: the multi-model [MSJ], the fuzzy

Takagi-Sugeno model [TS85], the polytopic linear model [Ang01], etc. The main idea of

this approach is based on the contribution of sub-models to the global model of the system;

this contribution, which is quantified by a weighting function (activation function), is a

convex combination of the sub-systems.
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Fig 2.2: Multiple model structure

2.2.1 Operating space

It is a vector space inside which the variables of the system evolve.

2.2.2 Operating zone

The operating zones represent the domains of validity of the local models; each domain

is defined around an operating point [Kso99]. These domains can be of disjoint validity

or overlap, as indicated in figure (2.3).

In the case where the domain is of disjoint validity, the activation functions can only
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Fig 2.3: Schematic diagram of the multi-model approach

a)- Non-linear system , b− c)- Multi-models representation

take values of 0 or 1, and at any given moment, there is only one valid model, and the

others are zero. This type of partitioning is frequent in the case of systems with multiple

configurations or with several operating modes; the model obtained is called Piecewise

Affine [SSPP23, Ham12]. The other situation that can also be encountered in a multi-

model description is the case where the domains of validity overlap or have common

areas; this overlap is due to the substitution of the activation functions with a stretched

front by functions with a gentle slope. In this case, these functions become continuous

derivative functions whose slope determines the speed of transition from one model to

another [Ham15, Ham12].

2.2.3 Sub-model

It is the model that represents the behaviour of the non-linear system in a specific

operating zone.

2.2.4 Premise variable

Also known as a decision variable. ξ(t) is a system vector variable that intervenes in

the weighting functions µ(t). This variable can include one or more internal or external

variables of the system. These variables can be either accessible to measurement as

measurable state variables or system input signals or inaccessible to measurement.
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2.2.5 Activation function

It is a function that determines the degree of activation of the associated local sub-

model. Depending on the zone where the system evolves, this function indicates the

more or less important contribution of the corresponding local model to the global model.

It ensures a gradual transition from this model to neighbouring local models. These

functions depend on the decision variables.

The weighting functions represent a normalisation of the laws µi(ξ(t)) which are the

weighting weights of the local models. These functions depend on the internal and/or

external variables of the non-linear system (decision variables).

hi(ξ(t)) = µi(ξ(t))
r∑
i=1

µi(ξ(t))
(2.1)

These functions are generally chosen in order to verify the properties of the convex sum:


0 ≤ hi(ξ(t)) ≤ 1
r∑
i=1

hi(ξ(t)) = 1

These functions have been constructed in various ways over time. They can be chosen

as Boolean types with discontinuous derivatives (triangular functions) or functions with

continuous derivatives (sigmoidal or Gaussian functions). In the continuous case, the

exponential law is often used and applies to the different premise variables [ACMR04]

[Nag10].The weighting functions can also be constructed by using the bounds of the

decision variables.

The multi-model representation of a non-linear system can be obtained from different

structures. These structures are distributed according to the dimension of the state space

and the nature of the coupling between the local models associated with the operating

zones [Ham12].

2.2.6 Multi-model

The multi-model is based on the decomposition of the dynamic behaviour of the system

into several operating zones, each zone being characterised by a subsystem. Depending

on the area where the system evolves, each subsystem contributes more or less to the
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approximation of the global behaviour of the system. In general, the system presents

a homogeneous dynamic behaviour inside an operating zone. Thus, the contribution of

each subsystem to the global model, which is a convex combination of the subsystems, is

defined by a weighting function [Nag10].

2.3 Different multi-model structures

The multi-model representation of a non-linear system can be obtained from different

structures. A state representation of the sub-models makes it easy to highlight them.

This multi-model state representation has the advantage of being compact, simple, and

more general than a presentation in the form of an input/output regression equation.

Moreover, the synthesis of a control law or the construction of non-linear observers often

require such a description of the system [Orj08]. The multi-model representation of a

non-linear system can be obtained from different structures depending on whether the

segmentation is done on the input or the output (i.e., on the measurable state variables)

and also according to the nature of the coupling between the local models associated with

the zones of functioning. However, three multi-model structures exist:

• coupled structure

• decoupled structure

• hierarchical structure

2.3.1 Coupled structure

2.3.1.1 Takagi-Sugeno fuzzy model

The Takagi-Sugeno fuzzy model approach proposed by [TS85], it’s allows for the repre-

sentation of the non-linear system in a compact set with a convex combination of different

linear subsystems. The fuzzy multi-model structure is described by fuzzy IF-THEN rules:

The ith rule of the Takagi-Sugeno multi-model is of the following form:

Plant Rule i

IF ξ1(t) is Fi,1 and ξ2(t) is Fi,2...ξr(t) is Fi,r ,

THEN

 ẋi(t) = Aix(t) +Biu(t)

yi(t) = Cix(t) + Eiu(t) i = 1, 2, ..., r
(2.2)
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where the premises are obtained from the linguistic propositions, allowing the evaluation

of the weighting functions µi and where the consequences correspond to the sub-models.

One of the multiple interests of this model is that it allows the introduction of a priori

knowledge about the systems in the modelling stage by providing an initial fuzzy partition

of the operating space. This model has been widely studied since its appearance, having

been the subject of many developments and extensions of classic tools, from automatic

control to fuzzy models. The system (2.2) can be represented as a global fuzzy multi-model

by using the non linear sector transformation (see figure 2.4) [IMRM09]:
ẋ(t) =

r∑
i=1

hi(ξ(x(t)))(Aix(t) +Biu(t))

y(t) = Cix(t) + Eiu(t)
(2.3)

Where Ai ∈ <nxn, Bi ∈ <nxnu , Ei ∈ <nxnδ , are the state, input, and the influence

matrices respectively, Ci ∈ <nyxn and Ei ∈ <nyxn are the output matrix.

Fig 2.4: Architecture of TS multi-model

Many non-linear system modelling techniques share the same structure (2.2). The

choice of the structure of the sub-models and the weighting functions is at the root of
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their differences. It is possible to cite different models based on this structure.

2.3.1.2 The piecewise linear approach

This type of model is constructed by considering linear sub-models and Boolean

weighting functions [Son81]. This selection of weighting functions is a result of the sepa-

ration of the operating space into completely separate operating zones. In the switching

phases, this results in a discontinuous approximation of the non-linear system. This

discontinuity may prove undesirable in certain applications [Orj08].

2.3.1.3 Radial basis function networks

It has been shown that, under certain restrictions, radial basis function networks are

equivalent to the TS multi-model [JS93]. Indeed, the equivalence between the models

is guaranteed if the weighting functions employed are of the Gaussian type and if the

sub-models are reduced to a constant Fi (sub-models of order 0). This type of model also

possesses the property of universal approximation, as it is capable of representing any

non-linear system. This method has two significant drawbacks, namely the large number

of sub-models required to obtain a satisfactory approximation of a non-linear system and

the sensitivity of the model obtained [Orj08].

2.3.1.4 Local model networks

Since the publication of [MSJ97] work, multi-models have become a prominent tool in

the modelling of systems in the presence of multiple operating regimes.The multi-model

and the Takagi-Sugeno fuzzy model cover very similar notions. Indeed, if the number

of rules is equal to the number of sub-models then these two approaches are identical.

Only the means used to obtain the weighting functions µi(.) and the interpretation given

to them distinguish them. For fuzzy models, the partitioning of the operating space of

the system often calls on the knowledge of experts in order to obtain linguistic proposals

leading to fuzzy subsets. For multi-models, the partitioning of the system operating space

is carried out using optimization techniques [Nag10].
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2.3.1.5 Linear parameter varying (LPV) model

Many systems can be described by linear systems whose parameters vary over time

(LPV) [DIA19]. In the classic LPV modelling approach, weighting functions are not

used: it is the decision variables ξ(t) that are used to describe the operating conditions

of the system. The variable ξ(t) is an exogenous or endogenous variable of the system,

accessible by measurement, and varying within a compact set of known bounds. If ξ(t) is

a signal endogenous to the system, the output, for example, then we speak of quasi-LPV

systems. In practice, however, LPV and quasi-LPV systems are analysed similarly. The

structure 2.3 is a particular form of the LPV model where the weighting functions deliver

the evolution laws of the parameters [Orj08, Nag10].

2.3.1.6 Linear polytopic uncertainty model

In this context, the matrices representing the system are not completely known but

fall within a range of known limits. Vertex matrices are a collection of matrices that

represent the various modelling errors of the system. Modelling errors are represented by

a collection of vertex matrices that define a polytope, and system behaviour is expressed

as a barycentric combination of these matrices. If the vertex matrices are regarded as

sub-model matrices, then the relationship to an MM structure is evident [DTH20, Nag10].

2.3.2 Decoupled structure

The decoupled structure, or local multi-models, is proposed by [Fil91] where there are

several state vectors. It assumes that the process is composed of decoupled local models

and admits independent state vectors, and can be seen as the parallel connection of r affine

models weighted by their weights [Ham12]. It should be emphasized that the outputs

yi(t) of the sub-models represent artificial modelling signals, used only to describe the

non-linear behaviour of the real system. These signals are not accessible for measurement

and have no physical meaning [Ham15]. This structure can be very interesting [Orj08] in

the context of parameter identification because it allows for adjusting the dimensions of

the sub-models to the complexity of the different behaviours of a process.
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ẋi(t) =
r∑
i=1

hi(ξ(t))(Aixi(t) +Biu(t))

yi(t) = Cixi(t) + Eiu(t)

y(t) =
r∑
i=1

hi(ξ(t))yi(t)

(2.4)

Fig 2.5: Architecture of a decoupled multi-model

2.3.3 Hierarchical structure

Although the multi-model approach has been very successful in many fields (control,

diagnosis, etc.), its application is limited to systems with few variables (small size). The

number of local models increases exponentially with the increase in the number of vari-

ables. A multi-model with r variables andm activation functions defined for each variable,

for instance, is comprised of mr local models [Akh04]. To overcome this problem, Raju et

al [RZK91] proposed a hierarchical structure multi-model. The latter is distinguished by

a linear increase in the number of rules as the number of entries increases. Nonetheless,

according to Kikuchi et al. [HAS98], this structure is not capable of producing a precise

expression for any non-linear function. Furthermore, Wang [Li-98] demonstrates that the

hierarchical MM can approximate any function very closely[Nag10]. Figure 2.6 shows a

typical example of a hierarchical multi-model that has r inputs and r− 1 outputs. In this
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structure, the local models have two inputs each, and the global model is then composed

of r local models.

Fig 2.6: Architecture of a hierarchical multi-model

2.4 Methods for obtaining multi-models

In this section, we describe the three methods for obtaining a coupled multi-model

structure from a non-linear model.

2.4.1 Multiple model construction by identification

The identification approach to fuzzy modelling is suitable for plants that are unable or

too difficult to be represented by analytical and/or physical models (black box) [TW04].

In general, identification methods for unknown parameters are based on the minimization

of a functional of the difference between the estimated output of the multiple model ym(t)

and the measured output of the system y(t). The criterion commonly used is the minimiza-

tion of the quadratic error. By using digital optimization techniques, the identification of

the parameters of the local models around the various operating points previously defined
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becomes possible. The problem of identifying non-linear systems is reduced by represent-

ing them in multi-model form and allowing the identification of subsystems defined by

local linear models and activation functions [CB12], [Ham15].

2.4.2 Multiple model construction by linearisation

The principle of this method consists in linearising the non-linear system around a

finite set of judiciously chosen operating points, leading to a defined number of LTI

models. Obtaining a T-S representative in this case is achieved by interconnecting these

LTI models using carefully chosen non-linear membership functions (Gaussian, triangular,

trapezoidal, etc.) [Bou09]. Consider the non-linear system described by: ẋ(t) = f(x(t), u(t))

y(t) = g(x(t), u(t))
(2.5)

Where x(t) ∈ <nx , u(t) ∈ <nu , and y ∈ <ny are the state, the input, and the output

measurement vectors respectively, and (f, g) ∈ R2n are continuous non linear functions.

The non linear system (2.5) will then be represented by a multi-model composed of several

local linear or affine models obtained by linearising the non linear system around an

arbitrary operating point. (xi, ui) ∈ Rn × Rm, [Gas00], [Oud08]:


ẋm(t) =

r∑
i=1

hi(ξ(t))(Aixm(t) +Biu(t) +Di)

ym(t) =
r∑
i=1

hi(ξ(t))(Cixm(t) + Eiu(t) +Ni)
(2.6)

with
Ai = ∂f(x, u)

∂x
|(x,u)=(xi,ui) , Bi = ∂f(x, u)

∂u
|(x,u)=(xi,ui)

Ci = ∂h(x, u)
∂x

|(x,u)=(xi,ui) , Ei = ∂h(x, u)
∂u

|(x,u)=(xi,ui)

Di = f(xi, ui)− Aix−Biu , Ni = h(xi, ui)− Cix− Eiu

Note that in this case, the number of local models (r) depends on the desired modelling

accuracy, the complexity of the non linear system, and the choice of the activation function

structure.
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2.4.3 Multiple model construction by neural approach

Multiple model representation using the neural approach When there is no general

starting model available, it often becomes difficult to create a multiple model representa-

tion of a process, and particularly to define a priori the base number of models to choose.

In this respect, it is tempting to create a multiple model representation directly during

the identification phase by using a neural approach. There are four steps to this approach

[EDBB10] ,[CB12]:

• When input- output signals are considered to be sufficiently strong, to distribute this

data into classes using a rival penalized competitive learning neural classification

technique, this approach enables us to define the required number of models.

• To use the result of this classification in order to refine it from Kohonen self-adaptive

networks and from the fuzzy K-means method.

• To associate a model, mostly linear, i.e. to each data set.

• To determine at each operating point the validity or coefficient relevant to each type

of model.

2.4.4 Multiple model construction by sector non linearity ap-

proach

The modelling of Takagi-Sugeno fuzzy systems by the non-linear sector approach was

first introduced in the works of [KTIT92], and subsequently extended by [TW04]. This

approach consists of representing the non-linear system exactly in a compact space of state

variables. In this context, sometimes it is difficult to find a global sector for the non-linear

system; for this reason, we consider a local non-linear sector, as shown in Figure (2.7)

[Ham15].

53



Chaptre 2. State of the Art for Takagi-Sugeno Multi-Model

x(t)

f(x(t))
s1x(t)

s2x(t)

Global sector non linearity.

x(t)

f(x(t))
s1x(t)

s2x(t)

a

b

Local sector non linearity.

Fig 2.7: Non-linear sectors

We can write the system (2.5) in LPV form:

 ẋ(t) = A(ξ(t))x(t) +B(ξ(t))u(t)

y(t) = C(ξ(t))x(t) + E(ξ(t))u(t)
(2.7)

Let k be the number of non linear functions present in the system (2.7). These

functions appear in state matrices A(.), B(.), C(.), and E(.); they generally depend on

the state x and the command u and are denoted ξi(t), i = 1, ..., k. Suppose there is a

compact C of the variables ξ(t) where the non linearity are bounded, in this case the ξi
verify [Bez13]:

ξi(t) ∈ [ξi,2, ξi,1], for i = 1, . . . , k (2.8)

The non-linearity ξi can then be written in the following form:

ξ(t) = Fi,1(ξi(t))ξi,1 + Fi,2(ξi(t))ξi,2 (2.9)

where
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ξi,1 = max{ξi(t)}

ξi,2 = min{ξi(t)}

Fi,1(ξi(t)) = ξi(t)− ξi,2
ξi,1 − ξi,2

Fi,2(ξi(t)) = ξi,1 − ξi(t)
ξi,1 − ξi,2

(2.10)

The activation functions µi(ξ(t)) are obtained from the functions Fi,1(ξ(t)) and Fi,2(ξi(t))

by:

µr(ξ(t)) =
2k∏
i=1

Fi,σir(ξi(t)) (2.11)

The number of sub-models is r = 2k. The indices σir(r = 1, ..., 2k and i = 1, ..., k) are

equal to 1 or 2 and indicate which partition of the sub-model i(Fi,1 Where Fi,2) is used to

define the sub-model r. The relationship between the sub-model number i and the indices

σir is given by the following equation:

i = 2n−1σ1
i + 2n−2σ2

i + ...+ 20σni − (21 + 22 + ...+ 2n−1) (2.12)

The matricesAi, Bi, and Ci are obtained by replacing ξi(t) by ξi,σri in A(ξ(t)), B(ξ(t)),

C(ξ(t)) and in (2.7). We thus obtain the following T-S system:
ẋ(t) =

r=2k∑
i=1

hi(ξ(t))(Aix(t) +Biu(t))

y(t) =
r=2k∑
i=1

hi(ξ(t))Cix(t)
(2.13)

This multi-model structure is linked to the number of non-linear terms in the original

system. The drawback of this method remains in the number of local models as well

as the accessibility of the decision variables of the weighting functions. However, from

a structural point of view, all the sub-models constituting this multi-model have the

same dimension; a single state vector is being employed. The complexity of the sub-

models is therefore constant, regardless of the complexity of the system in the different

operating zones. The multi-model thus obtained then risks being over-parametrized and

its complexity unnecessarily increased [Ham12].

Example:

Consider the following non-linear system:
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ẋ1(t)

ẋ2(t)

 =

 −x1(t) + x1(t)x3
2(t)

−x2(t) + (3 + x2(t))x3
1(t)

 (2.14)

We suppose that x1(t) ∈ [−1, 1] et x2(t) ∈ [−1, 1].The previous system can be written

in the form:

ẋ(t) =

−1 x1(t)x2
2(t)

(3 + x2(t))x2
1(t) − 1

x(t)

with x(t) = [x1(t), x2(t)]T and x1(t)x2
2(t) and (3 + x2(t))x2

1(t) are non-linear terms, for

this reason we will assign the following choice:

ξ1(t) = x1(t)x2
2(t) and ξ2(t) = (3 + x2(t))x2

1(t)

then:

ẋ(t) =

−1 ξ1(t)

ξ2(t) − 1

x(t)

Then, we calculate the minimum and maximum values of ξ1(t) and ξ2(t) for x1(t) ∈

[−1, 1] and x2(t) ∈ [−1, 1].

ξ1max = ξ1(t)|max{x1(t),x2(t)} = 1

ξ1min = ξ1(t)|min{x1(t),x2(t)} = −1

ξ2max = ξ2(t)|max{x1(t),x2(t)} = 4

ξ2min = ξ2(t)|min{x1(t),x2(t)} = 0

ξ1(t) and ξ2(t) can be represented by:

ξ1(t) = x1(t)x2
2(t) = M1(ξ1(t)).ξ1max +M2(ξ1(t)).ξ1min

ξ2(t) = (3 + x2(t))x2
1(t) = N1(ξ2(t)).ξ2max +N2(ξ2(t)).ξ2min

M1(ξ1(t)) +M2(ξ1(t)) = 1.

N1(ξ2(t)) +N2(ξ2(t)) = 1.
The membership functions are then:

M1(ξ1(t)) = ξ1(t)−ξ1min
ξ1max−ξ1min

= ξ1(t) + 1
2 ,M2(ξ1(t)) = ξ1max−ξ1(t)

ξ1max−ξ1min
= 1−ξ1(t)

2

N1(ξ2(t)) = ξ2(t)−ξ2min
ξ2max−ξ2min

= ξ2(t)
4 , N2(ξ2(t)) = ξ2max−ξ2(t)

ξ2max−ξ2min
= 4−ξ2(t)

4

These membership functions are called "Positive", "Negative", "Big" and "Small" re-

spectively. Then the previous linear system can be represented by the fuzzy model of

Takagi-Sugeno following:
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• Rule 1: If ξ1(t) is "Positive" and ξ2(t) is "Big" Then ẋ(t) = A1x(t).

• Rule 2: If ξ1(t) is "Positive" and ξ2(t) is "Small" Then ẋ(t) = A2x(t).

• Rule 3: If ξ1(t) is "Negative" and ξ2(t) is "Big" Then ẋ(t) = A3x(t).

• Rule 4: If ξ1(t) is "Negative" and ξ2(t) is "Small" Then ẋ(t) = A4x(t).

with

A1 =

−1 1

4 − 1

 , A2 =

−1 1

0 − 1

 , A3 =

−1 − 1

4 − 1

 , A4 =

−1 − 1

0 − 1


The non-linear system is represented by the following fuzzy Takagi-Sugeno model:

ẋ(t) =
4∑
i=1

hi(ξ(t))Aix(t)

with
h1(ξ(t)) = M1(ξ1(t))×N1(ξ2(t)), h2(ξ(t)) = M1(ξ1(t))×N2(ξ2(t)),

h3(ξ(t)) = M2(ξ1(t))×N1(ξ2(t)), h4(ξ(t)) = M2(ξ1(t))×N2(ξ2(t))

This fuzzy model represents in an exact way the previous non-linear system in the

region [−1, 1]× [−1, 1] of the state space.

2.5 Stability analysis of dynamic systems

2.5.1 Stability in the sense of Lyapunov

This section reviews stability in continuous-time dynamical systems. Stability is de-

fined as the behaviour of a system’s trajectories near points of equilibrium. Studying

stability helps to examine how a system’s trajectory evolves when the initial state is close

to an equilibrium point. The theory of stability in the sense of Lyapunov is applicable

to any differential equation and means that the solution of the equation, when initialized

near an equilibrium point, stays close to it [Zer11].

The non-linear system (2.5) With initial condition x(t0) = x0, it is assumed that the

system has an equilibrium point x̄

Stable equilibrium The point x̄ is a stable equilibrium point of the system (2.5) if

for every ε > 0, there exists a δ > 0 such that, for every initial condition x0 satisfying

|x0 − x̄| < δ, the solution x(t) of the system (2.5) satisfies |x(t) − x̄| < ε for all t ≥ 0.
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In other words, a point x̄ is a stable equilibrium of the system if, given a small enough

initial deviation from x̄, the solution remains arbitrarily close to x̄ for all future times.

Attractor equilibrium The point x̄ is an attractor equilibrium point of the system

(2.5) if for every ε > 0, there exists a δ > 0 such that, for every initial condition x0

satisfying |x0 − x̄| < δ, the solution x(t) of the system (2.5) converges to x̄ as t → ∞,

i.e., lim
t→∞
|x(t) − x̄| = 0. In other words, an attractor equilibrium is a stable equilibrium

to which the solutions of the system converge as time goes on, regardless of the initial

conditions. It acts as a "attractor" for nearby solutions, pulling them towards it as time

progresses. An attractor equilibrium is a stronger concept of stability, as it implies not

only that the solution remains arbitrarily close to the equilibrium for all future times, but

also that the solution approaches the equilibrium as time goes on.

Asymptotically stable equilibrium The point x̄ is considered an asymptotically

stable equilibrium for the system (2.5) if it is both stable and attractive. If all initial

states x0 converge towards the asymptotically stable equilibrium, it is referred to as the

basin of attraction. Asymptotic stability is a desirable property in practice, but it does

not specify the rate at which the trajectory x(t) approaches equilibrium. To address this,

the concept of exponential stability is introduced.

Exponential stability The point x̄ is an exponentially stable equilibrium point if

there exist positive real numbers ε, α, β, and δ such that for any initial value x0 satisfying

|x0 − x̄| < δ, the solution of the system satisfies |x(t)− x̄| ≤ α|x0 − x̄|e−βt for all t ≤ t0,

where t0 is a fixed time. It is clear that exponential stability implies asymptotic stability,

but the reverse is not necessarily true. In the following, we will consider stability around

the origin, i.e., when x̄ = 0.

2.5.1.1 Lyapunov first method

The Lyapunov First Method, also known as the Indirect Method, assesses stability of a

system by examining the linearisation of the system around the equilibrium point x̄. This

involves evaluating the eigenvalues λi(A) of the Jacobian matrix A at the equilibrium, i.e.

A = ∂f

∂x
x̄

The indirect method of Lyapunov is a method for determining the stability of an

equilibrium point x̄ = 0 in a dynamical system. If all the eigenvalues of the Jacobian
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matrix have a negative real part, meaning their real parts are less than zero Re(λi(A)) < 0,

then the equilibrium point x̄ = 0 is considered to be exponentially stable. If at least one

eigenvalue has a positive real part Re(λi(A)) > 0, the equilibrium x̄ = 0 is considered

unstable. While the indirect method is simple to implement, it only provides a partial

analysis of stability and does not indicate the size of the basins of attraction [Zer11].

2.5.1.2 Lyapunov second method

Lyapunov’s second method, also known as the direct method, involves the use of a

positive definite function (usually denoted V (x(t)) called Lyapunov’s function to assess

the stability of an equilibrium point. The function must decrease along the system’s

trajectories and be positive definite within the attraction basin. While more general than

the indirect method, it is also more challenging to implement [Zer11, Cha02].

Local stability and asymptotic stability For the system (2.5) to be considered

locally stable, there must be a continuous and differentiable function, V (x(t)), and a

vicinity, V0, such that:

• ∀x ∈ V0, V (x(t)) > 0.

• ∀x ∈ V0, V̇ (x(t)) = dV (x(t))
dt

= ∂V (x(t))
∂x

ẋ(t) ≤ 0.

If V (x(t)) > 0 and V̇ (x(t)) < 0 , the function V (x(t)) is considered a Lyapunov

function in the strict sense and the origin is considered asymptotically stable.

Exponential stability The origin is an exponentially stable equilibrium point for

the system (2.5) if there exists a continuous and differentiable function V (x(t)), constants

α, β, γ > 0; p ≥ 0 and if there exists a vicinity V0 such that

• ∀x ∈ α ‖ x ‖p≤ V (x(t)) < β ‖ x ‖p.

• ∀x ∈ V0, V̇ (x(t)) < −γV (x(t)).

2.5.2 Types of Lyapunov functions

The difficulty of Lyapunov stability method lies in the determination of these functions.

However, there are families of Lyapunov functions that are often used and whose adoption

depends on the nature of the system to be studied (linear systems, piecewise continuous
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systems, delay systems, uncertain linear systems, etc.). In this thesis, we are interested

in the stability by quadratic Lyapunov functions.

2.5.2.1 Quadratic function

the most classic choice is to use a quadratic form:

V (x(t)) = x(t)TPx(t) P = P T > 0 (2.15)

This type of function, adopted to study the stability of linear systems, is also used in

the case of multi-models [TW04]. Finding such a function amounts to finding a definite

positive matrix. In the case of the multi-model approach, the convex formulation of the

problem easily allows the extraction of such a function when it exists. The disadvantage

of the method lies in obtaining very conservative stability conditions [Cha02].

2.5.2.2 Poly-quadratic function [Cha02]

This function has the following form:

V (x(t), ξ(t)) = x(t)T
r∑
i=1

µi(ξ(t))Pix(t) (2.16)

with
Pi > 0,

µi(ξ(t)) > 0,
r∑
i=1

µi(ξ(t)) = 1.

It allows, in the case of the multi-model approach, to relax the constraints imposed

by the quadratic method. This type of function is also more general in the sense that it

includes the quadratic case, because it suffices to choose Pi = P, i ∈ In to reduce to the

case of quadratic functions. It is also interesting to vote that, as opposed to the quadratic

method, this type of function takes into account the speed of variation of the decision

variables of the continuous multi-model, which explains the reduction in the conservatism

of the method [BPB01, CMR00, Cha02] [CMR00].

2.5.2.3 Parametric affine function

This type of function has the following form:
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V (x(t)) = x(t)TP (θ)x(t) (2.17)

with

P (θ) = P0 + θ1P1 + ...+ θrPr > 0

is often used to study time-varying linear systems with uncertain parameters of the type:

ẋ(t) = A(θ)x(t) (2.18)

with

A(θ) = A0 + θ1A1 + ...+ θrAr (2.19)

Where the parameters and their variations are bounded. Expression (2.17) generalizes

the quadratic Lyapunov functions which correspond to, P1 = ... = Pk = 0. They are less

conservative than the quadratic functions because they take into account the variations

of the parameters. The quality of the results obtained depends on the choice of the type

of Lyapunov function relative to the nature of the system studied [Cha02].

2.5.2.4 Piecewise continuous functions

One can distinguish between piecewise continuous linear Lyapunov functions and

piecewise continuous quadratic Lyapunov functions [DLPT20] [Poo19]. These non-quadratic

functions have also been the subject of applications in the case of fuzzy systems [CGAL19].

One can also distinguish the piecewise quadratic functions of the form:

V (x(t)) = max(V1(x(t)), ..., Vi(x(t)), ..., Vn(x(t))) (2.20)

With

Vi(x(t)) = x(t)TPix(t), Pi > 0, i ∈ Ii (2.21)

This type of function has been studied in the case of linear time variant systems

[BEGFB94] and has the advantage of being less conservative than quadratic functions

[Cha02].
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2.5.2.5 Line integral Lyapunov function

The line integral Lyapunov function is a useful tool for the analysis and design of

fuzzy control systems as it allows for the development of stability conditions without

considering the time derivatives of the membership functions. This makes it a simple

and computationally efficient method for analysing the stability of fuzzy control systems,

Rhee et al. [RW06] proposed the following line integral Lyapunov function:

V (x(t)) = 2
∫

Γ(0,x)
g(ω̄)dω̄ (2.22)

where ω̄ ∈ <n , and dω̄ denote a dummy vector for the integral and an infinitesimal

displacement vector.

Γ(0, x) represent the path from 0→ x

Considerg(x) to be a force vector at x, and then the proposed Lyapunov function

V (x(t)) in (2.22) can be interpreted as the work that has been performed in g(x) from

zero to x. This function resembles an energy form that ensures the following conditions:

• V (x(t)) is a smooth function.

• positive definite.

• radially unbounded.

However, if this function is dependent on Γ(0, x), then the two last conditions can not

be satisfied. Therefore, it is essential to ensure that V (x(t)) must be path-independent.

To do so, a necessary and sufficient condition is required.

∂gi(x)
∂xj

= ∂gj(x)
∂xi

for i, j = 1, . . . , n (2.23)

According to 2.23, Meredef et al. [MHB+22] proposed the following equation:

g(x) =
(
P̄ +

r∑
i=1

µi(x)Ei
)
x (2.24)
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P̄ = P̄ T =



0 P12 P13 . . . P1n

∗ 0 P23 . . . P2n
... ... . . . ...

∗ ∗ ∗ . . . 0



Ei =



E11 E12 . . . E1n

E21 E22
. . . E2n

... . . . . . . ...

En1 En2 . . . Enn


× In×n

2.6 Stability of Takagi-Sugeno fuzzy systems

The stability of non-linear systems has been the subject of many studies. Lyapunov’s

theory is the fundamental tool. The main concept of this theory is based on the idea that;

if there is a function having energy form is dissipated in time, then it tends towards an

equilibrium point. In this context, the use of the Lyapunov function is a measure of the

distance between the state variables and the equilibrium point.

The most classical choice consists in choosing a Lyapunov function in the quadratic

form which is our choice in this work.

2.6.1 Quadratic Stability of Takagi-Sugeno fuzzy Models

Our objective is to ensure the stability of the fuzzy systems of Takagi-Sugeno, and

we privilege the use of the quadratic stabilisation of the system by the second method

of Lyapunov. This stability is guaranteed if the conditions in the form of a set of linear

matrix inequalities (LMIs) of the following theorems are satisfied.
Theorem 2.6.1:

The TS fuzzy model described by (2.13), is asymptotically stable if there exists a

positive definite P matrix such that the following LMI holds:

ATi P + PAi < 0 i = 1, . . . , r (2.25)

63



Chaptre 2. State of the Art for Takagi-Sugeno Multi-Model

Proof

V (x(t)) = x(t)TPx(t) P = P T > 0 (2.26)

The autonomous TS fuzzy model (2.13) (u(t) = 0) is stable if:

V̇ (x(t)) = ẋT (t)Px(t) + xTPẋ(t) < 0 (2.27)

than

V̇ (x(t)) = x(t)T (
r∑
i=1

hi(ξ(t))(ATi P + PAi))x(t) < 0 (2.28)

We draw the reader’s attention to the fact that many examples show that a fuzzy

system of TS has unstable sub-models, but it may be stable, and vice versa.

The stability conditions of Theorem 2.6.1 are conservative since the premise variables

are not taken into account. The problem of conservatism of the stability conditions is

reduced at the cost of a large number of LMI’s.

2.6.2 Alternative Approaches to Stability Analysis in Takagi-

Sugeno fuzzy Models

In the literature, researchers have proposed methods to minimize the effect of the con-

servatism of the stability conditions [Cha02, Kru07, Mor01, Akh04]. They have explored

alternative approaches to stability analysis, aiming to address the limitations of classical

quadratic Lyapunov functions and provide more flexibility and less conservative results

in the context of Takagi-Sugeno fuzzy systems.

These alternative approaches include polyquadratic and non-quadratic Lyapunov func-

tions, which help relax stability constraints. However, the complexity of the stability con-

ditions and the associated computational burden can increase depending on the chosen

approach.

It is essential to note that the interpolation of stable sub-models is not necessarily

stable. In some cases, it can be challenging to find a common P matrix satisfying the

LMIs simultaneously. Researchers have studied several approaches, in particular, the use

of polyquadratic Lyapunov functions and non-quadratic Lyapunov functions based on a

piecewise continuous function. These types of functions have been used in the context of

LPV systems and Takagi-Sugeno systems, providing less restrictive stability conditions
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than quadratic stability conditions. However, they are expressed in terms of Bilateral

Matrix Inequalities (BMI), which are more challenging to solve than LMIs.

In conclusion, alternative approaches to stability analysis have been explored to ad-

dress the limitations of classical quadratic Lyapunov functions, providing more flexibility

and less conservative results in the context of Takagi-Sugeno fuzzy systems.

2.7 Conclusion

The multi-model approach is a useful technique for modelling non-linear systems, as it

allows for accurate representation of the system’s behaviour in different operating zones.

The different multi-model structures and methods for obtaining multi-models provide

a range of options for modelling non-linear systems. The stability analysis of dynamic

systems is an essential aspect of system modelling, and the techniques discussed in this

chapter, including Lyapunov’s stability analysis and the quadratic stability of Takagi-

Sugeno fuzzy models, are important for ensuring the stability and reliability of the model.

Overall, the multi-model approach is a powerful tool for modelling non-linear systems and

can provide valuable insights into the behaviour of complex systems.
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3.1 Introduction

State estimation in the context of nonlinear systems presents unique challenges, partic-

ularly when dealing with observability and the presence of disturbances, unknown inputs,

and noise. This chapter focuses on addressing these challenges by exploring various ob-

server techniques. The goal is to develop robust and accurate state estimation methods

that can handle nonlinear dynamics effectively.

The chapter begins by providing an overview of the state-of-the-art approaches to

observability in nonlinear systems. A comprehensive analysis of different observer types

designed for nonlinear systems is presented. This includes high-gain observers, sliding

mode observers, and extended Kalman filters, among others. The strengths and limi-
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tations of each approach are discussed, providing valuable insights into their practical

applicability.

One specific observer technique explored in this chapter is the Takagi-Sugeno multi-

model state observer. This observer leverages measurable premise variables (MPV) to

estimate system states accurately. It also incorporates non-measurable premise variables

(NMPV) to capture the system’s dynamics that cannot be directly measured. The struc-

ture and functioning of this observer are explained in detail.

Another approach discussed in the chapter is the state multi-gain observer based on

the Lipschitz approach. This observer exploits the Lipschitz condition, a fundamental

concept in nonlinear analysis, to design an observer that is robust and accurate. The

chapter provides a comprehensive explanation of the observer’s structure and its theoret-

ical foundations.

To address the challenges posed by disturbances, unknown inputs, and noise, the

chapter introduces the state and unknown input observer. This observer incorporates

both proportional and integral actions to enhance estimation accuracy and robustness.

The robust proportional integral (PI) observer and the proportional multi-integral (PMI)

observer are presented, along with their respective structures.

The non-linear system considered is that of the form (1.2)

Definition 1 (Indistinguishability). a pair of states (x0, x
′
0) is said to be indistinguishable

if for any input u(t) and for any t ≥ 0

y(x0, u, t) = y(x′0, u, t)

Definition 2 (Observability and low local observability). The non-linear system (1.2) is

observable if it does not admit an indistinguishable pair. On the other hand, a system is

weakly observable at x0 ∈ V , if there exists an open neighbourhood V ′(x0) ⊂ V containing

x0, such that for any neighbourhood V ′′ ⊂ V ′(x0) of x0, for any point x1 ∈ V ′′(x0) , the

pairs (x0, x1) are distinguishable.

Definition 3 (Observability space). The observation space for a non-linear system is

defined as the smallest real vector space (O(h)) of class function C which contains the

components of h(h1, h2, ..., hn) and which is closed by Lie derivation.

Definition 4 (Observer). We call an observer of the dynamical system (1.2) any auxiliary

dynamical system in the following form:
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˙̂x(t) = f̂(x̂(t), u(t), y(t)) (3.1)

We say that the observer (3.1) is a global observer if the estimation error e(t) either satisfy

the following condition:

‖e(t)‖ = ‖x(t)− x̂(t)‖ −→ 0 When t −→∞ (3.2)

3.1.1 The different types of observers of non-linear systems

In the literature, Many works concerning the development of observers for all types

of systems have been carried out since the founding works of Luenberger, The synthesis

of state observers of non-linear systems is more difficult than those of linear systems. In

general, there are three approaches to observer synthesis.

3.1.1.1 Extended Observers

The Extended Kalman Filter (EKF ) and Luenberger’s observer are two techniques

based on the linearization of the system around an operating point.

• The Extended Kalman Filter The Kalman filter, designed initially for stochastic

linear systems, the EKF extended filter consists of using the standard Kalman

filter equations on the nonlinear model after linearization around an operating point

[BA99]. Despite the proofs of stability and convergence established in the case of

linear systems cannot be extended generally to the case of nonlinear systems, but

this method remains the most popular and widely studied in the field of observation

of non-linear systems [SG92].

• Luenberger’s observer extended This type of observer intervenes, either at the

level of the original system with a constant gain which must calculate by placing

poles, or through a change of coordinates with a gain depending on the state to

be estimated [Zer11] . This type of observer, can cause instabilities which appear

while moving away from the point of operation, it is for that, it is seldom used in

the practice.
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3.1.1.2 Observers in canonical form

These techniques are based on the change of the coordinates in order to use the

non-linear transformation by the Lie method, the new system is written in a quasi-linear

canonical form [BEN]. The advantage of these approaches is that after the transformation,

the synthesis of the observer is simple, but the problem lies in the characterization of the

system having a observability canonical form requested [KI83], [LB01].

3.1.1.3 High-gain observers (Lipschitz Observer):

Are observers based on the Lyapunov stability conditions, The first works of this type

of observers are carried out by [Tha73]. This type of observer is used in general for systems

of Lipschitz form, its name (H igh-gain ) is due to the fact that the gain of the observer

is large enough to compensate for the non-linearity of the system, The major problem of

this technique lies in the sensitivity to measurement noise when the gains obtained are

high.

3.1.1.4 Generalized Luenberger observers

The generalized Luenberger observer was proposed by [AK01], the idea of this tech-

nique is to add a second gain inside the non-linear part of the system to the gain of

the Luenberger observer. an extension of the technique (GLO) to the case of monotonic

multi-variable systems has been proposed by [FA03]. The disadvantage of GLO is that it

is applicable to systems where the Jacobian of each component of the non-linear function

is a square matrix.

3.1.1.5 Observers based on contraction theory

This observation technique was introduced in [LS98] it is based on contraction theory

as a tool for analysing the convergence between the observer and the model [Zem07]

3.2 Takagi-Sugeno multi-model State Observer

Let’s consider the following Takagi-Sugeno (T-S) fuzzy model, where the output is a

linear function of the state:
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ẋ(t) =

r∑
i=1

hi(ξ(t))(Aix(t) +Biu(t))

y(t) = Cx(t)
(3.3)

Most observers designed for the T-S fuzzy model extend the Luenberger observer pro-

posed for linear systems [Dav71]. This extension is described by the following equations:


˙̂x(t) =

r∑
i=1

hi(ξ̂(t))(Aix̂(t) +Biu(t) + Li(y(t)− ŷ(t))

ŷ(t) = Cx̂(t)
(3.4)

Here, x̂(t) and ξ̂ are the estimated state and the estimated decision variables ξ(t),

respectively. The observer synthesis problem (3.4) involves finding the constant gains Li
that ensure asymptotic convergence of the estimation error to zero. This task involves

examining the stability of the system that generates the state estimation error, defined

as:

e(t) = x(t)− x̂(t) (3.5)

The estimation error (3.5), is a system of equations dependent on the premise variables

ξ(t). These variables may be measurable or non-measurable.

3.2.1 Measurable premise variables (MPV )

Most work on state observer synthesis for systems described by the T-S representation

assumes that premise variables are measurable, i.e., ξ̂(t) = ξ(t). This implies that the

observer shares the same premise variables as the system model, allowing for factorization

by activation functions when evaluating the error dynamics estimate (3.5), which can be

written as [Akh04, Nag10]:

ė(t) =
r∑
i=1

hi(ξ(t))(Ai − LiC)e(t) (3.6)

Determining the Li gains of the observer requires a system stability analysis (3.6),

through which we obtain the LMI’s conditions by introducing a quadratic function of the

form V (x(t)) = xT (t)Px(t).
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Theorem 3.2.1:

The state estimation error asymptotically converges to zero if there exists a matrix

P = P T > 0 ∈ Rn×n and matrices Ki ∈ Rn×m, such that the following conditions

hold [PCLT98]:

PAi + ATi P −KiC − CTKT
i < 0 i = 1, . . . , r (3.7)

The observer gains can be obtained from the equation:

Li = P−1Ki (3.8)

Several studies have focused on improving observer performance, using non-quadratic

Lyapunov functions to study system stability [Kru07, THW03], and designing an observer

with unknown inputs [ACR+06, IMRM09, ACMR04, ALA20].

3.2.2 Non-measurable premise variables (NMPV )

Most real-world processes are inherently non-linear and involve non-measurable premise

variables. There are works in the literature that address these situations, such as [IMRM10],

[BPD01], and [NKMM+10].

Actual processes are generally non-linear in nature with non-measurable premise vari-

ables. In the literature, there may be works that discuss this type of situation, we cite

here: [IMRM10],[BPD01] and [NKMM+10]. In [BP00] the Thau-Luenberger approach is

proposed taking into account state estimation convergence conditions towards zero. The

estimation error dynamic (3.6) is then written in the form [Ich09, Akh04, Nag10]:

ė(t) =
r∑
i=1

hi(ξ(t))(Aix(t) +Biu(t))−
r∑
i=1

hi(ξ̂(t))(Aix̂(t) +Biu(t) + LiCe(t)) (3.9)

Theorem 3.2.2:

The state estimation error between the TS model and the observer converges asymp-

totically to zero, if there are symmetric and positive definite matrices P,Q ∈ Rn×n

and matrices Ki ∈ Rn×m as well as a positive scalar γ such that:

PAi + ATi P −KiC − CTKT
i < Q i = 1, . . . , r (3.10)
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 −Q+ γ2I P

P −I

 < 0 (3.11)

The proof of this result can be found in Bergsten et al. [BPD01].

3.3 Stucture of state multi gain observer based on

the Lipschitz approach

The main interest of this type of observers is its robustness with respect to modeling

uncertainties. the multi-observer expression is presented in following equation [IMRM07]:


˙̂x(t) =

r∑
i=1

hi(ξ̂(t))(Aix̂(t) +Biu(t) + Li(y(t)− ŷ(t))

ŷ(t) = Cx̂(t)
(3.12)

Stability conditions

The state estimation error is written as follows:

e = x(t)− x̂(t)) (3.13)

The dynamics of this error is obtained using the equations (2.18), (2.19) et (3.13) :

ė(t) =
r∑
i=1

(Ai(hi(x(t))x(t)−hi(x̂(t))x̂(t))+Bi(hi(x(t))−hi(x̂(t)))u−hi(x̂(t))LiC(x(t)−x̂(t)))

(3.14)

If we add and subtract from the right-hand side of equation (3.14) the termAihi( ˆx(t))e(t),

we obtain:

ė(t) =
r∑
i=1

(Aiδi +Bi∆i + hi(x̂(t))Āie(t)) (3.15)

where: 
δi = (hi(x(t))− hi(x̂(t)))x(t)

∆i = (hi(x(t))− hi(x̂(t))u(t)

Āi = Ai − LiC

(3.16)

We take into consideration the following Lyapunov function to show the asymptotic

convergence of the state estimation error:

V (e(t)) = e(t)TPe(t) (3.17)
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Where the derivative of the Lyapunov function is given by:

V̇ (e(t)) = ėT (t)Pe(t) + e(t)TP ė(t) (3.18)

by the substituting equation (3.15) into equation (3.18), we find:

V̇ (e(t)) =
r∑
i=1

(δTi ATi Pe(t) + eT (t)PAiδi + ∆T
i B

T
i Pe(t) + eT (t)PBi∆i

+ hi(x̂(t))(eT (t)Āi
T
Pe(t) + eT (t)PĀie(t)) (3.19)

Assumptions

In this work, we consider that:

1. The activation functions are Lipschitzian, so:

|hi(x(t))− hi(x̂(t))| ≤Mi|x(t)− x̂(t)| (3.20)

where Mi is a positive scalar representing the Lipschitz constant.

2. The system’s input signal u(t) and state x(t) are both bounded. ‖x(t)‖ ≤ B1

‖u(t)‖ ≤ B2

(3.21)

with B1 and B2 positive scalars.

Given the definition (3.16) and assumptions 3.2 and 3.3, we then have: |δi| ≤Miβ1|e(t)|

|∆i| ≤Miβ2|e(t)|
(3.22)

Then:
δTi A

T
i Pe(t) + eT (t)PAiδi ≤ δTi δi + eT (t)PAiATi Pe(t)

≤M2
i β

2
1e
T (t)e(t) + eT (t)PAiATi Pe(t)

(3.23)

∆T
i B

T
i Pe(t) + eT (t)PBi∆i ≤ ∆T

i ∆i + eT (t)PBiB
T
i Pe(t)

≤M2
i β

2
2e(t)T e(t) + eT (t)PBiB

T
i Pe(t)

(3.24)

Using these upper bounds, the derivative of the function of Lyapunov (3.25) obeys the

inequality:

V̇ (e(t)) ≤
r∑
i=1

eT (t)(hi(x̂(t))(Āi
T
P + pĀi) +M2

i (β2
1 + β2

2)I
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+ PAiA
T
i P + PBiB

T
i P )e(t) (3.25)

The negativity of the derivative of the Lyapunov function is therefore ensured if [IMRM07]:

hi(x̂)(Āi
T
P + PĀi) +MT

i (β2
1 + β2

2)I − PAiATi P + PBiB
T
i P < 0 (3.26)

We can consider that the terms Aiδi +Bi∆i of the equation (3.15) constitute a distur-

bance. The study of the convergence of the state estimation error is therefore reduced to

the study of the stability of a disturbed system.

Suppose that for a symmetric matrix Q, there exists a symmetric positive definite

matrix P such that:

hi(x̂(Āi
T
P + PĀi) < Q (3.27)

This inequality leads to:

(Ai − LiC)TP + P (Ai − LiC) < Q (3.28)

By transferring the inequality (3.28) into (3.26) we obtain:

Q+M2
i (β2

1 + β2
2)I + PAiA

T
i P + PBiB

T
i P < 0 (3.29)

Note that the matrix inequalities (3.28) and (3.29) are nonlinear with respect to P

and Li. However, if we pose the change of variable:

Ki = PLi (3.30)

and if we use Schur’s complement, we get:

ATi P − PAi − CTKT
i −KiC < −Q (3.31)

−Q+ θiI PAi Bi

ATi P − I 0

BT
i P 0 − I

 < O (3.32)

θi = M2
i (β2

1 + β2
2)

Thus (3.31) and (3.32) are LMIs with respect to P and Li.
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Calculation of the Lipschitz constant

The Lipschitz constant involved in equation (3.20) is calculated using expansions of

µi(x(t)) in the Taylor series with retse integral to order 0 in the vicinity of x̂(t):

µi(x) = µi(x̂) +
∫ x

x̂
µ̇i(t)dt

µi(x)− µi(x̂) =
∫ x

x̂
µ̇i(t)dt

|µi(x)− µi(x̂)| ≤
∣∣∣∣∫ x

x̂
µ̇i(t)dt

∣∣∣∣
≤
∫ x

x̂
|µ̇i(t)| dt

≤Mi|x− x̂|

(3.33)

Since we are going to choose Lipschitz activation functions (continuous and differentiable),

it suffices to study the extrema of the function µ̇i(x(t))to find the value of Mi.

3.4 State and unknown input observer

State estimation in the presence of disturbances, unknown inputs, and noise is a chal-

lenging task in control systems. Convergence of the state estimation error to zero cannot

be guaranteed under these conditions. To address these challenges, a robust state and

unknown inputs observer can be employed. This observer incorporates both proportional

and integral actions, providing an additional degree of freedom in the synthesis process.

By using the L2 norm, the observer can quantify and minimize the impact of disturbances

and noise on the estimation process. This enhances the accuracy and robustness of state

estimation, making it a promising solution for practical control and diagnosis system

applications.

3.4.1 Structure of robust proportional integral (PI) observer

Consider the following T-S fuzzy system with weighting functions µi depending on the

state of the system:


ẋ(t) =

r∑
i=1

hi(x(t))(Aix(t) +Biu(t) + Eiδ(t) +Wiω(t))

y(t) = Cx(t) +Gδ(t) +Wω(t)
(3.34)
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Where Ai ∈ <nxnx , Bi ∈ <nxnu , Ei ∈ <nxnδ , are the state, input, and the influence

matrices respectively, Wi ∈ <nxnω is the influence matrices of the noises ω(t) affecting the

states and measurement, C ∈ <nyxn is the output matrix. The proposed observer can

estimate the states and unknown inputs simultaneously of the global T-S fuzzy system

(3.34)[IMRM09].

The L2 norm approach

State estimation in control systems typically relies on a mathematical model of the

system dynamics and measurements collected from the system. However, it is common

for the system model to be imperfect, and disturbances may not be accurately accounted

for in the model. As a result, the convergence of the state estimation error to zero cannot

be guaranteed.

To address this challenge, the L2 norm, which is a direct extension of the H∞ norm

[Wei12, VDS92], has been employed to evaluate the performance of state estimation algo-

rithms. The L2 norm provides a measure of the energy or power of a signal. In the context

of state estimation, it quantifies the energy of the estimation error, which represents the

discrepancy between the true state and the estimated state. One advantage of using the

L2 norm is its ability to handle systems with time-varying parameters. In such cases,

where the system parameters change over time, the L2 norm allows for the evaluation of

the estimation error and the determination of an upper bound on the gain between the

energy of the input and the energy of the output. This upper bound holds true for all

admissible parametric trajectories of the system [Bar01, Nag10].

The L2 norm approach provides a rigorous framework for quantifying the performance

of state estimation algorithms, even in the presence of modeling uncertainties, perturba-

tion, and unmodeled disturbances.

Definition 5 (The L2 norm of signal ). The L2 norm of a square integrable signal s(t)

is denoted and defined by:

‖s(t)‖2 =
(∫ +∞

0
s(t)T s(t)dt

)1/2
(3.35)

Definition 6 (he induced L2 norm of a system ). The induced L2 norm of a system is

defined by:

sup
‖w(t)‖2

2 6=0

‖y(t)‖2
2

‖u(t)‖2
2
, (3.36)
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where u(t) and y(t) are respectively the input and output signals with bounded energy,

within the meaning of the ‖.‖2 norm of the considered system. This norm is a measure of

the greater rate of energy amplification of u(t) over y(t).

Assumptions

In this work, we consider that:

• The non linear system is stable, and the pair (Ai, C), (Āi, C̄) are observable.

• The signals u(t), δ(t), and ω(t) are bounded.

• The unknown inputs δ(t) are assumed to be constant.

The considered observer is given by [IMRM09]:



˙̂x(t) =
r∑
i=1

hi(x̂(t))(Aix̂(t) +Biu(t) + Eiδ̂(t) + LPi(y(t)− ŷ(t)))

ŷ(t) = Cx̂(t) +Gδ̂(t)
˙̂
δ(t) =

r∑
i=1

hi(x̂(t))LIi(y(t)− ŷ(t))

(3.37)

Where LPi ∈ <nxny , and LIi ∈ <nδxny are the proportional and integral gains respec-

tively. x̂(t), and δ̂(t) represent the states and the unknown inputs estimation.

The TS multi-model (3.34) can be rewritten as a perturbed system in the following

form [IMRM09]:

ẋ(t) =
r∑
i=1

hi(x̂(t))(Aix(t) +Biu(t) + Eiδ(t) +Wiω(t) + v(t)) (3.38)

where:

v(t) =
r∑
i=1

(hi(x(t))− hi(x̂(t)))(Aix(t) +Biu(t) + Eiδ(t) +Wiω(t)) (3.39)

Based on the convex sum property and the above assumptions, the term v(t) is

bounded and

IF x̂(t)→ x(t), THEN v(t)→ 0.

The TS multi-model (3.38) and the proposed PIO (3.37) can be written under the

following augmented forms [IMRM09]:
ẋa(t) =

r∑
i=1

hi(x̂(t))(Āixa(t) + B̄iu(t) + Γ̄iω̄(t))

y(t) = C̄xa(t) + D̄ω̄(t)
(3.40)
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and 
˙̂xa(t) =

r∑
i=1

hi(x̂(t))(Āix̂a(t) + B̄iu(t) + L̄i(y(t)− ŷ(t)))

ŷ(t) = C̄x̂a(t)
(3.41)

where:

xa(t) =

x(t)

δ(t)

 , ω̄(t) =

v(t)

ω(t)

 .
with

Āi =

Ai Ei
0 0

 , B̄i =

Bi

0

 , C̄ =
[
C G

]
, D̄ =

[
0 W

]
, Γ̄i =

I Wi

0 0

 .
and

L̄i =

LPi
LIi

 .
Let us consider the state estimation error of the augmented system:

ea(t) = xa(t)− x̂a(t) (3.42)

The dynamics of error ea(t) is represented by:

ėa(t) =
r∑
i=1

hi(x̂(t))((Āi − L̄iC̄)ea(t) + (Γ̄i − L̄iD̄)ω̄(t)) (3.43)

Based on the above assumptions, the gain matrices L̄i of the proposed observer are

determined in order to guarantee the stability of the augmented system even if ω̄(t)

different from zero.

Lemma1:[IMRM09] Consider the TS multi-model defined by:
ẋ(t) =

r∑
i=1

hi(ξ(x(t)))(Aix(t) +Biu(t))

y(t) = Cx(t)
(3.44)

The fuzzy system described by (3.44) is stable and guarantee the L2-gain condition
‖ y(t) ‖2

‖ u(t) ‖2
< γ, if there exists a common positive definite matrix P such that

 ATi P + PAi + CTC PBi

BT
i P − γ2I

 < 0 (3.45)
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Theorem 3.4.1:

The PIO (3.41) , estimating the unknown inputs and state of the fuzzy system

(3.40) with minimizing the L2-gain γ̄ of the unknown inputs on the augmented

state estimation error ea, is obtained by finding a common positive definite matrix

P , matrices Mi and a positive scalars γ̄ such that for i = 1, ..., r: ĀTi P + PĀi −MiC̄ − C̄TMT
i + I P Γ̄i −MiD̄

Γ̄Ti P − D̄TMT
i − γ̄I

 < 0 (3.46)

where γ =
√
γ̄.

The observer gains (3.41) are given by:

L̄i = P−1Mi (3.47)

Proof:

The PIO estimates the states and unknown input if:

lim
0→∞

e(t) = 0 (3.48)

where: e(t) = xa(t)− x̂a(t)

To study the convergence of the state estimation error, we consider the following

quadratic Lyapunov function:

V (t) = eT (t)Pe(t); (3.49)

where P is symmetric positive definite matrix (P = P T > 0).

The augmented state estimation error converges asymptotically towards zero if:

V (t) > 0 and V̇ (t) < 0

The derivative of the Lyapunov function along the trajectory of (17) is given by:

V̇ (t) = ėT (t)Pe(t) + eT (t)P ė(t) (3.50)

by the substituting equation (3.43) into equation (3.50), we find:

V̇ (t) = eT (t)(ĀTi − C̄T L̄Ti )Pe(t) + w̄T (t)(Γ̄Ti − D̄T L̄Ti )Pe(t)
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+ eT (t)P ((ĀTi − L̄iC̄)e(t)) + eT (t)P ((Γ̄Ti − L̄iD̄)w̄(t)) (3.51)

V̇ (t) = eT (t)((ĀTi − C̄T L̄Ti )P + P (ĀTi − L̄C̄i))e(t) + w̄T (t)(Γ̄Ti − D̄T L̄Ti )Pe(t)

+ eT (t)P ((Γ̄Ti − L̄iD̄)w̄(t)) (3.52)

According to the above assumptions ω̄(t) is bounded, and based on lemma1:

‖ ea(t) ‖2< γ ‖ ω̄(t) ‖2

V̇ (t)− γ2w̄T w̄ = eT (t)((ĀTi − C̄T L̄Ti )P + P (ĀTi − L̄C̄i))e(t)

+ w̄T (t)(Γ̄Ti − D̄T L̄Ti )Pe(t) + eT (t)P ((Γ̄Ti − L̄iD̄)w̄(t))− γ2w̄T w̄ (3.53)

V̇ (t)− γ2w̄T w̄ =

 e
w̄


T  ĀTi P + PĀi − PL̄iC̄ − C̄T L̄Ti P + I P Γ̄i − PL̄iD̄

Γ̄Ti P − D̄T L̄Ti P − γ2I


 e
w̄


(3.54)

Then, we obtain: ĀTi P + PĀi − PL̄iC̄ − C̄T L̄Ti P + I P Γ̄i − PL̄iD̄

Γ̄Ti P − D̄T L̄Ti P − γ2I

 < 0 (3.55)

Using the following changes:

γ̄ = γ2,Mi = PL̄i.

The linear matrix inequalities formulation in theorem 1 are obtained.

Remark: The minimization of L2-gain affect the dynamics of unknown inputs and

state estimation error. we can solve this problem with the pole assignment approach.

{z | Re(z) < −λ}, λ > 0 (3.56)

In order to impose Re(λi) < −λ where λi are the eigenvalues of Āi and λ > 0, the

following constraint is added to the LMI in theorem 1.

P (Āi + λI) + (Āi + λI)TP −MiC̄ − C̄TMT
i < 0 (3.57)
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This approach remains effective in practical cases where assumption 1 is not satisfied.

However, it is important to note that the effectiveness of this method relies on the as-

sumption that the unknown inputs vary slowly. If the unknown inputs change rapidly,

the state and unknown inputs estimation using this method may be inaccurate.

In the next section, an alternative method for state and unknown inputs estimation is

introduced. This method utilizes the proportional multiple integral observer. One of the

key advantages of this observer is that it does not rely on assumption 3 in its theoretical

proof. As a result, it becomes possible to estimate a larger class of unknown inputs. This

makes the proportional multiple integral observer an interesting and valuable approach

for state and unknown inputs estimation in a variety of scenarios.

3.4.2 Structure of the proportional multi integral (PMI) ob-

server

In this section, we relax the working assumption 3, which assumes that the unknown

inputs d(t) are constant. Instead, we consider a more general class of signals that includes

unknown inputs in polynomial form. It is important to note that the estimation quality

of the state and unknown inputs using a proportional integral (PI) observer, as discussed

in the previous section, may degrade when the unknown inputs undergo rapid variations.

The main objective of this section is to present a method that enables the simultaneous

estimation of the system’s state and the unknown inputs, even when assumption 3 is not

satisfied. By considering a broader range of unknown input variations, we aim to address

the limitations of the PI observer and enhance the accuracy of the estimation process.

Let us consider the multiple model with unmeasurable premise variables described in

(3.34). The unknown input is assumed to be a bounded time varying signal with null qth

derivative:

Assumptions

In this work, we consider that:

• The non linear system is stable, and the pair (Ai, C), (Ãi, C̃) are observable.

• The signals u(t), δ(t), and ω(t) are bounded.
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• The unknown inputs δ(t) are assumed to be a bounded time varying signal with

null qth derivative d(q)(t) = 0.

Generally, the application of a proportional integral (PI) observer assumes that the

unknown input is constant (i.e., ḋ = 0). As a result, the estimation of unknown inputs that

satisfy condition d(q)(t) = 0 cannot be achieved with high precision using a PI observer.

In such cases, the proportional multiple integral (PMI) observer is more suitable as it

allows for the estimation of the (q − 1)th derivatives of the unknown input, resulting in

improved precision of the estimated unknown inputs.

In a diagnostic framework, condition d(q)(t) = 0 therefore makes it possible to take

into consideration a large class of faults affecting the system: step, ramp, etc. In general,

d(1)(t), d(2)(t), ..., d(q−1)(t) represent the successive derivatives of d(t) which we will define

in the form d following state:



ḋ(t)

ḋ1(t)
...

ḋq−1(t)


=



d1(t)

d2(t)
...

dq(t)


(3.58)

In this section, we consider the generalization of the PMI observer to Takagi-Sugeno

(T-S) systems. The PMI observer for linear descriptor systems, proposed in [IMRM09],

serves as the basis for extending its application to T-S systems. By incorporating the PMI

observer into the T-S framework, we aim to enhance the estimation accuracy of unknown

inputs that do not satisfy condition d(q)(t) = 0.

The considered general observer is given by [IMRM09]:
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˙̂x(t) =
r∑
i=1

hi(x̂(t))(Aix̂(t) +Biu(t) + Eiδ̂0(t) + LPi(y(t)− ŷ(t)))

ŷ(t) = Cx̂(t) +Gδ̂(t)
˙̂
δ0(t) =

r∑
i=1

hi(x̂(t))L0
Ii(y(t)− ŷ(t)) + δ̂1(t)

˙̂
δ1(t) =

r∑
i=1

hi(x̂(t))L1
Ii(y(t)− ŷ(t)) + δ̂2(t)

...
˙̂
δq−2(t) =

r∑
i=1

hi(x̂(t))Lq−2
Ii (y(t)− ŷ(t)) + δ̂q−1(t)

˙̂
δq−1(t) =

r∑
i=1

hi(x̂(t))Lq−1
Ii (y(t)− ŷ(t))

(3.59)

where d̂i, i = 1, 2, ..., (q − 1) are the estimation of the (q − 1) first derivatives of the

unknown input d(t).

The TS fuzzy model (3.38) and the proposed PMI (3.59) can be written under the

following augmented forms [IMRM09]:
ẋa(t) =

r∑
i=1

hi(x̂(t))(Ãixa(t) + B̃iu(t) + Γ̃iω̃(t))

y(t) = C̃xa(t) + D̃ω̃(t)
(3.60)

and 
˙̂xa(t) =

r∑
i=1

hi(x̂(t))(Ãix̂a(t) + B̃iu(t) + L̃i(y(t)− ŷ(t)))

ŷ(t) = C̃x̂a(t)
(3.61)

where:

xa(t) =



x(t)

δ(t)

δ1(t)
...

δq(t)


, ω̃(t) =


v(t)T

ω(t)T

δq(t)T

 .

with

Ãi =



Ai Ei 0 . . . 0 0

0 0 Is . . . 0 0

0 0 0 . . . 0 0
... ... ... ... ... ...

0 0 0 . . . 0 Is
0 0 0 . . . 0 0


, B̃i =



Bi

0
...

0


, Γ̃i =



ΓTi
0
...

0


, C̃ =

[
C G 0 ... 0 0

]
.
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where 0 represents null matrix with appropriate dimensions.

and L̃i is:

L̃i =



LPi

L0
Ii

L1
Ii

...

Lq−2
Ii

Lq−1
Ii


.

The state estimation error of the augmented system presented as follow:

e(t) = x(t)− x̂(t), e0(t) = δ(t)− δ̂0(t), ..., eq−1(t) = δ̇q−1(t)− ˙̂
δq−1(t) (3.62)

The dynamics of error ea(t) is represented by:

ė(t) =
r∑
i=1

hi(x̂(t))((Ai − LPiC)e(t) + (Γi − LPiW̄ )ω̃(t) + (Ei − LPiG)e0(t))

ė0(t) =
r∑
i=1

hi(x̂(t))(−L0
IiCe(t) + e1(t)− L0

IiW̄ ω̃(t)− L0
IiGe0(t))

ė1(t) =
r∑
i=1

hi(x̂(t))(−L1
IiCe(t) + e2(t)− L1

IiW̄ ω̃(t)− L1
IiGe0(t))

...

ėq−2(t) =
r∑
i=1

hi(x̂(t))(−L0
IiCe(t) + eq−1(t)− Lq−2

Ii W̄ ω̃(t)− Lq−2
Ii Ge0(t))

ėq−1(t) =
r∑
i=1

hi(x̂(t))(−Lq−1
Ii Ce(t)− L0

IiW̄ ω̃(t)− Lq−1
Ii Ge0(t))

(3.63)

where:

Γi =
[
In Wi

]
, W̄ =

[
0 W

]
,

The dynamics of error ea(t) is of the equation 3.63 can be represented as follow:

˙̃ea(t) =
r∑
i=1

hi(x̂(t))((Ãi − L̃iC̃)ea(t) + (Γ̃i − L̃iW̄ )ω̃(t)) (3.64)

where:

ẽa =



e

e0

e1
...

eq−2

eq−1
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Theorem 3.4.2:

The Proportional Multi Integral (PMI) Observer (3.61), designed to estimate the

state and unknown inputs Simultaneously of the fuzzy system (3.60) while minimiz-

ing the L2-gain γ̄ of the unknown inputs on the augmented state estimation error

ea, can be obtained by determining a positive definite matrix P , matrices Mi, and

positive scalar γ̄ that satisfy the following conditions for i = 1, ..., r:

 ÃTi P + PÃi −MiC̃ − C̃TMT
i + C̃T C̃ P Γ̃i −MiW̄

Γ̃Ti P − W̄ TMT
i −γ̄I

 < 0 (3.65)

The gains of the observer are derived from:

Mi = PL̃i

and the attenuation level is calculated by:

γ =
√
γ̃

Theorem 3.4.2 presents the conditions for designing the Proportional Multi Integral

(PMI) Observer, which aims to estimate the unknown inputs and state of the fuzzy system

while minimizing the L2-gain γ̄ of the unknown inputs on the augmented state estimation

error ẽa. By finding appropriate values for the positive definite matrix P , matrices Mi,

and positive scalar γ̄, the PMI Observer can be effectively designed to achieve accurate

estimation results.

The inequality (3.65) represents the key stability and performance conditions for the

PMI Observer. It ensures that the augmented state estimation error remains bounded,

while minimizing the L2-gain of the unknown inputs. By satisfying these conditions, the

PMI Observer demonstrates its capability to provide robust and accurate estimation of

the unknown inputs and state of the fuzzy system.

3.5 Conclusion

In conclusion, this chapter explores various observer techniques for state estimation

in nonlinear systems. It highlights the state-of-the-art approaches to observability and

discusses specific observer methods, such as the Takagi-Sugeno multi-model observer and
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the state multi-gain observer based on the Lipschitz approach. Additionally, the chapter

introduces the state and unknown input observer, which offers improved estimation accu-

racy and robustness. By incorporating proportional and integral actions, these observers

provide valuable tools for state estimation in challenging nonlinear systems.
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4.1 Introduction

This chapter focuses on the practical application of the observer techniques discussed

in Chapter 3 to a synchronous reluctance motor (SynRM). The chapter explores the

design and implementation of a Takagi-Sugeno (TS) model-based observer for the SynRM

system. The goal is to demonstrate the effectiveness and performance of the observer in

estimating the states of the SynRM under various operating conditions.

The chapter begins by presenting the application of the observer to the SynRM system.

The TS model design for the SynRM is discussed in detail, highlighting the modeling
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considerations and the construction of the TS model. The TS model serves as the basis

for developing the observer for state estimation.

To facilitate the implementation of the observer, the chapter provides syntax code in

MATLAB. This code offers a practical guide for readers to understand and implement the

observer algorithm in a real-world scenario. The MATLAB code includes the necessary

functions and calculations required for the observer design and estimation process.

The chapter presents the simulation results obtained from applying the observer to

the SynRM system. The performance of the observer in estimating the states of the

motor under various operating conditions is evaluated and analyzed. A comparative

analysis is conducted to assess the effectiveness of the observer in comparison to other

existing methods. The results provide insights into the accuracy, robustness, and overall

performance of the observer in practical applications.

To further validate the observer’s effectiveness and practical applicability, the chapter

includes a hardware-in-the-loop validation. This validation involves implementing the ob-

server on real hardware and testing its performance in a real-time setup. The experimental

results and observations obtained from the hardware-in-the-loop validation provide valu-

able insights into the practical feasibility and performance of the observer in a real-world

SynRM system.

4.2 Application to synchronous reluctance motor

Several studies are devoted to the state estimation problem for synchronous reluctance

motor. Unfortunately, the majority of those works cannot be determined the unknown

inputs. Mynar et al [MVB20], proposed an adaptive observer using extended Kalman

filter to estimate the speed rotor and inductance parameters in which the observer gains

are obtained with online technique. In order to achieve the fault detection problem, a

Luenberger observer has been proposed in Mahmoudi et al. [MJC+21], to estimate only

the stator current. For this reason, a PIO algorithm is proposed in this paper to solve

this problem.

In this section the proposed observer is applied to a synchronous reluctance motor

in order to reconstruct the unknown inputs and state variables . First the synchronous

reluctance motor fuzzy model is presented.
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4.2.1 TS model design of SynRM

The TS fuzzy model is built to design the proposed observers allowing the unknown

inputs and state estimation. The most method to obtain a TS model is the non linear

sector transformation, this approach allows exactly transform the non linear system into

a fuzzy model with four linear sub-system.

Terms (iq,Ω) are mainly contribute on the non-linearity of system, so it is natural to

define these terms as a premise variables. ξ1(t) = iq

ξ2(t) = Ω

The non linear terms ξ(t) can be writing under the following shape:

ξj(t) = F1j(t).ξ̄ + F2j(t).ξ j = {1, 2} (4.1)

where: 
F1j =

ξj(t)− ξj
ξ̄j − ξj

F2j = ξ̄j − ξj(t)
ξ̄j − ξj

(4.2)

Thus, the LPV system (1.28) is equivalently written under the TS fuzzy model form:


ẋ(t) =

4∑
i=1

hi(ξ(t))(Aix(t) +Biu(t) + Eiδ(t))

y(t) = Cx(t)
(4.3)

h1(ξ(t)) = M1(ξ1(t))×N1(ξ2(t)); h2(ξ(t)) = M1(ξ1(t))×N2(ξ2(t))

h3(ξ(t)) = M2(ξ1(t))×N1(ξ2(t)); h4(ξ(t)) = M2(ξ1(t))×N2(ξ2(t))

The machine studies is a (2.2 kW) SynRM whose parameters are presented in Table

1. The constant matrices in (4.3) defining the four linear sub-systems, are determined by

using the pair (ξ̄j, ξj) and non linear matrices in (1.28).
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A1 =


9 0 4.73

−4644.4 −38 0

317.5 0 −0.02

 , A2 =


−9 0 4.73

−84.4 −38 0

317.5 0 −0.02

 ,

A3 =


−9 0 0

−4644.4 −38 0

0 0 −0.02

 , A4 =


−9 0 0

−84.4 −38 0

0 0 −0.02

 ,

Bi =


5.26 0

0 22.22

0 0

 , Ei =


0

0

−73

 .

Table 4.1: SynRM parameters[YMEC14]

Rated power PN 2.2KW

Rated voltage VN 220/380V

Rated speed Ω 1500rpm

stator resistance Rs 1.71Ω

direct axe Inductance d Ld 0.15 H

quadrature axe Inductance q Lq 0.04 H

Number of pole pairs np 2

Moment of inertia J 0.0137Kg.m2

friction coefficient f 0.00036Nm/rad/s

4.2.2 Syntax code in MATLAB

In order to design the MGO, PIO observer we establish the LMI (constraints) algo-

rithm to search the observer gains (3.47)
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Step 1:

After calculating the matrices coefficients Ai of the TS fuzzy model.

Then, initialize the system parameters in MATLAB.

Step 2:

Define the LMI constraints of MGO to guarantee the feasibility of (3.31)

» P = sdpvar (3,3,’symmetric’);

» M1 = sdpvar(3,3); M2 = sdpvar(3,3);

» M3 = sdpvar(3,3); M4 = sdpvar(3,3);

» F = set(P>zeros(3,3));

» LMI (3.31) and (3.32)

Define the LMI constraints of PIO to guarantee the feasibility of (3.46)

» P = sdpvar (4,4,’symmetric’);

» M1 = sdpvar(4,3); M2 = sdpvar(4,3);

» M3 = sdpvar(4,3); M4 = sdpvar(4,3);

» F = set(P>zeros(4,4));

» LMI (3.46) and (3.57)

Step 3:

Solved, the convex optimization problem by using an semidefinite

solver "SeDuMi".

The gains matrices of the fuzzy multi-gain observer (MGO)and proportional integral

observer (PIO) are given, respectively, as follows:

LMGO1 =


584 −89 9

−93 3863 917

52 −974 22720

 , LMGO2 =


584 −89 9

−93 3863 −917

52 −974 22720

 ,

LMGO3 =


584 −89 8

−92 3841 −898

23 −854 22741

 , LMGO4 =


584 −89 8

−92 3841 −898

23 −854 22741

 .
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L̄PI1 =



43.8 −5396.4 5353.4

−2145.8 −3636.2 5782.8

−649.8 −8063.2 8713.7

1123.9 795.4 −1919.2


, L̄PI2 =



−287.1 −379.34 667.45

−652.79 −144.28 798.04

−868.68 −616.39 1486

1054.9 88.665 −1143.4


,

L̄PI3 =



446.53 −5250.4 4804.8

−1731.7 −3533.3 5266

−57.2 −7827.9 7886.1

831.98 878.9 −1710.9


, L̄PI4 =



114.1 −245.8 132.8

−253.5 −66.7 321.3

−278.0 −425.9 704.9

756.8 210.5 −967.3


.

The gain of Luenberger observer is given as follows:

LLuen =
[
94 100 2500

]T
.

4.3 Simulation results and comparative analysis

To show the effectiveness of the proposed PIO observer, a Luenberger observer (LO)

[MJC+21] and a fuzzy multi-gain observer (MGO) [IMR16] are adopted for comparison

purposes, under both different speed and load disturbance conditions. The performance of

the different techniques were tested through MATLAB/Simulink environment. To study

the observers reliability versus the external perturbations, a random noise signal of 0.5

amplitude is added to the observer inputs. These simulations were carried out with a

200kHz sampling frequency.
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Fig 4.7: The Unknown load torque and its estimation via PIO.

Figures 4.1 to 4.7 show the rotor speed response, (d-axis, q-axis) stator currents,

unknown load torque, and its estimation of the synchronous reluctance motor via pro-

portional integral observer, Luenberger observer, and the fuzzy multi-gain observer under

field-oriented control. Firstly, to test the systems tracking performance, the speed refer-

ence was increased from 0 to 1000rpm at t = 0 sec then a step-down from 1000 to 500rpm

at t = 2sec, and finally a step-up from 500 to 1500rpm at t = 4sec. Secondly, a constant

load torque of 7 Nm was applied at t =5sec, then it is stepped down to 4 Nm and 0 Nm

at t = 7sec and t = 8sec, respectively.

Figure 4.1 indicates that the PIO tracks very well the real velocity for all the speed

range. On the other hand, we find that the two proposed techniques [MJC+21] and

[IMR16] give a degraded quality of observation and are noise-sensitive. Figure 4.2 il-

lustrates the rotor speed error, which was between -5 and 5 rpm for the MGO and LO

observers, and a negligible value for the proposed observer.

Figures 4.3 and 4.5 show the direct and quadrature axis stator current of the syn-

chronous reluctance motor and their estimations via three approaches, under the proposed

speed profile; Figures 4.4 and 4.6 show the estimation error of the stator currents. It is

very clear that the proposed observer is insensitive to the noise and estimates the real

values with high performance even at a low speed. On the other hand, we find that the

other approaches give a degraded quality of estimation. Indeed, the Luenberger observer
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presents a static error in the low speed (t = 0sec to t = 4sec) and in the presence of

the load torque (t = 5sec to t = 7sec). As it is observed, the auxiliary system (PIO) is

insensitive to the noise. It is clear from the obtained results that the errors between the

real states and their estimations are negligible in different speed range and the observer

shows its high performance even at the low speed, in addition to its insensitivity to the

noise. From figure 4.7, it is clear that the PIO show a good agreement between the esti-

mated and the real unknown input, on the other hand, both Luenberger and multi-gain

observers are not able to estimate the unknown inputs. This is considered as one of the

main strengths of the PIO.

Table 4 shows the comparison of the unknown input and state estimation errors be-

tween the PI, fuzzy multi-gain, and the Luenberger observers. As is seen in Table 4, the

proposed technique provides the lowest currents and rotor speed error at all speed range

and unknown inputs change conditions which confirms the high performance of the PIO

even in extreme conditions (low speed, high load torque, and random noise). This makes

the PIO more advantageous for industrial applications.

Table 4.2

Observer performance LO MGO PIO

Mean square error

id ( A) 0.2067 0.1352 0.00516

iq (A) 0.419 0.2219 0.00514

Ω (rpm) 2.78 2.688 0.048

Load torque (N.m) / / 0.004

Maximum error

id ( A) -1.9 0.54 0.18

iq ( A) -8.2 0.52 0.19

Ω (rpm) 4.77 4.76 1.69

Load torque (N.m) / / 7

4.4 Hardware-in-the-loop validation

Real-time HIL test bench is a way to bridge the gap between software-based simulation

and real operational conditions [AADM19]. It has been proved as an effective approach

to testing control and diagnosis algorithms in several fields, such as electric vehicle drive-
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train, power electronics, and power systems [ZZOL19].

In order to validate the performance of the proposed PIO based on TS fuzzy model.

A test bench is build in the MSE laboratory as shown in figure 4.8. A hardware in

the loop platform is used to emulate the real behavior of synchronous reluctance motor.

As presented in figure 4.9 the overall architecture of the hardware-in-the-loop is consist

of two dSPASE1104 board cards, the first one is used to emulate both synchronous re-

luctance motor and voltage source inverter controlled by field-oriented control through

MATLAB/Simulink. The second dSPACE is used for the observer application, where the

sampling frequency is 10KHz. We emphasize that the connection between the two board

was done grace a digital analog and analog digital conversion blocks (DAC and ADC).

The motor parameters are listed in Table 1.

Figures 4.10 to 4.23 show the PIO performance for synchronous reluctance motor under

field-oriented control using the hardware experiment. For this reason, three different

scenarios are tested as shown in Table 2.

Fig 4.8: Test bench.
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Fig 4.9: Overall architecture of the HIL test system.

Table 4.3

Cases Speed profile Load torque profile Descriptions

1 Speed step

change

No load torque Ω : 0 → 1500 → 300 →

1000(rpm/min) and TL =

0(N/m)

2 Speed step

change

Load torque step change Ω : 0 → 1000(rpm/min)

and TL : 0 → 5 → 10 →

0(N/m)

3 Constant speed

value

Load torque trapezoidal

form

Ω = 1000(rpm/min) and

TL : 0→ 10→ 0(N/m)

Case 1 Observer performance under different speed references

with no load torque

Firstly, in order to test the effectiveness of the proposed observer in speed tracking

problem, a rapid variation in rotor speed reference is performed without load torque.

The motor speed initially increases from 0 rpm to 1500 rpm at t = 1.12 sec , then, it

decelerated to 300 rpm at t = 3.91 sec, and finally stepped up from 300 rpm to 1000 rpm

at t = 7.08 sec.

Figures 4.10 to 4.13 shows the experimental results of rotor speed response, (d-axis,

q-axis) stator currents, and its estimation under field oriented control. As it can be seen in

figure 4.10, the estimate rotor speed follows perfectly the real out put with a fast settling
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time (i.e., 28 ms)and without any noticeable ringing or overshoot ( 0.11 %), during all

increase or decrease stage. In the zoom of figure 4.10 the magenta line represents the

state estimated and the real values is represented by the black line.

Figures 4.12 and 4.13 present the d-q axis stator currents of the synchronous reluc-

tance motor and their estimated, respectively, under the proposed speed profile. We can

see in both figures, that the estimate states allow their real values with satisfactory per-

formances. However, figure 4.11 illustrate the evolution of rotor speed error, which close

to zero in a steady state (mean square error with 0.48%).

As it can be observed, the auxiliary system (PIO) is insensitive to the noise. It is clear

from the obtained results that the errors between the real states and their estimated are

negligible in different speed rang and the observer show its high performance even in the

low speed and insensitivity to the noise.

Case 2 Observer performance under constant load torque

Secondly, in order to test the robustness of the proposed observer against the presence

of unknown inputs, a constant load torque of 5 N.m was imposed at t = 4,92 sec, then

it stepped up to 10 N.m at t = 6,84 sec. Figures 4.14 to 4.18 shows the performance

of the PIO when the motor keeps running at speed of 1000 rpm and changes from no-

load to load mode . It is clear from figure 4.14, that the estimated rotor speed tracks

well the measured value without any noticeable ringing or overshoot, and the estimation

errors remains very small (mean square error with 0.84%), where the zoomed graphs given

the details of the few ripples. Figures 4.16 and 4.17, present the direct and quadrature

components of the stator current and their estimated, respectively. As it can be observed,

the stator currents estimation errors for both components (d and q) are near to zero for

transient and steady states. Figure 4.18 depicts the load torque waveform. As can be

seen, the load torque estimation converge to its real value with a fast settling time. A

negligible overshoot appeared especially in transient state.

Case 3 Observer performance under variable load torque

Finally, a variable load torque was imposed for the motor when the rotor speed is

equal 1000 rmp. As it can be observed from figure 4.19 the estimated speed tracks well

the real value without any unacceptable peak or overshoot. Figure 4.20, present the speed
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error, which is always negligible and there is no influence of load torque on the observation

performance (mean square error with 0.96%). Figures 4.21 and 4.22 shows the d-q axis

currents and their estimated, respectively, it is clear that the estimated currents follows

perfectly its real values with a fast setting time and without any unacceptable peak or

overshoot even in the presence of load torque. The quadrature component of the stator

current value follows in a proportional manner the evolution of the load torque, as it

illustrated in figure 4.20.

Figure 4.23 present the evolution of the load torque and thier estimated, as it can be

seen in the zoom, the proposed observer has strong robustness to the unknown inputs in

different values or variables profile. This make the PI-observer robust on variable load

torque, speed and less sensitive to the noise.

0 1 2 3 4 5 6 7 8 9 10
Time (s)

-200

0

200

400

600

800

1000

1200

1400

1600

S
p

ee
d

 (
rp

m
)

4 5 6 7

290

295

300

305

310

Zoom

Fig 4.10: Rotor speed and its estimation case 1.
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Fig 4.12: d-axis stator current and its estimation case 1.
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Fig 4.13: q-axis stator current and its estimation case 1.
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Fig 4.14: Rotor speed and its estimation case 2.
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Fig 4.16: d-axis stator current and its estimation case 2.
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Fig 4.17: q-axis stator current and its estimation case 2.
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Fig 4.18: Unknown load torque and its estimation case 2.
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Fig 4.19: Rotor speed and its estimation case 3.
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Fig 4.20: Error speed case 3.
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Fig 4.21: d-axis stator current and its estimation case 3.
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Fig 4.22: q-axis stator current and its estimation case 3.
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Fig 4.23: Unknown load torque and its estimation case 3.

Table 4.4

SynRM speed Case 1 Case 2 Case 3

Maximum error (%) 2.6% 3.2% 0.56%

Mean square error (%) 0.48% 0.84% 0.96%

Overshoot (%) 0.11% 0.14% −

Settling time (ms) 28ms 28ms −

4.5 Conclusions

This chapter demonstrates the application of the observer techniques discussed in

chapter 3 to a synchronous reluctance motor (SynRM). The TS model-based observer is

designed and implemented for state estimation in the SynRM system. Through simulation

results, comparative analysis, and hardware-in-the-loop validation, the chapter showcases

the effectiveness, accuracy, and robustness of the observer in estimating the states of the

SynRM under various operating conditions. The practical implementation and validation

provide valuable insights into the practical applicability and performance of the observer

in real-world scenarios, further emphasizing its potential for state estimation in SynRM

systems.
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General Conclusion

This thesis deals with the problem of modeling and state estimation of nonlinear

systems represented in the form of fuzzy multi-models.

In the context of modeling, we favored the Takagi-Sugeno (T-S) approach because

of its ease of use, particularly for studying stability and synthesizing observers and con-

trollers. Two main structures of multi-models can be identified depending on whether the

sub-models share the same state vector. The first structure is the decoupled multi-model,

while the second is the fuzzy multi-model of Takagi-Sugeno, which has been at the origin

of numerous developments in various fields of automation such as identification, state esti-

mation, or control. Consequently, we represented the nonlinear model of the synchronous

reluctance machine in the form of a fuzzy Takagi-Sugeno model, this representation is

based on decomposition into a nonlinear sector.

In the context of state estimation, we synthesized three state observer structures for

systems represented by a multi-model. The first observer (Lipschitzian observer) aims

to estimate the states of the system while minimizing modeling uncertainties. The other

two observers, with unknown inputs (proportional-integral gain and multi-integral), are

intended for nonlinear systems affected by unknown inputs (disturbances). They allow

for a simultaneous estimation of the state and unknown inputs of the system through an

integral action improving state estimation. We applied these methods to a real process

model, particularly that of synchronous reluctance machine.

To position our contribution in relation to existing work, we presented a state of the

art on variable reluctance synchronous machines and fuzzy multi-models in the first two

chapters. Our contributions were formulated in the third chapter of this dissertation,

focused on the synthesis of robust observers in the face of modeling uncertainties and

external disturbances (unknown inputs). In the last chapter, the example of a variable

reluctance synchronous machine allowed us to illustrate the implementation of the results

obtained, from the modeling phase to the observer synthesis phase.

The results demonstrate the interest in using advanced automation techniques in the
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field of control and diagnosis of electric machines.

The problems discussed in this dissertation open up many perspectives for future work:

• fault detection and diagnosis methods basd on a proportional-integral (PI) observer

and multi-integral (PMI).

• Design of an observer-based controller whose stability is dealt with by means of

linear and nonlinear Lyapunov functions.

• Design of a fault-tolerant control for nonlinear systems described by TS multi-

models, and particularly for electric machines.



Annex

LMI Tools

LMI methods are based on formulating a given problem as an optimization problem

with a linear objective and constraints in the form of Matrix Linear Inequalities (LMI).

An LMI constraint in a vector x ∈ Rm is of the form

F (x) = F0 +
m∑
i=1

xiFi ≥ 0 (4.4)

where the symmetric matrices Fi = F T
i ∈ RN×N , i = 1, · · · ,m, are given.

Schur’s complement

Consider three matrices R(x) = RT (x), Q(x) = QT (x) and S(x) affine with respect to

the variable x. The following LMIs are equivalent:

 Q(x) S(x)

ST (x) R(x)

 > 0,

R(x) > 0, Q(x)− S(x)R−1(x)ST (x) > 0,

Q(x) > 0, R(x)− ST (x)Q−1(x)S(x) > 0.
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