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Abstract

Image segmentation is a vital process in various fields, including robotics, object recog-
nition, and medical imaging. In medical imaging, accurate segmentation of brain tissues
from MRI images is crucial for diagnosing and treating brain disorders such as Alzheimer’s
disease, epilepsy, schizophrenia, multiple sclerosis, and cancer. This thesis proposes an
automatic fuzzy method for brain MRI segmentation.

Firstly, the proposed method aims to improve the efficiency of the Fuzzy C-Means
(FCM) algorithm by reducing the need for manual intervention in cluster initialization
and determining the number of clusters. For this purpose, we introduce an adaptive split-
merge technique that effectively divides the image into several homogeneous regions using
a multi-threshold method based on entropy information. During the merge process, a new
distance metric is introduced to combine the regions that are both highly similar within
the merged region and effectively separated from others. The cluster centers and numbers
obtained from the adaptive split-merge step serve as the initial parameters for the FCM
algorithm. The obtained fuzzy partitions are evaluated using a novel proposed validity
index.

Secondly, we present a novel method to address the challenge of noisy pixels in the
FCM algorithm by incorporating spatial information. Specifically, we assign a crucial role
to the central pixel in the clustering process, provided it is not corrupted with noise.
However, if it is corrupted with noise, its influence is reduced. Furthermore, we propose
a novel quantitative metric for replacing the central pixel with one of its neighbors if it
can improve the segmentation result in terms of compactness and separation. To evaluate
the effectiveness of the proposed method, a thorough comparison with existing clustering
techniques is conducted, considering cluster validity functions, segmentation accuracy, and
tissue segmentation accuracy. The evaluation comprises comprehensive qualitative and
quantitative assessments, providing strong evidence of the superior performance of the
proposed approach.

Keywords

Image segmentation, adaptive split-merge stage, spatial information, fuzzy similarity
measure, level of noise.



Résumé

La segmentation d’image est un processus essentiel dans divers domaines, notamment
la robotique, la reconnaissance d’objets et l’imagerie médicale. En imagerie médicale, une
segmentation précise des tissus cérébraux à partir d’images IRM est cruciale pour le diag-
nostic et le traitement des troubles cérébraux tels que la maladie d’Alzheimer, l’épilepsie,
la schizophrénie, la sclérose en plaques et le cancer. Cette thèse propose une méthode floue
automatique pour la segmentation IRM cérébrale.

Tout d’abord, la méthode proposée vise à améliorer l’efficacité de l’algorithme Fuzzy
C-Means (FCM) en réduisant le besoin d’intervention manuelle dans l’initialisation des
clusters et la détermination du nombre de clusters. Dans ce but, nous introduisons une
technique de décomposition-fusion adaptative qui divise efficacement l’image en plusieurs
régions homogènes à l’aide d’une méthode multi-seuils basée sur les informations d’entropie.
Pendant le processus de fusion, une nouvelle mesure de distance est introduite pour com-
biner les régions qui sont à la fois très similaires à l’intérieur de la région fusionnée et
efficacement séparées des autres. Les centres et les nombres de groupes obtenus à par-
tir de l’étape de décomposition-fusion adaptative servent de paramètres initiaux pour
l’algorithme FCM. Les partitions floues obtenues sont évaluées à l’aide d’un nouvel in-
dice de validité.

Ensuite, nous présentons une nouvelle méthode pour relever le défi des pixels bruités
dans l’algorithme FCM en incorporant des informations spatiales. Plus précisément, nous
attribuons un rôle crucial au pixel central dans le processus de regroupement, à condition
qu’il ne soit pas corrompu par du bruit. Cependant, s’il est corrompu par du bruit, son
influence est réduite. De plus, nous proposons une nouvelle mesure quantitative pour rem-
placer le pixel central par l’un de ses voisins s’il peut améliorer le résultat de segmentation
en termes de compacité et de séparation. Nous effectuons des comparaisons qualitatives et
quantitatives avec des techniques de clustering existantes, en considérant les fonctions de
validité, la précision de segmentation et la précision des tissus segmentés.

Mots-clés

Segmentation d’image, décompositon-fusion adaptative, information spatiale, mesure
de similarité floue, niveau de bruit.



 ملخص

 بالرنين رالتصويو  الأجسام،على  التعرفالروبوتات،  مثل: مختلفة،مجالات  ضمنمهمة  عمليةتقسيم الصور هي إن 
للتشخيص  جد مهمأمر وهو ، تقسيم الأنسجة بدقةيركز على للدماغ  المغناطيسي بالرنين التصويرصور  أننجد  حيث. المغناطيسي

التصلب المتعدد والسرطان. الهدف الرئيسي من هذه ، فصام الشخصية، الصرعر، الزهايممرض : مثل الدماغ،وعلاج اضطرابات 
 للدماغ. المغناطيسي بالرنين التصويرالأطروحة هو اقتراح طريقة ضبابية تلقائية لتقسيم صور 

ية ين خوارزمتجمع ب تكيفيةطريقة  دخالاعن طريق  FCM)) الضبابية المتوسطات نهدف إلى تحسين دقة خوارزميةس أولًا،
سواء  الابتدائية للقيم ( FCM )حساسية الطريقة للتغلب على  هذهتم تصميم فقد  ،(FCM)مع خوارزمية  دمجالتقسيم وال

الصورة بشكل ديناميكي إلى مناطق متجانسة باستخدام معلومات  لتقسيمسنهدف  حيث .عدد المجموعات او قيم مراكز المجموعات
 بعد ذلك يتمل باستخدام مقياس مسافة جديد لتقليل عدد المجموعات. تجانسةالمناطق الم دمجقوم بن ثم العتبات،الإنتروبيا متعددة 
الموافق لها  اتعدد المجموعو  اتتلف التقسيممختقييم  ومن ثم عليها،مراكز المجموعات المحصل  باستخدام (FCM)تطبيق خوارزمية 

 جديد. تقييممؤشر  عن طريق

الاعتبار  فيجديدة تأخذ  ستراتيجيةإ دمنقس الصور،ضد الضوضاء في تجزئة  (FCM)خوارزمية  داءأتعزيز  من اجل ثانيًا،
تأثيره في عملية التقليل من  مع بالضوضاء،تجزئة إذا لم يتأثر النقترح منح وزنًً أكبر للبكسل المركزي في حيث س ،المعلومات في الجوار

ومستوى فيما بينها  قياس التشابهمضوضاء. يتم تعريف تأثير البكسلات المجاورة بناءً على العلى يحتوي  التجزئة إذا كان بكسل
 زئةتج يحسن أداءو  سيعوض البكسل المركزي الذي مقياسًا كميًا جديدًا لتحديد البكسل الأمثل ترحنقس ،ذلك ضافة إلىإالضوضاء. 

 عن طريق حالياً   المنشورة الأخرى الأعمال وبعض ( FCM)مع  تهاارنوم بمقنقالمقترحة، س تفوق طريقتنا ولإثبات أخيراً .الصورة
 ودقة التجزئة ودقة تجزئة الأنسجة.  س تقييم المجموعاتاية، كمقكميالو  ةنوعيات الالتقييممجموعة من 

 : الكلمات المفتاحية 

 الضوضاءمستوى  الضبابي، قياس التشابهم ،جواريةمعلومات  التكيفية،مرحلة الانقسام  الصورة، تجزئة
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Chapter 1

General introduction

Contents
1.1 Thesis Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis Motivation and Objectives . . . . . . . . . . . . . . . . 2
1.3 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1 Thesis Context

Medical image segmentation is a crucial task in which an image is separated into mean-
ingful and non-overlapping regions with similar characteristics. This process is challenging
due to the inherent imprecision of medical images. Accurate and reliable segmentation
is indispensable for extracting valuable information from medical images. It enables pre-
cise analysis, diagnosis, treatment planning, and monitoring of various medical conditions
by identifying and isolating specific tissues or structures within an image. By delineating
boundaries, segmentation facilitates accurate measurements, quantitative analysis, and the
extraction of relevant features. Moreover, it serves as a foundation for advanced image-
based techniques such as 3D reconstruction, computer-aided diagnosis, and image-guided
interventions. Additionally, precise segmentation contributes to assessing treatment re-
sponse, disease progression, and patient outcome evaluation.

Manual segmentation is a traditional method of image segmentation that involves
an expert or a human operator manually drawing boundaries or contours around objects
of interest in an image. This method has long been used as a gold standard for image
segmentation, as it allows for precise and accurate identification of regions of interest.
However, manual segmentation is a time-consuming and labor-intensive process that can
be prone to errors. Moreover, manual segmentation is subjective, and different experts
may produce different segmentations. This subjectivity can lead to inconsistencies in diag-
nosis and treatment planning. Furthermore, manual segmentation may not be feasible in
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cases where the images contain a large number of regions, and it is not suitable for large
datasets or real-time applications. The limitations of manual segmentation have led to
the development of automatic image segmentation methods. These methods employ vari-
ous algorithms to segment images based on different criteria, including intensity, texture,
shape, and spatial information. Unlike manual segmentation, these methods are less prone
to operator variability, resulting in more objective and accurate segmentation.

Image clustering is a process that involves grouping pixels or voxels within an image
based on their similarity to identify and separate different regions or objects of interest.
This approach offers several advantages. It eliminates the need for manual annotation,
reducing human effort and subjectivity in the segmentation process. Moreover, image
clustering algorithms are efficient in handling large datasets, enabling the analysis of high
resolution medical images with improved efficiency. Additionally, image clustering pro-
vides a versatile solution applicable to various imaging modalities, such as MRI, CT, and
ultrasound, making it suitable for a wide range of medical image segmentation tasks.

In this work, we address the significant challenge of the scarcity of high-quality anno-
tated medical imaging datasets. We focus on clustering methods, which search for patterns
in a data set without pre-existing labels. Additionally, this method can also be employed
for anomaly detection to identify noisy pixels that do not belong to any cluster.

1.2 Thesis Motivation and Objectives

There are several well-known clustering algorithms proposed in the literature, including
K-means, hierarchical clustering, Density-Based Spatial Clustering of Applications with
Noise (DBSCAN), and Gaussian Mixture Models (GMM) (Mittal et al., 2021). K-means
and hierarchical clustering are distance-based algorithms that assign data points to clusters
based on minimizing the distance within clusters. However, they make assumptions of
equal-sized and spherical clusters, which may limit their effectiveness in capturing complex
cluster shapes. They are also sensitive to the initial parameter choices, which can lead
to different cluster assignments. DBSCAN identifies clusters based on the density of data
points and their connectivity. It is capable of discovering clusters of arbitrary shapes and
sizes, making it more flexible than distance-based algorithms. However, DBSCAN has
difficulties handling data with varying densities and may struggle with high-dimensional
datasets due to the curse of dimensionality. GMM is a probabilistic model that assumes
data points are generated from a mixture of probability distributions. It estimates the
parameters of the underlying distributions and assigns data points to clusters based on their
membership probabilities. GMM can capture complex data distributions and is robust to
noise. However, it assumes a specific parametric form of the data distribution, which may
not always be accurate, and determining the optimal number of clusters can be challenging
(Yazdani et al., 2015).
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In addition to these limitations, clustering algorithms in general can suffer from com-
putational complexity, especially when dealing with large datasets. The subjective nature
of determining the number of clusters and making assumptions about the underlying data
distribution also adds a level of uncertainty in the clustering process.

In this thesis, we focus on the Fuzzy C-Means (FCM) algorithm, which is one of
the most widely used fuzzy clustering algorithms for image segmentation where imprecise
decisions are often required. FCM extends the K-means algorithm by introducing fuzziness
into the cluster assignments, allowing a pixel to belong to multiple clusters to a certain
degree of membership. This makes it more suitable for handling partial volume effects in
medical images, where multiple tissues can contribute to the same pixel intensity value.
One of the main challenges in FCM is to determine the optimal number of clusters for a
given image. This is a crucial step in the segmentation process, as an incorrect choice of the
number of clusters can lead to inaccurate segmentation results. In addition, FCM requires
an initialization of the cluster centers which is a critical step that can significantly affect the
final segmentation result. Without an appropriate initialization, FCM may fall into local
minimum solutions, which can lead to suboptimal results. In addition, FCM algorithm is
relatively sensitive to noise pixels, as it does not consider the spatial distribution of pixels
in an image, which can lead to misclassification of pixels and affect the accuracy of the
segmentation results. In this case, FCM tries to minimize the distance between each pixel
and each cluster center, hence, noise can cause a pixel to be closer to the wrong cluster
center, leading to misclassification.

In this thesis, we propose an automatic image segmentation method that aims to ad-
dress the limitations of FCM by achieving two main objectives. Firstly, we aim to improve
the efficiency of the segmentation process by reducing the need for manual intervention in
cluster initialization and determining the number of clusters. To achieve this, we intro-
duce a new strategy based on an adaptive split-merge technique that effectively divides the
image into several homogeneous regions using a multi-threshold method based on entropy
information. Furthermore, we use a new fuzzy validity index to incorporate compactness
and separation information, which helps determine the optimal fuzzy partition. Secondly,
we aim to reduce the impact of noisy data on the clustering process, which can cause mis-
classification of pixels and affect the accuracy of the segmentation results. To overcome
this limitation, we propose a novel variant of the Fuzzy C-Means (FCM) algorithm that
fully integrates the spatial constraint. The proposed algorithm incorporates comprehensive
spatial information to enhance its performance.

1.3 Thesis Contributions

In this thesis, we aim to propose an automatic method for image segmentation to
improve the limitations of FCM algorithm. Our contributions are twofold:
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Firstly, we introduce an adaptive split-merge technique that effectively divides the
image into several homogeneous regions using a multi-threshold method based on entropy
information. This adaptive split-merge technique aims to reduce the need for manual
intervention in the initialization step and improve the efficiency of the segmentation process.
During the split process, the image is recursively divided into smaller regions based on the
entropy values of the intensity histogram until a predefined stopping criterion is met.
During the merge process, a new distance metric is introduced to combine the regions that
are both highly similar within the merged region and effectively separated from others. The
cluster centers and numbers obtained from the adaptive split-merge step serve as the initial
parameters for the Fuzzy C-Means (FCM) algorithm. Furthermore, we introduce a novel
fuzzy validity index that incorporates a new definition for the separation measure. This
index is used to select the optimal fuzzy partition with high compactness and separation
of clusters, thereby improving segmentation accuracy.

Secondly, we propose a robust fuzzy clustering algorithm in which we fully integrated
the spatial constraint to improve image segmentation accuracy. By incorporating spatial
information, our proposed algorithm aims to capture complex spatial dependencies be-
tween neighboring pixels. We assign varying degrees of importance to each pixel based on
its spatial relationships and noise levels. Specifically, we incorporate the central pixel in
the clustering process only if it is not corrupted by noise. If it is a noisy pixel, we suppress
its influence from the fuzzy clustering process. To express the degree of similarity between
the pixels, we use the fuzzy representation and introduce a new term to indicate the noise
level of pixels. We then combine these two measures to construct the spatial information.
Additionally, we propose a new quantitative metric to select the optimal pixel that could
influence the segmentation performance better in terms of compactness and separation.
Our proposed algorithm does not require any parameter specification, which makes it easy
to use and applicable to a wide range of image segmentation tasks. By achieving a good
balance between robustness to imaging artifacts and preservation of image detail informa-
tion, our proposed algorithm can improve the accuracy and reliability of the segmentation
results.

1.4 Thesis Overview

In this work, we propose an automatic method for image segmentation that over-
comes the sensitivity of the FCM algorithm to noise and initialization steps. The thesis is
organized as follows:

Chapter 2 provides details of image segmentation and presents the challenges of brain
MRI segmentation due to intensity inhomogeneity and noise caused by radio frequency
coils used in image acquisition. Also, we present reviews of MRI segmentation techniques
classified according to the segmentation strategy used.
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Chapter 3 presents an overview of different approaches that automatically determine
the number of clusters and enhance the initialization process in the FCM algorithm. It also
presents numerous FCM derivatives that aim to increase the FCM algorithm’s robustness
to noise.

Chapter 4 proposes an adaptive split and merge approach that automatically evolves
the number of clusters and initializes the cluster centers to prevent the FCM algorithm
from converging to the minimum optimal solution. Additionally, it introduces a novel fuzzy
validity index that combines compactness and separation information to select the optimal
fuzzy partition.

Chapter 5 presents the main steps of our robust fuzzy algorithm that aim to improve
the sensitivity of FCM against noise. The proposed algorithm is completely free from any
specification parameters step and fully integrates spatial information. Additionally, the
importance of the central pixel is determined based on its level of noise. The effectiveness
of the proposed algorithm is evaluated qualitatively and quantitatively on synthetic and
brain MR images corrupted by different levels of noise, in terms of fuzzy validity indices,
segmentation accuracy, and tissue segmentation accuracy.

A summary of the contributions and outlines of future research directions are presented
in Chapter 6.
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Chapter 2

Brain MRI Image segmentation
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2.1 Introduction

Medical imaging is a crucial tool for non-invasively mapping the anatomy of the human
body, providing valuable information for clinical analysis and medical research. By visual-
izing the functions of organs and tissues, medical imaging plays a critical role in diagnosis
and treatment planning. Magnetic resonance imaging (MRI) of the brain is one of the most
important medical imaging techniques, particularly in the field of computer-aided detec-
tion of medical images. MRI has greatly increased our knowledge of normal and diseased
anatomy, enabling more accurate diagnosis and treatment of various neurological disorders.
With its ability to provide high-resolution images of the brain, MRI has become an essential
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tool for medical professionals in a wide range of specialties, including neurology, oncology,
and psychiatry. Accurate segmentation of anatomical structures in brain MR images is
essential for medical image analysis, as qualitative evaluation of brain morphological char-
acteristics can be subjective and unreliable. Quantified techniques, such as segmentation,
are needed to provide objective and accurate measurements of brain structures, enabling
more precise diagnosis and treatment planning.

Segmentation is a fundamental problem in biomedical image analysis and has been
extensively studied in the field of computer vision. In this chapter, we provide an overview
of image segmentation, including its definition, challenges, and applications. We then
focus on brain MRI segmentation, which remains a challenging task due to the presence
of intensity inhomogeneity and noise caused by the radio frequency coil used in image
acquisition. We review various MRI segmentation techniques and classify them based on
the segmentation strategy employed.

2.2 Image Segmentation

Image segmentation is the process of partitioning an image into regions, also known
as classes or subsets, that are homogeneous with respect to one or more characteristics
or features, such as texture, intensity, or color. This enables more meaningful and easier
analysis of objects within the image (Rogowska, 2000; Bezdek, 1973). The extent of ho-
mogeneity of the segmented region can be measured using various image properties, such
as pixel intensity (Mittal et al., 2021). Classically, the segmentation is the partition of
an image I into n sets Ri called regions, whose union is the entire image I. Thus, the sets
that make up a segmentation must satisfy

n⋃
i=1

Ri = I (2.1)

Where Ri ∩ Rj = ∅,∀i, j ∈ {1, ..., n}2 for, i ̸= j, and each Ri is connected. Ideally, a
segmentation method finds those regions that correspond to distinct anatomical structures
or regions of interest in the image.

When the constraint that regions be connected is removed, the process of determining
the regions Ri is called pixel classification, and the regions themselves are referred to as
classes. In medical image analysis, pixel classification is often a desirable goal, especially
when identifying disconnected regions belonging to the same tissue class. Unlike classical
segmentation, pixel classification does not require the regions to be connected, allowing for
more flexibility in identifying and analyzing different structures within the image. In prac-
tice, the total number of classes n is often assumed to be known based on prior knowledge
of the anatomy being considered.

Image segmentation is a fundamental step in many computer vision systems, as it
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plays a critical role in image analysis and processing (Chouhan et al., 2019). The goal
of segmentation is to partition an image into meaningful regions or objects, based on
some predefined criteria, such as color, texture, or intensity. The level of subdivision
required depends on the specific problem being solved, and segmentation should stop when
the objects of interest in an application have been isolated. In practice, segmentation is
often used as a pre-processing step to extract relevant information from an image, such as
identifying tumors in medical images or detecting objects in surveillance videos.

Figure 2.1 provides an overview of the image processing pipeline, which typically con-
sists of five main steps: input, pre-processing, segmentation, post-processing, and output.
In the input step, an image is acquired and loaded into the system for further processing.
The pre-processing step involves various techniques to enhance the quality of the input
image, such as deblurring and denoising, to improve the accuracy of subsequent processing
steps. The segmentation step partitions the image into meaningful regions or objects based
on some predefined criteria, such as color, texture, or intensity. This step is critical in many
image processing applications, as it enables the extraction of relevant information from the
image. The post-processing step involves further refinement of the segmented regions to
remove noise and artifacts and improve the accuracy of the final output. Finally, the out-
put step generates the desired result, which could be a binary mask, a set of segmented
regions, or some other form of processed image data.

Figure 2.2 shows an example of a segmented image obtained from the BSD database
(Martin et al., 2001), demonstrating the effectiveness of segmentation in extracting mean-
ingful information from an image. By partitioning an image into meaningful regions or
objects based on some predefined criteria, such as color, texture, or intensity, we can ex-
tract more information from the image, enabling more precise analysis and interpretation
in various applications. For example, in medical imaging, segmentation can be used to
locate tumors, measure tissue volumes, and study anatomical structures. In satellite imag-
ing, segmentation can be used to locate objects such as roads, forests, and crops, enabling
more accurate mapping and monitoring of the Earth’s surface.

Figure 2.1 – Image segmentation process (Chouhan et al., 2019)
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Figure 2.2 – Image segmentation result from BSD (Chouhan et al., 2019)

2.3 Magnetic resonance imaging (MRI)

Magnetic Resonance Imaging (MRI) scanners use a combination of strong magnetic
fields and radio waves to create highly detailed images of the tissues and structures inside
the brain. When a patient is inside the scanner, the magnetic field causes the hydrogen
protons in the brain’s tissue to align in a particular way. Short bursts of radio waves are
then applied to the area being scanned, causing the protons to move out of alignment. As
the protons return to their original state, they emit radio signals that are picked up by a
receiver in the scanner. The signals produced by different types of tissue in the brain vary,
and this allows the computer to create a highly detailed and accurate picture of the brain’s
internal structures.

Magnetic Resonance Imaging (MRI) scanners can create clear and detailed pictures
of the structure of the brain, which are used by medical professionals to diagnose and
treat a wide range of neurological conditions. By using a combination of strong magnetic
fields and radio waves, MRI can detect any abnormalities or tumors in the brain, enabling
more precise diagnosis and treatment planning. The relaxation times, T1, T2, and T2*,
are measured after the scanner’s pulse sequence and can be chosen to look at specific
tissue within the brain. By selecting different relaxation times and manipulating radio
frequencies, specific brain tissue can be highlighted for examination by the physician. This
allows for more accurate and targeted diagnosis and treatment of various neurological
disorders, such as stroke, tumors, and multiple sclerosis.

The T1 values of most human tissues typically range from 100-1500 ms, as shown in
Figure 2.3. These values tend to increase as the magnetic field strength increases. On the
other hand, T2 values range from approximately 20-300 ms, as indicated in Table 2.1, and
are largely independent of field strength.

Magnetic Resonance Imaging (MRI) provides detailed images of soft tissues, organs, and
bones with high-contrast resolution, making it a powerful tool for scientific and diagnostic
purposes. The MRI signal intensity can be used to differentiate between different tissues
based on their different relaxation times (T1 and T2) and proton densities (Figure 2.4).
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Figure 2.3 – Approximate T1 values as a function of magnetic field (Zhu, 2003)

Table 2.1 – T2 of some normal tissue types
Tissues T2 (ms)
Gray matter 80-100
White matter 40-70
Muscle tissue 40-50
Fat 80-120
Liver 40-50
Kidney 40-60

These images can be further processed to produce new maps of water diffusion, blood flow,
and other physiological parameters, which can help study the underlying mechanisms of
various diseases and disorders. For example, diffusion tensor imaging (DTI) can be used
to study the microstructure of white matter in the brain, while functional MRI (fMRI) can
be used to study brain function and connectivity. The wide range of data acquisition and
contrast mechanisms of MRI makes it a versatile and powerful tool for various applications
in medical diagnosis, research, and treatment planning (Figure 2.5).

Magnetic Resonance Imaging (MRI) scans are generally considered a safe and painless
procedure that does not involve exposure to ionizing radiation, unlike X-rays or CT scans.
However, in some cases, a patient may experience a reaction to the contrast agent (dye)
used during the scan, such as nausea, headache, or allergic reactions. Patients with kidney
problems or allergies to contrast agents may be at higher risk of adverse reactions and
should inform their doctor before the scan. Pregnant women are usually advised to avoid
MRI scans unless it is absolutely necessary, as the effects of a strong magnetic field on the
developing fetus are not yet fully understood. In some cases, alternative imaging methods,
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Figure 2.4 – Different MRI modalities (a) T2-weighted (T2), (b) T1-weighted (T1), (c)
proton density (PD) (Zhu, 2003)

Figure 2.5 – Multiple MR images were acquired to help neurologists diagnose a stroke
patient who had middle cerebral artery occlusion in comparison to the right side of the

brain. (a) T1-weighted (T1), (b) T2-weighted (T2), (c) 3D MR (Zhu, 2003)

such as ultrasound or MRI without contrast, may be used instead. After the scan, the
patient can resume their regular activities immediately, and the radiologist examines the
images and provides a report to the doctor, who will discuss the results and any further
treatment options with the patient.

2.4 MRI brain images segmentation

Segmentation is a crucial step in medical imaging that involves separating an image
into meaningful regions or objects for feature extraction, image measurements, and image
display. Depending on the application, segmentation can be used to classify image pixels
into anatomical regions, such as bones, muscles, and blood vessels, or into pathological
regions, such as cancer, tissue deformities, and multiple sclerosis lesions (Rogowska, 2000).

Brain tissue segmentation is a critical task in medical image analysis that aims to
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identify and differentiate the different types of tissues in the brain from MRI images. The
brain is composed of various tissues, such as cerebrospinal fluid (CSF), gray matter (GM),
and white matter (WM), each with distinct anatomical and functional properties. CSF is
not a tissue, but rather a clear, colorless liquid that surrounds the brain and spinal cord. It
is produced in the ventricles of the brain and helps to cushion and protect the brain from
injury by acting as a shock absorber. It also plays an essential role in the transportation
of nutrients, hormones, and waste products within the central nervous system (CNS) (El-
Dahshan et al., 2014).

Cerebrospinal fluid (CSF) has distinct imaging characteristics on brain MRI images that
depend on the type of MRI sequence used. On T1-weighted MRI images, CSF appears
dark or hypo-intense because it contains fewer protons and thus absorbs less radiofrequency
energy, while on T2-weighted MRI images, it appears bright or hyper-intense because it
contains more protons and thus absorbs more radiofrequency energy. CSF is an essential
component of the central nervous system (CNS) and plays a vital role in cushioning and
protecting the brain and spinal cord from injury. Gray matter (GM) is another important
tissue in the brain that is composed of cell bodies of neurons, as well as glial cells and
unmyelinated fibers. It plays a crucial role in brain functions such as memory, perception,
and muscle control. GM typically appears darker on T1-weighted MRI images and brighter
on T2-weighted MRI images when compared to white matter (WM), which is composed
mainly of myelinated axons and plays a critical role in transmitting signals between different
regions of the brain. It connects different regions and is essential for cognitive functions
such as learning, attention, and memory. It has a distinctive appearance on MRI images,
appearing brighter on T1-weighted images and darker on T2-weighted images than gray
matter (GM) (Deserno, 2010).

Brain MRI image s a widely used diagnostic tool that provides detailed information
about the structure and function of the brain. However, brain MRI images are often
affected by intensity inhomogeneity and noise caused by various factors, such as radiofre-
quency coil used in image acquisition, patient motion, or scanner artifacts. These artifacts
can affect the accuracy and reliability of brain image analysis, such as segmentation, regis-
tration, or quantification, and can lead to misdiagnosis or inappropriate treatment. There-
fore, correction of intensity inhomogeneity and removal of noise are essential preprocessing
steps before the segmentation of brain MRI images (Dubey and Mushrif, 2016).

Brain image segmentation plays a crucial role in brain image analysis which extracts
brain tissues, white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) from a
brain image by partitioning it into a set of disjoint regions for quantitative brain analysis.
Pixels inside each of those regions should be homogeneous in space and intensity (Fig-
ure 2.6). Segmentation of normal tissues from brain lesions helps to detect diseases like
brain tumor, Alzheimer’s disease, Parkinson’s disease etc. It also helps in brain disorder
identification and whole brain analysis of traumatic injury as well (Dora et al., 2017).
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Figure 2.6 – An example of the brain MRI segmentation (Despotović et al., 2015)
(a) original image (b) segmented image with three Labels CSF, GM, and WM

2.4.1 MRI image quality limitations

Segmentation of MRI images is a challenging task due to multiple factors that can affect
the accuracy and reliability of the segmentation results. These factors include noise, poor
contrast, intensity inhomogeneity, and partial volume (Wen et al., 2015).

Noise is one of the primary challenges in MRI image segmentation. MRI images can be
affected by various sources of noise, such as scanner hardware, patient and physiological
motion, and other factors. The presence of noise in MRI scans is a significant challenge
that can make the segmentation difficult to distinguish between different tissues. Moreover,
it can lead to inconsistent appearance of tissues in different regions of the image, which
can further complicate the task of segmentation.

Intensity inhomogeneity is a major challenge in MRI image segmentation. It refers to
the non-uniform distribution of intensities within an MRI image, which can result in the
distortion of the image histogram (Yazdani et al., 2015) and the creation of a shading effect.
This issue arises due to limitations in the image acquisition process, such as variations in
the magnetic field and radiofrequency coil sensitivity, as depicted in Figure 2.7.

There are two primary sources contributing to intensity inhomogeneity. The first source
is static field inhomogeneity, bandwidth filtering, and radio frequency transmission and
reception inhomogeneity. These factors introduce variations in the magnetic field during
image acquisition. These variations can lead to inconsistent intensities across different
regions of the image. The second source is related to the characteristics of the imaged
object itself, including its magnetic permeability and dielectric properties (Vovk et al.,
2007). These properties influence the interaction between the object and the magnetic
field, further contributing to intensity variations in the resulting MRI image.
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The partial volume is caused by the limited spatial resolution of MRI images. It occurs
when a single voxel contains signals from different tissue types. The partial volume effect
is especially challenging in MRI brain imaging due to the complex and dynamic nature
of the brain, which is characterized by a wide range of tissue properties. The presence
of uncertainty in region boundaries can be attributed to the partial volume effect, which
leads to a soft segmentation where regions overlap. In contrast, hard segmentation strictly
assigns each voxel to a single region, prohibiting simultaneous membership in multiple
regions, whether inside or outside (Pham et al., 2000).

Figure 2.7 – Example of the Intensity inhomogeneity issue in a MRI image (Vovk et al.,
2007)

(a) original image (b) Inhomogeneity field (c) The corrected image

2.5 Brain image segmentation approaches

Brain tissue segmentation can be a tedious process due to the highly complicated and
overtly sensitive nature of this organ. Moreover, the size and location of the constituent
parts may vary from patient to patient. Thus, the use of a simple yet effective segmenta-
tion technique can address this issue without further complicating it. Over the years, many
popular brain tissue segmentation methods have been proposed in the literature. These
methods are applied successfully for disease diagnosis and treatment planning. Neverthe-
less, in clinical evaluation and neuroscience research, it is considered as a major challenge
because medical images suffer from many artifacts such as intensity inhomogeneity (IIH),
noise, and abnormal tissues with heterogeneous signal intensities. Further, the perfor-
mance of brain tissue segmentation methods depends on several factors such as location,
size, shape, texture of tissues, and unclear tissue boundary, which are inherent in the
modalities used for image acquisition (Fraz et al., 2012).
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2.5.1 Thresholding

Thresholding is one of the popular segmentation methods, where the target objects are
segmented by comparing their intensity values with one or more thresholds. Thresholding-
based methods are of two types, global thresholding, and local (adaptive) thresholding.

Global thresholding is a simple and widely used method that assumes the image has a
bimodal histogram, where the intensity values of the object and background pixels are well
separated. It assigns intensity values above the threshold to one and below the threshold
to zero, respectively. For an image I (x, y), a global threshold T segments the image by
assigning a value of one to all pixels with intensity values greater than or equal to T, and
a value of zero to all pixels with intensity values less than T.

S(x, y) =

1, if I(x, y) ≥ T

0, otherwise
(2.2)

Where S(x, y) is the thresholded image.
The result of thresholding is a binary image, where pixels with value 1 represent the

object and pixels with value 0 represents the background. With the increase in the number
of regions, threshold selection becomes a challenging task. It may be noted that brain
tissue segmentation requires the segmentation of more than two tissues (i.e., WM, GM,
and CSF).

Figure 2.8 – Segmenting a simple image by a single threshold (Rogowska, 2000)

However, in many applications, a global threshold cannot be found from a histogram
or a single threshold cannot give good segmentation results over an entire image. This
is because the optimal threshold value may vary depending on the characteristics of each
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region, such as the intensity distribution and texture. For example, when the background
is not constant and the contrast of objects varies across the image, thresholding may work
well in one part of the image but may produce unsatisfactory results in other areas.

Local thresholding methods are effective techniques for image segmentation, especially
when dealing with images with complex structures and non-uniform intensity. Local thresh-
olds can be determined by examining the image intensities in the neighborhood of each
pixel. Prior knowledge or local statistical properties can be used to estimate the threshold
values.

For example, Stadlbauer et al. (Stadlbauer et al., 2004) used the Gaussian distribution
of pixel intensity levels to determine the threshold value from a T2-weighted MRI. They
proposed a method called ”adaptive thresholding based on Gaussian mixture modeling”
that estimates the threshold value for each pixel based on the local intensity distribution.
The method assumes that the intensity values of the image can be modeled as a mixture of
Gaussian distributions, where each Gaussian component corresponds to a different tissue
type. The threshold value is then estimated as the mean intensity value of the Gaussian
component that corresponds to the tissue type of interest. This method was shown to
improve the accuracy of brain tissue segmentation compared to other thresholding methods.

Some popular and efficient thresholding-based methods used for brain tissue segmenta-
tion of MRI are the entropy method (Kapur et al., 1985), Otsu’s method (Otsu, 1979), and
evolutionary-based methods (Akay, 2013; Hammouche et al., 2010). Otsu (Otsu, 1979)
proposed a popular method that can find thresholds by maximizing the between class vari-
ance of intensity levels of the foreground and background. Otsu’s method is considered
one of the top threshold selection methods for real world images. Nevertheless, the for-
mulation of between class variance is inefficient in the case of multilevel thresholding. As
the number of levels grows, the computational time scales exponentially, and its accuracy
decreases with each new threshold point (Sezgin and Sankur, 2004). Kapur et al. (Kapur
et al., 1985) proposed maximization of entropy, to obtain the optimal threshold values
from the histogram. In both methods, computational time increases due to the extensive
search strategy with the increase in the number of thresholds (Kittler and Illingworth,
1986). Another thresholding method based on the entropy concept is presented in (Chang
et al., 1994). The idea is to find a threshold that minimizes the mismatching between two
transition probability distributions resulting from the co-occurrence matrices of an image
and thresholded image.

Manikandan et al. (Manikandan et al., 2014) proposed a method for segmenting brain
MRI images using a real-coded genetic algorithm with simulated binary crossover to find
the optimal threshold values that maximize image entropy. The algorithm starts with a
population of candidate solutions, represented as vectors of real numbers, and evaluates
their fitness based on the image entropy. The simulated binary crossover operator is used to
generate new candidate solutions by combining the information from two parent solutions.
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The proposed method was effective in segmenting brain MRI images into multiple tissue
types and demonstrates the potential of optimization-based methods for medical image
analysis.

Oliva et al. (Oliva et al., 2017) proposed a novel approach for thresholding mag-
netic resonance (MR) brain images that combines two popular techniques: the Minimum
Cross Entropy Thresholding (MCET) criterion and the Crow Search Algorithm (CSA).
The MCET criterion has been shown to be effective in identifying the optimal threshold
points by minimizing the cross entropy among classes. On the other hand, CSA is an ef-
ficient optimization algorithm that mimics the foraging behavior of crows to find the best
solution. The proposed approach considers the thresholding process as an optimization
problem and uses CSA to search for the optimal threshold points that minimize the cross
entropy among classes. CSA generates a set of candidate threshold points that are encoded
into a solution at each generation. The objective function evaluates the quality of the pro-
posed solution by measuring the cross entropy. Based on the objective function, CSA
generates new candidate solutions using predefined operators to improve the segmentation
quality of MR brain images.

Kotte et al. (Kotte et al., 2018) introduced an adaptive wind driven optimization
(AWDO) technique using two objective functions including Kapur’s maximum entropy
thresholding function and Otsu’s between-class variance. The adaptive nature of the steps
increases the overall performance of the optimization technique. However, due to the lack
of spatial information correlation among neighboring pixels, 1D histogram-based methods
lag behind in giving accurate segmentation results. Although the authors recognized that
1D histogram-based techniques were not effective in capturing spatial correlation among
neighboring pixels. The authors’ proposed approach presented better segmentation re-
sults compared to other thresholding methods. They suggested that future research could
explore more advanced techniques to address these limitations and further improve the
segmentation accuracy.

Tarkhaneh and Shen (Tarkhaneh and Shen, 2019) proposed a Differential Evolution
(DE) algorithm for optimal multi-level thresholding for MRI brain image segmentation, the
proposed algorithm can achieve an optimal balance between exploration and exploitation
through a new adaptive approach and new mutation strategies; a new adaptive approach is
adopted to generate the optimal solutions by measuring the quality of candidate solutions
to evaluate the efficiency of different parts of the proposed algorithm. Moreover, new
mutation strategies are adopted to create diversity in the generated solutions to improve
global search.

Khairuzzaman and Chaudhury (Khairuzzaman and Chaudhury, 2019) introduced for
brain MR image segmentation technique that involves anisotropic diffusion-based filtering,
multilevel thresholding through Particle Swarm Optimization (PSO) with Otsu function,
and objective image quality evaluation. The first step is to preprocess the MR image using
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anisotropic diffusion-based filtering to enhance image quality by mitigating artifacts and
noise. Next, multilevel thresholding is executed using PSO to optimize threshold values,
facilitated by the Otsu function’s histogram-based optimal threshold calculation. The PSO
algorithm updates particle positions iteratively, incorporating previous best and global best
positions, with termination after a fixed number of iterations. The desired optimum set of
thresholds is obtained from the position of the global best particle.

Khorram and Yazdi (Khorram and Yazdi, 2019) presented an optimized thresholding
method for MR brain image segmentation, which utilizes the ant colony algorithm. The
method consists of five sequential steps. Firstly, the input image is preprocessed to reduce
noise and enhance contrast using Gaussian filtering and histogram equalization. Secondly,
the image is divided into windows, and each window is assigned a label (WM, GM, CSF)
based on the majority pixel class. Thirdly, the optimal threshold values for each win-
dow are determined using Ant Colony Optimization (ACO), which involves ant-guided
exploration and pheromone deposition. Fourthly, a local search is performed to refine the
segmentation by assessing pixel homogeneity and adjusting the labels accordingly. Finally,
post-processing is applied to remove any remaining noise and artifacts using morphological
operations such as erosion and dilation.

Recently, Panda et al. (Panda et al., 2021) proposed an evolutionary approach to
improve optimal multi-level thresholding for brain MR images. The method involved sev-
eral steps, including preprocessing for noise reduction and contrast enhancement, followed
by the construction of a 2D histogram using a normalized local variance method. Initial
threshold values were generated uniformly, and fitness evaluation was based on a novel
row class entropy measure. The fittest individuals were selected for reproduction through
tournament selection, and crossover and mutation operations were applied. Threshold up-
dates were performed using an elitist strategy, and the algorithm terminated based on a
maximum iteration criterion. Finally, postprocessing techniques were applied to refine the
results, including removing small objects and filling holes in the segmented image.

2.5.2 Region Growing

Region growing, also called region merging, starts with a pixel or a group of pixels
(called seeds) that belong to the structure of interest. Seeds can be chosen by an operator,
or provided by an automatic seed finding procedure. In the next step neighboring pixels
are examined one at a time and added to the growing region, if they are sufficiently similar
based on a uniformity test, (also called a homogeneity criterion). The procedure continues
until no more pixels can be added. The object is then represented by all pixels that have
been accepted during the growing procedure (Rogowska, 2000).

One example of the uniformity test is comparing the difference between the pixel in-
tensity value and the mean intensity value over a region. If the difference is less than a
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predefined value, for example, two standard deviations of the intensity across the region,
the pixel is included in the region; otherwise, it is defined as an edge pixel. The results of
region growing depend strongly on the selection of the homogeneity criterion. If it is not
properly chosen, the regions leak out into adjoining areas or merge with regions that do
not belong to the object of interest. Another problem of region growing is that different
starting points may not grow into identical regions. Moreover, it fails to perform in the
segmentation of multiple objects. Region growing has the advantage of considering both
visual features and spatial information. It is insensitive to changes in inner parts which
result in closed regions. Another advantage is that it generates connected regions (Dora
et al., 2017).

Region growing is a commonly practiced technique in brain tissue segmentation. To
satisfy homogeneity, it is presumed that the regions of the object of interest have the
same or slightly varying intensity values. Therefore, initial seed selection and different
homogeneity criteria could alter the segmentation performance. For homogeneous MR
images, region growing mostly produce suitable results. Furthermore, it is well suited for
medical image segmentation, where images consist of mostly objects and background. A
possible measure to ease the problems is combining the region growing method with other
methods such as edge detection. Moreover, homogeneity criteria for multiple brain lesions
are still to be assessed (Mehnert and Jackway, 1997; Lu et al., 2014).

Pohle and Toennies (Pohle and Toennies, 2001) developed a region growing algorithm
that learns its homogeneity criterion automatically from the characteristics of the region
to be segmented. The method is based on a model that describes homogeneity and simple
shape properties of the region. Parameters of the homogeneity criterion are estimated from
sample locations in the region. These locations are selected sequentially in a random walk
starting at the seed point, and the homogeneity criterion is updated continuously. This
approach was extended to a fully automatic and complete segmentation method by using
the pixels with the smallest gradient length in the not yet segmented image region as a
seed point.

Pan and Lu (Pan and Lu, 2007) proposed the Dynamic Particle Swarm Optimiza-
tion and K-means Clustering Algorithm for Image Segmentation, comprising the following
steps: Firstly, the input image improves noise reduction and contrast enhancement through
preprocessing. Subsequently, K-means clustering is applied to segment the image, group-
ing similar pixels into clusters. The Particle Swarm Optimization (PSO) algorithm then
optimizes threshold values for each cluster; however, PSO’s susceptibility to local optima is
addressed through the introduction of the Dynamic Particle Swarm Optimization and K-
means Clustering Algorithm (DPSOK). DPSOK refines inertia weight and learning factor
calculations to achieve equilibrium optimization. Applied to optimize threshold values for
each cluster, DPSOK enhances the global search capability and visual quality of K-means
clustering in image segmentation.
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Ayman et al. (Ayman et al., 2013) presented a new strategy for segmenting brain
MRI images with weak boundaries that integrates an evolutionary algorithm, called the
Memetic Programming (MP) algorithm, with the Region Growing technique, The MP
algorithm generates a new set of automatic threshold functions. These thresholds can
be used with the region growing algorithm to perform an efficient segmentation of MRI
images.

Zanaty and Asaad (Zanaty and Asaad, 2013) proposed a new region growing algorithm
called probabilistic region growing (PRG) in order to improve magnetic resonance image
(MRI) segmentation. The proposed approach includes a threshold based on estimating the
probability of pixel intensities of a given image. This threshold uses a homogeneity criterion
which is obtained automatically from the characteristics of the regions. The homogeneity
criterion will be calculated for each pixel as well as the probability of pixel value.

Heydari et al. (Dehdasht-Heydari and Gholami, 2019) proposed an Automatic Seeded
Region Growing (ASRG) method for segmenting brain MRI images into different regions
based on specific criteria for future processing. The method utilizes a genetic algorithm
to automatically select initial points for region growing, aiming to achieve accurate and
efficient brain MRI segmentation. The paper explains the steps involved in the proposed
method, including the fitness function, chromosome selection, crossover, mutation, and
fitness calculation for the next generation. Initially, the method characterizes the initial
points for each brain tissue, including white matter, cerebrospinal fluid, and gray matter.
Next, a cluster matrix of points from different parts of the image is formed based on the
image histogram. The ASRG method employs a genetic algorithm to select initial points
for region growing, with steps involving fitness function evaluation, chromosome selection,
crossover, mutation, and fitness calculation for the next generation. This approach aims
to achieve accurate and efficient brain MRI segmentation by automating the selection of
initial points.

2.5.3 Clustering

Clustering is a fundamental technique in unsupervised machine learning that involves
the classification of data points or patterns into groups or clusters, such that patterns in
the same group are similar to each other while patterns in different groups are dissimilar
(Jain et al., 1999). Clustering is widely used in various fields, including image processing,
data mining, and pattern recognition. In image processing, clustering is often used for
image segmentation, which involves dividing an image into multiple regions or segments
based on their visual characteristics. Clustering algorithms can be used to group pixels or
image regions with similar color, texture, or intensity values, which can help to identify
different objects or regions in the image.

Clustering methods are a type of unsupervised segmentation method used to partition
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an image into clusters of pixels or voxels with similar intensities, without using training
images (Despotović et al., 2015). Instead, clustering methods use the available image
data to train themselves. The segmentation and training are done in parallel by iterating
between two steps: data clustering and estimating the properties of each tissue class.

Clustering algorithms are widely used for image segmentation and can be broadly clas-
sified into two main categories: hierarchical and partitional (Xu and Tian, 2015). A tax-
onomy of clustering methods is presented in Figure 2.9. In the following sections, we will
discuss each category in more detail and provide examples of commonly used clustering
algorithms.

Figure 2.9 – Classification of clustering based image segmentation methods (Xu and Tian,
2015)
.

2.5.3.1 Hierarchical clustering

In the field of clustering algorithms for image segmentation, BIRCH (Balanced Iterative
Reducing and Clustering using Hierarchies) (Zhang et al., 1996) is a popular agglomerative
approach that is generally used for very large datasets. The BIRCH algorithm constructs
a clustering feature tree to discover clusters, but it can only produce spherical and convex
shape clusters. Another popular agglomerative approach is CURE (clustering using repre-
sentatives) (Guha et al., 1998), which utilizes a random sampling approach to cluster all
the data items, which are further combined to create the final clusters.

Hierarchical clustering methods are widely used for image segmentation, but they have
some limitations. For example, they employ a greedy approach and do not reconsider a
data item again after it has been assigned to a cluster, which can result in misclassified data
items. They also do not optimize an objective function while forming clusters, and can
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perform poorly in the presence of noise and outliers. Additionally, they require knowledge
about the number of clusters, and the formation of spherical clusters and the reversal of
the hierarchical structure can be distorted. Time complexity is also a major issue when
clustering high-dimensional data through a hierarchical approach (Mittal et al., 2021).

2.5.3.2 Partitional clustering

Partitional clustering is a widely used approach for image segmentation that uses the
notion of similarity as the measurement parameter. Generally, partitional clustering groups
the data points into clusters according to some objective function, with the general notion
of the objective function being the minimization of the within-cluster similarity criteria,
which is usually computed using Euclidean distance. The objective function represents the
goodness of each formed cluster and returns the best representation from the produced
clusters. However, partitional clustering methods need to specify the number of clusters
to be generated, which can be a challenge in some cases. Partitional clustering methods
have some limitations, as they can sometimes assign data items to a cluster even if they
are quite far from the respective cluster centroid. This can result in distortion of the
cluster shapes or false results, especially in the case of noise or outliers (Mittal et al., 2021).
Partitional clustering methods are categorized into soft and hard clustering methods, which
are presented in the following subsections.

Soft segmentations are a type of segmentation that allow regions or classes to overlap.
In medical imaging, soft segmentations are particularly important due to partial volume
effects, where multiple tissues contribute to a single pixel or voxel, resulting in a blurring
of intensity across boundaries. Figure 2.10 illustrates how the sampling process can result
in partial volume effects, leading to ambiguities in structural definitions. In Figure 2.10
(b), it can be difficult to precisely determine the boundaries of the two objects. A hard
segmentation method forces a decision of whether a pixel is inside or outside the object,
which can lead to loss of information. Soft segmentation methods, on the other hand,
retain more information from the original image by allowing for uncertainty in the location
of object boundaries. This is particularly important in medical imaging, where partial
volume effects can result in blurred intensity across boundaries.

Pixel classification methods utilize the notion of soft segmentation, which stems from
the generalization of a set characteristic function. A characteristic function is simply an
indicator function of whether a pixel is inside or outside its corresponding set. For a
location j ∈ I, the characteristic function Xi(j) of the region Ri is defined to be 1 if
j is inside the region Ri, and 0 otherwise. This allows for a more flexible approach to
segmentation, where pixels can have partial membership to multiple regions, rather than
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being strictly assigned to a single region.

Xi(j) =

1, if j ∈ Ri

0, otherwise
(2.3)

Characteristic functions can be generalized to membership functions (Pham et al.,
2000), which need not be binary-valued. The value of a membership function can be
interpreted as the contribution of class i to location j. Thus, wherever membership values
are greater than zero for two or more classes, those classes are overlapping. Conversely,
if the membership function is unity for some value of j and i, then the class is the only
contributing class at location j. Soft segmentations based on membership functions can be
easily converted to hard segmentations by assigning a pixel to its class with the highest
membership value.

Figure 2.10 – Illustration of partial volume effect (Pham et al., 2000)
(a) Ideal image, (b) acquired image

a)- Hard clustering methods

Hard clustering methods iteratively partition the data into disjoint clusters according to
an objective function. Typically, the objective function is the sum of the squared Euclidean
distance between data and the associated centroid, which is to be minimized. In these
methods, the center of the clustered data is considered as the centroid of the clusters.
Unlike soft clustering, hard clustering assigns data to a single cluster only, meaning that
each data point will have a membership function (degree of belongingness) of either 0 or
1. Hard clustering is a relatively simple and scalable approach with high computational
efficiency. It is particularly effective for datasets that have a spherical shape and are well-
separated. However, this approach suffers from several drawbacks. For example, the formed
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cluster centroids may be relatively poor cluster descriptors, and the method is sensitive
to initial parameter settings. Additionally, hard clustering requires prior knowledge about
the number of clusters to be formed, which may not always be available or accurate.

- Kmeans clustering algorithm

The K-means clustering algorithm is a popular method for partitioning data into clus-
ters. In this method, the cluster centroid is updated by taking the mean of all the data
items assigned to the corresponding cluster. This process is iteratively continued until
some defined convergence criterion is met. Although this category of methods has merits
such as relatively low time complexity, simplicity, and guaranteed convergence. Generally,
this category includes all the methods that are inspired by the K-means method, which is
the simplest partitional clustering method.

K-means is a widely used clustering algorithm that aims to group samples into different
clusters based on their distance. The core idea of K-means is to iteratively update the
center of each cluster, which is represented by the center of the data points assigned to
that cluster. This iterative process continues until some criteria for convergence is met.

K-means algorithm partitions a set of data points, X = {x1, x2, . . . , xN}, into K clus-
ters based on a similarity criterion, which is usually the sum of squared error defined in
Eq.(2.4). Each cluster is represented by its centroid mi, which is collectively represented as
M = (m1, m2, . . . , mk) for the corresponding clusters C = {C1, C2, . . . , Ck}. This method
iteratively minimizes the criterion function J by updating the formed clusters C and the
corresponding centroids M as given by Eq. (2.5) and Eq. (2.6).

J =
K∑

i=1

∑
xj∈Ci

∥xj −mi∥2 (2.4)

xj ∈ Cl if ∥xj −ml∥ < ∥xj −mi∥ (2.5)

mi =
∑

xj∈Ci
xj

|Ci|
(2.6)

for j=1,. . . , n and i=1,. . . , K
The K-means clustering algorithm clusters data by iteratively computing the mean

intensity for each cluster using Eq. (2.6) and then segmenting the image by classifying
each pixel into the cluster with the closest mean using Eq. (2.5).

Lai et al. (Lai et al., 2009) proposed a novel and efficient K-means clustering algo-
rithm specifically designed for brain MRI image segmentation. This method introduces a
unique approach that leverages center displacements to accelerate the clustering process
and improve segmentation accuracy. The algorithm initiates by randomly selecting data
points as initial cluster centers and classifies them into static and active groups based on
their movement in the previous iteration. An efficient nearest neighbor search technique
is employed to assign data points to the nearest cluster centers from both groups. The
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algorithm updates the cluster centers by computing the mean of the assigned data points
and evaluates the displacement of each center by comparing its current position with the
previous iteration. Moreover, the method incorporates a mechanism to reject unlikely can-
didates during the partition step, further enhancing efficiency. By iteratively repeating
these steps until the cluster centers converge,

Isa et al. (Isa et al., 2009) proposed an adaptive fuzzy moving K-means clustering
algorithm to overcome the center redundancy, dead centers, and trapped center at local
minima problems. Siddiqui and Isa (Siddiqui and Mat Isa, 2012) introduced an optimized
K-means (OKM) algorithm that can homogenously segment an image into regions of in-
terest with the capability of avoiding the dead center and trapped center at local minima
phenomena.

Krishna and Narasimha (Krishna and Murty, 1999) proposed the Genetic K-Means
Algorithm (GKA) as an efficient iterative clustering approach for partitioning data into
clusters. Initially, the algorithm randomly generates a population of candidate solutions,
each representing a potential cluster partition with user-defined K centroids. Fitness evalu-
ation employs the K-Means Operator (KMO), which measures the negative sum of squared
distances between data points and their assigned centroids. The algorithm selects the best
solutions based on fitness using stochastic methods like roulette wheel or tournament se-
lection. Subsequently, crossover replaces traditional genetic crossover with the K-means
operator, and mutation introduces diversity through distance-based perturbations of clus-
ter centroids. The iterative process continues until a termination condition, such as con-
vergence or reaching the maximum iterations, is met, providing a globally optimal data
partition into clusters.

A new image segmentation algorithm called Dynamic Particle Swarm Optimization
and K-means Clustering Algorithm (DPSOK) is presented (Li et al., 2015) to improve
effectively the global search capability of K-means clustering.

Pei et al. (Jialun et al., 2017) proposed a Brain Image Segmentation Method Based on
an Adaptive Clustering Algorithm, which addresses the challenge of accurately segmenting
brain images. The method involves three main steps to achieve this goal. Firstly, it cor-
rects the bias field in the input images using the non-parametric N3 algorithm, effectively
reducing noise and intensity inhomogeneity. By doing so, the quality of the input images
is improved, laying the foundation for more accurate segmentation. Next, the method im-
proves the initial clustering center selection in the k-means algorithm through an adaptive
clustering approach that utilizes hierarchical clustering and dendrogram analysis. This en-
hancement aims to enhance the overall accuracy and stability of the segmentation results,
making the algorithm more robust and reliable. Lastly, the proposed method employs
evaluation criteria, Peak Signal to Noise Ratio, and Jaccard Similarity index, to determine
the appropriate number of clusters (K) in the k-means algorithm. This step ensures that
the segmentation achieves the optimal granularity, striking a balance between precision
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and computational efficiency.
Mehidi et al. (Mehidi et al., 2020) presented an enhanced K-means clustering algorithm

to achieve accurate brain MRI segmentation. They start by applying a median filter
for preprocessing, effectively eliminating noise and enhancing image quality. After that,
they utilize Histogram-based clustering, which separates pixels based on intensity values,
identifying distinct regions within the MRI. Subsequently, the authors employ K-means
clustering to further refine the segmentation of the brain into different tissues. Finally,
they conclude with Postprocessing, wherein small isolated regions are removed, and any
holes in the segmented image are filled, resulting in a more precise and reliable segmentation
result.

Atek et al. (Atek et al., 2022) proposed a modified version of the traditional K-means
algorithm (HKM), designed to improve segmentation performance while addressing com-
putational complexity. Unlike the conventional K-means that calculates distances between
each pixel and cluster centers directly, HKM utilizes image histogram information to derive
these distances, resulting in significant computational efficiency. The algorithm’s workflow
begins with preprocessing the MRI image through a median filter to enhance contrast and
remove noise. Next, the histogram of the preprocessed image is computed to understand
its intensity distribution. K cluster centers are initialized based on the K highest peaks
in the histogram. Each pixel in the image is then assigned to the nearest cluster center,
employing histogram-based distance calculations. Subsequently, the cluster centers are
iteratively recalculated as the mean of pixel intensities assigned to each cluster until con-
vergence is achieved. Postprocessing is applied to refine the segmented image by removing
small isolated regions and filling gaps between regions.

b)- Soft clustering methods

- FCM algorithm

Soft clustering methods provide an alternative to traditional crisp clustering methods
and are classified into two main categories: fuzzy c-means (FCM) and mixture models. In
soft clustering, the division of pixels is gradual, meaning that a membership function (based
on FCM) or an underlying probability (based on mixture models) is used to define whether
a pixel belongs to a cluster or not. FCM-based methods use a membership function to
define the degree to which a pixel belongs to a cluster by assigning it a membership grade
value. Mixture models assume some distributional form for the underlying probability of
the data to cluster into different groups.

FCM is a widely used and popular method in soft clustering approaches (Höppner
et al., 1999). It can be regarded as a generalization of ISODATA (Davé and Krishnapuram,
1997) and was first introduced by Bezdek (Bezdek, 1973). FCM attempts to find a fuzzy
partition (fuzzy clusters) for a set of data points xj, j = 1, . . . , N , by minimizing the
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following objective function.

J(U, V ) =
C∑

i=1

N∑
j=1

um
ij∥xj − vi∥2 (2.7)

In FCM, the fuzzy partition matrix U and the cluster centers V are used to represent
the membership grades of each pixel to each cluster and the centroid values of each cluster,
respectively. The objective function is minimized by iteratively updating U and V until
convergence is reached. The term ∥xj−vi∥2 represents the square of the Euclidean distance
between the intensity value of the pixel xj and the centroid value vi ∈ (v1, v2, . . . , vC) of
the i-th cluster, where C is the number of clusters. The fuzzy membership uij of the j-th
pixel with respect to the i-th cluster is defined such that the constraint ∑C

i=1 uij holds, and
the weighting exponent m ∈ [1,∞] is a parameter that controls the degree of fuzziness of
the obtained classification, which is typically set to 2.

The minimization of the objective function is achieved by an iterative process, in which
updating the degree of membership uij and the cluster centers vi are done according to the
following equations:

uij = 1∑C
k=1

(
∥xj−vi∥
∥xj−vk∥

) 2
m−1

(2.8)

vi =
∑N

j=1 um
ij · xj∑N

j=1 um
ij

(2.9)

The FCM clustering process continues until either a specified maximum number of
iterations has been reached or convergence has been achieved. Convergence is detected
when the change in membership functions for all cluster centers over all pixels is less than
the specified tolerance value between two successive iterations. The pseudo-code for FCM
is presented in Algorithm 1.

Algorithm 1 FCM Algorithm
Input : The cluster number C and the cluster centers vi (i = 1, 2, . . . , C)
Output: Cluster centers vi (i = 1, 2, . . . , C), and fuzzy partition matrix
Step 1- Calculate the membership values and update cluster centers
Step 2- Calculate the membership values using Eq. (2.8)
Step 3- Update cluster centers according to Eq. (2.9)
Step 4- Repeat steps 2 and 3 until there is no change for each cluster

The FCM algorithm has several limitations, including its sensitivity to local optimal
solutions, the need for cluster center initialization, and the requirement to specify the
cluster number in advance. Although it can achieve relatively high clustering accuracy and
generate approximate solutions quickly by using the probability of belonging, it does not
consider spatial information in the image space. As a result, it is highly sensitive to imaging
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artifacts and noise, and unable to effectively compensate for intensity inhomogeneities.
These problems significantly reduce the efficacy of the FCM method for noisy images and
artifacts. While FCM is less sensitive to initialization compared to other techniques, in
terms of both speed and stability.(Yazdani et al., 2015).

To overcome the challenges of FCM, researchers have proposed several methods. One
such method is the adaptive FCM technique developed by Pham et al. (Pham and Prince,
1999). This method uses a multiplier field to account for the inhomogeneity and includes
first and second-order regularization terms in the objective function to ensure the multi-
plier field varies smoothly and slowly. By addressing these issues, this method provides
more accurate and reliable segmentation of MRI images, enabling medical professionals to
diagnose and treat brain-related conditions more effectively.

Sikka et al. (Sikka et al., 2009) proposed a Modified Fuzzy C-Mean (MFCM) algo-
rithm for brain MR image segmentation, aiming to achieve enhanced accuracy and au-
tomation in the process. The algorithm comprises several key steps to accomplish this
goal. It starts with a preprocessing phase, where automatic bias removal and contrast
enhancement techniques are applied, followed by the automated retrieval of mean intensity
positions for various detected brain tissues. Subsequently, the corrected image is subjected
to the MFCM Clustering, utilizing the proposed method’s centers as initial input. This
approach reduces the number of iterations and significantly improves the quality of the
segmentation results. Finally, the algorithm employs a novel postprocessing technique
called Neighborhood-Based Membership Ambiguity Correction (NMAC), which incorpo-
rates spatial information to smooth tissue class boundaries and eliminate pixel-level noise
from the segmented results.

Ji et al. (Ji et al., 2010) proposed a new energy minimization method based on coherent
local intensity clustering (CLIC), the proposed approach combines both the local and global
intensity information to ensure the smoothness of the derived optimal bias field and improve
the accuracy of the segmentations, however, the proposed method has a poor anti-noise
ability, for it doesn’t consider non-local spatial constraint, for that, (Shi et al., 2013) use
the coherent local and non-local spatial constraints. The coherent local information ensures
the smoothness of the bias field estimation and the non-local spatial information reduces
the noise effect during the segmentation.

Agarwal et al. (Agarwal et al., 2015) proposed a novel method for precise brain tissue
segmentation into gray matter, white matter, and cerebrospinal fluid. The process starts
with acquiring detailed brain MRI images using magnetic resonance imaging (MRI). To
rectify any distortions in the images, a bias-field correction step is performed. Next, the
fuzzy c-means (FCM) algorithm is used to categorize tissue types based on pixel intensity.
Finally, a level set approach is employed to refine the boundaries between different tissue
types using partial differential equations. This approach enhances the accuracy of the
segmentation process and provides more precise results.
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Many researchers have used evolutionary algorithms like particle swarm optimization
to initialize automatically cluster centers in the FCM. For instance, Benaichouche et al.
(Benaichouche et al., 2013) used particle swarm optimization to initialize cluster centers
in FCM and obtained a global optimum solution. In addition, it uses spatial information
and Mahalanobis distance for making the method efficient against noise and miscluster-
ing. In order to automatically elicit the proper number and location of cluster centers
and the number of pixels in each, a genetic algorithm is integrated along with FCM for
Segmentation of MRI Brain Images algorithm (Jansi and Subashini, 2014; Nie et al., 2007).

Mekhmoukh and Mokrani (Mekhmoukh and Mokrani, 2015) proposed a novel approach
to MR brain image segmentation, employing Improved Fuzzy C-Means based Particle
Swarm Optimization (PSO) initialization and outlier rejection with level set methods. The
method involves three main steps: Firstly, MR brain images were preprocessed to remove
non-brain tissues, and then Fuzzy C-Means (FCM) algorithm, Kernelized Fuzzy C-Means
(KPCM), and Improved KPCM (IKPCM) were utilized to extract brain MR tissues (WM,
GM, and CSF). Secondly, in the PSO Initialization step, the authors employed Particle
Swarm Optimization (PSO) to optimize the parameters of the FCM algorithm. It was
used to find optimal values for the membership function and cluster centers, improving
the performance of the FCM algorithm. Lastly, the authors detected and removed outliers
using a level set method, a numerical technique for tracking interface evolution in images.
A modified level set method combining the Chan-Vese model and the local binary fitting
model was used to detect and eliminate outliers in the segmentation process.

Tripathi and Bag (Tripathi and Bag, 2020) introduced a novel approach for segment-
ing brain MRI images, which utilizes local spatial information to effectively handle noise
and inhomogeneity artifacts during the segmentation process. The proposed method in-
corporates a unique local influence factor that regulates the impact of neighboring pixels,
allowing for the adaptive determination of neighboring pixel weights to maximize the use
of local information. To effectively separate complex brain MRI data, the authors have
also integrated kernel-induced distance into their clustering process.

Papachary et al. (Papachary et al., 2021) proposed a hybrid clustering algorithm aimed
at effectively segmenting tissues in MR brain images. The algorithm comprises two main
steps. In the first step, a median filter is applied on the input MR brain image to remove
noise. The denoised image is then transformed into a data vector, where each element
represents the intensity value of a pixel. Subsequently, k-means clustering is applied to
partition the data vector into multiple clusters, thereby segmenting the image into different
tissue regions. To enhance the segmentation accuracy further, the algorithm proceeds to the
second step, where a FCM algorithm is employed which assigns each pixel in the image to a
cluster with a degree of membership, adding flexibility and robustness to the segmentation
process. Finally, the algorithm estimates the tissue image area using typography and
digital imaging units by analyzing the number of white pixels in the segmented output.
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- Mixture models

In brain image segmentation, the three primary tissue classes that are typically consid-
ered are gray matter, white matter, and cerebrospinal fluid. To classify each pixel in an
image, a set of features is evaluated, such as the pixel’s intensity, and used to create a pat-
tern. These patterns are then used to calculate the belonging probability of each pixel to
each class through the use of a probability density function (PDF). The parameters of the
PDF can be estimated through both parametric and nonparametric approaches. Nonpara-
metric approaches do not assume a specific distribution form or a predetermined number
of clusters, whereas parametric approaches assume a known probability density function
(PDF) function such as Gaussian distributions. The Gaussian mixture model (GMM) is a
popular statistical model in parametric approaches for brain image segmentation. GMM
estimates the intensities of pixels (or voxels) in a region by a Gaussian distribution. To
estimate the parameters of GMM, the expectation maximization (EM) algorithm is com-
monly used. The EM algorithm is a statistical approach that performs the estimation
(E) step followed by a maximization (M) step in an iterative manner. The information
obtained from the M step is then utilized for the next E step, and the process continues
until convergence. However, the use of the EM algorithm to estimate the GMM parameters
suffers from the lack of spatial constraint and uncertainty in segmentation (Dora et al.,
2017).

In order to improve the robustness of the Gaussian mixture model (GMM) against the
complex spatial layout of the tissues, Greenspan et al. (Greenspan et al., 2006) proposed a
Constrained Gaussian Mixture Model (CGMM). In the CGMM, each tissue is represented
by a large number of Gaussians to capture the complex spatial layout of the tissues. The
EM algorithm is used to learn the parameters of the proposed model.

Dong and Peng (Dong and Peng, 2014) proposed a novel approach for accurate brain
MR image segmentation with simultaneous bias correction. The method addresses the
challenges posed by intensity inhomogeneity often present in MR images, which can neg-
atively impact the accuracy of segmentation algorithms. The approach defines an energy
functional with two main components: a local data fitting term based on local Gaussian
mixture model (LGMM) to model tissue distributions and a nonlocal spatial regularization
term to preserve fine structures and reduce noise influence. Notably, the method simul-
taneously corrects intensity bias by embedding the bias field function additively into the
energy functional.

Bian (Bian, 2022) proposed a novel method for automating the classification of T1-
weighted Magnetic Resonance brain scans into the cerebrospinal fluid, gray matter, and
white matter consisting of several key steps. Firstly, the pipeline is initialized with a
”simple” input generated by Kmeans and tissue prior probability hypothesis. Then, in
the expectation step (E-step), the algorithm calculates the posterior probability of each
voxel belonging to each tissue class based on the current Gaussian Mixture Model (GMM)
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parameters. The method incorporates an entropy-weighted spatial term that combines a
posterior term for global constraint characterization and a prior term for local characteriza-
tion, effectively integrating neighborhood classification results and image spatial resolution.
Subsequently, the maximization step (M-step) updates the GMM parameters based on the
current posterior probabilities. The E-step and M-step are iteratively repeated until con-
vergence is achieved. Finally, the output of the algorithm is a tissue segmentation map
that assigns each voxel to one of the three tissue classes (cerebrospinal fluid, gray matter,
or white matter).

— The Markov random field (MRF)

Mixture models have a limitation in brain MRI segmentation as they do not incorporate
contextual information. To overcome this limitation, researchers have explored the use of
Markov Random Fields (MRF), which belong to the category of random field methods.
MRF provides a statistical model that considers the relationships between neighboring
voxels during segmentation. In MRF, the probability of a label at a given voxel is calculated
based on both the voxel intensities and the labels present in its local neighborhood. MRFs
have been shown to improve the accuracy of brain MRI segmentation by incorporating
contextual information and capturing spatial dependencies. The resulting segmentation
becomes smoother as the model accounts for the conditional probability of each voxel
based on its neighborhood. Figure 2.11 in (Van Leemput et al., 1999) demonstrates the
differences between the segmentation with and without MRF. By using MRF for brain
MRI segmentation, the resulting segmentation becomes smoother as the model accounts
for the conditional probability of each voxel based on its neighborhood.

MRFs have been shown to offer several benefits for MRI segmentation. They capture
important features specific to MRIs, including neighborhood correlations, nonparametric
distributions of tissue intensities, and signal inhomogeneities. However, it is important
to strike a balance in the MRF model by limiting the number of neighbors considered,
especially in brain structures with complex edges. This helps ensure that the segmentation
technique remains effective and avoids excessive influence from distant voxels (Held et al.,
1997).

Zhang et al. (Zhang et al., 2001) introduced a novel hidden Markov random field
(HMRF) model for brain image segmentation. The proposed method comprises several
steps. Firstly, the image initializes by assigning each voxel to a specific tissue class, such
as gray matter, white matter, or cerebrospinal fluid, based on its intensity value. Next,
the HMRF model is employed to capture spatial information and enforce smoothness con-
straints during segmentation. This model establishes a joint probability distribution among
neighboring voxel class labels. The EM algorithm within the HMRF model iteratively es-
timates parameters and updates voxel class labels. It involves the E-step for label updates,
the M-step for parameter estimation, and bias field correction through maximum a poste-
riori estimation. Finally, the resulting segmentation assigns each voxel to the tissue class
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with the highest probability. The postprocessing step refines the segmentation by remov-
ing small isolated regions and filling gaps between regions, resulting in an improved final
segmentation.

MRFs offer the advantage of being less sensitive to noise compared to other classifiers
and clustering techniques. This is primarily due to their ability to incorporate contex-
tual information during the segmentation process. By considering the relationships among
neighboring voxels, MRFs can effectively smooth out noisy or inconsistent intensity val-
ues, leading to more reliable segmentation results. Another advantageous characteristic of
MRFs is their isotropic behavior, which enables the model to capture dependencies and
correlations between voxels consistently. This isotropy contributes to the overall accuracy
of the segmentation by ensuring an unbiased and comprehensive consideration of spatial
relationships.

MRFs can suffer from computational intensity, which can hinder their practical use.
Additionally, random field methods require a careful selection of parameters that control
the strength of spatial interaction and define the energy function. However, determining
these parameters can be challenging in practice. If the parameter controlling spatial in-
teraction is set too high, the resulting segmentation output may overly smooth the image,
causing the loss of important structural details. Therefore, it is important to strike a bal-
ance in the MRF model by limiting the number of neighbors considered, especially in brain
structures with complex edges. This helps ensure that the segmentation technique remains
effective and avoids excessive influence from distant voxels (Held et al., 1997).

Rajapakse et al. (Rajapakse et al., 1997) proposed a statistical approach for segmenting
cerebral MR images using a finite Gaussian mixture for brain MRI segmentation. The
method incorporates a smoothness segmentation based on a Markov random field to make
the Gaussian mixture model more robust against noise. The iterative conditional modes
(ICM) algorithm is employed to find a suboptimal segmentation while estimating model
parameters, and simulated annealing (SA) is utilized to find the optimal segmentation.
The approach proves to be effective in achieving accurate segmentation results for medical
imaging and brain analysis.

Tohka et al. (Tohka et al., 2010) proposed a new method for tissue classification in brain
MRI based on local Markov random fields (MRF). The method involves dividing the image
into local brain regions with different intensity statistics using sub-volume probabilistic
atlases. The parameters for the local intensity models are obtained without supervision
by maximizing the weighted likelihood of a certain finite mixture model using a novel
genetic algorithm. These local models for tissue intensities and MRF priors are then
combined into a global probabilistic image model, resulting in an inhomogeneous MRF.
The proposed method demonstrates improved tissue classification accuracy when the basic
tissue characteristics vary across the brain, and the noise level of the images is reasonable.
The inhomogeneous MRF is solved using standard algorithms like iterative conditional
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modes, allowing the model to effectively capture spatial dependencies and interactions
between different brain regions.

Ahmadvand and Daliri (Ahmadvand and Daliri, 2015) proposed a novel approach to
accelerate MRI brain segmentation by combining clustering methods and Markov Random
Fields (MRF). Their method introduces two preprocessing steps to reduce the compu-
tational time of MRF while maintaining segmentation accuracy. The first step involves
clustering using Fuzzy C-Means (FCM) or Genetic Algorithm-Gaussian Mixture Model
(GA-GMM) for initial segmentation and parameter estimation. The second step selects a
subset of pixels based on intensity values. Finally, MRF is applied for post-processing and
smoothness of segments, using a smaller subset of pixels to speed up convergence.

Figure 2.11 – The segmentation of GM with and without MRF (Van Leemput et al.,
1999). (a) original image, (b) segmentation without MRF (c) segmentation with MRF

Abhirup and Pradipta (Banerjee and Maji, 2016) introduced a novel approach for brain
MRI segmentation, which combines rough-probabilistic clustering with the hidden Markov
random field (HMRF) model. The main objective of this approach is to improve the inten-
sity distribution model of the image. To achieve this, they introduced a new probability
distribution called stomped normal (SN) distribution, which demonstrated superior perfor-
mance in representing image classes compared to the Gaussian distribution. Additionally,
rough sets were employed to handle uncertainty, vagueness, and incompleteness in the
class definition, allowing for efficient treatment of overlapping classes. Furthermore, the
HMRF model was incorporated into the approach to capture spatial dependencies between
neighboring pixels.

2.5.4 Atlas-based Segmentation Methods

Atlas-based Segmentation Methods are a powerful tool for medical image segmentation
when a standard atlas or template is available. The atlas is generated by compiling infor-
mation on the anatomy that requires segmenting. This atlas is then used as a reference
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frame for segmenting new images. Conceptually, atlas-based segmentation approaches are
similar to classifiers except they are implemented in the spatial domain of the image rather
than in a feature space. The main advantages of this approach are to lend a hand to
radiologists in the discovery and identification of diseases, provide a lot of detail, can easily
be applied in computer-aided diagnosis to analyze the shape and morphological differences
between image regions, and they have the ability to segment the image with no well-defined
relation between image pixels and regions (Yazdani et al., 2015).

The standard atlas-based Segmentation Methods consider segmentation as a registra-
tion problem. The first step is to identify a one-to-one transformation that maps a pre-
segmented atlas image to the target image that requires segmentation. This process is
commonly known as atlas warping. While linear transformations can be used for warping,
a combination of linear and non-linear transformations is often used due to anatomical vari-
ability. Brain warping or registration methods aim to find a transformation that aligns two
MRI images voxel-to-voxel, allowing for the definition of variation among the population
with fewer parameters. Furthermore, digitized brain atlases can be utilized to modify the
description and localization of structures in brain images derived from various subjects and
modalities. This allows for correlations between modalities and individuals, and enables
precise anatomical measurements within a specific framework by mapping the template to
the target brain image. In medical image registration, transformations can be categorized
into rigid and non-rigid transformations. However, it is clear that the human body does
not conform to an affine or rigid transformation. As a result, most current registration
methods involve non-rigid transformation. After a successful non-rigid registration, the
segmentation process becomes easier and more efficient between a patient and an atlas
(Pham et al., 2000).

Although, atlas-based segmentation provides accurate segmentation results and is gen-
erally robust to certain anomalies, however, their dependability on population-specific at-
lases might limit their applicability to the dataset that is not well represented by the atlas.
Due to this, it becomes difficult to segment brain tissue/region types accurately. More-
over, atlas-based segmentation is suboptimal if the patient population in the dataset is
considerably different from the atlas model. In this case, these approaches will fail or give
inaccurate results due to variability in brain morphology among patients. To overcome
these limitations, pattern recognition approaches were proposed that use spatial, intensity,
or other information in atlas space as features for the segmentation of different regions
(Ramzan et al., 2020). An aligned atlas can be also used as a good initial estimate of the
segmentation, which is especially important for an EM algorithm that is guaranteed to
converge to local, not global, maxima. In addition, the EM algorithm uses the atlas to
constrain the segmentation process where again the correct alignment of the atlas is crucial
for successful and accurate segmentation (Despotović et al., 2015).

Aljabar et al. (Aljabar et al., 2009) proposed a multi-atlas based segmentation method
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for brain MRI images. The approach involves using a database of pre-segmented images
(atlases) to segment a new image, aiming to improve segmentation accuracy by combining
information from multiple atlases. To achieve better results, they suggest selecting a custom
subset of atlases that are most similar to a given query image. The selected atlases are then
combined using a weighted voting scheme to enhance segmentation accuracy by reducing
errors associated with individual atlas propagation. To ensure precise alignment of selected
atlases with the query image, the authors employed a hierarchical coarse-to-fine registration
approach.

Lötjönen et al. (Lötjönen et al., 2010) proposed a pipeline for fast and robust multi-atlas
segmentation of brain magnetic resonance images. The process began with preprocessing,
where MRI images were preprocessed to remove noise, artifacts, and correct intensity
inhomogeneities. Next, a subset of relevant atlases was selected from a larger atlas database
based on similarity measures between the target image and the atlases. The selected
atlases were then non-rigidly registered to the target image using advanced registration
techniques, with different similarity measures used to assess registration quality. After
registration, the registered atlases were fused together to generate a segmentation of the
target image. Various label fusion methods were evaluated to determine the most effective
approach. Lastly, postprocessing was applied to the segmentation, involving the removal
of small isolated regions and ensuring topological correctness.

2.5.5 Level set method

Level set method was initially introduced to handle topological changes during curve
evolution and has been widely used in the field of image processing, particularly in image
segmentation (Osher and Sethian, 1988). The main idea of the level set method is to
represent curves or surfaces implicitly as the zero level set of a higher dimensional level set
function. This technique not only provides more accurate numerical implementations but
also handles topological changes very easily.

The level set method is relatively simple and displays a great advantage in solving
problems such as corner point producing, curve breaking, and combining, due to its stability
and irrelevancy with topology. However, it updates all the level sets, not just the zero level
set, which can result in unbearable computing time and low computational efficiency.

Malladi et al. (Malladi et al., 1993) incorporated gradient information as a stop cri-
terion in their model. The speed definition in their model is intuitive: when the contour
approaches the structure boundary, the increase of gradient magnitude decreases the speed
value, which slows down the contour. However, this model suffered from leakage due to its
dependence solely on the gradient magnitude. As a result, the model can only segment ob-
jects with edges defined by gradient, and it is sensitive to noise. The Mumford-Shah model
(Mumford and Shah, 1989) was one of the first region-based methods that approximated
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the image using a smooth function inside the regions and not just at their boundaries.
Several variants of this model have been proposed later (Li et al., 2011; Chan and Vese,
2001). Chan and Vese’s model (Chan and Vese, 2001) proposed a new energy functional
derived from the Mumford-Shah energy model. The advantages of Chan-Vese’s model are
that it can detect objects with boundaries that are not necessarily defined by gradient or
with very smooth boundaries. Additionally, it can provide a boundary of discrete points,
which is crucial for medical image applications when the segmentation result needs to be
interpreted by a physician.

Baillard and Barillot (Baillard and Barillot, 2000) proposed a robust evolution model
for segmenting structures in 3D images using the level set formalism. The method involves
adaptive parameters depending on the data, and it relies on region-based information rather
than gradient, via estimation of intensity probability density functions over the image. The
method has two main stages: intensity distribution analysis and surface evolution. The
evolving surface is processed as a propagating front embedded as the zero level of a 4D
scalar function. The evolution rule for the scalar function is defined by a scalar velocity
function that depends on the local geometric properties of the front and external parameters
related to the input data. The method is versatile and can be applied to various kinds
of medical imaging data. It is demonstrated on both brain structures in MR images and
carotid arteries in 3D echography. The tuning of the parameters determines the success of
the method, but the proposed method requires almost no parameter setting.

Li et al. (Li et al., 2011) proposed a novel region-based image segmentation method that
effectively addresses intensity inhomogeneities. The proposed method incorporates a local
intensity clustering property derived from a well-established image model and formulates
an energy functional within a level set framework. This energy functional aptly accounts
for intensity variations within small neighborhoods, leading to precise segmentation results.
By considering the local intensity clustering property, the proposed method can effectively
handle intensity inhomogeneities, which is a common problem in medical image segmenta-
tion. Furthermore, the energy functional is converted into a level set formulation, utilizing
vector-valued level set functions to represent the partitioning of the image domain into
distinct regions. The authors then optimize the energy functional through an interleaved
process involving level set evolution and bias field estimation. The evolution of level set
functions is achieved by solving gradient flow equations, while the estimation of the bias
field involves solving a Poisson equation.

Zhan et al. (Zhan et al., 2013) proposed an improved variational level set approach to
correct the bias and to segment MRI images with inhomogeneous intensity. The authors
used a Gaussian distribution with a bias field as a local region descriptor in a two-phase level
set formulation for segmentation and bias field correction of the images with inhomogeneous
intensities. The proposed method effectively addresses the intensity inhomogeneity problem
by modeling the local intensity distribution using a Gaussian distribution with a bias field.
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The two-phase level set formulation allows for simultaneous segmentation and bias field
correction, resulting in more accurate segmentation results.

Chen and Wu (Chen and Wu, 2019) presented a level set approach for segmenting brain
MRI images with asymmetric intensity distributions. The proposed method comprises
three main steps: initialization, evolution, and post-processing. In the initialization step,
a rough segmentation is obtained through a thresholding technique. In the evolution
step, the level set function is modified using a data term, a regularization term, and a
spatially varying weighting factor that considers the asymmetric intensity distribution of
the images. The proposed method effectively addresses the intensity asymmetry problem
by incorporating a spatially varying weighting factor that adapts to the local intensity
distribution. Finally, the post-processing step involves obtaining the final segmentation by
applying a threshold to the level set function.

2.5.6 Classification based methods

Classification methods play a crucial role in image segmentation. The primary task in
classification is to extract a set of features from the image. While the intensity value is the
most important feature used for classification, other image properties such as texture can
also be considered. The discrete wavelet transform, Gabor filters, gray level co-occurrence
matrix, and gray level run length matrix are some of the most commonly used feature
extraction methods. However, the presence of a large amount of data for classification is
a common challenge with most feature extraction methods. While Principal Component
Analysis (PCA) can help solve the dimensionality problem to a certain extent by providing
a small set of significant features for accurate classification, there are many classification
methods available. Some of the most commonly used methods include k-Nearest Neighbors
(kNN) and Artificial Neural Network (ANN). These methods can be used to classify images
based on their extracted features, and their effectiveness depends on the specific application
and the quality of the extracted features.

2.5.6.1 The k-Nearest Neighbors (kNN)

The nearest neighbor (NN) classifier is one of the simplest classifiers available. The
kNN classifier, on the other hand, is a nonparametric classifier that is considered a gener-
alization of the NN classifier. It is an iterative procedure that assigns each unlabeled data
point to a cluster based on the majority vote of the k nearest labeled data points. The
process continues until all data points are labeled or no additional labelings occur (Duda
et al., 1973). This classifier is particularly suitable when a large number of training data
are available, and it makes no implicit assumptions about the statistical structure of the
data. As shown in Figure 2.12, the circles and triangles represent the training set and the
target class values, respectively, providing an example of how data can be represented for
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classification purposes.

Figure 2.12 – : kNN classifier principle (a) Data set with data of unknown class. (b)
Decision boundary with k=1 around unknown class data. (c) Decision boundary with

k=3 around unknown test data.

Warfield et al. (Warfield et al., 2000) proposed a novel approach for brain MRI seg-
mentation using the k-nearest neighbor (kNN) classifier. The authors integrated spatial
localization of brain structures in the form of a non-rigid registered template, in addition to
the intensity information, to enhance the classification. The proposed algorithm alternates
between a classification step to identify tissues and an elastic matching step to align an
anatomical atlas with the classified tissues and generate a segmentation. The proposed
method has been successfully utilized to quantify the normal anatomy and pathology of
different types, such as brain tumors, damaged knee cartilage, and multiple sclerosis. How-
ever, it should be noted that the method is semi-automatic due to the manual selection
of a large number of training data sets for each tissue class during the training phase of
the kNN classifier. Additionally, the results are influenced by a suitable selection of the
training set. Despite these limitations, the proposed method offers a high potential for ac-
curate and efficient brain MRI segmentation, making it a valuable tool for medical image
analysis.

Cocosco et al. (Cocosco et al., 2003) proposed a fully automatic method for selecting
training samples for the kNN classifier, which makes it more robust. This method is
effective even for anatomies that deviate from the probabilistic atlas. However, it may
not perform as well when there is intensity variation within each tissue class. It is worth
noting that the two previously mentioned methods, including Warfield et al. (Warfield
et al., 2000), require a preprocessing step for bias field correction.
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2.5.6.2 Artificial neural network (ANN)

Artificial neural networks (ANNs) have become a popular tool in medical image analy-
sis, with applications ranging from image reconstruction and lesion detection to brain tissue
segmentation and noise suppression (Torbati et al., 2014). ANNs are a type of machine
learning algorithm that can be used in various ways for image segmentation. One of the
most common uses in medical imaging is as a classifier, where the weights are determined
using training data, and the network is then used to segment new data. This approach
has shown promising results and has the potential to improve the accuracy and efficiency
of medical image analysis. ANNs can also be used as an unsupervised clustering method
in addition to their supervised classification capabilities. ANNs are known for their ability
to perform well even in noisy images due to their many interconnections, which allows
for easy incorporation of spatial information into the classification process. Additionally,
ANNs are relatively insensitive to the choice of training datasets. Another advantage of
ANNs is their inherent parallelism, which enables them to produce outputs in real-time
(Pham et al., 2000). Several neural network architectures have been utilized for medical
imaging applications, including feed-forward networks, self-organizing maps (SOMs), and
radial basis function networks, among others, for the purpose of medical image segmenta-
tion.

a- Feed-forward network

Feed-forward networks are among the most commonly used neural networks for medical
image segmentation. In this type of network, the neurons in each layer are only connected
to the neurons in the next layer. These connections are unidirectional, meaning that signals
or information being processed can only pass through the network in a single direction, from
the input layer, through the hidden layer(s), to the output layer. Feed-forward networks
typically use the backpropagation (BP) supervised learning algorithm to dynamically ad-
just the weight and bias values for each neuron in the network. In a feed-forward network,
the modification of weights is carried out using an optimization algorithm called gradient
descent, where the weights are updated after each training example is presented to the
network. This iterative process allows the network to gradually improve its performance
by minimizing the difference between its predicted output and the actual output. A mul-
tilayer perceptron (MLP) is a type of feed-forward network that employs three or more
layers, with nonlinear transfer functions in the hidden layer neurons. MLPs are particularly
suitable for applications in medical imaging where the inputs and outputs are numerical,
and pairs of input/output vectors provide a clear basis for supervised training.

Shen et al. (Shen et al., 2005)proposed a method to improve the accuracy of MR image
analysis by extending the traditional fuzzy c-means clustering algorithm with neighborhood
attraction and neural-network optimization. The method involves preprocessing, initial-
ization, fuzzy clustering, neighborhood attraction, neural-network optimization, iterative
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refinement, and stopping criterion. During preprocessing, the MR images are preprocessed
to remove noise and enhance contrast. The initialization step randomly selects initial
cluster centers from the image, and the fuzzy c-means algorithm is applied to obtain the
initial segmentation. The proposed method introduces neighborhood attraction into the
objective function of the fuzzy c-means algorithm to improve segmentation accuracy. A
simple artificial neural network is employed to optimize the degree of feature attraction
and distance attraction in the objective function. The iterative refinement step updates
the cluster centers and membership values until convergence is achieved, and the stopping
criterion is used to stop the segmentation process.

Assam et al. (Assam et al., 2021) proposed an efficient method for classifying brain MRI
images into normal and abnormal categories. The method consists of four steps. First, a
median filter is applied to remove noise and unwanted components from the image. In the
second step, the authors use the Discrete Wavelet Transform (DWT) technique to extract
different features from the images. After that, the set of features is reduced to decrease
the computation time. In the last step, the selected features are passed to a feed-forward
network for image classification.

b- Radial basis function networks

A radial basis function (RBF) network is a type of three-layer supervised feed-forward
network that uses a nonlinear transfer function, typically a Gaussian function, for the hid-
den neurons and a linear transfer function for the output neurons. The Gaussian function
is applied to the net input of each neuron to produce a radial function of the distance
between each pattern vector and each hidden unit weight vector. This type of network is
commonly used for function approximation, classification, and clustering tasks.

RBF networks are known for their inherent flexibility in terms of size and topology,
which makes them suitable for a variety of problems. They offer easy design, effective
tolerance to input noise, online learning ability, and good generalization (Nilakant et al.,
2017).

Valdés-Cristerna et al. (Valdés-Cristerna et al., 2004) proposed a hybrid model for
segmenting multispectral brain MRI images. The model combined the Radial Basis Func-
tion (RBF) network with a spline Active Contour Model. The RBF network was utilized
to analyze and classify the multispectral MRI data, enabling the model to handle the
complex intensity variations and anatomical structures present in brain scans. The spline
Active Contour Model, on the other hand, employed an energy minimization principle to
iteratively adjust the contour shape and accurately delineate the boundaries of brain struc-
tures.By integrating these two approaches, the hybrid model proposed by Valdés-Cristerna
et al. (Valdés-Cristerna et al., 2004) achieved a high level of performance in terms of eval-
uation indexes, providing accurate segmentation results. The model effectively captured
non-linear relationships in the data while employing a contour-based approach for precise
boundary localization.
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Rostami et al. (Rostami et al., 2013) proposed a method to improve the accuracy of
brain MRI segmentation by combining the FCM algorithm with a Radial Basis Function
(RBF) neural network. The FCM algorithm was used to cluster the pixels based on inten-
sity information, but to address misclassifications caused by noise and lack of neighborhood
consideration, the researchers employed the RBF neural network. The RBF network was
trained using low-level noise images, and pixels that were not confidently classified by FCM
were then classified using the trained RBF network. The proposed approach effectively
utilized both intensity and neighborhood information, leading to improved segmentation
results in the presence of noise and complex image characteristics. By incorporating the
RBF neural network, the method was able to address misclassifications caused by noise
and lack of neighborhood consideration, resulting in more accurate segmentation of brain
MRI images.

c- Self-organizing maps (SOM)

The Self-Organizing Map (SOM) is an unsupervised clustering network commonly used
in the field of neural networks. It organizes input data into several patterns based on a
similarity factor, such as Euclidean distance. Each pattern is assigned to a neuron, which
has a weight that depends on the pattern assigned to it. The SOM learns to classify
input data according to their grouping in input space, with neighboring neurons learning
neighboring patterns in input space.

The SOM is composed of two layers: the input layer and the competitive layer. The
input layer has a number of neurons equal to the dimension of the input, while the compet-
itive layer has a neuron corresponding to each class or pattern, with the number of neurons
depending on the number of clusters. The neurons in the competitive layer are arranged in
regular geometric structures, such as a mesh. In the SOM, each connection from the input
layer to a neuron in the competitive layer is assigned a weight vector. The SOM algorithm
consists of two main steps (Pateria et al., 2021): finding the winning neuron, which is the
most similar neuron to the input based on a similarity factor like Euclidean distance, and
updating the weight of the winning neuron and its neighboring neurons based on the input.
In other words, the weight of the winning neuron and its neighbors are adjusted towards
the input.

Dokur and Ölmez (Dokur and Ölmez, 2003) proposed a novel neural network called
the quantiser neural network (QNN) for the segmentation of MR and CT images. The
QNN distinguished itself by employing genetic algorithms for training, setting it apart
from traditional neural networks. The performance of the QNN was compared to that of
a multilayer perceptron and a Kohonen network in the context of MR and CT head image
segmentation. The results revealed that the QNN achieved superior classification accuracy
with fewer neurons and a shorter training time, indicating that the QNN offers a more
efficient and effective approach to image segmentation.

Ortiz et al. (Ortiz et al., 2014) presented a novel MRI segmentation method that utilizes
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a Self-Organising Map (SOM) with dual objectives. The first objective involves learning the
most discriminative features through SOM optimization using Genetic Algorithms (GA).
The second objective is to group voxels into different SOM clusters based on their class.
The method involves five stages: preprocessing, feature extraction, feature selection, vector
classification using SOMs, and entropy-gradient clustering. Preprocessing involves noise
removal and window splitting to reduce data dimensionality. Feature extraction includes
extracting first and second-order features using overlapped windows and reducing them
through evolutionary computation. The reduced feature vectors are then classified using
SOMs, followed by refinement using entropy-gradient clustering to improve segmentation
accuracy.

Torbati et al. (Torbati et al., 2014) developed a neural network-based method to
improve upon the limitations of self-organizing map (SOM)-based approaches in medical
image segmentation. They introduced a modified SOM network called moving average
SOM (MA-SOM) and evaluated its performance using a dataset consisting of breast images,
brain MRI images, and CT head images. To enhance the input feature space for the
network, the authors employed a two-dimensional Discrete Wavelet Transform, resulting
in improved segmentation performance compared to both supervised neural network and
traditional SOM-based methods. The MA-SOM network, along with the utilization of
wavelet transform, represents a promising approach for medical image segmentation.

De and Guo (De and Guo, 2015) utilized the self-organizing map (SOM) technique to
segment real brain MRI images obtained from the Internet Brain Segmentation Repository
(IBSR). Their approach focused on using Vector Quantization (VQ) for the segmentation
task, with the SOM network facilitating adaptive codebook learning for the VQ method.
The proposed method aimed to enhance the accuracy and effectiveness of the segmentation
process. By utilizing the capabilities of the SOM network for adaptive codebook learning,
the algorithm achieved improved representation and clustering of the image data, resulting
in enhanced segmentation results for the brain MRI images.

d- Convolutional Neural Network (CNN)

A Convolutional Neural Network (CNN) is a type of feed-forward network that uses a
specialized multilayer architecture designed for image classification (Jena et al., 2018). It
can also be described as a deep multi-layer perception network. CNNs use a local receptive
field, shared weights, bias, and pooling to process images. Unlike fully connected neural
networks, where the input is represented as a vertical line of neurons, CNNs take the input
as a square matrix corresponding to the pixel values of the input image. This allows the
original image to be directly processed by the network. In convolutional neural networks
(CNNs), each neuron in the hidden layer is connected to a small, localized region of the
input image, known as the local receptive field. These neurons are connected to every
neuron of the hidden layer. The local receptive field is then slid across the entire input
image, starting from the top-left corner, by one pixel at a time, creating the total matrix
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of the hidden layer. Each connection from the hidden layer neuron to input neurons bears
a weight, and each node in the hidden layer has a bias. The same weight and bias are used
by the total hidden neuron matrix, known as shared weight and bias.

In convolutional neural networks (CNNs), the convolutional layers generate feature
maps by local connectivity and weight sharing, meaning that the same local features are
detected in all locations of the input image. This weight-sharing rule significantly reduces
the number of parameters, increasing efficiency and preventing overfitting. A CNN may
have many feature maps. Finally, pooling is applied to each feature map separately to
reduce the number of features and the dimensionality of the network. The convolution and
pooling layers are considered 2D layers, while the output layer is a 1D layer.In CNNs, each
2D layer consists of several planes, and each plane consists of neurons arranged in a 2D
array. The reduced pooling layers produce one label per node, resulting in 1D data that is
fed to a simple neural network to obtain the required output (Jena et al., 2018).

CNNs have gained popularity in the field of medical image analysis because they do
not require a set of handcrafted features for classification. Instead, they learn sets of con-
volution kernels that are specifically trained for the classification problem at hand. Unlike
classical machine learning methods, which use Gaussian kernels to acquire appearance in-
formation for image segmentation, CNNs optimize sets of kernels based on the provided
training data. This allows the system to automatically extract relevant information from
the image, including spatial and intensity information, to distinguish between different
classes, this can be learned from the provided information, much like a human observer
would recognize objects within a (medical) image.

Moeskops et al. (Moeskops et al., 2016) proposed a CNN-based approach for automatic
brain image segmentation that aimed to achieve precise segmentation details and spatial
consistency. Their method incorporated multiple patch and convolution kernel sizes to cap-
ture multi-scale information for each voxel, and relied on learning relevant information for
classification from the training data rather than explicit features. Notably, their approach
only required a single anatomical MR image as input.

Kleesiek et al. (Kleesiek et al., 2016) proposed a novel 3D CNN for automatic skull
stripping in MRI brain images. Their CNN architecture involves convolving the input
data with local filters, followed by nonlinear transformations to extract meaningful fea-
tures. The network is designed to handle an arbitrary number of modalities and can be
trained to process multi-channel data, including non-MRI channels. During training, the
filters are optimized using the Kullback-Leibler divergence as the loss function. To enhance
generalization and prevent overfitting, data augmentation techniques such as rotation, scal-
ing, and flipping are employed. Before feeding the data into the CNN, a pre-processing step
is performed, which involves removing non-brain tissue and normalizing intensity values.
The authors used the bias field correction algorithm to address intensity inhomogeneities
and the brain extraction tool (BET) to eliminate non-brain tissue. The output of the CNN
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is a probability map that indicates the likelihood of each voxel being part of the brain.
Post-processing techniques, including thresholding and morphological operations, are then
applied to convert the probability map into a binary mask and refine the segmentation
results.

Khalili et al. (Khalili et al., 2019) proposed an innovative method for automatic brain
MRI image segmentation, employing two fully convolutional networks (CNNs) sharing the
same architecture. Their approach consisted of utilizing the first CNN to extract the
intracranial volume, while the second CNN was specifically designed to segment the ex-
tracted volume into three main brain tissues: white matter (WM), gray matter (GM), and
cerebrospinal fluid (CSF). To achieve optimal performance, each CNN was independently
trained using stochastic gradient descent and the Adam optimizer with a learning rate set
to 0.0001. During the training process, the first CNN effectively utilized 12 slices per sub-
ject to extract the intracranial volume, while the second CNN utilized the entire volume
for tissue segmentation.

Khaled et al. (Khaled et al., 2023) introduced a novel fully convolutional neural network
(CNN) aimed at significantly improving brain segmentation performance. Their method
integrated a multi-instance loss technique, effectively distinguishing between brain pixels
and background regions. To further enhance segmentation results, the authors leveraged
Gabor filter banks and the K-means algorithm, which provided complementary informative
details to the machine-learned features. Notably, the CNN utilized complete images as
input and employed both max pooling and mean pooling operations for effective data
processing.

2.5.7 Discussion

As previously mentioned, there are various approaches for brain MRI image segmen-
tation, each with its own set of advantages and disadvantages. The choice of approach or
method is highly dependent on the specific application and the characteristics of the im-
ages being analyzed. Despite their differences, these methods offer several advantages. For
instance, they are relatively easy to implement and utilize important properties such as the
similarity between neighboring pixels. They employ criteria and metrics to separate image
groups or classes, often incorporating information and knowledge about shape, orientation,
continuity, elasticity, or smoothness through techniques like Atlas-based methods. These
methods can be effective in capturing specific features and characteristics relevant to the
segmentation task.

However, brain MRI segmentation methods also have certain drawbacks. They often
produce suboptimal results and require user interaction, such as selecting appropriate seed
points or determining threshold values. These choices play a critical role in the result
of the segmentation process. Moreover, these methods can be sensitive to noise, poor
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contrast, and acquisition artifacts, which can negatively impact the accuracy of the seg-
mentation results. Additionally, they rely on prior knowledge from domain experts and
typically involve manual feature engineering, which can be time-consuming and limit their
adaptability to different datasets. Despite these limitations, segmentation methods can
be effective in capturing specific features and characteristics relevant to the segmentation
task. Table 2.2 provides a comprehensive overview of the advantages and disadvantages of
different segmentation methods.

The choice of a specific segmentation approach depends on various factors, including
the characteristics of the MRI data, the desired level of accuracy, computational efficiency,
the available computational resources, and the expertise of the users. Additionally, the
complexity and scalability of the method should be considered, especially when dealing
with large datasets or real-time applications. It is important to explore and compare dif-
ferent segmentation techniques, considering their suitability for the specific task at hand.
Furthermore, the availability of labeled training data plays a significant role in the selection
process, as some methods require a sufficient amount of annotated data for effective train-
ing. Researchers need to assess the adequacy of the available training data and determine
if additional data acquisition or augmentation is necessary. Moreover, the computational
resources available, such as processing power and memory capacity, should be taken into
account to ensure the feasibility and efficiency of the chosen method. The parameters that
govern the performance of the segmentation method also need to be carefully adjusted.
These parameters, such as the degree of spatial interaction or the network architecture,
impact the segmentation accuracy and computational complexity. Researchers should con-
duct parameter tuning experiments to find the optimal configuration that balances accu-
racy and computational efficiency. Finding a balance between accuracy and computational
complexity is indeed crucial when selecting a segmentation method for brain MRI analysis.
By considering these factors, researchers can improve both the accuracy and efficiency of
brain MRI segmentation.
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Table 2.2: Advantages and disadvantages of the most
commonly used brain tissue segmentation methods

Method Advantages Disadvantages
Thresholding This approach is effective in seg-

menting images that have uni-
form intensity, high contrast, and
clear differentiation between the
object and background. It is com-
monly used for brain tissue seg-
mentation due to its simple im-
plementation and computational
efficiency (Pham et al., 2000).

One major limitation of this ap-
proach is that it does not con-
sider the correlation between pixels,
which can result in misclassification
of pixels, particularly when there
is noise, partial volume effects, and
overlapping tissues. These artifacts
can significantly affect the image his-
togram, making segmentation using
thresholding a difficult task (Pham
et al., 2000).

Level set It is an effective solution to over-
come the limitations of edge-
based techniques as it can de-
tect interior contours, making it
suitable for medical images with
weak boundaries. Additionally,
it can effectively handle medical
images with inhomogeneity inten-
sity. It is known for its versatil-
ity, robustness, and accuracy. It
is capable of handling topological
changes and accounting for three-
dimensional effects (Balafar et al.,
2010).

It is limited when applied to images
with complex backgrounds and ir-
regular intensities. It is only suit-
able for images with homogeneous
regions. The non-convex and non-
unique energy function often leads
to convergence to local minima dur-
ing contour evolution, which can re-
sult in undesired segmentation re-
sults (Dong and Peng, 2014).
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Region grow-
ing

It offers the advantage of being
insensitive to changes in the in-
ner parts of an object. It has the
advantage of considering both vi-
sual features and spatial informa-
tion. It can handle images with
non-uniform intensity and com-
plex structures, such as tumors or
lesions. (Dora et al., 2017).

it heavily depends on the choice of
seed points and the criteria used for
merging neighboring regions. This
can make it challenging to apply
to natural images with complex
structures and non-uniform inten-
sity. Additionally, region growing
methods may not perform well on
images with heterogeneous regions,
as they tend to merge regions with
similar intensity values, regardless of
their spatial location. Furthermore,
region growing methods are sensitive
to noise, which can result in seg-
mented regions with holes or discon-
tinuities. (Zanaty and Ghoniemy,
2016).

Atlas-based
method

It can handle images with large
anatomical variations, such as
those caused by disease or injury.
Additionally, it can be easily ap-
plied in computer-assisted analy-
sis, making them a valuable tool
for medical image analysis (Dora
et al., 2017).

It is typically used for high-
resolution, 3D medical images and
may not be suitable for other types
of images or data modalities. The
accuracy of the segmentation is
highly dependent on the accuracy
of the registration algorithm used to
align the atlas with the target im-
age. It can be computationally ex-
pensive. It may not always capture
the full range of anatomical varia-
tion, which can lead to errors in seg-
mentation (Yazdani et al., 2015).
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kNN It is easy to implement. It is
capable of preserving information
in the training images. It is
a non-parametric method, which
means it does not assume any spe-
cific form of data distribution. It
provides interpretability as it as-
signs labels based on the nearest
neighbors, which can help in un-
derstanding the decision-making
process (Nilakant et al., 2017).

It can be computationally expen-
sive, especially with large datasets or
high-dimensional feature spaces. It
can be sensitive to noise and outliers
in the data. The choice of the opti-
mal value for k (the number of neigh-
bors) in the kNN classifier is cru-
cial. An inappropriate selection of
k can lead to underfitting or overfit-
ting, affecting the segmentation ac-
curacy (Nilakant et al., 2017).

K-means It is simple and easy to imple-
ment. It is particularly suitable
for real-time image segmentation
tasks due to its computational ef-
ficiency. It typically converges
quickly to a stable solution, espe-
cially for well-separated clusters
in the (Ezugwu et al., 2021).

It is sensitive to the initial values of
the cluster centers and needs to de-
termine the appropriate number of
clusters. It is sensitive to outliers
and noise. It may not provide accu-
rate segmentation results for regions
with irregular shapes or varying sizes
(Mittal et al., 2021).

FCM It does not use a sharp bound-
ary to separate pixels into groups.
Instead, it utilizes a member-
ship function to cluster the pixels
(Ezugwu et al., 2021).

It is sensitive to noise because it does
not consider spatial information. It
is difficult to identify the initial par-
titions. There is no guarantee that
ensures FCM converges to an opti-
mum solution (Mittal et al., 2021).

Mixture mod-
els

These models have the ability to
effectively handle bias field cor-
rection and spatial regularization
in the local region by employing
Gaussian distributions to model
the intensity variation of each tis-
sue type. Provide flexibility in
adjusting the number of Gaussian
components in the mixture, en-
abling the capture of finer details
in the intensity distribution (Bal-
afar et al., 2010).

The performance of Mixture Gaus-
sian models can be sensitive to the
choice of initialization parameters,
including the initial number of com-
ponents and their initial locations.
The absence of spatial relationships
among neighboring pixels within the
class leads to the emergence of local
optima (Balafar et al., 2010).

Approche robuste pour la segmentation et la classification d’images médicales 48



2.5. Brain image segmentation approaches

MRF MRF exhibits a lower sensitiv-
ity to noise in comparison to
other classifiers and clustering
techniques, primarily due to its
incorporation of contextual infor-
mation. Another distinguishing
feature of MRF is its isotropic be-
havior and reliance on local de-
pendencies (Yazdani et al., 2015).

One of the major problems of MRF
is the need to select appropriate pa-
rameters that govern the strength
of spatial interaction and the en-
ergy function. Determining these
parameters can be a difficult task,
as setting them too high may re-
sult in excessively smooth segmen-
tation outputs, leading to the loss
of important structural details. Ad-
ditionally, the computational com-
plexity of MRF can still pose prac-
tical limitations, potentially hinder-
ing its practical applicability (Yaz-
dani et al., 2015).

ANN ANN is able to generate precise
results. is a powerful computa-
tional model for solving real word
problems in all applicable fields.
Able to perform well on compli-
cated and multivariate nonlinear
domains. Resistance to noise.
(Pham et al., 2000).

It needs significant computational
complexity and response time. An-
other significant drawback of using
ANN lies in determining the optimal
combination of training, learning,
and transfer functions for classifying
datasets with an increasing number
of features and classes (Benos et al.,
2021).

CNNs CNNs are capable of capturing
non-linear relationships between
input images and segmentation
labels. CNNs can automatically
learn discriminative features di-
rectly from the input data, elim-
inating the need for manual fea-
ture engineering (Puttagunta and
Ravi, 2021).

CNNs are often considered as black-
box models due to their complex ar-
chitectures and numerous parame-
ters. Training CNNs can be com-
putationally demanding, necessitat-
ing the use of powerful hardware re-
sources, such as GPUs, and result-
ing in longer training times (Benos
et al., 2021).
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SOM It can capture non-linear relation-
ships between input features, en-
abling it to handle complex vari-
ations in brain MRI data. Pre-
serves the topological structure of
the input data during the map-
ping process. It can effectively re-
duce the dimensionality of high-
dimensional data (Torbati et al.,
2014).

The lack of explicit spatial con-
straints. Sensitivity to initialization.
It may require substantial computa-
tional resources and longer process-
ing times (Torbati et al., 2014).

RBF It can effectively capture nonlin-
ear relationships in brain MRI
data, allowing for accurate mod-
eling of complex intensity distri-
butions and boundaries between
different brain tissues. It has the
capability to handle nonuniform
intensity distributions commonly
observed in brain MRI images. It
typically has faster training times
compared to other neural net-
work architectures (Torbati et al.,
2014).

It requires careful tuning of hyper-
parameters, such as the number and
positions of the radial basis func-
tions. It primarily utilizes local pixel
intensities and may not fully exploit
spatial relationships between neigh-
boring pixels (Pateria et al., 2021).

2.6 Conclusion

Image segmentation is a crucial process that involves dividing an image into multiple
segments. The primary goal of image segmentation is to simplify or alter the image’s
representation, making it easier for further analysis and extracting meaningful information.
Effective segmentation results facilitate the subsequent image processing analysis. This
chapter has explored various algorithms and approaches for Brain MRI image segmentation,
such as thresholding, region growing, clustering-based methods, and classification-based
methods. Each method has its own strengths and weaknesses, and the choice of algorithm
depends on the specific requirements and perspectives.

In the next chapter, we will present one of the most significant clustering algorithms, the
Fuzzy C-Means (FCM) algorithm, and thoroughly discuss its limitations and improvement
variants.
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Fuzzy C-Means Based Image
Clustering Algorithms
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3.1 Introduction

The objective of Image clustering is to group an image into homogeneous regions based
on characteristics such as color, texture, and intensity. However, traditional hard clustering
methods that assign each pixel to a single cluster have limitations in dealing with uncertain
attributes, such as limited spatial resolution, overlapping intensities, and noise, which
makes it challenging to partition the image into distinct clusters.

Fuzzy c-means (FCM) is a popular approach for image clustering as it allows pixels
to have membership degrees to each cluster center, indicating the degree of association
with each cluster. Compared to hard clustering, FCM provides more information on the
structure of the data, particularly for ambiguous points located in ”bounding regions.”

51



3.2. Traditional FCM algorithm

However, FCM is sensitive to the initialization of cluster centers and can be affected by
noise and outliers, which can reduce its clustering performance. In this chapter, we review
the traditional FCM algorithm and summarize various techniques aimed at addressing its
limitations. Specifically, we discuss approaches for automatically determining the num-
ber of clusters and improving the initialization process for cluster centers in the FCM
algorithm. Additionally, we present a range of FCM derivatives that aim to enhance the
clustering process by speeding it up or making it more robust against noise and other
imaging artifacts.

3.2 Traditional FCM algorithm

The FCM algorithm is based on minimizing an objective function that is defined as the
weighted sum of the distance of data from cluster centers; the minimizing of the objective
function is achieved by iteratively updating the membership matrix and cluster centers.
The membership value of each pixel with respect to a particular cluster is considered as
the weight of that pixel. The cluster center is a weighted mean of the pixels. The FCM
algorithm assigns a higher membership value to a considered pixel that is nearby to a
particular cluster, while it assigns lower membership values to the same pixel that is far
from the other cluster centers. The updating process is continued until the distance between
the cluster centers from two successive iterations does not exceed a certain threshold.

The FCM algorithm is an effective method for image clustering, which is based on
minimizing an objective function (Eq. (2.7)) that is defined as the weighted sum of the
distance of data from cluster centers. This objective function is achieved by iteratively
updating the membership matrix (Eq. (2.8)) and cluster centers (Eq. (2.9)). The mem-
bership value of each pixel with respect to a particular cluster is considered as the weight
of that pixel. The cluster center is a weighted mean of the pixels, where the weight of each
pixel is determined by its membership value.

During the iterative process of updating the membership matrix and cluster centers, the
FCM algorithm assigns a higher membership value to a pixel that is closer to a particular
cluster center, while it assigns a lower membership value to the same pixel that is far from
the other cluster centers. This allows the algorithm to effectively group pixels into non-
overlapping regions with homogeneous characteristics. The updating process of the FCM
algorithm is continued until the distance between the cluster centers from two successive
iterations does not exceed a certain threshold. This means that the algorithm will continue
to refine the cluster centers and membership values until a certain level of convergence is
reached. This ensures that the final clustering result is as accurate as possible.
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3.3 Limitations of Fuzzy c-means (FCM) algorithm

The fuzzy c-means (FCM) algorithm is a popular clustering technique used in image
segmentation, where its goal is to divide an image into different regions or segments based
on the similarity of their pixel intensities. However, despite its popularity, FCM has several
limitations that can significantly impact its performance in certain scenarios.

- One of the primary limitations of the FCM algorithm is that it can become com-
putationally expensive when dealing with large datasets. As the size of the dataset
increases, the number of iterations required to achieve convergence also increases,
leading to longer processing times. This can make the FCM algorithm impractical
for use in real-time applications or when dealing with large datasets.

- Moreover, FCM heavily depends on the initial cluster centers and the number of
clusters chosen, which can be challenging to determine. This can significantly affect
the accuracy of the segmentation and may lead to suboptimal segmentation quality.
When FCM falls into local minimum solutions due to poor initial cluster centers and
the number of clusters chosen, the segmentation quality can be further degraded.
While the difficulty of determining the cluster number could influence the segmented
area and region tolerance for feature variance, the difficulty of obtaining the initial
cluster centers could affect the cluster compactness and segmentation accuracy.

- Another limitation of the FCM algorithm is that it only considers the intensity values
of the pixels and does not take into account the spatial information of the image.
This can result in poor segmentation quality in the presence of imaging artifacts
and noises. For example, in medical images, intensity inhomogeneities can occur
due to variations in imaging equipment, tissue composition, or patient positioning.
The FCM algorithm may not be able to accurately segment regions with intensity
inhomogeneities, which can lead to erroneous results.

In the following sections, we provide a detailed overview of some of the most frequently
employed FCM variants proposed in the literature. These variants have been designed to
address the limitations discussed earlier and enhance the efficiency and accuracy of the
FCM algorithm in the context of image segmentation.

3.4 Fast Fuzzy c-Means Clustering Algorithm

To reduce the computational complexity of the FCM algorithm, a multistage random
sampling strategy (RSFCM) is introduced in (Chang et al., 1994). The essential idea of
the proposed method is to randomly sample and achieve a small subset of the dataset
in order to approximate the cluster centers of the whole dataset, this approximation is
then applied to decrease the number of iterations. The RSFCM consists of a multistage
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iterative process and the conventional FCM algorithm. Since the FCM algorithm is an
iterative process the convergence speed of it is lower which makes the algorithm impractical
used in image segmentation, to overcome this problem a fast fuzzy c-means clustering
algorithm is proposed in (Yong et al., 2004). In this method, the histogram of the image
is used as input data for clustering instead of the pixel intensities. Therefore, the size
of the input data decreases clearly and clustering is done more quickly. Let consider
G = Lmin, Lmin+1, . . . Lmax as gray level, where Lmin is the minimum gray level, Lmax is the
maximum gray level. For image size S × T , f(s, t) is the gray value of point p(s, t). Let
His(g) indicate the number of pixels having gray value g, the histogram function is defined
as

H(g) =
S−1∑
s=0

T −1∑
t=0

δ(f(s, t)− g) (3.1)

Where

δ(x) =

0 if x ̸= 0

1 if x = 0
(3.2)

The cluster centers are updated using the following equation

vi =
∑Lmax

g=Lmin(uig)mHis(g)g∑Lmax
g=Lmin(uig)mHis(g)

(3.3)

3.5 FCM variants for Improved Initialization

FCM algorithm is widely used for image segmentation due to its ability to handle
partial volume effects and imprecise decisions. However, FCM has some limitations that
can affect its performance in fully automatic segmentation tasks. One of the main chal-
lenges is to determine the optimal number of clusters in a given dataset, which can be
a time-consuming and challenging task that often requires expert knowledge or manual
intervention. Moreover, FCM is known to converge to a local minimum, which can lead to
suboptimal results if the initial cluster centers are not well-chosen. These limitations make
the FCM approach semi-automatic and can limit its applicability in some cases.

To address these challenges, researchers have proposed alternative methods, such as
Validity Index-Based Methods and Metaheuristic-Based Methods. These techniques can
automatically determine the optimal number of clusters and initial cluster centers without
the need for any prior knowledge or manual intervention, making the FCM algorithm more
suitable for achieving automatic segmentation in various applications.

3.5.1 Validity Index Based Methods

Validity Index Based Methods aim to improve the Fuzzy C-Means (FCM) algorithm by
automatically determining the optimal number of clusters for a given dataset. This process
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involves defining a range of possible values for the number of clusters, denoted as Cmin and
Cmax, which represent the minimum and maximum number of clusters, respectively. For
each value of C within this range, the FCM algorithm assigns a fuzzy membership value
to each data point, indicating its degree of belonging to each cluster. The algorithm then
iteratively updates the cluster centroids and fuzzy membership values until convergence or
the stopping criterion is met.

Subsequently, a Cluster Validity Index (CVI) is calculated for each value of C, measur-
ing the quality of the resulting clustering based on separation and compactness measures of
clusters. By evaluating the CVI for each C, the algorithm identifies the value that provides
the highest or lowest CVI as the optimal number of clusters. Once the optimal number of
clusters is determined, the FCM algorithm can be run again with that specific value of C

to obtain the final clustering of the data.
The FCM-based splitting algorithm (FBSA) (Sun et al., 2004) is an effective method

for automatically determining the number of clusters in a dataset. The algorithm employs
a combination of splitting strategies and the basic FCM algorithm to identify and split
the worst cluster into two new clusters. The worst cluster is identified based on a specific
score, considering both the size and sparsity of the cluster. The candidate cluster selected
for splitting has the minimal score value, indicating it is large in volume and sparse in
distribution. The FBSA adopts a greedy strategy to split the worst cluster into two new
clusters with centers maximally separated from each other, ensuring well-separated clusters.
This process iterates until the desired number of clusters, determined by the value of Cmax,
is reached.

To evaluate the quality of the obtained fuzzy partition, the authors introduced a new
validity index that combines measures of compactness and separation. The compactness
measure evaluates how closely data points are grouped within each cluster, while the sepa-
ration measure assesses the distinctness of clusters from one another. The proposed validity
index provides a quantitative measure of the quality of the obtained fuzzy partition and
facilitates comparisons between different fuzzy partitions. By utilizing this validity index,
the FCM-based splitting algorithm can evaluate the clustering quality and select the best
clustering result. Overall, the FBSA offers a robust and automated approach for gener-
ating high-quality clusterings in datasets, eliminating the need for manual cluster number
specification.

An adaptive optimization scheme for fuzzy C-means clustering is proposed in (Beringer
and Hullermeier, 2007), where the number of clusters is dynamically adjusted based on the
quality of the resulting fuzzy partition. Initially, the method starts with a small number of
clusters and applies fuzzy C-means clustering to the data. Subsequently, it computes the
validity measure for the fuzzy partition using a modified Xie-Beni index (Xie and Beni,
1991). If the validity measure falls below a certain threshold, the number of clusters is
increased by 1, and the clustering process is repeated. Conversely, if the validity measure
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exceeds the threshold, the number of clusters is decreased by 1, and the clustering process
is repeated. This adaptive process continues until the validity measure no longer improves
or a maximum number of iterations is reached.

Yan-ling and Yi (Li and Shen, 2010) proposed an automated modified Fuzzy C-Means
(FCM) algorithm, termed AMFCM, for image segmentation with the primary goal of
determining the optimal number of clusters automatically without requiring expert user
intervention. AMFCM incorporates spatial information to enhance segmentation quality.
The algorithm starts with the hard c-means to find two initial centroids closest to the real
cluster centers. Then, the FCM algorithm calculates the membership matrix iteratively.
The optimal number of clusters is determined based on the pixel proportion of clusters,
with at most two clusters having values below a parameter d, representing the smallest
percentage for an existing cluster. Clusters with an area less than 10% are discarded. If
the optimal cluster number is not reached, the algorithm increments the number of clusters
and repeats the process until the optimal clustering is achieved.

The new adaptive fuzzy clustering algorithm (AFCM) proposed in (Liang et al., 2010)
uses a hierarchical clustering approach to adjust the number of clusters for the FCM
algorithm. The algorithm starts by initializing the number of clusters to be explored and
the fuzzy weighting exponent. Then, it applies the FCM algorithm to the data set to
obtain the initial clustering result. Next, the algorithm uses Ward’s method to split each
cluster into two based on the biggest decrement of the error sum squares of clusters. The
algorithm then computes the index of each resulting cluster using a new index based on
cluster variance. The index is defined as the ratio of the sum of the distances between
each data point and the cluster center to the sum of the distances between each data point
and the nearest cluster center. The algorithm replaces the original cluster with the one
that has the highest index and repeats the splitting process until the optimum number of
clusters is reached. The optimum number of clusters is determined by the maximum value
of the index.

FCM with automatic cluster centers initialization is presented in (Yang and Nataliani,
2017). The sample space is divided into grids and a list of grids with high density is
formed. From the list, the highest density grid is taken iteratively. Afterward, the chosen
grid and grids with similar properties to select one are removed from the list. This process
is repeated until the list is empty. At last, cluster centers are initialized at the centers of
selected grids. The proposed method requires more time-consuming.

Zanaty (Zanaty, 2012) proposed a kernelized fuzzy C-means algorithm (KFCM) for au-
tomatic medical image segmentation. The algorithm’s robustness is enhanced by replacing
the original Euclidean distance with a Gaussian radial base function. To determine the op-
timal number of clusters, KFCM algorithm is applied to the dataset with varying numbers
of clusters. Many cluster validity indices are computed for each number of clusters and
plotted against them to identify the most effective clustering solution. The optimal number
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is typically identified where the validity indices values are stable or reach a maximum or
minimum. Finally, KFCM algorithm is run again using the optimal number of clusters to
obtain the final segmentation result.

The self-adaptive Fuzzy C-Means (SAFCM) algorithm (Ren et al., 2016) is a cluster-
ing method designed to improve the stability and convergence of the traditional FCM
algorithm. Unlike traditional methods, this algorithm generates high-quality initial clus-
ter centroids instead of choosing them randomly. It does so by calculating the distance
between each data point and all existing centroids and selecting a data point with the max-
imum potential to be a new centroid. This process is repeated until the desired number
of centroids is obtained. Moreover, the SAFCM algorithm automates the determination of
the maximum number of clusters in a dataset, thereby reducing the number of iterations
required to find the optimal number of clusters. It uses a two-step process to estimate the
maximum number of clusters. First, it calculates the average distance between data points
and their closest centroid. Then, it estimates the maximum number of clusters based on
the features of the dataset.

3.5.2 Metaheuristic-Based Methods

Metaheuristic-Based Methods have emerged as a powerful tool to tackle the problem
of sensitivity to initial parameters in the FCM algorithm. These optimization algorithms
can efficiently search for the optimal solution in large search spaces, which helps the FCM
algorithm converge to a better solution and avoid getting stuck in local optima.

The Fuzzy Variable String Length Genetic Algorithm (FVGA) (Maulik and Bandy-
opadhyay, 2003) is a clustering technique that automates the determination of the optimal
number of clusters in a dataset using FCM algorithm. This approach uses a population of
candidate partitions, which are represented as chromosomes that are encoded with real-
valued genotypes. Each chromosome contains a diverse number of candidate cluster centers,
this enables chromosomes to encode a diverse number of cluster centers and automatically
determine the optimal number of clusters in a dataset. The fitness function is evaluated
using the Xie-Beni validity index (VXB) (Xie and Beni, 1991), and selection, crossover, and
mutation are used to create new offspring chromosomes. To ensure that offspring chromo-
somes have at least two cluster centers, the crossover operator is modified. Additionally,
the mutation operator is applied to every gene within the chromosome when its location is
inside the probability of mutation. The authors also included a one-step clustering center
recomputation process in FVGA. This step fine-tunes each candidate partition by using
FCM cluster centers that are optimized and well-defined. This step leads to more accurate
and efficient clustering results.

Maulik and Saha (Maulik and Saha, 2009) proposed an algorithm called Fuzzy-VGAPS,
which is a dynamic clustering algorithm based on the FVGA algorithm. Fuzzy-VGAPS
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modifies the objective function and genetic operators used in FVGA to improve its perfor-
mance in handling noisy or incomplete data. The fitness function used in Fuzzy-VGAPS is
the fuzzy Sym-index, which is a modified version of the PS-index. The PS-index measures
the quality of a clustering solution based on point symmetry, but the fuzzy Sym-index uses
fuzzy logic to handle uncertainty in the data. This makes it more robust in the presence
of noise or incomplete data, which can improve the accuracy of the clustering results. The
genetic operators used in Fuzzy-VGAPS have also been modified to work with variable
string length chromosomes. This allows the algorithm to handle a diverse number of clus-
ters and adapt to the complexity of the data distribution. By using variable string length
chromosomes, the algorithm can explore a wider range of possible solutions and improve
the fitness of the population over time.

Alsmadi (Alsmadi, 2014) proposed a hybrid approach that combines the Firefly Al-
gorithm (FA) and the Fuzzy C-means algorithm to address the challenges of MRI brain
segmentation. The proposed clustering method consists of two phases: In the first phase,
the FA initializes a population of fireflies, controls their movements towards brighter fire-
flies in the search space, updates their brightness based on the objective function value,
and terminates the algorithm when the maximum number of generations is reached to
determine the optimal cluster centers. The objective function is defined as the distance
between the centroid of each cluster and the data points assigned to that cluster. In the
second phase, the Fuzzy C-means algorithm is initialized based on the evaluated results
in the first phase to refine the cluster centers and overcome the drawbacks of the Fuzzy
C-means algorithm, such as getting stuck in the local optimum and being susceptible to
initialization sensitivity.

The proposed approach in (Chen and Ludwig, 2014) is a novel clustering algorithm
based on Particle Swarm Optimization (PSO) that addresses the challenge of automati-
cally determining the optimal number of clusters. The algorithm starts by initializing the
PSO parameters, including the number of particles, the maximum number of iterations,
the inertia weight, the acceleration coefficients, and the threshold vector. The data set is
randomly partitioned into a preset number of clusters, which serves as the starting point
for the PSO optimization process. Each particle’s fitness value is computed using a recon-
struction criterion based on the distance between data points and cluster centers. The PSO
equations are then used to update the velocity and position of each particle, incorporating
personal best and global best positions. The process iteratively repeats until termination
conditions are met. The optimal number of clusters is determined based on the threshold
vector and the fitness values, allowing the algorithm to adaptively adjust the number of
clusters. Finally, the cluster centers are decoded, and each data point is assigned to the
nearest cluster center.

The multi-objective spatial fuzzy clustering algorithm (MSFCA) proposed by (Zhao
et al., 2015) is a novel approach to image segmentation that utilizes non-local spatial in-
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formation, global fuzzy compactness, and fuzzy separation to improve the segmentation
quality. The algorithm incorporates a genetic algorithm step that optimizes the cluster
centers and membership values using a real-coded genetic representation. This step al-
lows the algorithm to automatically determine the number of clusters in the image. The
non-dominated sorting genetic algorithm II (NSGA-II) is used to generate a set of non-
dominated solutions that represent the trade-off between the various objective functions
of the algorithm. The algorithm then uses a cluster validity index that incorporates non-
local spatial information to select the best clustering solution from this set. The cluster
validity index ensures that the clustering solution has high intra-cluster similarity and low
inter-cluster similarity while taking into account the spatial relationships between pixels.

Ding and Fu (Ding and Fu, 2016) described a novel clustering algorithm that utilizes
fuzzy C-means clustering, a genetic algorithm, and a kernel function to enhance the perfor-
mance of traditional clustering techniques. The algorithm involves several steps, including
mapping the original feature space to a high-dimensional space using a kernel function
and applying the FCM algorithm to generate initial cluster centers. A genetic algorithm
is then used to optimize the initial cluster centers and membership values. The genetic
algorithm begins by generating a random set of solutions that represent the initial popu-
lation, each including cluster centers and membership values. Fitness evaluation is based
on the accuracy of cluster assignments and the proximity of data points to their assigned
cluster centers. A subset of the population is selected based on fitness scores for repro-
duction, generating a new solution by combining the genetic information of two parent
solutions through the crossover. A small percentage of the population is randomly selected
for mutation, introducing new genetic diversity that can change both the cluster centers
and membership values. The genetic algorithm then replaces the least fit individuals in
the population with the newly generated solutions to improve overall fitness.

Zhao et al. (Zhao et al., 2018) proposed a multi-objective evolutionary clustering algo-
rithm (MOECA) for image segmentation that can handle noisy and complex data distribu-
tions. It uses a real variable string length coded strategy, a noise-robust mechanism, and a
multi-objective fitness function allows for a more flexible and adaptive clustering solution
that can automatically determine the number of clusters based on the data characteris-
tics. The use of a crowded binary tournament selection method, crossover, and mutation
operators also helps to improve the diversity of the population and increase the chances
of finding a high-quality clustering solution. Singh et al. (Singh et al., 2020) proposed a
method for segmenting MRI data using a combination of an antlion optimization algorithm
and fuzzy c-means clustering. The goal of their method is to produce effective segmen-
tation of MRI data that is completely user independent. The authors proposed to use a
multi-objective antlion optimization algorithm (Mirjalili et al., 2017) which is a nature-
inspired optimization algorithm to determine the optimal initialization of cluster centers
for the FCM algorithm, by minimizing both the cluster compactness and fuzzy hyper-
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volume fitness functions. The result of multi-objective optimization is a set of solutions,
each representing a different segmentation result. The optimal solution is chosen based
on the minimum value of the partition entropy index. The authors also introduced a new
cluster validity index. This index evaluates the quality of the clustering results based on
the within-cluster and between-cluster distances. By combining the multi-objective FCM
segmentation and the new cluster validity index, the proposed algorithm can automati-
cally determine the optimal number of clusters and provide accurate segmentation results
without the need for user intervention.

Alomoush et al. (Alomoush et al., 2022) proposed a novel grayscale image segmentation
algorithm that combines the Firefly mate algorithm (FMA) with Fuzzy C-means (FCM) to
improve the segmentation accuracy. The algorithm utilizes FMA to optimize the number
of clusters and initial cluster centers’ values, which serve as the search space for FCM. A
population of fireflies is generated, with each firefly representing a candidate solution in the
search space. The brightness of each firefly represents its fitness value, which is evaluated
using the FCM objective function. This function measures the degree of membership of each
pixel to each cluster and is used to determine how well the corresponding solution performs
in the segmentation task. The movement of the fireflies is assured by the attractiveness and
randomness factors, where the attractiveness factor is proportional to the brightness of the
firefly being attracted, and the randomness factor is a random number between 0 and 1.
As the fireflies move towards each other, their brightness decreases with increasing distance
between them. After a maximum number of iterations, the best solution is selected as the
one with the highest brightness and is considered as the number of clusters and initial
cluster centers’ values for the FCM algorithm.

3.6 FCM Clustering Methods with Spatial Constraints

The Fuzzy C-Means (FCM) algorithm is a popular clustering algorithm that is widely
used for clustering data. However, it is known to be sensitive to noise and other imaging
artifacts, which can significantly affect the clustering results. This is because FCM treats
each data point independently, without considering its neighboring pixels. As a result, noisy
or outlier pixels can be assigned to the wrong cluster, or neighboring pixels that belong
to the same cluster can be assigned to different clusters. This limitation can be more
severe when the data is highly noisy, making it difficult for FCM to identify meaningful
clusters in the data. To overcome this limitation, various spatial FCM algorithms have
been proposed that incorporate spatial information. These algorithms utilize the spatial
relationships between pixels to identify spatially coherent regions and assign them to the
same cluster. This can reduce the impact of noise and other imaging artifacts on the
clustering results and lead to more accurate and reliable segmentation. The FCM variants
with spatial constraints can be broadly categorized into two types: Input image generation-
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based methods that preprocess the input data to generate a new image for FCM algorithm
and objective function modification-based methods that modify the objective function by
considering both the spatial and intensity information.

3.6.1 Input image generation-based methods

Input image generation-based methods preprocess the input data by generating a new
image that retains the local data structure while minimizing the noise impact. This new
image is then used as input for the FCM algorithm. The generated image serves as a
representation of the input data with reduced noise, resulting in an improved suitability
for clustering.

Szilàgyi et al. (Szilagyi et al., 2003) introduced their enhanced fuzzy C-mean (EnFCM)
algorithm in which a linearly-weighted sum of the input image and the average image is
generated using the following equation

gl = 1
1 + α

xl + α

NR

∑
r∈Nr

xr

 (3.4)

In the clustering process, the grey level histogram is used instead of pixel intensity
values; the objective function of EnFCM used for clustering image g is defined as

J =
C∑

i=1

L∑
l=1

γlu
m
il ∥gl − vi∥2 (3.5)

Where L denotes the number of gray levels in the image, and l is the number of pixels
having an intensity equal to gl. The membership values and the cluster centers are updated
using the following equations

uil =
(

∥gl − vi∥2∑C
k=1 ∥gl − vk∥2

) 1
m−1

(3.6)

vi =
∑L

l=1 γlu
m
il gl∑L

l=1 γlum
il

(3.7)

The segmentation result of EnFCM is comparable to FCM algorithm, and it is converged
faster. However, it still shares a common challenge to specify which controls the trade-off
between the original and the neighboring information, the selection of α is not an easy
task. The EnFCM assigns the same weight to the neighboring pixels, thus may accelerate
the clustering process, nevertheless, the image blurring is unavoidable, which may lead to
inaccurate clustering.

Cai et al. (Cai et al., 2007) proposed a Fast Generalized FCM algorithm (FGFCM)
for robust clustering, the authors introduced a new similarity measure Sij that integrates
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both local spatial Ss
ij and grey level Sg

ij information to form a non-linearly weighted sum
image, the similarity measure Sij is represented according to the following equation

Sij =

Ss
ij × Sg

ij, if i ̸= j

0, if i = j
(3.8)

Sij is the distance from xi to one of its neighboring pixels xj, and it is defined as follows

Ss
ij = exp

(
−

max(|pcj
− pci

|, |qcj
− qci

|)
λs

)
(3.9)

Sg
ij denotes the difference between the grey level of pixel xi and the grey level of its neighbors

xj

Sg
ij = exp

(
−∥xi − xj∥2

λg × σi

)
(3.10)

Where σi is defined as

σi =

√√√√∑j∈Ni
∥xi − xj∥2

|Ni|
(3.11)

Where (pci
, qcj

) describe the co-ordinates of the pixel xi, i is the average grey-level
difference between xi and its neighbor pixels xi, and λs and λg represent scaling factors.
The new generated image g is calculated using the following equation

gi =
∑

j∈Ni
Sijxj

Sij

(3.12)

The FGFCM algorithm shows fast clustering convergence and robust segmentation
results. However, it does not directly apply to the original image. It requires some speci-
fication parameters step that to control the trade-off between robustness to noise and the
effectiveness of preserving the details. The selection of these parameters is not an easy
task and has to be performed by experience or by utilizing the trial-and-error method.

Wang et al. (Wang et al., 2020) proposed a robust fuzzy c-means (FCM) clustering
algorithm for noise image segmentation. The algorithm includes two main steps: In the
first step, a fast bilateral filter is applied to the original image for incorporating the local
spatial information. In the second step, the filtered image and the original image are used
to perform fuzzy clustering. The bilateral filter used in the algorithm takes into account
both the spatial location and intensity differences between pixels. It is defined by the
following equation:

w(xj) = exp
(
−(pj − pr)2 + (qj − qr)2

2σ2
d

− ∥xj − xr∥2

2σ2
r

)
(3.13)
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The filtered value x̄j for each pixel xj in the image is given by

x̄j =
∑

r∈Nj
xrw(xj, xr)∑

r∈Nj
w(xj, xr)

(3.14)

Where σd and σr are geometric spread and photometric spread respectively. σd controls
the spatial extent of the filter while σr controls the range of intensities that are included in
the filtering process. Specifically, σd determines the size of the neighborhood around each
pixel that is considered in the filter, while σr determines how much weight is given to the
intensity difference between the center pixel and its neighbors.

The objective function of the proposed method is defined as

JFCM SICM =
C∑

i=1

 n∑
j=1

(
αum

ij ∥xj − vi∥2 + βum
ij ∥(x̄j)− vi∥2

) /

(
ln2

(
n∑

e=1
uie+1

))
(3.15)

The objective function includes two terms: the first term measures the distance between
the data point and the cluster center, while the second term measures the distance between
the data point and the local mean of the filtered image.

The parameters α and β are used as constraints to control the influence of the two
terms in the objective function. When the intensity difference between the original pixel
and the bilateral filtered pixel is larger, the segmentation result is largely influenced by the
bilateral filtered image (β is larger) and less influenced by the original image (α is small).
α and β are defined using the following equations

β = ∥xj − x̄j∥ (3.16)

α = 1
∥xj − x̄j∥

(3.17)

The membership function and cluster centers are modified using both the fast bilat-
eral filtered image and the original image. This is achieved by updating the membership
function and cluster centers using the following modified equations, respectively:

uij = ((1− k(xj, vi)) + α(1− k(x̄j, vi)))− 1
(m−1)∑C

k=1 ((1− k(xj, vk)) + α(1− k(x̄j, vk)))− 1
(m−1)

(3.18)

vi =
∑N

j=1 um
ij (αxj + βx̄j)∑N

j=1 um
ij

(
1+β2

β

) (3.19)

3.6.2 Objective function modification-based methods

In this section, we will discuss a class of methods for spatial FCM algorithm that aim
to modify the objective function of the standard FCM by incorporating additional spatial
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information into the clustering process. These methods have been developed to address
the limitations of traditional FCM, which is based solely on the pixel intensity values
and does not consider the spatial relationships between pixels. The objective function is
modified to consider both the spatial and intensity information. Typically, the objective
function contains two terms: the traditional FCM objective function that minimizes the
distance between each pixel and its assigned cluster center, and a regularization term that
incorporates the spatial information. The regularization term can be formulated in different
ways. Moreover, these algorithms can effectively balance the impact of spatial information
and image intensity values on the clustering results. These methods help to reduce the
impact of noise and improve the accuracy and robustness of image segmentation results.

Ahmed et al. (Ahmed et al., 2002) proposed a modified version of the Fuzzy C-Means
(FCM) algorithm called FCM S. The objective function of FCM S includes an additional
term that incorporates spatial information into the clustering process by allowing the pixel
labeling to be influenced by its neighboring pixels. The objective function is defined as:

Jm =
C∑

i=1

n∑
j=1

um
ij∥xj − vi∥2 + α

NR

C∑
i=1

n∑
j=1

um
ij

∑
r∈Nj

∥xr − vi∥2 (3.20)

Where d (xj,vi) is the distance between the pixel xj and the cluster center vi, Nj is the
set of neighbors of xj, NR is the cardinality of neighbors in a window around xj, α controls
the effect of the penalty. The membership values and the cluster centers are updated using
the following equations

uij =


(
∥xj − vi∥2 + α

NR

∑
r∈Nj
∥xr − vi∥2

)− 1
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∑C
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(
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∑
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(3.22)

FCM S is effective in segmenting images corrupted by noise, outliers, and other imaging
artifacts, However, its convergence speed is slower than the traditional FCM algorithm,
and it may result in the loss of fine detail image information due to the penalty term. Chen
and Zhang (Chen and Zhang, 2004) proposed two low complexity variants to the FCM S
algorithm to address its slow convergence. The (FCM S1) and (FCM S2) algorithms re-
place the neighboring term with the mean and median of neighboring pixels falling within
a window centered at xj, respectively. These variants have a similar objective function
as FCM S, but with a different term for neighborhood influence. The optimized objective
function can be written as

J(U, V ) =
C∑

i=1

n∑
j=1

um
ij ||xj − vi||2 + α

C∑
i=1

n∑
j=1

um
ij ||(xj − vi)||2 (3.23)
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To minimize this objective function, the following equations are iterated:

uij =

(
∥xj − vi∥2 + α ∥x̄j − vi∥2

)− 1
(m−1)

∑C
k=1

(
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)− 1
(m−1)

(3.24)
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j=1 um
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(3.25)

These variants are computationally simpler and have a faster convergence speed than
FCM S. However, they may also result in the loss of fine image details due to the use of
the mean or median of neighboring pixels.

The authors replaced the traditional Euclidean distance with a Gaussian kernel-induced
distance in their objective function. Specifically, they defined a kernel version of the ob-
jective function as:

(J(U, V ))K =
C∑

i=1

n∑
j=1

um
ij (1− k(xj, vi)) + α

C∑
i=1

n∑
j=1

um
ij (1− k(xj, vi)) (3.26)

The resulting update equations for minimizing this objective function are:

uij = ((1− k(xj, vi)) + α(1− k(x̄j, vi)))− 1
(m−1)∑C

k=1 ((1− k(xj, vk)) + a(1− k(x̄j, vk)))− 1
(m−1)

(3.27)

vi =
∑n

j=1 um
ij (k(xj, vi)xj + αk(xj, vi)xj)∑n
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(3.28)

where K(xj, vi) = exp
(

−|xj−vi|
σ2

)
Different kernel functions can be used in place of the Euclidean distance to customize

the clustering algorithm for different purposes. However, the Gaussian kernel function
is often preferred for its versatility and effectiveness in practice. In summary, Chen and
Zhang’s modification of the FCM algorithm using a Gaussian kernel-induced distance allows
for more flexible clustering that can capture non-linear relationships between data points
and centroids. The Gaussian kernel function is a widely used and effective option for
incorporating local structure and relationships in the clustering process.

The influence of neighboring terms in FCM S clustering can be controlled by adjusting
the parameter for spatial bias correction. However, this parameter has a significant impact
on the clustering results, making it crucial to be able to adjust each spatial bias correction
term separately for each cluster. To address this, Yang and Tsai(Yang and Tsai, 2008)
proposed a modified objective function that replaces the overall parameter α with ηi,
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which is correlated to each cluster i. The new objective function is defined as

JG
m =

C∑
i=1

n∑
j=1

um
ij (1− k(xj, vi)) +

C∑
i=1

n∑
j=1

ηiu
m
ij (1− k(x̄j, vi)) (3.29)

The parameter ηi is calculated using the following equation

ηi = mini′ ̸=i(1− k(vi′ , vi))
maxk(1− k(vk, x̄)) (3.30)

The separation of the data set of the i-th cluster is measured by mini′ ̸=i(1− k(vi′ , vi))
where a larger value indicates that it is well separated from other clusters. The total
separation of the data set is measured by maxk(1− k(vk, x̄)) and the ratio of these two
terms can be used to effectively measure the cluster separation strength.

The update equations for the membership function and cluster centers are defined
according to the equations

uij = ((1− k(xj, vi)) + ηi(1− k(x̄j, vi)))− 1
m−1∑C

k=1 ((1− k(xj, vk)) + ηi(1− k(x̄j, vk)))− 1
m−1

(3.31)
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(3.32)

Yang and Tsai (Yang and Tsai, 2008) proposed a method that allows for adjusting the
spatial bias correction term separately for each cluster, leading to improved cluster sep-
aration and higher accuracy in certain datasets. This approach also demonstrates better
resilience to noise and outliers compared to traditional FCM. However, one drawback of
this method is the increased computational resource requirement due to the additional
calculations necessary for adjusting the spatial bias correction term for each cluster. More-
over, in datasets with highly overlapping clusters, the separation strength measure may not
accurately capture the extent of overlap between clusters, which can impact the method’s
performance.

Chuang et al. (Chuang et al., 2006) presented a novel method for image segmentation
that integrates spatial information into the membership function. The membership func-
tion is defined as the sum of memberships in the neighborhood of each pixel considered,
represented as:

hij =
∑

r∈Nj

uir (3.33)

The proposed method assumes that a pixel xj belongs to cluster i if the majority of its
neighboring pixels belong to that cluster. The final membership function is obtained by
combining the spatial information and the global membership function, using the following
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equation

u′
ij =

up
ijh

q
ij∑C

k=1 up
ikhq

ik

(3.34)

The sFCM algorithm requires the specification of two parameters: p and q. These
parameters control the importance of the spatial information and global membership func-
tion, respectively. However, using spatial information in sFCM may lead to a loss of detail
on region boundaries.

Krindis and Chatzis (Krinidis and Chatzis, 2010) proposed a robust fuzzy local infor-
mation c-means clustering algorithm (FLICM), which incorporates a new factor into the
objective function of FCM. This factor is defined by the following equation

Gij =
∑

r∈Ni,j ̸=r

1
djr + 1(1− uir)m∥xr − vi∥2 (3.35)

The factor Gij is not affected by any specification parameter and expresses the im-
portance of pixels within the local window. It adapts flexibly according to its distance
from the central pixel, using Euclidean distance. The factor reflects the damping extent
of the neighbors based on spatial distance from the center pixel. The balance between
insensitivity to noise and preservation of image details is automatically achieved by the
fuzziness of each pixel. The objective function and membership function of FLICM have
been redefined as follows:

J =
C∑

i=1

n∑
j=1

um
ij∥xj − vi∥2 + Gij (3.36)

uij = (∥xj − vi∥2 + Gij)
1

m−1∑C
k=1 (∥xj − vk∥2 + Gkj)

1
m−1

(3.37)

The proposed fuzzy factor aims to enhance the similarity of membership degrees among
pixels within a local window, thereby reducing the impact of noise on the image. However,
treating adjacent pixels as a single category may not be appropriate in all scenarios, espe-
cially when dealing with high levels of noise, as it can adversely affect the segmentation
results. To address this issue, it is preferable to assign similar pixels to the same cluster
rather than strictly relying on adjacency-based membership. Additionally, relying solely
on Euclidean distance may result in the exclusion of pixels located farther away from the
central pixel, further compromising segmentation accuracy. Nonetheless, FLICM offers the
advantage of parameter-free selection and demonstrates promising performance in image
segmentation tasks.

Gong et al. (Gong et al., 2013) extended the FLICM algorithm to kernel space
(KWFLICM) to achieve a balance between kernel-based fuzzy local factors and kernel
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space distance metrics. The kernel fuzzy factor, Gij, is defined as follows:

Gij =
∑

r∈Ni,j ̸=r

wjr(1− uir)m∥Φ(xr)− Φ(vi)∥2 (3.38)

Where ϕ() is a nonlinear mapping method. The weight wjr, is defined as the product
of spatial information constraint wSC and intensity information constraint wgc.

wjr = wsc · wgc (3.39)

The spatial information constraint, wSC is defined as:

wsc = 1
djr + 1 (3.40)

Where djr is the Euclidean distance between the spatial coordinates of j-th and r-th
pixels. The intensity information constraint, wgc, is defined as

wgc =

2 + φjr, Cr < C̄

2− φjr, Cr > C̄
(3.41)

Where Cr is the coefficient of variation of pixel intensity, calculated as

Cr = var(xr)
(xr)2 (3.42)

And C̄ is the average coefficient of variation of pixel intensity in the neighborhood of the
central pixel. The value of Cr is mapped into kernel space using Ξjr, which is calculated
as

Ξjr = exp(−(Cr − C̄)2) (3.43)

Finally, φjr is obtained by normalizing Ξjr to get the weight of the neighbor pixel xr to
the central pixel xj

φjr = Ξjr∑
k∈Nj ,j ̸=k Ξjk

(3.44)

KWFLICM improves the segmentation accuracy of FLICM by incorporating a kernel-
based fuzzy local factor and a kernel space distance metric. It shows promising results in
image segmentation, particularly in handling complex and noisy images. However, it has
limitations in terms of computational efficiency and requires careful parameter selection.

FLICM is a widely used clustering method for image segmentation, but it faces limi-
tations when dealing with noisy images. To address this limitation, Zhang et al. (Zhang
et al., 2017) proposed an enhancement to the FLICM algorithm by incorporating non-local
information. They introduced the concept of the damping extent, which determines the
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influence of neighboring pixels on the central pixel. In traditional FLICM, the damping ex-
tent is calculated based on the Euclidean distance between the neighboring pixels and the
central pixel. However, this approach may not be reliable for noisy pixels as the influence
of neighboring pixels cannot be accurately assessed.

To overcome this limitation, Zhang et al. (Zhang et al., 2017) utilized non-local infor-
mation to estimate the damping extent. They defined the damping extent as the patch
similarity between the considered pixels, taking into account the similarity between patches
of neighboring pixels and the central pixel. This enabled a more accurate estimation of
the damping extent, even in the presence of noisy pixels. The authors incorporated this
non-local information into the fuzzy factor Gij of the FLICM algorithm, which represents
the impact of neighboring pixels on the central pixel. They used Eq. (3.45) to calculate
the new fuzzy factor that incorporates non-local information

Gij =
∑

r∈Ni,j ̸=r

wjr (1− uir)m ∥xr − vi∥2 (3.45)

where wjr is a weight parameter, uir is the membership of the central pixel, xr is the
intensity value of the neighboring pixel, and vi is the cluster center of the central pixel.

The introduced method utilizes Eq. (2.9) and Eq. (3.37) for updating the membership
and cluster centers, respectively. However, significant enhancements have been made to
the algorithm. Firstly, it considers the influence of faraway pixels that exhibit similar
configurations to the central pixel, which can have an impact on the central pixel as well.
Secondly, non-local information is incorporated to estimate the damping extent, defined
as the patch similarity between the considered pixels. These improvements enhance the
robustness of the algorithm and improve its ability to handle image noise.

Wang et al. (Wang et al., 2008) proposed an extension to the Fuzzy C-Means (FCM)
clustering algorithm that incorporates both local and non-local neighboring information to
improve its sensitivity to noise. The distance measurement between a data point xj and a
cluster center vi is defined as follows:

D(xj, vi) = αjd
2
nl(xj, vi) + (1− αj)d2

l (xj, vi) (3.46)

Where dnl(xj, vi) and dl(xj, vi) represent the non-local and local distance measures, re-
spectively, and α controls the trade-off between them. The local distance measure is given
by:

dl(xj, vi) =
∑

r∈Nj
e−

|xr−xj |
δ2 d2(xr, vi)∑

r∈Nj
wl(xr, xj)

(3.47)

Here, δ is a spatial scale factor that controls the size of the local window, and x̄j represents
the mean intensity of the pixels within the window Nj. The non-local distance measure is
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defined as
dnl(xj, vi) =

∑
xr∈I

wnl(xr, xj)d2(xr, vi) (3.48)

Where wnl represents the weights of neighboring pixels in a larger spatial region centered
at xj. The weight wnl (xr,xj ) is calculated based on the similarity between the pixel
intensities of xj and xr. The weight function wnl is defined as

wnl(xr, xj) = 1
Z(xj)

e−
|v(ηr)−v(ηj )|

h2 (3.49)

Where ηj is the vector of neighboring intensities of xj, and its components are denoted
by v(ηj). The intensity value xr has a significant effect on xj if ηr is more similar to ηj.
Z(xj) is a normalized factor, defined as:

Z(xj) =
∑

xr∈I

e−
|v(ηr)−v(ηj )|

h2 (3.50)

The decay of the exponential function in wnl is controlled by the parameter h, which
is defined as:

h =
∑

r∈Nj

(xr − xj)2

1/2

(3.51)

The proposed algorithm offers several advantages, such as effective noise handling, ro-
bustness against intensity variations, and preservation of image details. However, it also
has some drawbacks. Firstly, the algorithm exhibits high computational complexity and
memory requirements due to the large number of pixels and the need to calculate dis-
tances between each pixel and cluster centers. This can limit its applicability to large-scale
datasets or resource-constrained environments. Additionally, the algorithm’s performance
is highly dependent on the proper tuning of its parameters, such as the spatial and intensity
bandwidths. Finding the optimal parameter values can be challenging and may require
extensive experimentation and domain knowledge.

The conditional spatial fuzzy C-means algorithm (csFCM) introduced in (Adhikari
et al., 2015) defines a probability function fij for each pixel xj based on its neighboring
pixels. The equation for fij is:

fij = Nij

Mj

(3.52)

Where Mj is the total number of neighboring pixels xk of xj, Nij is the number of
neighboring pixels of xj that belong to the i-th cluster according to the current segmentation
result. The modified objective function of csFCM is defined as:

J(U, P, ) =
C∑

i=1

n∑
j=1

um
ij ∥xj − pi∥2 + αf−1

ij ξm
ij ∥x̄j − pi∥2 (3.53)
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Where Ξ is a new membership matrix, in which xiij indicates the belonging value of
xj. The iterative optimization of csFCM is achieved according to the following equations:

ξij = (fij)
1

m−1

/ C∑
k=1

fkj d̄
2
ij

d̄2
kj

 1
m−1

 (3.54)

pi =
∑n

j=1

(
um

ij xj + αf−1
ij ξm

ij x̄j

)
∑n

j=1

(
um

ij + αf−1
ij ξm

ij

) (3.55)

Where d
2
ij = ∥xj − pi∥2 and d2

ij = ∥xj − pi∥2 the final membership is defined by
combining the membership of the central pixel xj and the membership of neighboring ξij.
The membership function and the cluster center are derived as:

u′
ij =

up
ijξ

q
ij∑C

k=1 up
ikξq

ik

(3.56)

vi =
∑n

j=1 u′m
ij xj∑n

j=1 u′m
ij

(3.57)

The parameters p and q are used to control the importance of both membership func-
tions. The weight fij is updated in each iteration of the csFCM algorithm. Therefore, after
determining the membership zik, a segmentation result can be achieved by assigning each
pixel to the class that maximizes its membership value.

The csFCM algorithm combines both local and global spatial information, making it
robust in handling noisy images to a certain extent. The parameter α controls the influence
of the neighborhood of a pixel on itself. In other words, csFCM incorporates neighborhood
information into the objective function, leading to an immediate update of the membership
function by combining the neighborhood information. The final membership function
update can be seen as an additional step that utilizes neighborhood information to improve
memberships and reduce noise. However, in cases where the image is heavily corrupted by
noise and inhomogeneity, the csFCM algorithm may yield undesired results. Incorporating
spatial information and inhomogeneity into the membership function can be a suitable
technique to enhance its performance.

In the presence of high levels of noise in an image, the neighboring pixels of a pixel
may also contain abnormal features, and fuzzy clustering algorithms based on local spatial
information may not achieve satisfying segmentation performance. For each pixel, there
are multiple pixels that have a similar neighborhood configuration with a particular pixel,
so it is more appropriate to use these pixels to describe the spatial information of that pixel.
This kind of information is called non-local spatial information. In (Zhao, 2013) a fuzzy
c-means clustering algorithm with self-tuning non-local spatial information FCM SNLS is
introduced. In FCM SNLS, the non-local spatial information is used instead of spatial
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information, and the calculation of the filtering degree parameter is achieved by studying
the statistical characteristics in the search window. For pixel xj, its spatial information is
defined according to the following formula:

θj =
∑

r∈Nj

wjrxr (3.58)

Where Nj is the search window centered at xj. This reveals that the spatial information
θj is the weighted average gray value of the neighboring pixels xr of the pixel xj. The weight
wjr depends on the similarity between the neighborhood configurations of the pixel xj and
its neighboring pixels xr. The weights wjr are calculated using the following equation

wjr = 1
Z(xj)

exp
(
−∥v(ηr)− v(ηj)∥2

σ

hjhr

)
(3.59)

Where Z(xj) is a normalization factor, v(ηr) and v(ηj) are feature vectors for pixels
xr and xj, respectively, hj and hr are the filtering degree parameters for pixels xj and xr,
respectively.

The filtering degree parameter h plays a crucial role in determining the quality of spatial
information. However, setting an appropriate value for h remains an open problem. If h

is set too large, the non-local spatial information of a pixel may lose important image
details, especially near edges. On the other hand, if h is set too small, the non-local spatial
information may be overly influenced by image noise. Ideally, h should be adaptively
determined based on the noise level present in the corrupted image. In the proposed
approach, the authors address this issue by adopting an adaptive h value for each pixel,
rather than using a single h value for all pixels. For a pixel xj, its filtering degree parameter
hj can be obtained by analyzing the statistical characteristics within its search window.
Specifically, hj is defined as:

hj = min
k∈Nj

∥v(ηk)− v(ηj)∥ (3.60)

We indicate that hj is measured by the similarity between the neighborhood configu-
rations of the pixel xj and its closest pixel xjl. If this similarity is large, it reveals that
the pixel xj, the pixel xjl, and their neighbor pixels are not seriously corrupted by noise,
so the filtering degree parameter hj should be small, and vice versa. The determination
of hj can reflect the noise level of the image to some degree. The objective function of
FCM SNLS is defined as:

J(U, V ) =
C∑

i=1

n∑
j=1

um
ij∥xj − vi∥2 + β

C∑
i=1

n∑
j=1

um
ij∥θj − vi∥2 (3.61)

The update equations for the membership function and cluster center in FCM SNLS
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are as follows:

uij = (∥xj − vi∥2 + β∥θj − vi∥2)
1

m−1∑C
k=1 (∥xj − vk∥2 + β∥θj − vk∥2)

1
m−1

(3.62)

vi =
∑n

j=1 um
ij (xj + βθj)

(1 + β)∑n
j=1 um

ij

(3.63)

Zhang et al. (Zhang et al., 2021) proposed improvements to the FCM s (BCFCMLNLI)
and FLICM (FLICMLNLI) algorithms by integrating both local and non-local information.
The aim of these improvements was to preserve image details through the use of local
information and enhance the robustness of the algorithms to image noise through the
incorporation of non-local information.

To achieve this, they introduced a correlation model process that consists of several
steps. Firstly, image patches Xr are constructed for each pixel i in the image. Next, the
differences between corresponding patches in different directions are computed using the
following equation:

dj(r) = 1
|Nj|

∑
r∈Nj
|Xj −Xr|

(3.64)

Nj is the set of neighboring pixels with a cardinality of |Nj|. Next, the weights and the
weighted distances in different directions are retrieved using Eq. (3.65) and Eq. (3.66),
respectively.

wjr = exp(−αdj(r))∑
r∈Nj

exp(−αdj(r)) (3.65)

dw
j (r) = 1

|Nj|
∑

r∈Nj
(wj ⊗ |Xj −Xr|)

(3.66)

Finally, the relevance between corresponding pixels is obtained using the following
equation

s(j, r) = exp(−γdw
j (r)) (3.67)

In FLICMLNLI (FLICM with local and non-local information) algorithm, the cluster
center vi becomes a vector (vi, vN

i ). The fuzzy factor is then modified using the following
equation

G
′

ij =
∑

r∈Nj

s(j, r)(1− uir)m(xr − vi)2 + (xN
r − vN

i )2 (3.68)

The objective function of FLICMLNLI is formalized according to the following equation:

J(U, V ) =
C∑

i=1

n∑
j=1

um
ij (xj − vi)2 + (xN

j − vN
i )2 + G

′

ij (3.69)

The centers and the memberships are updated according to the following equations

vN
i =

∑n
j=1 um

ij xN
j∑n

j=1 um
ij

(3.70)
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uij = 1∑C
k=1

((
(xj−vi)2+(xN

j −vN
i )2+G

′
ij

(xj−vk)2+(xN
j −vN

k
)2+G

′
kj

) 1
m−1

) (3.71)

Where xN
j is the local information of xj.

The FCM S algorithm suffers from three significant drawbacks. Firstly, it only considers
the immediate neighborhood and neglects the larger context of the image, which may result
in inaccurate segmentation. Secondly, the algorithm may cause a loss of important image
details during the segmentation process. Finally, treating all neighboring pixels equally
may lead to inaccurate segmentation results, as the impact of each neighboring pixel on
the central pixel can vary significantly.

To address the aforementioned drawbacks, the BCFCMLNLI algorithm adopts a larger
searching window, allowing for a broader context in the image. Additionally, the cluster
center vi is represented as a vector (vi, vN

i ), where vi captures the original information
of the image, while vN

i corresponds to the immediate information of neighboring pixels.
This combination of local and non-local information allows for a more comprehensive rep-
resentation of the image characteristics, leading to improved segmentation accuracy and
preservation of important image details.

The objective function of BCFCMLNLI algorithm is reformulated as

J(U, V ) =
C∑

i=1

n∑
j=1

um
ij (xj − vi)2 + (xN

j − vN
i )2 +

C∑
i=1

n∑
j=1

um
ij

∑
r∈Nj

s(j, r)(xr − vi)2 + (xN
r − vN

i )2

(3.72)
The optimization process is achieved by updating vi, and uij according to the following

equations

vi =
∑n

j=1 um
ij (xj +∑

r∈Nj
s(j, r)xr)∑n

j=1 um
ij (1 +∑

r∈Nj
s(j, r)) (3.73)

uij = 1
∑C

k=1

((
(xj−vi)2+(xN

j −vN
i )2+

∑
r∈Nj

s(j,r)(xr−vi)2+(xN
r −vN

i )2

(xj−vk)2+(xN
j −vN

k
)2+
∑

r∈Nj
s(j,r)(xr−vk)2+(xN

r −vN
k

)2

)) 1
m−1

(3.74)

The two proposed algorithms fully utilize the non-local information by incorporat-
ing self-similarity and preserving the original image information through back projection,
thereby enhancing the robustness of the algorithms. However, a drawback of these algo-
rithms arises when calculating the Euclidean distance between the considered pixel infor-
mation and the local pixel information. In this calculation, both types of information are
given equal weight, which incorrectly amplifies the role of local information in the distance
computation. The excessive inclusion of neighborhood information improves denoising
capabilities but fails to accurately preserve fine image details.
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3.7 Conclusion and discussion

This chapter discusses various approaches aimed at addressing the limitations of the
traditional FCM algorithm. Two main challenges of the FCM algorithm are determining
the appropriate number of clusters and initializing cluster centers, which can significantly
impact the clustering results. To overcome these challenges, methods for automatically
involving the number of clusters and improving the initialization process for cluster centers
have been explored. Additionally, a range of FCM derivatives have been introduced to
enhance the FCM’s robustness against noise and other imaging artifacts.

To address the challenges of determining the number of clusters and initializing cluster
centers, validity index-based methods have been commonly used. However, these methods
have limitations, such as their accuracy being highly dependent on the choice of index and
the potential for multiple local optima, which can lead to suboptimal results. In contrast,
metaheuristic-based methods offer the advantage of exploring a larger search space and can
potentially find better solutions. However, they often require substantial computing time,
especially for large datasets, due to their iterative nature. Additionally, the process of
parameter setting for metaheuristic-based methods can be challenging, as the performance
of these methods is sensitive to the choice of parameters.

Several methods have been proposed in the literature to improve FCM’s sensitivity to
noise and intensity inhomogeneity in input images, leading to improved contrast between
different tissue types and more accurate segmentation results. However, these methods are
often sensitive to the choice of a penalty function and require careful parameter specifica-
tion to balance noise suppression and detail preservation. Determining these parameters
can be challenging and may require expertise or trial-and-error approaches. Additionally,
incorporating spatial information into the segmentation process may introduce a trade-off
between preserving fine details and achieving smooth segmentations.

To address the challenges associated with FCM-based image segmentation, we propose
two techniques to enhance its performance. The first technique is an adaptive split and
merge approach, which improves the sensitivity of FCM to the initialization scheme. This
approach enables more accurate and reliable cluster center initialization and determination
of the number of clusters, which can significantly improve the accuracy of segmentation
results. The second technique involves fully considering the spatial constraint to make
FCM more robust against noise while preserving important image details. By incorpo-
rating spatial information into the segmentation process, we can achieve more accurate
and robust segmentation results, which is important for a wide range of applications in
fields such as medical imaging and computer vision. By employing these techniques, we
aim to enhance the accuracy and robustness of FCM, making it a more effective tool for
image segmentation. These techniques have the potential to improve the performance of
FCM-based segmentation and can be applied to a wide range of image processing tasks,
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including object recognition, tracking, and classification.
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Chapter 4

An adaptive split and merge method
for FCM image segmentation
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4.1 Introduction

Image segmentation is the process of partitioning an image into regions of high sim-
ilarity, commonly used in pattern recognition, image processing, and data analysis. The
widely used Fuzzy C-Means (FCM) algorithm for image segmentation requires specifying
the number of clusters, which is not always known in advance, and can lead to sensitivity
to initial cluster centers, resulting in local minimum solutions.

To address these issues, this chapter proposes an improved approach that enhances the
accuracy of the FCM algorithm. The proposed method employs an adaptive split-merge
technique, effectively dividing the image into homogeneous regions using a multi-threshold
method based on entropy information. In the merge process, a new distance metric is
introduced to combine the homogeneous regions. The FCM algorithm is then applied
using the centers of these regions to generate the different fuzzy partitions. Additionally, a
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novel fuzzy validity index is introduced, incorporating a new definition for the separation
measure. This fuzzy validity index plays a crucial role in selecting the optimal fuzzy
partition with high compactness and separation information.

The proposed approach is evaluated quantitatively and qualitatively, and the results
demonstrate its superiority over existing methods in terms of evaluation functions and
validity indices.

4.2 Automatic initialization process of FCM algorithm

The FCM algorithm is a commonly used clustering algorithm in various domains. How-
ever, its effectiveness is highly dependent on the appropriate initialization of its parameters.
A poor initialization can lead to suboptimal or even inaccurate clustering results. To en-
hance the sensitivity of the FCM algorithm to initialization schemes, we propose an adap-
tive split-merge approach in the following sections. This approach automatically groups
the pixels of an image into different homogeneous regions when the number of clusters is
not known beforehand, thereby improving the accuracy of the clustering results.

4.2.1 Problem statement

Unlike traditional clustering algorithms, FCM assigns each pixel in the image to multi-
ple clusters based on their membership degrees in cluster centers. This fuzzy membership
concept is particularly useful for handling ambiguous points in boundary regions. How-
ever, FCM heavily relies on the selection of the number of clusters and the initial cluster
centers, but it is not always possible to determine this number in advance, and these ini-
tialization difficulties can affect the segmentation quality. While the difficulty of deciding
the cluster number can affect the segmented area and region tolerance for feature variance,
the difficulty of obtaining the initial cluster centers can affect the cluster compactness and
classification accuracy.

The split and merge method is another popular approach for image segmentation.
This method initially considers the entire image as a single segment and iteratively splits
segments into quarters if a homogeneity criterion is not satisfied. Similarly, the merge
step joins adjacent regions if a homogeneity criterion is met. This approach eliminates the
need for specifying the number of clusters in advance and avoids the initialization process.
However, it lacks adaptability to image semantics due to its rigid quad-tree structure and
requires a termination criterion.

To address the limitations of both the FCM algorithm and the split and merge method,
we propose a novel method in this chapter. The proposed method aims to enhance the
sensitivity of the FCM algorithm to the initialization scheme while incorporating the ben-
efits of the split and merge approach. The proposed method makes the following key
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contributions:

1. An adaptive split-stage is included in our algorithm that effectively divides the image
into multiple homogeneous regions. This is achieved using a multi-threshold method
based on entropy information, which ensures that the image is split into regions with
similar characteristics.

2. During the merge process, we introduce a new distance metric that combines homo-
geneous regions. This distance metric encourages the merging of regions that exhibit
high homogeneity within the merged region and well separation from others. By
doing so, we achieve more accurate segmentation results.

3. In addition, we introduce a novel fuzzy validity index that incorporates a new def-
inition for the separation measure. This index serves as a criterion for selecting
the optimal fuzzy partition, ensuring both high cluster compactness and effective
separation between clusters.

4.2.2 Adaptive split and merge method

In this section, we present a methodology to address the issue of the FCM algorithm’s
sensitivity to initial values, which often leads to suboptimal local minimum solutions. To
overcome this limitation, we introduce an adaptive split and merge method.

During the adaptive split stage, we divide the image into multiple homogeneous regions
using a multi-threshold method based on entropy information. This ensures that regions
with similar characteristics are grouped together. In the merge stage, we combine regions
that are both highly similar within the merged region and effectively separated from others
using a newly introduced distance metric.

The merge process is iterated again until the number of regions reaches a predefined
number of clusters, denoted as Cmin. In each merging iteration, the cluster centers and
the number of clusters obtained from the merge stage serve as initial parameters for the
FCM algorithm, which generates its fuzzy partition. We then use the introduced validity
index to evaluate each fuzzy partition and determine the optimal number of clusters and
the optimal fuzzy partition based on factors such as the compactness and separation of
clusters.

4.2.2.1 The Adaptive Split Stage

The optimal entropy automatic threshold value segmentation algorithm is utilized to
measure the entropy of the gray histogram of an image, aiming to identify the threshold
that maximizes the amount of information between the target and background in the image
(Akay, 2013). The gray level values in the image histogram are defined as 0, 1, ..., l − 1. By
normalizing the image histogram, the probability distribution is represented as pi = ni/N ,

Approche robuste pour la segmentation et la classification d’images médicales 79



4.2. Automatic initialization process of FCM algorithm

where pi < 1 and the sum of all probabilities p1 + p2 + ... + pl−1 equals 1. Here, N denotes
the total number of pixels, and ni represents the number of pixels with gray level i.

To determine the threshold value, the image is partitioned into two classes: A =
0, 1, ..., t and B = t + 1, t + 2, ..., l − 1. The total entropy of the image, denoted as H(t), is
calculated as the sum of the entropies of class A(HA(t)) and class B(HB(t)). It is defined
by the equation:

H(t) = HA(t) + HB(t) = −
t∑

i=1

Pi

Pt

ln
(

Pi

Pt

)
−

l−1∑
i=t+1

Pi

1− Pt

ln
(

Pi

1− Pt

)
(4.1)

Here, HA(t) and HB(t) represent the entropies of class A and class B, respectively,
while Pt corresponds to the probability of class A. The optimal threshold is chosen as the
value of t that maximizes H(t) according to the following equation.

θ = arg max
1<t<l−1

H(t) (4.2)

The different steps of the adaptive split stage are outlined in the algorithm 2. Our
approach involves considering the range of gray-level values Lmin, . . . , Lmax in the image
to define it as non-homogeneous. Our objective is to identify a set of optimal thresholds
that can split the image into homogeneous regions.

The proposed algorithm involves several steps to identify homogeneous regions in the
image. In step 1, we measure the homogeneity of each region (Ri) using the standard
deviation (SD). If the SD of a region is below a specified threshold (T ) (step 2), the region
is considered homogeneous (step 7). However, if the SD is greater than the threshold (T ),
we move to step 3. In this step, we assign an initial value to the optimal entropy H(t′).
Then, in step 4, we calculate the corresponding entropy for each gray-level value using Eq.
(4.1). This allows us to identify the optimal threshold value that can be used to split the
region into smaller, homogeneous regions.

By utilizing this optimal threshold t
′ , we divide the current region into two regions,

namely R and R
′ . Region R represents the gray-level values ranging from tmin to t

′ , while
region R

′ represents the gray-level values from t
′′ to Lmax, where t

′′ is the next gray-level
value above t

′ (step 5).
We recursively partition the regions R and R

′ if they fail to meet the homogeneity
criteria (steps 6 and 9) until no non-homogeneous regions remain (steps 8 and 10). This
adaptive split-stage approach allows us to effectively divide the image into multiple homo-
geneous regions.

From the list of obtained thresholds t1, t2, ..., tn, we can easily construct the list of
clusters LC. The first cluster is defined by [Lmin, t1], and each subsequent cluster is defined
by [tl + 1, t2]. Similarly, the remaining clusters are constructed until the last cluster is
defined by [tn + 1, Lmax].
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Algorithm 2 Adaptive Split Stage
Input:

— The input image I,
— Lmin, Lmax are the minimum and maximum gray-level values of the input image I,
— T is a predefined threshold.

Output: List of thresholds
tmin ← Lmin, tmax ← Lmax, t′ ← Lmax

// Ri initially is the input image, Ri is defined by tmin and tmax

Step 1. Calculate the standard deviation (SD) for the current region Ri

Step 2. If SD ≤ T then go to Step 7
Step 3. H(t′) ← −∞
Step 4.
for t from tmin to tmax do

Compute the corresponding H(t) using Eq. (4.1)
if H(t) > H(t′) then

H(t′)← H(t)
end

end

Step 5. Split the current region Ri by t
′

Step 6. tmax ← t
′ and go to step 1

Step 7. Add t′ to the list of thresholds
Step 8. If t

′ = Lmax then go to Step 10
Step 9. tmin ← tmax + 1 , tmax ← Lmax and go to Step 1
Step 10. Stop

4.2.2.2 The Merge Stage

The merge stage of the clustering algorithm (see Algorithm 3) involves joining two
clusters together in each step. To determine whether two clusters Ci and Cj should be
merged, we calculate the distance between them, denoted as Dist(Ci, Cj), using Eq. (4.3).
This distance metric measures the compatibility of merging two clusters by considering the
sum of squared distances between the data points xl within their union (Ci ∪ Cj) and the
mean of the merged cluster m(Ci∪Cj), divided by the sum of squared Euclidean distances
between the merged cluster mean m(Ci ∪ Cj) and the means of all other clusters m(Ck)
excluding Ci and Cj.

Dist(Ci, Cj) =
∑

xl∈Ci∪Cj
∥xl −m(Ci ∪ Cj)∥2∑C−1

k=1
k ̸=i,k ̸=j

∥m(Ci ∪ Cj)−m(Ck)∥2 (4.3)

Here, C is the total number of clusters, and U denotes the union of two clusters.
The merging procedure is applied to each cluster Ci in the list of clusters LC until the
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maximum number of clusters Cmax is reached. For each cluster Ci, we compute (NCluster-
1) distances using Eq. (4.3). We then identify the cluster Ck with the smallest distance,
Dist(Ci, Ck), from Ci, as well as the cluster Cj with the smallest distance, Dist(Ck, Cj),
from Ck. If both Ci and Ck ”desire” a merger (i = j), we merge them. After merging,
the cluster count decreases by one, and we update both the cluster list LC and the cluster
center list CC. We sequentially add the new cluster Cik and its mean m(Cik) to LC and
CC, respectively.

The proposed algorithm applies the merging process once again to the list of clusters
LC acquired from the previous step, reducing the cluster count by one (NCluster ←
NCluster − 1). The cluster center list CC obtained from the merging process serves as
the initial centers for the FCM algorithm. The resultant fuzzy partition is then evaluated
using the introduced validity index outlined in Eq. (4.7). This iterative process persists
until the minimum number of clusters Cmin is reached. Finally, the optimal number of
clusters and the optimal partition are determined based on their effectiveness in terms of
compactness and separation using Eq. (4.8).

Approche robuste pour la segmentation et la classification d’images médicales 82



4.2. Automatic initialization process of FCM algorithm

Algorithm 3 M-FCM (Merge-FCM algorithm)
Input:

— LC: a list of clusters obtained in the adaptive split stage
— NCluster: number of clusters obtained in the adaptive split stage
— Cmin, Cmax: the minimum and maximum cluster number

Output: Optimal cluster number with associated partition
while NCluster > Cmax + 1 do

foreach cluster Ci of LC do
k ← get the closest cluster of Ci using Eq. (4.3)
j ← get the closest cluster of Ck using Eq. (4.3)
if i = j then

Unified Ci and Ck into one cluster Cik

Compute the new center m(Cik)
Insert Cik and m(Cik) successively in the list LC and CC
Delete Ci and Ck (and m(Ci), m(Ck)) from the list LC (CC)
NCluster ← NCluster - 1

end
end

end
while NCluster >= Cmin do

foreach cluster Ci of LC do
k ← get the closest cluster of Ci using Eq. (4.3)
j ← get the closest cluster of Ck using Eq. (4.3)
if i = j then

Unified Ci and Ck into one cluster Cik

Compute the new center m(Cik)
Insert Cik and m(Cik) successively in the list LC and CC
Delete Ci and Ck (and m(Ci), m(Ck)) from the list LC(CC)
NCluster ← NCluster- 1

end
end
Apply FCM(CC, NCluster)
Calculate the corresponding validity index of the obtained partition using Eq. (4.7)

end
Return the optimal number and its corresponding partition using Eq. (4.8)

4.2.2.3 The Proposed Validity Index

A reliable validity index for a fuzzy partition should consider both compactness and
separation measures. The compactness measure reflects the concentration of data points
within the same cluster, while the separation measure evaluates the isolation of cluster
centers from one another. Therefore, an optimal fuzzy partition exhibits both high com-
pactness and separation measures (Xie and Beni, 1991).

Our proposed validity index, V ICS, integrates the measures of compactness (Comp)
and separation (Sep) to effectively evaluate the quality of a fuzzy partition. Compactness
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is assessed by measuring the variation of points belonging to the same cluster. To evaluate
how well a pixel xj has been classified, we utilize the term max1≤l≤C uij, where uij represents
the fuzzy membership of the jth pixel to ith cluster. If max1≤l≤C uij is closer to 1, the
pixel xj is considered to belong to the ith cluster. For a compact fuzzy partition, we aim
for a large value of compactness, as indicated by Eq. (4.5).

To compute the compactness of cluster Ci, we calculate the difference Dij between
the maximum fuzzy membership of pixel xj to any cluster and its fuzzy membership to
cluster Ci, as depicted in Eq. (4.4). If the pixel xj certainly belongs to cluster Ci, Dij is
set to 0. Otherwise, Dij lies in the interval ]0,1]. We use the term integer

(
1

exp(Dij)

)
to

retain only the pixels that clearly belong to cluster Ci. This approach ensures that only
pixels with a high degree of membership to cluster Ci are considered in the calculation of
compactness. The compactness measure is defined in Eq. (4.5), which computes the sum
of the membership degrees values of the retained pixels to cluster Ci divided by the sum of
the squared membership degrees of the same pixels. Normalizing the compactness measure
ensures that its values range from [0, 1[. A higher value of compactness indicates that the
pixels in cluster Ci are tightly packed around the cluster center, which is desirable for a
good clustering result.

Dij = max
1≤l≤C

ulj − uij (4.4)

Comp(Ci) =
∑n

j=1 u2
ijinteger

(
1

exp(Dij)

)
∑n

j=1 uijinteger
(

1
exp(Dij)

) (4.5)

Typical validity indices used for measuring separation information in cluster analysis
often rely solely on centroid information, which overlooks the geometric structures and
overall shape of clusters. To address this limitation, we propose a novel measure of separa-
tion information called Sep(Ci, Ck), as depicted in Eq. (4.6). Rather than considering only
the distance between the centers of two clusters (Ci, Ck)Our approach provides a more
comprehensive measure of separation information that considers the overall shape and
structure of clusters, rather than just their centroids. Specifically, in order for two clusters
to be considered well-separated, all points xj in cluster Ci must be far from the center Ck,
and likewise, all points xj in cluster Ck should be far from the center Ci. Sep(Ci, Ck) is
computed using the formula shown in Eq. (4.6), which takes into account the distances
between all pairs of points in the two clusters.

Sep(Ci, Ck) =
∑n

j=1 u2
kjinteger

(
1

exp(Dij)

)
+∑n

j=1 u2
ijinteger

(
1

exp(Dkj)

)
∑n

j=1 ukjinteger
(

1
exp(Dij)

)
+∑n

j=1 uijinteger
(

1
exp(Dkj)

) (4.6)

This equation evaluates the separation information between clusters Ci and Ck. It
consists of two terms, where the first term measures the separation of points in cluster Ci
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from the center of cluster Ck, and the second term measures the separation of points in
cluster Ck from the center of cluster Ci. When the two clusters (Ci, Ck) are well-separated,
the value of Sep(Ci, Ck) tends to reach a minimum value.

By integrating both compactness and separation information, the total proposed valid-
ity index is defined as follows:

V ICS(c) =
∑c

i=1 Comp(Ci)∑c−1
i=1

∑c
j=i+1 Sep(Ci, Ck)

(4.7)

The optimal fuzzy partition corresponds to a large value for compactness (Comp) and
a small value for separation (Sep). To determine the optimal number of clusters (COptimal)
that produces the best clustering, the validity index for cluster selection (V ICS(c)) is
computed for a range of candidate cluster numbers between Cmin and Cmax, using the
following equation:

COptimal = max
Cmin≤c≤Cmax

VICS(c) (4.8)

4.3 Experiments and Results

In this section, we present the results of our experiments and discuss their implica-
tions. Our goal was to demonstrate the effectiveness of our proposed approach for image
segmentation and to compare its performance with state-of-the-art methods.

To evaluate the performance of our approach, we conducted tests on a dataset of over
50 images. We randomly selected a subset of 10 images from the dataset and compared
the segmentation results of our approach with those of the state-of-the-art methods.

4.3.1 Evaluation on segmentation results

In this section, we present a qualitative evaluation of the segmentation results obtained
by our proposed algorithm and the compared approaches. We visually compare the resul-
tant images obtained by our approach and the other methods for the tested images, which
are presented in Figure 4.1 to Figure 4.10.

Figure 4.1 shows the segmentation results of the compared algorithms for Capsicum. We
can observe that the other methods exhibit a large number of misclassified pixels, which can
result in inaccurate segmentation results. However, our proposed algorithm outperforms
these approaches in terms of region uniformity and detail preservation, producing more
accurate segmentation results.

From Figure 4.2 we can observe that our approach produces more efficient segmentation
results, with better homogeneous segmented regions and an adequate number of clusters
obtained.

Figure 4.3 demonstrates the efficacy of the proposed approach in achieving superior
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segmentation performance compared to other approaches. The resulting regions exhibit
greater homogeneity, and the boundaries are efficiently smoothed.

The segmentation results of the onion image (Figure 4.4) demonstrate that all vegeta-
bles are well-clustered, and the background is correctly separated from the other partitions.

In the segmentation results of the Gantry Crane image produced by the comparative
approaches (Figure 4.5 (b)-(e)), a significant number of pixels are wrongly assigned as a
part of the sky region, and the sky is classified into two clusters. On the other hand, the
proposed approach generates more uniform regions and considers the sky as a single cluster
(Figure 4.5 (f)).

The segmentation results shown in Figure 4.6 highlight the superiority of the proposed
approach over other comparative approaches by producing more homogeneous regions for
both the walls and the roof.

Figure 4.7 illustrates that the proposed approach effectively segments the trees, sea,
hill, sky, and bridge from the background while preserving the detail information of each
region, outperforming the comparative approaches. In contrast, the segmentation results
of the other approaches exhibit misclassified pixels from the trees being wrongly assigned
to the bridge region.

The image segmentation results of the moon image are displayed in Figure 4.8. Fig-
ure 4.8 clearly indicates that the compared algorithms generate a significant number of
misclassifications by incorrectly assigning pixels from the moon region to the sky region,
whereas the proposed algorithm successfully separates the moon region from the sky region,
resulting in more homogeneous regions.

The proposed approach outperforms the comparative approaches in determining the
optimal partition of the Hill image, as shown in Figure 4.9. It correctly determines the
number of clusters and produces a more accurate segmentation result compared to the
other approaches, which still contain wrongly detected regions.

In Figure 4.10, it can be observed that the segmentation results of the smarties image
using the proposed approach are superior to those obtained using other approaches. The
proposed approach achieves better results with fewer background pixels misclassified as
smarties. It accurately segments the smarties while maintaining clear boundaries between
the smarties and the background, resulting in more homogeneous regions. This leads to a
more accurate segmentation overall compared to the other approaches.

4.3.2 Evaluation of cluster number

Based on the qualitative results presented earlier, the proposed technique demonstrates
the ability to automatically and adaptively initialize the distribution of cluster centers and
centroid values. The adaptive split stage, which is proposed in this technique, provides
a better initialization mechanism for cluster centers, ensuring effective classification ca-
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Figure 4.1 – Image segmentation results of the image Capsicums (a) original image (b)
FBSA algorithm(c) Fuzzy-VGAPS algorithm(d) MOECA algorithm (e) MSFCA

algorithm(f) the proposed approach

Figure 4.2 – Image segmentation results of the image Football (a) original image (b)
FBSA algorithm(c) Fuzzy-VGAPS algorithm(d) MOECA algorithm (e) MSFCA

algorithm(f) the proposed approach
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Figure 4.3 – Image segmentation results of the image Crown (a) original image (b) FBSA
algorithm(c) Fuzzy-VGAPS algorithm(d) MOECA algorithm (e) MSFCA algorithm(f)

the proposed approach

Figure 4.4 – Image segmentation results of the image Onion (a) original image (b) FBSA
algorithm(c) Fuzzy-VGAPS algorithm(d) MOECA algorithm (e) MSFCA algorithm(f)

the proposed approach
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Figure 4.5 – Image segmentation results of the image Gantry Crane (a) original image (b)
FBSA algorithm(c) Fuzzy-VGAPS algorithm(d) MOECA algorithm (e) MSFCA

algorithm(f) the proposed approach

Figure 4.6 – Image segmentation results of the image House (a) original image (b) FBSA
algorithm(c) Fuzzy-VGAPS algorithm(d) MOECA algorithm (e) MSFCA algorithm(f)

the proposed approach
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Figure 4.7 – Image segmentation results of the image Golden Gate (a) original image (b)
FBSA algorithm(c) Fuzzy-VGAPS algorithm(d) MOECA algorithm (e) MSFCA

algorithm(f) the proposed approach

Figure 4.8 – Image segmentation results of the image Moon (a) original image (b) FBSA
algorithm(c) Fuzzy-VGAPS algorithm(d) MOECA algorithm (e) MSFCA algorithm(f)

the proposed approach
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Figure 4.9 – Image segmentation results of the image Hill (a) original image (b) FBSA
algorithm(c) Fuzzy-VGAPS algorithm(d) MOECA algorithm (e) MSFCA algorithm(f)

the proposed approach

Figure 4.10 – Image segmentation results of the image smarties (a) original image (b)
FBSA algorithm(c) Fuzzy-VGAPS algorithm(d) MOECA algorithm (e) MSFCA

algorithm(f) the proposed approach
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pability and minimal distortion during the segmentation process. It is worth noting that
the compared algorithms have their own unique mechanisms for initializing cluster centers.
Therefore, it is important to consider the impact of the number of clusters generated by
each technique on the segmentation results.

The quality of the clustering result was found to be highly dependent on the cluster cen-
ter initialization mechanism. A good initialization scheme could ensure high classification
accuracy and less distortion during the segmentation process. Therefore, this section aims
to investigate the relationship between the quality of segmentation results and the number
of clusters produced by each initialization scheme. The number of clusters produced by
each technique is tabulated In Table 4.1.

The observation that should be highlighted is that even when different algorithms pro-
duce the same number of clusters, there may be significant qualitative and quantitative
differences in the segmentation results. While the number of clusters produced is an im-
portant performance metric, it is not sufficient to reveal the overall clustering performances
of the algorithms. This is an important consideration when evaluating the clustering qual-
ity of segmented images. In this section, we emphasize the importance of using multiple
performance metrics to assess the clustering quality of segmented images. Specifically, we
suggest using metrics such as fuzzy validity indices and quantitative evaluation functions
(i.e., the F (I), F ′(I), Q(I), and E values) to provide a more comprehensive evaluation of
the segmentation results and allow for a fair comparison of the clustering performances of
different techniques.

This section aims to explore how the number of clusters affects the quality of seg-
mentation results. According to Table 4.1, MOECA, MSFCA, and the proposed approach
generate fewer clusters compared to the FBSA and Fuzzy-VGAPS techniques for the images
Capsicums, Crown, and Gantry Crane. As a result, MOECA, MSFCA, and the proposed
approach tend to produce larger and more homogeneous regions in these images. On the
other hand, for the image Smarties, FBSA, Fuzzy-VGAPS, and the proposed approach
generate larger and more homogeneous regions in the segmented image than MOECA and
MSFCA techniques by producing fewer clusters.

Regarding the images Football and House, the FBSA and Fuzzy-VGAPS techniques
generate larger and more homogeneous regions by producing fewer clusters compared to
MOECA, MSFCA, and the proposed approach. However, these techniques tend to mis-
classify a significant number of pixels in the segmented images, leading to classification
errors.

For the Moon image FBSA, Fuzzy-VGAPS share the same number of clusters with
the MOECA, and MSFCA, the techniques generate a smaller number of clusters, but the
quality of the segmentation result is inferior to that produced by the proposed approach.

For the Hill image, FBSA, Fuzzy-VGAPS, and MOECA, these techniques may generate
larger and more homogeneous regions compared to MSFCA and the proposed approach.
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However, the segmented image produced by FBSA, Fuzzy-VGAPS, and MOECA tech-
niques tend to have a significant number of falsely assigned pixels. For the Onion and
Golden Gate images, the FBSA, Fuzzy-VGAPS, MSFCA, and MOECA techniques gener-
ate larger segmented regions than the proposed approach. However, it is evident that the
segmented regions produced by these compared techniques contain a significant number of
misclassified pixels.

Table 4.1: Number of clusters provided by the different
approaches.

Images FBSA Fuzzy-VGAPS MOECA MSFCA Proposed approach
Capsicums 12 12 9 9 10
Football 7 7 8 8 9
Crown 8 8 7 7 6
Onion 8 8 8 8 10
Gantry Crane 9 9 8 8 8
House 6 6 7 7 7
Golden Gate 9 9 8 8 11
Moon 3 3 3 3 8
Hill 7 7 6 8 9
Smarties 7 7 9 8 6

4.3.3 Quantitative evaluation of the segmentation results

In this section, we present the experimental results obtained by evaluating the per-
formance of our proposed algorithm on the tested images. To assess the effectiveness of
our approach, we employed a range of quantitative evaluation functions and fuzzy validity
indices.

4.3.3.1 Quantitative evaluation functions

In this section, we will conduct a quantitative evaluation of the effectiveness of our
proposed segmentation approach. To this end, we will employ four evaluation functions:
F (I), F ′(I), Q(I), and E. Additionally, we will compare our results with those obtained
by other methods.

The first evaluation function, F (I) (Liu and Yang, 1994), is defined as follows:

F (I) =
√

N
M∑

j=1

e2
j√
Sj

(4.9)
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N represents the total number of pixels in the input image I, while M represents the
total number of regions in the segmented image. Cj denotes the set of pixels in the j-th
region, and Sj represents the number of pixels in Cj. Finally, ej denotes the Euclidean
distance between the grey levels of the pixels in Cj and the grey level attributed to region
j in the segmented image

In addition to F (I), we will also use two modified versions of this function, namely
F ′(I) and Q(I), proposed by Borsotti et al. (Borsotti et al., 1998),

F ′(I) = 1
1000 · SI

√√√√√Max Area∑
a=1

[N(a)]1+ 1
a

M∑
j=1

e2
j√
Sj

(4.10)

Q(I) = 1
1000×N

√
N

M∑
j=1

 e2
j

1 + log Sj

+
(

N(Sj)
Sj

)2
 (4.11)

N(a) denotes the number of regions in image I that have an area of exactly a, and Max
Area represents the largest region’s size in the segmented image.

To further evaluate the quality of our segmentation approach, we will use an entropy-
based information measure E. This measure is frequently used for assessing the perfor-
mance of segmentation algorithms and provides a comprehensive measure of the overall
segmentation quality. E is defined as the sum of the entropy of the regions in the seg-
mented image and incorporates both the layout entropy and the expected region entropy.
Mathematically, E is defined as follows:

E = Hl(I) + Hr(I) (4.12)

The expected entropy of the segmented image region is typically calculated by

Hr(I) =
M∑

j=1

Sj

SI

Hv(Rj) (4.13)

Where H(Rj) is the entropy of region j and it is defined as

Hv(Rj) = −
∑

m∈V
(v)

j

Lj(m)
Sj

log
(

Lj(m)
Sj

)
(4.14)

The layout entropy is defined as

Hl(I) = −
M∑

j=1

Sj

SI

log
(

Sj

SI

)
(4.15)

Where Lj(m) is the number of pixels in region j that have a value of m for feature v

and V
(v)

j is the set of all possible values associated with feature v in region j.
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The optimal segmentation is obtained when the four evaluation functions reach their
minimum values.

To evaluate the performance of our proposed segmentation algorithm, we conducted
a quantitative evaluation using four different evaluation functions. The results of this
evaluation are presented in Table 4.2, which correspond to the segmented images depicted
in Figures 4.1 to 4.10. As shown in Table 4.2, our proposed algorithm exhibited favorable
performance across all four evaluation functions, with relatively small values obtained.
This indicates that the algorithm has achieved optimal segmentation, surpassing other
algorithms in terms of the used evaluation measures. The consistently superior performance
of our proposed algorithm in comparison to its counterparts suggests its effectiveness in
accurately segmenting the images, as indicated by the evaluation results.

4.3.3.2 Fuzzy validity indices

The fuzzy index, also known as the cluster validity function, plays a crucial role in
choosing the best fuzzy partition from a set of alternatives. This is accomplished by uti-
lizing a quality measure that takes into account both compactness and separation metrics.
Compactness refers to the variability of data within a cluster, while separation measures
the degree of isolation between data from different clusters. By maximizing separation and
minimizing compactness, the optimal partition can be achieved.

To evaluate the obtained fuzzy partitions, we utilized five well-known validity functions
and the proposed validity index. These validity functions include partition entropy (VP E)
(Bezdek, 1973), partition coefficient (VP C) (Bezdek and Dunn, 1975), Fukuyama-Sugno
(VF S) (Pal and Bezdek, 1995), Xie-Beni (VXB) (Xie and Beni, 1991), and Bensaid (VSC)
function (Bensaid et al., 1996). One of the commonly employed indices for assessing fuzzy
partitions is the partition entropy VP E. It is defined as follows:

VP E = − 1
N

C∑
i=1

N∑
j=1

uij log(uij) (4.16)

The optimal clustering is obtained when VP E is minimal. Another validity function
introduced by (Bezdek and Dunn, 1975) is the partition coefficient (VP C). It takes on
values between [1/C, 1], where C is the number of clusters, and the optimal clustering is
achieved when VP C is at its maximum. VP C is defined as follows:

VP C = 1
N

C∑
i=1

N∑
j=1

u2
ij (4.17)

The VF S is defined by the sum of fuzzy distance between all points to different cluster
centers, and the separation that defined as the distance between the cluster centers and
the mean of all cluster centers as given in Eq. (4.18), the best fuzzy partition is intended
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when VF S is minimal.

VF S =
n∑

j=1
um

ij ||xj − vi||2 −
n∑

j=1
um

ij ||xj − V̄ ||2 (4.18)

The validity function VXB is defined as the ratio of the total compactness of all clusters
to the minimum distance with respect to all cluster centers. The minimal value of VXB

implies the better fuzzy partition; the VXB is defined as follows:

VXB =
∑C

i=1
∑N

j=1 um
ij ||xj − vi||2

N ×mini ̸=k ||vi − vk||2
(4.19)

The VSC is another one of important validity function, which is defined as the sum
of the mean fuzzy distances between points to all cluster centers divided by the sum of
separation between all clusters; the minimal value of VSC indicates the best clustering is
obtained, and is defined according to the following equation

VSC =
C∑

i=1

(∑n
j=1 um

ij ||xj − vi||2

ni
∑C

i=1 ||vi − vk||2

)
(4.20)

where ni = ∑n
j=1 uij

The segmentation results of five different algorithms were quantitatively evaluated using
various validity functions, as presented in Table 4.3. Notably, the FBSA, Fuzzy-VGAPS,
MOECA, and MSFCA algorithms demonstrated satisfactory performance in terms of fuzzy
validity measures. However, it was observed that the proposed algorithm outperformed the
other comparative algorithms, yielding optimal segmentation results.

The proposed algorithm achieved consistently smaller values of validity measures such
as VP E, VXB, VSC , VF S, and the proposed index, as well as a larger value of VP C and
V ICS compared to the other algorithms. These results demonstrate the effectiveness of the
proposed algorithm in accurately segmenting images.

Table 4.2: A comparative analysis of the evaluation
functions over the tested images

Algorithm Images F (I)×108 F ′(I) Q(I)×103 E

FBSA Capsicums 0.4219 4.7122 0.4516 7.9231
Football 0.4566 3.9830 0.3828 6.6563
Crown 0.4514 3.8941 0.3705 5.9231
Onion 0.3755 4.4144 0.3809 6.3765

Gantry Crane 0.4658 4.1245 0.3654 6.4520
House 0.3657 3.7138 0.3932 6.5987

Golden Gate 0.3203 4.0760 0.3705 6.6507
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Moon 0.3968 3.6152 0.4452 6.3097
Hill 0.3897 4.0994 0.5518 7.4220

Smarties 0.3976 4.0111 0.3920 6.2545
Fuzzy-VGAPS Capsicums 0.3124 3.7906 0.4448 6.7758

Football 0.3262 3.2962 0.3880 5.7923
Crown 0.3326 4.6331 0.3692 6.6070
Onion 0.3549 4.8791 0.3338 7.5769

Gantry Crane 0.4307 3.6299 0.3728 6.6524
House 0.4398 4.0104 0.3672 6.5401

Golden Gate 0.4309 3.7794 0.3901 6.9309
Moon 0.3870 4.8679 0.5870 6.6935
Hill 0.3936 3.8417 0.4162 7.6070

Smarties 0.4264 3.9576 0.3822 6.6563
MOECA Capsicums 0.2935 2.8274 0.2292 5.8821

Football 0.3538 3.1469 0.3847 5.7449
Crown 0.3220 3.7013 0.3539 5.2687
Onion 0.3786 3.0949 0.3344 5.4264

Gantry Crane 0.3885 3.0047 0.3631 6.7855
House 0.3957 3.2300 0.3837 6.8960

Golden Gate 0.3254 2.4832 0.3264 5.5427
Moon 0.3878 3.9808 0.3208 6.2375
Hill 0.3540 2.6227 0.2655 6.7855

Smarties 0.3179 2.4245 0.3689 5.4699
MSFCA Capsicums 0.2977 3.1012 0.2358 5.4019

Football 0.3459 2.4976 0.3605 5.4264
Crown 0.3044 3.3926 0.3743 5.7855
Onion 0.3615 3.3838 0.3431 5.5949

Gantry Crane 0.3472 2.9116 0.3814 5.5954
House 0.3375 2.5443 0.3170 5.4784

Golden Gate 0.3403 2.9296 0.3581 5.8430
Moon 0.3449 3.4770 0.3409 5.0421
Hill 0.3267 2.8094 0.3689 6.1269

Smarties 0.3237 3.2800 0.3765 5.9854
the proposed approach Capsicums 0.1395 1.1464 0.1089 3.8822

Football 0.1444 0.9415 0.1627 2.9349
Crown 0.1599 1.6019 0.1283 2.5055
Onion 0.1555 1.0319 0.1701 3.4961

Gantry Crane 0.2089 1.1643 0.1783 2.5958
House 0.1293 1.3221 0.1386 3.3860
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Golden Gate 0.1588 0.8812 0.1099 3.6772
Moon 0.1083 1.3498 0.1346 3.2513
Hill 0.1478 1.1731 0.1138 1.9984

Smarties 0.1567 1.1715 0.1782 2.4783

Table 4.3: Quantitative evaluation using various validity
functions for the five algorithms

Algorithm Images VP E VP C VSC VXB VF S V ICS

FBSA Capsicums 0.7770 0.0595 0.4062 0.01235 -3.07692E+9 0.8765
Football 0.8679 0.0781 0.4791 0.04587 -3.95124E+9 0.7523
Crown 0.8564 0.0439 0.3614 0.04541 -3.79371E+9 0.8234
Onion 0.7814 0.0475 0.4812 0.04578 -2.75296E+9 0.7901

Gantry Crane 0.8003 0.0675 0.3969 0.06322 -2.69445E+9 0.7654
House 0.7430 0.0246 0.4208 0.07854 -3.83120E+9 0.8372

Golden Gate 0.8454 0.0416 0.4392 0.07541 -4.48511E+9 0.7910
Moon 0.8094 0.0358 0.4121 0.05356 -5.73007E+9 0.8198
Hill 0.8230 0.0639 0.4239 0.06546 -3.25140E+9 0.8145

Smarties 0.7958 0.0529 0.4653 0.05879 -3.95849E+9 0.8087
Fuzzy- Capsicums 0.8012 0.0388 0.3304 0.07418 -3.34186E+9 0.7712
VGAPS Football 0.8454 0.0499 0.3828 0.05683 -3.61721E+9 0.7965

Crown 0.7311 0.0379 0.3958 0.07341 -3.49346E+9 0.8276
Onion 0.7977 0.0319 0.3898 0.047235 -3.44934E+9 0.8812

Gantry Crane 0.8236 0.0438 0.4593 0.037129 -4.53833E+9 0.8111
House 0.7658 0.0346 0.3812 0.045284 -3.60349E+9 0.8457

Golden Gate 0.8097 0.0458 0.4329 0.041759 -5.31260E+9 0.7612
Moon 0.8346 0.0587 0.4012 0.039865 -4.16580E+9 0.7326
Hill 0.8491 0.0496 0.4158 0.049523 -3.27643E+9 0.7881

Smarties 0.8274 0.0429 0.4035 0.0632 -3.90156E+9 0.8024
MOECA Capsicums 0.8589 0.0234 0.3100 0.0775 -3.90439E+9 0.8887

Football 0.8770 0.0497 0.3767 0.02506 -3.9539E+9 0.8275
Crown 0.8530 0.0552 0.3261 0.02201 -3.94239E+9 0.8045
Onion 0.8254 0.0291 0.4374 0.04571 -3.89864E+9 0.8167

Gantry Crane 0.8104 0.0476 0.4403 0.03113 -4.0565E+9 0.8932
House 0.8854 0.0614 0.3281 0.06522 -4.18616E+9 0.8581

Golden Gate 0.8501 0.0376 0.4154 0.02748 -4.21707E+9 0.8326
Moon 0.8712 0.0271 0.3786 0.02471 -4.38651E+9 0.8149
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Hill 0.8469 0.0231 0.3752 0.02712 -4.50832E+9 0.8793
Smarties 0.8801 0.0563 0.4248 0.02153 -4.51958E+9 0.8976

MSFCA Capsicums 0.8227 0.3464 0.2947 0.01944 -2.86425E+9 0.8164
Football 0.8425 0.0319 0.2437 0.02368 -2.72921E+9 0.8402
Crown 0.8812 0.0247 0.2772 0.03232 -2.89583E+9 0.8294
Onion 0.8730 0.0273 0.2581 0.02854 -2.85155E+9 0.8012

Gantry Crane 0.8493 0.0325 0.3549 0.08774 -2.85321E+9 0.8698
House 0.8632 0.0265 0.3522 0.0356 -3.13161E+9 0.8954

Golden Gate 0.8196 0.0378 0.3370 0.03232 -3.27178E+9 0.8231
Moon 0.8990 0.0273 0.3207 0.03523 -3.14067E+9 0.8745
Hill 0.8119 0.0261 0.3554 0.02569 -3.25068E+9 0.8512

Smarties 0.8000 0.0292 0.3491 0.04732 -3.20122E+9 0.8398
Proposed Capsicums 0.9106 0.0176 0.1088 0.00846 -4.02585E+9 0.9525
approach Football 0.9550 0.0191 0.1258 0.01963 -4.19711E+9 0.9423

Crown 0.9465 0.0131 0.1490 0.01596 -4.30172E+9 0.9276
Onion 0.9261 0.0093 0.1906 0.01948 -4.31874E+9 0.9354

Gantry Crane 0.8992 0.0145 0.1356 0.01860 -4.44668E+9 0.9487
House 0.9261 0.0105 0.1882 0.01670 -4.58353E+9 0.9741

Golden Gate 0.9194 0.0152 0.1889 0.01667 -4.61294E+9 0.9378
Moon 0.9415 0.0117 0.1487 0.01780 -4.68663E+9 0.9467
Hill 0.9490 0.0235 0.1293 0.02019 -4.81633E+9 0.9632

Smarties 0.9355 0.0204 0.1484 0.01894 -4.86425E+9 0.9426

4.4 Conclusion

In this chapter, we presented a novel method for automating the determination of the
optimal number of clusters and initialization of cluster centers in the FCM algorithm.
Our approach involved incorporating an adaptive split stage that used a multithreshold
method based on entropy information, which significantly improved the accuracy of cluster
determination. Additionally, we introduced a new fuzzy validation index that provided an
additional assessment of the quality of the obtained clusters. To evaluate the effective-
ness of our proposed approach, we conducted comprehensive quantitative and qualitative
assessments using fuzzy validity indices and evaluation functions. The experimental re-
sults clearly demonstrate that our method outperformed existing approaches and achieved
superior image segmentation results.
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Chapter 5

Fully integrated spatial information
to improve FCM algorithm
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5.1 Introduction

The FCM algorithm is a popular fuzzy clustering method used for image segmentation.
One important characteristic of images is the high correlation among neighboring pixels,
which suggests that they often have similar feature values and are likely to belong to the
same cluster. However, the traditional FCM algorithm has limitations. It is relatively
sensitive to noise and fails to consider the spatial distribution of pixels within an image.
Additionally, it is excessively responsive to the initial cluster centers, which can lead to a
susceptibility to local minimum solutions. These limitations can result in inaccurate and
unreliable segmentation results.

To overcome the limitations of the traditional FCM algorithm, our thesis proposes two
techniques aimed at enhancing its performance. In the previous chapter, we introduced an
adaptive split and merge approach to improve the sensitivity of the FCM algorithm to the
initialization scheme. This approach helps to reduce the sensitivity of the algorithm to the
initial cluster centers and improve the accuracy of the segmentation results. In this chapter,
we consider a comprehensive integration of the spatial constraint to further improve the
performance of the FCM algorithm. This integration involves defining the influence of
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neighboring pixels using two proposed terms: a fuzzy similarity measure and the noise
level. By incorporating these terms, we aim to capture the complex spatial dependencies
among pixels and improve the accuracy and robustness of the segmentation results.

To evaluate the performance of the proposed method, we conducted experiments us-
ing synthetic and medical images. The experimental results illustrate that the proposed
algorithm achieves a balance between preserving significant image details and removing
noise during the image segmentation process. Moreover, the performance of the proposed
algorithm surpasses that of several related FCM-based algorithms in terms of segmentation
accuracy

5.2 Fully integrated spatial information to improve
FCM algorithm

The incorporation of spatial information in the FCM algorithm is essential for achiev-
ing accurate image segmentation results, as neighboring pixels often exhibit similar feature
values and are likely to belong to the same cluster. To tackle this challenge, we propose
a novel spatial FCM algorithm that incorporates comprehensive spatial information to
enhance its performance. Our algorithm fully integrates spatial information by assigning
varying degrees of importance to each pixel, considering its spatial information. Specifi-
cally, we propose two terms to define the influence of neighboring pixels: a fuzzy similarity
measure and the noise level. By combining these terms, we aim to capture the complex
spatial dependencies among pixels and improve the accuracy and robustness of the seg-
mentation results.

5.2.1 Problem statement

This section introduces a comprehensive spatial FCM algorithm for image segmentation
that focuses on incorporating spatial information effectively. In our algorithm, the central
pixel’s role in fuzzy clustering is determined based on whether it is affected by noise or
not. Specifically, if the central pixel is free from noise, it is assigned a critical role in
the clustering process. On the other hand, if the central pixel is corrupted by noise, its
influence is reduced to avoid distorting the segmentation results. The spatial information
is determined according to the fuzzy similarity measure computed between pixels and their
respective noise levels. Our contributions can be summarized as follows:

1. The definition of spatial information is not uniform across all pixels. Instead, we high-
light the central pixel’s importance in fuzzy clustering when it is noise-free, whereas
its impact is reduced when it is affected by noise.

2. We aim to improve the accuracy of the segmentation results by determining the
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similarity measure between pixels based on their representation within the fuzzy set,
rather than relying solely on intensity information.

3. The degree of influence of neighborhood intensity information is determined based
on both the fuzzy similarity measure and the noise level present in the neighboring
pixels.

4. We aim to enhance the accuracy and robustness of the segmentation results by re-
placing the central pixel in fuzzy clustering with one of its neighbors that can better
contribute to the segmentation result in terms of compactness and separation between
clusters.

5.2.2 A fully spatial FCM algorithm for image segmentation (FS-
FCM)

Let’s consider xj as a central pixel within a given neighborhood Nj, and Cr as the class
to which xj belongs. If all neighboring pixels of xj have the same class Cr as xj (indicating
that xj is not corrupted by noise), the degree of influence of each neighboring pixel xk is
determined based on two factors: the fuzzy similarity measure S(xj, xk) between xj and
xk (section 5.2.2.1), and the level of noise LN(xk) of xk (section 5.2.2.2).

On the other hand, if xj does not have any neighboring pixels belonging to the same
class as xj (indicating that xj is a noisy pixel), the degree of neighborhood intensity is
only defined by the level of noise of its neighboring pixels xk, thus, reducing the influence
of noisy pixels in the fuzzy clustering process.

In the last case, when xj has some neighboring pixels belonging to the same class as
xj (indicating that xj is a boundary pixel or partially corrupted by noise), the weight of
neighboring pixels is determined using a fuzzy similarity measure and the level of noise of
the neighboring pixels. In this case, the new central intensity value x∗

j of xj is calculated
as the average of the mean intensities of the neighboring pixels xk from the same class,
considering all classes to which the neighboring pixels of xj belong.

To achieve optimal clustering performance in terms of compactness and separation, we
explore the local neighborhood Nj of xj (section 5.2.2.3). If there is a neighboring pixel
xk that has a greater influence than xj on the accuracy of segmentation, then this pixel is
considered instead of xj. Otherwise, xj is maintained as the central pixel. Consequently,
the new intensity value x∗

j of xj is given by:

x∗
j =



∑
xk∈Nj

(1−LN(xk))∗xk∑
xk∈Nj

(1−LN(xk)) , if ∀xk /∈ Cr

(1−LN(xj))∗xj+
∑

xk∈Nj
(1−LN(xk))∗S(xj ,xk)∗xk

(1−LN(xj))+
∑

xk∈Nj
(1−LN(xk))∗S(xj ,xk) , if ∀xk ∈ Cr

∑ncj
i=1

(∑
xk∈Ci

(1−LN(xk))∗S(xj ,xk)∗xk

)
∑

xk∈Ci
(1−LN(xk))∗S(xj ,xk)

ncj
, otherwise

(5.1)
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Where ncj is the number of classes to which the neighboring pixels xk of xj belong to.

5.2.2.1 The fuzzy similarity measure

To determine the similarity measure between pixel xj and its neighboring pixels xk, we
propose a fuzzy measure S(xj, xk) that indicates the degree of common properties between
xj and xk. It is defined as the sum of the minimum values between the membership degrees
uij and uik of xj and xk for all cluster centers. The equation for S(xj, xk) is as follows:

S(xj, xk) =
C∑

i=1
min(uij, uik) (5.2)

Where C is the total number of clusters. For the fuzzy similarity measure S(xj, xk) we
define the following properties

1. 0 ≤ S(xj, xk) ≤ 1

2. S(xj, xk) = 1, if uij = uik (i = 1, . . . , C)

3. S(xj, xj) = 1

4. S(xj, xk) = 0, if ∃m, l (m ̸= l) umj = 1 and ulk = 1

5. S(xj, xk) = S(xk, xj)

5.2.2.2 The level of noise (LN)

For computing the level of noise LN(xj) of the pixel xj within a given neighborhood
Nj of xj, the following conditions are considered:

1. If the set of neighboring pixels xk of xj have the same class as that of xj, then the
level of noise of xj is 0 (Figure 5.1(a)).

2. The level of noise of xj is 1 if xj belongs to a class to which none of its neighboring
pixels xk belong (Figure 5.1(b)).

3. If some of the neighboring pixels of xj belong to the same class as the pixel xj (Figure
5.1(c)), the level of noise of xj is defined according to the following equation:

ηj = m(j, r)
max [m(j, l) | l ̸= r, l = 1 . . . C] (5.3)

where m(j, r) represents the average distance between xj and its neighboring pixels belong-
ing to the same class Cr to which the pixel xj belongs, and m(j, l) is the average distance
between xj and its neighboring pixels that belong to the other classes Cl. The level of
noise of LN(xj) is defined as follows:
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LN(xj) =


1, if ∀xk /∈ Cr

0, if ∀xk ∈ Cr

ηj, if ∃xk ∈ Cr

(5.4)

Figure 5.1 – Illustration of three cases of level of noise LN(xj)

5.2.2.3 The quantitative term

In order to improve the accuracy of the proposed segmentation method, we explore an
alternative approach to replace the central pixel xj, with one of its neighboring pixels, xk,
from the same class as xj. This replacement is considered when xj is not corrupted by
noise or when it is a boundary pixel, and it has been found to yield better segmentation
results compared to using xj alone.

To determine the appropriate neighboring pixel for replacement, we introduce a new
quantitative term called aj. This term aims to assign a higher value to the pixel that
minimizes the variation within its cluster while maximizing the separation between clusters.
The formulation of aj is defined as follows:

aj = 1
C

C∑
i=1
∥uij − (1− uij)∥2 (5.5)

For this proposed term aj, we have defined the following properties:

1.
(

C−2
C

)2
≤ aj ≤ 1

2. aj = 1, if ∃m, umj = 1 and ulj = 0, l = 1, . . . , C, l ̸= m

3. aj =
(

C−2
C

)2
, if uij = 1

C
, i = 1, . . . , C

Based on these properties, the value of aj lies between
(

C−2
C

)2
and 1. When xj clearly

belongs to a specific cluster i, with the maximum degree of membership uij equal to 1 and
all other membership degrees ulj (l = 1...C, l ̸= i) equal to 0, aj reaches its maximum
value of 1. On the other hand, aj reaches its minimum value of

(
C−2

C

)2
when xj belongs

to all clusters to the same extent, with all membership degrees uij (i = 1...C) equal to 1
C

.
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According to the defined properties of the proposed quantitative term aj, if the central
pixel xj is not affected by noise or is a boundary pixel, we redefine it using the following
equation:

xj =

 xk if ∃xk ∈ Cr where k = arg maxl=1,...,|Cr|(al)
xj otherwise

(5.6)

Here, |Cr| denotes the number of neighboring pixels of xj that belong to the same class
as xj. By applying this alternative approach, we aim to enhance the accuracy of the
segmentation method by leveraging neighboring pixels that have a more significant impact
on the segmentation result than the central pixel itself.

The key steps of the proposed method can be listed in the following algorithm:

Algorithm 4 : The FSFCM algorithm
Input:

— The input image X = (xj, j = 1, . . . , N),
— C is the number of clusters,
— Initial cluster centers V = (v1, v2, . . . , vC),
— The degree of fuzziness m,
— The threshold termination criterion ϵ.

Output: Fuzzy partition matrix U , Cluster centers V = (v1, v2, . . . , vC) of the fuzzy
partitions.
Step 1: Calculate the membership values uij using Eq. (2.8);
Step 2: Calculate the cluster centers vi (i = 1, 2, . . . , C) according to Eq. (2.9);
Step 3: If ∥Vnew − Vold∥ < ϵ, then stop, otherwise go to Step 1;
Step 4: For each pixel xj, calculate ηj, LN(xj), and aj using Eq. (5.3), Eq. (5.4), and
Eq. (5.5);
Step 5: For each pixel xj

If LN(xj) ̸= 1, then
Replace xj by its novel intensity using Eq. (5.6);

Step 6: For each pixel xj and for each of its neighboring pixel xk, calculate the degree of
similarity S(xj, xk) using Eq. (5.2);
Step 7: Use ηj, LN(xj), aj, and S(xj, xk) for generating the new image x∗

j,j=1,...,N using
Eq. (5.1);
Step 8: Update the membership values uij for each pixel x∗

j,j=1,...,N using Eq. (2.8);
Step 9: Update cluster centers vi (i = 1, 2, . . . , C) according to Eq. (2.9);
Step 10: If ∥Vnew − Vold∥ < ϵ, then stop, otherwise go to Step 7;

5.2.3 Experiments and Results

This section presents the results of our experiments and a discussion of our algorithm’s
performance. To evaluate our spatial fuzzy clustering algorithm, we conducted extensive
tests on both synthetic and medical images with varying levels of noise. Additionally, we
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compared the performance of our algorithm with five other clustering methods in terms
of cluster validity functions, segmentation accuracy, and tissue segmentation accuracy to
provide a comprehensive evaluation of our algorithm’s performance.

Different levels of Gaussian and Salt Pepper noise are added in six synthetic images,
SIN1, SIN2, SIN3, SIN4, SIN5, and SIN6; for the medical images, we tested our algorithm
on a simulated T1-weighted normal brain MRI obtained from Brainweb (http://www.bic.mni.
mcgill.ca/brainweb); Brainweb is a tool designed to address the problem of validation in
morphological neuroimaging. Brainweb makes it possible to generate a Simulated Brain
Database (SBD), a set of realistic MRI data volumes produced by an MRI simulator.
These data can be used by the neuroimaging community to evaluate the performance of
various image analysis methods in a situation where the truth is known. The SBD contains
simulated brain MRI data based on two anatomical models: healthy normal and multiple
sclerosis (MS). For both of these, full 3-dimensional data volumes were simulated using
three MRI sequences (T1-, T2-, and proton-density- (PD-) weighted) and a variety of slice
thicknesses, noise levels, and levels of intensity non-uniformity (Figure 5.2). These data are
available for viewing in three orthogonal views (transversal, sagittal, and coronal), and for
downloading. The noise in the simulated images has Rayleigh statistics in the background
and Rician statistics in the signal regions. The ”percent noise” number represents the
percent ratio of the standard deviation of the white Gaussian noise versus the signal for
a reference tissue. However, The INU fields were estimated from real MRI scans, so they
are realistic. These fields are not linear but are slowly varying fields of a complex shape.

Figure 5.2 – Brain web simulator.

The proposed algorithm is evaluated on six different volumes, each one contains 51
images, corrupted by different levels of noise and inhomogeneity (IH). Volume 1 (5% noise,
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20% IH), volume 2 (7% noise, 20% IH), volume 3 (9% noise, 20% IH), volume 4 (5% noise,
40% IH), volume 5 (7% noise, 40% IH), and volume 6 (9% noise, 40% IH).

To evaluate the effectiveness and accuracy of our proposed method, we employed a two-
step evaluation process. Firstly, we conducted a qualitative assessment of the experimental
results. Subsequently, we performed a quantitative analysis by comparing our approach
with several other algorithms, including conventional FCM, sFCM, FCM S, FGFCM, and
csFCM algorithms. This comparison was based on various criteria, such as cluster validity
functions, segmentation accuracy (SA), and tissue segmentation accuracy (TSA).

5.2.3.1 Qualitative evaluation

The qualitative evaluations provide valuable insights into the target application, image
characteristics, and quality, shortcomings of the segmentation algorithm, and the results
of each method step. In this section, qualitative evaluations are employed to compare
the segmentation performance of the proposed algorithm with five existing algorithms
(FCM, sFCM, FCM S, FGFCM, and csFCM) on synthetic and MRI brain images. The
segmentation results of all six algorithms on synthetic images are illustrated in Figure
5.3-Figure 5.8.

The segmentation results of the six algorithms on the first synthetic image with 30%
Salt & Pepper noise are presented in Figure 5.3. From Figure 5.3 (b)-(d), it can be
observed that FCM, FCM S, and sFCM fail to effectively remove the noise from the input
image. However, FGFCM and csFCM produce segmentation results with a small number
of misclassified pixels. Among all the algorithms, FSFCM achieves the best segmentation
result, with well-located boundaries and suppression of the most noisy pixels.

Figure 5.4 illustrates the image segmentation results on the second synthetic image
corrupted by 30% Salt & Pepper noise, obtained using the six algorithms. It is evident that
the images segmented by FCM, FCM S, and sFCM exhibit a large number of misclassified
pixels, and the boundaries appear blurred. Both FGFCM and csFCM provide segmentation
results with a significant number of misclassified pixels and slightly blurred boundaries.
On the other hand, the segmentation results obtained by FSFCM demonstrate clearer
boundaries and the removal of almost all the noisy pixels.

The segmentation results of the third synthetic image with 30% Salt & Pepper noise
are shown in Figure 5.5. From Figure 5.5 (b)-(d), it can be observed that a large number
of misclassified pixels are present. Among the FGFCM, csFCM, and FSFCM algorithms
(Figure 5.5 (e)-(g)), the proposed algorithm achieves more appropriate results in terms of
region homogeneity and detail preservation.

Figure 5.6 depicts the segmentation results of FSFCM and other computing algorithms
on the fourth synthetic image with 30% Gaussian noise. The results in Figure 5.6 (b)-(f)
exhibit a significant number of incorrectly classified pixels. FSFCM produces the best
segmentation results compared to the other five algorithms.
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The clustering results of the fifth synthetic image corrupted by 30% Gaussian noise
are illustrated in Figure 5.7. The segmentation results of FCM (Figure V6 (b)), sFCM
(Figure 5.7 (c)), and FCM S (Figure 5.7 (d)) are affected by the noise to different extents,
indicating a lack of robustness to Gaussian noise. Visually, FGFCM (Figure 5.7 (e)) and
csFCM (Figure 5.7 (f)) remove most of the noise but still do not achieve satisfactory results.
On the other hand, the proposed algorithm (Figure 5.7 (g)) effectively removes almost all
the added noise, yielding satisfactory results.

Figure 5.8 illustrates the segmentation results on the sixth synthetic image corrupted by
30% Gaussian noise, obtained using FCM, sFCM, FCM S, FGFCM, csFCM, and FSFCM,
respectively. In Figure 5.8 (g), the segmentation results obtained from FSFCM exhibit
smoother regions and clearer image boundaries, effectively removing almost all the added
noise.

Figures 5.9 to 5.11 present the qualitative segmentation results of a T1-weighted MRI
brain image (slice 90) contaminated by 5% noise and 40% inhomogeneity, 7% noise and
40% inhomogeneity, and 9% noise and 40% inhomogeneity, respectively.

In Figure 5.9 (a), the input image contaminated by 5% noise and 40% inhomogeneity
is shown. The segmentation results of the three tissues (CSF, GM, WM) and the final
segmentation by different computing algorithms are depicted in Figure 5.9 (b)-(y). It
can be observed that FCM, sFCM, and FCM S struggle to handle the presence of many
noise points, resulting in compromised segmentation performance. Although csFCM and
FGFCM show some improvement with fewer noise points, the proposed algorithm achieves
superior segmentation results by effectively suppressing almost all the noise points in the
segmentation images.

Figure 5.10 (a) presents the original image contaminated by 7% noise and 40% inho-
mogeneity. The segmentation results of the three tissues (CSF, GM, WM) and the final
segmentation by FCM, sFCM, FCM S, FGFCM, csFCM, and the proposed algorithm are
depicted in Figure 5.10 (b)-(y). From the results shown in Figure 5.10 (b)-(m), it is evi-
dent that FCM, sFCM, and FCM S are highly sensitive to the high level of inhomogeneity,
resulting in a significant loss of image details. FGFCM and csFCM (Figure 5.10 (n)-(u))
still exhibit numerous noise points and suppress certain image details. However, the seg-
mentation results shown in Figure 5.10 (v)-(y) highlight the superior performance of the
proposed algorithm compared to the other considered algorithms.

Figure 5.11 (a) displays the input image corrupted by 9% noise and 40% inhomogene-
ity. The segmented images of the three main tissues and the final segmentation by the
compared algorithms are shown in Figure 5.11 (b)-(u). It is evident that the segmentation
performance of the compared algorithms is significantly affected by the presence of high
levels of noise and inhomogeneity. The segmentation results of the other five algorithms
still contain numerous noise points, and the CSF, GM, and WM tissues are often misclas-
sified, particularly in the case of FCM, sFCM, and FCM S algorithms. In contrast, the
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proposed algorithm’s segmentation results in Figure 5.11 (v)-(y) demonstrate its effective
ability to remove almost all the noisy points while preserving image details.

5.2.3.2 Quantitative evaluation

Quantitative evaluation plays a crucial role in comparing the results of different seg-
mentation methods. In our study, we conducted three types of quantitative evaluations,
including cluster validity functions, segmentation accuracy (SA), and tissue segmentation
accuracy (TSA).

a- Cluster validity function

To evaluate the quality of clusters, various cluster validity functions have been proposed
in prior studies on fuzzy clustering. In this section, we utilize five evaluation functions as
quantitative measures to assess the quality of image segmentation results.

Table 5.1 presents the cluster validity functions obtained by six algorithms on synthetic
images corrupted by different levels of noise. It is evident that FSFCM outperforms the
other five approaches, exhibiting the highest VP C values and the smallest values for VP E,
VF S, VXB, and VSC .

Table 5.2 provides the mean values of the validity functions across 51 MRI images with
varying levels of noise (5%, 7%, and 9%) and inhomogeneity (20%, 40%). Clearly, the
segmentation performance of all algorithms deteriorates as the noise level and inhomo-
geneity in the image increase. However, even in the presence of high levels of noise and
inhomogeneity, the proposed algorithm surpasses the other five algorithms, demonstrating
the lowest values for VP E, VF S, VXB, VSC , and the highest values for VP C .

Figure 5.12 illustrates the average values of cluster validity functions (VP E, VP C , VF S,
VXB, and VSC) for the segmented regions of CSF, GM, and WM obtained by FCM, sFCM,
FCM S, FGFCM, csFCM, and the proposed algorithm over 51 MRI images corrupted by
9% noise and 40% inhomogeneity. These results clearly demonstrate that the proposed
algorithm achieves the highest segmentation accuracy among the compared algorithms
over all the MRI images.
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Figure 5.3 – Qualitative segmentation results on the first synthetic image (SIN1)
corrupted by salt & Pepper noise (30%) by different computing algorithms.

Figure 5.4 – Qualitative segmentation results on the second synthetic image (SIN2)
corrupted by salt & Pepper noise (30%) by different computing algorithms.
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Figure 5.5 – Qualitative segmentation results on the third synthetic image (SIN3)
corrupted by salt & Pepper noise (30%) by different computing algorithms.

Figure 5.6 – Qualitative segmentation results on the fourth synthetic image (SIN4)
corrupted by Gaussian noise (30%) by different computing algorithms.
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Figure 5.7 – Qualitative segmentation results on the fifth synthetic image (SIN5)
corrupted by Gaussian noise (30%) by different computing algorithms.

Figure 5.8 – Qualitative segmentation results on the sixth synthetic image (SIN6)
corrupted by Gaussian noise (30%) by different computing algorithms.
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Figure 5.9 – Qualitative segmentation results on a MRI brain image with 5% noise and
40% inhomogeneity by different computing algorithms.
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Figure 5.10 – Qualitative segmentation results on a MRI brain image with 7% noise and
40% inhomogeneity by different computing algorithms.
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Figure 5.11 – Qualitative segmentation results on a MRI brain image with 9% noise and
40% inhomogeneity by different computing algorithms.
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Table 5.1: The results of using validity functions produced
by six algorithms on the synthetic images with various

levels of noise

Image
Segmented
Methods

Cluster Validity Function
VP E VP C VF S VXB VSC

SIN1 with 30%
Gaussian noise

FCM 0.32002 0.84752 -2.98861 0.10526 0.04514
sFCM 0.30689 0.85941 -3.05147 0.09562 0.03401
FCM S 0.29856 0.86780 -3.18552 0.09125 0.03048
FGFCM 0.25468 0.87012 -3.45012 0.06372 0.02894
csFCM 0.26356 0.88045 -3.50012 0.05272 0.02507

FSFCM 0.20101 0.90562 -3.64370 0.01501 0.02098

SIN1 with 30%
Salt and Pepper

noise

FCM 0.28472 0.85098 -3.16381 0.01766 0.03217
sFCM 0.26984 0.86817 -3.21578 0.01702 0.02895
FCM S 0.25841 0.86541 -3.35602 0.01685 0.02901
FGFCM 0.22745 0.87342 -3.65351 0.01512 0.02663
csFCM 0.20941 0.89624 -3.45399 0.01485 0.02578

FSFCM 0.16458 0.92236 -4.29881 0.0085 0.02084

SIN2 with 30%
Gaussian noise

FCM 0.43100 0.80459 -3.58368 0.08569 0.07024
sFCM 0.39895 0.82549 -3.65231 0.06478 0.05982
FCM S 0.38012 0.84780 -3.75489 0.06945 0.06047
FGFCM 0.34989 0.86979 -4.05298 0.03985 0.04702
csFCM 0.33844 0.87026 -4.18481 0.03178 0.04796

FSFCM 0.21589 0.90841 -4.58216 0.01547 0.02350

SIN2 with 30%
Salt and Pepper

noise

FCM 0.44297 0.79531 -2.58961 0.09755 0.06942
sFCM 0.42103 0.83125 -2.84215 0.07854 0.06589
FCM S 0.40953 0.84025 -2.72358 0.07402 0.05998
FGFCM 0.35136 0.86478 -2.83881 0.04199 0.04942
csFCM 0.34408 0.86558 -3.02984 0.03460 0.04527

FSFCM 0.21478 0.89945 -3.64370 0.02471 0.02159

SIN3 with 30%
Gaussian noise

FCM 0.49647 0.79541 -2.95012 0.18542 0.16272
sFCM 0.45216 0.79428 -3.00005 0.16985 0.15892
FCM S 0.49125 0.78652 -3.01785 0.16524 0.14856
FGFCM 0.41025 0.82014 -3.14269 0.13025 0.09518
csFCM 0.44028 0.81590 -3.16029 0.11685 0.08932

FSFCM 0.34021 0.87453 -3.58096 0.06992 0.04835

SIN3 with 30%
Salt and Pepper

noise

FCM 0.54953 0.78302 -2.89477 0.17951 0.20707
sFCM 0.49852 0.79025 -2.94586 0.16589 0.20025
FCM S 0.48965 0.79149 -2.98543 0.15978 0.18936
FGFCM 0.40953 0.82302 -3.29708 0.12951 0.16153
csFCM 0.43785 0.82406 -3.25081 0.11798 0.15848

FSFCM 0.36526 0.88007 -3.75088 0.05102 0.05233

SIN4 with 30%
Gaussian noise

FCM 0.26163 0.86272 -3.15685 0.04615 0.03094
sFCM 0.25998 0.86901 -3.17446 0.03998 0.02908
FCM S 0.25602 0.87006 -3.18098 0.03759 0.02781
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FGFCM 0.23370 0.88031 -3.26731 0.01828 0.02296
csFCM 0.23066 0.88552 -3.26366 0.01943 0.02083

FSFCM 0.193859 0.90202 -3.78053 0.00905 0.01509

SIN4 with 30%
Salt and Pepper

noise

FCM 0.25220 0.85272 -3.46289 0.04182 0.02938
sFCM 0.24086 0.86378 -3.48122 0.03854 0.02800
FCM S 0.23845 0.86945 -3.50014 0.03695 0.02768
FGFCM 0.21323 0.88031 -3.58162 0.02257 0.02323
csFCM 0.20816 0.88352 -3.66698 0.01445 0.02132

FSFCM 0.18956 0.91202 -4.35897 0.00566 0.01382

SIN5 with 30%
Gaussian noise

FCM 0.3859 0.8034 -2.3458E+9 0.04801 0.03123
sFCM 0.3664 0.8192 -3.0134E+9 0.03812 0.02901
FCM S 0.3599 0.8256 -3.3474E+9 0.03417 0.02727
FGFCM 0.2559 0.8576 -4.0134E+9 0.03022 0.02981
csFCM 0.2819 0.8489 -4.6796E+9 0.02626 0.02323

FSFCM 0.2189 0.8901 -5.2876E+9 0.01242 0.01234

SIN5 with 30%
Salt and Pepper

noise

FCM 0.3729 0.8011 -2.6810E+9 0.04603 0.03345
sFCM 0.2884 0.8209 -3.0120E+9 0.03615 0.02828
FCM S 0.2754 0.8465 -3.16216E+9 0.03273 0.02901
FGFCM 0.2104 0.8532 -3.6810E+9 0.02789 0.02456
csFCM 0.2494 0.8378 -4.3204E+9 0.02533 0.02121

FSFCM 0.1064 0.9023 -4.9204E+9 0.01440 0.01123

SIN6 with 30%
Gaussian noise

FCM 0.3079 0.8023 -2.7529E+9 0.04405 0.03094
sFCM 0.2299 0.8254 -3.5590E+9 0.03219 0.02567
FCM S 0.2429 0.8123 -3.6703E+9 0.03475 0.02789
FGFCM 0.2234 0.8379 -3.8312E+9 0.02331 0.02012
csFCM 0.2169 0.8587 -4.9774E+9 0.02486 0.02285

FSFCM 0.1324 0.9145 -5.3579E+9 0.01338 0.01012

SIN6 with 30%
Salt and Pepper

noise

FCM 0.3144 0.8054 -2.6944E+9 0.04010 0.03234
sFCM 0.2624 0.8165 -3.0769E+9 0.02869 0.02584
FCM S 0.2364 0.8492 -3.7937E+9 0.02824 0.02678
FGFCM 0.1909 0.8523 -3.9512E+9 0.02391 0.02123
csFCM 0.1974 0.8654 -4.4851E+9 0.02596 0.02234

FSFCM 0.1259 0.9223 -5.4620E+9 0.01045 0.01345
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Table 5.2: The mean values of validity functions over the
MRI images with various levels of noise and inhomogeneity

Image
Segmented
Methods

Cluster Validity Function
VP E VP C VF S VXB VSC

Noise 5%,
IH=20%

FCM 0.18960 0.90066 -3.32001 0.01625 0.02101
sFCM 0.18393 0.90510 -3.36894 0.01600 0.02081
FCM S 0.17847 0.90622 -3.37679 0.01613 0.02056
FGFCM 0.15942 0.91329 -3.45942 0.01592 0.01958
csFCM 0.15843 0.91511 -3.48027 0.01329 0.01853
FSFCM 0.15724 0.92419 -4.41607 0.01222 0.01689

Noise 7%,
IH=20%

FCM 0.20692 0.89155 -3.29695 0.01931 0.02338
sFCM 0.18960 0.90066 -3.32001 0.01911 0.02268
FCM S 0.18547 0.90389 -3.33674 0.01865 0.02252
FGFCM 0.18846 0.90257 -3.48545 0.01641 0.02058
csFCM 0.18742 0.90866 -3.51848 0.01501 0.01955
FSFCM 0.16029 0.92365 -4.28821 0.01374 0.01778

Noise 9%,
IH=20%

FCM 0.21977 0.88907 -3.48120 0.02072 0.02626
sFCM 0.21263 0.88994 -3.54394 0.01990 0.02512
FCM S 0.21018 0.88944 -3.56894 0.02042 0.02490
FGFCM 0.19098 0.89456 -3.61634 0.01490 0.02202
csFCM 0.19016 0.89578 -3.63718 0.01572 0.02223
FSFCM 0.16901 0.91329 -3.94283 0.01422 0.01936

Noise 5%,
IH=40%

FCM 0.19932 0.89562 -3.56865 0.01551 0.02229
sFCM 0.19773 0.89743 -3.57325 0.01586 0.02168
FCM S 0.18979 0.89965 -3.57821 0.01507 0.02139
FGFCM 0.17402 0.91170 -3.58557 0.01480 0.02133
csFCM 0.17431 0.91059 -3.59596 0.01431 0.02029
FSFCM 0.15397 0.93183 -4.56466 0.01248 0.01867

Noise 7%,
IH=40%

FCM 0.21964 0.87242 -3.48839 0.02894 0.02889
sFCM 0.21172 0.88286 -3.56016 0.02681 0.02789
FCM S 0.21100 0.88960 -3.56304 0.02605 0.02750
FGFCM 0.19317 0.89953 -3.59851 0.01764 0.02288
csFCM 0.20041 0.89241 -3.59602 0.01701 0.02464
FSFCM 0.16616 0.90960 -4.09950 0.01468 0.01915

Noise 9%,
IH=40%

FCM 0.22838 0.88358 -3.47568 0.02922 0.02753
sFCM 0.21961 0.88807 -3.49818 0.02609 0.02656
FCM S 0.21918 0.88906 -3.51894 0.02567 0.02609
FGFCM 0.19840 0.89148 -3.58410 0.02123 0.02342
csFCM 0.19652 0.89308 -3.61334 0.02096 0.02387
FSFCM 0.17193 0.90982 -3.98324 0.01621 0.02023
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Figure 5.12 – Validity function values of VP E, VP C , VXB, VF S, and VSC over the 51
simulated MRI brain images corrupted by 9% noise and 40% inhomogeneity.

b- Segmentation Accuracy (SA)

In this section, we evaluate the proposed algorithm and the compared algorithms in terms of
segmentation accuracy measure (SA), which can be expressed as:

SA = number of correctly classified pixels
total number of pixels (5.7)

From the results shown in Table 5.3, it can be seen that the SA values of FGFCM and
csFCM are larger than those of FCM, sFCM, and FCM S algorithms. Furthermore, FSFCM has
much larger SA values in Table 5.3. It indicates that the proposed method achieves superior
segmentation performance in terms of the segmentation accuracy measure.

Table 5.4 presents the average values of SA for the three segmented regions of the MRI brain
images: CSF, GM, and WM, obtained by the six different algorithms with different levels of noise
and inhomogeneity. It can be seen from Table 5.4 that the SA values of the proposed algorithm
for CSF, GM, and WM tissues are larger than those of the compared computing algorithms.
It reflects that the FSFCM algorithm achieves superior segmentation performance even with
increased noise in the MRI images.
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Figure 5.13 displays the average values of the SA measure over the 51 MRI images with
9% noise and 40% inhomogeneity of the three brain tissues obtained by the proposed algorithm
(FSFCM) and the compared algorithms (FCM, sFCM, FCM S, FGFCM, and csFCM). From
Figure 5.13, we can observe that the proposed algorithm performs well in the segmentation
of WM, GM, and CSF tissues across all MRI images. The proposed algorithm demonstrates
a powerful capacity to accurately segment the three brain tissues compared to the other five
algorithms.

Table 5.3: Comparison of SA measure on the synthetic
images with various levels of noise.

Image Method SA Image Method SA

SIN1 with
30% Salt

and Pepper
noise

FCM 0.78023
SIN4 with
30% Salt

and Pepper
noise

FCM 0.67529
sFCM 0.80002 sFCM 0.68047
FCM S 0.80475 FCM S 0.68259
FGFCM 0.83470 FGFCM 0.77025
csFCM 0.84021 csFCM 0.78691
FSFCM 0.91952 FSFCM 0.90902

SIN1 with
30%

Gaussian
noise

FCM 0.75828
SIN4 with

30%
Gaussian

noise

FCM 0.68045
sFCM 0.76852 sFCM 0.69417
FCM S 0.76524 FCM S 0.69924
FGFCM 0.81256 FGFCM 0.76982
csFCM 0.82014 csFCM 0.77328
FSFCM 0.91651 FSFCM 0.90032

SIN2 with
30% Salt

and
Pepper
noise

FCM 0.72045
SIN5 with
30% Salt

and
Pepper
noise

FCM 0.76521
sFCM 0.75210 sFCM 0.77059
FCM S 0.75861 FCM S 0.77928
FGFCM 0.80426 FGFCM 0.80025
csFCM 0.80578 csFCM 0.81965
FSFCM 0.91452 FSFCM 0.91023

SIN2 with
30%

Gaussian
noise

FCM 0.68452
SIN5 with

30%
Gaussian

noise

FCM 0.75820
sFCM 0.69425 sFCM 0.77458
FCM S 0.69014 FCM S 0.79025
FGFCM 0.78025 FGFCM 0.82036
csFCM 0.79258 csFCM 0.84473
FSFCM 0.91254 FSFCM 0.91486

SIN3 with 30%
Salt and Pepper

noise

FCM 0.7023

SIN6 with 30%
Salt and Pepper

noise

FCM 0.7127
sFCM 0.7293 sFCM 0.7413
FCM S 0.8049 FCM S 0.8026
FGFCM 0.8172 FGFCM 0.8369
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csFCM 0.8684 csFCM 0.8426
FSFCM 0.9465 FSFCM 0.9514

SIN3 with
30%

Gaussian
noise

FCM 0.7165
SIN6 with

30%
Gaussian

noise

FCM 0.7044
sFCM 0.7837 sFCM 0.7638
FCM S 0.8017 FCM S 0.8105
FGFCM 0.8716 FGFCM 0.8496
csFCM 0.8379 csFCM 0.8502
FSFCM 0.9382 FSFCM 0.9649

Table 5.4: Comparison of SA measure over the different
using MRI brain images with various levels of noise and

inhomogeneity

Image Method
SA

CSF GM WM

Noise 5%, IH=20%

FCM 0.94240 0.92805 0.95168
sFCM 0.94278 0.92823 0.95160
FCM S 0.94521 0.92841 0.95245
FGFCM 0.94765 0.92881 0.96086
csFCM 0.94688 0.92837 0.95200

FSFCM 0.95885 0.93960 0.97128

Noise 7%, IH=20%

FCM 0.90154 0.88198 0.89472
sFCM 0.90234 0.88567 0.90012
FCM S 0.90743 0.88997 0.90459
FGFCM 0.91582 0.90456 0.92158
csFCM 0.91680 0.89110 0.92350

FSFCM 0.94743 0.92997 0.94459

Noise 9%, IH=20%

FCM 0.86844 0.83909 0.84124
sFCM 0.87098 0.85422 0.85342
FCM S 0.87162 0.86031 0.84520
FGFCM 0.88386 0.89000 0.91964
csFCM 0.89105 0.88212 0.91666

FSFCM 0.93893 0.92188 0.93797

Noise 5%, IH=40%

FCM 0.94101 0.93662 0.91867
sFCM 0.94121 0.93666 0.91877
FCM S 0.94123 0.93694 0.92187
FGFCM 0.94049 0.93822 0.92869
csFCM 0.94139 0.93812 0.92919

FSFCM 0.95587 0.95879 0.96848
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Noise 7%, IH=40%

FCM 0.86089 0.84233 0.91391
sFCM 0.86348 0.85752 0.91987
FCM S 0.87190 0.86359 0.91926
FGFCM 0.87526 0.87211 0.92424
csFCM 0.86921 0.86330 0.93310

FSFCM 0.93972 0.91417 0.94822

Noise 9%, IH=40%

FCM 0.81652 0.78311 0.81728
sFCM 0.84604 0.81637 0.82691
FCM S 0.81035 0.84714 0.81028
FGFCM 0.88018 0.86915 0.89111
csFCM 0.88514 0.85074 0.89197

FSFCM 0.91484 0.90081 0.92867

Figure 5.13 – The various values of segmentation accuracy measure of the brain tissues
obtained by FSFCM and the compared algorithms on the simulated MRI brain images

corrupted by 9% noise and 40% inhomogeneity.

c- Tissue Segmentation Accuracy (TSA)

In this section, we present the third evaluation measure in our quantitative analysis, namely
tissue segmentation accuracy (TSA) (Adhikari et al., 2015). The TSA measure is calculated as
follows:

TSA = 2NCT K

NCIT K + NGT K
(5.8)

where NCT K represents the number of pixels correctly assigned to tissue k by a given method
within the ground truth mask, NGT K is the number of pixels assigned to tissue k in the ground
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truth mask, and NCIT K is the total number of pixels assigned to tissue k (inside and outside the
ground truth mask).

Table 5.5 presents a comparison of the tissue segmentation accuracy measure for CSF, GM,
and WM tissues using images with (5%, 7%, 9%) noise and (20%, 40%) inhomogeneity. The table
includes the results for the proposed algorithm (FSFCM) and the compared algorithms. It can
be observed that the proposed algorithm achieves the highest TSA values for the three brain tis-
sues. On the other hand, the segmentation performance of the compared algorithms deteriorates
under high levels of noise and inhomogeneity. This demonstrates the superior effectiveness of the
proposed algorithm in segmenting the main brain tissues.

Figure 5.14 illustrates the average values of the TSA measure for CSF, GM, and WM tissues
over the 51 MRI images with 9% noise and 40% inhomogeneity. The results are obtained using
the proposed algorithm and the compared algorithms. It is evident that our proposed algorithm
consistently outperforms the compared algorithms in segmenting CSF, GM, and WM tissues
across the entire set of MRI images.
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Table 5.5: Comparison of TSA measure over the different
using images with various levels of noise and inhomogeneity

Image Method
Tissue Segmentation Accuracy (TSA)

CSF GM WM

Noise 5%, IH=20%

FCM 0.90077 0.90589 0.93303
sFCM 0.90112 0.90764 0.93765
FCM S 0.90328 0.90715 0.93860
FGFCM 0.90521 0.91850 0.94756
csFCM 0.90422 0.91936 0.94607

FSFCM 0.92854 0.93974 0.95821

Noise 7%, IH=20%

FCM 0.85403 0.83752 0.87632
sFCM 0.85712 0.84541 0.88420
FCM S 0.85879 0.84831 0.88783
FGFCM 0.86140 0.87191 0.90973
csFCM 0.86319 0.87079 0.90369

FSFCM 0.89444 0.91286 0.93303

Noise 9%, IH=20%

FCM 0.78030 0.81782 0.85424
sFCM 0.80007 0.82986 0.86543
FCM S 0.80439 0.82994 0.88493
FGFCM 0.83750 0.87517 0.90384
csFCM 0.83284 0.86656 0.90106

FSFCM 0.89157 0.90760 0.92746

Noise 5%, IH=40%

FCM 0.89545 0.87942 0.90869
sFCM 0.89698 0.88410 0.91006
FCM S 0.89876 0.88943 0.91311
FGFCM 0.90076 0.89903 0.92104
csFCM 0.90429 0.89465 0.92408

FSFCM 0.92930 0.92104 0.92429

Noise 7%, IH=40%

FCM 0.84861 0.85732 0.89070
sFCM 0.85000 0.86210 0.89119
FCM S 0.85157 0.86760 0.89746
FGFCM 0.86803 0.88214 0.91402
csFCM 0.89226 0.87171 0.91236

FSFCM 0.91996 0.91301 0.93810

Noise 9%, IH=40%

FCM 0.77821 0.80477 0.80103
sFCM 0.8069 0.82084 0.83866
FCM S 0.79030 0.82782 0.82424
FGFCM 0.82679 0.86222 0.87251
csFCM 0.83114 0.86383 0.88697

FSFCM 0.88024 0.89029 0.92918
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Figure 5.14 – The various values of tissue segmentation accuracy measure of the brain
tissues obtained by FSFCM and the compared algorithms on the simulated MRI brain

images corrupted by 9% noise and 40% inhomogeneity.

5.2.4 Conclusion
In this chapter, we proposed a novel fuzzy clustering algorithm termed as the Fully Spatial

FCM Algorithm for Brain MRI Image Segmentation. The key feature of our algorithm is its com-
prehensive consideration of neighboring pixels’ contribution during the fuzzy clustering process.
By adjusting the influence of the central pixel in defining its new intensity, we incorporated a
spatial constraint that effectively balances the reduction of sensitivity to imaging artifacts and
the preservation of image detail information.

To evaluate the performance of the FSFCM algorithm, we conducted experiments on syn-
thetic and brain MR images corrupted by various levels of noise. Additionally, we compared the
performance of our algorithm with existing fuzzy clustering algorithms. The results demonstrate
the effectiveness of the FSFCM algorithm in achieving accurate segmentation while effectively
handling image artifacts.
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Chapter 6

General Conclusions and
Perspectives
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6.1 Summary of contributions
The FCM algorithm is known to be sensitive to noise because it does not incorporate any

spatial information. Additionally, FCM is a local optimum searching algorithm that depends
mainly on the choice of the number of clusters and the initial cluster centers. These limita-
tions can result in suboptimal segmentation results, particularly in medical imaging applications
where accurate and reliable segmentation is crucial for diagnosis and treatment planning. To ad-
dress these shortcomings, in this thesis, we proposed an automatic method for brain MRI image
segmentation.

To address the main shortcomings of the FCM algorithm, our contributions are twofold. First,
we propose a new adaptive initialization method that automatically evolves the number of clusters
and improves the conventional process of initializing centers in the FCM algorithm. Second, we
introduce a full spatial FCM algorithm that fully considers the contribution of neighboring pixels
in the fuzzy clustering process, thereby improving the FCM algorithm’s sensitivity to noise.

In Chapter 2, we first introduced the concept of image segmentation and its importance
in a wide range of applications, such as medical imaging. Second, we discussed the principles
of MRI imaging, including the underlying physics and the different types of MRI sequences
commonly used in medical imaging. After that, we provided a detailed explanation of brain
MRI segmentation, including its challenges and key applications. Following this, we presented a
comprehensive survey of classical and modern state-of-the-art approaches for image segmentation.
Our goal is to provide useful references to fundamental concepts accessible to the broad community
of image segmentation techniques, in particular, we presented a taxonomy of clustering techniques,
which are widely used in image segmentation, and discussed their strengths and weaknesses.

In Chapter 3, we first provided an overview of several fuzzy c-means (FCM) based image
clustering concepts. Next, we presented the main limitations of the FCM algorithm, including its
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sensitivity to initialization, poor performance in noisy environments, and difficulty in determining
the optimal number of clusters. To address these limitations, we summarized various approaches
aimed at automatically evolving the number of clusters and improving the conventional process
of initializing centers in the FCM algorithm. Additionally, we proposed a large number of FCM
derivatives that aim to either speed up the clustering process or provide improved or more robust
clustering performance against noise. The derivatives that aim to improve the sensitivity of
FCM algorithm can be essentially divided into two categories: input image generation-based
methods and objective function modification-based methods. In the input image generation-
based methods, the input data is preprocessed to extract features that are then used to generate
a new image for clustering. This new image is expected to have better clustering properties than
the original image. On the other hand, the objective function modification-based methods involve
modifying the objective function used in FCM to incorporate additional constraints or penalties
to improve the clustering performance.

In Chapter 4, we proposed a novel strategy to address the issue of the FCM algorithm’s
sensitivity to initialization schemes. Our proposed method is based on an adaptive split-stage
technique that effectively divides the image into several homogeneous regions using a multi-
threshold approach based on entropy information. To merge these regions, we introduced a new
distance metric that combines the homogeneous regions, and then applied the FCM algorithm
using the centers of the obtained regions. Additionally, we introduced a novel fuzzy validity
index that incorporated a new definition for the separation measure. This allowed us to select
the optimal fuzzy partition with high compactness and separation between clusters.

In Chapter 5, we introduce a robust fuzzy clustering algorithm that considers spatial infor-
mation to improve the accuracy and reliability of FCM-based image segmentation. Our proposed
algorithm assigns an important role to the central pixel if it is not a noisy pixel, and suppresses its
influence from the fuzzy clustering if it is corrupted with noise. The degree of similarity between
pixels is calculated using a fuzzy measure, and a new term is introduced to indicate the noise
level of pixels. These measures are combined to construct neighborhood intensity information
and enhance the algorithm’s performance. The proposed algorithm aims to balance the reduc-
tion of sensitivity of the FCM algorithm to imaging artifacts and the preservation of image detail
information.

6.2 Perspectives
When an image is corrupted by noise, accurately identifying the pixels that belong to a

specific object or region in the image can be a challenging task. Relying solely on local spatial
information, which considers only the pixels adjacent to a given pixel, may not provide sufficient
information to accurately segment the image. However, incorporating non-local information,
such as information about the entire image structure, can significantly improve the segmentation
performance. By considering the global image structure, the proposed segmentation method can
better distinguish between different regions and objects in the image, leading to more precise and
reliable segmentation results.

In some cases, the proposed segmentation method may take longer to compute than other
state-of-the-art methods. However, adopting a parallel strategy, such as utilizing parallel pro-
cessing techniques or distributed computing, can significantly improve the computational time of
the algorithm.

The validity index is a crucial metric that evaluates the quality of the segmentation results
obtained by the algorithm. By incorporating overlap information, which measures the degree of
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similarity between clusters, the validity index can be further improved. This approach provides
a more comprehensive assessment of the segmentation performance, enabling the algorithm to
better distinguish between different regions and objects in the image.

Moreover, a fuzzy representation of cluster centers as vectors can significantly enhance the
algorithm’s accuracy by effectively capturing the complex interrelationships between pixels in an
image.
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J. O. (2021). Automatic clustering algorithms: a systematic review and bibliometric analysis
of relevant literature. Neural Computing and Applications, 33:6247–6306.

Fraz, M. M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A. R., Owen, C. G., and
Barman, S. A. (2012). An ensemble classification-based approach applied to retinal blood vessel
segmentation. IEEE Transactions on Biomedical Engineering, 59(9):2538–2548.

Gong, M., Su, L., Jia, M., and Chen, W. (2013). Fuzzy clustering with a modified mrf energy
function for change detection in synthetic aperture radar images. IEEE Transactions on Fuzzy
Systems, 22(1):98–109.

Greenspan, H., Ruf, A., and Goldberger, J. (2006). Constrained gaussian mixture model frame-
work for automatic segmentation of mr brain images. IEEE transactions on medical imaging,
25(9):1233–1245.

Guha, S., Rastogi, R., and Shim, K. (1998). Cure: An efficient clustering algorithm for large
databases. ACM Sigmod record, 27(2):73–84.

Hammouche, K., Diaf, M., and Siarry, P. (2010). A comparative study of various meta-heuristic
techniques applied to the multilevel thresholding problem. Engineering Applications of Artifi-
cial Intelligence, 23(5):676–688.

Held, K., Kops, E. R., Krause, B. J., Wells, W. M., Kikinis, R., and Muller-Gartner, H.-W.
(1997). Markov random field segmentation of brain mr images. IEEE transactions on medical
imaging, 16(6):878–886.
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