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Abstract

The rapid digitalization of artwork collections in libraries, museums, galleries,

and art centers has resulted in a growing interest in developing autonomous systems

capable of understanding art concepts and categorizing fine art paintings as it became

difficult to manually manipulate the content of these collections. However, the task of

automatic categorization comes with significant challenges due to the subjective in-

terpretation and perception of art elements and the reliance on accurate annotations

provided by art experts. As in recent years, deep learning approaches and com-

puter vision techniques have shown remarkable performance in automating painting

classification; this research aims to develop efficient deep learning systems that can

automatically classify the artistic style of fine-art paintings. In this thesis, we investi-

gate the effectiveness of seven pre-trained EfficientNet models for identifying the style

of a painting and propose custom models based on pre-trained EfficientNet architec-

tures. In addition, we analyzed the impact of deep retraining the last eight layers

on the performance of the custom models. The experimental results on the standard

fine art painting classification dataset, Painting-91 indicate that deep retraining of

the last eight layers of the custom models yields the best performance, achieving a 5%

improvement compared to the base models. This demonstrates the effectiveness of

leveraging pre-trained EfficientNet models for automatic artistic style identification in

paintings. Moreover, the study presents a framework that compares the performance

of six pre-trained convolutional neural networks (Xception, ResNet50, InceptionV3,

InceptionResNetV2, DenseNet121, and EfficientNet B3) for identifying artistic styles

in paintings. Notably, Xception architecture is employed for this purpose for the first

time. Furthermore, the impact of different optimizers (SGD, RMSprop, and Adam)

and two learning rates (1e-2 and 1e-4) on model performance is studied using trans-

fer learning. The experiments on two different art classification datasets, Pandora18k

and Painting-91 revealed that InceptionResNetV2 achieves the highest accuracy for

style classification on both datasets when trained with the Adam optimizer and a

learning rate of 1e-4. Integrating deep learning algorithms and transfer learning tech-

niques into fine art painting analysis and classification offers promising avenues for

automating style identification tasks. The proposed models and findings contribute

to the development of automatic methods that enable the art community to efficiently

analyze and categorize the vast number of digital paintings available on the internet.

Keywords: Computer vision, Image processing, Convolutional neural network, Style

Classification, Optimizers, Transfer learning.
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Résumé

La numérisation des collections d’œuvres d’art dans les bibliothèques, les musées,

les galeries et les centres d’art a suscité un intérêt croissant pour le développement de

systèmes autonomes capables de comprendre les concepts artistiques et de catégoriser

les peintures d’art avec précision, car il est devenu difficile de manipuler manuelle-

ment le contenu de ces collections. Étant donné que les approches d’apprentissage

profond et les techniques de vision par ordinateur ont montré des performances remar-

quables dans l’automatisation de la classification des peintures ces dernières années,

cette recherche vise à développer des systèmes d’apprentissage profond efficaces ca-

pables de classer automatiquement le style artistique des peintures d’art. Dans cette

thèse, nous étudions l’efficacité de sept modèles EfficientNet pré-entrâınés pour iden-

tifier le style d’une peinture, et nous proposons des modèles personnalisés basés sur

les architectures EfficientNet pré-entrâınées. De plus, nous analysons l’impact de la

réentrainement profonde des huit dernières couches sur les performances des modèles

personnalisés. Les résultats expérimentaux sur la base de données Painting-91, in-

diquent que la réentrainement profonde des huit dernières couches des modèles person-

nalisés offre les meilleures performances, avec une amélioration de 5 % par rapport

aux modèles de base. Cela démontre l’efficacité de l’utilisation des modèles Effi-

cientNet pré-entrâınés pour l’identification automatique du style artistique dans les

peintures. De plus, cette étude présente une comparaison des performances de six

réseaux neuronaux convolutionnels pré-entrâınés (Xception, ResNet50, InceptionV3,

InceptionResNetV2, DenseNet121 et EfficientNet B3) pour l’identification des styles

artistiques dans les peintures. Notamment, l’architecture Xception est utilisée pour

la première fois pour ce but. Par ailleurs, l’impact de différents optimiseurs (SGD,

RMSprop et Adam) et de deux taux d’apprentissage (1e-2 et 1e-4) sur les perfor-

mances du modèle est étudié à l’aide de l’apprentissage par transfert. Les expériences

menées sur deux bases de données différentes, Pandora18k et Painting-91, révèlent

qu’InceptionResNetV2 obtient la meilleure précision pour la classification des styles

sur les deux ensembles de données lorsqu’il est entrâıné avec l’optimiseur Adam et

un taux d’apprentissage de 1e-4. L’intégration des algorithmes d’apprentissage pro-

fond et des techniques d’apprentissage par transfert dans l’analyse et la classifica-

tion des peintures d’art offre des perspectives prometteuses pour l’automatisation des

tâches d’identification des styles. Les modèles proposés et les résultats contribuent

au développement de méthodes automatiques permettant à la communauté artistique

d’analyser et de catégoriser efficacement le grand nombre de peintures numériques

disponibles sur Internet.
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 الملخص

ير ، مما أثار اهتمامًا متزايداً في تطوالفنومراكز  المعارض ،المتاحف ،الفنية في المكتبات تشكيلاتتطورت عملية رقمنة ال

. ومع ذلك، تتشكيلامحتوى هذه اللاليدوي  تصنيفقادرة على فهم الفن وتصنيف اللوحات الفنية، نظرًا لصعوبة ال ليةأأنظمة 

ة التي عناصر الفن، واعتماد التعليقات الدقيقات كبيرة بسبب التفسير الذاتي وإدراك تواجه تحدي ليالآ فإن مهمة التصنيف

يقدمها خبراء الفن. للتغلب على هذه التحديات، يتطلب تطوير خوارزميات وتقنيات متقدمة تستطيع التقاط التفاصيل المعقدة 

 .ح بتحليل وتصنيف تلقائي أكثر دقة وموثوقية للوحات الفنية الجميلةوالتعقيدات في الأنماط الفنية بفعالية، مما يسم

في السنوات الأخيرة، أظهرت مناهج التعلم العميق وتقنيات رؤية الحاسوب أداءً ملحوظًا في التصنيف التلقائي للوحات الفنية. 

روحة، اللوحات تلقائيًا. في هذه الأطتهدف هذه الدراسة إلى تطوير أنظمة تعلم عميق فعالة تستطيع تصنيف أسلوب الفن في 

بة مسبقاً في تحديد نمط اللوحة، ونقترح نماذج مخصصة مبنية على تلك  EfficientNet نقوم بدراسة فعالية سبعة نماذج مُدرَّ

بة مسبقاً. بالإضافة إلى ذلك، نحلل تأثير إعادة تدريب آخر ثماني طبقات في النماذج المخصصة على أ ائها. دالهياكل المُدرَّ

إلى أن إعادة تدريب آخر ثماني طبقات في النماذج  (Painting-91)تشير نتائج التجارب على مجموعة بيانات اللوحات الفنية 

 مقارنة بالنماذج الأساسية. وهذا يظُهِر فعالية استخدام نماذج %5المخصصة تؤدي إلى أفضل أداء، مع تحقيق تحسين بنسبة 

EfficientNet   بة مسبقاً في تحديد النمط الفني للوحات تلقائيًاالمُد  .رَّ

بة مسبقاً ، Xception ،ResNet50) علاوة على ذلك، تقدم الدراسة مقارنة أداء ستة شبكات عصبية حوسبية مُد رَّ

InceptionV3 ،InceptionResNetV2 ،DenseNet121و ،EfficientNet B3)  في تحديد الأنماط الفنية في

، SGD) لأول مرة لهذا الغرض. وعلاوة على ذلك، يدُرس تأثير مُحسِِّنات مختلفة مثل Xceptionم تحديداً اللوحات. يستخد

RMSpropو ،Adam)  ومعدلات تعلُّم مختلفة على أداء كل نموذج باستخدام التعلم النقلي. تظُهِر التجارب على مجموعتي

يحقق أعلى دقة في تصنيف الأنماط  InceptionResNetV2 ، أن نموذجPainting-91و Pandora18kبيانات مختلفتين، 

  (1e-4).ومعدل تعلُّم Adam على كلا المجموعتين عند تدريبه بمحسِِّن

تكامل خوارزميات التعلم العميق وتقنيات التعلم النقلي في تحليل وتصنيف اللوحات الفنية الجميلة يوفر آفاقاً واعدة لتطبيقات 

تسهم النماذج المقترحة والنتائج المستندة في تطوير الأساليب التلقائية التي تمكِِّن المجتمع الفني  التعرف على الأنماط تلقائيًا.

 .من تحليل وتصنيف العديد الهائل من اللوحات الرقمية المتوفرة على الإنترنت
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CHAPTER 1. INTRODUCTION

1.1 Problem Statement

Fine art paintings play a significant role in society, culture, and history as they hold

a part of the cultural heritage and can provide a window into the past, reflecting the

values, beliefs, and customs of different societies and time periods.

Art specialists, art historians, or curators usually study and classify fine art paintings

into several groups depending on artistic style, genre, historical time, or artist to

facilitate their understanding, comparison, and manipulation.

Art experts use various techniques to recognize the artistic style of fine art paint-

ings; it includes analyzing the painting’s composition, color palette, brushwork, and

other visual elements to identify its style. Different styles have distinct visual charac-

teristics that are recognizable to experts trained in art history. This process is very

time-consuming and extremely expensive as it is performed manually.

However, this process can also be automated using machine learning techniques as

computer vision has advanced significantly in recent years, with deep learning tech-

niques providing the ability to recognize patterns and features in previously difficult

images to detect. Automatically classifying paintings by style and authorship appears

to be among the most challenging computer vision issues. It has recently attracted

a growing amount of attention from the academic community because of the rise of

databases that contain high-resolution digital copies of fine art paintings.

The organization of digitized painting collections and the retrieval of artworks from

these collections become increasingly challenging as the size of these collections grows.

It is required to organize the painting databases into classes and sub-classes in order

to achieve efficient management of search and other activities of a similar kind. To

manually tag each of these databases as they continue to expand in size would be

both extremely expensive and time-consuming.

As a result, of the difficulty of the problem stated above, many studies have been

conducted in the areas of painting analysis, artistic style and genre categorization,

artist identification, and automatic annotation of paintings with these tags.

This thesis aims to contribute to the field of art by exploring the use of deep learn-

ing algorithms specifically for recognizing the artistic style of fine art paintings. By

leveraging the power of deep learning, we seek to develop a model that can accurately

identify and classify paintings based on their unique artistic styles.
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The developed model for recognizing the artistic style of a fine art painting could

be integrated into an augmented-reality application, allowing users to point their

smartphone camera at a painting and receive information about its style, historical

context, and the artist who created it. By bringing together the worlds of art and

technology, people can engage with fine art paintings and deepen their understanding

and appreciation of them.

1.2 Research Contributions

The main contributions of this research are:

• Providing a comprehensive literature review of some of the most relevant ma-

chine learning studies in classifying and analysing fine art paintings by style.

• Investigating the effectiveness of the pre-trained EfficientNet models family from

B0 to B6 for the task of identifying the style of a painting.

• Proposing custom models based on the pre-trained EfficientNet models and

using transfer learning to fine-tune the models.

• Analyzing the effect of deep retraining the last layers of our custom models.

• Proposing a framework to compare the performances of six pre-trained convolu-

tional neural networks (Xception, ResNet50, InceptionV3, InceptionResNetV2,

DenseNet121, and EfficientNet B3) for identifying the artistic style of a painting.

• Studying the effect of various optimizers (SGD, RMSprop, and Adam) with

different learning rates (1e-2 and 1e-4) on the performance of pre-trained models.

1.3 Thesis Structure

The thesis is structured as follows:

• Chapter 1: describes the research motivation and the research problem. The

thesis contributions and the thesis structure follow it.

• Chapter 2: provides an introduction to fine-art paintings, offering an overview

of the significance of artistic style and its role in the world of art. It also
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explores the methods art experts employ to identify and distinguish the unique

style of a painting, highlighting the challenges and difficulties they encounter

in this process. Furthermore, this chapter explores augmented reality (AR)

integration in the art world, discussing how AR technology can enhance the

viewing experience and provide new avenues for artistic expression.

• Chapter 3: provides an overview of the existing research and methodologies of

the literature on fine-art painting style classification, covering both classical and

deep learning approaches. It discusses the commonly used datasets for painting

classification, highlighting their characteristics and challenges. Additionally,

the chapter presents the evaluation metrics in image classification, explaining

their relevance in assessing model performance.

• Chapter 4: focuses on our approach to recognizing the artistic style of fine

art paintings using EfficientNet models and transfer learning. We describe in

detail the methodology, outline the steps taken in preprocessing the data, and

explain how transfer learning with EfficientNet models is applied to the task

of style recognition. The experiments conducted throughout this chapter are

specifically based on the art classification dataset Painting-91.

• Chapter 5: investigates the effect of optimizers on CNN architectures for art

style classification. The focus is on exploring the impact of various optimization

algorithms, including SGD, RMSprop, and Adam, with different learning rates

(1e-2 and 1e-4), on the performance of six pre-trained CNN models in the task

of recognizing and classifying the artistic style of paintings. The experiments

are conducted on two datasets, Pandora18k and Painting-91, to thoroughly

evaluate the accuracy and effectiveness of each optimizer when combined with

different pre-trained CNN architectures.

• Chapter 6: concludes the thesis and presents some future work research direc-

tion.
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CHAPTER 2. FINE-ART PAINTINGS: A COMPREHENSIVE EXPLORATION
OF ARTISTIC STYLES AND CHALLENGES IN PAINTING

2.1 Introduction

This chapter provides an introduction to fine-art paintings, including an overview

of the artistic style and an exploration of the methods used by experts to identify

the unique style of a painting, alongside the challenges they face in this process.

Furthermore, it explores the difficulties researchers encounter in working with fine

art paintings and the integration of augmented reality in the art world. Finally, we

conclude the chapter with a conclusion.

2.2 Preview

2.2.1 Fine art paintings

Fine art paintings encompass a diverse range of visual artworks created on various

surfaces with the intention of aesthetic expression, utilizing different styles, subject

matters, mediums, painting techniques, and materials. They are a form of artistic ex-

pression that prioritizes creativity, aesthetics, and the exploration of visual language.

The world of fine art painting encompasses a vast range of styles, genres, and subjects.

Artists employ various techniques, such as brushwork, layering, blending, and texture

creation, to bring their artistic visions to life. Through the use of color, composition,

light, shadow, and other visual elements, artists convey emotions, tell stories, explore

symbolism, and challenge societal norms.

Fine-art paintings are treasured for their ability to evoke emotions, inspire contem-

plation, and provide a unique perspective on the world. They serve as a means of

artistic expression and cultural heritage, exhibited in galleries, museums, and private

collections worldwide. These artworks continue to captivate and inspire viewers with

their beauty, creativity, and the profound depths of human imagination.

2.2.2 Artistic style

The artistic style of a fine art painting can vary widely depending on the artist and

the specific painting. Fine art encompasses a broad range of styles and techniques,

each with its own distinct aesthetic qualities. In visual art, style is defined as ”...a

distinctive manner which permits the grouping of works into related categories” (1).
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In other words, the artistic style refers to the distinctive manner in which an artist

portrays subjects, conveys ideas, and applies techniques. It encompasses the artist’s

personal interpretation, preferences, and recurring elements that define their visual

vocabulary. Artistic style can vary widely, from realistic and representational to

abstract and experimental. It may be influenced by historical movements, cultural

contexts, and personal experiences, reflecting the artist’s worldview and intentions.

Figure 2.1 (2) presents the timeline of artistic styles as different styles appeared over

history in different time periods. Examples of these styles include Abstract Expres-

sionism, Romanticism, Baroque, Rococo, Realism, and Symbolism.

Figure 2.1: Timeline of artistic styles

The Baroque style (1600-1750) emerged in the early 16th century in Rome,

then spread rapidly to the rest of Europe. It is renowned for its dramatic expression,

ornate detailing, and use of dark colors, contrasting light and shadow to create a sense

of depth and movement. Figure 2.2 shows different examples of fine art paintings with

the Baroque style.

The Realism style (1848-1900) came during the French revolution. It is char-

acterized by a highly detailed and precise representation of reality, often with an

emphasis on natural light and a neutral color palette. Realist painters sought to por-

tray the world as it was, focusing on everyday life and ordinary people. Figure 2.3

presents different examples of fine art paintings with the Realism style
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Figure 2.2: Examples of paintings with the Baroque style.

Figure 2.3: Examples of paintings with the Realism style
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2.2.3 The role of artistic style and techniques

Artistic styles and techniques are not fixed entities but evolve over time. Artists

may start with a particular style and then explore new avenues, experimenting with

techniques and pushing the boundaries of their artistic practice. Artistic evolution

can be influenced by personal growth, exposure to different artistic movements, or

societal and cultural shifts, resulting in the development of distinct individual styles

or even the establishment of new artistic movements.

Artistic style and techniques play a pivotal role in shaping fine art paintings’s visual

language and expressive qualities. They contribute to the artwork’s unique identity

and aesthetic character, reflecting the artist’s creative choices, cultural influences,

and individual artistic vision. Understanding the significance and impact of artistic

style and techniques is essential for appreciating and analyzing fine art paintings.

2.3 Style classification by art experts

In this section, we describe the methods used by experts to recognize the style of a

painting and the challenges they face in this process.

2.3.1 Methods

Art experts recognize the artistic style of a painting through careful observation and

analysis of its various elements, such as composition, colors, brushstrokes, and subject

matter. They use their knowledge of art history, as well as their experience and

expertise, to identify the unique characteristics of different styles. Some of the key

factors that art experts consider when analyzing a painting’s style include:

• Historical Context: This involves examining the time period in which the paint-

ing was created and the artistic styles that were prevalent during that time. For

example, a painting created in the Early renaissance period may have distinct

characteristics associated with that time period, such as the use of linear per-

spective and an interest in classical mythology(3).

• Technique: This includes studying the brushwork, the use of color, the handling

of light and shade, and other technical aspects of the painting to identify any

particular style or technique used by the artist. For instance, an impressionist
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painting is characterized by loose brushstrokes, the use of complementary colors,

and the depiction of fleeting moments of light(4).

• Subject Matter: The expert analyzes the subject matter and how it is repre-

sented in the painting, as a subject matter may be associated with particular

artistic styles.

• Color Palette: The expert looks at the colors used in the painting and how they

are used, as certain color schemes can be associated with different styles.

• Provenance: The expert considers the painting’s history and any known infor-

mation about its creation and previous ownership to identify any connections

to particular artists or artistic movements.

In addition to these characteristics, an artist’s style may be influenced by their cul-

tural background, social context, and personal experiences. By carefully examining

these features, art experts can identify the unique qualities that define an artist’s

style, connect their work to a specific artistic movement or historical period style,

and provide insights into the artist’s intentions and message.

By recognizing the significance of artistic style and techniques, viewers and art schol-

ars can analyze, appreciate, and contextualize fine art paintings within the broader

spectrum of artistic expression. Understanding the interplay between style, tech-

niques, and artistic intention enriches the interpretation and appreciation of artworks,

allowing for a deeper engagement with the artist’s creative process and the cultural

significance of the artwork.

2.3.2 Challenges and difficulties

Identifying and categorizing the unique style of a painting poses significant challenges

for experts in the field of art. These challenges arise from the subjective nature of

the artistic style, variations and hybridity within styles, contextual considerations,

limitations of visual analysis, incomplete or scarce information, and the complexities

of evolving contemporary styles.

The subjective and interpretive nature of artistic style makes achieving consensus

among experts difficult. In contrast, the diverse range of styles and the incorporation

of multiple influences by artists further complicate the task. Different experts may

have varying opinions and criteria for categorizing styles, leading to a lack of a general

agreement. The fluidity and evolution of artistic styles further complicate the task,
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as artists often experiment with new techniques and borrow influences from multiple

sources, making it challenging to assign rigid classifications.

Contextual factors such as historical, social, and cultural contexts must be considered

to assign artworks to specific stylistic categories accurately. Additionally, limitations

in visual analysis, incomplete information about artists and art movements, and the

evolving nature of contemporary art styles present additional hurdles for experts.

According to Tan et al. (5), the classification of paintings is more challenging than

normal classification tasks, such as the recognition of scenes, object, and architecture

in natural images. This is despite the fact that the classification of paintings has a

variety of applications, such as art authentication, art collection management, digital

archiving and art recommendation systems.

Figure 2.4 (6) presents a collection of representative examples illustrating the chal-

lenge of classifying paintings by different artists. Each row in the figure contains a

distinctive array of samples from different well-known artists, including Vincent van

Gogh, Paul Cezanne, and Maurice Prendergast. The diverse colors displayed beneath

the pictures represent the varying genres and styles employed by these artists in each

painting. Notably, a single artist may create a variety of artworks in multiple different

styles and genres, making it challenging for a computer to categorize the paintings

accurately.

Figure 2.4: Samples of paintings from different artists. Styles and

genres are included based on the color coding

11



CHAPTER 2. FINE-ART PAINTINGS: A COMPREHENSIVE EXPLORATION
OF ARTISTIC STYLES AND CHALLENGES IN PAINTING

One of the most significant obstacles in the study of artworks is the ability of

machines to comprehend abstraction and visualization in painting. However, classi-

fying paintings by style requires a combination of technical expertise and attention to

detail because it is confusing to distinguish between classes. For example, Figure 2.5

(7) shows a variety of images of buildings in various artistic styles, and Figure 2.6 (8)

displays eight examples of forest scenes painted in various fine art styles. Although

all of these images have the same content (building or forest), they belong to various

stylistic categories. Thus, fine-art painting image categorization is more challenging

than natural image classification.

Figure 2.5: Portraying buildings with different styles.

Working with digital images of paintings can introduce additional challenges,

mainly when accurately representing the artwork’s colors, texture, and overall ap-

pearance. The conversion from physical to digital form may involve issues such as

color accuracy, lighting conditions, and capturing fine details. Furthermore, the size

of the paintings can pose difficulties in capturing the entire piece in a single image

without compromising on detail or resolution. Large paintings may require high-

resolution imaging techniques or stitching multiple images together to ensure that all

aspects of the artwork are properly captured.
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Figure 2.6: Images of forest with different styles.

2.4 Fine art paintings and augmented reality

In this section, we describe augmented reality and some of its applications. Further-

more, we present the integration of augmented reality in the art world.

2.4.1 Augmented reality

Augmented Reality (AR) is a technology that enhances the real-world environment

by overlaying computer-generated perceptual information onto it, thereby augment-

ing the user’s sensory experience (9). AR integrates virtual elements, such as images,

videos, 3D models, or data, into the user’s real-world view in real-time, allowing for

an interactive and immersive blend of the physical and digital worlds.

The key feature of AR is its ability to align the virtual content with the real-world

context, allowing users to interact with and manipulate the augmented elements in

real time. This interaction can involve gestures, voice commands, or other input

methods, enabling users to engage with and manipulate the virtual objects or access

additional information overlaid on physical objects.
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AR has various applications across industries, including gaming(10), education(11),

healthcare(12), architecture(13), retail(14), and entertainment(15). It offers oppor-

tunities for immersive learning experiences, enhanced visualization, remote collabo-

ration, guided navigation, virtual try-on experiences, and more.

2.4.2 Integration of augmented reality in art

The integration of augmented reality (AR) technology within the art world has

emerged as a dynamic and evolving field, revolutionizing the way art is experienced,

interpreted, and interacted with.

Augmented Reality (AR) technology and computer vision techniques have evolved

to offer exciting possibilities to accurately recognize and track fine art paintings, en-

hancing artistic interpretation and deepening our engagement with artworks. By

overlaying digital information and virtual elements onto the real-world view, AR en-

riches our understanding of artistic works, provides contextual information, and offers

immersive experiences that augment the traditional art viewing process.

One way AR enhances artistic interpretation is by providing access to additional

layers of information about the artwork. Viewers can use their smartphones or AR-

enabled devices to scan a painting and instantly access to details about the artist, the

historical context, the techniques used, or the symbolism embedded within the art-

work. This additional information empowers viewers to delve deeper into the artistic

intention and provides a richer context for interpretation.

The current landscape of AR in the art world showcases a growing adoption of this

technology across various domains; for example, museums and galleries have em-

braced AR as a means to enhance traditional exhibition spaces. AR applications can

provide additional layers of information, context, and multimedia content, enriching

the visitor’s understanding and engagement with artworks. They also can be used

in art education, offering innovative ways to teach and learn about art history, tech-

niques, and styles. Augmented reality enabled applications and platforms to provide

interactive lessons, virtual studio experiences, and immersive art history tours.

Figure 2.7 (16) presents an example of AR applications that use image recognition

to identify scanned artworks and provide people with additional information about

them.
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Figure 2.7: Exemple of augmented reality applications in an art

gallery.

2.5 Conclusion

This chapter comprehensively introduced fine-art paintings, their instinctive artistic

styles, and their role in art. Additionally, it presented methods employed by art

experts to identify the unique style of a painting. It navigated the challenges these

experts face in this task and the obstacles researchers encounter when working with

digital images of fine art paintings. Furthermore, the chapter explored the integration

of augmented reality (AR) within the art world, illuminating the innovative appli-

cations and transformative potential of this technology in enhancing the viewer’s

experience and expanding the boundaries of traditional art.

In conclusion, the need for automatic tools to recognize the style of paintings is evi-

dent in the field of fine art. Automatic tools, such as machine learning algorithms and

computer vision techniques, offer promising solutions to assist experts in recognizing

and analyzing artistic styles. These tools have the potential to enhance the efficiency

and accuracy of style recognition, enabling a deeper understanding of artistic choices

and contributing to the preservation, research, and accessibility of artworks.

The next chapter presents the literature review of artistic style classification, the

most famous painting datasets and the most used evaluation metrics in image classi-

fication.
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CHAPTER 3. STYLE CLASSIFICATION : LITERATURE REVIEW

3.1 Introduction

In this chapter, we present a comprehensive overview of the current research and

methodologies in the field of fine-art painting style classification, encompassing both

classical and deep learning approaches. Additionally, we examine the various ap-

proaches adopted in the literature and explore the most relevant painting datasets

commonly utilised for painting classification, highlighting their unique characteristics

and the challenges they pose. Furthermore, we describe the evaluation metrics em-

ployed in image classification, explaining their significance in effectively evaluating

the performance of style classification models.

3.2 Approaches for style classification

Throughout the past several years, the subject of classifying paintings of fine art

according to their styles has been investigated in a variety of studies, different ap-

proaches have been applied they can be divided into two main approaches based on

their feature selection and classification algorithms. The first approach, known as

the classical approaches, utilizes handcrafted feature extraction techniques in com-

bination with machine learning methods. In contrast, the second approach utilises

deep learning techniques, where the neural networks themselves automatically ex-

tract features. Within the realm of deep learning, there are two main subcategories:

supervised learning approaches and unsupervised approaches. The supervised learn-

ing approaches further encompass four subcategories: convolutional neural network

approaches, transfer learning approaches, multi-task learning approaches, and hierar-

chical approaches. Figure 3.1 visually represents these different approaches employed

in style classification.

Figure 3.1: Approaches for style classification
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3.2.1 Classical approaches for style classification

Given that the artistic style of a painting may be understood in terms of texture,

colors, or shapes, early studies proposed to automatically identify the unique style of

painting by applying the classical approaches for image classification, which involve

extracting low-level and global features, as they are two important categories of visual

descriptors used to extract information from images. Once the features are extracted,

a machine-learning algorithm is trained to recognize the patterns in the feature space

and classify new images based on those patterns. Figure 3.2 illustrates the framework

of this process.

Image of painting

ClassifierFeature extraction

Final Style

Cubisim
Surrealism
 ....
  
Realism

Figure 3.2: Diagram of classical approaches for style classification

Low-level features refer to the basic and primitive visual characteristics of an

image, that can be extracted directly from the pixel values, such as edges, corners,

texture patterns, and color histograms. These features are often computed using sim-

ple mathematical operations or filters applied to the image. Low-level features capture

local information and provide a representation of the image at a pixel level. On the

other hand, global features capture high-level and holistic information about the en-

tire image. Instead of focusing on local details, global features consider the overall

structure, composition, and spatial distribution of visual elements in an image. These

features provide a global representation of the image and are typically computed by

aggregating or summarizing the low-level features across the entire image. Table 3.1

represents some of the most commonly used low-level and global features in image

classification along with their brief definitions:
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Table 3.1:: Examples of low-level and global features with brief definitions

Feature Type Example Brief Definition

Low-level Histogram of Ori-

ented Gradients

(HOG) (17)

Counts the occurrences of gradient ori-

entations in localized regions of an im-

age to capture the shape and appear-

ance of an object.

Scale-Invariant

Feature Transform

(SIFT)(18)

Detects and describes keypoint features

that are invariant to scale, rotation,

and affine transformations.

Local Binary Pat-

terns (LBP) (19)

Extracts texture information by com-

paring the intensity of a central pixel

with its neighbours.

Gray-Level Co-

occurrence Matrix

(GLCM) (20)

Measures the frequency of pixel pairs

at different spatial relationships to cap-

ture textural patterns.

Global GIST (Global Im-

age Structure) (21)

Summarizes the distribution of simple

visual features, such as color and tex-

ture, to capture the holistic structure

of an image.

Color Histograms

(22)

Quantizes and counts the frequency of

colors present in an image, providing a

global color distribution.

Bag-of-Words

Models(23)

Represents an image as a histogram of

visual words, where words are learned

from a collection of local features.

One of the first studies to automatically recognize the style of a painting was

presented by Shamir et al. (24) They proposed to classify 513 paintings into three

distinct styles: Expressionism, Impressionism, and Surrealism by analyzing various

low-level visual features of the paintings, such as color, texture, and shape; then used

the machine learning approach Weighted Nearest Neighbor (WNN) as a classifier to

assign paintings to their respective styles. Although the proposed approach achieved

significant accuracy in style classification, it was limited to a small number of paint-

ings and art styles. Another example of a relevant study based on the extraction

of low-level features method was proposed by Arora and Elgammal (25). They ex-

tracted low-level features such as opponent-SIFT (O-SIFT) and color scale-invariant

feature transform (CSIFT) from paintings. These features were then classified using

a Support Vector Machine (SVM) classifier. The study demonstrated the effective-
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ness of these features in categorizing paintings into different art styles. However, the

dataset used in the study was relatively small, containing only seven art styles with

70 paintings.

Agarwal et al.(26) conducted a study on painting classification based on genre and

style, demonstrating the successful utilization of various feature extraction methods,

which included color histograms, texture features, and shape features, to capture the

visual characteristics of the paintings. Additionally, the authors employed the lib-

svm classifier with an X2 kernel for the classification task. The results showed the

effectiveness of this approach in accurately classifying paintings based on their genre

and style. However, the study has some limitations, such as the dependency on the

quality and quantity of input data and the limited dataset used for evaluation.

In addition to proposing the Painting-91 dataset of 4,266 painting images from 91

different artists belonging to 13 art styles, Khan et al. (27) evaluated the perfor-

mance of different global and local features descriptors for the tasks of artist and

style classification using an SVM classifier with an X2 kernel. They found that using

only the low-level features was insufficient and combining multiple features, including

local features such as Local Binary Patterns (LBP), Scale-Invariant Feature Trans-

form (SIFT), and Pyramid of Histograms of Orientation Gradients (PHOG), and

global features such as Global Image Structure (GIST) and bag-of-words framework,

significantly improves the performance of the classifiers. However, the results were

yet limited.

Different combinations of features and classifiers were explored by Falomir et al.

(28). They proposed a method called QArt-Learn for categorizing paintings. The

study combined color similarity, qualitative color descriptors, and quantitative global

features, which provided a rich representation of painting characteristics with ma-

chine learning techniques. The results indicated that the combination of these fea-

tures, when used with the K-Nearest Neighbor (K-NN) and Support Vector Machine

(SVM) classifiers, achieved high accuracy in classifying paintings into three art styles:

Post-Impressionism, Impressionism, and Baroque.

Florea et al. (29) proposed constructed a new dataset called Pandora18K, which

consists of 18,628 high-resolution images of paintings labeled into 18 different artistic

movements. In addition, they proposed a novel approach for recognizing different

artistic movements in visual art using a combination of color structure and topo-

graphic description features to capture diverse aspects of artistic movements. The

proposed approach utilized boosted ensembles of SVMs, which combined the two fea-
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tures to improve recognition accuracy. As their results were limited, later on, in (30),

they proposed to improve their results by introducing an expert committee with soft

voting. The final decision was made based on a majority vote of the classification

results obtained by evaluating the entire painting and various randomly selected sub-

regions. However, in all cases, no significant improvements were achieved, and the

first breakthrough for style classification was due to the application of deep learning

techniques.

3.2.2 Deep learning approaches for style classification

Deep learning approaches have gained significant popularity in the field of style clas-

sification for fine-art paintings and made the first breakthrough. These approaches

benefit from the power of artificial neural networks to automatically extract features

from images and learn complex patterns associated with different artistic styles. The

following sections briefly overview the several standard deep learning models and tech-

niques used in style classification. These studies are organized based on the learning

approach employed, supervised or unsupervised. Each section reviews the relevant

studies within the respective classification framework.

3.2.2.1 Supervised learning approaches for style classification

In the field of image classification, supervised learning plays a crucial role in establish-

ing the relationship between images and their corresponding labels or categories. This

approach allows the machine to learn from labeled examples and make predictions

on unseen data. During training, a supervised learning algorithm utilizes a known

dataset with labeled inputs and outputs to train a model that can generate accurate

predictions for new data instances.

The training process involves minimizing the error between the predicted outputs and

the established responses in the training dataset. By iteratively adjusting its internal

parameters, the algorithm strives to improve its prediction accuracy. The quality and

diversity of the training data significantly impact the performance and generalization

ability of the trained model. A well-curated and diverse training dataset enables the

model to learn meaningful patterns and make reliable predictions on unseen data.

In the specific domain of fine-art style categorization, supervised learning approaches

have been widely adopted. These approaches involve training machine learning mod-

els using labeled data, where each instance is associated with a particular artistic style.
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Researchers have explored various techniques within supervised learning, focusing on

convolutional neural networks (CNNs) as the primary architecture. Transfer learning

has been commonly employed, where pre-trained CNN models are fine-tuned on fine-

art datasets to leverage their learned representations from large-scale image datasets.

Furthermore, researchers have utilized multi-task learning, where the model is trained

not only for style classification but also for related tasks such as artist identification or

genre classification. This approach benefits from shared representations across tasks,

leading to improved performance. Hierarchical learning has also been explored, allow-

ing models to recognize styles at different levels of granularity, capturing both high-

level style characteristics and subtle variations within specific sub-styles or artists.

Figure 3.3 illustrates a summary of these supervised approaches for style classifica-

tion. The studies in the literature of each approach are presented in the following

sections.

Figure 3.3: Diagram of supervised approaches for style classification

3.2.2.1.1 Convolutional Neural Networks(CNN) The recent advancements

in deep convolutional neural networks (CNNs) have revolutionized the field of image

recognition and classification. These networks have demonstrated remarkable capa-

bilities in automatically learning and extracting relevant features directly from raw

image data, without the need for explicit feature engineering.

This progress has motivated researchers to explore the application of CNNs for style

classification tasks. By leveraging the powerful learning abilities of CNNs, researchers

aim to develop models that can accurately recognize and classify artistic styles based

on the visual characteristics of artworks. Figure 3.4 presents the basic architecture

of CNN, which is based on two main parts: feature extraction and classification.
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Figure 3.4: Diagram of convolutional neural networks for style classification

The first part consists of convolutional layers, which apply a set of learnable fil-

ters to the input image. Each filter produces a feature map, which highlights specific

patterns or features present in the input image. The filters are learned through a

process of backpropagation, where the network adjusts the filter weights to minimize

the error between the predicted output and the true output. In addition to convo-

lutional layers, it also includes pooling layers, which reduce the spatial size of the

feature maps by taking the maximum or average value of a local region. This helps

to make the network more computationally efficient and makes the learned features

more robust to small shifts and distortions in the input image.

The second part has one or more fully connected layers at the end of the network,

which are used to make predictions based on the learned features. These layers take

the high-level features extracted by the convolutional and pooling layers and map

them to a fixed number of output classes. The last layer has Softmax as an activation

function that is used to convert the outputs of the last layer of the network into a

probability distribution over the possible classes. The class with the highest proba-

bility defines the label of the input image.

Over the years, several convolutional neural network (CNN) architectures have been

proposed. Each architecture has its own unique characteristics, including its res-

olution, number of layers, and number of parameters. The ideal CNN model for

image classification would indeed possess high accuracy, a low computation cost, and

a short inference time. However, in reality, achieving the perfect balance between
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these attributes is often challenging, and sacrifices must be considered based on the

specific requirements of the application. Table 3.2 presents the most popular CNN

architectures.

Table 3.2:: Summary of CNN Architectures

Model Year Input

Image Size

Depth Size

(MB)

Parameters

(Million)

AlexNet (31) 2012 224x224 8 233 60M

ZFNet (32) 2013 224x224 8 192 59M

VGG16 (33) 2014 224x224 16 528 138M

VGG19 (33) 2014 224x224 19 549 144M

GoogLeNet (34) 2015 224x224 22 27 7M

Inception-V3 (35) 2016 299x299 48 89 23.9M

ResNet-34 (36) 2016 224x224 34 46 21M

ResNet-50 (36) 2015 224x224 50 96 25.6M

SqueezeNet (37) 2016 224x224 18 5 1.2M

Xception (38) 2017 299x299 81 88 22.9M

InceptionResNetV2 (39) 2017 299x299 164 213.41 56M

DenseNet-121 (40) 2017 224x224 121 33 7.6M

DenseNet201 (40) 2017 224x224 201 80 20M

MobileNet (41) 2017 224x224 28 17 4M

EfficientNet-B0 (42) 2019 224x224 240 41 5.3M

In recent years, there has been a growing interest in using CNN architectures

for the task of image classification in the domain of paintings. For example, Karayev

et al. (43) used the CNN architecture AlexNet to extract features from images and

then compared these features with various sets of low-level features for style classifi-

cation. Features were fed into the SVM classifier to predict the style of the image.

They demonstrated that CNNs are more effective than classical models for classifying

artworks. In addition, they introduced the first painting dataset Wikiart with 85K

paintings annotated with 25 style labels. Bar et al. (44) also utilized CNN models as

feature extractors to classify painting styles. They trained a deep neural network on

a large dataset of paintings and extracted features from the network’s layers. They

then binarized the features to reduce their dimensionality and used them to train

the k-nearest Neighbors (kNN) classifier for distinguishing between different artistic

styles. While the method successfully captured the nuanced characteristics of artistic

styles, it encountered challenges in accurately distinguishing closely related styles. As

a result, the approach achieved a relatively low accuracy in the classification task.
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Inspired by the observation that features maps within CNNs can effectively describe

image texture, Peng and Chen (45) introduced a cascading approach of modified

AlexNet that allowed the extraction of features from multiple layers, which are then

combined to form the cross-layer CNN features. They showed that the cross-layer

CNN features outperform traditional CNN architectures in classifying artistic style,

architectural style, and artist. The incorporation of correlations between feature

maps from different layers enhanced the ability to capture texture-related informa-

tion, leading to improved classification accuracy. Further, Chu et al. (46) transformed

the correlations between feature maps into style vectors using a Gram matrix based on

a VGG19 model. These style vectors are then utilized as inputs for an SVM classifier

to classify images based on their artistic styles. The proposed method demonstrated

the efficacy of leveraging deep correlation features for image-style classification tasks.

3.2.2.1.2 Transfer learning Many studies on style classification that utilize deep

learning techniques have employed the transfer learning technique, which involves us-

ing a pre-trained convolutional neural network (CNN) model initially trained on a

comprehensive dataset of natural images and then, a brief fine-tuning phase takes

place, where the model is trained on a relatively smaller image dataset representing

distinct artistic categories.

Figure 3.5 provides an illustrative representation of the transfer learning process

employed from natural image classification to style classification of paintings. The

pre-trained CNN model is already trained on the large-scale natural image classifica-

tion task ImageNet dataset (47). It consists of several layers, including convolutional

layers for feature extraction and fully connected layers for classification. These layers

have learned to extract general features from natural images.

For style classification of paintings, the last three layers of the pre-trained CNN model

are customized by replacing the last fully connected layer, the SoftMax layer, and the

classification output layer. The new last fully connected layer is adapted to match

the number of different artistic styles in the dataset. The SoftMax layer produces

a vector of probabilities for each artistic style, indicating the likelihood of an image

belonging to each style. Finally, the classification output Llayer assigns the image to

a specific stylistic category based on the highest probability. The feature extraction

block of the pre-trained CNN model remains unchanged, as it has learned to extract

relevant visual features from images. This block captures the inherent characteristics

and patterns that can be useful for style classification.
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Figure 3.5: Transfer learning from natural images classification to style

classification of paintings

By fine-tuning this modified network, the pre-trained CNN model can be retrained

specifically for the style classification task using the initial weight values obtained

from the pre-training phase. This process enables the model to leverage the knowl-

edge learned from natural image classification and adapt it to the task of style clas-

sification in paintings.

Tan et al. (5) is one of the first studies to investigate the effectiveness of pre-trained

convolutional neural networks (CNNs) as feature extractors for fine art painting clas-

sification. The authors investigated whether pre-trained CNNs could outperform

handcrafted descriptors in classifying paintings based on style, genre, and artist.

They utilized the Wikiart dataset and trained an end-to-end CNN model. They com-

pared different options for their network, including fine-tuning a pre-trained CNN

model that was originally trained on the ImageNet dataset for object recognition,

training a CNN model from scratch, and testing support vector machine (SVM) clas-

sifiers on deep features extracted from the CNN models. Interestingly, the results of

their experiments demonstrated that the fine-tuned model, which involved retraining
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a pre-trained CNN on the Wikiart dataset, achieved the best performance across all

tasks.

Lecoutre et al. (48) employed a pre-trained deep residual neural network (ResNet)

that was initially trained on the ImageNet dataset and fine-tuned on the WikiArt

dataset to distinguish between 25 different artistic styles. The key finding of their

study was that deeper retraining of the network contributed to improving the accu-

racy of artistic style classification. However, the study also suggested that using larger

datasets for training deep networks could potentially lead to further improvements in

accuracy. Kedia (49) focused on analyzing the performance of fine-tuning the VGG

network with weighted cross-entropy for the task of large-scale style, genre, and artist

classification. Yu et al. (50) explored the effectiveness of hybrid VGG and inception

architectures for classifying paintings based on their respective artistic styles. The

utilization of transfer learning to fine-tune the InceptionV3 architecture yielded the

best results in terms of accuracy.

Elgammal et al. (51) also explored the application of pre-trained convolutional neu-

ral network (CNN) models for style classification in art. The researchers investigated

how these models’ learned representations correlate with the chronology of paintings,

using concepts derived from art history. Their study involved training several CNN

models on a dataset of digitized artworks spanning various historical periods. These

models learned to extract visual features from the paintings, then examined how

the learned representations captured the characteristics associated with different art

styles.

Bianconi et al. (52) compared handcrafted descriptors with pre-trained convolutional

networks for painting categorization. They considered nine handcrafted descriptors

and applied three pre-processing schemes: no pre-processing, pyramid decomposition,

and image split. Additionally, they utilized five pre-trained convolutional networks.

Their experimental evaluation on the Pandora dataset showed that the pre-trained

convolutional networks outperformed the combined handcrafted descriptors with dif-

ferent pre-processing schemes, indicating the superiority of deep learning approaches

in painting categorization.

Sandoval et al. (53) proposed a novel approach for fine-art style classification that

incorporated transfer learning, patch-based classification, and a weighted aggrega-

tion scheme. The paintings are divided into sub-regions or patches, which serve as

the units for classification. Each patch is individually classified using the features

extracted from the deep neural network. The classification outcomes of the patches

27



CHAPTER 3. STYLE CLASSIFICATION : LITERATURE REVIEW

are then combined using a weighted sum, where the weights reflect the importance

or significance of each patch in determining the overall stylistic label of the paint-

ing. They demonstrated enhancement in the accuracy of classifying artistic styles

by considering the individual patches and their contributions to the overall stylistic

label of the painting. Building upon their previous work, in (54), they extend their

approach to fine-art style classification by proposing a two-stage classification system

that involved individual-patch classification using a deep CNN, followed by applying

a shallow neural network to the outcome probability vectors for the final classification

decision. This approach improved the classification accuracy by effectively capturing

both local variations and global stylistic patterns within the paintings in the classifi-

cation process.

Afterwards, Sandoval et al. (55) focused on classifying fine-art paintings with simu-

lated partial damages. They conducted experiments using a dataset comprising both

damaged and non-damaged paintings and trained their models using a fine-tuned

CNN (ResNet50) for feature extraction. They further employed a shallow Neural

Network to classify the paintings into 20 different styles. The study found that train-

ing on a dataset that includes both damaged and non-damaged paintings resulted in

a highly accurate classification of non-damaged artwork.

Menis et al. (56) employed transfer learning by training different convolutional neural

networks (CNNs) and fine-tuning the hyperparameters on single-architecture models

for style recognition. They then utilized ensemble learning, a technique combining

the knowledge of multiple models using a meta-classifier. Furthermore, the authors

investigated the impact of various data augmentation techniques. Their proposed

ensemble approach led to improved results for style recognition

Pérez and Cozman (57) employed Generative Adversarial Networks (GAN) (58) for

data augmentation in the context of painting style classification to explore the poten-

tial of using synthetic data to augment existing datasets to address the challenge of

limited labelled datasets and class imbalance. Specifically, they focused on the per-

formance of the pre-trained EfficientNet B0 model. They found that using synthetic

paintings as additional training data helped enhance the model’s ability to classify

different artistic styles accurately.

Recently, Zhao et al. (6) compared ResNet with six modified versions of its ar-

chitecture (RegNet, ResNeXt, Res2Net, ResNeSt, and EfficientNet B3) to classify

paintings based on their style, artist, and genre. Their experiment on three different

painting datasets showed that the pre-trained models on ImageNet produced the best

28



CHAPTER 3. STYLE CLASSIFICATION : LITERATURE REVIEW

results for art classification. Additionally, they showed the effectiveness of transfer

learning in improving the classification accuracy of models.

3.2.2.1.3 Multi-task learning approaches: To address the limitations of tra-

ditional image classification models to capture the complex relationships between the

different elements of a painting, such as the genre, style, and artist. More recent

studies have explored the use of multitasking learning approaches in analysing and

classifying paintings. The aim was to predict more than one category at the same

time.

In conventional image classification tasks, each image is typically assigned a sin-

gle label or category. However, in multi-task learning (MTL) context, researchers

train models to classify images into multiple categories or labels simultaneously. This

enables a single image to be associated with multiple labels or categories (59). Figure

3.6 illustrates the diagram of the multitask learning approach for paintings according

to genre, style, and artist.

Figure 3.6: Diagram of multitask learning approach for paintings classification

Bianco et al. (60) presented a novel approach to categorizing paintings using a

deep multibranch neural network by artist and style. They took various crops from

the images at different scales and fed them into a multi-branch deep neural network.

The network consisted of multiple branches, each specialized in extracting features

from different image regions. The features extracted by each branch are then con-

catenated and fed into a fully connected layer for final classification. Later on, they

proposed another approach (61), in which a multi-task classification module with an

injection of the HOG feature is fed three patches (one from the down-sampled orig-
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inal image and two from the original version) to make predictions about the genre,

artist, and style of paintings. The results on the Painting-91 dataset show that the

proposed multi-task deep multibranch neural network outperformed the single-task

deep multibranch neural network. In addition, they presented a new dataset called

MultitaskPainting100k which consisted of 100,000 high-resolution digital images of

fine art paintings. Each painting in the dataset is labeled with its corresponding

style, genre, and artist.

Recently, Efthymiou et al. (62) proposed a novel multimodal architecture called

ArtSAGENet, which is based on a graph neural network (GNN) combined with a

convolutional neural network (CNN) to learn both visual and semantic-based repre-

sentations of fine art paintings. They also utilized the benefits of multi-task learning

in the analysis of fine art paintings by training the model on multiple tasks simul-

taneously, such as creation period estimation, style classification, artist attribution,

and tag prediction; the model can learn shared representations that capture the re-

lationships between these different tasks.

3.2.2.1.4 Hierarchical approaches To explore the application of deep neural

networks for the hierarchical classification of fine-art paintings, Mohammadi et al.

(63) introduced a novel hierarchical approach to categorize related artistic styles by

developing a hierarchical system. Which aimed to group similar styles into super styles

referred to as parents. They designed a parent classifier and multiple child classifiers

to identify both the super style and the individual style. Figure 3.7 illustrates the

proposed clustering system. The experimental evaluation of their approach using

the WikiArt dataset demonstrated an improvement in the average F1 score of the

DenseNet121 network.
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Figure 3.7: Diagram of hierarchical approach for clustering 25 styles

into 6 super-styles

3.2.2.2 Unsupervised learning approaches for style classification

In image classification, unsupervised learning approaches are used to extract use-

ful patterns from data without the need for labeled data or prior knowledge of the

categories or classes to which the data belongs. These approaches involve training

machine learning models where labeled data is not available or limited. Figure 3.8

illustrates the diagram of the unsupervised learning approaches for style classification

which has been applied in some recent studies.
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Figure 3.8: Diagram of unsupervised learning approach for style classification

Lee et al. (64) was one of the first studies that introduced an unsupervised learn-

ing method for style classification in art. They utilized a dataset of 1633 paintings and

extracted composition-based local features through object segmentation and global

features through color-based statistical computation. These features were then em-

ployed to train a self-organizing map (SOM), an unsupervised learning technique, to

cluster the paintings into four distinct styles based on their similarity. The approach

demonstrated the potential of unsupervised learning for style classification, providing

insights into the clustering and organization of paintings based on their visual char-

acteristics. However, the study did not explore the performance of the approach on

larger or more diverse datasets, and the reliance on handcrafted features may limit

its generalizability.

Later on, Gultepe et al. (65) presented another unsupervised approach for classifying

digital images of paintings by artistic style. They proposed to extract features us-

ing the nonlinear unsupervised feature learning with the K-means (UFLK) technique

from a dataset of 6776 paintings images, and after that, they used these extracted

features as an input to an SVM classifier to classify the paintings into eight differ-

ent stylistic categories. In addition, they employed spectral clustering to categorize

the paintings by style. The experimental results demonstrated the effectiveness of

their approach by achieving high accuracy in predicting and grouping paintings by

style. However, the study did not explore the generalizability of the approach to other

datasets or consider other factors such as artist attribution or genre classification.

A deep clustering model was proposed by Castellano and Vessio (66) based on the

Deep Convolutional Embedding Clustering (DCEC) framework introduced in (67)

and unsupervised learning techniques for clustering 8,446 digitized paintings from nine

artistic styles based on their visual similarity. They used a pre-trained convolutional

auto-encoder to extract features from digitized paintings and applied t-Distributed
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Stochastic Neighbor Embedding (t-SNE) (68) to decrease the dimensions of these

features. Then, they applied k-means clustering to the reduced feature vectors to

group similar paintings together. They also evaluated their approach on a subset of

439 Pablo Picasso paintings. The experiments demonstrated the effectiveness of their

proposed approach.

Lately, Sandoval et al. (69) proposed a novel unsupervised approach to labeling

fine art paintings that uses adversarial training. The suggested approach combines

supervised classification with unsupervised clustering using an optimization algorithm

that iteratively improves the clustering procedure in accordance with predetermined

goal criteria. The authors evaluated the proposed method on three different datasets

of paintings and compared it to several other unsupervised labeling methods. The

results show that their approach outperformed the other methods in terms of accu-

racy and efficiency.

Although unsupervised learning approaches can be useful for classifying fine-art paint-

ings by style and potentially saving time and resources in the labeling process, they

have been less explored because they require domain expertise in fine art to interpret

the results.

3.3 Summary of literature review for style classi-

fication

Table 3.3 summarizes the principal results of fine art painting classification by style

from literature in order of appearance. The table specifies the methods used, the

dataset(s), the number of styles used in the evaluation, and the classification accuracy.

For each work, we mention only the best result for style classification.

Table 3.3:: Papers on paintings style classifications with their related

method and best performance

Article Method # styles Dataset Accuracy

Shamir et al.

(2010)(24)

Handcrafted features,

WNN as a classifier.

3 styles 513 images 91%

Arora and

Elgammal

(2012)(25)

Handcrafted features,

SVM as a classifier.

7 styles 490 images 65.4%
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Karayev et al

(2013)(43)

Handcrafted features,

Use AlexNet as a fea-

ture extractor

25 styles WikiArt 85k

images

47.3%

Khan et al

(2014)(27)

Combine low-level fea-

tures, SVM classifier

with an X2 kernel

13 styles

91 artists

Paintnig-91

2338 images

62.2%

Bar et al

(2014)(44)

Binarized Features de-

rived from a deep neu-

ral network, K-NN as

a classifier as classifier

27 styles WikiArt

47,724images

43.0%

Agarwal et al

(2015)(26)

Handcrafted features,

libsvm with X2 kernel

classifier

10 styles

6 genres

WikiArt 1800

in genre 3000

in style

62.73%

Saleh and

Elgammal

(2015)(70)

Combining (GIST,

Classeme, Picodes,

and Alexnet as a

feature extractor) ,

compressing them

using (PCA), SVM

classifiers

27 styles

10 genres

23 artists

WikiArt

78,449 images

45.97%

Peng et Chen

(2015)(45)

Cross-layer features

from a cascade of six

AlexNet models, SVM

as a classifier.

13 styles Painting-91

2338 images

69.2%

Tan et al.

(2016)(5)

Fine-tuned CNN

(AlexNet)

27 styles

10 genres

23 artists

WikiArt

78.449 images

54.50%

Lee et al

(2016) (64)

Global and local fea-

tures, Self-organizing

map (SOM)

4 styles 1633 images /

Chu et al.

(2016)(46)

Gram matrix of fea-

ture maps (in VGG-

19), SVM as the clas-

sifier.

25 styles WikiArt 58.19%

Lecoutre et al

(2017)(48)

Fine-tuned CNN

(ResNet50)

25 styles WikiArt

80.000 images

62.8%

Kedia

(2017)(49)

Fine-tuned CNN

(VGG-19)

27 styles WikiArt

81,449 images

65.4%
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Bianco et al

(2017) (60)

Multibranch deep

neural network

13 styles

91 artists

Painting-91

2338 images

84.4%

Florea et al.

(2017)(29)

Color histograms

and topographical

features, SVM as a

classifier.

18 styles Pandora18k

18,040 images

50.1%

Yu et al

(2017)(50)

Fine-tuned CNN (In-

ceptionV3)

18 styles Pandora18k

18,040 images

56.6%

Florea et al

(2018)(30)

Color histograms and

topographical features

18 styles Pandora18k

18,040 images

63.5%

Boosted SVM classi-

fiers, soft voting by an

expert committee.

25 styles WikiArt

85,000 images

46.2%

Bianconi et

al(2018) (52)

Fine-tuned CNN

(ResNet50)

12 styles Pandora7k

7724 images

67%

Elgammal et

al (2018) (51)

Fine-tuned CNN

(ResNet152)

20 styles WikiArt

76,921 images

63.7%

Gultepe et al.

(2018)(65)

Unsupervised fea-

ture learning with

K-means (UFLK),

SVM classifier

8 styles 6776 images /

Falomir et al.

(2018) (28)

color similarity, qual-

itative color descrip-

tors and quantitative

global features, K-NN

as a classifier

3 styles Painting-91

252 images

65%

Sandoval et

al. (2018)

(53)

Fine-tuned CNN

(InceptionV3), patch-

based classification,

weighted aggregation

6 styles WikiArt

30,870 images

59.4 %

19 styles Pandora18k

19,320 images

70.2 %

Sandoval et

al. (2019)

(54)

Fine-tuned CNN

(InceptionV3), patch-

based classification,

shallow neural net-

work.

6 styles WikiArt

30870 images

67.16 %
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22 styles WikiArt

26,400 images

66.71 %

19 styles Pandora18k

19,320 images

77.53%

Bianco et al

(2019) (61)

Use ResNet-18 +

HOG features, patch-

based classification

125 styles Multitask-

Painting100k

57.20%

Sandoval et

al. (2020)

(55)

Train on a dataset

with damaged and

non-damaged paint-

ing, Fine-tuned CNN

(ResNet50), A shallow

Neural Network

20 styles Pandora 66.78%

Menis et al.

(2020) (56)

Fine-tune (Inception-

V3), stacking ensem-

ble method

18 styles Pandora18k

18.038 images

72.47%

21 styles Wikiart

80.039 images

68,55%

Mohammadi

et al (2021)

(63)

Hierarchical classifica-

tion, use DenseNet121

network

25 styles WikiArt

82,000 images

59.10%

Castellano

and Vessio

(2021) (66)

Pre-trained convolu-

tional auto-encoder,

(t-SNE) to decrease

the dimensions of

these features, k-

means clustering

9 styles 8,446 images /

Pérez

and Coz-

man(2021)

(57)

Generative Adversar-

ial Networks (GAN),

Fine-tuned (Efficient-

Net B0)

15 styles WikiArt

63,659 images

74.40%

13 styles
Painting-91

2,338 images
79.23%

Zhao et al

(2021) (6)

Fine-tuned CNN (Effi-

cientNet)

27 styles WikiArt

81,444 images

69.97%

125 styles Multitask

Painting100k

99,816 images

63.15%
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Efthymiou et

al (2021)(62)

Fine-tuned CNN

(ResNet-34), Graph

neural network

20 styles WikiArt

75,921 images

77.6%

Table 3.3 highlighted the various methodologies that have been explored for

style classification in the field of painting analysis. However, a significant challenge

in comparing classification results arises from the variations in the number of images

and style categories across different studies, even when the same dataset is used for

evaluation. As a result, it becomes difficult to directly compare the performance of

different approaches due to the lack of standardized evaluation criteria.

3.4 Paintings datasets:

Several fine-art painting datasets are available for researchers and practitioners in-

terested in studying and analyzing fine art. Each dataset has its own characteristics,

size, and labeling methodology.

Table 3.4 displays the most used datasets in fine art style classification and the cor-

responding amount of painting images and their labels. Each dataset is presented

bellow. From the table, we can notice the variance between the datasets in terms

of the number of images, the number of classes in each label, and the complexity of

label categories they provide.

Table 3.4:: Datasets of paintings with their amount number of

images and labels

Name #Images Labels

Painting-91 (27) 4,266
91 artists

13 styles

Pandora (29) 7,724 12 styles

Pandora18k (29) 18,038 18 styles

Wikiart (43) 85k 25 styles

MultitaskPainting100k (61) 100k

1508 artists

125 styles

41 genres
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3.4.1 Wikiart dataset

The WikiArt dataset (43), also known as WikiPaintings, is a widely used collection

of art images sourced from museums, universities, town halls, and other institutions.

It contains over 250,000 artworks, including paintings, sculptures, drawings, posters,

and sketches, contributed and labelled by volunteers. The paintings subset of the

dataset is most frequently utilized and includes over 85,000 high-resolution images of

artwork pieces from various artists classified into 27 different artistic styles. While

the dataset’s annotations are not highly accurate due to their collaborative nature,

the dataset remains a valuable resource for automated fine-art classification studies.

Researchers leverage this dataset for tasks such as image classification, style recogni-

tion, artist identification, and genre classification. Figure 3.9 (71) presents samples

of paintings in the WikiArt dataset.

Figure 3.9: Samples of the styles in the WikiArt dataset

Figure 3.10 presents the distribution of the images in the dataset. We notice

that the number of samples representing different styles is highly imbalanced as the

numbers of images for different styles vary between 98 and 12000.
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Figure 3.10: Distribution of images in the WikiArt dataset

Although WikiArt is one of the largest datasets with paintings labeled by style,

it contains some misclassified paintings because public volunteers on the Wikiart.org

website (72) made their labels. Figure 3.11 (73) shows a misclassified example from

the class cubism. With this misclassification in the dataset, the classifier will not be

able correctly to identify the corresponding style to the painting.

Figure 3.11: Two randomly selected cubism images that are

misclassified in the Wikiart dataset
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3.4.2 Paintings-91 dataset

The Painting-91 dataset includes a total of 4,266 painting images created by 91 differ-

ent artists. They are classified according to the artist and the style. There are a total

of 2,338 paintings that were created by a total of 50 different artists. These paintings

have been categorized according to one of 13 different artistic styles namely: cubism,

abstract expressionism, baroque, constructivism, pop art, impressionism, neoclassi-

cal, postimpressionism, renaissance, romanticism, realism, symbolism, and surreal-

ism. 1250 of them were utilized for training, while 1088 of them were used for testing.

This dataset, created by Khan et al.(27), is one of the most often utilized datasets

for classifying artists and styles. Figure 3.12 shows a few examples from the dataset;

each picture has its corresponding style and artist.

Figure 3.12: Examples of paintings from Painting-91. Each

image has two labels: artist and style.

Figure 3.13 presents the distribution of the images in the dataset, where the total

number of images for each style ranges from 80 to 280.
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Figure 3.13: Distribution of images in the Painting-91 dataset

3.4.3 Pandora dataset

Florea et al. (74) introduced the PANDORA (Paintings Dataset for Recognising the

Art movement) dataset to address the need for a more balanced fine-art painting

dataset. The initial version, known as PANDORA, comprises approximately 7,724

images representing 12 distinct artistic styles. Figure 3.14 presents samples of the 12

different artistic movements in the dataset.

Figure 3.14: Samples of the 12 classes in the Pandora7k dataset
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Building upon the success of the PANDORA dataset, a subsequent version called

PANDORA18K was introduced (30; 75). This expanded dataset contains a more

extensive collection of 18,038 paintings distributed across 18 unique artistic styles.

By increasing the number of images and styles, PANDORA18K provides an even

more comprehensive resource for studying and exploring the various art movements

and their characteristics. Figure 3.15 presents samples of the 18 different artistic

movements in the dataset.

Figure 3.15: Samples of the 18 classes in the Pandora18k dataset

Table 3.5 shows the historical eras of the artistic styles included in the Pan-

dora18K dataset. The list begins with the ancient movement of Byzantine Iconog-

raphy, goes through three significant phases of art, namely Renaissance, Baroque,

Realism, and ends with the modern art movements(76).

Table 3.5:: List of the artistic movements in the Pandora18K dataset

Artistic Movement Historical period

Abstract Art 1910–now

Baroque 1590–1725

Byzantine Iconography 500–1400
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Cubism 1907–1920

Early Renaissance 1280–1450

Expressionism 1905–1925

Fauvism 1905–1908

High Renaissance 1490–1527

Impressionism 1860–1950

Näıve Art 1890–1950

Northern Renaissance 1497–1550

Pop Art 1950–1969

Post Impressionism 1860–1925

Realism 1880–1880

Rococo 1650–1850

Romanticism 1770–1880

Surrealism 1920–1940

Symbolism 1850–1900

Figure 3.16 presents the distribution of images in the dataset, where the total

number of images for each style ranges from 700 to 1200.

Figure 3.16: Distribution of images in the Pandora18k dataset

The high validity of the Pandora dataset can be attributed to the fact that it
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was subjected to two very stringent review processes: a visual inspection check, in

which images of poor quality were eliminated, and a fine-art expert review, in which

annotations and labels were refined and verified. Experts in their respective fields

performed both of these processes.

3.4.4 MultitaskPainting100k

The ”MultitaskPainting100k” dataset was originally collected by Bianco et al. (61)

and subsequently adapted for multitask learning involving artist, style, and genre

classification. The dataset consists of approximately 100,000 paintings, sourced pri-

marily fromWikiArt.org (72). It includes artwork from 1508 different artists, covering

125 distinct styles and 41 genres. Figure 3.17 presents samples of the 125 different

styles in the MultitaskPainting100k dataset.

Figure 3.17: Samples of the styles in the MultitaskPainting100k dataset
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3.5 Evaluation metrics in image classification

In image classification, various evaluation metrics are used to assess the performance

of classification models. These metrics provide insights into the accuracy, precision,

recall, and overall effectiveness of the classification process. Some commonly used

evaluation metrics in image classification include:

• Accuracy: It measures the overall correctness of the classification model by

calculating the ratio of correctly classified images to the total number of images

(77). It is calculated as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(3.1)

True Positive(TP): the number of positive class samples the model predicted

correctly.

True Negative(TN): the number of negative class samples the model predicted

correctly.

False Positive(FP): the number of negative class samples the model predicted

incorrectly.

False Negative(FN): the number of positive class samples the model predicted

incorrectly.

• Precision: It measures the proportion of correctly predicted positive instances

(true positives) out of all instances predicted as positive (true positives + false

positives). It indicates the model’s ability to avoid false positives (77). It can

be defined as follows:

Precision =
TP

TP + FP
(3.2)

• Recall (Sensitivity or True Positive Rate): It measures the proportion of

correctly predicted positive instances (true positives) out of all actual positive

instances (true positives + false negatives). It indicates the model’s ability to

identify all positive instances (77). It is calculated as follows:

Recall =
TP

TP + FN
(3.3)

• F1 Score: It is the harmonic mean of precision and recall, providing a balance

between the two metrics. The F1 score combines precision and recall into a

single value, which is useful when the class distribution is imbalanced (77).

F1 = 2× Precision×Recall

Precision+Recall
(3.4)
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• Receiver Operating Characteristic (ROC) Curve: It is a graphical rep-

resentation of the trade-off between the true positive rate (sensitivity) and the

false positive rate (1-specificity) at various classification thresholds. The area

under the ROC curve (AUC) is a commonly used metric to evaluate the per-

formance of a classification model(77).

• Precision-Recall Curve: It is a graphical representation of the trade-off be-

tween precision and recall at various classification thresholds. It helps evaluate

the model’s performance when dealing with imbalanced datasets (77).

• Confusion Matrix: It is a table that provides a detailed breakdown of the

model’s performance by showing the counts of true positive (TP), true nega-

tive (TN), false positive (FP), and false negative (FN) predictions. It helps in

understanding the types of errors made by the model. Figure 3.18 presents the

confusing matrix in testing a predictor. All the testing samples are divided into

four categories according to the real labels and the prediction results.(77)

Figure 3.18: Confusion matrix in testing a predictor

These evaluation metrics provide valuable insights into the performance of image

classification models and assist in comparing different approaches or fine-tuning the

models to achieve better results. The choice of metrics depends on the specific re-

quirements of the task and the class distribution of the dataset.
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3.6 Conclusion

The literature review presented in this chapter showed that the field of painting style

classification has witnessed significant advancements through the application of vari-

ous methodologies. Researchers have explored different feature extraction techniques,

from handcrafted features to deep neural networks.

One prevalent technique employed in recent approaches is transfer learning, which

involves adapting pre-trained models from object classification to artistic categoriza-

tion. This technique provided advantages in the training process and has demon-

strated good performance.

Moreover, the analysis extends beyond single-label classification, with studies in-

corporating multi-task learning to predict multiple categories simultaneously. This

allows for a more comprehensive understanding of art pieces and their complex rela-

tionships. However, the results across the studies indicate that there is still room for

improvement in achieving higher accuracy rates.

Another significant observation is that most existing fine-art classification studies,

including classical and deep learning approaches, rely on supervised techniques that

necessitate high-quality art expert annotations. On the other hand, exploring cat-

egorization systems from an unsupervised perspective, without the need for human

annotations, has been relatively limited.

In the next chapter, we present our first contribution to recognizing the artistic style

of fine art painting and its experimental results.
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CHAPTER 4. RECOGNIZING THE STYLE OF A FINE-ART PAINTING
WITH EFFICIENTNET AND TRANSFER LEARNING

4.1 Introduction

This chapter presents the description of our first research contribution to the field of

recognizing the artistic style of fine art paintings and its experimental results.

In this contribution, we focus on investigating the effectiveness of the EfficientNet

family in combination with transfer learning. By using the transfer-learning tech-

nique, we aim to benefit from the knowledge learned from a large dataset of general

natural images and adapt it to the specific task of style classification. The methods

are evaluated using the Painting-91 standard fine art classification dataset.

This chapter is structured into six sections. An introduction and a summary of the re-

lated studies are presented in Section 4.2. The following sections provide details of the

proposed methods described in Section 4.3. Section 4.4 covers the experimental vali-

dation, including information on the datasets used, data preprocessing techniques, a

presentation of the architecture employed, and an overview of the experimental setup

details. Section 4.5 presents and discusses in detail the results obtained from the

experiments. Finally, the chapter concludes with Section 4.6, where the key findings

of the study are summarized.

The first contribution was presented at the 7th International Conference on Image

and Signal Processing and their Applications (ISPA 2022). The published paper is

titled “Recognizing the style of a fine-art painting with EfficientNet and Transfer

learning” and can be accessed at https://ieeexplore.ieee.org/document/9786371/

4.2 Background

The digitization of painting databases has grown rapidly in recent years, presenting

challenges in manual content manipulation. This has led to open a new research area

focused on providing automated tools to assist the artistic community in analyzing,

classifying, and gaining a deeper understanding of paintings.

The utilization of transfer learning in fine-tuning pre-trained Convolutional Neural

Networks (CNN) has demonstrated remarkable efficacy in automatically recognizing

the artistic style of fine art paintings (5; 48; 49; 50; 51; 54). However, these mod-

els often require a fixed input size, which can lead to information loss when resizing

images. To address this concern and to investigate the impact of the input size, the
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network depth, and the deep retraining on model performance, we suggest evaluating

the EfficientNet models for artistic style classification. We chose these architectures

because they offer a scaling model that balances the network’s depth, width, and

resolution.

While EfficientNet models have shown exceptional performance in natural image

classification tasks, their application in painting classification has received limited

attention. Previous studies focused mainly on EfficientNetB0 in(57) and Efficient-

NetB3 in (6), but our research expanded the investigation to include seven models

from the EfficientNet family, ranging from B0 to B6, allowing for a comprehensive

comparison in style classification. Additionally, we enhanced the base architecture

of the EfficientNet models by adding additional layers to create our custom models.

Furthermore, we explored the impact of deep retraining the last layers of a pre-trained

model on the accuracy of style recognition.

4.3 Proposed methodologies

In this section, we present our three proposed methodologies in this study for recog-

nizing the artistic style of fine art paintings.

4.3.1 Pre-trained EfficientNet models for style classification

In order to investigate the efficacy of the pre-trained EfficientNet models for style clas-

sification, we proposed a fine-tuning strategy to adapt these models (ranging from B0

to B6) to our specific task. This involved replacing the last fully connected layers of

each model with a softmax layer, with the number of classes in our dataset determin-

ing the dimensionality of the output. To address potential overfitting concerns during

the training, we added batch normalization and dropout layers. The output of the

models provided the probabilities for each possible artistic style category, indicating

the probability of a painting image belonging to a particular style.

For fine-tuning, we used the EfficientNet pre-trained models on the ImageNet Large-

Scale Visual Recognition Challenge (ILSVRC) dataset (47) that contains 1.2 million

natural images of objects with 1000 categories as a starting point, initially freezing

all layers except for the last fully connected layer, which was trained from scratch.

Figure 4.1 presented the framework of the proposed pre-trained EfficientNet models

for style classification
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Figure 4.1: General framework of the pre-trained EfficientNet models

for style classification

4.3.2 Custom pre-trained EfficientNet models for style clas-

sification

In order to enhance the capability of pre-trained EfficientNet models for style classi-

fication, we introduced custom models specifically designed for this task. The mod-

ification involved replacing the last fully connected layers of each pre-trained model

with two dense layers, which had a ReLU (Rectified Linear Unit) activation function

(78) to introduce non-linearity and improve the model’s capacity to learn complex

patterns. Additionally, batch normalization and dropout layers were added after the

dense layers to improve training stability and reduce overfitting. Finally, we included

a softmax layer at the end of the model, with the corresponding number of classes in

the dataset. These layers are randomly initialized. Figure 4.2 presented the overall

framework of our custom pre-trained EfficientNet models for style classification.

Figure 4.2: General framework of our custom pre-trained EfficientNet

models for style classification
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4.3.3 Deep retraining of the custom pre-trained EfficientNet

models for style classification

To investigate the effects of deep retraining, we focused on unfreezing the last eight

blocks of our custom EfficientNet models, ranging from B0 to B6. By unfreezing

these blocks, we allowed their weights to be updated during training. Additionally,

we included the last fully connected layers in this retraining process, initializing them

randomly. This approach enabled us to examine the influence of deep retraining on the

performances and capabilities of our models. Figure 4.3 illustrates the framework of

deep retraining of the custom pre-trained EfficientNet models for style classification.

Figure 4.3: General framework of deep retraining of the custom

pre-trained EfficientNet models for style classification

4.4 Experimental validation

We evaluated the proposed methodologies with the seven pre-trained EfficientNet

models from B0 to B6 for style classification using the fine-art painting classification

Painting-91 dataset. In this section, we present the used dataset, the data preprocess-

ing steps, the EfficientNet architecture, and the training setup used in our evaluation.

4.4.1 Exprimental dataset: Painting-91

To evaluate the proposed methodologies, we used the Painting-91 dataset (27). It

consists of a total of 2,338 paintings categorized according to one of 13 different artistic

styles, namely: cubism, abstract expressionism, baroque, constructivism, pop art,

impressionism, neoclassical, postimpressionism, renaissance, romanticism, realism,

symbolism, and surrealism. 1250 of them were utilized for training, while 1088 of
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them were used for testing. Figure 4.4 shows the percentage of different styles in the

Painting-91 dataset.

Figure 4.4: Percentage of different styles in the Painting-91

dataset

4.4.2 Data pre-processing

In the initial stage of our process, we performed data pre-processing to prepare the

input images for the models. This involved resizing all the images to match the spe-

cific input size required by each model. Each pre-trained model has its own input

size, so we ensured that all images were adjusted accordingly.

We applied data augmentation techniques to enhance the diversity and robustness of

the training data. These techniques introduce variations to the input images, thereby

increasing the model’s ability to generalize. Some of the augmentation techniques

we employed included rotation within a range of 5 degrees, adjusting the width and

height within a range of 0.1, horizontal flipping to create mirror images and small-

scale zooming within a range of 0.2.

To prevent overfitting, we utilized EfficientNet’s preprocessing input. EfficientNet
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is a powerful convolutional neural network architecture that incorporates its own pre-

processing steps. By employing this preprocessing input, we aimed to further enhance

the model’s performance and generalization capabilities.

For the test data, we followed a similar procedure. We resized all the test images

to match the specific input size required by the model under evaluation. Addition-

ally, we normalized the images using the mean and standard deviation of the dataset.

Normalization is a common practice in machine learning, as it helps to scale the pixel

values and make them more suitable for the model to process effectively.

By implementing these pre-processing steps, including resizing, data augmentation,

and normalization, we aimed to ensure consistency in the input data and improve the

model’s ability to learn and make accurate predictions.

4.4.3 EfficientNet architecture

EfficientNet is a family of convolutional neural network models that were proposed by

researchers at Google (42); it consists of eight models, labeled B0 through B7. The

models use a compound scaling method, which is presented in Figure 4.5. It scales up

or down the width(more channels), depth(more layers), and resolution (image size)

of the baseline model EfficientNet B0 based on a set of fixed scaling coefficient Φ in

a principled way:

Depth : d = αϕ (4.1)

Width :: w = βϕ (4.2)

Resolution : r = γϕ (4.3)

such that α.β2.γ2 ≃ 2 given all α, β, γ ≥ 1

φ controls all the desired dimensions and scales them together but not equally. α, β, γ

tell us how to distribute the additional resources to the network.
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Figure 4.5: Scaling models.

Taking B0 as a baseline model, the authors developed a full family of EfficientNet

models from B1 to B7, which achieved state-of-the-art accuracy on ImageNet dataset

(47) while being very efficient compared to its competitors. Figure 4.6 presents the

architecture of the EfficientNet B0 model, which is also summarized in Table 4.1.

The architecture uses blocks of mobile inverted bottleneck convolution (MBConv)

(79; 80) that is also called inverted residual block with an additional SE (Squeeze and

Excitation) block (81). These two blocks are explained bellow.

Figure 4.6: The EfficientNet-B0 architecture.
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Table 4.1:: The composition of the EfficientNet B0.

Stages Operators Resolution #Channels #Layers

1 Conv3 × 3 224 × 224 32 1

2 MBConv1, k3 × 3 112 × 112 16 1

3 MBConv6, k3 × 3 112 × 112 24 2

4 MBConv6, k5 × 5 56 × 56 40 2

5 MBConv6, k3 × 3 28 × 28 80 3

6 MBConv6, k5 × 5 14 × 14 112 3

7 MBConv6, k5 × 5 14 × 14 192 4

8 MBConv6, k3 × 3 7 × 7 320 1

9 Conv1 × 1 &

Pooling & FC

7 × 7 1280 1

• MBConv block: Mobile Inverted Residual Bottleneck Convolution (MBConv)

block uses Depth-wise Separable Convolution(38), first, the channels will be

widened by a point-wise convolution (conv 1x1) then uses a 3x3 depth-wise

convolution that reduces significantly the number of parameters and finally it

use a 1x1 convolution to reduce the number of channels so the beginning and

the end of the block can be added (82). Figure 4.7 (80) presents the structure

of the MBConv block.

Figure 4.7: The structure of an inverted residual block (MBconv)

• Squeeze and Excitation (SE) block: SE is a building block for CNNs to

improve the interdependencies between the channels by performing dynamic

feature channel-wise recalibration; Rather than assigning equal weights to all

channels, the SE Block dynamically assigns higher weights to the most impor-

tant channels. This adaptive recalibration mechanism helps the network to

focus on the most informative channels. Figure 4.8 (82) shows the components

of this block.
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Figure 4.8: The squeeze and excitation (SE) block architecture

EfficientNet applies the SE block along the way with the MBConv block, re-

sulting in the following structure illustrated in Figure 4.9 (82).

Figure 4.9: The MBConv block with SE block in the EfficientNet

architecture

Table 4.2 presents the resolution and the number of parameters of each EfficientNet

model. The resolution varies from 224 to 600, while the parameters range from 5.3

million to 66 million.

Table 4.2:: The resolution and number of parameters of

EfficientNet models from B0 to B7.

Base model Resolution #Parameters

EfficientNetB0 224 5.3 M

EfficientNetB1 240 7.8 M

EfficientNetB2 260 9.2 M

EfficientNetB3 300 12 M

EfficientNetB4 380 19 M

EfficientNetB5 456 30 M

EfficientNetB6 528 43 M

EfficientNetB7 600 66 M
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4.4.4 Experimental setup

In our experimental setup, we implemented several techniques to mitigate the risk of

overfitting during the training process. One of the strategies we employed was the

incorporation of Batch Normalization and Dropout layers before the softmax layer.

Batch Normalization is a technique that normalizes the inputs of each mini-batch

during training. It helps stabilise and accelerate the training process by reducing the

internal covariate shift, which is the change in the distribution of network activations

as the parameters are updated. By normalizing the inputs, Batch Normalization en-

ables smoother and more stable gradient propagation, leading to faster convergence

and improved generalization (83).

Dropout, on the other hand, is a regularization technique that randomly deactivates

a proportion of the neurons during training; it prevents the network from relying too

heavily on any single neuron by randomly dropping out neurons and encourages the

network to learn more robust and generalizable features (84). This regularization

technique helps in reducing overfitting by effectively adding noise to the training pro-

cess and forcing the network to learn redundant representations.

To optimize the models, we utilized the Adam optimizer(85), which is an adaptive

learning rate optimization algorithm. It computes adaptive learning rates for each

parameter based on the estimates of first and second-order moments of the gradients.

The initial learning rate for Adam was set to 1e-2, and this value was fine-tuned

during the training process.

In order to further enhance the learning process, we employed the ReduceLROn-

Plateau function (86). This function dynamically reduces the learning rate if the

accuracy of the model does not improve over a certain number of epochs. In our

case, if the accuracy did not improve after three consecutive epochs, we decreased

the learning rate. This technique helps in fine-tuning the learning rate and finding a

better local minimum in the optimization landscape.

Lastly, our experiments were conducted with a batch size of 64, which represents the

number of samples propagated through the network before the weights are updated.

A suitable batch size can significantly affect the training dynamics and generalization

of the models.

By implementing these strategies, we aimed to prevent overfitting, optimize the learn-
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ing process, and improve the performance and generalization of our models in style

classification tasks.

4.5 Results and discussion

The evaluation metric used was accuracy, which is defined as the percentage of suc-

cessfully identified examples relative to the total number of examples. It is calculated

as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(4.4)

Where true positive and true negative classification predictions are denoted by TP

and TN, respectively, while false positive and false negative classification predictions

are denoted by FP and FN, respectively (77).

4.5.1 Style classification accuracy for all experiments

Table 4.3 presents a comprehensive overview of the average accuracy results obtained

from various classification tests. The table compares the performance of different

models based on the EfficientNet architecture, with versions ranging from B0 to

B6. The models are evaluated under three different configurations: base pre-trained,

custom pre-trained, and custom pre-trained with deep retraining of the last eight

layers.

Table 4.3:: The results of style classification

Model Base

Pre-trained

Custom

pre-trained

Custom pre-

trained (8 layers)

EfficientNetB0 68,47% 70.31% 71,32%

EfficientNetB1 68.56% 70.68% 72,06%

EfficientNetB2 69.12% 70.86% 72.89%

EfficientNetB3 69.30% 71,42% 73,53%

EfficientNetB4 70.04% 72.52% 73.90%

EfficientNetB5 70.68% 73.13% 74,54%

EfficientNetB6 70.96% 73.47% 75.55%

The base pre-trained models demonstrate decent accuracy, with values ranging
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from 68.47% (EfficientNetB0) to 70.68% (EfficientNetB5). However, the accuracy sig-

nificantly improves when employing the custom pre-training approach. The custom

pre-trained models achieve higher accuracy across the board, with values ranging from

70.31% (EfficientNetB0) to 73.13% (EfficientNetB5). Further enhancing the models

by retraining the last eight layers leads to even better performance. The custom

pre-trained models with deep retraining of the last eight layers yield accuracy values

ranging from 71.32% (EfficientNetB0) to an impressive 75.55% (EfficientNetB6).

Among all the models, EfficientNetB6 stands out as the top performer, achieving

the highest accuracy in all cases: the base pre-trained model, the custom pre-trained

model, and the custom pre-trained with retraining the last eight layers configurations.

With accuracy values of 70.96%, 73.47%, and 75.55%, respectively, EfficientNetB6

demonstrates its capability to recognize patterns and make reliable predictions accu-

rately.

In the case of base pre-trained models, there is a noticeable 2% increase in accu-

racy from EfficientNet B0 to B6. Specifically, EfficientNet B0 achieves an accuracy

of 68.47%, while EfficientNet B6 achieves a higher accuracy of 70.96%. This indi-

cates that higher resolution and larger network size positively impact the accuracy of

painting style classification. Conversely, resizing images to a smaller size can lead to

geometric distortions, loss of details, and, subsequently, lower accuracy.

The performance of the custom pre-trained models surpasses that of the base pre-

trained models. This highlights the effectiveness of the network size on classification

accuracy. Despite having the same input size, the custom pre-trained EfficientNet

models consistently outperform their base pre-trained counterparts. For instance,

while the base pre-trained EfficientNet B5 achieves an accuracy of 70.68%, our cus-

tom pre-trained EfficientNet B5 achieves a higher accuracy of 73.12%.

Furthermore, deep retraining of the last eight layers in the custom models leads to

further improvement in accuracy. This finding demonstrates the importance of fine-

tuning the model’s parameters to optimize its performance. Notably, EfficientNet B6

exhibits the best results among all configurations, achieving an impressive accuracy

of 75.55%.

Overall, the results emphasize the impact of network size, resolution, and fine-tuning

on the accuracy of style classification in paintings. The larger and more complex

models consistently yield higher accuracy, highlighting the significance of capturing

intricate visual details in fine art analysis. These findings contribute to the advance-
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ment of automated image classification techniques, specifically in the domain of style

recognition in paintings.

4.5.2 Classification results for style classification

The results presented in Figure 4.10 provide valuable insights into the impact of

additional layers and deep retraining on the accuracy of different models within the

EfficientNet family, ranging from B0 to B6.

Figure 4.10: Classification results of the base pre-trained EfficientNet,

our custom model, and the results of retraining the last 8 layers

One notable observation is that each model demonstrates improved accuracy

when extra layers are added to its architecture and deep retraining is applied. This

finding suggests that adding extra layers enables the models to capture more com-

plex and hidden features, leading to improving the classification performance. The

incremental improvement in accuracy across the EfficientNet models highlights the

effectiveness of this approach in boosting the models’ capabilities.

Interestingly, the results also reveal that deep retraining of the custom Efficient-

Net B2 model yields higher accuracy compared to the custom EfficientNet B3 and

EfficientNet B4 models, despite the latter two having higher input resolution and
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larger model size. This finding suggests that the deep retraining technique plays a

crucial role in improving the performance of the network, surpassing the influence

of increased resolution and network size alone. It highlights the significance of fine-

tuning the model’s parameters to optimize its performance, even when faced with

resolution and model size variations.

4.5.3 Confusion matrices

Figure 4.11 and Figure 4.12 present the confusion matrix of the pre-trained Efficient-

Net B6 base model and our re-trained custom EfficientNet B6 model, respectively,

for style identification on the Paintings-91 dataset. The confusion matrix provides

a comprehensive view of the classification accuracy for each individual style, where

each number corresponds to a specific style label and 1(Ab-Expr) refers to Abstract

Expressionism, 2: Baroque, 3(Construc): Constructivism, 4: Cubism, 5(Impress):

Impressionism, 6(N-class): Neo-Classical, 7: Popart, 8(P-Impr): Post Impressionism,

9: Realism, 10(Renaiss): Renaissance, 11(Roman): Romanticism, 12(Surreal): Sur-

realism and 13(Symbol): Symbolism.

Analyzing the confusion matrices, we observe notable improvements in the accu-

racy of certain style classes when comparing the base model to our re-trained custom

model. Specifically, the re-trained custom EfficientNet B6 model exhibits signifi-

cant enhancements in the accuracy of Post-Impressionism and Romanticism, with

improvements of 13% and 10%, respectively. This can be attributed to the efficacy of

retraining the last layers of the model, which capture high-level features crucial for

discriminating between these styles. Moreover, Abstract Expressionism and Baroque

also demonstrate improved accuracy, with gains of 5% and 8%, respectively.

However, it is worth noting that the accuracy improvement for Surrealism is rela-

tively small, with only a 1% increase. Additionally, both models struggle with accu-

rately classifying Renaissance style, achieving a relatively low accuracy of 50% and

frequently confusing it with Baroque and Neo-Classical styles. This challenge arises

from the close proximity and overlapping characteristics of these styles, making it

difficult to distinguish them. Furthermore, the model encounters confusion between

Symbolism and Constructivism, achieving an accuracy of 67% for Symbolism.

Despite these challenges, our best accuracy is achieved in the Post Impressionism

style, reaching an impressive 91%. This result highlights the model’s proficiency in

recognizing the distinct features and patterns associated with this particular style.
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Figure 4.11: Confusion matrix of the pre-trained EfficientNet B6.

Figure 4.12: Confusion matrix of re-trained custom EfficientNet B6.
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4.6 Conclusion

In this chapter, we presented our first contribution to the subject of recognizing the

artistic style of a fire art painting. It consisted of three methodologies: Pre-trained

EfficientNet models, custom pre-trained EfficientNet models, and deep re-training of

the custom pre-trained EfficientNet models.

The results of the evaluation on the Painting-91 dataset showed that the style classifi-

cation of the custom pre-trained EfficientNet models performed better. They achieved

higher accuracy than the results of the pre-trained EfficientNet models in all cases

from EfficientNet B0 to EfficientNet B6.

Furthermore, applying the deep retraining technique to the last layers of the cus-

tom pre-trained EfficientNet models yielded further improvements in performance.

This technique enhanced the capabilities of the models, leading to even better classi-

fication results.

The classification results also showed that EfficientNet B6, with the deep retrain-

ing technique applied to the last layers of the custom pre-trained model, achieved

the highest level of performance. It outperformed all other models within the Effi-

cientNet B0 to B5 range, regardless of whether they were pre-trained models, custom

pre-trained models, or deep re-trained custom pre-trained models.

The deep retraining of the custom EfficientNet B2 achieved higher accuracy than

the custom EfficientNet B3 and EfficientNet B4 models, even though the two models

have higher input resolution and model size. This finding shows that the effectiveness

of deep retraining in improving network performance surpasses the impact of increas-

ing the network’s resolution size.

These findings highlighted the significant impact of the resolution of the input size,

model complexity and deep retraining on the style classification accuracy, as the deep

retraining of the deeper and more complex architectures consistently performs better.

In the next chapter, we present our second contribution to style classification, which

focuses on studying the effect of different optimizers on the performance of various

pre-trained CNN architectures.
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5.1 Introduction

This chapter presents the description of our second research contribution to the field

of recognizing the artistic style of fine art paintings and its experimental results.

The second contribution of our research involves a comprehensive study on the in-

fluence of optimizers on pre-trained CNN architectures. We compare different CNN

architectures specifically designed for style classification and analyze how various op-

timization algorithms affect their performance. This analysis enables us to identify

the most suitable CNN architecture for achieving accurate and robust style recog-

nition. We used in our experiments two art classification datasets, Pandora18k and

Painting-91.

This chapter is structured into six sections, starting with an introduction and sum-

mary of related studies in Section 5.2. Section 5.3 presents the detailed methodology

of the proposed approach, while Section 5.4 covers the experimental validation, in-

cluding dataset information, data preprocessing, CNN architectures, optimization

algorithms, and experimental setup details. The results obtained from the experi-

ments are discussed in Section 5.5, and the chapter concludes in Section 5.6 with a

summary of the key findings.

The results of this study were published in the peer-reviewed journal “The Inter-

national Journal of Computing and Digital Systems” (IJCDS) under the title: “The

Effect of Optimizers on CNN Architectures for Art Style Classification”. The pub-

lished paper can be accessed at: https://journal.uob.edu.bh/handle/123456789/4747

5.2 Background

Previous studies in the field of art classification have primarily focused on exploring

various methodologies and approaches using different CNN models. However, the

investigation of different optimizers, which play a crucial role in model performance,

has received limited attention in this domain. While optimization algorithms have

been extensively studied in other domains, their application to art classification re-

mains relatively unexplored.

For instance, Agarwal et al. (87) conducted experiments to compare the perfor-

mance of convolutional neural networks using different optimization algorithms on
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handwritten datasets such as MNIST (88) and CIFAR 10 (89). Their study aimed

to verify the impact of different optimizers on the accuracy and convergence of the

models.

Similarly, Verma et al. (90) proposed a comparison of two different optimizers imple-

mented on CNN architectures for classifying COVID-19 X-Ray images. By evaluating

the performance of the models with different optimization algorithms, they aimed to

identify the optimizer that yields superior results in terms of accuracy and general-

ization.

In our study, we leverage the technique of transfer learning to assess the effectiveness

of six pre-trained convolutional neural networks in identifying the artistic style of

paintings. By utilizing pre-trained models, we benefit from the knowledge learned

from large-scale datasets and adapt it to the style classification task.

Moreover, we thoroughly investigate the impact of various hyperparameters, including

optimizers and learning rates, on the performance of each model. By systematically

exploring different combinations of hyperparameters, we aim to identify the optimal

configuration that yields the best results for each pre-trained model.

This study fills the research gap in the field of art classification by shedding light

on the significance of hyperparameter selection, particularly the choice of optimizers

and learning rates. Through our comprehensive analysis, we aim to provide valuable

insights into the most effective hyperparameter settings for each pre-trained model,

enabling researchers and practitioners to achieve superior performance in style clas-

sification tasks.

5.3 Proposed methodology

In this work, we aim to concentrate on two points. The first is to propose a frame-

work for the style classification of a fine art painting, which is illustrated in Figure 5.1.

Our framework consists of two essential parts: the first is the data pre-processing,

and the second is feature extraction with the use of transfer learning and classification.

To leverage transfer learning, we adopted pre-trained ImageNet models as the foun-

dation for our CNN architectures, avoiding the need to train them from scratch.

The last fully connected layers of these architectures, originally designed for 1,000

classes, were replaced with two new dense layers. These layers, initialized randomly,
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had activation functions using Swish (91) with dimensions of 256 and 128, respec-

tively, followed by a softmax layer representing the number of artistic styles in the

dataset. We incorporated batch normalization and dropout layers after each layer to

prevent overfitting. The output of each model was a probability vector indicating the

potential art-style classes corresponding to the artwork image.

Figure 5.1: The proposed framework for style recognition

The second point is to study and compare the effect of different optimizers with

various learning rates (1e-2 and 1e-4) on the performances of six pre-trained CNN

architectures on the ImageNet dataset (47), which has 1.2 million natural images and

1000 classes.

5.4 Exprimental validation

In this section, we present the used datasets, the data preprocessing steps, the used

CNN architecture, the optimizers and the training setup used in our evaluation.

5.4.1 Exprimental datasets

In our experiments, we used two standard datasets of fine art paintings collected from

free accessible fine-art paintings collections.

5.4.1.1 Dataset 1: Panting-91

The Painting-91 dataset (27) consists of a total of 2,338 paintings categorized ac-

cording to one of 13 different artistic styles, namely: cubism, abstract expressionism,
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baroque, constructivism, pop art, impressionism, neoclassical, postimpressionism, re-

naissance, romanticism, realism, symbolism, and surrealism. 1250 of them were uti-

lized for training, while 1088 of them were used for testing. Figure 4.4 shows the

percentage of different styles in the Painting-91 dataset.

Figure 5.2: Percentage of different styles in the Painting-91

dataset

5.4.1.2 Dataset 2: Pandora18k

The second dataset used in this study was Pandora18k, the Painting Database for

the Art Movement Recognition (30; 75). It is one of the most high-quality datasets

available for fine art classification tasks, and it consists of 18,038 images of paint-

ings representing 18 distinct artistic styles. Figure 5.3 illustrates the distribution of

the dataset images across styles, indicating a relatively balanced distribution with

minimal class imbalance.
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Figure 5.3: Percentage of different styles in the Pandora18k

dataset

5.4.2 Data pre-processing:

Before training the models on the Pandora18k and Painting-91 datasets, we per-

formed several preprocessing steps to ensure consistent and reliable results. One of

the primary steps was resizing all the images in both the training and test sets to a

standardized resolution of 480x480 pixels. This resizing helped to maintain unifor-

mity and facilitate the training process.

Additionally, we applied normalization to the images, which involves adjusting the

pixel values to a common scale. Normalization aids in reducing the impact of vari-

ations in pixel intensity and ensures that the models are not biased towards specific

image characteristics.

To further enhance the diversity and robustness of the training data, we employed

data augmentation techniques. These techniques introduce controlled variations to

the existing images, effectively expanding the training set. Some of the augmentation
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techniques utilized include horizontal flipping, where images are mirrored horizontally,

and random shifting of width and height. This shifting involves slight translations of

the image to different positions, enabling the model to learn from different perspec-

tives. Furthermore, we incorporated image rotation and slight zooming to provide

additional variations in the training data.

In order to prevent overfitting, we employed the pre-processing input of each model.

This input includes techniques such as dropout or regularization, which help to reg-

ularize the model during training and prevent it from memorizing the training data

excessively. By applying these techniques, we aim to enhance the model’s generaliza-

tion capabilities and its ability to perform well on unseen data.

Figure 5.4 presents samples of the data augmentation techniques applied to a sin-

gle image. This visual representation provides a glimpse into how the augmented

data differs from the original image, highlighting the variations introduced during

the preprocessing stage. These augmented images contribute to a more diverse and

representative training dataset, enabling the models to learn and generalize better.

Original Image Rotation Width shift Height shift

ZoomHorizontal flip Possible results with all techniques

Figure 5.4: Data pre-processing
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5.4.3 Convolutional neural network architectures

In this study, we chose six widely used CNN architectures, namely Xception (38),

ResNet50 (36), InceptionV3 (35), InceptionResNetV2 (39), DenseNet121 (40), and

EfficientNet B3 (42). These architectures have been shown to be powerful and have

achieved state-of-the-art performance in various image classification tasks.

Table 5.1 presents the most important characteristics of each CNN architecture in

terms of the input size, depth, the size of the model, and the number of parameters.

InceptionResNetV2 is the largest and deepest model we tested in our study.

Table 5.1:: The characteristics of CNN architectures

Model Input Image

Size

Depth Size

(MB)

Parameters

(Millions)

Xception (38) 299 x 299 x 3 81 88 22.9

ResNet-50 (36) 224 x 224 x 3 50 96 25.6

InceptionV3 (35) 229 x 229 x 3 48 89 23.9

InceptionResNetV2 (39) 229 x 229 x 3 164 213.41 56

DenseNet121 (40) 224 x 224 x 3 121 33 7,6

EfficientNet B3 (42) 300 x 300 x 3 210 48 12.3

5.4.3.1 InceptionV3

InceptionV3 is a CNN architecture that is part of the Inception family of models

developed by Google researchers (35). The key innovation of the Inception architec-

ture is the use of the ”Inception module” which consists of multiple filters of different

sizes (1x1, 3x3, and 5x5) in parallel to capture different levels of detail in the in-

put image. InceptionV3 uses a combination of convolutional layers, pooling layers,

and fully connected layers to classify images. Figure 5.5 presents the architecture of

InceptionV3.
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Figure 5.5: Architecture of InceptionV3

5.4.3.2 Xception

Xception is a CNN architecture that is based on the depthwise separable convolution

operation. It was introduced in 2016 by François Chollet to improve the Inception

architecture’s computational efficiency(38). It achieved this by replacing the Incep-

tion module with a ”depth-wise separable convolution” module, which factorizes each

convolutional layer into two separate operations, depth-wise convolution, and point-

wise convolution (Figure 5.6) which can provide the same level of accuracy while

requiring fewer computations.

Figure 5.7 presents the Xception architecture where the data first goes through

the entry flow, then through the middle flow which is repeated eight times, and fi-

nally through the exit flow. The architecture consists of a series of blocks, each of

which contains several convolutional layers. The first block contains a 3x3 convolu-

tional layer followed by a batch normalization layer and a ReLU activation function.

This block is then followed by a series of depthwise separable convolutional layers.

The output of these layers is then passed through another block that combines the

output of the previous block with a residual connection.
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Figure 5.6: The depth-wise and point-wise convolution modules in the

architecture of Xception

Figure 5.7: Architecture of Xception
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5.4.3.3 ResNet50

ResNet50 is a variant of the ResNet (Residual Network) architecture (36), which

is composed of 50 layers and it was introduced to address the vanishing gradient

problem in deep neural networks. The key innovation of ResNet is the introduction

of ”residual connections” which is presented in Figure 5.8. It enables the network to

learn residual functions instead of directly learning the desired mapping. The residual

connections enable the gradient to flow more easily through the network, which helps

to improve the accuracy of the model.

Figure 5.8: Residual connections

The architecture of ResNet50 is illustrated in Figure 5.9,it consists of five stages,

each containing multiple residual blocks. Each residual block contains two or three

convolutional layers, as well as batch normalization and ReLU activation functions

(78). The architecture also uses max pooling and average pooling layers to down-

sample the feature maps. At the end of the last stage, there is a global average

pooling layer that averages the feature maps across the spatial dimensions, followed

by a fully connected layer with a softmax activation function that produces the final

classification output.

Figure 5.9: Architecture of Resnet-50
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5.4.3.4 InceptionResNetV2

InceptionResNetV2 is a hybrid of InceptionV3 and ResNet architectures that com-

bines the benefits of both architectures; it was introduced in 2017 by Szegedy et al.

(39) as an extension of the Inception family of models. InceptionResNetV2 improves

upon InceptionV3 by adding residual connections, which help alleviate the problem

of vanishing gradients during training. InceptionResNetV2 includes residual con-

nections and factorized convolutions, which reduces the number of parameters and

computational complexity.

Figure 5.10: Architecture of InceptionResNetV2

Figure 5.10 is the InceptionResNetV2 architectural details, while Figures 5.11, 5.12

and 5.13 present the Stem of the architecture, the Inception modules A, B, C and

the Reduction blocks A and B respectively.

Figure 5.11: Stem of InceptionResNetV2
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Figure 5.12: Inception modules A, B, C of InceptionResNetV2

Figure 5.13: Reduction block A and B of InceptionResNetV2

5.4.3.5 DenseNet121

DenseNet121 is a CNN architecture that was introduced in 2016 by Huang et al. (40).

It is a variant of the DenseNet family of neural networks, which aims to address the

vanishing gradient problem in deep neural networks by introducing dense connectivity

between layers. DenseNet121 is designed to have 121 layers, and it is composed of

several dense blocks, where each dense block is made up of multiple convolutional

layers that are densely connected. Each dense block takes as input the feature maps

from all previous dense blocks and produces output feature maps that are fed into

the next dense block. The dense connectivity results in a significant reduction in

the number of parameters required to train the network, while also improving its

accuracy. This architecture encourages feature reuse and enables the training of very
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deep neural networks with fewer parameters. Figure 5.14 presents the architecture of

DenseNet with 5 blocks, while Figure 5.15 presents the architecture of DenseNet121.

Figure 5.14: Architecture of DenseNet with 5 blocks

Figure 5.15: Architecture of DenseNet121

5.4.3.6 EfficientNet B3

EfficientNet B3 is a CNN architecture that belongs to the EfficientNet models family

(42), which are designed to be efficient in terms of both computation and memory.

It uses a compound scaling method to optimize the network’s depth, width, and

resolution simultaneously. EfficientNet B3 layers use a combination of depth-wise

separable convolutions, which separate the spatial and channel-wise convolutions,

and inverted residual blocks, which use shortcut connections to reduce the number of

computations. Figure 5.16 (92) presents the architecture of EfficientNet B3.
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Figure 5.16: Architecture of EfficientNet B3

5.4.4 Optimizers

In deep learning, an optimizer is an algorithm used to adjust the weights and biases

of the network during training in order to minimize the loss function, which measures

the difference between the predicted outputs of the network and the true outputs. In

other words, the loss function measures how well the network is performing on the

task it is being trained to solve. The goal of the optimizer is to find the values of the

network’s parameters that minimize the loss function of the neural network.

Optimizers work by computing the gradients of the loss function with respect to

the parameters of the network and then updating the parameters in a way that re-

duces the loss. Different optimizers use different methods to compute the gradients

and update the parameters. Figure 5.17 illustrates the details of our training process

showing the optimizer.

Figure 5.17: A schematic illustration of the training process

In this study, we used there different optimizers are:
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5.4.4.1 SGD optimizer

SGD (Stochastic Gradient Descent) (93) is a widely used optimization algorithm in

deep learning for minimizing the cost function or loss function. It is a type of gradient

descent algorithm that updates the weights of a neural network after each batch of

training examples. it works by calculating the gradient of the cost function with

respect to the neural network weights for a mini-batch of training examples. It then

updates the weights in the opposite direction of the gradient to minimize the cost

function. The equation for the weight update using SGD optimizer can be written

as:

θt+1 = θt − η∇J(θt,xt, yt)

where:

θt is the parameter at time t

η is the learning rate

∇J(θt,xt, yt) is the gradient of the loss function J with respect to the parameters θt,

evaluated on the training example (xt, yt).

5.4.4.2 RMSprop optimizer

RMSprop (Root Mean Square Propagation) (94) is an adaptive learning rate opti-

mization algorithm that calculates an exponential weighted moving average of the

squared gradient for each weight and divides the gradient by the root mean square of

the exponential moving average. The algorithm uses this normalized gradient to up-

date the weights. RMSprop also introduces a decay factor that reduces the influence

of past gradients over time. This helps prevent the optimizer from getting stuck in

local minima or diverging. It modifies the learning rate of the stochastic gradient de-

scent (SGD) algorithm to improve its convergence speed and stability. The equation

for the weight update using the RMSprop optimizer can be written as:

gt = ∇θJ(θt−1)

E[g2]t = αE[g2]t− 1 + (1− α)g2t
θt = θt−1 −

η√
E[g2]t + ϵ

gt

where:

gt is the gradient of the loss function J with respect to the parameters θ at time

t

E[g2]t is the exponentially decaying average of squared gradients up to time t
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α is the decay rate for the moving average (typically set to 0.9)

η is the learning rate

ϵ is a small constant added for numerical stability

5.4.4.3 Adam optimizer

Adam (Adaptive Moment Estimation) (85) an extension of the stochastic gradient

descent with the momentum algorithm, which combines the gradient descent update

rule with a momentum term to accelerate convergence. It takes into account the first

and second moments of the gradients to adaptively adjust the learning rate during

training. Specifically, it computes an estimate of the mean and variance of the gradi-

ent, which are then used to update the parameters in each iteration.

the equation for the weight update using the Adam optimizer can be written as:

mt = β1mt−1 + (1− β1)gt
vt = β2vt−1 + (1− β2)g

2
t

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

θt+1 = θt −
η√

v̂t + ϵ
m̂t

where:

mt and vt are the first and second moments estimates, respectively, at time t

m̂t and v̂t are bias-corrected estimates of the first and second moments, respectively

β1 and β2 are the exponential decay rates for the first and second moments, respec-

tively gt is the gradient at time t

θt is the parameter at time t

η is the learning rate

ϵ is a small constant added for numerical stability.

5.4.4.4 Advantages and limitations of SGD, RMSprop, and Adam opti-

mizers

The following table compares the advantages and limitations of SGD, RMSprop, and

Adam optimizers:
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Table 5.2:: Advantages and limitations of SGD, RMSprop, and Adam optimizers

Optimizer Advantages Limitations

SGD (93)

- Simplicity

- computational efficiency

- ease of implementation

- It can easily get stuck in local

minima

- takes a long time to converge

to the global minimum

RMSprop (94)

-Robust to noisy data

-Automatically adapts the learn

ing rate

- requires only a small amount of

memory

-May converge to a suboptimal

solution if the learning rate is too

high

Adam (85)

-Robust to noisy data

-Computes adaptive learning rates

for each parameter

- Efficiently combines the advan

tages of RMSprop and momentum

- Several hyper-parameters that

need to be tuned

- Can converge to a suboptimal

solution

- Computationally expensive

compared to other optimizers

5.4.5 Exprimental setup

During training, we performed fine-tuning by unfreezing the last four layers of each

model and re-training them in addition to the last fully-connected layers. After 40

iterations (epochs) of training with a batch size of 64, we considered the maximum

accuracy achieved as the final result. Our experiments were conducted using Ten-

sorflow 2.3.0 (95) on a system running Windows 11 with a Geforce GTX 1660 Super

and an Intel i9 10900k processor. The pre-trained models utilized in this study were

obtained from the Keras library (96).

5.5 Results and discussion

The evaluation metric used in our experiments was accuracy, which is defined as the

percentage of successfully identified examples relative to the total number of examples.

It is calculated as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(5.1)

Where true positive and true negative classification predictions are denoted by TP
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and TN, respectively, while false positive and false negative classification predictions

are denoted by FP and FN, respectively (77).

5.5.1 Results of style classification on the Painting-91 dataset

Table 5.3 presents the results of style classification on the Painting-91 dataset using

different models and optimizers. The models include Xception, Resnet50, Incep-

tionV3, InceptionResNetV2, DenseNet121, and EfficientNetB3. The optimizers used

are SGD, RMSprop, and Adam, with varying learning rates of 1e-2 and 1e-4. Based

on the results presented in the table, several observations can be made regarding the

performance of different pre-trained CNN architectures on the Painting-91 dataset.

Table 5.3:: The results of style classification on the Painting-91 dataset.

Model

Optimizer
SGD RMSprop Adam

1e-2 1e-4 1e-2 1e-4 1e-2 1e-4

Xception 69.67 18.75 67.10 71.51 69.85 71.32

Resnet50 72.15 22.43 72.15 73.16 73.07 72.24

InceptionV3 69.58 19.12 71.69 68.20 70.96 68.66

InceptionResNetV2 73.25 24.36 72.06 75.00 72.89 75.18

DenseNet121 69.29 15.44 73.99 67.46 73.71 65.44

EfficientNetB3 68.84 13.24 71.42 70.40 71.78 69.21

The InceptionResNetV2 model consistently outperformed the other tested pre-

trained models when using the SGD optimizer with both learning rates (1e-2 and

1e-4). The model achieved the highest accuracy of 73.25% with a learning rate of 1e-

2, which is a significant improvement compared to the accuracy of 24.26% obtained

with a smaller learning rate of 1e-4.

When using the RMSprop optimizer with a learning rate of 1e-2, the InceptionRes-

NetV2 model achieved the third-highest accuracy of 72.06%, following ResNet50 and

DenseNet121, which achieved accuracies of 72.15% and 73.99% respectively. Inter-

estingly, when using the RMSprop optimizer with a lower learning rate of 1e-4, the

accuracy of InceptionResNetV2 increased to 75.00%, becoming the highest among all

tested models. In contrast, the accuracy of DenseNet121 decreased by 6.53% to reach

67.46%.
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Similarly, when using the Adam optimizer with a learning rate of 1e-2, the Inception-

ResNetV2 model achieved the third-highest accuracy of 72.89%, following ResNet50

and DenseNet121, which achieved accuracies of 73.07% and 73.99% respectively.

Furthermore, when using the Adam optimizer with a smaller learning rate of 1e-4, the

accuracy of InceptionResNetV2 increased slightly to 75.18%, once again becoming the

highest among all tested models. However, the accuracy of DenseNet121 decreased

by 8.5% to reach 65.21%.

From these results, it can be concluded that the choice of optimizer and learning rate

significantly impact the performance of each pre-trained model. The InceptionRes-

NetV2 model achieved the best results with the SGD optimizer and a larger learning

rate (1e-2). However, for other optimizers such as RMSprop and Adam, a smaller

learning rate (1e-4) yielded the highest accuracy for InceptionResNetV2. Therefore,

selecting an appropriate optimizer and fine-tuning the learning rate are crucial steps

to achieve optimal performance with pre-trained models on the Painting-91 dataset.

From the previous results, we can conclude that the best optimizer for each pre-

trained model differs from one to another. Additionally, it is crucial to choose an

adequate learning rate as the model may fail to achieve good results if an inadequate

learning rate is used.

5.5.2 Results of style classification on the Pandora 18k dataset

The results presented in table 5.4, which showcases the outcomes of our experiments

conducted on the larger Pandora18k dataset, exhibit similarities with those obtained

from the smaller Painting-91 dataset. This observation leads us to the conclusion that

the size of the dataset does not significantly impact the performance of pre-trained

models. Remarkably, the best hyperparameters for a pre-trained model remain con-

sistent irrespective of the dataset size. In our investigation, the pre-trained Xception

model, introduced for the first time in the context of style recognition, achieved an

impressive accuracy of 65.49% on the Pandora18k dataset. This performance sur-

passed that of the InceptionV3 model, which achieved an accuracy of 61.73%. These

results indicate that the Xception model is a promising choice for style recognition

tasks.

The InceptionResNetV2 model achieved the highest accuracy in most cases, regard-
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Table 5.4:: The results of style classification on the Pandora 18k dataset.

Model

Optimizer
SGD RMSprop Adam

1e-2 1e-4 1e-2 1e-4 1e-2 1e-4

Xception 62.94 33.49 62.44 65.02 62.72 65.49

Resnet50 66.79 39.57 66.90 66.92 66.65 67.56

InceptionV3 59.02 31.17 61.73 60.04 61.53 59.60

InceptionResNetV2 67.56 40.21 66.79 68.36 66.79 68.45

DenseNet121 64.19 32.41 68.03 66.45 68.07 66.34

EfficientNetB3 62.89 28.46 63.91 64.66 63.16 65.18

less of the optimizer used. With the SGD optimizer and a learning rate of 1e-2,

the InceptionResNetV2 model achieved an accuracy of 67.56%, surpassing all other

models. Similarly, with the RMSprop optimizer and a learning rate of 1e-4, the Incep-

tionResNetV2 model achieved an accuracy of 68.36%, again outperforming the other

models. With the Adam optimizer and a learning rate of 1e-4, the InceptionRes-

NetV2 model achieved an accuracy of 68.45%, once again being the top-performing

model. The ResNet50 model also performed relatively well across different optimizers

and learning rates. It achieved the second-highest accuracy in most cases. With the

Adam optimizer and a learning rate 1e-4, the ResNet50 model achieved the highest

accuracy of 67.56%.

The DenseNet121 model achieved the highest accuracy in two cases: with the RM-

Sprop optimizer and a learning rate of 1e-2, and with the Adam optimizer and a

learning rate of 1e-2. In both cases, it achieved an accuracy of 68.03The Xception,

InceptionV3, and EfficientNetB3 models generally achieved lower accuracies com-

pared to the InceptionResNetV2, ResNet50, and DenseNet121 models. The Incep-

tionResNetV2 model consistently performed well, achieving the highest or second-

highest accuracies across different optimizers and learning rates. The ResNet50 and

DenseNet121 models also demonstrated competitive performance.

The findings from our experiments highlight the significance of selecting appropri-

ate pre-trained models and optimizing hyperparameters. The consistent superiority

of the InceptionResNetV2 model reinforces its suitability for style recognition tasks,

while the Xception model presents a viable alternative with its commendable per-

formance. Furthermore, the consistency of optimal hyperparameters across different

dataset sizes emphasizes the robustness and generalizability of these models.

85



CHAPTER 5. THE EFFECT OF OPTIMIZERS ON CNN ARCHITECTURES
FOR ART STYLE CLASSIFICATION

5.5.3 Analysis of classification results

Figures 5.18, 5.19, and 5.20 provide a visual representation of the results obtained

from our experiments, focusing on the performance of the six pre-trained models for

style classification using different optimizers: SGD, RMSprop, and Adam. Each figure

comprises two subplots, with the top subplot presenting the results for the Painting-

91 dataset and the bottom subplot displaying the results for the Pandora18k dataset.

In each subplot, every pre-trained model is represented by two bars: a blue bar indi-

cating the accuracy achieved when trained with a learning rate of 1e-2, and an orange

bar representing the accuracy attained with a learning rate of 1e-4.

Upon analyzing the figures, it is evident that the pre-trained Xception model outper-

formed the pre-trained InceptionV3 model on the Pandora18k dataset. This obser-

vation suggests that Xception is more effective in capturing the style characteristics

of the Pandora18k dataset.

Additionally, it is worth noting that the pre-trained ResNet50 model exhibited higher

accuracy compared to the Xception, InceptionV3, and EfficientNet B3 models on both

the Painting-91 and Pandora18k datasets. This finding indicates that ResNet50 ex-

cels in extracting and classifying artistic styles, performing consistently well across

different dataset sizes.

The visual representation of the results in Figures 5.18, 5.19, and 5.20 provides a

clear overview of the performance of each pre-trained model and optimizer combina-

tion on the two datasets. These figures serve as a valuable reference for understanding

the comparative strengths and weaknesses of the models and optimizers, aiding in the

selection of the most suitable approach for style classification tasks.
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Figure 5.18: The results of style classification with SGD optimizer on

the top: Panting-91 dataset and on the bottom: Pandora18k dataset
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Figure 5.19: The results of style classification with RMSprop optimizer

on the top: Panting-91 dataset and on the bottom: Pandora18k dataset
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Figure 5.20: The results of style classification with Adam optimizer on

the top: Panting-91 dataset and on the bottom: Pandora18k dataset
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5.5.4 Confusion Matrices

Figures 5.21 and 5.22 illustrate the confusion matrices for the InceptionResNetV2

model trained with the Adam optimizer and a learning rate of 1e-4 on two differ-

ent datasets: Dataset 1 (Painting-91) and Dataset 2 (Pandora18k). The diagonal

elements of the matrices represent the average accuracy achieved for each individual

style.

Figure 5.21, we can see that the Abstract Expressionism, Surrealism, and Cubism

styles exhibited the highest accuracy, with recognition rates of 93%, 88%, and 87%,

respectively. On the other hand, The paintings belonging to Symbolism were mixed

up with other paintings from the Constructivism style. The Renaissance style had

the lowest accuracy of 56% and was frequently misclassified, often confused with the

Neo-classical style. This suggests that distinguishing between Renaissance and Neo-

classical styles proved to be more challenging for the model.

Moving to Figure 5.22 shows that the styles Bayantinizim and Early-Renaissance

achieved the highest accuracy, with 97% and 87%, respectively. This indicates that

the model successfully recognized these styles with high accuracy. However, Expres-

sionism yielded the lowest accuracy of 37% and exhibited relatively high confusion

rates with the Fauvism, and Post-Impressionism styles. Similarly, the Baroque style

was often misclassified as Rococo and Romanticism. These instances of confusion

can be attributed to the similarities between these styles, as they belong to adjacent

periods in art history.
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Figure 5.21: Confusion matrix of of InceptionResNetV2 with Adam

optimizer and learning rate of 1e-4 on the Painting-91 dataset
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Figure 5.22: Confusion matrix of InceptionResNetV2 with Adam

optimizer and learning rate of 1e-4 on the Pandora18k dataset

5.6 Conclusion

This chapter presented our second contribution, focusing on comparing different pre-

trained CNN architectures, namely Xception, ResNet50, InceptionV3, InceptionRes-

NetV2, DenseNet121, and EfficientNet B3, for style classification tasks, including

Xception architecture, which to our knowledge, has never been used for this purpose

before. Additionally, we investigated the impact of various optimizers (SGD, RM-

Sprop, and Adam) with different learning rates (1e-2 and 1e-4) on the performance

of these architectures.
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The results of the evaluation on the Painting-91 dataset and the Pandora18k dataset

showed that all the pre-trained models performed poorly with the SGD optimizer and

a small learning rate (1e-4). However, significant improvements were observed when

using a higher learning rate of 1e-2, indicating the impact of choosing the correct

learning rate, as the model may fail to achieve good results with inadequate hyper-

parameters.

The results of all the pre-trained CNN models with the RMSprop optimizer and

the Adam optimizer show similar results when evaluated with the same learning rate.

Both are better than the ones with the SGD optimizer.

Moreover, we found that a small model’s best-performing optimizer and learning

rate are not always the best hyper-parameters for a more profound and larger model.

The pre-trained Xception model, which was not previously utilized for style clas-

sification of fine art paintings, outperformed the pre-trained InceptionV3 model on

the Pandora18k dataset. Furthermore, the pre-trained ResNet50 model demonstrated

higher accuracy than the pre-trained Xception, InceptionV3, and EfficientNet B3 on

both the Painting-91 and Pandora18k datasets. These findings highlight the effec-

tiveness of the pre-trained ResNet50 model in capturing and recognizing the intricate

details and stylistic features present in fine art paintings. It also indicates that the

choice of the pre-trained model can significantly influence the performance of style

recognition tasks.

Among the evaluated models, the pre-trained InceptionResNetV2 architecture demon-

strated the highest accuracy for artistic style classification on both datasets when

trained with the Adam optimizer and a learning rate of 1e-4.

In conclusion, the research highlights the importance of choosing the appropriate

optimizer for CNN architectures in art style classification as the model may fail to

achieve good results if an inadequate learning rate is used. Importantly, the best

optimizer for each pre-trained model differs from one to another.
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CHAPTER 6. CONCLUSION AND FUTURE WORK

In this chapter, we present the thesis’s main finding and provide some future

work research directions.

6.1 Summary and findings of the thesis

In this thesis, our primary focus was on advancing the field of recognizing fine art

paintings’ artistic style through applying deep learning approaches. We recognized

the potential of supervised learning in this context and specifically explored the use

of transfer learning to fine-tune various convolutional neural network (CNN) archi-

tectures for style classification.

To contribute to the existing literature, we delved into exploring different CNN archi-

tectures that have not been extensively investigated before in the domain of fine art

classification. By leveraging the power of transfer learning, we were able to initialize

these architectures with pre-trained weights, allowing us to benefit from their learned

features and adapt them to the task of style classification.

Although the great performance of EfficientNet models in natural image classifica-

tion on the ImageNet dataset, these architectures had not previously been used for

painting classification. Therefore, Our first contribution focused on investigating the

effectiveness of seven pre-trained models from the EfficientNet family, ranging from

B0 to B6, allowing for a comprehensive comparison for recognizing the artistic style of

a fine art painting. Additionally, we enhanced the base architectures of the Efficient-

Net models by adding additional layers to create our custom models. Furthermore,

we explored the impact of deep retraining the last layers of a pre-trained model on

the accuracy of style recognition.

The classification results on the Painting-91 dataset showed that EfficientNet B6,

with the deep retraining technique applied to the last layers of the custom pre-trained

model, achieved the highest level of performance. It outperformed all other models

within the EfficientNet B0 to B5 range, regardless of whether they were pre-trained

models, custom pre-trained models, or deep re-trained custom pre-trained models.

These findings highlighted the significant impact of the resolution of the input size,

model complexity and deep retraining on the style classification accuracy, as the deep

retraining of the deeper and more complex architectures consistently performs better.

Furthermore, we investigated how the choice of optimizer and learning rate affects the

performance and robustness of the pre-trained convolutional neural network models
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in the field of fine art paintings.

We compared different pre-trained CNN architectures, namely Xception, ResNet50,

InceptionV3, InceptionResNetV2, DenseNet121, and EfficientNet B3, for style clas-

sification tasks, including Xception architecture, which to our knowledge, has never

been used for this purpose before. And we focused on exploring the effectiveness of

three popular optimizers: Stochastic Gradient Descent (SGD), Adam, and RMSprop

to advance the state-of-the-art of artistic analysis techniques by unraveling the re-

lationships between model architectures, optimizers, and artistic style classification

performance..

The evaluation results on the Painting-91 and Pandora18k datasets showed that the

size of the dataset does not affect the performance of the pre-trained models, as

the best hyper-parameters for a pre-trained model are the same for a small or large

dataset.

The study’s findings revealed that the choice of optimizer significantly impacts the

performance of the pre-trained CNN architectures for art style classification. The

results demonstrated variations in accuracy across different optimizers and learning

rates, indicating their crucial role in effectively training the models as the model may

fail to achieve good results if an inadequate learning rate is used.

In conclusion, this research emphasizes the significance of carefully selecting opti-

mizers and learning rates for pre-trained CNN architectures in art-style classification.

It highlights the necessity of conducting thorough experiments and considering the

specific characteristics of the models to achieve optimal performance.

6.2 Future work

Further research in style classification is crucial to address the challenges of reducing

confusion between specific artistic movements and improving the overall accuracy of

classification systems. One potential avenue to explore is the utilization of Generative

Adversarial Networks (GANs) for generating synthetic paintings in various artistic

styles. Synthetic artworks representing different styles can be generated by training

GAN models on a diverse dataset of fine art paintings. These synthesised paintings

can serve as valuable training data, augmenting the existing dataset and improving

the classification accuracy.
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Another promising approach is using an ensemble of different CNN (Convolutional

Neural Network) approaches. By combining multiple CNN models, each trained on

a specific subset of the data or using different architectural configurations; we can

benefit from their collective intelligence to improve the accuracy and robustness of

style classification. Ensemble methods have been shown to effectively reduce bias and

increase the overall performance of classification tasks.

Additionally, incorporating Long Short-Term Memory (LSTM) networks into the

classification pipeline could be explored. LSTM networks can capture temporal de-

pendencies and sequential information, which could be valuable in capturing the

evolution and progression of artistic styles over time. A more comprehensive and

nuanced understanding of artistic styles can be achieved by combining the visual fea-

tures extracted by CNNs with the temporal modelling capabilities of LSTM networks.

Furthermore, our research focused on recognizing the style of a painting, but there are

exciting opportunities for future research to expand upon our findings. For example,

to explore the integration of the style classification approaches into augmented reality

(AR) applications. By leveraging AR technology, we can bring the analysis of fine

art to a new level of interactivity and engagement.

Integrating style classification algorithms into AR applications would allow users to

instantly identify and explore the style of a painting in real time. This could involve

overlaying style labels or information directly onto the artwork when viewed through

an AR device or providing interactive features allowing users to delve deeper into a

particular style’s historical context and background.

By pushing the boundaries of fine art analysis by integrating style classification into

augmented reality applications and developing advanced automated techniques, we

can unlock new possibilities for art enthusiasts, researchers, and even artists them-

selves. These advancements will contribute to a deeper understanding and exploration

of artistic styles, enriching the world of fine art appreciation.

97



References

[1] E. Fernie, Art history and its methods: A critical anthology. Phaidon London,

1995.

[2] Moon, “A brief history of art.” https://medium.com/@cchndn13/

a-brief-history-of-art-c3d689fae01f, Jul 2020. [Accessed 16-September-

2023].
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