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Abstract—With the purpose of populating virtual worlds with 
various adapted artificial organisms, we propose an 
ontogenetic and phylogenetic hybrid model to generate 
complete organisms possessing metabolism, morphology, and 
behavior from a single initial cell. The initial purpose of our 
work is to generate organisms that are thereafter used to 
define complete organisms. In this paper, we introduce a bio-
inspired cellular developmental model that links different 
approaches of ontogenesis systems: grammatical and cell 
chemistry approaches. Thus, we propose an alternative to 
parametric L-systems (APL-systems) in order to simulate 
morphogenesis of organisms according to their internal states. 
The developed organisms have a metabolism using 
environmental substrates to grow and to act. Moreover, they 
are able to exhibit almost perfect self-healing characteristics 
afterwards or even during their development. 

Keywords- ontogeny; phylogeny; metabolism; evolutionary 
parametric L-systems; cell lineage 

I.  INTRODUCTION AND MOTIVATIONS 
A number of different models exist for the creation of 

artificial creatures. These models use different levels of 
abstraction to produce organisms of various shapes and sizes. 
Whereas, phylogenetic approaches [1], [2], [3] attempt to 
evolve sophisticated behaviors through the simultaneous 
evolution of the brains and bodies of organisms in a 3-D 
simulated world, ontogenetic approaches [4], [5], [6], [7] aim 
to simulate the cellular development of organisms from a 
single element: a cell. The purpose of this subfield of 
artificial life, called artificial embryogeny, is to build on the 
mechanisms deployed during the growth of living organisms 
to produce more complex artificial organisms and to propose 
to the evolutionary robotics field new prototypes capable of 
self-modeling, self-repairing and self-assembly. 

Furthermore, the previous work in artificial ontogeny 
falls into two broad categories [8], [9]: the grammatical 
approach [10], [11], [12], originated by Lindenmayer [13] 
and the cell chemistry approach [14], [15], [16], [17], [18], 
that draws inspiration from the early work of Turing [19]. 
Grammar based techniques are convenient for describing cell 
lineage 1 and genetic control of cell division [20]. These 

                                                             
1  Lineage mechanisms are employed where an individual module 
determines its own fate using information passed from parent to child 
module. 

systems use production rules to sequentially modify symbols 
which represent organisms, and are able to create realistic-
looking models of biological structures. 

Cell chemistry approaches generally utilize lower level 
representations and are more strictly motivated by the 
biological mechanisms of development such as: diffusion, 
reaction-diffusion, expression and regulation of genes, 
metabolism, genetic regulatory networks, differentiation, cell 
division, etc. We argue that development models based on 
these mechanisms, in particular genetic regulatory networks, 
take into account more elementary phenomena than those 
proposed by the grammatical approach, and that generally 
they provide more expressive encodings (the size of the 
genotype is smaller than that of the phenotype). However, as 
Dellaert and Beer [21] note, the genetic operators are more 
difficult to define and the loss of convergence performance is 
not compensated by the potential gain of expression. In 
addition, within the framework of the development of neural 
networks for example, grammatical approaches are powerful.   

Thus, we propose in this paper a unified model based on 
these two approaches to take advantage of both. As a 
grammatical approach, L-systems are considered to be an 
appropriate formalism for describing many growth processes 
in organisms [22]. They constitute an adequate genetic 
representation for studies which simulate natural 
morphological evolution. They allow a necessary and very 
suitable distinction between genotype and phenotype, and 
provide a well-defined process (morphogenesis) for 
generating the latter from the former. Repetition and 
regularity, intrinsic concepts of L-systems, are also necessary 
ingredients for natural morphogenesis. In addition, many 
studies have successfully explored the evolution of these 
systems notably for the construction of models which best 
describe natural target structures. We cite: the development 
of plants and flowers [12], [23], modeling the blood vessels 
of the eye [24] or proteins [25], evolutionary neurogenesis 
[10], [26] and also the generation of artificial organisms [27] 
and real robots [28]. All these reasons motivate us to take 
advantage of the flexibility of evolutionary L-system in a 
unified cellular developmental model. 

So, in order to generate whole organisms from a single 
cell and possessing a morphology, a metabolism and a 
behavior, we propose an ontogenetic and phylogenetic 
hybrid approach. To develop initially multicellular organisms 
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(the ontogeny part) which could be used thereafter to 
synthesize complete organisms (the phylogeny part), we 
propose, in this paper, a cellular development model unifying 
grammatical and cell chemistry approaches. To develop 
multicellular organisms, we simulate their metabolism, their 
cellular and environmental interactions, their morphogenesis 
and their evolution. 

II. THE CELLULAR DEVELOPMENTAL MODEL 

A. Environment 
Our artificial multicellular organisms evolve in an 

embryonic environment represented by a 2-D toric grid 
similar to the one presented in [29]. A toric grid is obtained 
by connecting the opposite edges of a simple grid. In our 
model, a grid is a n*m matrix of sites or patches. Each patch 
can contain one or more substrates and zero or one cell. The 
environment contains different molecules that diffuse into 
the grid and cells that can perform different tasks. 

1) Diffusion: The goal of the diffusion is to balance the 
quantities of substrates in the environment by minimizing 
the variations of the quantities of molecules between two 
neighbooring sites in the grid. The initial distribution of 
these substrates is achieved in a non-uniform way. Then, 
each substrate can diffuse towards the eight neighboring 
sites in the grid. Diffusion acts in two stages as illustrated in 
figure1:   

• First, the substrate diffuses towards the four cardinal 
sites.   

• Then, if the quantity of molecules is sufficient, the 
molecule diffuses on the diagonals. 

If the quantity of substrates is not sufficient to spread 
evenly, the last diffusions of the stage of diffusion are chosen 
randomly. Moreover, if a site close to the currently computed 
diffusion site contains more substrates, the diffusion will not 
occur in this direction. Finally, no diffusion can occur 
between a cell and its environment in either direction. Only 
an action triggered by the cell may allow an exchange of 
substrates with the environment. 

2) Cells: The cells evolve in the embryonic environment 
and more precisely in its diffusion grid. Each cell has:  

• an internal state which represents the cell 
constitution of intracellular molecule and energy 
level,  

• a set of sensors positioned on its membrane 
(described in section C), 

• a list of capacities, in other words, a list of  actions 
(described in section C),  

• an action selection system allowing the cell to  

advantage of the flexibility of evolutionary L-system in a 
unified cellular developmental model. 

So, in order to generate whole organisms from a single 
cell and possessing a morphology, a metabolism and a 
behavior, we propose an ontogenetic and phylogenetic 
hybrid approach. To develop initially multicellular organisms 
(the ontogeny part) which could be used thereafter to 
synthesize complete organisms (the phylogeny part), we 
propose, in this paper, a cellular development model unifying 
grammatical and cell chemistry approaches. To develop 
multicellular organisms, we simulate their metabolism, their 
cellular and environmental interactions, their morphogenesis 
and their evolution. 

II. THE CELLULAR DEVELOPMENTAL MODEL 
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embryonic environment represented by a 2-D toric grid 
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by connecting the opposite edges of a simple grid. In our 
model, a grid is a n*m matrix of sites or patches. Each patch 
can contain one or more substrates and zero or one cell. The 
environment contains different molecules that diffuse into 
the grid and cells that can perform different tasks. 

1) Diffusion: The goal of the diffusion is to balance the 
quantities of substrates in the environment by minimizing 
the variations of the quantities of molecules between two 
neighbooring sites in the grid. The initial distribution of 
these substrates is achieved in a non-uniform way. Then, 
each substrate can diffuse towards the eight neighboring 
sites in the grid. Diffusion acts in two stages as illustrated in 
figure1:   

• First, the substrate diffuses towards the four cardinal 
sites.   

• Then, if the quantity of molecules is sufficient, the 
molecule diffuses on the diagonals. 

If the quantity of substrates is not sufficient to spread 
evenly, the last diffusions of the stage of diffusion are chosen 
randomly. Moreover, if a site close to the currently computed 
diffusion site contains more substrates, the diffusion will not 
occur in this direction. Finally, no diffusion can occur 
between a cell and its environment in either direction. Only 
an action triggered by the cell may allow an exchange of 
substrates with the environment. 

2) Cells: The cells evolve in the embryonic environment 
and more precisely in its diffusion grid. Each cell has:  

• an internal state which represents the cell 
constitution of intracellular molecule and energy 
level, 

], [24] and also the generation of artificial creatures [25] and 
real robots [26]. All these reasons motivate us to take 
advantage of the flexibility of evolutionary L-system in a 
unified cellular developmental model. 

So, in order to generate complete creatures from a single 
cell and possessing a morphology, a metabolism and a 
behavior, we propose an ontogenetic and phylogenetic 
hybrid approach. To develop initially multicellular organisms 
(the ontogeny part) which could be used thereafter to 
synthesize complete creatures (the phylogeny part), we 
propose, in this paper, a cellular development model unifying 
grammatical and cell chemistry approaches. To develop 
multicellular creatures, we simulate their metabolism, their 
cellular and environmental interactions, their morphogenesis 
and their evolution. 

II. THE CELLULAR DEVELOPMENTAL MODEL 

A. Environment and cell representation 
Our artificial multicellular creatures evolve in an 

embryonic environment represented by a 2-D toric grid 
similar to that presented in [27]. This environment contains 
various molecules which spread into the grid. The initial 
distribution of these molecules is achieved in a non-uniform 
way. Each molecule can diffuse towards the eight 
neighboring points in the grid. Diffusion acts in two stages as 
illustrated in figure1:   

• First, the molecule diffuses towards the four cardinal 
points.   

• Then, if the quantity of molecules is sufficient, the  
molecule diffuses on the diagonals. 

The cells evolve in the embryonic environment and more 
precisely in its diffusion grid. Each cell has:  

• a shape (diamond, circle,...),  

• an internal state which represents the cell 
constitution of intracellular molecule and energy 
level, 

• a set of sensors positioned on its  membrane 
(described in section C),  

• a list of capacities, in other words, a list of  actions 
(described in section C), 

• an action selection system allowing the cell  to 
choose the best action to perform at every moment 
of the simulation (described in section  C). 

 

Figure 1.  The diffusion of molecules in the environment. 

B. Metabolism  

For the purpose of simulating the metabolism of our 
artificial multicellular creatures, our model integrates a 
simplified artificial chemistry. Formally, an artificial 
chemistry is defined by a triple (S; R; A) [28], where:  

• S is the set of all possible molecules,  

• R is a set of collision or reaction rules representing 
the interaction among the molecules,  

• and A is an algorithm describing the reaction vessel 
or domain and how the rules are applied to the 
molecules inside the vessel. 

In our model, we define a simple chemical system 
consisting of a finite number of molecules that we also call 
substrates. These substrates diffuse in the grid and have a 
unique name (A, B, C,...) and some properties such as 
diffusion rate, color and type (intracellular or 
environmental). 

Substrates can interact via a finite set of reaction rules. 
To reduce complexity, the list of valid reaction rules is given 
explicitly when specifying the environment. 

To simulate the dynamics of a population of molecules, 
we propose a stochastic molecular collision approach. A 
typical algorithm takes a sample of molecules randomly from 
the set S and checks whether a rule r ! R can be applied. If 
so, the substrates are replaced by the right hand side 
substrates given by r. Otherwise, no rule can be applied and 
the process is repeated. 

The  algorithm: 
substrates: S= {s1, s2, …}; 

reactions: R= {r1, r2 , …}; 

begin 

 while (not terminate()) 

 begin 

 n:= random_nomber ([S]); 

 s1 :=  random_substrate (S); 

 s2 :=  random_molecule (S); 

 sn  :=  random_molecule (S); 

 if (" r = (a1s1, a2s2,…,ansn! a’1s1’, a’2s2’,…, a’msm’) ! R  

     and can_be_triggered (r))  

           then   execute r; 

 end while 

end 

Note that these reaction rules can be triggered only inside 
the cells. Thus, when a cell carries out the substrate 
transformation action (described in next section), using some 
substrates, a reaction rule creates new substrates by 
consuming or producing energy. For example, the 
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• a set of sensors positioned on its membrane 
(described in section C),  

• a list of capacities, in other words, a list of  actions 
(described in section C), 

• an action selection system allowing the cell to 
choose the best action to perform at every moment 
of the simulation (described in section  C). 

B. Metabolism  

With the purpose of simulating the metabolism of our 
artificial multicellular organisms, our model integrates a 
simplified artificial chemistry. Formally, an artificial 
chemistry is defined by a triple (S; R; A) [30], where:  

• S is the set of all possible molecules,  

• R is a set of collision or reaction rules representing 
the interaction among the molecules,  

• and A is an algorithm describing the reaction vessel 
or domain and how the rules are applied to the 
molecules inside the vessel. 

In our model, we define a simple chemical system 
consisting of a finite number of molecules that we call 
substrates. These substrates diffuse in the grid and have a 
unique name (A, B, C...) and several properties such as 
diffusion rate, color and type (intracellular or 
environmental). Substrates can interact via a finite set of 
reaction rules. To reduce complexity, the list of valid 
reaction rules is given explicitly when specifying the 
environment. 

To simulate the dynamics of a population of molecules, 
we propose a stochastic molecular collision approach. A 
typical algorithm takes a sample of molecules randomly from 
the set S and checks whether a rule r ! R can be applied. If 
so, the substrates are replaced by the right hand side 
substrates given by r. Otherwise, no rule can be applied and 
the process is repeated. 

Note that these reaction rules can be triggered only inside 
the cells. Thus, when a cell carries out the substrate 
transformation action (described in next section), using some 
substrates, a reaction rule creates new substrates by 
consuming or producing energy. For example, the 
transformation A +2 B ! C (-62), produces one unit of C 
substrate, with a unit of A substrate and two units of B 
substrate. This transformation consumes 62 units of vital 
energy. From a biological site of view, C can viewed as a 
waste from a cell which has the ability to convert A and B in 
energy. 
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choose the best action to perform at every moment of 
the simulation (described in section  C). 

B. Metabolism  

With the purpose of simulating the metabolism of our 
artificial multicellular organisms, our model integrates a 
simplified artificial chemistry. Formally, an artificial 
chemistry is defined by a triple (S; R; A) [30], where:  

• S is the set of all possible molecules,  

• R is a set of collision or reaction rules representing 
the interaction among the molecules,  

• and A is an algorithm describing the reaction vessel 
or domain and how the rules are applied to the 
molecules inside the vessel. 

In our model, we define a simple chemical system 
consisting of a finite number of molecules that we call 
substrates. These substrates diffuse in the grid and have a 
unique name (A, B, C...) and several properties such as 
diffusion rate, color and type (intracellular or 
environmental). Substrates can interact via a finite set of 
reaction rules. To reduce complexity, the list of valid 
reaction rules is given explicitly when specifying the 
environment. 

To simulate the dynamics of a population of molecules, 
we propose a stochastic molecular collision approach. A 
typical algorithm takes a sample of molecules randomly from 
the set S and checks whether a rule r ! R can be applied. If 
so, the substrates are replaced by the right hand side 
substrates given by r. Otherwise, no rule can be applied and 
the process is repeated. 

Note that these reaction rules can be triggered only inside 
the cells. Thus, when a cell carries out the substrate 
transformation action (described in next section), using some 
substrates, a reaction rule creates new substrates by 
consuming or producing energy. For example, the 
transformation A + 2B ! C (-62), produces one unit of C 
substrate, with a unit of A substrate and two units of B 
substrate. This transformation consumes 62 units of vital 
energy. From a biological site of view, C can viewed as a 
waste from a cell which has the ability to convert A and B in 
energy. 



The  algorithm: 

intracellular substrates: S= {s1, s2, …}; 
reactions: R= {r1, r2 , …}; 
begin 

S’ = all_possible_combinations_of (S);while (S’!=Ø) 
 n := random_number ([S]); 

 s1 := random_substrate (S); 

 s2 := random_substrate (S); 

 sn := random_substrate (S); 

 if (" r = (a1s1, a2s2,…,ansn! a’1s1’, a’2s2’,…, a’msm’) ! R  
     and can_be_triggered (r))  
           then   execute r; 
 update (S’); 
end while 

end 
The produced substrates can be rejected in the 

environment and thus another cell can absorb and transform 
them into other substrates. However, there are substrates 
which are only intracellular, i.e. they cannot be present in the 
environment. Therefore, the cell can neither absorb nor reject 
them into the environment but must produce them. 
Intracellular substrates can be used by the cell to perform 
specific actions like mitosis. Environmental substrates are 
used to produce intracellular ones, and to serve in the indirect 
intercellular interaction. 

C. Environmental and Cellular Interactions 
The cells can interact with the environment and also with 

other cells via an action selection system. To simulate this 
interaction, cells are provided with membranous sensors and 
can carry out various cellular actions. 

Sensors are positioned on the membrane of each cell. 
They measure the amount of substrate available in its Von  
 
Neumann neighborhood. Thus, for each possible 
environmental substrate, the cell has an associated sensor. 
Only the sensor corresponding to a given substrate can 
measure its density. For example, in Figure 2, the cell has 
sensors for A and D substrates in the bottom corner. The 
results of the measure of the corresponding substrate 
densities are:  

• 1 unit of A substrate, 

• 2 units of D substrates because of the presence of 
two units of D substrate in the bottom corner of the 
cell. 

Cellular actions, which we simulate in our model, are as 
follows:   

1) Absorption or release of a substrate: These actions 
can trigger (or respectively, be triggered by) a 
transformation of substrates. They consume vital energy.  

 

Figure 2.  The artificial cell in its environment. It contains sensors (circles) 
to measure the density of valid substrates (pentagons) in its neighborhhod. 

2) Substrate transformation: This action can trigger a 
stochastic collision of substrates within the cell. The 
collision of substrates will catalyze the formation of new 
substrates via a reaction rule. Thus, substrates are destroyed 
to create the right hand side substrates given by a rule. The 
substrate transformation consumes or produce energy. 

3) Survival: This action allows the cell to await a signal 
from the environment or its internal state. It consumes vital 
energy. 

4) Apoptosis: This action allows the cell to commit 
suicide if it does not have enough vital energy to survive. 
When a cell dies, all its constitution in substrates  returns to 
the environment. 

5) Mitosis: When a cell divides, it creates a new 
daughter cell towards the direction specified by the L-
systems controlling the morphogenesis of the organism. 
Mitosis can be carried out by the cell, only if the following 
conditions are respected: 

• The cell must have enough vital energy to divide.   

• The quantities of certain substrates, necessary for the 
creation of a new cell, must exceed a certain 
threshold.   

• The orientation of mitosis corresponds to a position 
non-occupied by another cell.   

• During mitosis, intracellular substrates as well as 
vital energy are shared equitably between the mother 
and the daughter cell. 

The action selection system allows the cell to select the 
best action to perform at every moment of the simulation. 
The action selection system of each organism is inspired by 
Pittsburgh [31], [32] classifier system. It uses a genetic 
algorithm for its evolution and its evaluation which is applied 
to a population of classifier systems. The individuals are thus 
a set of classifiers that are trying to solve the problem. 

In our action selection system, each classifier has three 
parts: condition, action and priority: 

B 

A C B 
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B C 
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C D 

C 

C 
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Sensors B 
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• The condition serves to capture the signal coming 
from the environment or the internal state of the cell. 
It constitutes the cell sensors. 

• The action part determines the action to be carried 
out by the cell if the corresponding condition is 
fulfilled. 

• The priority allows to choose only one action if 
several classifiers are active at the same time. The 
higher the coefficient is, the more probable is the 
selection of the rule. 

Each organism’s action selection system works by using 
data from the cell sensors and matching them with the 
condition part of each classifier to produce a matching set. 
Once completed, it selects the best action to perform from 
this set, using the highest priority. 

D. Morphogenesis 
Genetic factors such as cell lineage are also important in 

the generation of developmental patterns. Some simple 
grammar-based systems, which only model cell lineage, are 
able to synthesize biologically relevant patterns [22]. The 
abilities of these models lie behind our inclusion of genetic 
mechanisms. L-systems are based on formal grammars with 
recursive applications of production rules. Starting from a 
canonical embryological start symbol, embryos are grown by 
simultaneously and repeatedly applying rules to the symbols 
in the developing embryo [8]. The possibility of 
simultaneous productions reflects the biological motivation 
of L-systems, intended to capture mitosis in multicellular 
organisms. Although our representation is somewhat 
different from the classical representation. Indeed, instead of 
using a symbol to represent a cell, we use a symbol to 
represent a cell division action, mitosis. Moreover, the L-
systems that we use are an alternative to parametric L-
systems. 

1) L-systems alphabet: The alphabet we use is described 
in the table below. Uppercase characters are non-terminal 
symbols and denote the predecessors of rules, while 
lowercase letters represent terminal symbols where: “d” is a 
symbol denoting a mitosis action, the symbols “+” and “-“ 
represent 2-D rotations determining the direction where the 
mother cell will put its daughters. Finally, the symbols “[“, 
“]” are used to push and pop the current state. 

TABLE I.  THE L-SYSTEMS ALPHABET 

Symbol Function 
A …Z Non-terminals representing  predecessors of rules. 
d Terminal denoting a cell mitosis action. 
+,- Terminals representing a two-dimensional rotation. 
[ ,] Terminals indicating branching. 

 

2) APL-systems: To simulate the growth of our artificial 
multicellular organisms, we propose a variant of parametric 
L-systems, which we call APL-systems (Alternative 

Parametric L-systems). This extension to basic L-systems 
allows the  simulation of the development of multicellular 
organisms according to the internal state of each cell. 
However, unlike traditional parametric L-systems, all 
production rules can be triggered. The predecessors of rules 
do not have pre-conditions unlike terminal symbols which 
do have pre-conditions. Figure 3 illustrates the difference 
between a traditional parametric rule and the new parametric 
rule defined in our APL-systems. 

Formally, an APL-systems can be defined as an ordered 
quadruplet  (V,#,$,P), where: 

• V=V1%V2 is the alphabet of L-systems, with V1 is 
the set of non-terminals and V2 is the set of 
terminals, 

• # is an axiom, 
• $! V is the axiom, 
• P&V'(V1'(V2'C(#)))* is a finite set of production 

rules. V is the set of the production predecessors, 
and V1'(V2' C(#)) is the set of the production 
successors where C(#) is the set of preconditions. 

 
Thus, the alphabet V and the set of the formal parameters 

are defined as in traditional parametric L-system.  
Nevertheless, the axiom $ and the set of productions P are 
redefined. The axiom is a non-parametric word and 
production rules do not have pre-conditions, but in fact the 
terminal symbols have pre-conditions. 

A precondition C(#) attached to a terminal means that it 
cannot be interpreted  unless its precondition is fulfilled.  For 
example, the terminal “d“ cannot be interpreted in a cell 
mitosis action unless the mitosis conditions are respected by 
the cell concerned. 

In this manner, this alternative will allow the 
interpretation of all the substrings, produced by the 
application of a production rule in a given generation, to the 
first terminal that does not fulfill its precondition. Whereas, 
in traditional parametric L-systems, all substrings generated 
by this rule would not be generated since the rule would not 
be triggered. In this way, all cells that wish to divide, during 
this generation, can do so if they fulfill their preconditions.   

E. Evolution 
To find the organism the most adapted to a specific 

problem, we use a genetic algorithm. Each organism is coded 
with a genome composed of two different chromosomes: the 
APL-systems, specifying the rules of growth, and the action 
selection system, that contains a rule list to apply available 
actions. The developed organism is evaluated at the end of 
the simulation. 

III. EXPERIMENTS AND RESULTS 
We have implemented our model in Java using a multi-

threaded architecture. All cells are coded as independent 
threads running in parallel and sharing common resources: 
environmental substrates. 



A. Development of Simple Organisms 
We wish to synthesize multicellular organisms with the 

proposed development model. Self-similarity is used as a 
selection criterion for the morphological development of our 
multicellular organisms. We made this choice, to produce 
organisms similar to those of Karl Sims [1].  From the long 
view perspective, they could be immersed in a physical 
simulator and have a high level behavioral module enabling 
them to move in their environment. 

In order to reduce the convergence time of the genetic 
algorithm and have a better comprehension of the results, the 
evolutionary experiments are conducted in two stages. 
Initially, we use a fitness favoring bilateral self-similarity. 
Then, once the best chromosomes describing cell lineage are 
found, the second stage consists in learning the organisms 
how to survive in the environment by developing their 
metabolisms. 

1) Experiment 1:  In this experiment, we  studied the 
evolution of L-systems. The fitness of each individual 
consists in estimating  the balance of the “ weight” of its 
morphology.  Thus, the sum of the  absolute values of X-
coordinates X, on the left (and on the right) of  the vertical 
axis of the organism is calculated: Xg (Xd). The best  fitness 
is allotted to the best balanced structures. In this way the 
goal of the genetic algorithm is to minimize the difference 
between Xg and Xd.  The final formula of fitness is given by 
the following: 

fitness=| Xg - Xd |. 

In all experiments, we simulate 50 chromosomes per 
population, for 500 generations. Each experiment produced a 
different morphology. Figure 4 shows a range of 
morphologies that have emerged. 

2) Experiment 2: The purpose of this experiment is to 
teach organisms how to survive in the environment by 
developing their metabolism, and to study their ability to use 
this metabolism for growth thanks to our APL-systems. 

To develop our multicellular organisms, we define an 
artificial chemistry model with a set of molecules composed 
of 3 substrates: 

• A and B: blue (yellow respectively) environmental 
substrate used by the organism as nutriment. These 
substrates have the property of spreading in the 
environment. 

• C: red intracellular substrate produced by cells using 
environmental substrates and used as material of 
mitosis. 

The grid size is 100*100. The diffusion property of the 
substrate will spread rapidly environmental substrates in the 
grid. The set of reactions of the artificial chemistry consists 
of two reactions, R={r1: A+2B!C (-10), r2: A!{} (+60)}.  

The mother cell is initialized with some units of vital 
energy and C substrate (so it can survive in the early  
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goal of the genetic algorithm is to minimize the difference 
between Xg and Xd.  The final formula of fitness is given by 
the following: 

fitness=| Xg - Xd |. 

In all experiments, we simulate 50 chromosomes per 
population, for 500 generations. Each experiment produced a 
different morphology. Figure 4 shows a range of 
morphologies that have emerged. 

2) Experiment 2: The purpose of this experiment is to 
teach organisms how to survive in the environment by 
developing their metabolism, and to study their ability to use 
this metabolism for growth thanks to our APL-systems. 

To develop our multicellular organisms, we define an 
artificial chemistry model with a set of molecules composed 
of 3 substrates: 

• A and B: blue (yellow respectively) environmental 
substrate used by the organism as nutriment. These 
substrates have the property of spreading in the 
environment. 

• C: red intracellular substrate produced by cells using 
environmental substrates and used as material of 
mitosis. 

 

 
Figure 3.  morphologies emerged from the evolution of L-system 
chromosome. 

The grid size is 100*100. The diffusion property of the 
substrate will spread rapidly environmental substrates in the 
grid. The set of reactions of the artificial chemistry consists 
of two reactions, R = {r1: A + 2B ! C (-10), r2: A ! {} (+ 
60)}. 

The mother cell is initialized with some units of vital 
energy and C substrate (so it can survive in the early 
moments of the simulations). The genetic algorithm uses 
tournament selection. Fitness function of the organism is 
divided into two sub-functions: 

• The longevity of the organism, length (duration of 
the simulation in milliseconds) 

• The size of the organism measured by the number of 
cells composing it, nbCells. 

The final evaluation function is given by the formula: 

fitness=a*length+b*nbCells/(a+b), with a= 10, b=100. 

The coefficients of this formula are given to more take 
into account the final goal of the organism which is its 
capacity to develop than its metabolism. The goal of the 
genetic algorithm is to maximize this Fitness. The parameters 
of this algorithm are as follows:   

• selection algorithm: 6 tournament selections with 
elitism, 

• mutation rate: 5%; crossover rate: 65%, 

• substitution algorithm: worst individuals, 

• population size: 100 individuals. 

Figure 4 shows the results of the best organism produced 
by evolution (a kind of  “an artificial crayfish”). 

Development starts from a single mother cell and 
proceeds over discrete time steps. It stops either when a 
maximum time step is reached or when an individual embryo 
exhausts its initial energy. When the mother cell divides, it 
creates a new cell which is placed in the position specified by 
the APL-systems, controlling the growth of the multicellular 
organism. At the initial state, the expression of the APL-
system starts with the axiom. The cell, at this state, uses its 
initial intracellular substrates to create its first daughter cells. 
Subsequently growth requires the acquisition of the 
environment resources. 
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moments of the simulations). The genetic algorithm uses 
tournament selection. Fitness function of the organism is 
divided into two sub-functions: 

• The longevity of the organism, length (duration of 
the simulation in milliseconds) 

• The size of the organism measured by the number of 
cells composing it, nbCells. 

The final evaluation function is given by the formula: 

fitness=a*length+b*nbCells/(a+b), with a= 10, b=100. 

The coefficients of this formula are given to more take 
into account the final goal of the organism which is its 
capacity to develop than its metabolism. The goal of the 
genetic algorithm is to maximize this Fitness. The parameters 
of this algorithm are as follows:   

• selection algorithm: 6 tournament selections with 
elitism, 

• mutation rate: 5%; crossover rate: 65%, 

• substitution algorithm: worst individuals, 

• population size: 100 individuals. 

Figure 4 shows the results of the best organism produced 
by evolution (a kind of  “an artificial crayfish”). The 
development starts from a single mother cell and proceeds 
over discrete time steps. It stops either when a maximum 
time step is reached or when an individual embryo exhausts 
its initial energy. When the mother cell divides, it creates a 
new cell which is placed in the position specified by the 
APL-systems, controlling the growth of the multicellular 
organism. At the initial state, the expression of the APL-
system starts with the axiom. The cell, at this state, uses its 
initial intracellular substrates to create its first daughter cells. 
Subsequently growth requires the acquisition of the 
environment resources. 

In the first generations, simulations take only a few 
seconds.  Not having developed their metabolism, the newly 
created cells die quickly after consumption of their initial 
vital energy. Over generations, the cells gradually learn how 
to use the environmental substrates in order to survive in the 
environment.  

Observing the action selection system produced by the 
genetic algorithm, we notice that it could be possible to



 

Figure 4.  Growth of an organism composed of 146 cells reprensenting a kind of crayfish. (a) Beginning of the simulation. (b) The organism develops by using 
environmental resources.  (c) End of the development. 

produce other organisms with the same chromosome. To 
verify the hypothesis, we decide to develop another 
organism: a kind of an “artificial bat”. To do that, we keep 
the same substrates and the same possible actions. Using the 
L-systems chromosome of Figure 4 (c), we launch the 
simulation and we obtain the organism shown by Figure 5. 

               

Figure 5.  Development of an organism (an artificial “bat”) composed of 
164 cells. 

B. Self-Healing Abilities 
Our resulting organisms show a remarkable ability to 

repair themselves when subjected to damage. 

To demonstrate this ability, we remove a small part of the 
“artificial bat’s” cell structure during and after its 
development. In the first experiment, we inflict a wound in 
the center of the organism. Figure 6 shows the number of 
cells of the organism during the simulation. The mark on the 
curve points out the time of the wound inflicted to the 
organism, (38 cells are killed by the user in Figure 8 (a)). 

At this moment, the organism is composed of 164 cells. 
Thus, 23% of the cells have been deleted. The curve shows 
that the organism reacts positively by quickly regenerating 
the dead cells. This regeneration is illustrated by the 
sequence composed of Figure 8 (b)-(e).  

In the second experiment, the wound is also performed 
during the development phase of the organism, and 
particularly on the newly created cells (the first thunder on 

Figure 7). In this case, the regeneration of the dead cells 
takes more time since the mitosis requires energy, and the 
newly created cells have not yet reach this energy level. 
Before the end of development, we proceed again with two 
simultaneous injuries on different parts of the organism: the 
first is below the center of the organism and the second is on 
the upper left. The second thunder on Figure 7 represents this 
new wound. In the same manner, the organism is able to 
regenerate (illustrated by Figure 9 (h)-(j)). The left side 
branch of the organism takes more time to develop, because 
the hole affects a greater number of cells (29 cells) than the 
one in the center (17 cells).  

Figure 6.  Number of cells of the organism. Wounds inflicted after 
development.   

Figure 7. The number of cells of the organism. Wounds inflicted during 
development. 

I. DISCUSSION 
In Nature, the transformation of a stem cell into an 

embryo is the result of a complex sequence of interactions  
between genes, their phenotypic effects and the environment 
in which the embryo develops (an ontogeny) [33]. 

By analogy to biological development, the proposed 
model is able to simulate environmental and indirect cellular 
interactions. In terms of genetic interactions, in L-systems,   

(c) (b) (a) 



 
Figure 8. Wounds after the development.  (a) The organism after having inflicted a wound in the center (38 killled cells at 296692 ms).  (b-e)  The organism 
regenerates itself (at 393618 ms ).   

Figure 9. Wounds inflicted during the development. (a) The organism develops (107 cells developed). (b) Realization of a central hole in the newly created cells 
(33 killed cells at 168995 ms). (c, d, e, f) The organism develops and regenerates itself. (g) Simultaneous realization of two wounds (at 321051 ms): the first on 
the left lateral branch of the organism (29 killed cells), the second in the lower center of the organism (17 killed cells). (h, i, g) The organism is regenerated (at 
428713 ms). 

gene activation can correspond to the appearance of a non-
terminal symbol which creates a reference to an inactive rule. 
Thus, as a rule activation or deactivation of L-systems can 
have a drastic effect on the resulting phenotype. Each 
production rule can thus be related to the role of regulatory 
genes in natural organisms. 

This does not mean that the growth of natural 
multicellular organisms is guided by a mechanism similar to 
L-systems. This is just a metaphor, because the goal of the 
model is in no case to conceive a biologically plausible 
model but to create a system which allows the development 
of more complex developmental patterns. 

I. CONCLUSION AND FUTURE WORKS 

We proposed in this paper, a cellular developmental 
model based on the combination of two approaches 
recognized in the field: the grammatical and the cellular 
chemistry approaches. On the one hand, this model simulates 
the major elements of a cellular chemistry model, such as 
chemical reactions in a simplified manner, the diffusion of 
substrates in the environment, cellular and environmental 
interactions, and some cellular actions such as mitosis or 
apoptosis. On the other hand, morphogenesis is based on a 
grammatical approach using growth rules coded in APL-
systems, an alternative parametric L-system, which we 
proposed to simulate the adaptive growth of multicellular 
organisms according to the internal state of cells composing 
them.  

Largely more bio-inspired than biologically plausible, 
this model is able to produce various artificial organisms, 
starting from a single cell. The developed organisms, have a 
morphology generated by a lineage mechanism, based on   
L-systems, and a metabolism allowing them to grow and act.  
In the lineage of our previous works [5], [27], the proposed 
model is among the rare cellular development models taking 
metabolism into account, often omitted in the classical 
models. However, metabolism is primarily essential for the 
integrity of each multicellular organism, because it allows 
each cell composing the organism to be surveyed. Moreover, 
our model is able to exhibit almost perfect self-healing 
proprieties, if the organism is wounded afterwards or even 
during its development. 

This model proposes the use of L-systems, for directing 
the morphogenesis of an artificial multicellular organism. 
We made this choice, in order to explore the potential of 
these systems widely used with success in many fields, and 
particularly in the artificial life research field. 

Furthermore, our APL-system is a unique alternative to 
parametric L-systems. It has the particularity of being 
independent of the proposed model and can thus be used in a 
broad range of applications which use parametric L-systems. 

The model has employed the simplest type of L-systems 
(basic L-systems). Further studies may be done using 
complex ones, considering: stochastic L-systems [31] to 
simulate cellular development according to the neighboring 
cells, and context sensitive L-systems [31] to increase the 
variety of generated morphologies using the same set of 

(d) (e) (c) (b) (a) 

(f) (g) (h) (i) (j) 

(a) (b) (c) (d) (e) 



rules. Another improvement that could be made to achieve 
greater complexity is the inclusion of 3-D morphologies. 

Our long-term goal is to conduct our work in order to 
generate complete artificial organisms which have a 
metabolism, a morphology, and which can evolve in the 
environment. This evolution could occur according to some 
adaptation functions, such as the capacity of locomotion. To 
do this, a multicellular organism created with the proposed 
model can be translated into an abstraction then immersed in 
a physical simulator. The movements of the organisms could 
then occur thanks to a neural network controller as in [1]. 

The objective of the synthesis of these organisms is that 
they can serve, in the future, as design models of 
autonomous organisms. Compared to Karl Sims’s organisms, 
metabolism introduced into our cellular developmental 
model can provide more autonomy to these models of 
organisms, because metabolism is a means of obtaining 
energy. Thus, substrates, for example, can be considered as 
metaphor for batteries that artificial organisms can retrieve 
from the environment and use to perform specific tasks. 
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