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ABSTRACT 
The limit distributions of linear and non-linear combinations of the kn = o(n) order statistics of i.i.d. random variables whose 
maximum belongs to the domain of attraction of the Gumbel law are obtained. Our results may be applied in actuarial studies, 
estimation of scale-location parameters, estimation of squared deviation in tail of a distribution, robustness theory and 
detection of the outliers in statistical data. It is also closely related to the moment estimator of Dekkers-Einmahl-de Hann 
(1989) for the index of an extreme distribution. This study completes that of Necir (1990, 1991a, 1991b, 2000a, 2000b). 
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1. INTRODUCTION 
Let X1, X2,..., be a sequence of independent and identically 
distributed random variables with distribution function F. 
For each integer n ≥ 1, let X1,n ≤…≤  Xn,n denote the order 
statistics based on X1,…, Xn. 
Assume that F belongs to the domain of attraction of the 
Gumbel distribution Λ(x) = exp (-e-x), written  F∈ D(Λ). 
This means that there exist constants an > 0 and bn such that 
for all real x 
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n

n
Λ=≤−=+ −

∞→∞→
(1.1) 

Necessary and sufficient conditions for F∈ D(Λ) are well 
known; see Gnedenko (1943), de Hann (1970), and 
Galambos (1987) Chapter 2. In particular, if (1.1) holds, 
then we may choose an and bn by  

),/1( and )/1()/1( nUbnUenUa nn =−=  (1.2) 

where { } )(: inf)()1( ssFxsQsU ≥==− , 0 < s < 1, is 
the quantile function pertaining to F, and e is the constant 
such that log e = 1. 
Let { }1)(:sup <=ω xFx  denote the right endpoint of F. 
 Along this paper, we suppose that F satisfies von Mise's 
conditions (see e.g. von Mises (1936)) as follows : 
(F) there exists an x0 < ω such that F is twice 
continuously differentiable on (x0,ω) with derivatives f and 
f′, and  
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                (1.3) 

Among distributions, which satisfy the Von Mises, 
conditions are the usual distributions as the Exponential, 
Double-Exponential, Gamma, Logistic, Normal, Log-

Normal, Gumbel, Weibull, Poisson distributions. 
Deheuvels, Haeusler and Mason (1990) has shown in 
proposition 1 that the conditions (F) are equivalents to the 
following 
(U) there exist constants 0 < s0 < 1, c > 0 and a and a 
continuous function b(.) with b(v)→0 as v↓0 such that  
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Statements (F) and (U) are also equivalents if in (F) f’ is 
the Radon-Nikodym derivative with respect to Lebesgue 
measure and in (U) b(.) is a measurable function such the 
function R(.)  is well defined.) 
It's clear, from (U) and representation (1.4) that the function 
U is differentiable on 0 < s < s0 and we have 
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REMARK 1.2. Using (1.5) , it easy to check that the 
function R(.) satisfies the following proprieties:  
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for any 0 < ρ < ∞, 0 < d < ∞ and for any non-negative 
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sequences (xn ) and (yn) such that: xn↓0, yn↓0, and xn/ yn ↓0  
as n→∞. On the other word the function R(.) is slowly 
varying in the neighbourhood of zero. 
 
REMARK 1.3. Under assumptions (U), (1.6)-(1.7) (iii) and 
the finite increments theorem imply that we also have   
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where  

))1/(1(')1(~ 1 +−= − nUnan  (1.9) 

and  
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Let J be positive measurable functions defined on [0.1] 
satisfy assumptions among (H0 J is bounded on [0.1]. 
 (H1) J is uniformly Lipshitz of order 0>α  there exists 
a ∞<< M0  such that for 

[ ] αtsMtJsJts −≤−∈ )()(,1.0,  
 (H2) There exists a ,2/10 << v  such that: 
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 (H3) There exists a ,2/10 <τ<  such that: 
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REMARK 1.4. Along this paper we use only assumptions 
(H1)-(H2) , while (H3) has been introduced in strong 
theorems given by Necir (2000a) (see also theorem A 
below). 
Further, let 1)( ≥nnk be an integer sequence satisfying, for 
suitable sequences pn and qn, 
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,   as  0 ∞→↓≈ nqk nn  where nn vu ≈  means that 
1/ →nn vu  as .∞→n   

Introducing a sequence of functions { } 1≥nnJ  defined on 
[0,1] by 
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It’s easy to verify, under (H1), the sequence of functions 
{ } 1≥nnJ is uniformly convergent on [0.1] to J, moreover, we 
have  
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For each integer ,1≥n and for any positive measurable 
function φ define on [0,1], let 
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We consider in this paper the statistics:  
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The statistics Ln(a) and Ln(b) are very popular in 
Nonparametric Estimate, are well known by the ”L-
statistics based upon extreme values” (see e.g. Shorack and 
Wellner (1986), p. 660). These one are useful in estimation 
of scale-location parameters and detections of largest 
outliers in a sample of observations. They can be found in 
insurance statistics and extreme values theory. For instance, 
if X1 ,X2 ,…denote successive claims in an insurance 
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business, one may seek the behavior of sums of the kn 
extreme claims with a penalty function increasing with the 
claim size (see e.g. Teugels (1984) and Beirlant and 
Teugels (1987)). They can be also used to construct a robust 
estimator of the mean for a series of observations (see e.g. 
Dixon and Tukey (1968)). We can use these statistics to 
estimate the endpoints of distributions (see e.g. Hall (1982), 
Csörgő and Mason (1989) or Falk (1995)). We can also use 
the statistics Ln(a) and Ln(b) to improve the Hill (1975) 
estimator using the kernel estimate method (see Deheuvels, 
Csörgő, Horváth and Mason (1985)). 
 As for statistics )(~ bDn and )(bDn  represent the 
squared deviation between the largest order statistics and 
their expected values. They can be found in the area of 
estimation of the extreme index, for instance in a Pareto 
type situation one typically takes log’s of the data to get 
back to the domain of attraction of the Gumbel distribution 
(see Dekkers, Einmahl and de Hann (1989) and Tabbal 
(1995)). They also can be used for the detection of outliers 
observations (see e.g. Barnett and Lewis (1994) p. 259, 
Fung and Paul (1985), Tietjen and Moore (1972), Hawkins 
(1979), Dixon and Tukey (1968)). 
 In the sequel, we shall see that there exists an algebraic 
relation between the three statistics Ln(b) , )(~ bDn and 

)(bDn . Then, the given of the asymptotic behaviors of the 
first and the second of these one gives also that of the third. 
 The smooth function J which defined above, will be 
suitably chosen according to the problem formulate. In 
general we chose the function J to obtain the asymptotic 
optimality of estimators (see, e.g. Chernoff, Gastwirth and 
Johns (1967), Stigler (1969, 1974), Ruymgaart and van 
Zuijlen (1977), Mason (1981), Singh (1981), Mason and 
Shorack (1990), Shorack and Wellner (1986); p. 640, 
Csörgő, Deheuvels and Mason (1985), and Falk (1995)). 
We also can chose the function J as the penalty function 
when X1 ,X2 ,… denote successive claims in an insurance 
business. 
 In the near future we shall present an application of our 
below results to improve Dekkers, Einmahl and de Hann's 
estimator in introducing a kernel function J. This idea was 
inspired from the results of Deheuvels, Csörgő, Horváth 
and Mason (1985) and that of Falk (1985). 
 Recently Necir (2000a) has described the almost sure 
behavior of statistic )(~ aDn  using the functional law of the 
iterated logarithm for the empirical quantile process (see, 
(3.1)) given by Einmahl and Mason (1988). Among these 
results is the following theorem. 
 
 THEOREM A (Necir (2000a)). Assume that (F) holds. 
Then for any sequence { }  k nn 1≥ satisfying (K) with 

 o(k n v
n ),loglog 2= for a 0<v <1/2, and for any function 

J satisfying (H1)-(H3), with probability one, there exists a 

constant ∫ −≤≤
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 REMARK 1.4. To have the exact value of constant l(J) 
see the proposition given by Necir (2000a). 
In this paper, we shall consider the corresponding limit 
distributions of statistics )(~ bDn and Ln(a). We profit for 
this study to describe moreover that of )(bDn . 
 The general technique used along this paper was 
inspired from the famous results of M.Csörgő S.Csörgő 
Horváth and Mason (1986) concerning the asymptotic 
approximation of the uniform empirical quantile process 
(see lemma A in Section 3) by a sequence of Brownian 
bridges and those of Csörgő, Deheuvels and Mason (1985), 
Lo (1986), Necir (1990, 1991a, 1991b, 2000a, 2000b). 
 We shall show in the sequel, for suitable normalization' 
constants, that the limit distributions of Ln(a), Ln(b) and 
Dn(b) are asymptotically standard normal N(0,1) as the 
statistics )(~ aDn and )(~ bDn  has a particular limit 
distributions which will be precise later on. 
 Denote by  10 )t(W(t) , ≤≤  a standard Wiener process 
on [0,1]. To know more on such process consult Csörgő 
and Révész (1981). 
 

2. MAIN RESULTS 
 TEHEOREM 1. Assume that (F) holds. Then for any 
sequence { }  k nn 0≥ satisfying (K) and for any function J 
satisfying (H1), we have  
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 TEHEOREM 2. Assume that (F) holds. Then for any 
sequence { }  k nn 0≥ satisfying (K) and for any function J 
satisfying (H1) and (H2), we have  
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 TEHEOREM 3. Assume that (F) holds. Then for any 
sequence { }  k nn 0≥ satisfying (K) and for any function J 

satisfying (H2), with ∫ =
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All constants )(1, nn Jµ , )(1, Jµn , )(2, nn Jµ , )(2, Jµn  and 

)(Jnζ  are defined in (1.12)-(1.15). ⎟
⎠
⎞
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D
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convergence in distribution. 
 
 REMARK 2.1. The Wiener process introduced in last 
three theorems is define in the same probability space in 
which has defined the sequence if X1 ,X2 ,…of i.i.d. random 
variables (see lemma A in Section 3). 
The following two corollaries 2.1 and 2.2 give us the exact 
limit distributions of statistics Ln(a), and Dn(b). 
 
 COROLLARY 2.1. Under assumptions of theorem 1, 
we have  
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 COROLLARY 2.2. Assume that (F) holds. For any 
sequence { }  k nn 0≥ satisfying (K) and for any function J 
satisfying (H2) 
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 The following corollary shows that we also can obtain, 
relatively, the same result as theorem 1, whenever we take 
the weighting constants 

nkib , instead of 
nkia , . 

 
 COROLLARY 2.3. Assume that (F) holds. For any 
sequence { }  k nn 1≥ satisfying (K) and for any function J 
satisfying (H0). 
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 REMARK 2.2. It's clear from corollary 2.3, that the 
result of corollary 2.1 remains always valid for Ln(b),  
 In proof of theorem 3, we shall see that the following 
corollary allow us to deduce the limiting distribution of 
statistic Dn(b). 
 
 COROLLARY 2.4. Assume that (F) holds. For any 
sequence { }  k nn 1≥ satisfying (K) and for any function J 
satisfying (H2) 
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 REMARK 2.3. The statistics )(~ aDn and )(~ bDn play an 
auxiliary roles in our study. Consequently we have 
interested only by there asymptotic bounds. 
 
 REMARK 2.4.  By a simple integral calculation, it is 
easy to verify that from (H2), both of constants )(2 Jσ  and 

)(2 ψσ  are finites. 
 

3. PRELIMINARY 
Let U1,U2,..., be a sequence of independent uniform (0,1) 
random variables. For each integer 1≥n , let 

,//)1(  ,)( , nitniUtV nin ≤<−=  i=1,...,n, with 

nn UV ,1)0( = , where nnn UU ,,1 ... ≤≤ are the order statistics 
based on U1,U2,..., be the sample quantile function. 
We write the uniform quantile process as  

{ } 10    ,)()( 2/1 ≤≤−=β sssVns nn  (3.1) 

We shall use the notation )(~ snβ  to denote the truncated 
uniform quantile process, which is equal to )(snβ  for 

)1/()1/(1 +≤≤+ nnsn  and defined to be 0 elsewhere. 
 The two sequence { }  X nn 1≥ and { }  UQ nn 1)( ≥ are equal 
in distribution, and, consequently the two processes 
{ }1,1:, ≥≤≤ nniX ni  and { }1,1:)( , ≥≤≤ nniUQ ni  are 
equal in distribution as well. Therefore, without loss of 
generality, we may assume that )( ,, nini UQX =  for all 

1 and  ,1 ≥≤≤ nni . 
 We begin by the following lemma which is the base of 
our results. 
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 LEMMA A. (M. Csörgő, S. Csörgő, Horváth and 
Mason (1986)). 
 On a rich enough probability space carrying a sequence 
U1,U2,..., of independent uniform (0,1) random variables 
and a sequence of Brownian bridges { } 1,1:)( ≥≤≤ nn nttB  
such that for all 2/10 << v  and for a large n,  
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On the sequel, we shall use the notation nknn /:=λ . 
The Taylor formula gives 
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where )(znθ  is a function of [ ]1,0∈z  and 1≥n , with 
values in the interval with endpoints z and )1(1 zVn −− , 
defined via 
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 Thus, we may write 
 ))1(1)(1()( sVss nnnnn λ−−γ−+γλ=λθ  for some 
appropriate [ ]1,0)( ∈λγ=γ snn , depending upon 1≥n  
and [ ]1,0∈s . Observe now that for each integer n>1, we 
have ninUniV ,1)/1( +−=− , and 

ninXniVQniVU ,1))/1(())/1(1( +−=−=−−  for 
i=1,2,...,n. 
 

4. PROOFS OF THE THEOREMS 

4.1 Proof of theorem 1 

Recalling that ./: nknn =λ  Using both of representations 
(3.2) and (3.3), we get 
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For the definition of op and Op, which is used below, we 
refer to Serfling (1980) Section 1.2.5. Further, denote by 
( p) convergence in probability. 
 
We begin the proof of theorem 1 by the following. 
 
 LEMMA 4.1.1. Let (K), (F) and (H1) be satisfied. Then  
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From (1.6), the right-hand-side of (4.1.1) is equal to 
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(because 0>α ). This achieves the proof of lemma 4.1.1. 
 
 LEMMA 4.1.2. Let (K), (F) and (H1) be satisfied. Then  
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 Proof.  Let 2/10 <υ<  and setting: 
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consequently, by lemma A we have 
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 Then, for n sufficiently large, using (1.11), (4.1.3), (1.6) 
and (1.7) (i) successively, we obtain 
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)()(

12/1
1

0

2/1
,

1

)1(/1

2/112/1
,

2/1

4,
12/1

λλλληλ

≤λ×

λλ−λληλ

≤λλ

−−υ−
υ

+λ

υ−−−
υ

−−

∫

∫

[ ] [ ]

,))((

)()()(
1

0

12/1

v
np

nn
vv

n
v

p

nO

dssRRsnO

−

−−−−−

λ=

λλλ= ∫  

which converges to zero as ∞→n , because 
∞↑∞↑λ nn n   as   , with .2/10 << v  

 
 LEMMA 4.1.3. Let (K), (F) and (H1) be satisfied. Then 

[ ] .  as  0)()( 5,
12/1 ∞→→λλ −− nLRn pnnn  

 
 Proof. We have,  

,))1(1( ,nnnn XsVU =λ−−  

and  

,1)1(/1for    )/1()( ≤≤+λλ= snnJsJ nnn  

consequently,  

.)()/1(                  

   ))1(()/1(
)1(/1

0

1
,5,

∫
+λ

−

λλλ−

+λλλ=
n

nnn

nnnnnn

n

dssUnJn

nXnJnL

.)()1()/1(
)1(/1

0
,

1

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

λλ−+λ= ∫
+λ

−
n

nnnnn

n

dssUnXnnnJ  

Combining (1.8) with (1.9), we get 

,ˆ: 5,5,5, nnn LLL +=  

where 

⎟
⎠
⎞

⎜
⎝
⎛

+
+×+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
λ

= −−

1
1')1)(1()1(1 11

5, n
UnOn

n
nJL p

n
n  

and 

.)(
1

1)1(1ˆ
)1/(1

0

1
5,

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−⎟
⎠
⎞

⎜
⎝
⎛

+
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
λ

= ∫
+

−
n

n
n dssU

n
Un

n
nJL  

Using (1.6) $ and (1.7) (iii), for a large n, we get 

[ ]
[ ].)(/)/1()(                                    

)/1())1(1)(1()()(
2/1

5,
12/1

nn

npnnn

RnRn

nJoOLRn

λλ×

λ+=λλ
−

−−

 

Since ∞↑λnn and ,  as  0 ∞→↓λ nn  then using (1.7) 
(ii), we get 

( ) ,   as  )1()()/1(2/1 ∞↑=λλ − noRnRn nn  

therefore 
( ) [ ] ,   as  )1()( 5,

12/1 ∞↑=λλ −− noLRn pnnn  
An integration by part gives 

.)('))1/(1()1()(
)1/(1

0

1
)1/(1

0
∫∫

+
−

+

−++=
nn

dsssUnUndssU  

Then, substituting (4.1.4) in to 5,
ˆ

nL  and using (1.6) and 
(1.7) (iii), yields for a large n 

[ ]
[ ].)(/)/1()()/1())1(1(

ˆ)()(
2/1

5,
12/1

nnn

nnn

RnRnnJo

LRn

λλ×λ+−=

λλ
−

−−

 

which converges to zero as ∞→n , by (1.7) (ii).□ 
 
 LEMMA 4.1.4. Let (K), (F) and (H1) be satisfied. 
Then, as ∞→n .  

[ ] .)()()()(
1

0
4,

12/1 ∫→λλ −− dssWsJLRn
D

nnn  

 Proof. By a same argument as above we can write for a 
large n  

[ ]

[ ] [ ]∫
+

−−−

−−

−−=
1

)1(/1

112/1

4,
12/1

)()()()1(

)()(

n
nnnnn

nnn

n

dssJssRRsB

LRn

λ

λλλλ

λλ

  

∫
+

−− −+−=
1

)1(/1

12/1 )()1())1(1(
n

nnn

n

dssJssBo
λ

λλ  (4.1.9) 

 

 (4.1.8)
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Since ))1(,0()( ttNtB
D

n −=−  for every ,1≥n consequently 
we can put 

,...,2,1for     ,10  ),()( =≤≤=− nttBtB
D

n  (4.1.10) 

when  ,10  ),( ≤≤ ttB is a Brownian bridge define on the 

same probability space. (
D
=  denotes equality in 

distribution). 
Then the right-hand-side of (4.1.5), without loss of 
generality, can be written as follows 

∫
+λ

−− λ−λ+
1

)1(/1

12/1 .)()1())1(1(
n

nn

n

dssJssBo  (4.1.11)  

On the other hand, from the proprieties of the Brownian 
bridges and Wiener processes we have 

,10  ),1()()(   )( ≤≤−= ttWtWtBi
D

 (4.1.12) 

,0 ,0any for  ),()( )( 21 >∞<≤= sttWstWsii
D

/-  (4.1.13) 

.10  ),1()(   )( ≤≤−= ttBtBiii
D

 (4.1.14) 

Then using (4.1.8) (4.1.10), expression (4.1.7) is equal in 
distribution to 

−+ ∫
+

−
1

)1(/1

1 )()())1(1(
nn

dssJssWo
λ

 

∫
+

−+−
1

)1(/1

12/1 .)()1())1(1(
n

n

n

dssJsWo
λ

λ  

Since )1,0()1( NW
D
= , then the second term of last 

expression converges in probability to zero as ∞→n , 
which achieves proof of this lemma. □ 
Recalling that  

)),1(1)(1()( sVss nnnnn λ−−γ−+γλ=λθ  

for some appropriate [ ]1,0)( ∈λγ=γ snn  depending upon 
1≥n  and [ ],,0 ns λ∈  or  

)),1(1()1()( sVss nn −−δ+δ−=θ  

or some appropriate [ ]1,0)( ∈δ=δ sn  depending upon 
1≥n  and [ ].,0 ns λ∈   

The following lemma gives some results with respect to 
asymptotic behavior of )(snθ . 
 
 
 LEMMA 4.1.5. Let (F) be satisfied. For a large n, we 
have for all nsn λ≤≤+ )1/(1 , 

⎩
⎨
⎧

<<−−
−−<<

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+

sssVss
sVssss

sU
sU

nnn

nnnn

)()1(1 if ,))(/(
)1(1)( if ,))(/(

)('
)(' 1

1

θθ
θθθ

ε

ε

 

for any .10 << ε   
 
 Proof. Let nsn λ≤≤+ )1/(1 . We have 

)),1(1()1()( sVss nn −−+−= δδθ  from of Glinvenko-
Cantelli' theorem, we have, almost surely, for a large n 

),1()1(1sup
10

osVs n
s

=−−−
<<

  

it follows that, almost surely, for a large n, 
),1()( ossn +=θ  and consequently, both of )( and  ss nθ  

are in right neighbourhood of zero. 
Suppose that )1(1)( sVss nn −−<< θ . Let .10 << ε  By 
(1.5), it's easy to verify that for a large n we have 

.)1/(1for   ,))(/()(/))(( nnn snsssRsR λθθ ε ≤≤+= −  
Suppose now that sssV nn <<−− )()1(1 θ . By a same 
arguments as last, we prove that, for a large 
n, .)1/(1for   ,))(/()(/))(( nnn snsssRsR λθθ ε ≤≤+=  
This achieves proof of this lemma.□ 
 
 LEMMA 4.1.6. Let (K) and (F) be satisfied. Then, we 
have almost surely 

. as  ),1(
)('

)('1sup
1)1(/1

∞→=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
<<+

no
sU

sU

n

nn

snn λ
λθ

λ
 

 
Proof. Let .10 << ε  From (1.4) and (1.5) we can easel 
show, that for a large n 

.))(/(
)('

)('1 1 εθθ ±=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ − ss
sU

sU
n

n  

In view of the Theorem of Hàjek and Bickel (1972) (see 
e.g. Shorack and Wellner (1986), p. 640), we have almost 
surely for a large n ).1()(/1sup

10
oss n

s
=−

<<
θ  Since 

01 >± ε , then with probability 1 a ∞→n , 

 ),1(
)(

1sup
1

)1/(1
o

s
s

nsn n

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

±

<<+

ε

λ θ
 

which achieves proof of lemma 4.1.6.□ 
 
 LEMMA 4.1.7. Let (K), (F) and (H1) be satisfied. Then  

[ ] .  as  0)()( 1,
12/1 ∞→→−− nLRn pnnn λλ  

 
 
 Proof. In view of lemma 4.1.6, for a large n, we have  
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[ ].)1(      

,)()(')1()1(

5,4,3,2,

1

)1(/1

2/1
1,

nnnnp

nnn
n

nnpn

LLLLo

dssJsUsnoL
n

+++=

−= ∫
+

λλβλ
λ  

It's now clear, that the proof of this lemma achieves by 
applying successively lemmas 4.1.1-4.1.6. □ 
 

4.2 Proof of theorem 2 

First recall that ∫ =
nk

nnn kJdssJk
/1

0
)/1()( . Write  

'''"'
2, :)()()(~

nnnnnnn AAAJJµbD ++=−+ ζ  (4.2.1) 

where 
2

,1,
' ))(/1( nnnnn vXkJA −=  

,)()/(         

)/(2)/(

/1

0

2

2
,1,

2

2
,1

"

∫

∑∑

+

−=
=

+−
=

+−

n

nn

k

nnn

k

i
ninnin

k

i
ninnn

dssJnskUk

XvkiJXkiJA
 

.)/1()()/( 2
,1

/1

0

2'"
nn

k

nnnn vkJdssJnskUkA n
−= ∫  

Recalling that )(2, Jµn , niv ,  and  )(Jnζ  are constants as 
in 1.14 and 1.15 respectively. 
We shall show in lemma 4.2.1 and 4.2.2 that for a large n 

[ ] [ ] ).1()()( ''2'2
pnnnn oARAR == −− λλ  

 
 LEMMA 4.2.1. Let (K), (F), (H1) and (H2) be satisfied. 
Then  

[ ] .  as  0)( '2 ∞→→− nAR pnnλ  

 

 Proof. Recalling that ∫=
n

n dssUnJv
/1

0,1 .)()(  From 

4.1.4, 1.8 and 1.9 and by a same argument as proof of 
lemma 4.1.3, we write, for a large n 

2/1

0

1' )(')/1(')1()/1( ⎥⎦
⎤

⎢⎣
⎡ += ∫− n

pnn dsssUnnUnOJA λ  

.)))/1()1(1()/1()(/1( 2nRonRJ n ++λ  (4.2.2) 

Under (H2) we have 

( ) ,  as  ,                       

)()(
2

/1

0

/1

0

212

∞→=

≤

−

+−−∫ ∫
nko

dssJskdssJk
v

n

k k vv
nn

n n

 

 
 
 

which implies from (1.10) that 

( ) .  as  ,)(                

)()()/1(
2

/1

0

∞→+=

+=

−−

− ∫
nkokO

dssJkkOnJ
v

nn

k

nnn
n

α

αλ
 

Consequently 
=− '2))/(( nn AnkR  

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ −− ))1())(1((

)/(
)/1())1(1( 2

2
v

nn
n

kokO
nkR

nRo α  

hence for a large n, )1())/(( '2 oAnkR nn =− , from (1.7) 
(ii). □ 
For each 1≥n , set 

.1)1(/1  ),1()1(:)( <<+−+−=Ω snsBss nnnnnn λλλβ  
We have  

( )∫ +
−−−=

1

)1(/1

2" )()()1(1(
nn nnnnnn

n

dssJsUsVUnA
λ

λλλ  

,:     nn T+= ε  (4.2.3) 

where 

{ } ,)()('))('/))(('(1       

)1(

22

1

)1(/1

2

dssJsUsUsU

s

nnnnn

nn nnnn
n

λλλθ

λβλε
λ

−×

+= ∫ +  

.)()(')1( 21

)1(/1

2 dssJsUsT nnnn nnnn
n

λλβλ
λ∫ +

+=  

Remark now that Tn can be written as follows 

,: 4321 nnnnn TTTTT +++=  (4.2.4) 

 
where  

.)()(')1( 21

)1(/1

2
1 dssJsUsT nnnn nnnn

n

λλλ
λ∫ +

+Ω=  

.)()(')1()(2 21

)1(/12 dssJsUsBsT nnnn nnnnn
n

λλλ
λ∫ +

+Ω−=  

,))()()((')1( 21

)1(/1

2
3 dssJsJsUsBT nnnn nnnn

n

−+= ∫ +
λλλ

λ
 

and 

.)()(')1( 21

)1(/1

2
4 dssJsUsBT nnn nnnn

n

λλλ
λ∫ +

+=  

We have 

.)()(')( 21

)1(/1

2
4 dssJsUsBT nnn nnn

D

n
n

λλλ
λ∫ +

=  
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On the other hand we have 

).1()()1(2)(

))1()(()(
2222

22

WsssWsWsW

sWsWsB

nnnn

nn

D

nn

λλλλ

λλλ

+−=

−=  

Consequently Tn4 can be also written as follows  

,: '"
4

''
4

'
44 nnnn TTTT ++=  

where 

,)()(')( 21

)1(/1

2'
4 dssJsUsWT nnn nnn

n

λλλ
λ∫ +

=  

,)()(')()1(2 21

)1(/1

2''
4 dssJsUsWWT nnn nnn

n

λλλ
λ∫ +

=  

and 

∫ +
=

1

)1(/1

2223'''
4 .)()(')1(

nn nnn
n

dssJsUsWT
λ

λλ  

The below two lemmas give us the asymptotic behaviors of 
terms "

4nT , '"
4nT and '

4nT . 
 
 LEMMA 4.2.2. Let (K), (F) and (H1) (H2) be satisfied. 
Then as ∞→n  

[ ] [ ] ).1()()( '''
4

2''
4

2
pnnnn oTRTR == −− λλ  

 
 Proof. First we have )1()1( pOW = , moreover we have 

2/1)()( ssW nn λλ ≤ , therefore, from (1.7) (ii), 

[ ] ,)())1(1)(1(2)(
1

0

2/32/1''
4

2 ∫ −− += dssJsoOTER npnn λλ  

which converges, in probability, to zero as ∞→n , since 

0→nλ  and ∞<∫ −1

0

2/3 )( dssJs . On the other hand we 

have from (1.6) and (1.7) (i) 

[ ] ∫+=− 1

0

'''
4

2 ,)())1(1)(1()( dssJoOTR pnnn λλ  

which converges, in probability, to zero as n→∞ as well. □ 
 
 LEMMA 4.2.3. Let (K), (F) and (H1)-(H2) be satisfied. 
Then 

[ ] ∫ ∞→→− 1

0

2'
4

2 .  as  ,)()()( ndssWsJTR
D

nnλ  

 
 Proof. It suffices to apply (1.6), (1.7) (ii) and (4.1.6) 
together. 
Recapitulate, the two last lemmas show that 4nT  is the only 
term in series (4.2.4) which gives us the limit distribution as 
in theorem 2. Hence, in order to achieve the proof of 
theorem 2, it suffices to show that for a large n 

[ ] [ ]
[ ]
[ ] ),1()(                    

)(                    

)()(

2
3

2
2

2
1

2

pnn

nn

nnnn

oR

TR

TRTR

==

=

=

−

−

−−

ελ

λ

λλ

 

which will be the aim of the following lemmas. 
 
 LEMMA 4.2.4. Let (K), (F), (H1) and (H2) be satisfied. 
Then  

[ ] .  as  )1()( 1
2 ∞→=− noTR pnnλ  

 Proof. First observe, by (1.10) we have 

,10any for   ),())(()( ≤≤+= − ssJnOsJ nn
αλ  (4.2.5) 

then from (1.6) and (1.7) (ii) we can write 

[ ] ),))(1(1()( ''
1

'
11

1
nnnn TToTR ++=−λ  

where 
×= − ))(('

1
αλnn nOT

.))1()1(( 21

)1(/1

21 dsssBs
nn nnnnn

n

−

+

− ∫ −+−
λ

λλβλ  

and  

.))1()1(( 21

)1(/1

21''
1 dsssBsT

nn nnnnnn
n

−

+

− ∫ −+−=
λ

λλβλ  

We have 

))(()) 1()2)()((        

)())((        

)()())((0

212

1

)1(/1

2122

21

)1(/1

212
,

1'
1

α

λ

α

λ

α

λλλ

λλ

ληλλ

−−−

+

−−−−−

−

+

−−−

−−=

=

=≤

∫

∫

n
v

n
v

n

nn

vv
n

v
pn

nn

v
nvnnnn

nOnvnO

dssnOnO

dsssnOT

n

n

      
).)(()1())(( 2 αα λλ −−− −= np

v
np nOOnO  (4.2.6) 

Since 02 >v  and 0>α , with 0→nλ  and 0→nnλ  as 
∞→n , then (4.2.6) converges, in probability, to zero as 
∞→n . By a same technique, we also show, under (H2), 

that 

,)()(0
1

0

2121''
1 dssJsnOT vv

n
v

pn ∫ −−−−=≤ λ  

which converges to zero as ∞→n .□ 
 
 LEMMA 4.2.5. Let (K), (F), (H1) and (H2) be satisfied. 
Then 

[ ] .  as  )1()( 2
2 ∞→=− noTR pnnλ  

 Proof. We have  

[ ] { },))1(1()( ''
2

'
22

2
nnnn TToTR ++−=−λ  

where  
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,)1()1()(2        

))(()(
1

)1(/1

21

'
2

∫ +

−−

−−

−−×

×=

n nn
v

n
v

nn

n
v

pn

n

dssBsss

nOnOT

λ

α

λλλλ

λ
 

and 

.)()1()1()(2

)(
1

)1(/1

21

''
2

∫ +

−−

−

−−×

×=

n nn
v

n
v

nn

v
pn

n

dssJsBsss

nOT

λ
λλλλ

 

Then using a same technics as proofs of lemmas 4.1.1. and 
4.2.4, we show easily, under assumptions that for a large n, 

)1(''
2

'
2 pnn oTT == , consequently the details are omitted.□ 

  
 LEMMA 4.2.6. Let (K), (F), (H1) and (H2) be satisfied. 
Then 

[ ]  .  as  )1()( 3
2 ∞→=− noTR pnnλ  

 
 Proof. Obvious, from (1.10) and the fact that for any 

1≥n  and [ ]1,0∈s , 

.)1()()1( 2/12/12/12/1 ssssBE nnnnn λλλλ ≤−≤− □ 
 Finally we achieve proof of theorem 1 by the following 
lemma which shows the asymptotic behavior of term 

nε appearing in (4.2.3). 
 
 LEMMA 4.2.7. Let (K), (F), (H1) and (H2) be satisfied. 
Then  

[ ]  .  as  )1()( 2 ∞→=− noR pnn ελ  

 
 Proof. It's straightforward, by applying successively 
lemmas, (4.1.6), (4.2.2)-(4.2.7). □ 
We finish proof of theorem 2 by the following lemma. 
 
 LEMMA 4.2.8. Let (K), (F), (H1) and (H2) be satisfied. 
Then 

[ ]  .  as  )1()( '"2 ∞→=− noAR pnnλ  

Proof. Recall that ∫=
n

n dssUnv
/1

0,1 .)(  Since 

)/1()( nn kJsJ = , on nks /10 ≤≤ , then by a change of 
variables we obtain  

.)/1(:.)()/1( 2
,1

/1

0

2'"
nnn

n

nn SkJvdssUnkJA =⎥⎦
⎤

⎢⎣
⎡ −= ∫  

An integration by part gives 

∫∫ −=
nn

dssUssUnnUdssUn
/1

0

2/1

0

2 ,)()('2)/1()(  

and  

∫−=
n

n dsssUnnUv
/1

0,1 .)(')/1(  

Therefore 

,: 21 nnn SSS +=  

where 
2/1

01 )(' ⎟
⎠
⎞

⎜
⎝
⎛−= ∫

n

n dsssUnS , and 

∫ −−=
n

n dsnUsUssUnS
/1

02 ))/1()()(('2  

It's clear that, From (1.6) and (1.7) (i), we have 

.  as  ,))/1())(1(1( 2
21 ∞→+== nnRoSS nn  

On the other hand, remark that 

.)()()()/1(
/1

0

/1

0 ∫∫ +== − nn k

nnn

k

nnn dssJkkOdssJkkJ α  

From (H3) we have 

.)()()(
/1

0

2212/1

0 ∫∫ −+−− =≤
nn k v

nn
vv

n

k

nn kodssJskdssJk  as 

∞→n . Consequently 

{ }.)1()1(
)/(

)/1())1(1(

))/(())/((

2
2

2
2

1
2

v
nn

n

nnnn

kokO
nkR

nRo

SnkRSnkR

−−

−−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

=

α
 

Finally, in applying (1.7) (ii) we achieve this lemma. □ 
 

4.3 PROOF OF THEOREM 3 

The general idea of proof of the present theorem, consists to 
represent the statistics Dn(b) on function of Ln(b) and 

)(~ bDn . Recall that .1)(
1

0

=∫ dssJ  First, we can verify that 

4321:)( nnnnn bD ππππ +++=  (4.3.1)  

where 

[ ] ,)()1(1()(
21

01 dssUsVUsJ nnnn ∫ −−−= λλπ  

[ ] ,)()1(1()()(2
21

02 dssUsVUsUsJ nnnnn ∫ −−−= λλλπ
 

),()()( 21

0

2
3 bLdssJbL nnn −=−= ∫π  

.)()(
1

0

2
4 dssUsJ nn ∫= λπ  

Setting ∫=
s

dttJsK
0

.)()(  It's clear that 0)0( =K  

and 1)1( =K . Moreover, we show easily, 

from (H2), that .)(lim 1

0
∞<−

↓
sKs

s
 Recall that 



Asymptotic distributions of linear and non linear combinations of extreme order statistics 

 13

∫=
1

0
.)()()( dssUsJJµ nλ  An integration by part gives  

∫−=
1

0
.)(')()()( dssUsKUJµ nnn λλλ  

(we have used the fact that 0)(lim
0

=
↓

ttU
t

). 

Substituting last result in to term  

[ ]

))()(( )(')(2         

)())1(1()()(2      

))()((         

)(')(2))()()((2

1

0

1

0

1

02

JµbLdssUsK

dssUsVUsJU

JµbL

dssUsKJµbLU

nnn

nnnn

n

nnnnn

−×+

−−−−=

−×

+−−=Γ

∫
∫

∫

λλ

λλλ

λλλ

54321:)( nnnnnn bD ∆+∆+∆+∆+∆=  (4.3.2) 

where 

[ ] ,)())1(1()(
1

0

2
1 ∫ −−−=∆ dssUsVUsJ nnnn λλ   

[ ]
,))()((         

)())1(1()(2
1

02

dsUsU

sUsVUsJ

nn

nnnn

λλ

λλ

−×

−−−=∆ ∫  

,))()(( 2
3 JµbLnn −−=∆  

)),()(()(')(2
1

04 JµbLdssUsK nnnn −−=∆ ∫ λλ  

and  

.))(()()( 21

0

2
5 JµdssUsJ nn −=∆ ∫ λ  

We show in the sequel that for a large n 

;3,1  ),1()()( 22/1 ==∆− ioRn pninn λλ  

while  

∫ −− →∆
1

0

1
2

22/1 )(log)(2)()( dsssWsJsRn
D

nnn λλ  

as ∞→n  and  

∫ −− −→∆
1

0

1
4

22/1 ,)()()(2)()( dssWsJsJIRn
D

nnn λλ where 

∫−=
1

0
.log)()( sdssJJI
  

 
 LEMMA 4.3.1. Let (K), (F) and (H2) be satisfied. Then  

.  as  )1()()( 1
22/1 ∞→=∆− noRn pnnn λλ  

Proof. Expanding statistic )(~ bDn , we show that 

)).()()(~()( 2,
1

1 JJµbDn nnnnn ζλ −+=∆ −   

Then from theorem  we have for a large n 
),1())()()(~())(( 2,

2
pnnnn OJJµbDR =−+− ζλ

 
Consequently 

))()()(~())(()( 2,
22/1 JJµbDRn nnnnn ζλλ −+−−

).)(( 2/1−= np nO λ  

which converges to zero as ∞→n . This achieves proof 
of the present lemma. □ 

 
 LEMMA 4.3.2. Let (K), (F) and (H2) be satisfied. Then 
as ∞→n .  

∫ −− −→∆
1

0

1
2

22/1 .)(log)(2)()( dsssWsJsRn
D

nnn λλ  

 Proof. From the finite increments theorem, there exits a 
function  

.
)))'((log(
))(('

log)log(
)()(

s
sU

s
UsU

n

n

nn

nn

ρ
ρ

λλ
λλ

=
−

−
 

Moreover the right- hand-side of last expression is equal , 
by (1.16), to  

,  as  )),(())1(1( ∞→+− nsRo nρ  

consequently as ∞→n  

ssRUsU nnn log))(()()( ρλλ −=−  (4.3.3) 

Further it is easy to verify that we have also , from (1.7) 
(ii), 

)())1(1())(( nn RosR λρ +=  (4.3.4) 

Substituting (4.3.3) and (4.3.4) in to 2n∆ , we get  

[ ]
[ ],)~()()())1(1(2      

)())1(1(          

log)()())1(1(2
1

02

JµcLRo

dssUsVU

ssJRo

nn

nnn

nn

−+=

−−−×

+−=∆ ∫

λ

λλ

λ

 

where 

,10  ,log)()(~
<<= sssJsJ  

and 

∫ −
==

n

n

ni

ni nni nidssJc
λ

λ
λ

/

/)1(, .,...,1  ,)(~
 

We can write then that for a large n 

[ ] [ ]
[ ].)~()()(                                   

)())1(1(2)()(
2/1

1
2

22/1

JµcLn

RoRn

nn

nnnn

−×

+=∆ −−

λ

λλλ
 

It's clear now, from corollary 2.3, that the right-hand-side of 
last expression converges in distribution to 
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∫ ∞→−1

0

1 , as  ,)()(~2 ndssWsJs  

which proves this lemma. 
 
 LEMMA 4.3.3. Let (K), (F) and (H2) be satisfied. Then  

[ ] .  as   )1()()( 3
22/1 ∞→=∆− noRn pnnn λλ  

 Proof. It's straightforward, by applying still corollary 
2.3. □ 
Recall that 0)0( =K  and 1)1( =K . 
 
 LEMMA 4.3.4. Let (K), (F) and (H2) be satisfied. Then 
as ∞→n  

[ ] ,)()()(2)()(
1

0

1
4

22/1 ∫ −− −→∆ dssWsJsJIRn
D

nnn λλ
 

.log)()(
1

0∫−= sdssJJI  

 Proof. It suffices to apply (1.6), (1.7) and corollary 2.3 
and using the fact that 

.log)()(
1

0

1

0

1 ∫∫ −=− sdssJdssKs  

This last yields by an integration by part. □ 
 
 Finally, from lemmas 4.3.2 and 4.3.4, we write then that 
as ∞→n ,  

[ ] ,)()())(()()(
1

0

1
5

22/1 ∫ −− →∆− dssWssbDRn
D

nnnn ψλλ  

(.)ψ is as in theorem 3, which achieves proof of lemma 
4.3.3 and consequently the proof of theorem 3. □ 
 

5. PROOFS\ OF COROLLARIES 

5.1 PROOFS OF COROLLARIES 2.1 AND 2.2. 

The proofs of corollaries 2.1 and 2.2 are immediate from 
the definition of the Wiener process. In fact we have  

.10   ,10for    ),,min())(),(( <<<<= tststWsWCov  

Let ∫ −=Ξ
1

0

1 .)()( dssWsJs  Then we have 

            

)()()()(
21

0

12
⎟
⎠
⎞

⎜
⎝
⎛=Ξ=Ξ ∫ − dssWsJsEEVar  

              

).(:

),min()()(

))(),(()()(

2

1

0

1

0

11

1

0

1

0

11

J

dsdttstJsJts

dsdttWsWCovtJsJts

σ=

=

=

∫ ∫
∫ ∫

−−

−−

 

 
Since )10  ),(( << ssW  is )1,0(N , then Ξ is also 

))(,0( 2 JN σ  which achieves proof of corollary 2.1, and 
consequently by a same arguments the proof of corollary 
2.2. □ 

),(( 21 YYCov (resp. )( 1YVar ) denote the covariance of the 
couple of random variables ),( 21 YY  (resp. the variance of 
the random variable )( 1Y ). 
 

5.2 PROOFS OF COROLLARIES 2.3 AND 2.4 

They are straightforward, it suffices to take in theorem 1 

and 2 the weighting function ∫ −

n

n

ki

kin dssJk
/

/)1(
)(  instead of 

)/( nkiJ , and follow the same representation technics as in 
theorem 3. This completes the proofs of corollaries 2.3 and 
2.4. □  
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