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Abstract: - A design approach is proposed for the stabilization of  non linear systems using fuzzy Takagi-Sugeno 

models. The fuzzy model is represented as a set of uncertain linear systems where the uncertainty depends on the 

fulfillment degree of each rule. An optimization procedure is used to maximize the stability region of each closed loop 

local system. The local controller design is based on the resolution of a set of independent algebraic Ricatti equations. 

The global control law is obtained by a switching between local controllers. A simulation example is given to illustrate 

the efficiency of the proposed method. 
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1   Introduction 
During the last few years, the analysis and design of 

fuzzy logic controllers based on the Takagi-Sugeno 

fuzzy model have been a popular research topic in 

control community . Tanaka et al. discussed the stability 

and the design of  fuzzy control systems in [1, 2]. They 

gave some checking conditions for stability, which can 

be used  to design fuzzy control laws.  Unfortunately, the 

stability conditions require the existence of a common 

positive definite matrix for all the local linear models. 

However, this is a difficult problem to be solved in many 

cases, especially when the number of rules is large. 

Representation of fuzzy models by a set of  linear 

uncertain systems has been suggested by Cao et al. [3, 

4], and based on linear uncertain system theory several 

control design approaches has been proposed. The 

drawback  of  the precedent approaches  is that the LMIs 

or the algebraic Riccati equations used to check the 

stability can be infeasible. Based on the representation of 

Cao et al. [3] we propose, in this work, a switching 

control design approach. The proposed approach  is 

based on the resolution of a set of independent algebraic 

Ricatti equation.  The fulfillment degree of each rule is 

incorporated in the algebraic Riccati equation to 

overcome the problem of infeasibility.  The rest of the 

paper is organized as follows. Section 2 introduces the 

fuzzy dynamic model. Section 3 presents the switching 

controller design approach for fuzzy dynamic models 

based on algebraic Ricatti equations. To demonstrate the 

efficiency of the proposed approach, a simulation 

example is given in section 4. Finally, conclusions are 

given in section 5. 

 

 

2   Takagi-Sugeno Fuzzy Model 
Many physical systems are very complex in practice so 

that rigorous mathematical models can be very difficult 

to obtain, if not impossible. However, many of these 

systems can be expressed in some form of  mathematical 

models and Takagi-Sugeno fuzzy models has been 

largely used to model complex non linear systems[5].  

The continuous-time Takagi-Sugeno fuzzy dynamic 

model is a piecewise interpolation of several linear 

models through membership functions. The fuzzy model 

is described by a set of fuzzy if-then rules. The ith rule 

of the fuzzy model for the non linear system take the 

form: 
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where   nRtx   denotes the state vector,   mRtu   the 

control vector,   pRty  the output vector, 
i

jF  is the jth 

fuzzy set of the ith rule, 
nn

i RA  , 
mn

i RB   and 

np

i RC   are the state matrix, the input matrix and the 

output matrix for the ith local model. r  is the number of 

if-then rules, and      tztztz g,,, 21   are some 

measurable system variables, i.e. the premise variables. 

The final output of the fuzzy model can be expressed as: 
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The scalars   tzi  are characterized by: 

   10  tzi   and   
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The T-S fuzzy model (2) has strong  nonlinear 

interactions among its fuzzy rules which complicates the 

analysis and the control. In order to overcome these 

difficulties, the TS fuzzy model is represented as a set of 

uncertain linear systems [3]. The global state space 
nR  is  partitioned into r subspaces, each subspace 

is defined as : 

    ritzll ,2,1,0            (5) 

Each subspace l  is the union of two subsets: 

lll                                       (6) 

where  

   1 tzlll  ,    10  tzlll   

(7) 

These subspaces are characterized by: 
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If the rules i and j  can be inferred in the same time than 

 ji     

jjiijiji  ,  

If the rules i and j  can’t be inferred in the same time 

than    ji    

In each subspace the TS fuzzy model (2) can be 

represented as: 
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where  
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The TS fuzzy model can be written as: 
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where  
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and 
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If     1tzl  then the fuzzy model can be represented 

by the corresponding linear local model. 

In each subspace, the fuzzy model  consists of  a 

dominant nominal system  lll CBA ,,  and a set of 

interacting systems representing the effect of  other 

active rules. 

In this paper we suppose that the state space is 

measurable and     txty  . 

The fuzzy system can be simplified to: 

           tutzBtxtzAtx ll

~~
                        (14) 

with 

                 tzAtzAtzA llll  1
~

 

         tzBtzBtzB llll  1
~

             (15) 

 The matrices li AA  , li BB   can be written as: 

A

il

A

illi NMAA  ,  
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Then   tzAl  and   tzBl  can be expressed as 
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3 Controller Design 
We assume that the fuzzy system (2) is locally 

controllable, that is, the pairs   rlBA ll ,,1,,   are 

controllable. 

The basic idea is to design local feedback controllers that 

maximize the region of stability of each closed loop 

local model.  

Theorem 1: If there exist positive definite matrices 
mm

l RR  , 
nn

l RQ   scalars 0,0 21  ll   and 

10  l  such that the following algebraic Ricatti 

equation: 
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then the state feedback control law: 

   txPBRtu l

T
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1~                           (22) 

quadratically stabilize the fuzzy system in the sub region 
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In order to maximize the region of stability, the minimal 

value that guarantee the stability is obtained by solving  

the following minimization program: 
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Note that this minimization program has always a 

solution, 1l , since the local systems are 

controllable.  

If  
r

i

s

i
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  then the local controllers ,iK  

ri ,,2,1  satisfy the stability covering condition [6].  

Corollary: The scalars i , ri ,,2,1   satisfy the 

stability covering  condition if  there exist, at each time t, 

at least one integer rk 1  so that: 

   kk tz                                   (25) 

 

Theorem 2.  If there exists a common positive definite 

matrix  rPPPP  21  solution to the algebraic 

Ricatti equation (20) for ri ,,2,1   and the scalars 

i  satisfy the stability covering condition than the fuzzy 

system (2) is globally stabilizable by the following 

switching control law: 

   txKtu l                                 (25) 

with  l  satisfying :    ll tz    

Since several rules may satisfy this condition, the control 

law is given by: 

     txKtu l ,      ii
ri

tzl  
 ,1

maxarg    (26) 

It is difficult, if not impossible to find a common matrix 

P  that satisfy r  algebraic Ricatti equations in the same 

time.  

A common matrix is not necessary if  the switching 

between the local controllers is sufficiently slow [7].  

Lemma:  If the controllers satisfy the stability covering  

condition  and  the switching time is sufficiently slow, so 

as to allow the transient effects to dissipate after each 

switch, than the switching control law (26) globally 

stabilize the fuzzy system (2).  

Remark: Even if the stability covering condition is not 

fulfilled the fuzzy system may be stable [7]. 

 

The resolution of the r independent minimization 

programs  leads to three possible cases: 

Case 1 : Several or all 0i , ri ,,2,1  , the 

number of controllers can be reduced since a local 

controller can be used to stabilize its own local system 

and local systems of neighborhood regions. The number 

of controllers is inferior to the number of rules . 

Case 2 : If the number of controllers can’t be reduced 

and the stability covering condition is fulfilled than the 

number of controllers is equal to the number of rules. 

Case 3: If the stability covering condition is not fulfilled 

than the global system may be instable. To solve this 

problem, we can add new rules to the model since we 

know exactly in which region in the state space we need 

new ones. Or we can add new controllers without 

changing the model by using new nominal systems 



which is equivalent to the addition of new rules in the 

model. 

 

Design procedure 

The design procedure of the switching controller can be 

summarized in the following steps: 

- Step 1 : Obtain the fuzzy plant model of the non 

linear plant by means of the methods in [5], or other 

suitable ways 

- Step 2:  Determine the subsystems  matrices iA  and 

iB , ri ,,1  

- Step 3 :  Choose the suitable matrices 
lAM , 

lAN , 

lBM , and 
lBN  for each local model. 

- Step 4 :  For each subsystem, solve the minimization 

program (24). 

- Step 5 : Check if the stability covering condition 

(25) is satisfied, otherwise go to Step 3 and choose 

other values for the free design parameters or add 

new controllers until the covering condition will be 

fulfilled.  

 

 

4   Simulation Example 
To illustrate the controller synthesis approach, we 

consider the following problem of stabilizing the ball 

and beam system represented in Fig. 1. The motion of 

the ball and the beam can be described by the following 

differential equations [8]: 
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where rx 1  denotes the position of the ball,  rx 2  

its velocity, 3x   the angle of the beam and 4x  

the angular velocity of the beam. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The control u  equals the angular acceleration, B  and  

G  are parameters reflecting the mass of the ball and the 

beam. In our simulations below, we choose 7143.0B  

and 81.9G . The goal  is to determine the control u  

such that the ball will converge to its stability position. 

Assuming that 3x  is about 0 and  ddxx ,41  , where 

5d , the ball and beam system can be represented by 

the following TS fuzzy model [8]: 

R1 :  If  3x  is  about 0  and 41xx  is about 0,  

                                                      Then  uBxAx 11   

R2 :  If  3x  is  about 0  and 41xx  is about d ,  

                                                     Then  uBxAx 22   

R3 :  If  3x  is  about 0  and 41xx  is about  d ,  

                                                    Then  uBxAx 33   

where  
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and the membership functions, shown in Fig. 2, are : 
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Fig. 1  Ball and beam system 
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Fig. 2, Membership  functions and  local controllers 



 

The values obtained after the resolution of the three 

minimization programs: 

Subsystem 1: 
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 Subsystem 2 : 
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 Subsystem 3: 
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The minimal values found are 0321     

which means, as shown in Fig. 2, that the state feedback 

   txKtu 1  is sufficient to stabilize the Ball-and-

Beam system  and the controller is simplified. To 

illustrate the controller performance, the position of the 

bal is shown in  Fig. 3,  and  the angle of the beam in 

Fig. 4,  for the following initial conditions [0.5 m, 0, 

30.0°, 0],  [0.5 m, 0, 60.0°, 0] and [-0.5 m, 0, -45.0°, 0]. 

The switching controller is reduced to a simple linear 

state feedback, it is one advantage of this approach.   
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Fig. 3, Position of the ball 
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Fig. 4, Angle of the beam 

 

 

4   Conclusion 
This work presents a switching control design approach 

for the stabilization of non linear systems represented by 

fuzzy models. The basic idea of this approach is to 

decompose the global non linear design control problem 

into a number of simple linear state feedback local 

controllers. The maximization of the stability region of 

each local controller permit the minimization of the 

number of controllers. However, the problem of global 

stability still unsolved in the case of fast switching 

between local controllers.  
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