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Abstract— A design approach is proposed for the stabilization
of non linear systems using fuzzy Takagi-Sugeno models. The
fuzzy model is represented as a set of uncertain linear systems
where the local system uncertainty depends on the fulfillment
degree of the corresponding rule. An optimization procedure
is used to design the local controller such as to maximize
the stability region of each closed loop local system. The
local controller design is based on the resolution of a set
of independent LMIs. The global control law is obtained by
switching between local controllers. A simulation exampleis
given to illustrate the efficiency of the proposed method.

I. INTRODUCTION

Over the past several years, fuzzy systems have attracted
considerable attention from scientists and engineers. Fuzzy
modeling is an efficient method to represent complex non-
linear systems by fuzzy sets and fuzzy reasoning. By using
a Takagi-Sugeno fuzzy model, a non linear system can be
expressed as a weighted sum of simple subsystems[1]-[3].
Recently, there have been appeared a number of system-
atic stability analysis and controller design results in fuzzy
control literature. Tanaka et al. discussed the stability and
the design of fuzzy control systems in [4]. They gave some
checking conditions for stability, which can be used to design
fuzzy control laws, several methods have been proposed to
relax the stability conditions[5]-[6]. Unfortunately, the stabil-
ity conditions require the existence of a common positive def-
inite matrix for all the local linear models. However, this is a
difficult problem to be solved in many cases, especially when
the number of rules is large. Representation of fuzzy models
by a set of linear uncertain systems has been suggested by
Kim et al.[7], based on linear uncertain system theory several
control design approaches has been proposed [7],[8],[10].
The drawback of the precedent approaches is that the LMIs
or the algebraic Riccati equations used to check the stability
may be infeasible. Based on the representation of Cao et
al. [8]-[10] we propose, in this work, a switching control
design approach. The proposed approach is based on the
resolution of a set of LMIs. The uncertainty of each local
model is represented in function of its fullfillement degree.
To overcome the problem of infeasibility the fullfilment
degree is incorporated in the LMIs. The rest of the paper
is organized as follows. Section 2 introduces the fuzzy
dynamic model. Section 3 presents the switching controller
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design approach for fuzzy dynamic models based on the
maximisation of the stability region of each local model.
To demonstrate the efficiency of the proposed approach, a
simulation example is given in section 4. Finally, conclusions
are given in section 5.

II. TAKAGI-SUGENO FUZZY MODEL

The continuous-time Takagi-Sugeno fuzzy dynamic model
is a piecewise interpolation of several linear models through
membership functions . The fuzzy model is described by a
set of fuzzy if-then rules. Theith rule of the fuzzy model
take the form:
Rule i:

If z1(t) is F i
1 , · · · , andzg(t) is F i

g

Then

{

ẋ(t) = Aix(t) + Biu(t)
y(t) = Cix(t)

(1)

wherex(t) ∈ R
n denotes the state vector,u(t) ∈ R

m the
control vector,y(t) ∈ Rp the output vector,F i

j is the jth
fuzzy set of the ith rule,Ai ∈ R

n×n,Bi ∈ R
n×m and

Ci ∈ R
p×n are the state matrix, the input matrix and the

output matrix for the ith local model,r is the number of if-
then rules, andz1(t), z2(t) · · · , zg(t) are some measurable
system variables. The final output of the fuzzy model can be
expressed as:















ẋ(t) =
r
∑

i=1

αi(z(t)){Aix(t) + Biu(t)}

y(t) =
r
∑

i=1

αi(z(t))Cix(t)

Where

αi(z(t)) =
ωi(z(t))

r
∑

i=1

ωi(z(t))
(2)

The scalarsαi(z(t)) are characterized by:

0 ≤ αi(z(t)) ≤ 1 and
r

∑

i=1

αi(z(t)) = 1 (3)

The T-S fuzzy model (2) has strong nonlinear interactions
among its fuzzy rules which complicates the analysis and
the control. In order to overcome these difficulties, the TS
fuzzy model is represented as a set of uncertain linear
systems[8]. The global state spaceΩ ⊆ R

n is partitioned
into r subspaces, each subspace is defined as :

Ωl = {Ω | αl(z(t)) > 0} (4)



These subspaces are characterized by:
r

⋃

i=1

Ωi = Ω (5)

If the rulesi andj can be inferred in the same time then :

Ωi ∩ Ωj 6= φ (6)

If the rulesi andj can’t be inferred in the same time then :

Ωi ∩ Ωj = φ (7)

In each subspace the TS fuzzy model (2) can be represented
as:

ẋ(t) ={Al +

r
∑

Ri∈Rl
i6=l

αi(z(t)) (Ai − Al)}x(t)

+ {Bl +

r
∑

Ri∈Rl
i6=l

αi(z(t)) (Bi − Bl)}u(t)

y(t) ={Cl +

r
∑

Ri∈Rl
i6=l

αi(z(t)) (Ci − Cl)}x(t) (8)

Rl is a rule subset containing rules that can be inferred in
the same time as rulel.

Rl = {Ri, ∃t, αl(z(t))αi(z(t)) 6= 0} (9)

Since
r

∑

Ri∈Rl
i6=l

αi(z(t)) = 1 − αl(z(t)) (10)

The TS fuzzy model can be written as:
{

ẋ(t) = Ãl(z(t))x(t) + B̃l(z(t))u(t)

y(t) = C̃l(z(t))x(t)
(11)

Where

Ãl(z(t)) = Al + (1 − αl(z(t)))∆Al(α
′(z(t))) (12)

B̃l(z(t)) = Bl + (1 − αl(z(t)))∆Bl(α
′(z(t))) (13)

C̃l(z(t)) = Cl + (1 − αl(z(t)))∆Cl(α
′(z(t))) (14)

∆Al(α
′(z(t))) =

r
∑

Ri∈Rl
i6=l

α′

i(z(t))(Ai − Al)

∆Bl(α
′(z(t))) =

r
∑

Ri∈Rl
i6=l

α′

i(z(t))(Bi − Bl)

∆Cl(α
′(z(t))) =

r
∑

Ri∈Rl
i6=l

α′

i(z(t))(Ci − Cl) (15)

and

α′

i(z(t)) =
αi(z(t))

1 − αl(z(t))
(16)

If αl(z(t)) = 1 then the fuzzy system can be represented
by the corresponding linear local model. In each subspace,

the fuzzy model consists of a dominant nominal system
(Al,Bl,Cl) and a set of interacting systems representing
the effect of other active rules. In this paper we suppose
that the state vector is measurable and the stabilization is
accomplished via a full state feedback. Ify(t) = x(t) the
fuzzy system can be simplified to:

ẋ(t) = Ãl(α
′(z(t)))x(t) + B̃l(α

′(z(t)))u(t) (17)

with

Ãl(α
′(z(t))) = Al + (1 − αl(z(t)))∆Al(α

′(z(t)))

B̃l(α
′(z(t))) = Bl + (1 − αl(z(t)))∆Bl(α

′(z(t))) (18)

Suppose that the matricesAi − Al and Bi − Bl can be
written as :

Ai − Al = DA
li ·E

A
li , Bi − Bl = DB

li ·E
B
li (19)

Then ∆Al(α
′(z(t))) and ∆Bl(α

′(z(t))) can be expressed
as:

∆Al(α
′(z(t))) = DAl

·FAl
(α′(z(t))) ·EAl

∆Bl(α
′(z(t))) = DBl

· FBl
(α′(z(t))) · EBl

(20)

Where

DAl
=

[

DA
1l · · · DA

lr

]

, DBl
=

[

DB
l1 · · · DB

lr

]

EAl
=







EA
l1
...

EA
lr






, EBl

=







EB
l1
...

EB
lr







FAl
(α′(z(t))) =













α′

1(z(t))Iql
0 · · · 0

0
. . . · · · 0

...
...

. . .
...

0 · · · 0 α′

r(z(t))Iqr













FBl
(α′(z(t))) =













α′

1(z(t))Ipl
0 · · · 0

0
. . . · · · 0

...
...

. . .
...

0 0 · · · α′

r(z(t))Ipr













(21)

0 ≤ α′

i(z(t)) ≤ 1 =⇒

{

FAl
(·)FT

Al
(·) ≤ I

FBl
(·)FT

Bl
(·) ≤ I

(22)

III. C ONTROLLER DESIGN

We assume that the fuzzy system (2) is locally con-
trollable, that is, the pairs(Al, Bl), l = 1, . . . , r, are
controllable. The basic idea is to design local feedback
controllers that maximize the stability region of each closed
loop local model. The switching controller consists ofr
linear state feedback controllers that will be switched from
one to another to control the system. The switching controller
can be described by:

u(t) =

r
∑

l=1

ζl(x(t))ul(t) (23)



with:

ul(t) = Klx(t) (24)

and:

ζl(x(t)) =

{

1 x(t) ∈ Ωc
l

0 otherwize
(25)

Ωc
l ⊆ Ωl is the subregion in which the command is generated

using the local state feedbackKl to be designed. It can
be seen that (23) is a linear combination ofrc linear state
feedback controllers, the number of controllersrc may be
different of the number of rulesr. At each moment, only one
of the linear state feedback controllers is chosen to generate
the control signal.

Theorem 1:If there exist symmetric positive definite ma-
trix Pl and positive scalars,εA

l > 0, εB
l > 0, 0 ≤ αl < 1

such that the following LMI holds:


















Ψl εB
l DBl

εA
l DAl

YT
l ET

Bl
XlE

T
Al

εB
l DT

Bl
−

εB

l

1−α
l

I 0 0 0

εA
l DT

Al
0 −

εA

l

1−α
l

I 0 0

EBl
Yl 0 0 −

εB

l

1−α
l

I 0

EAl
Xl 0 0 0 −

εA

l

1−α
l

I



















< 0

(26)

where :

Ψl = XlA
T
l + AlXl + YT

l BT
l + BlYl (27)

and
Xl = P−1

l , Yl = KlP
−1
l (28)

then the fuzzy subsystem (17) is quadratically stable for the
values ofαl(z(t)) such that :

αl(z(t)) ≥ αl (29)
Proof: Consider the following Lyapunouv function

candidate:

Vl(t) = xT (t)Plx(t) (30)

wherePl is a symmetric positive definite matrix. The time
derivative ofVl(t) along the trajectory of the fuzzy system
is given by:

V̇l(t) =ẋT (t)Plx(t) + xT (t)Plẋ(t)

=xT (t)ÃT
l (α′)Plx(t) + xT (t)PlÃl(α

′)x(t)

+ uT (t)B̃T
l (α′)Plx(t) + xT (t)PlB̃l(α

′)u(t)

=xT {L1(Pl) + (1 − αl) [LA(Pl) + LB(Pl)]}x.

where :

L1(Pl) =AT
l Pl + PlAl + KT

l BT
l Pl + PlBlKl

LA(Pl) =ET
Al

FT
Al

DT
Al

Pl + PlDAl
FAl

EAl

LB(Pl) =KT
l ET

Bl
FT

Bl
DT

Bl
Pl + PlD

T
Bl

FBl
EBl

Kl

Since for any positive scalarρ > 0 and real matricesY and
Z we have [11]:

ZYT + YZT ≤ ρYYT +
1

ρ
ZZT (31)

It follows that:

LA(Pl) ≤ L̄A(Pl), LB(Pl) ≤ L̄B(Pl)

where

L̄A(Pl) = εA
l PlDAl

DT
Al

Pl +
1

εA
l

ET
Al

EAl

L̄B(Pl) = εB
l PlDBl

DT
Bl

Pl +
1

εB
l

KT
l ET

Bl
EBl

Kl

V̇l(t) ≤xT (t)
{

L1(Pl) + (1 − αl)
[

L̄A(Pl) + L̄B(Pl)
]}

x

Since
αl ≤ αl ⇒ 1 − αl ≤ 1 − αl (32)

it yields

(1 − αl)
[

L̄A(·) + L̄B(·)
]

≤ (1 − αl)
[

L̄A(·) + L̄B(·)
]

V̇l(t) ≤xT (t)
{

L1(Pl) + (1 − αl)
[

L̄A(Pl) + L̄B(Pl)
]}

x(t)

L1(Pl) + (1 − αl)
[

L̄A(Pl) + L̄B(Pl)
]

< 0

⇒ V̇l(t) < 0

Let Xl = P−1
l andYl = KlXl,by right and left multiplying

by Xl:

L1(Pl) + (1 − αl)
[

L̄A(Pl) + L̄B(Pl)
]

< 0 ⇔

XlA
T
l + AlXl + YT

l BT
l + BlYl

+ (1 − αl)
(

εA
l DAl

DT
Al

+ εB
l DBl

DT
Bl

)

+(1 − αl)

(

1

εA
l

XlE
T
Al

EAl
Xl +

1

εB
l

YT
l ET

Bl
EBl

Yl

)

< 0

using Schur complement [12] we get:


















Ψl εB
l DBl

εA
l DAl

YT
l ET

Bl
XlE

T
Al

εB
l DT

Bl
−

εB

l

1−α
l

I 0 0 0

εA
l DT

Al
0 −

εA

l

1−α
l

I 0 0

EBl
Yl 0 0 −

εB

l

1−α
l

I 0

EAl
Xl 0 0 0 −

εA

l

1−α
l

I



















< 0

with Ψl = XlA
T
l + AlXl + YT

l BT
l + BlYl

which is an LIM where the variables are :Xl = P−1
l ,Yl =

KlP
−1
l , εB

l andεA
l .

In order to maximize the region of stability of each subregion
Ωs

l , the minimal value that guarantee the stability is obtained
by solving the following minimization program:

Minimize
Xl,Yl,ε

A

l
,εB

l

αl

Subject to0 ≤ αl < 1,Xl = XT
l > 0, εA

l > 0, εB
l > 0



















Ψl εB
l DBl

εA
l DAl

YT
l ET

Bl
XlE

T
Al

εB
l DT

Bl
−

εB

l

1−α
l

I 0 0 0

εA
l DT

Al
0 −

εA

l

1−α
l

I 0 0

EBl
Yl 0 0 −

εB

l

1−α
l

I 0

EAl
Xl 0 0 0 −

εA

l

1−α
l

I



















< 0

Ψl = XlA
T
l + AlXl + YT

l BT
l + BlYl (33)



Note that this minimization program has always a solution
αl < 1, since we assume that the local systems are control-
lable.

Remark 1:αl is the lth rule minimal degree that garanties
the quadratic stability of the fuzzy system (2) using the local
model(Al,Bl) as nominal model andKl as state feedback
gain. Another rule will be used as nominal model to generate
the control signal forαl < αl.

Definition 1: We say that the state feedback gains,Kl, l =
1, 2, . . . , r satisfy thestability coveringcondition [13] if:

r
⋃

l=1

Ωs
l = Ω (34)

Lemma 1: If there exists, at each momentt, at least one
integerk ∈ {1, 2, . . . , r} so that :

αk(z(t)) ≥ αk (35)

then stability covering condition (34) is satisfied.
Proof:

∀t, ∃k, αk(z(t)) ≥ αk ⇔ ∀t, ∃k,x(t) ∈ Ωs
k (36)

∀t, ∃k,x(t) ∈ Ωs
k ⇔

r
⋃

k=1

Ωs
k = Ω (37)

Since several rules may satisfy the condition (35) in common
subregions, in this case the control can inferred by selecting
the control of the dominant system whose membership
degree is of maximum distance from its guaranteed stability
boundary:

u(t) = Klx(t), l = arg max
i=1,r

(αi(z(t)) − αi) (38)

Each state feedbackKl, r = 1, 2, . . . , rc is applied in the
local regionΩc

l ⊆ Ωs
l defined as:

Ωc
l = {Ωs

l | l = arg max
i=1,r

(αi(z(t)) − αi)} (39)

Let αc
l the rule degree corresponding to boundary of the

subregionΩc
l .

The resolution of ther independent minimization programs
(33) leads to three possible cases as shown in figure 1:

Case 1: Several or allαl = 0, l = 1, 2, . . . , r, figure 1.a,
a local controller can be used to stabilize the fuzzy system
in its own local subregion and in adjacent subregions and
the number of controllers can be reduced. The number of
controllers is inferior to the number of rules(rc < r). In
figure 1.a, the state feedback gainK1 is sufficient to control
the fuzzy system.

Case 2: If the number of controllers can’t be reduced and
the condition (37) is fulfilled then the number of controllers
is equal to the number of rules(rc = r), figure 1.b.

Case 3: If the condition (37) is not fulfilled, the global
system may be instable. To solve this problem, we can add
new rules to the model since we know exactly in which
region, in the state space, we need new ones. Or we can add
new controllers(rc > r), K4 andK5 in figure 1.c, without

-
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K3 K1 K2 (c)
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Fig. 1. Possible cases

changing the model by using new nominal local systems,
which is equivalent to the addition of new rules to the model.

Let τi, i = 1, 2, . . . , N the ith time instant at which the
state meets the boundary of a subregionΩc

j , j = 1, 2, . . . , rc.
We assume that the statex(t) does not jump at the transition
time τi, that is [10]

x(τ−

i ) = x(τi) = x(τ+
i ), i = 1, 2, . . . , N (40)

Lemma 2:The fuzzy system (2) is globally stable if the
transition time instant are finite(N < ∞) and the stability
covering condition (35) is verified.

Proof: Consider the following piecewise quadratic
Lyapunouv function candidate:

V (t) =

rc
∑

l=1

ζl(x(t))xT (t)Plx(t) (41)

Since the stability covering condition is verified:

∀t ≥ 0, ∃l,x(t))x(t)) ∈ Ωs
l

if τi is the time instant at which the state leaves the subregion
Ωc

j and enters into the subregionΩc
k then:

V (τ−

i ) = xT (τ−

i )Pjx(τ−

i ) = xT (τ)Pjx(τ) (42)

V (τ+
i ) = xT (τ+

i )Pkx(τ+
i ) = xT (τ)Pkx(τ) (43)

The local symmetric positive matricesPl, l = 1, 2, . . . , r,
are determined so as to guarantee the local stability:

(26) ⇒ ∃δl, L1(Pl) + (1−αl) [LA(Pl) + LB(Pl)] ≤ −δlI

V (t) > 0, x(t) 6= 0, ⇒
V̇ (t)

V (t)
≤ −σl, σl =

δl

λmax (Pl)

x(t) ∈ Ωc
l , τ+

i < t < τ−

i+1, i = 1, 2, . . . , N



V (t) ≤ V (τ+
i )e−σl(t−τ

+

i
)

τ+
i < t < τ−

i+1, i = 1, 2, . . . , N

Since :

λmin (Pl) ‖x(t)‖2 ≤ V (t) ≤ λmax (Pl) ‖x(t)‖2

τ+
i < t < τ−

i+1, i = 1, 2, . . . , N

It follows that:

‖x(t)‖ ≤ Cl‖x(τi)‖e
−

σl
2

(t−τ
+

i
), Cl =

√

λmax (Pl)

λmin (Pl)

τ+
i < t < τ−

i+1, i = 1, 2, . . . , N (44)

Since the number of transition is finite,N < ∞ then :

‖x(t)‖ ≤ Cl0‖x(τN )‖e−
σl0
2

(t−τ
+

N
), t > τ+

N

At the N th transition(t = τ+
N ) the state enters into the

subregionΩc
l0

containing the origin and converges to the
origin at t → ∞.

x(t) ∈ Ωc
l0

, t > τ+
N ‖x(t)‖

t→∞

→ 0

The fuzzy system is globally stable.
Lemma 3: If the state stays in each regionΩc

l for a period
of time ∆τ such that :

∆τ >
ln

(

λmax(Pl)
λmin(Pl)

)

σl

(45)

then the fuzzy system (2) is globally stable.
Proof: From 44 it follows that when the state leaves

the regionΩc
l :

‖x(τ−

i+1)‖ ≤ Cl‖x(τi)‖e
−

σl
2

(τ−
i+1

−τ+

i
), Cl =

√

λmax (Pl)

λmin (Pl)

i = 1, 2, . . . , N (46)

since there is no jump in the state:

‖x(τi+1)‖

‖x(τi)‖
≤ Cle

−
σl
2

∆τ , Cl =

√

λmax (Pl)

λmin (Pl)

i = 1, 2, . . . , N (47)

If ∆τ verify the condition (45) then:

‖x(τi+1)‖ < ‖x(τi)‖ < · · · < ‖x(0)‖ (48)

and
‖x(τi)‖

i→∞

→ 0 (49)

and the fuzzy system (2) is globally stable.
Theorem 2:If the the setαc

l , l = 1, . . . , rc are such that
the stability covering condition (34) is verified and the set
of matricesPl, l = 1, . . . , rc are such that:

Pi ≤ Pj for all statesx(τ−

k ) ∈ Ωs
j andx(τ+

k ) ∈ Ωs
i

k = 1, . . . , N (50)

then the fuzzy system is globally asymptotically stable.

Proof: Let the Lyapounuv function candidate given by
(41). Since each matrixPj assures thatV (t) is decreasing
inside each sub-regionΩs

j then:

V (t) = Vj(t) < V (τ+
k−1), τ

+
k−1 < t ≤ τ−

k (51)

It yields
V (τ−

k ) < V (τ+
k−1), k = 1, . . . , N (52)

At t = τk the state leaves the subregionΩs
j and enters into

the subregionΩs
i . Since we assume there is no jump in the

state

(50) ⇒ Vi(τ
+
k ) ≤ Vj(τ

−

k ) ⇒ V (τ+
k ) ≤ V (τ−

k ) (53)

and
V (τk) < V (τk−1) < · · · < V (0) (54)

‖x(τk)‖ < ‖x(τk−1)‖ < · · · < ‖x(0)‖ (55)

If condition (50) holds then the fuzzy system (2) is asymp-
totically stable.

IV. SIMULATION EXAMPLE

To show the effectiveness of the proposed method, we
consider the following problem of balancing an inverted
pendulum on a cart. The motion of the pendulum can be
described by the following equations[16]:

{

ẋ1(t) = x2(t)

ẋ2(t) =
g sin(x1(t))−

1
2
amlx2

2 sin(2x1(t))−a cos(x1(t))u(t)
4l

3
−a cos2(x1(t)

(56)
where:

a =
1

M + m
(57)

wherex1 denotes the angle of the pendulum from the vertical
andx2 is the angular velocity,g = 9.8 m/s2 is the gravity
constantm = 0.8 kg is the mass of the pendulum,M =
2.0 kg is the mass of the cart,l = 0.5 m is the half length
of the pendulum, andu is the force applied to the cart. The
inverted pendulum can be described by the following TS
fuzzy model:
R1 : if x1(t) is close to0 Then ẋ(t) = A1x(t) + B1u(t)
R2 : if x1(t) is close to±π

2 Then ẋ(t) = A2x(t) + B2u(t)
where

A1 =

[

0 1
g

4l

3
−aml

0

]

, B1 =

[

0
− a

4l

3
−aml

]

A2 =

[

0 1
2g

π( 4l

3
−amlb2)

0

]

, B2 =

[

0
− ab

4l

3
−amlb2

]

(58)

andb = cos(80◦). The membership functions are given by:

ω1(x1(t)) = 1 −
2

π
|x1(t)|, ω2(x1(t)) =

2

π
|x1(t)| (59)

The TS fuzzy model can be decomposed into two subsys-
tems:

• Sub-system 1:

ẋ(t) = (A1 + (1 − α1(t))∆A1)x(t)

+ (B1 + (1 − α1(t))∆B1)u(t)



∆A1 = α′

2(t)(A2 − A1), ∆B1 = α′

2(t)(B2 − B1)

A1 =

[

0 1
18.7282 0

]

, B1 =

[

0
−0.6818

]

∆A1 = α′

2(t)

[

0 0
−9.2994 0

]

, ∆B1 = α′

2(t)

[

0
0.5882

]

• Sub-system 2:

ẋ(t) = (A2 + (1 − α2(t))∆A2)x(t)

+ (B2 + (1 − α2(t))∆B2)u(t)

∆A2 = α′

1(t)(A1 − A2), ∆B2 = α′

1(t)(B1 − B2)

A2 =

[

0 1
9.4288 0

]

, B2 =

[

0
−0.0936

]

∆A2 = α′

2(t)

[

0 0
9.2994 0

]

, ∆B2 = α′

2(t)

[

0
−0.5882

]

For DA1
= DB1

= DA2
= DB2

=
[

0 1.0000
]T

,EA1
=

−EA1
=

[

−9.2994 0
]

and EB1
= −EB2

= 0.5882
the values obtained after the resolution of the minimization
program (33) :

α1 = 0, ε1 = 26.7968, P1 =

[

18.78523 5.3854
5.3854 1.7371

]

α2 = 0.85, ε2 = 23.8166, P2 =

[

162.6934 57.7613
57.7613 20.5073

]

K1 =
[

290.7869 88.9461
]

K2 =
[

2476.4698 873.5949
]

Since the minimal value obtained areα1 = 0.0 and α2 =
0.85 the linear state feedbacku(t) = K1x(t) is sufficient
to stabilize the inverted pendulum as shown in figure 2. It
is possible to drive the inverted pendulum to its equilibrium
position for initial anglesθ(0) ∈ [−75◦, 75◦] using the linear
state feedbackK1.

V. CONCLUSION

In this paper an LMI approach has been proposed to design
a fuzzy model based switching controller for non linear
systems. The fuzzy model is represented as a set of uncertain
linear systems. A local controller is designed such that
the stability region of the corresponding local subsystem is
maximized. Under some conditions this switching controller
has the ability to stabilize the non linear system. The inverted
pendulum stabilization problem has been used to demonstrate
the effectiveness of this approach.
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