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Abstract. This paper adresses the stabilization problem of uncertain
T–S fuzzy models using switching control. The T–S fuzzy model is de-
scribed by a set of uncertain linear systems where the local system un-
certainty depends on the fulfillment degree of the corresponding rule. An
optimization procedure is used to design local controllers such as to max-
imize the quadratic stability region of each closed loop local uncertain
system. The local controllers design is based on the resolution of a set of
LMIs and the global control law is obtained by switching between local
controllers. A numerical simulation of the stabilization of the uncertain
lorenz system is given to illustrate the efficiency of the proposed method.
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Résumé. Dans cet article nous étudions le problème de stabilisation
des modèles flous T–S incertains. Le modèle flou de Takagi–Sugeno in-
certain est décrit par un ensemble de systèmes linéaires incertains dont
l’incertitude du système local est exprimée en fonction du poids de la
règle correspondante. Une procedure d’optimisation est utilisée pour la
synthèse des lois de commande locales de façon à maximiser la région
de stabilité quadratique pour chaque modèle incertain local. La synthèse
des lois de commande locales est basée sur la résolution d’un ensembles
de LMIs et la loi de commande globale est obtenue par commutation
entres les lois de commande locales. Un exemple de simulation est utilisé
pour démontrer l’efficacité de la méthode proposée.

Mots-clés: Modèle flou T–S, système incertain,LMI, stabilité quadra-
tique.

1 Introduction

In recent years, there has been growing interest in the study of the the Takagi–
Sugeno (T–S) fuzzy system due to the fact that it provides a general framework
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to represent a non linear plant by using a set of local linear models [1]-[3]. A large
number of systematic stability analysis and controller design results have been
appeared in fuzzy control literature. Tanaka et al. discussed the stability and
the design of fuzzy control systems in [4], they gave some checking conditions
for stability, which can be used to design fuzzy control laws and several methods
have been proposed to relax these stability conditions [5],[6],[7]. Robust stability
has also been considered in [8]. Unfortunately, the stability conditions require the
existence of a common positive definite matrix for all local linear models; this is a
difficult problem to be solved in many cases, especially when the number of rules
is large. Representation of fuzzy models by a set of linear uncertain systems has
been suggested by Kim et al.[9], based on linear uncertain system theory several
control design approaches has been proposed [9], [10],[11]. The drawback of the
precedent approaches is that the LMIs or the algebraic Riccati equations used to
check the stability may be infeasible and the number of local controllers is not
optimized. In [12]–[13], a switching control design approach has been proposed to
stabilize non linear systems via fuzzy models. It is based on the maximization of
the quadratic stability region of each local model. The uncertainty of each fuzzy
local model is represented in function of its fulfillment degree. To overcome the
problem of infeasibility the fulfillment degree is incorporated in the LMIs. A
maximization procedure is used to compute the minimal degree for which the
LMI is feasible. In this paper, this approach is extended to non linear systems
represented by uncertain T–S fuzzy models. The rest of the paper is organized
as follows. Section 2 introduces the uncertain T–S fuzzy model and Section 3
presents the switching controller design approach for uncertain fuzzy dynamic
models based on the maximization of quadratic stability region of each local
model. To demonstrate the efficiency of the proposed approach, a simulation
example is given in section 4. Finally, conclusions are given in section 5.

2 Uncertain Takagi-Sugeno Fuzzy Model

The uncertain continuous-time Takagi-Sugeno fuzzy dynamic model is a piece-
wise interpolation of several uncertain linear models through membership func-
tions . The uncertain T–S fuzzy model is described by a set of fuzzy if-then rules.
The ith rule of the fuzzy model take the form:

Rule i: If z1(t) is F i
1 , · · · , and zg(t) is F i

g

Then

{

ẋ(t) = (Ai + ∆Ai)x(t) + (Bi + ∆Bi)u(t)
y(t) = Cix(t)

(1)

where x(t) ∈ R
n denotes the state vector, u(t) ∈ R

m the control vector, y(t) ∈
Rp the output vector, F i

j is the jth fuzzy set of the ith rule, Ai ∈ R
n×n,Bi ∈

R
n×m and Ci ∈ R

p×n are the state matrix, the input matrix and the output ma-
trix for the ith local model, r is the number of if-then rules, and z1(t), z2(t) · · · , zg(t)
are some measurable system variables. ∆Ai ∈ R

n×n, ∆Bi ∈ R
n×m are unknown

and possibly time-varying matrices representing the uncertainties in the system.
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Using center-average defuzzification, product inference and singleton fuzzifier;
the global dynamics of the fuzzy system can be described by















ẋ(t) =
r
∑

i=1

αi(z(t)){(Ai + ∆Ai)x(t) + (Bi + ∆Bi)u(t)}

y(t) =
r

∑

i=1

αi(z(t))Cix(t)
(2)

Where

αi(z(t)) =
ωi(z(t))

r
∑

i=1

ωi(z(t))
(3)

The scalars αi(z(t)) are characterized by:

0 ≤ αi(z(t)) ≤ 1 and

r
∑

i=1

αi(z(t)) = 1 (4)

We assume that the uncertain matrices ∆Ai and ∆Bi are norm bounded with
the following structure

[

∆Ai ∆Bi

]

= Di · Fi(t) ·
[

EiA
EiB

]

i = 1, 2, ..., r (5)

where Di,EiA
and EiB

are predetermined real constant matrices of appro-
priate dimensions, representing the structures of the system uncertainties. Fi(t)
are unknown matrix-valued function satisfying

FT
i (t) · Fi(t) ≤ I (6)

The T-S fuzzy model (2) has strong nonlinear interactions among its fuzzy
rules which complicates the analysis and the control. In order to overcome these
difficulties, the uncertain TS fuzzy model can be represented as a set of uncertain
linear systems[10]. The global state space Ω ⊆ R

n is partitioned into r subspaces,
each subspace is defined as :

Ωl = {Ω | αl(z(t)) > 0} (7)

These subspaces are characterized by:

r
⋃

i=1

Ωi = Ω (8)

If the rules i and j can be inferred in the same time then :

Ωi ∩ Ωj 6= φ (9)

If the rules i and j can’t be inferred in the same time then :

Ωi ∩ Ωj = φ (10)
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In each subspace the uncertain TS fuzzy model (2) can be represented as:

ẋ(t) =

{

αlÃl + (1 − αl)
r

∑

Ri∈Rl

α′
i(z(t))Ãi

}

x(t)

+

{

αlB̃l + (1 − αl)

r
∑

Ri∈Rl

α′
i(z(t))B̃i

}

u(t) (11)

y(t) =

{

αlCl + (1 − αl)

r
∑

Ri∈Rl

α′
i(z(t))Ci

}

x(t) (12)

where
Ãi = Ai + ∆Ai, B̃i = Bi + ∆Bi (13)

and Rl is a rule subset containing rules that can be inferred in the same time as
rule l.

Rl = {Ri, ∃t, αl(z(t))αi(z(t)) 6= 0} (14)

and

α′
i(z(t)) =

αi(z(t))

1 − αl(z(t))
(15)

The scalars α′
i(z(t)), Ri ∈ Rl are characterized by

0 ≤ α′
i(z(t)) ≤ 1,

r
∑

Ri∈Rl

α′
i(z(t)) = 1 (16)

for αl(z(t)) = 1 the uncertain fuzzy system can be represented by the uncertain
linear local model corresponding to rule Ri.

3 Controller Design

We assume that the fuzzy system (2) is locally controllable, that is, the pairs
(Al, Bl), l = 1, . . . , r, are controllable. The basic idea is to design local feedback
controllers by the maximization of the stability region of each closed loop local
model. The switching controller consists of rc linear state feedback controllers
that will be switched from one to another to control the system. The switching
controller can be described by:

u(t) =
∑

l∈Ic

ζl(x(t))ul(t) (17)

with:
ul(t) = Klx(t) (18)

and:

ζl(x(t)) =

{

1 x(t) ∈ Ωc
l

0 otherwize
(19)
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where Ic ⊆ I = {1, 2, ..., r} is a set containing the indexes of selected controllers,
Ωc

l ⊆ Ωl is the subregion in which the command is generated using the local state
feedback Kl to be designed. It can be seen that (17) is a linear combination of
rc linear state feedback controllers, the number of controllers rc may be different
from the number of rules r. At each moment, only one of the linear state feedback
controllers is chosen to generate the control signal. In [10]–[11] and [14] the
number of controllers is the same as the number of rules while in this approach
the number of necessary controllers to ensure the stabilization can be minimized
and may be less then the number of rules.
The local controllers are designed so that the local stability region of each fuzzy
subsystem is maximized. In the subregion Ωl the control law is

u(t) = ul(t) = Klx(t), x(t) ∈ Ωc
l (20)

where Ωc
l ⊆ Ωl is the subregion of Ωl where the fuzzy subsystem is stable using

state feedback Kl.

Theorem 1. If there exist symmetric positive definite matrices Xl = XT
l >

0,Ml = MT
l > 0 positive scalars εli > 0, Ri ∈ Rl and scalar µl > 0 such that





Φll + Ml εllDl [ElAXl + ElBYl]
T

εllD
T
l −εllI 0

ElAXl + ElBYl 0 −εllI



 < 0 (21)





Φli − µlMl εliDi [EiA
Xl + EiB

Yl]
T

εliD
T
i −εliI 0

EiA
Xl + EiB

Yl 0 −εliI



 ≤ 0 (22)

Ri ∈ Rl, i 6= l

with
Φli = XlA

T
i + AiXl + BiYl + YT

l BT
i (23)

then the fuzzy system is quadratically stablizable by the state feedback.

u(t) = YlX
−1

l x(t) (24)

if

αl(z(t)) ≥
µl

1 + µl

, ∀t ≥ 0 (25)

Proof. Consider the following Lyapunov function candidate

V = xT (t)Plx(t) (26)

V̇ = xT (t)L(Pl)x(t) (27)

where

L(Pl) = αlLl(Pl) + (1 − αl)

r
∑

Ri∈Rl

α′
i(z(t))Li(Pl) (28)
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L(Pl) =
r

∑

Ri∈Rl

α′
i(z(t)) [αlLl(Pl) + (1 − αl)Li(Pl)] (29)

Li(Pl) =
[

Ãi + B̃iKl

]T

Pl + Pl

[

Ãi + B̃iKl

]

Li(Pl) =AT
i Pl + PlAi + ∆AT

i Pl + Pl∆Ai + KT
l BT

i Pl + PlBiKl

+ ∆BT
i KT

l Pl + Pl∆BiKl

= [Ai + BiKl]
T

Pl + Pl [Ai + BiKl] +
[

EiA
+ EiB

Kl

]T
FT

i (t)DT
i Pl

+ PlDiFi(t)
[

EiA
+ EiBKl

]

Li(Pl) ≤ [Ai + BiKl]
T

Pl + Pl [Ai + BiKl] + εliPlDiD
T
i Pl

+
1

εli

[

EiA
+ EiB

Kl

]T
FT

i (t)Fi(t)
[

EiA
+ EiB

Kl

]

since

FT
iA

(t)FiA
(t) < I

Li(Pl) ≤ [Ai + BiKl]
T

Pl + Pl [Ai + BiKl] + εliPlDiD
T
i Pl

+
1

εli

[

EiA
+ EiB

Kl

]T [

EiA
+ EiB

Kl

]

Ll(Pl) +
1 − αl

αl

Li(Pl) < 0 ⇒ L(Pl) < 0 (30)

By multiplying the inequality by Xl = P−1

l on both sides we get

XlA
T
l + YT

l BT
l + AlXl + BlYl + εllDlD

T
l

+
1

εll

[

ElAXl + ElBYl

]T [

ElAXl + ElBYl

]

+
1 − αl

αl

{

XlA
T
i + YT

l BT
i + AiXl + BiYl + εliDiD

T
i

+
1

εli

[

EiA
Xl + EiB

Yl

]T [

EiA
Xl + EiB

Yl

]

}

< 0

⇒ L(Pl) < 0

Suppose that

XlA
T
l + YT

l BT
l + AlXl + BlYl + εllDlD

T
l

+
1

εll

[

ElAXl ElBYl

]T [

ElAXl ElBYl

]

+ Ml < 0 (31)
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it yields

1 − αl

αl

{

XlA
T
i + YT

l BT
i + AiXl + BiYl + εliDiD

T
i

+
1

εli

[

EiA
Xl + EiB

Yl

]T [

EiA
Xl + EiB

Yl

]

}

≤ Ml

XlA
T
i + YT

l BT
i + AiXl + BiYl + εliDiD

T
i

+
1

εli

[

EiA
Xl + EiB

Yl

]T [

EiA
Xl + EiB

Yl

]

− µlMl ≤ 0 (32)

with
µl =

αl

1 − αl

⇒ αl =
µl

1 + µl

(33)

By applying Schur Complement to (31) and (32) we obtain





Φll + Ml εllDl [EiA
Xl + EiB

Yl]
T

εllD
T
l −εllI 0

ElAXl + ElBYl 0 −εllI



 < 0 (34)





Φli − µlMl εliDi [EiA
Xl + EiB

Yl]
T

εliD
T
i −εliI 0

EiA
Xl + EiB

Yl 0 −εliI



 ≤ 0 (35)

Ri ∈ Rl, i 6= l

The quadratic stability region of the uncertain fuzzy sub-system (11) can be
optimized by the following minimization program :

Minimize µl

subject to Xl > 0,Ml > 0, µl ≥ 0, εll > 0, εli > 0




Φll + Ml εllDl [EiA
Xl + EiB

Yl]
T

εllD
T
l −εllI 0

ElAXl + ElBYl 0 −εllI



 < 0





Φli − µlMl εliDi [EiA
Xl + EiB

Yl]
T

εliD
T
i −εliI 0

EiA
Xl + EiB

Yl 0 −εliI



 ≤ 0

Ri ∈ Rl, i 6= l (36)

with
Φli = XlA

T
i + AiXl + YT

l BT
i + BiYl (37)

Let µ
l

be the solution of this minimization program, then the uncertain fuzzy
subsystem (11) is quadratically stable if :

∀t αl(z(t)) ≥ αl =
µ

l

1 + µ
l

(38)
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Let Ω ⊆ R
n be the state space, we define the subregion Ωl as:

Ωl = {Ω|αl(z(t)) > 0} (39)

and Ωs
l ⊆ Ωl as:

Ωs
l = {Ωl|αl(z(t)) ≥ αl} (40)

Definition 1. We say that the stability covering condition[15] is satisfied if:

r
⋃

i=1

Ωs
l = Ω (41)

Lemma 1. If there exists, at each moment t, at least one integer k ∈ {1, 2, . . . , r}
such that :

αk(z(t)) ≥ αk (42)

then the stability covering condition is fulfilled.

The resolution of the minimization program (36) for the r rules leads to three
possible cases [13] :

– Case 1. Several or all αl = 0, l = 1, 2, . . . , r, the number of regions that
verify the stability covering condition (41) may be less than the number of
rules (rc < r).

– Case 2. The number of necessary subregions to verify the stability covering
condition (41) is the same as the number of rules (rc = r).

– Case 3. The stability covering condition (41) is not fulfilled, the global sys-
tem may be instable.

We define a new state space partition as:

Ωc
l = {Ωl|αl(z(t)) ≥ αc

l }, l ∈ Ic (43)

and
⋃

I∈Ic

Ωc
l = Ω (44)

where Ic ⊆ I = {1, 2, ..., r} is a set containing the indexes of selected subregions
to form the new state space partition and αc

l ≥ αl define the boundary of each
subregion Ωc

l :

∂Ωc
l = {Ωc

l |αl(z(t)) = αc
l }, l ∈ Ic (45)

αc
l , l ∈ Ic are chosen such that the stability covering condition holds and any

adjacents subregions Ωc
i and Ωc

j verify:

Ωc
i ∩ Ωc

j = ∂Ωc
i ∩ ∂Ωc

j (46)

Theorem 2. If there exist symmetric positive definite matrices Pl, Ql and pos-
itive scalars 0 ≤ αc

l < 1, l ∈ Ic such that:
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– The stability covering condition is fulfilled:
⋃

l∈Ic

Ωc
k = Ω (47)

–




Φll + Ml εllDl [ElAXl + ElBYl]
T

εllD
T
l −εllI 0

ElAXl + ElBYl 0 −εllI



 < 0 (48)





Φli − µlMl εliDi [EiA
Xl + EiB

Yl]
T

εliD
T
i −εliI 0

EiA
Xl + EiB

Yl 0 −εliI



 ≤ 0 (49)

Ri ∈ Rl, i 6= l

with:
Xl = P−1

l ,Ml = P−1

l QlP
−1

l (50)

and

αc
l ≥

µ
l

1 + µ
l

(51)

–

Pi ≤ Pj ,

for all transition states x(τ−) ∈ Ωj , x(τ+) ∈ Ωi (52)

then the fuzzy system (2) is globally stable.

Proof. Let the piecewise Lyapunov function candidate be defined by:

V (x(t)) =
∑

l∈Ic

ζi(x(t))xT (t)Pix(t) (53)

with:

ζi(x(t)) =

{

1 x(t) ∈ Ωc
i

0 otherwize
(54)

Let τk, k = 1, . . . , T be the time instants at which the state transit between two
adjacent subregions. If at t = τk the state leaves the subregion Ωc

i and enters
into the subregion Ωc

j then:

x(τ−

k ) ∈ Ωc
i , x(τ+

k ) ∈ Ωc
j (55)

We assume that there is no jump in the states.

x(τ−

k ) = x(τ+

k ) = x(τk), k = 1, . . . , T (56)

At the boundary states the Lyapunov function is defined by:

V (x(τ−

k )) = xT (τk)Pix(τk) (57)

V (x(τ+

k )) = xT (τk)Pjx(τk) (58)
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Since the stability covering condition is verified then :

τ+

k < t < τ−

k+1
, k = 1, . . . , T, ∃i | x(t) ∈ Ωi

⇒ V̇ (x(t)) < 0, τ+

k < t < τ−

k+1
, k = 1, . . . , T (59)

and condition (52) assures that:

V (x(τ+

k )) < V (x(τ−

k )), k = 1, . . . , T (60)

The Lyapunov function candidate is always decreasing and the fuzzy system is
globally stable.

4 Simulation Example

In this example we simulate the control of an uncertain chaotic Lorenz system.
The control objective is to drive its trajectory to the origin. The lorenz equations
are as follows [14]:





ẋ1(t)
ẋ2(t)
ẋ3(t)



 =





−σx1(t) + σx2(t)
rx1(t) − x2(t) − x1(t)x3(t)

x1(t)x2(t) − bx3(t)



 (61)

The nominal values of (σ, r, b) are (10, 28, 8/3) for chaos to emerge. An exact
fuzzy modeling is employed to construct a fuzzy model for the chaotic system,
it utilizes the concept of sector nonlinearity [2]. The system (61) can be written
in state representation as:





ẋ1(t)
ẋ2(t)
ẋ3(t)



 =





−σ σ 0
r −1 −x1(t)
0 x1(t) −b









x1(t)
x2(t)
x3(t)



 (62)

Assume that x1(t) ∈ [M1, M2], then we can write :

x1(t) =
M2 − x1(t)

M2 − M1

M1 +
x1(t) − M1

M2 − M1

M2 (63)

and the the system (62) can written be as:

ẋ(t) = ω1(x1(t))A1x(t) + ω2(x1(t))A2x(t) (64)

with x(t) = [x1(t), x2(t), x3(t)]
T and :

ω1(x1(t)) =
M2 − x1(t)

M2 − M1

, ω2(x1(t)) =
x1(t) − M1

M2 − M1

A1 =





−σ σ 0
r −1 −M1

0 M1 −b



 , A2 =





−σ σ 0
r −1 −M2

0 M2 −b




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By choosing ω1(x1(t)) and ω2(x1(t)) as membership functions, figure 1, the
chaotic system can be exactly represented by the following Takagi-Sugeno fuzzy
model:

Rule R1 : if x1(t) is about M1 Then ẋ(t) = A1x(t)

Rule R2 : if x1(t) is about M2 Then ẋ(t) = A2x(t)

We assume that the parameters (σ, r, b) are uncertain and vary around their

-

6

x1(t)

ω(t)

1.0

0.5

−30 −20 −10 0 10 20 30

PPPPPPPPPPPPPPPPPP

������������������

ω2(t) ω1(t)

K1

K2

Fig. 1. Membership functions

nominal values (σ0, r0, b0) = (10, 28, 8/3) with:

σ = σ0 + ∆σ, r = r0 + ∆r, b = b0 + ∆b, ∆σ = µ(t)σ0,

∆r = µ(t)r0, ∆b = µ(t)b0

We use the uncertain input matrix B:

B = B0 + ∆B (65)

with:
B0 = [1, 0, 0]T , ∆B = µ(t)B0 (66)

and :
|µ(t)| ≤ 0.5 (67)

The uncertain Lorenz chaotic system can be described by the following uncertain
T-S fuzzy system:

R1 : If x1(t) is M1 Then ẋ(t) =(A1 + ∆A1)x(t) + (B1 + ∆B1)u(t)

R2 : If x1(t) is M2 Then ẋ(t) =(A2 + ∆A2)x(t) + (B2 + ∆B2)u(t)

with :

∆A1 = ∆A2 =





−∆σ ∆σ 0
∆r 0 0
0 0 −∆b




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∆A1, ∆A2, ∆B1 et ∆B2 can be written as:

[∆A1 ∆B1] = D1 · F1(t) · [E1A
E1B

] , [∆A2 ∆B2] = D2 ·F2(t) · [E2A
E2B

]

with:

D1 = D2 = 0.5





1 0 0
0 1 0
0 0 1



 , F1(t) = F2(t) = µ′(t)I3×3

E1A
=





−σ0 σ0 0
r0 0 0
0 0 −b0



 , E2A
=





−σ0 σ0 0
r0 0 0
0 0 −b0



 , E1B
= E2B

=
[

1 0 0
]T

and

µ′(t) = 2.0µ(t) ⇒

{

F1(t) ·F
T
1 (t) ≤ I

F2(t) ·F
T
2 (t) ≤ I

The results obtained after the resolution of the minimisation program (36):

– Subsystem 1:

α1 = 0, ε11
= 4.8160, ε12

= 3.5827

P1 =





17.0115 0.3839 0.0262
0.3839 0.3232 0.0017
0.0262 0.0017 0.3156



 , K1 =
[

−102.1530 −12.9435 −0.4785
]

– Subsystem 2:

α2 = 0, ε21
= 4.8160, ε22

= 3.5827

P2 =





17.0115 0.3839 −0.0262
0.3839 0.3232 −0.0017
−0.0262 −0.0017 0.3156



 , K2 =
[

−102.1530 −12.9435 0.4785
]

The boundary of the guaranteed stability subregions are determined by α1 =
α2 = 0, figure 1, which means that Ωs

1 = Ωs
2 = Ω and the Lorenz chaotic

system can be controlled using only one state feedback u(t) = K1x(t) or u(t) =
K2x(t). The controller is able to drive the states to the origin for any initial
conditions such that x1(t) ∈ [M1, M2]. In figures 2- 4, the initial states are

x(0) = [10, 10, 10]T and the simulation time is 40 s.
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Fig. 2. Phase trajectory of the controlled uncertain Lorenz chaotic system

The control input is activated at t = 20 s using the linear state feedback
u(t) = K1x(t). Before the activation of the control the phase trajectory of
the Lorenz system was chaotic. However, after the activation of the control the
phase trajectory is quickly directed to the origin despite the time variation of
the parameters (σ, r, b) of the original Lorenz system.
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Fig. 3. States of the controlled uncertain Lorenz chaotic system
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Fig. 4. Parameter variation of the uncertain Lorenz chaotic system

5 Conclusion

An LMI approach has been proposed to design a switching controller for uncer-
tain T-S fuzzy models. The uncertain fuzzy model is represented as a set of un-
certain linear systems and a local controller is designed such that the quadratic
stability region of the corresponding local subsystem is maximized. This ap-
proach allows the optimization of the number of controllers which may be less
than the number of rules. The stabilization of the uncertain Lorenz system has
been used to demonstrate the effectiveness of this approach.
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