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ABSTRACT 

In the following work, the principle of deformation is investigated using a new parameter called the angular velocity. The 
deformed element of surface is fully defined by this new parameter that is whenever the element of the reference surface 
undergoes a motion the three components of angular velocity define completely this motion. 

 

 

1 INTRODUCTION 
A number of different approaches carrying different points 
of view concerning the deformation and strain measures of 
surfaces have been suggested for the treatment of the 
subject of sells and plates. Basically two of them have to be 
distinguished namely, a derivation based on the general 
three-dimensional measures of strain and deformation, and 
a derivation based on three concept of oriented bodies 
founded by Duhem and adopted later to one and two-
dimensional problems by the brothers Cosserat. 

In a derivation based on the three-dimensional theory, exact 
measures of strain are usually either using deformation 
gradients or using the components of the displacements 
vector, after the manner of Love (1). Naghdi (2) argued 
that, the strains and deformation derived on the basis of the 
deformations gradients are not necessarily convenient 
measures. However, the use of the displacement 
components enables us in the application of boundary value 
problems to express the boundary conditions in terms of 
displacement components. 

In the oriented bodies, on the other hand, the basic 
ingredients for obtaining the Kinematical quantities of the 
deformation are the vector functions r and d, which 
represent respectively the position vector of the surface and 
the single deformable director. These two vectors are 
assumed to be differentiable as many times as requested, 
with respect to t (time) and the surface coordinates  θα 

In the present work, however, the theory which represents a 
particular case of the Cosserat model, in which no director 
is assigned to the materiel points of the surface, is basically 
followed. However, the angular velocity of an element of 
surface is introduced to give Kinematical results which  will 
facilitate the discussion  of the boundary conditions of 
shells. 

 

The deformation of the shell is that of the reference surface, 
just as it is assumed in the statics of shell. Therefore no 
assumption or approximation is made through the following 
work, except the shell being two-dimensional. 

Special results from differential geometry and tensor 
notation are used here without proof. For further details see 
Green  & Zerna (3), Williams (4) and Chebili (5). 

 

2 RATE OF CHANGE OF SURFACE 
QUANTITIES 

A point in the space of figure (1) is defined by the 
following relation  

nrR 3θ+=   (1) 

 

r 

3 0θ =  R 

3.nθ  

 
Figure 1 : position vector of a surface 

 

In (1) r and n depend on the two coordinates (θ1, θ2), and 
the latter is vector of unit magnitude perpendicular to the 
reference surface. 

As we are mainly concerned with a reference surface, then 
we put θ3 = 0. 
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The surface θ3 = 0 will be defined by the position vector 
r(θ1,θ2). The position vector r(θ1,θ2,t), will indicate 
Kinematically the position of the deformed surface. The 
variable t will define the position of the base vectors at any 
time t, during the process of deformation. it is to be noted 
that the surface geometry given in [2] and [3] , in which the 
first and second fundamental forms of the surface and some 
other quantities involving r , n and their derivatives remain 
valid, except that now these functions depend on the 
parameter t characterising time. In the forthcoming work, a 
dot over symbols indicates partial differentiation with 
respect to time. 

Let the vector field v corresponds to the velocity of the 
surface, and denote. 

i i
i ia aν ν ν= =  

.

.
rv r v a vn v a vn
t

β β
β β

∂
= = = + = +

∂
  (2) 

,v vβ
β  and v are respectively, the contravariant, covariant 

and the normal components of the velocity vector V  
The gradients of the velocity vector are its derivatives and 
are given by 

,, , , , ,v r a v a v a v n vnβ β
α α α α β β α α α= = = + + +& & (3) 

Using the formulate of Weingarten and Gauss, equations 
(3) becomes 

, ,a v a v a v b n v n vb aβ β λ β λ λ
α α β βα λ βα α α λ= + Γ + + −& (4) 

With little manipulation, and using the principle of the 
covariant differentiation, we get the rate of change of the 
base vectors written in the following manner   

a v vb a v v b nβ β β
α α α βαα β⎡ ⎤ ⎡ ⎤= − + +⎣ ⎦ ⎣ ⎦&  (5) 

Where the stroke in vβ
α  denote covariant differentiation 

with respect to the surface. 

The base vectors scalar and products continue to hold as the 
surface deforms, i.e 

3. 0a aα =  

Then differentiating with respect to time and using (5) we 
write 

[ ]n v v b aβ α
α β α= − +&  (6) 

Equation (5) and (6) are respectively the rate of change of 
the surface base vectors and the unit normal to the surface. 

The rate of change of the metric tensor will be  

. . , . . ,a a a a a v a a vαβ α β α β α β α β= + = +& & &
 (7) 

2. .a v v vbαβ β α α β αβ= + −&  (8) 

The Kroneccker delta is constant, then 

0a a a aγα γα
ργ ργ+ =& &  (9) 

Equation (9) with (8) together give the rate of change of the 
contravariant metric tensor of the surface as: 

2 .a a a a v v vb a aγρ αγ βρ αγ βρ
αβ β α α αββ

⎡ ⎤= − = − + −⎣ ⎦& & (10) 

Raising and lowering of indices in tensors will be modified 
when differentiation with respect to time is considered 
hence: 

.

.

A a A a A

A a A a A

α αγ αγ
β βγ βγ

α γα γα
β γβ γβ

= +

= +

& &&

& &&
    

Raising
lowering

 (11) 

The rate of change of the determinant (a) will be  

11 22 11 22 12 122 .a a a a a a a= + −& & & &  (12) 

Introducing the values of the rate of change of metric 
tensors from equations (8) into (12), we end up the 
following expressions,  

2 2a aa v vb a v vbαβ α α
α β αβ α α

⎡ ⎤⎡ ⎤= − = −⎣ ⎦ ⎣ ⎦&  (13) 

{ }a a v v b n v vb aγ γλ β β
λ β λ λ β βλ

⎡ ⎤ ⎡ ⎤= + − −⎣ ⎦⎣ ⎦& (14) 

Lastly, the rate of change of an element of area dS is: 

1 21
2

dS ad d a v vb dS
a

α α
α αϑ ϑ ⎡ ⎤= = −⎣ ⎦

& &  (15) 

 

3 RATE OF MEMBRANE STRAIN 
TENSOR 

The surface r when subject to deformation may undergoes 
elongation or contraction in its plane. Differentiation of 
both sides with respect to time of the first fundamental form 
of the surface, gives 

2 s s a α β
αβδ δ δθ δθ=& &  (16) 

Using (8), we write  

2
V V

s s Vbβ α α β α α β
αβ αβδ δ δθ δθ γ δθ δθ

⎡ ⎤+⎢ ⎥= − =⎢ ⎥
⎢ ⎥⎦⎣

&   (17) 

Where 
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2 2
v va

vbβ α α βαβ
αβ βα αβγ γ

⎡ ⎤+⎢ ⎥= = = −⎢ ⎥
⎢ ⎥⎦⎣

&
 (18) 

Equation (18) is the rate of the membrane strain tensor, 
which has three independent components,   

11 12 21 22, andγ γ γ γ=  

Dividing the second equation of (17) by  2sδ  

.s
s a

α β
αβ

λ ρ
λρ

γ δθ δθδ
δ δθ δθ

=
&

 (19) 

Let us imagine three adjacent points A, B and C which lie 
on and move with the surface. We will further imagine that 
the line CA is instantaneously perpendicular to AB and has 
the same length as AB at the same time at which we 
examine the surface. We will now find the rate of change of 
the angle, α, between AB and AC which is equal to π/ 2 at 
the instant we are considering, fig .2. 

 

( )1 1 2 2,B θ δθ θ δθ+ +( )1 2,A θ θ  

α  

n

( )1 1 2 2,C d dθ θ θ θ+ +  

 
Figure 2 

 

From the base vectors scalar rule, we write;  

AC = n x AB 

a d nxa

d a

β ρ
β ρ

β λβ ρ
ρλ

θ δθ

θ ε δθ

=

=
 (20) 

And the angle, α, between these two lines is given as: 

cos
a d

a a d d

α β
αβ

λ υ η ψ
λυ ηψ

δθ θ
α

δθ δθ θ θ
=

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

 (21) 

In differentiating (21) with respect to time αδθ  and d βθ  
are taken as constants since the points are convected, that is 
move with the surface. Thus since a dα β

αβδθ θ  is 
instantaneously equal to zero, 

( )
2 u

u

a
a

λβ ρ α
αβ ρλ

λ
λ

γ ε δθ δθα
δθ δθ

•

− =  (22) 

Using (18) and (20), equation (22) becomes 

( )
2

a d

a a d d

α β
αβ

λ υ η ψ
λυ ηψ

δθ θα

δθ δθ θ θ

•

− =
⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

&
 (23) 

Equations (19) and (23) have the same structure as the 
equations which represent the normal and twist curvatures. 
They are the rates of direct strain as shear strains 
respectively, they both depend on the tensor αβγ  in the 
same way as the curvature and twist depend on the second 
order tensor bαβ . 

 

4 MEMBRANE STRAIN TENSOR 
By analogy to the rate of the membrane strain tensor, which 
is found to be one half the rate of change of the metric 
tensor, the membrane strain tensor will be given by  

1
2

G a Aαβ αβ αβ⎡ ⎤= −⎣ ⎦  (24) 

Where aαβ is the deformed metric tensor (final state of the 
deformed surface at some fixed time) which is function of 

αθ and t. where as Aαβ is the value of the metric tensor in 
some reference configuration (undeformed metric tensor) 
which is independent of  t. Also, it is to be noted that  

2
a

G αβ
αβ αβγ= =

&
&       (25) 

 

5 THE CONCEPT OF ANGULAR 
VELOCITY   

The deformation of surface induces not only stretches but 
also rotations, and as we used velocities of instead of 
simple displacement, let us introduce the concept of angular 
velocities.  

From (18) we have 

2
v v

vb β α α β
αβ αβγ

+
= − +   (26) 

Substituting the above quality in the second equation of (5) 
we get the following expression for the derivative of the 
velocity 

, .
v v

v a a v v b nβ α α ββ β β
α αβ α β αγ

−⎡ ⎤ ⎡ ⎤
= + + +⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
(27) 
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We next introduce a new scalar quantity based on the 
derivatives of the velocity i.e the velocity gradient v,α 

. ,
.

2
a vρα
ρ αε

Ω = −  (28) 

Substituting the value of v, α from (5) into the above 
expression we get  

2

a v vb a v v b nρα β β
ρ β α αβ α β αε ⎡ ⎤⎡ ⎤⎡ ⎤− + +⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦Ω = −  (29) 

With bαβ = bβα , then (29) becomes : 

.
2

vρα
ρ α

ε
Ω = −  (30) 

Also we introduce a second pair of quantities, Ωβ defined as  

Ωβ= - εαβn . v, α.  (31) 

Again substituting the value of v,α from (5) into (31), we 
write  

]v v bβ αβ ρ
α ρ αε ⎡Ω = − +⎣  (32) 

Equation (30) and (32) will be written as follows: 

2

v vβ α α β
αβε

⎡ ⎤−⎣ ⎦Ω =  (33) 

v b vβ β
αβ β α αε ⎡ ⎤Ω = − +⎣ ⎦  (34) 

Then,  

,v a a nβ β β
α αβ αβ αβγ ε ε= +Ω −Ω  (35) 

( ) ( )a nxa a xa a a n xaβ β β β
αβ α α β αβ β αγ γ ⎡ ⎤= +Ω −Ω = + Ω +Ω⎣ ⎦  

 (36) 

The quantity in bracket represents a space vector   , .i eΩ    

Ω Ω Ω= +β
βa n.  (37) 

Differentiation of (37) with respect to α gives  

Ω Ω Ω Ω Ω, , , , .,α
β

α β
β

β α α α= + + +a a n n   (38) 

We make use know of the two formulate of Gauss and 
Weingarten. We note then, the two following special results 
for future convenience 

Ω Ω Ω, .α
β β

α α
βa b= −  (39) 

Ω Ω Ω, . .α
β

βα αn b= +  (40) 

 

Equations (36) and (37) together form  

,v a xaβ
α αβ αγ= +Ω  (41) 

Where the right hand side of the velocity gradient is 
composed from two parts.γαβ aβ represents the rate of 
membrane strain and xaαΩ , due to the vector Ω  which 
represents an angular velocity of the surface, fig. (5.1) 

 

Ω

a α
α δθ( )1 2,θ θ

v 

 
Figure 3 

 
The meaning of equation (41) and particularly the term of 
the angular velocity can be better explained by the 
following arguments. Let us imagine the location of two 
adjacent points A and B on the surface with coordinates 

αθ and α αθ δθ+ . The line AB between these points is 
perpendicular to the surface normal n and as the surface 
deforms both lines AB rotate but remain perpendicular to 
each other. The rate of change of the unit normal was 
expressed in (6) on the basis of  

[ ]. 0.n aα
• =  

Then with the use of (34), it becomes 

.n aβ α
αβε= Ω&  (42) 

As the normal retains its original length after deformation, 
then n&  must lie in the plane of the surface. Then the 
component of the angular velocity of the pair of lines, AB 
and n, in the plane of the surface is given by 

.nxn nxa aβ α β
αβ βε= Ω = Ω&  

The normal component of the angular velocity of the pair 
lines, as and n, i.e. their rotation about the normal, is given 
by  

( ) ( ) ( ), . , .
.

a x v n a xv n
a a

α β α β
α β α β

λ γ λ γ
λγ λγ

δθ δθ δθ δθ
δθ δθ δθ δθ

⎡ ⎤⎣ ⎦ =  
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Using the base vectors product rule, (28) and (33), we write 
the above expression after having simplified it as: 

a
a

µρ α β
αµ βρ

λ γ
λγ

ε γ δθ δθ
δθ δθ

= Ω+  

Which is the normal component of angular velocity plus the 
rate of shear strain given in equation (23). 

Differentiation of (41) with respect to λ and then use of the 
principle of covariant differentiation, gives 

,, , , .v a b n x a xaβ β
αλ αβ λ αβ λ λ α α λγ γ= + +Ω +Ω  (43) 

Now interchanging α and λ in the above equation and 
subtracting, we write. 

, 0.a b n xaαλ β β
αβ λ αβ λ λ αε γ γ⎡ ⎤+ +Ω =⎣ ⎦  (44) 

By replacing the value of Ω  from (37) into (44), we obtain  
 ( ),, , , 0.a b n a a n n xaαλ β β β β

αβ λ αβ λ λ β β λ λ λ αε γ γ⎡ ⎤+ + Ω +Ω +Ω +Ω =⎣ ⎦   
 (45) 

Again, by using the formulae of Gauss and Weingarten, we 
write  

 ( )
{ }

0

0

a b n a b n n b a xa

a b a b n b n

αλ β β β β β
αβ λ αβ λ λ β βλ λ λ β α

αλ γ β γ β β β
αγ λ βλ λ αγ λ λ βα αβ λ

ε γ γ

ε γ ε ε γ

⎡ ⎤= + + Ω +Ω +Ω −Ω =⎣ ⎦

⎡ ⎤ ⎡ ⎤= + Ω +Ω + Ω −Ω + =⎣ ⎦ ⎣ ⎦    
 (46) 

Where    , .β β ρ β
λ λ ρλΩ = Ω +Ω Γ                

Scalar multiplication of (46) by aγ and respectively gives  

0bαλ β
αγ λ βγ γε γ +Ω +Ω =  (47) 

0b bλ λ αλ β
λ λ αβ λε γ⎡ ⎤Ω −Ω + =⎣ ⎦  (48) 

The above two equations (47), (48), become when 
comparing them to (39) and (40)  

, .n αλ
γ αγ λε γΩ = −  (49) 

, .a bγ αλ β
γ αβ λε γΩ =  (50) 

 

6 THE RATE OF BENDING TENSOR  
Consider the rate of bending tensor, expressed as the 
following second order surface tensor  

, .B aαβ αγ β
γε= Ω  (51) 

Using (39), equation (51) becomes   

.bαβ αγ β β
γ γβ ε ⎡ ⎤= Ω −Ω⎣ ⎦  (52) 

Now if we multiply, (51) by αβε  then, use (50), we take 

, . , .a aαβ αγ β β
αβ αβ γ βε β ε ε= Ω = Ω  (53) 

bαβ αλ β
αβ αβ λε β ε γ=  (54) 

Therefore, 

B Bαβ βα≠  (55) 
We proceed to evaluate the rate of change of the 
coefficients of the second fundamental form of the surface  

,, . . .b v n a nαλ αλ α λ= +& &   

After substituting (42) and (43) into equation (55), we write  

.b b Bβ βρ
αλ αβ λ ρα βλγ ε ε= +&  (56) 

.b a b a bα αβ αβ
λ λβ λβ= +& &&  (57) 

Substituting (10) and (56) into (57), then  

.b b B aα γα γρ αβ
λ γλ ρλ γβγ ε ε= − +&  (58) 

The rate of change of the mean and the Gaussian curvatures 
are: 

[ .
2 2

b B abH
ρα γρ αβα

ρα ρα γβα γ ε ε− +
= =
&

&  (59) 

K b b b b b Bλρ β λβ ρ λρ
βλ ρ ρ λργ ⎡ ⎤= − +⎣ ⎦

&  (60) 

 

6.1 The compatibility equations  

The compatibility equations is the relations between the 
deformation of the reference surface and the overall 
displacements. The deformation of the reference surface 
has been expressed by the bending tensor Bλρ and the 
membrane strain tensor γβλ. These tensors are also functions 
of displacements and rotations of the surface which 
involves the first and second fundamental forms of the 
surface that are the related by gauss and codazzi equations. 
Thus we also expect to find a relations between the 
membrane and bending tensors to ensure the continuity of 
deformation of the surface.  

As the Gaussian curvature is a bending invariant, therefore 
any change in its final expression is due to the change of 
the lengths and angles corresponding to the intrinsic 
geometry of the surface.  

Gauss’s theorem permits writing the expression of Gaussian 
curvature in terms of the coefficients of the first 
fundamental form only thus, from equation (60) we expect 
to be able to find a relation between the rate of bending 
tensor and the rate of membrane strain tensor. 
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Then, substituting the value of βαβ from (52) into the second 
term of equation (60), using (30) and (32), we write. 

2

v
b B b v v b bα

θα
θλρ λγ αρ θ ρ

λρ λρ α θ α γ γ

ε
ε ε

⎧ ⎫⎡ ⎤= − + −⎨ ⎬⎣ ⎦⎩ ⎭
(61) 

Taking the second covariant differentiation of (18) and 
applying the codazzi equations, we write  

2
v v

b vα β β ααυ λβ αυ λβ αυ λβ
αβ λυ λυ αβ λυε ε γ ε ε ε ε

⎡ ⎤+
= −⎢ ⎥

⎢ ⎥⎣ ⎦
   

  (62) 

Subtracting (62) from (61) and simplifying, we get 

 

2
v

b B b a v b b
ϑα

ϑ αλρ αυ λβ υ γη αρ ϑ ρ
λρ αβ λυ ρ υη ϑ α γ γ

ε
ε ε γ ε ε

⎧ ⎫⎪ ⎪⎡ ⎤− =− − −⎨ ⎬⎣ ⎦⎪ ⎪⎩ ⎭   

 

2
v vα β β ααυ λβ

λυε ε
⎡ ⎤+
⎢ ⎥
⎢ ⎥⎣ ⎦  

Having in mind the following relations, 

v v a k

v v a k

λβ ρλ
α βλ ρ λα

αυ ρυ
β αυ ρ υβ

ε ε

ε ε

= −

=
 (64) 

And  

 . . .v v R v R v a Kv a Kvρ ρ ρξ ρξ
β αλυ β αυλ βλυ ρ α αλυ β ρ ξβ λυ ρ α ξα λυ β ρε ε ε ε− = + = +

   
  (65) 

Then, (63) becomes  

0b Bλρ αυ λβ
λρ αβ λυε ε γ− =  (66) 

Finally (6.10) takes the following form  

.K b b b bλρ β λβ ρ αυ λβ
βλ ρ ρ αβ λυγ ε ε γ⎡ ⎤= − +⎣ ⎦

&  (67) 

If we take the covariant differentiation of equation (52) we 
write  

 ] .B b b bαβ αλ β β αλ β αλ β αλ β
α λ λ λα α λ λ αα

ε ε ε ε⎡= Ω −Ω = Ω − Ω − Ω⎣   
  (68) 

Using (40) and (49), we get  

, .B b n a bαβ αλ β αρ βλ
α λ α ρα λ λα ρε γ γ⎡ ⎤= − Ω = −⎣ ⎦  (69) 

Thus, we write finally the set of compatibility equations 
from (54), (66) and (69) as follows  

B b

b B

B a b

αβ αλ β
αβ αβ λ

λρ αυ λβ
λρ αβ λυ

αβ αρ βλ
α ρα λ λα ρ

ε ε γ

ε ε γ

γ γ

=

=

⎡ ⎤= −⎣ ⎦

 (70) 

This set of equation comprises 4 equations with 7 
unknowns, 4 components of bending strains 3 components 
of membrane strains equations (47) and (48) are also 
compatibility equations and βΩ  can be eliminated to form 
a single equation in the normal component of the angular 
velocity Ω. The procedure starts first by eliminating the 
tangential component of the angular velocity from (47). 
multiplication of (47) by  ,bξη ργ

ξρε ε  

.b k kεη ργ αλ η β η
ερ αγ λ γ βε ε ε γ δ⎡ ⎤+Ω = − Ω = − Ω⎣ ⎦

      (71) 

Also    

b b kξη ργ η
ξρ βγ βε ε δ=  (72) 

Hence, equation (61) becomes 

.b k kξη ογ αλ η β η
ξρ αγ λ γ βε ε ε γ δ
⎡ ⎤

+Ω = − Ω = − Ω⎢ ⎥
⎣ ⎦

(73) 

 

For surfaces, where K is different from zero i.e surface 
which are not developable, we write the following  

[ ], .b
k

αλ
αγ λ γη εη ρη

η ερ

ε γ
ε ε

η

⎡ ⎤+Ω
Ω = − ⎢ ⎥

⎢ ⎥⎣ ⎦
(74) 

Using the codazzi relations, equation (74) becomes  

.b
αη

αα η γλ ελ ργ
λ ερ

ε γ
ε ε

λ

⎡ ⎤⎡ ⎤+Ω⎣ ⎦⎢ ⎥Ω = −
⎢ ⎥
⎢ ⎥⎣ ⎦

 (75) 

Substituting (75) into (48), we obtain a second order partial 
differential equation in the normal component of the 
angular velocity  

[ ]
0b b b

k

αη
αγ η γελ ργ λ αλ β

ερ λ αβ λ

ε γ
ε ε ε γ

λ

⎡ ⎤+Ω
⎢ ⎥ +Ω + =
⎢ ⎥
⎣ ⎦

 

 (76) 

The above equation is applicable provided K (the gaussian 
curvature) is different from zero. For developable surfaces a 
distinct procedure has to be followed. The solution of such 
equation depends strongly on the form of the surface of the 
shell, in particular on the sing of gaussian curvature. 

 

(63) 
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7 CONCLUSION 
The use of the angular velocity vector in the derivation of 
the shell’s equations permits, to express all the deformed 
quantities on the shell surface, to write the deformed state 
in a single equation and hence discuss possible solutions 
using appropriate boundary conditions. It also leads to 
particular states of stress as the membrane theory and 
inextensional theory of deformation by simply omitting 
quantities like γαβ from the general equations.   
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