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ABSTRACT 

In a previous work, we have introduced the generalized differential quadratic method (called GDQ) to handle the Schrödinger 
equation. This paper deals with a particular situation in which an application to the non polynomial potential is considered. The 
results are compared with some numerical examples for the same potential of interest.  
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RESUME 

Dans un récent travail nous avons introduit la méthode quadratique différentielle généralisée pour manipuler l’équation de 
Schrödinger. Cet article traite une situation particulière dans laquelle une application à un potentiel non polynomial est 
considérée. Les résultats sont confrontés avec des exemples numériques pour le même potentiel d’intérêt.  
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1 INTRODUCTION  
Several important physical problems require solving the 
Schrödinger equation for spherical symmetric potential to 
determine the eigenenergies and the eigenfunctions. It is 
known that for very limited potentials, Schrödinger 
equation is exactly solvable.  

In fact, many approximate schemas and numerical 
calculations have appeared in recent years to calculate the 
eigenspectra of the Schrödinger equation for numerous 
potential functions [1-8]. The scope of this area remains so 
far a more active field of numerical schemas.  

From general point of view, in the absence of exact 
analytical solutions, the recourse to approximation 
techniques to evaluate the spectra of energy is a primary 
need. Most common approximation methods like phase-
integral method, 1/N expansion, perturbational theory, and 
variational method are often being used for this purpose.  

In a recent paper [3], we have formulated a new numerical 
approach which is based on the generalized differential 
quadratic method, and applied to the radial Schrödinger 
equation. This method studies the situation in which the 
unknown function is identified as the Lagrange polynomial 
and the interpolating points of the Tchebychev type are 
used. 

2 BRIEF REVIEW OF GENERALIZED 
DIFFERENTIAL QUADRATIC METHOD 

A brief description of generalized differential quadratic 
method is summarized as follows: the radial Schrödinger 
equation is written as 
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potential where l  denotes the angular momentum quantum 
number, and the radial function )(, rR ln  is linked to 

)(, rS ln  by the relation  

)()( ,, rrRrS lnln =  (2) 

We can construct the solution )(, rS ln  by making the 
following transformation  
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)()()( xxxSxS as φρ=  (3) 

where we have now dropped the “n,l” subscript for 
simplicity. 

When we plug (3) into (1), it can be verified that the 
function )(xφ  must satisfy the equation  

0)( =xhφ  (4) 

where the differential operator h  is defined by  
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So, the term [ ])(xhφ  can be expressed as a constant 
coefficient eigenfunction combination at all discrete points 
in the domain of the variable x  as  
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where { } Njx j ≤≤1,  , are the sequences of the x -
variable. 

we can extract ikβ  as  

)2()1()0( )()(2)( ikiikiikiik xFxAxB αααβ −−=  (7) 

the superscripts 0, 1 and 2 in parentheses do not indicate 
powers, but merely identify the derivatives of the 
Lagrange’s polynomial with which the quantities ikα are 
associated.  
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Now one can accurately solve the following matrix 
equation and therefore the original problem (1)  

[ ] 0=φβ  (9) 

 

3 NON - POLYNOMIAL POTENTIAL 
It has been widely handled in atomic and optical physics [5, 
6, 7, 9, 10, 13, 14], and has the following form 
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where A , B and  k are parameters with.  
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Consider the radial part of Schrödinger equation for the 
above potential under consideration and apply the previous 
developments to it together with [3] we obtain, 
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where we have replaced S(x) by 
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Alternately, we may identify all quantities as  
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It is not difficult to check that, from these expressions, the 
operator h  keeps invariant the space of polynomials at 
most of degree N≤ .   

 

4 RESULTS AND DISCUSSION 
For comparison, we have reported in table 1, the first three 
energy levels obtained by the (GDQ) method, the B-spline 
method and the exact method by the introduction of an 
ansatz for the state-function, similar to the power series 
expansion method [5]. We observe essentially that these 
results are very close with those of ref. [5]. As an 
illustration, the figure 1 shows graphically the three wave-
function solutions R(x) as a function of x for the case n°3 of 
table 1. We can underline from these shapes, a good 
performance is obtained and the behavior of the 
wavefunction is very well outlined and preserved for the 
three states of interest. 

We have introduced the GDQ method in order to determine 
the bound-state eigenvalues and the associated 
eigenfunctions for a specific non polynomial potential. 

In order to enlarge the field of applications of this method 
would be also interesting to examine the case where the 
solution cannot be handled analytically with the usual 
techniques. This subject is in preparation and will be done 
in a sequel of this paper.  
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Figure 1 : Representation of bound states R(x) for the case n° 3 
(Table 1). Solid line: ground state, dash line: first excited state, 

and dot-dash line: second excited state. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 1 : Eigenenergies E0, E1, and  E2 obtained for the ground, first, and second excited states respectively.  
                Comparison with exact result [5] and B-spline results [11] 

E0 E1 E2 
 step 

(0,5) 
step 
(0,2) step (0,5) step (0,2) step 

(0,5) 
step 
(0,2) 

Case α  b β  
exact 

(GDQ) B-spline 
exact 

(GDQ) B-spline 
exact 

(GDQ) B-spline 

1 -3/2 1 1 -4,5 -4,5001 -4,439 -3,472 -3,5715 -3,172 -2,611 -2,6098 -1,1397 

2 -3 1 2 -5 -4,9997 -4,9667 -2,566 -2,6098 -2,455 -0,062 -0.0617 0,1853 

3 -4 1 2 -7 -7 -6,998 -4,295 -4,295 -4,281 -1,547 -1,5473 -1,4241 

4 -2 1 2 -3 -1 1,125 -2,997 -1,012 1,154 -2,984 -0,764 2,3635 

5 -4 1 4 0 5,247 10,716 0,0001 4,25 10,781 -0,001 5,2411 10,73 
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