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Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie
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Chapter 1

Introduction

The problem of fault diagnosis of artifact systems has received a great attention during

the last two decades due to its importance in terms of safety and efficiency of operation.

Numerous complementary approaches have been proposed, based on the level of detail chosen

for the model of the system to be diagnosed and the kinds of faults that need to be diagnosed.

The starting point of these approaches is to model the structure and/or behavior of the

system to be diagnosed. When an abnormal behavior of the system is observed, the diagnosis

consists to tracking back on the model for explaining such a misbehavior. Accordingly,

a traditional diagnostic system can be viewed as a centralized system having a model of

the whole system to be diagnosed and receiving all observation signalizations. There are,

however, several reasons why in some applications such a single agent approach may be

inappropriate. First of all, if the system is physically distributed and large, e.g. modern

telecommunication networks, there may be not enough time to compute a diagnosis centrally

and to communicate all observations. Secondly, if the structure of the system is dynamic,

e.g. AGV systems driving in a platoon, it may change too fast to maintain an accurate global

model of the system over time. Finally, sometimes a central model is simply undesirable.

For example, if the system is distributed over different legal entities, one entity does not

wish other entities to have a detailed model of its part of the system. For such systems, a

distributed approach of multiple diagnostic agents might offer a solution.

The model (knowledge) of a system can be distributed over the agents in two principally
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different ways1 (cf. [79]):

• spatially distributed : knowledge of system behavior is distributed over the agents ac-

cording to the spatial distribution of the system’s components, and

• semantically distributed : knowledge of system behavior is distributed over the agents

according to the type of knowledge, e.g. a separate model of the electrical and of the

thermodynamical behavior of the system.

For both types of distributions, a multiagent system can establish the same global diag-

noses as a single diagnostic agent having the combined knowledge of all agents [76].

We focalize ourselves in this thesis to the problem of spatially distributed causal model-

based diagnosis. We consider the system to be diagnosed as a collection of interacting

subsystems in which when a fault occurs in one subsystem, it may generate some fault

indications (i.e. symptoms) and may propagate to the neighborhood. The diagnostic system

itself is defined as a set of diagnostic agents each of which is associated with a specific

subsystem. In particular, each agent has a local model of the assigned subsystem and

may receive observations generated only by elements of this subsystem. The local model

describes the causal behavior of the subsystem as well as its interactions within adjacent ones.

When agents observe an aberrant behavior, each one is charged to explain the received local

observation on the basis of its local model. As a result, each diagnostic agent calculates a set

of local diagnoses. In causal models, the diagnoses are to be given in terms of initial states

that explain the set of observed symptoms using the cause-effect relationships described

in the model. Such initial states represent the initial perturbations leading the system to

behave abnormally.

Since each agent has a limited knowledge about the whole system to be diagnosed, it may

be possible that local diagnoses of different agents are inconsistent when they are considered

altogether. In order to ensure the required consistency and to guarantee that such local

diagnoses recover completely global ones that would be obtained by a centralized agent

having a global view of the whole system, agents should communicate among them to reject

inconsistent diagnoses.

1Combinations are, of course, also possible.

2



We use in this thesis a particular class of Petri nets called “Behavioral Petri Nets” (BPNs)

which has been proposed in [2] to represent the causal behavior of a system for centralized

diagnosis purposes. In particular, the causal behavior of each subsystem is described by

a local BPN model and interactions among subsystems are captured through tokens that

may pass via common bordered places between BPNs. Diagnostic reasoning scheme may

be accomplished by exploiting classical analysis techniques of Petri nets. More particularly,

diagnosis can be implemented locally by a backward analysis (BW-Analysis) of the corre-

sponding reachability graph to explain the received local observation. The BW-Analysis

exploits two different types of tokens (normal and inhibitor tokens) aimed at modeling the

truth or falsity of the condition associated with a marked place. This allows as to point

out inconsistencies when looking for possible explanation of a given marking in a BPN. As

a result, each agent obtains a set of local initial markings from which diagnoses have to be

given. Then, to achieve the consistency with the local diagnoses of all other agents, each one

requests from its neighbors the required marking of its bordered places for each computed

diagnosis. At this step, agents receiving such a request will construct their reachability

graphs in a forward fashion to check if the requested marking of bordered places is reachable

from at least one of their computed initial markings. If so, the local diagnosis from which

the exchanged message has been generated is considered globally consistent; otherwise, it is

not supported by diagnoses of the neighborhood and consequently it must be discarded.

Accordingly, such reasoning suffers from the so-called state space explosion problem even

for small net models. This is due to the utilization of reachability graphs as a basis on which

analysis is accomplished especially in the consistency checking phase where several graphs

may be constructed by each agent. In order to face such a problem, we may exploit algebraic

analysis techniques, known also as invariant analysis, which are shown useful in [4, 67, 68]

for improving complexity in centralized diagnostic reasoning based on Petri nets versus

reachability graph analysis. In particular, we concentrate in our work on the distributed

analysis of P-invariants of the net models which are generated in an off-line manner. More

specifically, we require that each diagnostic agent utilizes the set of minimal supports of its

P-invariants to implement local preliminary computation as well as to check the required

consistency of its local diagnoses with those of the other agents. Thus, the set of minimal
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supports of P-invariants may be considered as a pre-compiled structure of the system model

on which diagnosis is implemented. The idea of using a compiled structure of the system

model to the on-line diagnosis is borrowed from Sampath et al. [77] in their work on discrete

event systems (DES) diagnosis. They propose to generate from a finite state automaton

describing the system model another automaton termed the Diagnoser which encompasses

more information about the system state (i.e. information about the presence or absence of

faults). The Diagnoser is used to both test the diagnosability properties of the system and

perform on-line monitoring of the system for the purpose of diagnosis which necessitates a

synchronization between the Diagnoser and the system model. Thus, the invariant based

diagnosis is similar to the Diagnoser approach regarding the off-line pre-compilation of the

system model to face the complexity problem during on-line diagnosis. However, several

features make our proposals different from that of [77] and others, namely we use causal

models in which the observations to be explained are modeled as partial states of the system

to be diagnosed and not as observable events of the Diagnoser approach. Similarly, the faults

in terms of which diagnoses have to be given are considered as initial states which have no

causes in the causal model and not as unobservable transitions adopted in the context of DES

diagnosis. Another difference is that we do not require that such a compiled structure will

be synchronized with the system model which is one of the key features of the approach of

[77] and all its extensions [38, 43, 51]. It is to be noted however that in this thesis we do not

treat the question of diagnosability analysis and we concentrate only on how to implement

diagnosis by distributed analysis of interacting BPNs.

This dissertation is structured in six chapters divided into two parts: the state of the art

and contributions. The state of the art part presents background on model-based diagnosis

according to logical points of view as well as Petri nets ones. The contribution part contains

our proposals for diagnosing distributed systems by analyzing interacting BPNs.

We begin in the following chapter by formulating the diagnostic problem. The chapter

concentrates on the model-based view of diagnosis. It is devoted to synthesize the different

works that are made in the field. The attention is focused firstly on logical formalizations

and on declarative characterizations; and secondly on procedural aspects that characterize

different diagnostic engines.
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Chapter 3 surveys diagnosis on Petri nets models. It starts with a brief outline of basic

notions related to Petri nets as a model for concurrent systems, then it discusses the problem

of DES diagnosis as well as DES diagnostic methods that have prevailed in the literature.

The chapter concludes with a classification of DES diagnosis implementations according to

topological point of view.

The first chapter of the contributions part (chapter 4) attempts to formalize the notion of

distributed model-based diagnosis. It defines the diagnostic system as a multi-agent system

that reflects the same network structure of the system to be diagnosed. In particular, the

chapter characterizes the diagnosis of each agent in the system as well as the distribution of

the process of diagnosis over the different agents of the diagnostic system.

In chapter 5, we show how model-based diagnosis of distributed system can be accom-

plished by BPN analysis based on reachability graphs. We start by formalizing the system

model as a set of place bordered BPNs each of which model the causal behavior of one

subsystem, then we show how the BW analysis of each BPN implements local diagnosis

of the associated subsystem based on its causal model. Once local diagnoses are obtained,

global consistency between them will be ensured through a cooperation protocol among the

diagnostic agents. It is to be noted that a preliminary version of such a distributed technique

has been published as a conference paper [6].

Based on the drawbacks of the distributed BW analysis (object of chapter 5), chapter 6

proposes the definition of the invariant based technique as an alternative to implement causal

model-based diagnosis of distributed systems. In particular, after characterizing diagnostic

solutions by the minimal supports of the nets P-invariants the chapter discusses algorithmi-

cally local calculations made by each agent as well as how to exploit such supports during

consistency checking phase. The invariant based diagnosis technique has been published in

[7].

Chapter 7 considers the problem of relationships that may exist between symptoms. This

requires in one hand the expression of such relationships in the system model; and on the

other hand the adaptation of the analysis techniques to handle these relations. More par-

ticularly, the chapter proposes a novel set of backward firing rules to account for precedence

relationships among symptom signalizations. Besides such an adaptation, the chapter con-
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siders also the case where some of the signaled symptoms have been lost or suppressed. If

so, it may be possible that the given diagnostic problem is inconsistent; and the retained so-

lution consists to restore the required consistency to the given problem by slightly changing

the given observation so that the problem admits an interpretation model. Some parts of

chapter 7 contents have been occurred in [5].

Finally, we conclude the thesis by summarizing what we consider as the main contribu-

tions of our work as well as their limitations. Perspective works are identified on the basis

of such limitations.
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Part I

State of the art
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Chapter 2

Model-based diagnosis

2.1 Introduction

Advances in modern design and manufacturing technology have enabled us to build systems

of high complexity. When these systems fail to function correctly, they need to be repaired.

The repair process pass necessarily through a diagnosis step for locating those subsystems

that are responsible for the observed malfunction.

Since the complexity of diagnosis increases with increasing design complexity, the efficient

automation of this task becomes essential and gives rise to an important area of computer

science. Especially in the area of artificial intelligence, big efforts have been spent in the

attempt to define approaches leading to the automatic diagnosis of broken systems. Such

efforts have resulted in the proposition of two fundamentally different families of approaches

to diagnostic reasoning [48]. One is based on “heuristic-based”expert systems, the other is

based on “model-based”ones.

In the first, heuristic-based approaches, one attempts to codify diagnostic rules of thumb

and past experience of human diagnosticians considered experts in the involved domain.

Representatives of these approaches are Expert Systems of the First Generation, with the

blood infection diagnosis system MYCIN [80] as the famous instance. Here, diagnostic skills

are captured by sets of more or less direct associations between observable symptoms and

diseases as their potential causes. Being grounded in experience gained in previous cases,

diagnosis was treated as collecting empirical evidence for the presence of certain malfunctions
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rather than a strict deduction process. The necessity to state diagnostic knowledge in terms

of explicit symptom-fault associations inherently limited the scope of applicability. Only

the identification of previously encountered faults was possible based on previously observed

symptoms of systems that are well experienced to allow for the enumeration of the relevant

associations. Because these associations tend to be quite specific for narrow types of systems,

building such systems was a matter of time-consuming single-piece production [31, 48].

All this turned out to be too restrictive when confronted with requirements in diagnosis

of technical systems. Industrial application of automated diagnosis has to cover the detec-

tion and localization of new kinds of faults, exhibited by newly designed and constructed

systems and the interpretation of symptoms never observed before. The diagnosis of such

systems stems from knowledge about the physical and technological principles underlying

the (intended or deviating) functioning of these systems which allows one to systematically

deduce fault hypotheses from available observations even if the system is novel.

The key idea of the second family of approaches to diagnosis, often called diagnosis

from the first principles or model-based diagnosis, is to explicitly represent this knowledge

as a model of the system structure and/or behavior of its constituents and to organize

diagnosis as an inference process based on this model and the observed behavior. This view

created the demand for and the possibility of developing a rigorous theoretical foundation

for automated diagnosis. In particular, this comprises a formal characterization of the goal

and of the inferences that achieve the goal, given model-based predictions and the actual

observations of the system’s behavior. Early introduced, model-based diagnostic systems,

referred to as Second Generation Expert Systems such as those proposed in [27, 28, 74],

provide declarative system-independent representation languages and system-independent

diagnostic procedures. As a consequence of this independence, they are capable, using

hierarchical representations [58], of diagnosing complex systems in any domain. Moreover,

they are more robust than heuristic-based systems, because they can deal with unexpected

cases not covered by heuristic rules. In addition, their knowledge bases are less expensive to

create and flexible in regard to design changes since they are a straightforward representation

of designs. They do not require rule verification, which can be serious problem in writing

heuristic rules. However, the drawback of model-based diagnostic systems is that they require
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more complex computation, and hence they are generally not efficient as heuristic-based ones

which can guide efficient diagnosis for known cases.

Different attempts to combine heuristic-based and model-based approaches have been

made by some researchers [20, 33, 48]. The searched goal in these works consists to get benefit

of the advantages of both approaches, namely the robustness of model-based reasoning in

one hand and the simplicity of computation and efficiency characterizing heuristic-based one

at the other hand.

The overall goal of this chapter is to survey the foundations of model-based diagnosis. In

a little more than twenty years, work on automated diagnosis based on models has managed

both to establish a strong theoretical basis and to create a technology mature enough to

tackle real industrial applications. This does not only allow us to build application systems

with formally stated preconditions and provable capabilities and properties. It also provides

challenges for theoretical work and hard criteria for evaluating its results and helps to focus

it. In fact, model-based diagnosis becomes really one of the rare success stories in artificial

intelligence [31].

We begin, in the following section by presenting a formulation of the diagnostic problem

within a model-based reasoning view. It introduces some notations that will be used to

present, in section 2.3, the main diagnostic approaches that have prevailed in the literature,

namely: consistency-based and abductive approaches to diagnosis. A unified approach which

integrates these two approaches is outlined. Details concerning the content of the model of

the system to be diagnosed are presented in section 2.4. Section 2.5 and 2.6 give the logical

characterization of the diagnostic problem and of the set of solutions to such a problem.

Procedural aspects of the inference mechanisms proposed in different diagnostic systems are

synthesized in section 2.7. Finally, section 2.8 summarizes the main concepts presented in

this chapter.

2.2 Problem formulation

Starting with the logical framework given in [74], we make use, in this section, of the first-

order logic with equality as a language of knowledge representation.
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2.2.1 System model

Unlike the heuristic-based approaches to diagnosis, model-based approaches are proposed

to diagnose broken systems independently of the application domain. That is why, a gen-

eral domain-independent concept of a system description is indispensable. The following

definition of a system description introduced by Reiter in [74] has been considered by most

model-based diagnostic frameworks. It is designed to formalize as abstractly as possible the

concept of a component, and the concept of a collection of interacting components.

Definition 1 A system description SD for a system S is a pair (BM , COMPS), where:

1. BM , the behavioral model, is a set of first-order formulas representing the knowledge

about S;

2. COMPS, the system components, is a finite set of constants.

In all intended applications, the behavioral model will mention a distinguished unary

predicate AB(.), interpreted to mean “abnormal”. The argument of such a predicate neces-

sarily belongs to COMPS. However, as mentioned in [74] it is possible to introduce several

kinds of AB(.) predicates and represent more general component properties.

The use of AB predicate for describing a system is borrowed from McCarty [55] who

exploits such a predicate in conjunction with his formalization of circumscription to account

for various patterns of nonmonotonic common-sense reasoning.

2.2.2 Observation

Real-world diagnostic settings involve observations (or measurements). Without observa-

tions, we have no way of determining whether something is wrong and hence whether a

diagnosis is called for.

Definition 2 (from [74]) An observation OBS for a system S is a finite set of first-order

formulas defining I, the inputs, and O, the outputs of S.

Notice that distinguished inputs and outputs are features of many man-made artifacts,

such as electronic devices. In other applications, however, the observation OBS may not
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define a set of inputs. It specifies only a set of findings as observable elements of the system

to be diagnosed.

It should be also noted that OBS does not specify all outputs of the system S, nor

that SD is a complete description (the behavior of each component is not assumed to be

completely specified). The only assumption in most diagnostic frameworks is that the given

knowledge is consistent. In other words, (BM ∪ OBS) admits a particular model, the so-

called intended interpretation [32], which represents the actual problem universe.

2.2.3 Diagnoses

Suppose that we have determined that a system S = (BM, {c1, ..., cn}) is faulty, by which

we mean informally that we have made an observation OBS which conflicts with the way

the system is meant to behave if all its components behave correctly.

The repair of S will pass necessarily through a diagnosis step for explaining the observed

malfunction. It consists to find a subset of components – say, ∆ ⊆ COMPS – which, when

assumed to be failed, will explain why the system exhibits a misbehavior. Thus, a diagnosis

can be defined intuitively as a conjunction that certain of the components are faulty and the

rest normal. Now the main problem is to specify which components we conjuncture to be

faulty in order to provide an explanation for the observed malfunction.

To reach such specification, a model-based diagnosis is guided by the interaction be-

tween observations and predictions conducted separately from the system model (Figure

2-1). Thus, it relies solely on the system model BM , its components COMPS, and the

observation OBS. In particular, it does not use any heuristic information about the system

failures gained by the experience, for example, of the kind “when the system exhibits such

and such aberrant behavior, then in 90% of these cases, such and such components have

failed”.

 System 

Model 

Actual 

System  

Observed 

Behavior 

Expected 

Behavior 

Discrepancy 

Figure 2-1: Diagnosis as the interaction of observation and expectation.
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2.2.4 Notations

When computing diagnoses, we are interested in discovering formulas where AB is the only

predicate symbol which occurs. Therefore, let LAB be a first-order language which contains

all the formulas which we can built with the AB predicate symbol alone.

Notation 1 A formula (respec. clause, respec. conjunction, respec. literal) from the lan-

guage LAB is referred to as an ab-formula (respec. ab-clause, respec. ab-conjunction, respec.

ab-literal).

Any diagnosis will be represented as an ab-conjunction which does not contain two occur-

rences of the same component. In particular, a diagnosis is a satisfiable ab-conjunction. Note

that there exists only a finite number of ab-formulas (up to logical equivalence). Moreover,

we adopt the following notation:

Notation 2

• The set of components occurring in an ab-conjunction ∆ is denoted by C(∆);

• The set of positive literals in ∆ is denoted by ∆+;

• The set of negative literals in ∆ is denoted by ∆−.

The dual concept of prime implicant and prime implicate in first-order logic play a central

role in most formalizations of model-based diagnosis. Let us present their definitions [29, 32].

Definition 3 Let Ic be an existentially quantified conjunction of literals, then Ic is an im-

plicant of a closed formula F if Ic ` F . Let PIc be an implicant of a closed formula F ,

then PIc is a prime implicant of F if PIc ` F and, for any purely existential conjunction of

literals PI ′c, if PI ′c ` F and PIc ` PI ′c then PI ′c ` PIc.

Definition 4 Let Id be a universally quantified disjunction of literals, then Id is an implicate

of a closed formula F if F ` Id. Let PId be an implicate of a closed formula F , then PId is

a prime implicate of F if F ` PId and, for any purely universal disjunction of literals PI ′d,

if F ` PI ′d and PI ′d ` PId then PId ` PI ′d.
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2.3 Approaches to model-based diagnosis

The ultimate objective of the diagnostic reasoning is to determine the state of each compo-

nent of the system to be diagnosed. Formally, we have from [27, 28, 29, 74]:

Definition 5 The actual diagnosis, ∆, is an ab-conjunction such that:

• ∆ is complete: the state AB(c) or ¬AB(c) of each component c is given;

• ∆ holds in the intended interpretation.

Unfortunately, due to the incompleteness of our knowledge about the system, it is not

always possible to compute ∆ in a purely deductive way. By deduction only a set of partial

diagnoses, ∆j1 , ...,∆jn , is usually generated. The term partial means that the state of all

components is not determined.

Since the actual diagnosis is complete and holds in the intended interpretation1, then ∆

implies any ab-formula that holds in that interpretation. In particular, among the sets of

partial diagnoses, there is at least one partial diagnosis ∆ji that can be extended to account

for the state of all components. Formally, we have: ∆ ` ∆ji .

Thus, computing diagnoses turns out to be:

1. selecting some partial diagnoses, and

2. extending them to set the state of a maximum number of components with a maximal

confidence.

Once again, this contributes to support the thesis that diagnostic reasoning is by nature

hypothetico-deductive [32]. This point of view has leads researchers to define some preference

criteria for characterizing the hypotheses that should be assumed when extending partial

diagnoses.

Different formalizations of this notion of diagnostic reasoning have been proposed in the

literature. The first attempts to such formalizations have generally considered two extremes

of the diagnosis problem:

1In fact, ∆ can be regarded as the ab-part of the intended interpretation.
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1. There is knowledge about how components are structured and work normally. There

is no knowledge as to how malfunctions occur and manifest themselves. Diagnosis

consists of isolating deviations from normal behavior. This has normally been the

preserve of an approach termed consistency-based diagnosis [23, 27, 74].

2. We have just information on faults (diseases) and their symptoms, and want to ac-

count for abnormal observations. This has traditionally been the preserve of a second

approach called abduction-based diagnosis [14, 16, 21, 66].

In the following, we attempt to provide the principles of each of these approaches with

an emphasize on their preference criteria, then we present a unified definition that will be

used throughout this thesis.

2.3.1 Consistency-based diagnosis

Since it is proposed originally to deal with models of the correct behavior, consistency-

based diagnosis [23, 27, 30, 74] is oriented towards diagnosing systems with the following

requirement: there always exist characteristic manifestations to be observed when the system

works normally. The components of systems such as electronic devices meet this feature

since the expected outputs of each component can be expressed as a function of its inputs.

In this approach, the behavioral model is constructed according to the following methodology

[31]:

1. for each component c of COMPS that could be faulty, we have the hypothesis ¬AB(c);

2. we write as facts implications that state what follows from assumptions of normality.

Suppose that S = (BM,COMPS) is a system under diagnosis and let O(I) be the

expected outputs of S. This can be formalized by:

BM ∪ I ∪ {¬AB(c) | c ∈ COMPS} ` O(I)

Suppose that there is a discrepancy between O, the observed outputs, and O(I). Then,

one can conclude that the system S is behaving incorrectly. Indeed, assume that:
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BM ∪ I ∪ {¬AB(c) | c ∈ COMPS} ` (O(I)⇒ ¬O)

Then, necessarily we have:

BM ∪OBS ∪ {¬AB(c) | c ∈ COMPS} is inconsistent.

As it has noted in [18, 27, 32, 74], the objective of consistency-based diagnosis is to

explain this inconsistency which stems from the assumption {¬AB(c) | c ∈ COMPS}, i.e.

that all components are behaving correctly.

Consequently, ∆ such that C(∆−) = COMPS is not the actual diagnosis since any

presumed diagnosis must be consistent with the given knowledge. A possible diagnosis ∆ for

S must be an ab-conjunction such that BM ∪OBS ∪ {∆} is consistent [27, 29, 31, 32, 74].

Note that such diagnosis contributes to explain why the observed outputs differ from the

expected ones when assuming that all components are normal.

Preference criteria

In this paragraph, we present the two preference criteria used in consistency-based diagnosis

for refining the set of diagnoses.

A. Maximizing the number of described components

Among the possible diagnoses, the preferred ones are those which set the state of the maximal

number of components. Hence, they are exactly the possible ones.

As we have mentioned, in most cases the incompleteness of the knowledge prevents us

from obtaining the complete possible diagnoses in a purely deductive way. Hence, obtaining

a complete possible diagnosis ∆ generally requires to make additional hypotheses. Formally,

if ∆ is a complete possible diagnosis, then according to [74] we have:

BM ∪OBS ∪ {¬AB(ci) | ci ∈ C(∆−)} ` ∧cj∈C(∆+)AB(cj)

Generally, there are several complete possible diagnoses. Hence, more selection is needed

for refining those diagnoses. This calls for the following second criterion.
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B. Minimizing the set of abnormal components

Among the complete possible diagnoses, the preferred ones are those including the minimal

sets of abnormal components. More precisely, if ∆1 and ∆2 are two complete possible

diagnoses and C(∆+
1 ) is a subset of C(∆+

2 ) then ∆1 will be preferred to ∆2.

Thus, if ∆ is a complete possible diagnosis, then ∆ is minimal if among all complete

diagnoses, C(∆+) is minimal w.r.t set inclusion.

In fact, the minimality criterion is nothing but it is the formal expression of the parsimony

principle proposed in [74]. Probability theory argues in favor of this criterion when for each

component the probability of failure is lower than the probability of correct behavior.

Characterizing and computing diagnoses

Our objective in this paragraph is to show how to determine all diagnoses for a malfunc-

tioning system and to present a logical characterization of complete possible and minimal

diagnoses. There is a direct generate-and-test mechanism based upon the consistency re-

quired in this approach: systematically generate subsets ∆ of COMPS, generating ∆s with

minimal cardinality first, and test the consistency of

BM ∪OBS ∪ {¬AB(c) | c ∈ COMPS −∆}

As it has been noted in most papers of model-based diagnosis, the previous problem with

this mechanism is that it is too inefficient for systems with large number of components.

Instead, Reiter in [74] proposes a method based upon a suitable formalization of the concept

of a conflict, a concept due originally to de Kleer [27].

In [29, 31], a conflict for a diagnostic problem is defined as an ab-clause entailed by

BM ∪OBS. A positive conflict is a conflict all of whose literals are positive. In other words,

a positive conflict is a subset C ⊂ COMPS which cannot all be functioning correctly; i.e.

BM ∪ OBS ∪ {¬AB(c) | c ∈ C} is inconsistent. More precisely, a conflict is any ab-clause

which is an implicate of BM ∪OBS.

To achieve the set of diagnoses for a broken system, three fundamental subtasks will be

explored [24]:
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• generating hypotheses by reasoning from a symptom to a positive conflict (i.e. to a

collection of components whose misbehavior may plausibly have caused that symptom);

• testing each hypothesis to see whether it can account for all observations of system

behavior; then

• discriminating among those that survive testing.

Thus, the concept of conflicts provide an intermediate step in determining the diagnoses

and are central to most diagnostic frameworks.

We should now present the following characterization which has been introduced in

[29, 32]. It defines the set of complete possible and minimal diagnoses in terms of prime

implicants.

Characterization 1 Let DD+ be the set of all positive conflicts of S, the system to be

diagnosed. The diagnosis ∆ such that C(∆+) = {cj1 , cj2 , ..., cjm} is a complete possible and

minimal diagnosis iff AB(cj1) ∧ AB(cj2) ∧ · · · ∧ AB(cjm) is a prime implicant of DD + .

In [29], it has been shown that the minimal complete and possible diagnoses cannot be

considered as a basis for describing the complete possible diagnoses. It has also been proved

that changing the status of a component from normal to abnormal in a complete possible

diagnosis does not necessarily result in a possible diagnosis.

Adequacy of preference criteria

In the consistency-based approach any computed diagnosis does not exactly explain the

observed behavior of the system. In fact the observations, uniformly embedded in the rest of

the knowledge, only contribute to prove the inconsistency of the system when assuming that

all components are normal. In other words, the observed actual behavior is not significant.

What is important here is that this observed behavior differs from the expected one. That is

why the consistency-based approach leads sometimes to undesirable results as it is illustrated

in the domain of digital circuits by [32].
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2.3.2 Abductive diagnosis

Abductive diagnosis [14, 16, 21, 66] is proposed originally to deal with fault behavioral

models (i.e. models of the faulty behaviors of the system to be diagnosed). It views the

world in terms of causes and effects. The methodology followed in this approach is [66]:

1. The possible hypotheses are the possible causes (faults, diseases) parametrized by the

values which they depend;

2. We axiomatize how symptoms follow from causes. These axioms should be facts if the

symptom is always present given the cause and be possible hypotheses otherwise.

Because the correct behavior of the system to be diagnosed is not modeled, its expected

outputs cannot be predicted. Hence, it is not possible to detect any discrepancy between

the observed outputs and the expected ones. Unlike, the consistency-based approach, in the

abductive approach BM ∪OBS ∪ {¬AB(c)} remains consistent.

Since there is no inconsistency to explain when the expected normal manifestations are

unavailable, diagnostic reasoning is confined to giving some account for some observed man-

ifestations.

Let CO be a combination of outputs to be explained. The abductive diagnosis for CO

is defined to be an ab-conjunction ∆ such that:

• BM ∪ I ∪∆ ` CO and

• BM ∪ I ∪∆ is consistent; where CO ⊆ O.

Let us present the two preference criteria which are used in this approach to refine the

set of diagnoses.

Preference criteria

A. Maximizing the explained outputs

In the abduction-based approach to diagnosis, the selection of preferred diagnoses appeals to

the confirmation principle [17]: the preferred diagnoses are those which explain a maximal set
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of manifestations. However, not all manifestations are equally significant and an interesting

problem is the selection of a pertinent subset of manifestations to be explained.

Clearly, the confidence we have in some abductive diagnosis increases with the number

of explained outputs.

B. Minimizing the abnormality

Among the abductive diagnoses for a given combination of outputs CO, the preferred ones

are those including a minimum number of abnormal components. In other words, let ∆ be

an abductive diagnosis for CO, then ∆ is minimal if among all abductive diagnoses for CO,

C(∆) is minimal w.r.t set inclusion.

This time, the probability theory gives evidence for this criterion. Indeed, consider ∆

and ∆′ two abductive diagnoses for CO such that ∆ implies ∆′. By this criterion, we prefer

the minimal one ∆′ which is more probable than ∆.

Characterizing and computing diagnoses

In [29, 31], a characterization of the abductive view for diagnosis is provided. It relates also

the abductive diagnoses to the notion of prime implicants.

Characterization 2 The abductive diagnoses for CO are exactly the positive implicants of

(BM ∧ I) =⇒ CO which are consistent with BM ∪ I. The minimal abductive diagnoses for

CO are exactly the positive ab-prime implicants of (BM ∧ I) =⇒ CO which are consistent

with BM ∪ I.

Clearly, any abductive diagnosis is an extension of at least one minimal abductive diag-

nosis. Nevertheless, not every extension of a minimal abductive diagnosis is an abductive

one since this operation can lead to an inconsistency with BM ∪ I.

Adequacy of preference criteria

The main drawback of the abduction-based diagnostic approach, as it is defined above, is

the following: the actual diagnosis is not necessarily an extension of a minimal abductive

diagnosis. More precisely, any abductive diagnosis is not necessarily a possible one. As in
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[32], considering the definition of an abductive diagnosis ∆, one can conclude that BM ∪

I ∪∆ ∪ CO is consistent.

Nevertheless, any abductive diagnosis is necessarily a possible when CO = O. In par-

ticular, every complete abductive diagnosis for O is a complete possible diagnosis [14, 17].

Unfortunately, as it is shown by [32], an abductive diagnosis for O does not always exist.

As one can easily gather from these presentations, consistency-based and abductive di-

agnosis differ in the representation about normality and faults and in the meaning they give

to “explain”. Typically, according to the consistency-based view, a component is abnor-

mal if its observed behavior deviates from the expected one; while in the abductive view,

a component is abnormal if it manifests as it is described in the behavioral model (in fact,

BM will describe according to the abductive approach different faulty behavioral modes.

In the discussion above we have assumed, for reasons of simplicity, that only one faulty

behavioral mode, noted AB, is modeled). The difference of explanation becomes obvious, for

the consistency-based diagnosis, a solution explains why the system exhibits a malfunction;

while in the abductive one, a solution attempts to explain why the system reacts as it is

observed.

2.3.3 The integration approach

In these views of model-based diagnosis, the link between consistency-based reasoning and

models of the correct behavior and the one between abductive reasoning and faulty models

seem to be a natural choice: if one has a theory (the fault model) that can predict the

observations, then the notion of covering is the “right”notion of explanation; while if the

observations are only the “negation”of the predictions of the theory (the model of the correct

behavior), then consistency is the “right”notion of explanation.

Over the last two decades, some attempts to break such privileged links have been made

[17, 28, 32] and the advantages of combining fault models and models of the correct behavior

have been recognized by some researchers [17, 18, 66]. The approaches to such a combination

can be classified into two main groups [18]:

• extensions of consistency-based diagnosis to deal with fault models [28, 30, 31];
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• extensions of abductive diagnosis to deal with models of the correct behavior [16, 66].

In almost all these approaches the integration is very homogeneous: the correct and

faulty behaviors of a system have been represented in a uniform way and very few changes

to the original reasoning schemes have been made.

Consequently, Console and Torasso in [18] analyze the two former approaches of diagnosis

at their logical definitions. They tried to propose a unified framework based on the integra-

tion of consistency-based and abductive reasoning rather than extending one of them. In

particular, they single out the existence of a spectrum of alternatives in the logical definition

of diagnosis by reformulating each of the two notions of diagnostic problem as an abduction

one with consistency constraints. The alternatives in such a spectrum range from purely

consistency-based approaches (such as the one proposed by de Kleer and Williams [27]) to

purely abductive approaches (such as the one proposed by Poole [66]).

Since this spectrum appears as a general framework, having the two approaches presented

above as particular cases, we attempt in the following to describe with more details the

principle concepts that characterize this framework. In our proposals presented in the second

part, we make adaptation of these concepts for diagnosing multiple failures in distributed

systems.

2.4 What’s in BM ?

According to the unified approach outlined above, the set of normal and faulty behaviors of

the system to be diagnosed should be described in a uniform way using a suitable language.

In this approach, each component of COMPS is characterized by a set of behavioral modes.

Such characterization was introduced by Holtzblatt [41] in his generalization of the GDE sys-

tem (General Diagnostic Engine) [27] and used by de Kleer and Williams in their SHERLOCK’s

system [28].

In SHERLOCK, the behavior of the system to be diagnosed S can be represented as the

consequences of the behavioral modes of its constituents. In particular, each component

ci is associated with a set of behavioral modes {correct, faulti1 , ..., faultin} (where correct

corresponds to the correct behavior of the component and each one of the values faultij
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corresponds to a distinguished faulty behavior of the component). Notice that one of such

faulty modes could be the “unknown mode”with which no model is associated (see [28]).

The union of the sets of behavioral modes of all components of S are denoted by the set

of abducible symbols. The reason for such a name will be clear in the following. As we

shall see, in fact the fundamental problem of diagnosis is that of determining, given a set

of observations, the behavioral modes of the components of S “explaining”the observations.

This means that the abducible symbols are the basic elements of such “explanations”. Given

an abducible symbol α, the fact that a component c is in mode α is represented by the atom

α(c).

Given the behavioral modes of the components COMPS of S and the consequences

of such modes, one can build the system description SD which specifies the structure and

behavior of S as discussed in [28]. The structure of S specifies the components and their

interconnections. Components are described as being in one of the set of its distinct modes,

where each mode captures a physical manifestation of the component. The behavior of each

component is characterized by describing its behavior in each of its distinct modes.

In [18], the behavioral model BM is formed by a set of Horn clauses in which the set of

predicate symbols are partitioned into the two subclasses of the abducible and non-abducible

symbols. The abducible symbols do not appear in the head of any clause in BM . This cor-

responds to assuming that the behavioral modes of the components are “primitive”concepts

(in the sense that they cannot be defined in terms of other concepts).

As a simple example, consider the problem of modeling the behavior of a digital circuit

containing and-gates [40]. Let us assume that we distinguish three different behavioral modes

of an and-gate, i.e. that its set of behavioral modes is {correct, stuck at 0, stuck at 1}; the

behavioral model of the circuit will contains the formulae:

and gate(X) ∧ correct(X) ∧ inp1(X,X1) ∧ inp2(X,X2) −→ out(X, fAND(X1, X2)

and gate(X) ∧ stuck at 0(X) −→ out(X, 0)

and gate(X) ∧ stuck at 1(X) −→ out(X, 1)

where fAND(X1, X2) is the logical AND of X1 and X2. Notice that {correct, stuck at 0,

stuck at 1} is the set of abducible symbols in such a model and those conditions which

appear only in the body of a clause in BM and which are not abducibles (such as, for
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example, inp1 and inp2) may correspond to contextual conditions; we shall return more

precisely to this point in the next section.

In the discussion above, BM is assumed to describe a model of the structure and behavior

of the system to be diagnosed. However, all the discussion can be applied also to the case

where the structure is not modeled at all and BM is a “causal model”of the behavior of the

system under diagnosis. Causal models have been widely adopted in model-based diagnosis

since the work of Weiss et al. in CASENET [89] and Patil in ABEL [61].

In causal models, the behavior of a system is characterized by a set of states (in fact,

partial states, that is, entities that partially describe a situation in which the modeled system

can be at a given time); each of which is in turn characterized by a finite set of admissible

values, and relations among these states (i.e. cause-effect transformations among instances

of states). For diagnostic purposes, [16] indicates that it is useful to distinguish among at

least three types of states in the model:

• Initial states : they correspond to states which have no causes in the model. In the

case of an abnormal behavioral model, they represent the initial perturbations leading

the system to a given malfunction; and thus, they define the set of abducible symbols;

• Internal states : corresponding to the consequences of initial states. They are attached

to system components that are not susceptible to make a part of a diagnosis, because

they can be explained by the elements of initial states;

• Manifestations : corresponding to observable or measurable states and thus represent-

ing all expected symptoms in the case of faulty models.

In this view, performing a diagnosis means to explain a set of manifestations in terms of

initial states, using the cause-effect relationships described in the model.

2.5 Characterizing diagnostic problems

In [18], the authors analyze in detail the notion of diagnostic problem. They argue that it is

characterized by different types of data which must be treated in very different way in the

diagnostic process.
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In particular, a major distinction that they introduce is the one between contextual

data and observations (such distinction has been originally proposed in [73] where the term

“setting factor”is used to denote contextual data).

Contextual data are a set of parameters providing (contextual) information about the

specific case under examination; typical examples are data such as the sex or the age of

a patient (in medical diagnosis) or the “inputs”to a device (in other applications). Such

data are very important since they allow the diagnostician to make predictions about the

behavior of the system to be diagnosed (for example, the fact that a patient is a male allows

a physician to exclude certain pathologies and to focus on other pathologies [18]). Typically,

contextual data are known when a case is analyzed (or they can be easily gathered) and in

some cases they are necessary to characterize the case itself. The important point is that

contextual data need not to be accounted for by a diagnosis, but they are rather used to

predict the behavior of the system to be diagnosed.

Data corresponding to observations, on the other hand, play a very different role (typical

examples of observations are clinical findings or laboratory tests in a medical diagnosis, the

outputs of a device in other applications). Observations are data that must be accounted

for by a diagnosis. Now, let us present their definition of a diagnostic problem.

Definition 6 A diagnostic problem DP is a triple DP = 〈〈BM,COMPS〉, Ctx,OBS〉,

where:

• 〈BM,COMPS〉 is the system description of the system to be diagnosed;

• Ctx is a set of ground atoms denoting the set of contextual data;

• OBS is a set of ground atoms denoting the set of observations to be explained.

The meaning of each atom f(a) in Ctx or in OBS is the following: in the specific problem

to be solved the value a has been observed for the parameter f.

In this definition, different requirements are imposed by the authors. First, they impose

the constraint that Ctx ∪ OBS can contain at most one instance of each symbol (i.e. an

observable parameter cannot have more than one value). This corresponds to abstracting

from time; i.e. to assuming that diagnosis is performed in a static environment (which is a

25



common assumption in most formalizations of model-based diagnosis, except some attempts

to introduce the notion of time in diagnosis such as the works of [15, 89]). Second, they

assume that all pieces of contextual information are known a priori (i.e. they are part of the

data). Last, they impose, as it can be remarked from the definition, that contextual data

and observations are represented by two distinguished sets of atoms.

2.6 Solving diagnostic problems

As we noticed previously, diagnosis can be characterized as the process of generating “ex-

planations”for a set of observations in a given context. However, the term “explanation”has

been used in the first model-based diagnostic systems with at least two different meanings

(i.e. two different logical notions of “explanation”).

• explanation as consistency (weak notion of explanation); in such a case a diagnosis

explains an observation m if it does not contradict m (i.e. if it does not support ¬m);

• explanation as covering (strong notion of explanation); in such a case a diagnosis

explains an observation m if it directly support m.

In most of the formalizations of diagnosis proposed in the literature, one of the two al-

ternatives has been chosen. However, because the goal of the above characterization is of

generalizing the other definitions of model-based diagnostic problem, an abstract definition

which embeds the possibility of choosing among the two notions of explanation is indispens-

able. The following definition proposed in [18] is based on the reformulation of a diagnostic

problem as an abduction problem with consistency constraints. Such reformulation contains

a critical step: choosing which observations must be covered by a diagnosis. It is such a con-

troversial choice that distinguishes among different definitions of diagnosis (of “explanation”)

and allows us to single out a spectrum of definitions.

Definition 7 Given a diagnostic problem DP = 〈〈BM,COMPS〉, Ctx,OBS〉, an abduc-

tion problem AP corresponding to DP is a triple AP = 〈〈BM,COMPS〉, Ctx, 〈Ψ+,Ψ−〉〉,

where:
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• Ψ+ ⊆ OBS

• Ψ− = {¬f(x) | f(y) ∈ OBS, for each admissible value x of f other than y}

Ψ+ is the set of observation atoms that must be covered by a solution; in principle,

any subset of OBS can be chosen. Ψ− on the other hand, is a set of negative literals and

characterizes the set of values which conflict with the observation.

As we shall see, Ψ− is used for consistency checking (Ψ− is a set of denials and is

interpreted as a set of consistency constraints that the solutions to the abduction problem

must satisfy). Notice that Ψ− may be an infinite set (in case at least one of the observable

parameters can assume an infinite set of values).

The previous definitions take the assumption that the observation OBS characterizing a

diagnostic problem is a set of atoms. This corresponds to assuming that definite knowledge

about the observation is available. In some cases, however, it may be interesting to have

the possibility of providing incomplete (partial) descriptions of the data characterizing a

diagnostic problem. One way to specify incomplete knowledge about data was exposed in

[16]. It consists to provide “negative”information about the observable parameters. Let us

consider a negative information ¬f(a): this can be regarded as a way to express that no

definite knowledge about the actual value of the parameter f is available, but certainly f

does not assume the value a (while any other value might a plausible).

In the following, we shall concentrate on the case where all the observation atoms are

positive (definite); however, all the discussion can be easily generalized also to the case where

“negative observations”are allowed. The definition of an abduction problem associated with

a diagnostic problem can in fact be easily extended with positive (definite) and negative

observations. In such a case, the atoms in Ψ+ are a subset of the positive observations; while

Ψ− is the set of negative literals obtained as the union of the negative observations and the

values that conflict with the positive ones.

We can now move to characterize the solutions to an abduction problem. The central task

of abductive (diagnostic) reasoning is to identify those behavioral modes of the components

whose consequences cover Ψ+ (i.e. which predict Ψ+) consistently with Ψ−. More specifically,

the space of hypotheses that has to be analyzed in order to determine the explanations for an
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abduction problem AP is the space of the assignments of behavioral modes to the components

COMPS of the system. In particular, we have the following definition introduced in [28].

Definition 8 Given a system description 〈BM,COMPS〉 and given the set of abducible

symbols in BM , an assignment W for COMPS is a set of ground abducible atoms such

that for each c ∈ COMPS, W contains exactly one element of the form α(c) (where α is an

abducible symbol).

Notice that this corresponds to assuming that the behavioral modes of each component

are mutually exclusive (which seems to be a reasonable assumption).

In particular, we are interested in those assignments that cover Ψ+ consistently with Ψ−.

Definition 9 Given an abduction problem AP = 〈〈BM,COMPS〉, Ctx, 〈Ψ+,Ψ−〉〉, an as-

signment W for COMPS is an explanation for AP iff

1. W covers Ψ+, that is for each m ∈ Ψ+ we have that BM ∪ Ctx ∪W ` m

2. W is consistent with Ψ−, that is BM ∪ Ctx ∪W ∪ Ψ− is consistent. In other words,

for each ¬m ∈ Ψ− we have that BM ∪ Ctx ∪W 0 m

Some remarks are worthwhile on such a definition. First of all, notice that consistency

with Ψ− corresponds to not predicting any value for an observable parameter different from

the actual one (i.e. conflicting with the observed one). The notion of consistency used

in this definition, therefore, is the same used in consistency-based definitions of diagnosis

[23, 24, 27, 74]. Thus, this definition combines the two notions of explanation discussed

previously: in order to provide a solution to an abduction problem (and thus to a diagnostic

problem), an assignment must be consistent with all the observable parameters and must

cover a selected group of parameters.

A second remark concerns the role played by contextual data. Such data are used to pre-

dict the expected behavior of the system and thus they play a role in consistency checking;

however, they do not have to be covered. One way to enforce between contextual data and

observations was proposed by Poole [66], who started from a simple example: given a system

with input i and output o, how should one represent such data? Poole argued that there are

28



two alternative logical representations (namely i ∧ o and i −→ o) and that different formal-

izations of diagnosis require different representations (more specifically, abductive diagnosis

requires the representation of observation as an implication i −→ o; while consistency-based

diagnosis requires the representation as a conjunction i ∧ o). Actually, such different repre-

sentations can be regarded as a technical way to enforce the different roles played by the

different types of data discussed above and captured, at the knowledge level, by the previous

definition.

In general, given an abduction problem AP , there is more than one explanation for

AP. Since one of the goals of diagnosis is to determine an explanation which minimizes

abnormality, we can compare explanations by considering the sets of components which are

assumed to be faulty in each explanation. More precisely, we can use the partition of each

explanation into two subsets [29]:

• correct(W ) = {correct(c) | correct(c) ∈ W} where correct is the linguistic term

denoting the correct mode of the component c;

• faulty(W ) = W − correct(W )

and then compare two explanations W1 and W2 by comparing the sets faulty(W1) and

faulty(W2). We say that an explanation W is a minimal explanation if and only if the set

faulty(W ) is minimal w.r.t set inclusion among the sets faulty(Wi).

The same partition can be used to determine the solutions to a diagnostic problem: given

a diagnostic problem DP , its associated abduction problem AP and an explanation W for

AP , the set faulty(W ) is a solution to the diagnostic problem DP . This means that a

solution to DP specifies which are the faulty components of the modeled system and which

are the fault modes of these components that “explain”the observation.

2.7 Computational aspects

Up to here, the attention is focused essentially on logical formalizations and on declarative

characterizations of the diagnostic problem and of the set of solutions to such a problem.

The computational aspects of model-based diagnosis have not been treated in the above
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description. In order to address more directly procedural aspects of physical system diagno-

sis, this section is devoted to synthesize the different inference mechanisms presented in the

literature.

Early model-based diagnostic systems [23, 27, 28] are characterized by complicated in-

ference strategies used to generate the set of solutions for a given problem. They make use

of mechanisms similar to the ATMS one proposed in [27]. The ATMS2 principle consists

to propagate a set of assumptions on the given model of the system being diagnosed. In

particular, since the diagnosis task is to identify the set of minimal conflicts that will be

used in hypothesis generation step, the propagation of assumptions will identify all minimal

conflicts of the given problem. In fact, a conflict can be identified by selecting some assump-

tions, referred to as an environment, and testing, according to the implemented notion of

explanation, if they are inconsistent with the observation or they do not entail the obser-

vation. If they are, then the environment is a conflict. This requires an inference strategy

C(OBS,ENV ) which, given the observation OBS made on the physical system and the

environment ENV , determines whether the combination is consistent (respec. presents an

entailment) [27]. All the first implemented systems use this principle with some adaptations

concerning efficiency and simplicity.

In order to beat this complexity problem, more attention has been paid in the nineteen

decade of last century to procedural aspects of physical system diagnosis. In particular,

[19, 59, 65] propose a novel approach to the problem in which the diagnostic process is

defined within a framework based on a Petri net model of the causal behavior of the system

to be diagnosed. Indeed, the possibility of modeling causal relationships for describing the

evolution of a system has been recognized as fundamental in order to guide the diagnostic

system to explain a given set of symptoms [57].

The basic goal of the mentioned approach was to redefine the logical notion of a diagnostic

problem in terms of reachability in the Petri net model. The key idea of these works consists

of translating a set of definite clauses forming a logic program into a Petri net model, and

using existing Petri net analysis methods to handle the diagnostic inference algebraically.

More specifically, Portinale in [67] proposes an approach to the problem of performing diag-

2ATMS for Assumption based Truth Maintenance System.
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nostic reasoning on a Petri net model by exploiting the notion of T-invariants. Its work is

inspired from an idea presented in [59, 65] where T-invariant analysis is applied to the answer

extraction problem in logic programming. Furthermore, in other papers [68, 69], P-invariant

analysis and reachability graph analysis known in the Petri net theory have been applied

in the same goal. In this way, a problem traditionally tackled using symbolic manipulation

techniques can be partially reformulated in algebraic terms.

A performance evaluation between different implementations of the algebraic solutions in

one hand and one based on classical inference mechanism has been exposed in [68]. It uses the

running time consumed by each implementation as a comparison criterion. The evaluation

shows that invariant approaches require short running time compared to the classical one to

generate the same set of hypotheses. Furthermore, approaches based on reachability graph

analysis of the Petri net model necessitate more considerable time to solve the diagnostic

problem; but they are less complex than classical approaches, in addition to be suitable for

parallel implementations [2, 69]. The evaluation concludes with the remark that Petri nets

present challenging in the improvement of diagnostic reasoning process.

2.8 Conclusion

We began this chapter by formulating the diagnostic problem within a model-based reasoning

view. The prevailed approaches to solve such a problem have been discussed. The discussion

is focused on a comparative study of these approaches according to their preference criteria

as well as their logical definitions.

An approach to the integration of consistency-based and abductive reasoning is studied

in detail. Such study shows that a diagnostic problem is characterized by different types of

data and that these types of data must be treated in a very different way in order to achieve

the set of diagnoses. The chapter concludes with a discussion on the inference mechanisms

used in different systems. Systems that make use of Petri nets formalism are shown to be

less complex than those based on symbolic manipulations.

However, despite the considerable progress in developing a sound theoretical basis for

automated diagnosis, there are a number of open issues that require more efforts. Some
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generalizations seem possible to cover similar tasks, but there also exist some limitations

that appear hard to overcome. In particular, systems with a behavior changing over time

pose a number of hard problems. Besides the basis problem of modeling, which necessi-

tates the handling of intermittent faults, we face a new dimension of complexity. Since the

proposed approaches can diagnose only behavioral faults, the diagnosis of structural defects

that establish new interaction paths between components is considered as an open problem.
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Chapter 3

Diagnosis within Petri nets

3.1 Introduction

Petri nets (PN) are one of the most popular models of concurrent systems, used by both

theoreticians and practitioners. They are a graphical and mathematical tool of parallel

systems, in the same way that the finite automatons are a graphical and mathematical

tool of sequential systems. PNs have been used to study systems that can be modeled

at some level of abstraction as discrete-event dynamic systems. A Discrete Event System

(DES), in contrast to Continuous Systems (CS) modeled as algebro-differential equations

or qualitative abstractions, is defined as a dynamic system that evolves in accordance with

abrupt occurrences, at possibly unknown, irregular intervals, of physical events [13].

The model-based diagnosis of DES has received a lot of consideration over the last decade

being applied in various technological areas. Besides the “naturally discrete” systems, the

quantization of the variables’ change of the continuous and hybrid systems makes the discrete

modeling possible.

The aim of this chapter consists to survey the use of PNs in model-based diagnosis. It

starts in the following section by outlining some basic definitions (stated briefly since they

are standard) about PNs. Section 3.3 considers the formulation of diagnosis problem within

PNs. Resolution methods by analyzing PN models are presented in section 3.4. Section 3.5

discusses implementation architectures of DES diagnosis according to a topological point of

view. The discussion considers implementations based on automata models as well as PN
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ones. Finally, section 3.6 concludes the chapter.

3.2 Petri nets: Outline

This section outlines briefly some basic definitions on which we will rely throughout the rest

of the thesis. An interested reader is referred to [60] for more details.

Definition 1 A Petri net is a triple N = 〈P, T, F 〉 where

• P ∩ T = ∅

• P ∪ T 6= ∅

• F ⊆ (P × T ) ∪ (T × P )

• dom(F ) ∪ cod(F ) ⊆ P ∪ T.

P is the set of places, T is the set of transitions and F is the flow relation represented

by means of directed arcs. If the transitive closure F+ of the arcs is irreflexive, the net

is said to be acyclic. In a Petri net, an arc multiplicity function is usually defined as

W : (P × T ) ∪ (T × P ) −→ N; if W is such that W (f) = 1 if f ∈ F and W (f) = 0 if

f /∈ F , the net is said to be an ordinary Petri net. For each x ∈ P ∪ T we will use the

classical notations •x = {y | yFx} and x• = {y | xFy}. If •x = ∅, x is said to be a source;

while if x• = ∅, x is said to be a sink. A marking is a function µ : P −→ N from places to

nonnegative integers represented by means of tokens into places. A marked Petri net is a

pair 〈N , µ〉 where N = 〈P, T, F 〉 is a Petri net and µ is a marking.

The dynamics of the net is described by moving tokens from places to places according

to the following definition of enabling (i.e. concession) and firing rules.

Definition 2 Let 〈P, T, F, µ〉 be a marked ordinary Petri net; a transition t ∈ T is enabled

at µ if and only if ∀p ∈ •t : µ(p) ≥ 1; if t is enabled at µ, then t may occur (fire) yielding

a new marking µ′ (we write µ[t〉µ′) such that for every place p ∈ P we have: µ′(p) =

µ(p)−W (p, t) +W (t, p).
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The reachability set from a marking µ0, indicated as R(N , µ0) (or [µ0〉), is the smallest

set of markings such that: 1) µ0 ∈ R(N , µ0); 2) if µ1 ∈ R(N , µ0) and µ1[t〉µ2 for some t ∈ T ,

then µ2 ∈ R(N , µ0). If a place of a marked net cannot be marked with more than one token,

the place is said to be safe; if the property holds for every place, the net itself and every

marking are said to be safe. Moreover, let us recall the following definition of covering.

Definition 3 Let Q ⊆ P , a marking µ of N covers Q if and only if ∀p ∈ Q → µ(p) = 1;

while it zero-covers Q if and only if ∀p ∈ Q→ µ(p) = 0.

Given a Petri net N = 〈P, T, F 〉 with n = |T | and m = |P |, the incidence matrix of N

is the n×m matrix of integers A = [aij] such that aij = W (i, j)−W (j, i)(i ∈ T, j ∈ P ). An

m-vector of integers Y such that A ·Y = 0 is said to be a P-invariant of the net represented

by A, the entry Y (j) corresponds to place j. The support σY of a P-invariant Y is the subset

of places corresponding to nonzero entries of Y . In a dual way, if AT is the transpose matrix

of A, an n-vector of integers X such that AT · X = 0 is said to be a T-invariant (entries

corresponding to transitions). It is well known that any invariant can be obtained as a linear

combination of invariants having minimal (with respect to set inclusion) supports.

Definition 4 Given a Petri net N , ℘ = p0t1...tnpn is a non-trivial path (or simply a path)

in N if: i) n > 0; ii) tq+1 ⊆ p•q ∩ •pq+1 for q = 1, ..., n.

3.3 Modeling diagnosis with PNs

PN, as a tool for dynamic systems whose state changes with an event occurrence, can model

the complicate man-made systems whose behaviors are hard to predict and offer the possi-

bility to perform the automated fault diagnosis during the system execution.

In the context of DES diagnosis, the system to be diagnosed is modeled by a labeled

Petri net (N ,Σ, l, µ0) where Σ is the set of event labels for the transitions in T, l : T −→ Σ

is the transition labeling function, and µ0 is the initial state. The event labeling function l

is extended to l : T ∗ −→ Σ∗ in the following manner: given t, t′ ∈ T and a, a′ ∈ Σ :

l(t) = a and l(t′) = a′ ⇒ l(tt′) = l(t)l(t′) = aa′
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The language generated by the labeled Petri net (N ,Σ, , l, µ0), denoted by L(N ,Σ, , l, µ0),

is the set of all traces of events that can be generated by (N,Σ, , l, µ0) from its initial state

µ0. L(N ,Σ, , l, µ0) is formally defined as

L(N ,Σ, , l, µ0) = {l(s) ∈ Σ∗ : s ∈ T ∗ and ∃µ : µ0[s〉µ}

Some of the events in Σ are observable, i.e. their occurrence can be observed (detected by

sensors), and while the other events are unobservable. Thus Σ is partitioned into observable

and unobservable event sets: Σ = Σo ∪ Σuo. The observable events in the system may be

commands issued by controllers, sensor readings, and changes of sensor readings. On the

other hand, unobservable events may be some events that cause changes in the system state

that are not recorded by sensors.

3.3.1 Fault representation

In some DES, faults set F can be alternatively represented as forbidden system states, faulty

behavior modes of components, or unobservable events. In the case where faults are modeled

as unobservable events, the set of fault events Σf is a subset of Σuo. Furthermore, the set of

fault events is partitioned into disjoint sets where each set corresponds to a different fault

type. The motivation for doing so is that it might not be necessary to detect uniquely every

fault event, but only the occurrence of one among a subset (type) of fault events. We write

Σf = ΣF1 ∪ · · · ∪ ΣFk

where ΣFi
denotes the set of fault events corresponding to a type i fault, 1 ≤ i ≤ k,

where k is the number of fault types. When we write “a fault of type i has occurred”, we

mean that a fault event from the set ΣFi
has occurred.

Note that there are some other kinds of fault representation like violation of event ex-

ecution conditions [44], violation of constraints on the target states, or logical propositions

defined over a set of variables that comprise both events and states [42].
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3.3.2 Observation

The observation of DES is retrieved from the monitoring system, which supervises the run-

ning of the system. Once it captures a symptom, the diagnosis process is triggered. The

observation offered by the monitoring system is event-observation (as observation trace)

and/or the partial state-observation (as symptom).

Assumption 1 Unless otherwise stated, we make an important assumption: the fault cannot

be in the monitoring components that log the information, which means the observation is

accurate.

For DES, the most common observation is the occurrence of events. In reality, the

sensors or monitoring platform in charge of the observations can be malfunctioning. So the

observation sequence can be inaccurate, incomplete, partially ordered, etc. In fact, many

works effort to completely or partially release these assumptions to meet the real-life request

from the industrial areas.

Observation absence

Due to the limitation of the observation, there could be an observation absence, e.g., some

states or events occurrence are naturally hard or too expensive to capture. Then the diagnosis

problem is explored in two directions: to improve the diagnosis confidence with available

observation, or to carefully configure the sensors with higher diagnosis confidence and lower

cost.

Partially ordered observation

An asynchronous system, much like an object-oriented software and a telecommunications

network management system, is a system operating under distributed control, local time,

global supervision, and components communication. Each local sensor has only a partial

view of the system, and its local time is not synchronized with that of other sensors.

Even if the order of events may be correctly observed locally by each individual sensor,

communicating alarm events via the network causes a loss of synchronization: as a result,

the interleaving of events communicated to the supervisor is nondeterministic.
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So the observation Obs has been defined formally as follows:

Definition 5 (Observable sequence) Given an observable set Σo, a (partially ordered)

observable sequence is defined as:

Obs ::= ε | event ≺ Obs | Obs ‖ Obs, with event ∈ Σo

with ε represents the empty observation, ≺ and ‖ represent respectively the precedent and

parallel relations between the events.

3.3.3 Diagnosis of DES

The PN diagnosis (or DES diagnosis) performs in two steps: deriving the legal traces which

are consistent with the observation; then make the assertion [77]:

• if all the traces include a same fault transitions, the fault is declared to have happened

for sure;

• if none of the legal traces include a fault event, the diagnosis result is normal ;

• if the legal traces set includes traces that include different fault transitions and/or do

not include fault transitions, the diagnosis result is uncertain.

So generally, the diagnosis of DES ∆DES can be informally defined as follows:

Definition 6 The diagnosis of a DES is a function ∆DES : traceso(N ) −→ 22F∪{N}
, with:

• traceso(N ) is the set of observable traces;

• F is the set of fault types, N represents the normal state of the DES;

3.4 Diagnosis methods

DES diagnosis methods are based on observing system events and making inferences about

the system state. The basic idea is that the occurrence of a fault will generate a unique

sequence of observable events that will establish the presence of the fault.
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The classical diagnosis approach is to synchronize the system model for diagnosis and

the observed traces for computing all compatible trajectories and determining whether these

trajectories (a sequence of states and transitions) are normal. The system model for diagnosis

can be represented as:

• synchronization product of DES model and fault types (Automata-diagnoser) [51, 77,

78, 85] and PN diagnoser [3];

• PN unfolding [8, 35] and backward unfolding [46].

• Petri net reachability graph [2, 11, 39, 56, 69, 86];

In this section, the above approaches are introduced and compared.

3.4.1 Diagnoser

Assume faults are represented as unobservable events and F ⊆ Σuo is the fault types set.

Given a labeled transition system (LTS), the composition product of the system states and

the possible faults types can represent off-line the diagnosis states of the system, named

as diagnoser [77, 78]. So a diagnosis can be got by synchronizing the diagnoser and an

observable trace.

For PN models, the diagnoser is a labeled Petri net built from the system model (N ,Σ, , l, µ0).

This labeled Petri net performs diagnostics while observing on-line the behavior of (N ,Σ, , l, µ0).

Definition 7 The diagnoser for (N ,Σ, , l, µ0) is Nd = (N ,Σ, , l, µd0 ,∆f ) where N ,Σ, l are

defined as before, µd0 is the initial diagnoser state and ∆f = {F1, F2, · · · , Fk} is the finite

set of fault types.

The Petri net diagnoser Nd keeps the graphical structure of the underlying system model.

Up to this point Nd is not different from a labeled Petri net. However, its dynamics are

different from those of a labeled Petri net since its state transition function is only defined

for observable events.

The diagnoser gives the estimate of the current state of the system after the occurrence

of an observable event. The diagnoser state is a list of the set of states the system model can
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be in after observation of an event in Σo together with fault information. Fault information

in a diagnoser state is coded by fault labels.

Diagnosis with diagnosers is very efficient because processing an observation sequence

can be done in linear time in the length of the sequence. However, the construction of the

diagnoser may be extremely expensive because the diagnoser may have a size that is expo-

nential in the number of states in the system, which is famous as the state-space explosion

problem.

[77, 78] described a modeling and diagnosis framework based on FSMs for systems in the

DES framework. A diagnoser based on the system model functions as an extended observer

that provides estimates of the system state under non-faulty and faulty conditions.

[38] proposed a diagnoser approach by combining each marking with its exclusive diag-

nosis information, and got diagnosis by synchronizing the diagnoser with the observations.

[38] requires the PN model to be more specific so that each marking corresponds either to a

correct state or to one type of fault.

3.4.2 PN unfolding

Net unfolding is a technique of structural analysis to reduce the state-space explosion prob-

lem which the reachability analysis approaches suffer from. The unfolding of a system fully

describes its concurrent behavior in a single branching structure, representing all the possible

computation steps and their mutual dependencies, as well as all reachable states; the effec-

tiveness of the approach lies in the use of partially ordered runs, rather than interleavings,

to store and handle explanations extracted from the system model.

The unfolding definitions are taken from [8] and slightly adjusted.

Definition 8 (PN Homomorphism) Given two PN graphs S = 〈P, T,W 〉 and S ′ =

〈P ′
, T

′
,W

′〉 a homomorphism from S to S ′ is defined as ϕ : P ∪ T −→ P ′ ∪ T ′ s.t.,

• ϕ(P ) ⊆ P ′ and ϕ(T ) ⊆ T ′

• ∀x ∈ P ∪ T, ϕ(•x) = •ϕ(x) and ϕ(x•) = ϕ(x)•
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Definition 9 (Occurrence net) Given a PN graph S = 〈P, T,W 〉, two nodes x, x′ are in

conflict, noted as x#x′, if ∃t, t′ ∈ T, s.t. •t∩ •t′ 6= ∅; and t 4 x, t′ 4 x′ where 4 is a reflexive

transitive closure of W. A node x is in self-conflict if x#x. An occurrence net O = (B,E,�)

satisfies:

• B, a set of conditions;

• E, a set of transitions;

• � is the causality relation;

• ∀x ∈ B ∪ E : ¬[x#x];

• ∀x ∈ B ∪ E : ¬[x � x] (acyclic);

• ∀x ∈ B ∪ E : |{y : y ≺ x}| <∞ (well formed);

• ∀b ∈ B : |•b| ≤ 1, each place has at most one input transition (no backward conflict).

We denote min(O) ⊆ B as the minimal1 node set of O for � .

Definition 10 (Cut) Two nodes x, x′ are concurrent, denoted as x⊥x′ if neither x 4 x′,

nor x′ 4 x, nor x#x′. A maximum concurrent conditions (or pairwise nodes) set is a cut.

Definition 11 (Configuration) A configuration C = 〈BC, EC,41〉 of O is defined as fol-

lows:

• C ⊆ O, C is a sub-net of O;

• ∀a, b ∈ (BC × EC) ∪ (EC × BO) =⇒ ¬(a#b), C is conflict-free;

• ∀b ∈ BC ∪ EC : a ∈ B and a 41 b =⇒ a ∈ BC ∪ EC, C is up-warded closed;

• min4(C) = min4(O), C and O have the same starting nodes.

We denote ζ as the configurations set of O.

1min�(X) = {x ∈ X | (x′ ∈ X ∧ x′ � x)⇒ x′ = x} is the minimal element of X.
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Definition 12 (Branching process) Given a Petri net system S, a branching process B

is a pair (O, ϕ) where O is an occurrence net and ϕ is a homomorphism from O to S, with:

• min(O) = µ0 =⇒ ϕ(min(O)) = µ0

• ∀e, e′ ∈ E, •e = •e′ ∧ ϕ(e) = ϕ(e′) =⇒ e = e′

Definition 13 (Unfolding) Given a Petri net system S = 〈N , µ0〉, the unfolding UN (µ0)

is a branching process B = (O, ϕ) s.t. ∀B′ = (O′, ϕ′) v B where B′ is a prefix of B, ∃ a

homomorphism φ : B′ −→ B, s.t. φ(min(B′)) = min(B) and ϕ ◦ φ = ϕ′.

So UN (µ0) maximally unfolds S and configurations are the adequate representations of

the firing sequences of S.

So the diagnosis based on Petri net unfolding can be defined as:

Definition 14 (Diagnosis of PN unfolding) Given a diagnosis problem 〈UN , Obs〉 with

UN the unfolding of a Petri net system S = 〈N , µ0〉, the diagnosis is DiagUPN = {t | l(t) ∈

Σuo, ∃τ is an observable trace of N , s.t. τ is consistent with UN × Obs}.

[8] used a net unfolding approach for designing an on-line asynchronous diagnoser. The

state explosion is avoided but the on-line computation can be high due to the on-line building

of the PN structures by unfolding.

3.4.3 PN backward reachability analysis

Reachability analysis has been successively developed essentially by taking into account

forward reachability. While backward reachability analysis is suitable for the diagnostic

problem solving [2, 12, 43, 81]. The backward reachability analysis starts from the final

marking which represents a symptom and calculates backwardly according to the backward

searching rules to detect all the traces that cover it. So the backward calculation can be seen

as a forward calculation in the reverse PN obtained by reversing the direction of the arcs in

the original PN and modifying the enabling and firing rule of a transition.

[2, 69] proposed the backward reachability analysis (B-W analysis) approach on a partic-

ular class of PN called “Behavioral Petri Nets”(BPNs) to model the causal behavior of the
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system to be diagnosed. The states of the system are represented as places, and the inferring

relations between the states are represented as transitions. So the BPN model represents all

the possible logical inferring paths of the system states. More formally, a BPN model has

been defined as:

Definition 15 A Behavioral Petri Net (BPN) is a 4-tuple N = (P, TN , TOR, F ) such that

(P, TN ∪ TOR, F ) is an acyclic ordinary Petri net that satisfies the following axioms:

1. ∀p ∈ P (|•p| ≤ 1 ∧ |p•| ≤ 1)

2. ∀p1, p2 ∈ P (•p1 = •p2) ∧ (p•1 = p•2)→ (p1 = p2)

3. ∀t ∈ TN(|•t| = 1 ∧ |t•| > 0) ∨ (|•t| > 0 ∧ |t•| = 1)

4. ∀t ∈ TOR(|•t| ≥ 2 ∧ |t•| = 1)

Such a net model is characterized by the following features:

• each place corresponds to an instance of the causal model states and transitions de-

scribe the cause-effect relationships between the corresponding instances of states;

• a source place (i.e. p : •p = ∅) corresponds necessarily to an initial state instance;

• a sink place represents either a manifestation state instance or an internal state instance

that has no consequences;

• the net model is safe; that is, any place can be marked with at most one token;

• The set of transitions is partitioned into two subsets TN and TOR. Transitions in

TN (and-transitions) are intended in the usual way; while transitions in TOR (Or-

transitions) are intended to represent the logical connective OR and they represent

macro transitions whose semantics can be given in terms of a Petri net with inhibitor

arcs (figure 3-1). Informally, a transition t ∈ TOR (graphically represented as an empty

thick bar) has concession in a marking if and only if at least one of its input places

is marked. We refer to [69] for more details about formal definitions of enabling and

firing rules of Or-transitions;
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Figure 3-1: Or-transition and its semantics.

• an and-transition t is of type linear, fork or join. A transition t is a linear transition

iff it has exactly one input place and one output place. A fork transition is that with

only one input place and at least two output places. Finally, a join transition is the

one with at least two input places and only one output place (for the sake of simplicity

and to face the state explosion problem, a fork transition has two output places and a

join transition has two input places. If t ∈ TOR, then it has two input places and one

output place);

• The transitive closure of the flow relation (i.e. arcs) is irreflexive2;

• an initial marking of a BPN is a safe marking µ0 such that if µ0(p) = 1 then p is a

source place;

• a marked BPN is a pair (N , µ) where N is a BPN and µ is either an initial marking

or a marking such that there exists an initial marking µ0 and µ ∈ R(N , µ0).

In this view, a BPN diagnostic problem BPNDP corresponding to a logical DP is

defined as BPNDP = (N , P ini, 〈P+, P−〉), where N is the net corresponding to a causal

BM , P ini is a set of source places denoting initial states in BM , P+ and P− are two sets

of sink places representing the observations and thus corresponding respectively to Ψ+ and

Ψ−. Before showing how to characterize diagnostic solutions for a given BPNDP , let us

recall the following definition.

Definition 16 a marking µ of a BPN such that no transition is enabled at µ is called a

final marking.

2This is a common assumption when modeling the causal behavior of a given system without taking into
account temporal aspects.
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The following theorem has been proved in [69].

Theorem 1 In a marked BPN there is exactly one final marking.

The notion of diagnostic solution can now be captured as follows:

Definition 17 Given a BPNDP = (N , P ini, 〈P+, P−〉), an initial marking µini is a solu-

tion to BPNDP if and only if the final marking µ of N covers P+ and zero-covers P−.

BW-Analysis

An obvious consequence of the irreflexivity of the flow relation is that it defines a partial

order, denoted as “≺”, over transitions of a BPN ; given two transitions t1 and t2: t1 ≺ t2 ⇔

t1F
+t2 where F+ denotes the transitive closure of the flow relation. In order to implement

diagnostic reasoning which is by nature hypothetico-deductive on a BPN model, a BW-

Analysis has been defined in [2]. It consists in a backward reachability analysis accomplished

with two types of tokens called respectively normal and inhibitor tokens. The meaning of

normal tokens is as usual: we can associate a condition with a place and a normal token

into a place means that such a condition is satisfied. On the contrary, inhibitor tokens

represent conditions which are certainly not satisfied in the case under examination (i.e. for

diagnostic purposes, they represent all parameter values that are different from the observed

ones). If a place denoting a condition C is marked with this kind of token, then ¬C holds.

Consequently, when a place is empty, no constraint is imposed on the associated condition.

As it is noted in [2, 69], this corresponds to considering a three-valued logic whose truth

values are {true, false, unknown}.

Referring to the previous paragraph, in a causal BPN, a transition t is enabled, in forward

fashion, at a marking µ (and so it can fire) iff t has concession in µ and @t′ ≺ t such that

t′ has concession in µ. This corresponds to imposing a priority ordering on transitions.

Nevertheless, because we have to fire transitions in a backward fashion, the inverse relation

of the partial order has to be considered: given two transitions t1 and t2 : t1 � t2 ⇔ t2 ≺ t1.

b-w marking. The concept of b-w marking has been defined as a function µ from the set

of places to the set {b, w, 0}; where µ(p) = b means that the place p is marked with a normal
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token (black); µ(p) = w means that the place p is marked with an inhibitor token (white)

and µ(p) = 0 means that p is empty.

A particular feature of the BW-Analysis is the possibility of forcing the backward firing

of and-transitions. Informally, it means that if a fork transition t has at least one marked

output place then all of its output places that are empty should be marked with the same

type of token.

According to the logical definition of a diagnosis problem and of a solution to such a

problem, we require a set of firing rules that will be applied in a backward fashion on the

net model. Such rules start from a b-w marking corresponding to the observed misbehavior

(a marking µ s.t µ(p) 6= 0⇒ p ∈ P+ ∪ P−) and ending up within an initial b-w marking in

which the marked places belong necessarily to P ini (i.e. corresponding to the initial states

of the behavioral model). Such initial b-w marking represents the solution to the given

diagnosis problem. In this case, empty source places represent initial conditions that are

not significant for the case under examination, while source places marked with normal and

inhibitor tokens represent initial conditions that have been proven true and false respectively.

In order to obtain such initial b-w marking, we need to construct the markings graph

in a backward fashion by applying the set of firing rules that are defined in [2]. Figure 3-2

gives graphically these rules.

[46] adapted the PN unfolding method for backward searching. The set of minimal

explanations is calculated backwards starting from the observation and deriving traces that

lead back to the initial marking. The diagnoser explores different state spaces but has the

advantage that it does not depend on the size of the PN model but only on the size of

the largest sub-net in the model that includes only unobservable transitions. Moreover and

very important the set of complete explanations can be calculated from the set of minimal

explanations whenever this is required.

[39] studied the minimal diagnosis of unobservable-transitions-acyclic PN. A diagnosis

approach named as basic reachability tree is proposed which is in fact an automaton diagnosis

based on marking graph of Petri net. [11] studied the reachability graph diagnosis approach

based on bounded PN model. The observations are transferred to a justification-vector to

improve the efficiency.
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Figure 3-2: Backward firing rules.

[86] introduced a method for modification of reachability trees in order to detect fail-

ure transitions. A symbol $ means an infinite set of positive integers, so an infinite tree

consisting of infinite reachable markings is approximated by a finite tree (reachability tree).

Two kinds of diagnosers (difference marking $-diagnoser and refined $- diagnoser) were

proposed. For observable places whose token numbers are replaced by $ in the reachability

trees, the former diagnoser calculates difference between token numbers before and after

partially observed markings change, and detects failures. In the latter diagnoser is refined

to distinguish the reachable markings by normal and faulty behaviors.

[44] used PN models to introduce redundancy into the system and additional P-invariants

allow the detection and isolation of faulty markings.

3.5 Architecture of DES diagnosis

The large DES systems are usually designed as a set of interconnected subsystems with dif-

ferent topological architecture, which can be roughly divided as decentralized and distributed

ones. So decentralized and distributed diagnostic protocols become necessary to deal with

diagnosis in distributed systems where the information is separately located.
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The model-based diagnosis of DES can be classified in the literature from a topological

point of view as centralized, decentralized, and distributed approaches.

3.5.1 Centralized diagnosis

There is one centralized diagnoser that derives the system diagnosis based on its (complete)

knowledge of the overall system model and the overall system observation. The centralized

approach can be further classified as:

• diagnoser approach [77] where a diagnoser automaton is derived off line and the on-line

analysis is carried out by eliminating the diagnoser-states that are not consistent with

the system observation.

• active system approach [3] where the diagnosis result is derived a posteriori when the

system is in a quiescent state (out of work or idle).

The main disadvantage of a centralized approach is its high computational complexity.

It requires a centralized model and generates a centralized diagnoser. Since the diagnoser-

automaton can be viewed as a special observer-automaton its size may become too large to

be practically stored. Even if a centralized diagnoser can be constructed it has the following

disadvantages [82]:

• weak robustness: when the centralized diagnoser is broke down, the whole system is

not able to be diagnosed.

• low maintainability: a change in the system structure requires a complete re-calculation

of a new centralized diagnoser, which can be a serious problem for the dynamic systems.

3.5.2 Decentralized diagnosis

The decentralized diagnosis problem is first considered in [25] in which the local diagnosers

communicate with the coordinator through the no-delay channels in stead of with each other.

There is one coordinating agent receives information from several local diagnosers, each of

which performs some local diagnosis of the system with incomplete knowledge (e.g. based
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on a sub-set of sensor readings or a partial knowledge of the overall model). The local

diagnosis results are compiled in a consistent diagnosis result for the overall system by the

coordinating diagnoser e.g., [10, 25, 26, 62, 63].

There are two different decentralization levels:

• [25], or its extended version [26, 51], employ a global system model which is built from

component models (given as FSMs) automatically via synchronous or asynchronous

composition. After offline diagnosability verification, which may cause state explosion

problem, the online diagnosis decisions can be computed. These decisions may or may

not be fused on a coordinating site, according to the properties of the architecture.

Three coordination protocols are proposed in [25] that realize the proposed architecture

and analyze the diagnostic properties of these protocols.

• [3, 62, 64] and [45] (synchronous automata) proposed the decentralized system model

as asynchronous communicating automata (or FSMs). [3] solved off-line a diagnosis

problem a posteriori, while [52] mixed a diagnoser approach [51, 62] with an extended

version of the decentralized model of [3] by computing on-line only the interesting parts

of a centralized diagnoser to avoid computing the global model. [64] introduced the

temporal window to improve the on-line diagnosis efficiency and the global diagnosis is

built by dynamically merging the local ones to eliminate the inconsistent traces with

the partial order reduction technique and incremental diagnosis on sound temporal

windows. Recent works on this approach [22] used decentralized or factored represen-

tations to represent the set of all trajectories more compactly without enumerating all

of them.

While decentralized models could potentially reduce the state space exponentially, the

actual complexity of the diagnosis algorithms relies on the partition of the system model

and the selection of communicating events between local models.

[75] investigated the necessariness of asynchronous communication for fault diagnosis.

It modeled the asynchronous communications between two local diagnosers with timed au-

tomata. Then the problem of determining the states of each of the two communicating
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diagnosers into the problems of factorization of the observation map and construction of an

observer for a timed DES. The diagnosers can be formulated directly from the observers.

[10] studied the problem of synthesizing communication protocols and failure diagnosis

algorithms for decentralized failure diagnosis of DES with costly communication between

diagnosers. The costs on the communication channels may be described in terms of bits and

complexity. The costs of communication and computation force the trade-off between the

control objective of failure diagnosis and that of minimization of the costs of communication

and computation.

[54] proposed a modular diagnosis architecture (broker) capable of merging diagnoses

provided by local diagnosers and to enrich their formalism with synchronization constraints.

The global diagnoser algorithm manages a diagnosis tree by querying the local diagnosers

to complete the pending paths. Each candidate diagnosis is represented by a path leading

to a constraintless node in the diagnosis tree.

The decentralized approaches overcome the high complexity and the low maintainability

limitations of the centralized approach by calculating local state spaces (of size a lot smaller

than the size of the overall) that are maintained consistent by a centralized structure (agent).

But the existence of a centralized agent does not eliminate the disadvantage of a weak

robustness.

[70] introduced a notion codiagnosability to describe a requirement that any failure can

be diagnosed within bounded delay by at least one local diagnoser using it’s own observa-

tions of the system execution. The codiagnosability property is stronger than diagnosability

under the aggregate observations, which declaimed a possibility that a system is centrally

diagnosable but not decentrally diagnosable.

[49, 50] focused on solving the ambiguity of several local diagnosis towards the global

diagnosis (introduced and discussed in [87] and its extended version [88]). [50] proposed a

framework for performing diagnosis in a decentralized setting. A global diagnosis decision is

taken to be a winning local diagnosis decision, which is tagged with a certain ambiguity level.

The work showed that the codiagnosability introduced in [70] was the same as 0-inference-

diagnosability; the conditional codiagnosability introduced in [87] and [88] was a type of 1-

inference-diagnosability; and the class of higher-index inference-diagnosable systems strictly
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subsumed the class of lower-index ones. The authors of [88] claimed their architecture can

be realized in a distributed environment.

3.5.3 Distributed diagnosis

In a distributed diagnosis environment, the overall system consists of different components,

and associated with each component, there is a local agent (diagnoser-agent) that derives

the local diagnosis of its component. Each local agent only knows the model of the local

component and of its interactions with its neighbors. Each local agent moreover only receives

signals from the monitoring system for the local events. No centralized structure is assumed

to coordinate the results of the local agents but from time to time the local agents may

exchange messages over communication channels linking them. Thus the local agents derive

the distributed diagnosis by local calculations and by information exchanges, e.g., [35, 36,

38, 43, 46, 47, 72, 82, 83].

Generally speaking, distributed architectures for diagnosis differ from decentralized ones

in terms of the local models used at the different sites for model-based inferencing and in

terms of the ability for local diagnosers to communicate among each other in real-time.

For a distributed system without coordinator, the consistency check between the local

diagnoses is merely important. The local consistency requires that all local diagnoses agree

on their mutual interfaces. While the global consistency ([84]) requires the local diagnoses

are the projected versions of the global diagnosis, which needs a global system model.

[71], extended from [70] defined a new observation mask for each local observer that

combined the effect of it’s own observation and the bounded-delay communication received

by other diagnosers. The local diagnosers communicate with each other using the immedi-

ate observation passing protocol. Thus the distributed diagnosis problem is reduced to a

decentralized diagnosis one. The further extended work [72] reduce the complexity of on-

line diagnosis at each local site to be linear with the number of sites by proposing a new

distributed diagnosis protocol.

[82, 83, 84] proposed an automaton-based distributed and hierarchical diagnosis archi-

tecture. Each local component has its own local diagnoser, which is built based only on

knowledge about this component. The stored size of the overall diagnoser is only the sum
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of state sizes of the local diagnosers, hence spatial complexity is kept under control. Each

local diagnoser is connected with other local diagnosers based on the input/output relations

among associated local components. Adding new components, taking components out of

the system or changing the input/output relations among local components only affects the

local diagnosers that are directly associated with the altered components. A hierarchical

computational procedure and multi-resolution diagnosis approach are introduced in [84] to

overcome the shortcomings of high time complexity and poor scalability of the distributed

ones.

[1, 34, 35, 36, 37] discussed the distributed diagnosis problem based on PN model.

[35, 36] based on the work of [1, 8] discussed the distributed monitoring and diagnosis

problems of the asynchronous subsystems with partial ordered observations. The idea here

is that when concurrent subsystems are composed, there may be events in the alphabets of

the subsystems whose relative order is not important. Therefore, partial-order techniques

reduce the complexity of a model by not capturing all the permutations of the orderings of

these events. [36] proposed and discussed different kinds of data structures (execution tree,

unfolding, trellis, etc.) of representing the asynchronous communication, real concurrency

and partial ordered events for the distributed diagnosis.

[34] modeled a distributed system as a graph of interacting subsystems, with the appropri-

ate semantics of trajectories and stochastic framework. A centralized supervisor, collecting

all observation from the system and knowing a model of the whole system, may not be

affordable, so they advocate instead a processing by parts, and extend the idea towards a

completely distributed supervisor architecture, with one local supervisor on the top of each

subsystem, coordinating its activity with the supervisors in its neighborhood.

In [38], distributed diagnosis for Petri nets with synchronous communication is studied.

The authors extend the notion of FSM diagnosers to PN and centralized and distributed

diagnosers are designed. The centralized approach presents the same problems of combina-

tional explosion than the original based on FSM and the distributed approach focuses on

the problem of communication between the diagnosers.

[43, 47] proposed a distributed diagnosis based on place-bordered PN models, which are

bounded, ordinary and known initial marking. A fault in a PN model is represented by
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a choice transition. The case of unobservable interactions between components and cyclic

communications are considered. The minimal explanations are derived by backward inference

on each local diagnoser based on the local partial ordered observations. [47] concerned the

diagnosis of plant systems, so the system model is assumed to be global clock scheduled

instead of event-driven. A local diagnoser first searches for the minimal configuration to

decide the initial marking with backward unfolding approach then infers forwardly for the

possible local exited tokens to update the state of its neighbor diagnosers. The global

consistency is verified by comparing the causal relations of the communicating events between

the different sites with the observations. The state explosion problem is partially controlled

with partial observation.

3.6 Conclusion

The correctness and efficiency of DES diagnosis depends mainly on three elements: the sys-

tem model, the fault representation, and the diagnosis approach. On the level of system

model, automata are suitable for monotonic system with smaller states set and larger events

set; PN are suitable for real concurrent system. On the level of fault representation, faulty

states and events are normally adopted separately. On the level of diagnosis approaches,

the diagnoser, unfolding, and (backward) reachability approaches all suffer a lot from syn-

chronization. The PN algebraic approach can help to improve the efficiency while the fault

representation becomes difficult and complicated.

While there is no absolute adequate standard, the final choice depends on the system

characteristics and the aim of diagnosis.
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Part II

Contributions
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Chapter 4

A distributed model-based diagnosis

4.1 Introduction

As it has been outlined, for large distributed systems the adoption of distributed multiple di-

agnostic agents can offer a solution to problems encountered by a single centralized diagnosis

approach. Following such a direction, the system to be diagnosed is defined as a collection

of interacting subsystems that may be geographically distributed. With each subsystem, we

associate a diagnostic agent that knows the local model of the subsystem, receives the local

observation, and can exchange limited information with the adjacent agents for consistency

checking. Figure 4-1 displays a typical architecture for such a setting.

 

The system to be 

diagnosed 

Manifestation 
signalization 

A1 
A2 

A3 A4 

S1 S2 

S3 
S4 

The diagnostic 

system 

Figure 4-1: A diagnostic system architecture.

This chapter begins in the following section by discussing our logical view to a distributed

model-based diagnosis problem, then in section 4.3 we characterize declaratively the diag-
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noses of each agent in the diagnosis system. Section 4.4 tries to add more constraints to the

diagnoses of each agent in order to recover the results that would be derived by a central-

ized agent having a global view about the whole system. Finally, section 4.5 concludes the

chapter.

4.2 Problem statement

According to figure 4-1, we have a distribution of the knowledge over multiple agents. Such

a distribution defines a division of a system into several subsystems. When knowledge is spa-

tially distributed, the set of components COMPS is partitioned over the agents. So, agent

Ai has knowledge about components COMPSi, and COMPS =
⋃n
i=1COMPSi where n is

the number of agents. In other words, the initial diagnostic problem DP is divided into n

sub-problems. Thus, DP =
⋃n
i=1DPi. Each of these DPi corresponds to a particular sub-

system and can be viewed similar to the initial overall diagnostic problem DP. Nevertheless,

each subsystem is not fully independent from the others and it interacts within other system

parts through different connection points. Thus, by distributing knowledge, i.e. SDi over

the agents, we loose the knowledge about the connections between components managed

by different agents. Hence, each sub-problem should include in its definition the connection

elements relaying the corresponding subsystem within neighboring ones (i.e. we provide each

agent with information about connection points that connect to components managed by

other agents). More particularly, we split the set of connection points into relative inputs

Ini and outputs Outi of the agent’s subsystem. Since we are concerned with diagnosis based

on causal models, the discussion will be oriented toward such models.

Hence, DPi = (〈BMi, COMPSi〉, Ctxi, Ini, Outi,
〈
Ψ+
i ,Ψ

−
i

〉
) is a sub-problem to be solved

by the agent Ai, where BMi denotes the behavioral model of the subsystem Si. Ctxi is the

set of possible fault causes originating from components of Si
1. Ini and Outi correspond

to connection points that are classified respectively into inputs to Si that are determined

from other subsystems Sj and outputs from Si to Sj.
〈
Ψ+
i ,Ψ

−
i

〉
represent local observation

1If the BMi describes the structure and the correct behavior of the subsystem Si, then Ctxi corresponds
to the local context of Si.
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findings defined within Si and their meanings are the same as for the centralized case. In this

view, the diagnostic system can be considered as a multiple diagnostic agents, each of which

is responsible to solve a local diagnostic problem DPi and should communicate with neigh-

boring agents for eliminating local solutions that are not consistent with results obtained by

the neighborhood. Consequently, Ini can be viewed as initial states when BMi models the

causal behavior of Si, since their causes originate from the outside of the associated model

(i.e. their causes belong to other subsystems), and hence they are not explained locally.

Similarly, elements of Outi may be considered as manifestations to be explained even if they

are unobservable; because they correspond to states that represent causes of other effects

which are not modeled in BMi. In fact, the consequences of elements of Outi belong to the

neighboring models.

4.3 The diagnosis of one agent

Each agent Ai in the multi-agent system must make a diagnosis of the subsystem Si (DPi =

(〈BMi, COMPSi〉, Ctxi, Ini, Outi,
〈
Ψ+
i ,Ψ

−
i

〉
)). This can be viewed as a single agent diag-

nosis if values of the inputs and outputs of the subsystem are known. We use the set Vi to

denote value assignments value(p) = v with p ∈ Ini to the inputs. Vi is the local context

of the subsystem Si that is determined by the outputs of other subsystems. We therefore

extend Definition 7 given in chapter 2 to diagnosis of subsystems.

Definition 1 Let DPi = (〈BMi, COMPSi〉, Ctxi, Ini, Outi,
〈
Ψ+
i ,Ψ

−
i

〉
) be a sub-problem to

be solved by Ai and let Vi be a (partial) description of the values of connection points Ini.

Finally, let ∆i be a candidate diagnosis. Then,

∆i is a diagnosis for Si iff ∆i is a diagnosis for (〈BMi, COMPSi〉, Ctxi∪Vi,
〈
Ψ+
i ,Ψ

−
i

〉
).

This definition implies that a local diagnosis for DPi can be regarded as a set of assump-

tions ∆i ⊆ Ctxi ∪ Vi about the presence of some local faults such that:

∀m ∈ Ψ+
i : BMi ∪ Vi ∪∆i ` m

∀n ∈ Ψ−i : BMi ∪ Vi ∪∆i 0 n
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In fact, diagnoses are to be given in terms of Ctxi and parts relative to values of Ini

(i.e. Vi) will be used later during communication between diagnostic agents. This is due

to the fact that values of Ini represent inputs to Si which correspond to the outputs of the

neighboring subsystems that interact with Si.

4.4 The diagnosis of multiple agents

Given multiple diagnostic agents, an important question is how the diagnoses of the agents

relate to the diagnoses of a single agent that has complete knowledge of the system description

and the observations. When addressing this question we assume throughout the thesis that

there are no conflicts between the knowledge of the different agents. That is, there always

exists a diagnosis ∆ such that ∆∪ 〈BM,COMPS〉 ∪Ctx∪Obs is consistent. The following

propositions have been proposed in [76].

Proposition 1 Let S1, ..., Sk be the subsystems that make up the system S. Moreover, let

∆ be a single agent diagnosis of S.

Then Vi = {(value(p) = v) | p ∈ Ini, ∆∪〈BM,COMPS〉∪Ctx ` (value(p) = v)} is the

local context of Si that is determined by the other subsystems Sj , and ∆i = ΠCOMPSi
(∆) is

a diagnosis of Si, where ΠCOMPSi
(∆) denotes the projection of ∆ on COMPSi.

Proposition 2 Let S1, ..., Sk be the subsystems that make up the system S. Moreover, let the

local context Vi of Si describe the values of connection points in Ini that must be determined

by the other subsystems Sj, and let ∆i be a diagnosis of Si determined by agent Ai given Vi.

Then, ∆ =
⋃k
i=1 ∆i is a single-agent diagnosis if

1. ∆ is a candidate diagnosis,

2. ∆i ∪ 〈BMi, COMPSi〉 ∪ Ctx ∪ Vi ` (value(p) = v) and

3. for every p ∈ Outi, p ∈ Inj : (value(p) = v) ∈ Vj.

The above propositions show that, in principle, multi-agent diagnosis is possible.
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Complexity

If knowledge is spatially distributed, each agent manages a different part of the system.

The behavior of a subsystem managed by an agent depends on the behavior of the other

subsystems. This makes it difficult to predict the behavior of the whole system. The values

of the connection points in Outi depend on the local context Vi. The values specified by Vi,

however, are determined by other subsystems Sj whose local context Vj may depend on the

values of the connection points in Outi. Because of these circular dependencies, predicting

the systems behavior becomes an NP-Hard problem as it has been discussed in [76].

To avoid solving such a hard problem in the case where each SDi models the structure

and the correct behavior of the corresponding subsystem, consistency based diagnosis and

consistency based diagnosis with abductive explanation of normal observations are preferred.

When local models (i.e. SDi) correspond to faulty causal behaviors obtained by partitioning

a global causal model, then we are sure that such circular dependencies are inexistent because

the initial overall causal model is by definition acyclic. We will return to such an assumption

in the next two chapters.

Distributing the diagnostic process

After observing abnormal behavior of the system, the agents must make a diagnosis. In order

to do so, each agent must make a local diagnosis in which it also takes into consideration the

correctness of those inputs of its subsystem that are determined by other agents. Therefore,

we must extend a candidate diagnosis ∆i of agent Ai with correctness assumptions Cai about

the systems inputs. For every input p ∈ Ini, Cai contains either the proposition correct(p)

or ¬correct(p). The conditional context Cci will be used to describe inputs of a subsystem

Si, i.e. the local context of the subsystem determined by other subsystems, conditional to

these correctness assumptions, i.e. Cci = {correct(p)↔ (value(p) = v)|value(p) ∈ Vi}.

If in its local diagnosis (∆i, Cai), agent Ai assumes that one of its inputs is incorrect,

the agent must communicate this information to an agent Aj determining the input. Next,

agent Aj may treat this information as an observation of one of its outputs, and adapt its

local diagnosis accordingly.

A problem with this approach is the occurrence of loops. Suppose that agent Ai blames
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an observed anomaly on one of its inputs determined by the subsystem of an agent Aj. Agent

Aj may also blame the fault in the output determining the input of Si on one of its inputs. If

this input is determined by an output of the subsystem of agent Ai, we may have a cycle of

blames that supports itself. Clearly, a local diagnosis that constitutes such cycles of blames

does not represent a valid diagnosis of the system. Moreover, handling such loops is a non

trivial task which requires tracking dependencies between components in local diagnoses. In

fact, the handling of loops causes the determination of minimal diagnoses to be an NP- hard

problem.

For causal models, once ∆i are obtained, they will be used to deduce instances of states

corresponding to outputs of Si. Such instances are to be compared for consistency checking

with values requested by neighboring agents as their inputs. Furthermore, since Outi may

be viewed similar to the observable findings, they are classified also into two subsets Out+i

and Out−i . Out
+
i corresponds to the output values that are modeled in BMi and are deduced

from ∆i; whereas Out−i corresponds to the modeled values that contradict the deduced ones.

In logical terms:

∀a ∈ Out+i : BMi ∪ Ini ∪∆i ` a

∀b ∈ Out−i : BMi ∪ Ini ∪∆i 0 b

Hence, ∆i is considered as a local diagnosis which is consistent with diagnoses of the

other agents iff:

∀m ∈ Ψ+
i ∪Out+i : BMi ∪ Ini ∪∆i ` m

∀n ∈ Ψ−i ∪Out−i : BMi ∪ Ini ∪∆i 0 n

4.5 Conclusion

The discussion presented in this chapter characterizes distributed model-based diagnosis

with an emphasize on declarative definitions. We will exploit such definitions in the case

where the model of each subsystem captures its causal faulty behavior in the remainder of

this thesis.

Notice that there has been other recent works that deal with the problem of distributed
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causal model-based diagnosis. We mention in this regard the work presented in [9] in which

the authors concentrate on how to partition a global model of the system to be diagnosed to

a set of local models (regions in the terminology of [9]). They propose a framework ensuring

that the obtained local regions are maximally independent and their common elements are

minimal. The maximal independency level allows diagnosis to be performed locally, without

the need of communicating with the other models, as long as the border with them is healthy;

and the minimum number of borders ensures that the communication among diagnostic

agents is minimal.
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Chapter 5

A distributed BW analysis

5.1 Introduction

This chapter considers the problem of spatially distributed causal model-based diagnosis.

The system to be diagnosed is viewed as a collection of interacting subsystems in which when

a fault occurs in one subsystem, it may generate some fault indications (i.e. symptoms) and

may propagate to the neighborhood. The diagnostic system itself reflects a similar structure

of the system to be diagnosed and is defined as a set of diagnostic agents each of which is

associated with a specific subsystem. In particular, each agent has a local model, given as a

behavioral Petri net (BPN) model, of the assigned subsystem and may receive observations

generated only by elements of this subsystem. The local BPN model describes the causal

behavior of the subsystem as well as its interactions within adjacent ones. These interactions

are captured through tokens that may pass via common bordered places between BPNs.

When agents observe an aberrant behavior (modeled as the marking of some sink places in

the local BPN models), each one is charged to explain (or to diagnose) the received local

observation on the basis of its BPN model. This is accomplished locally by a backward

analysis (BW-Analysis) of the corresponding reachability graph. As a result, each agent

obtains a set of local initial markings from which diagnoses have to be given.

In order to achieve the consistency with the local diagnoses of all other agents, each one

requests from its neighbors the required marking of its bordered places for each computed

diagnosis. At this step, agents receiving such a request will construct their reachability
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graphs in a forward fashion to check if the requested marking of bordered places is reachable

from at least one of their computed initial markings. If so, the local diagnosis from which

the exchanged message has been generated is considered globally consistent; otherwise, it is

not supported by diagnoses of the neighborhood and consequently it must be discarded.

The remainder of this chapter is organized as follows. In Section 5.2, we start with a

description of the system model as a set of bordered places BPNs. In Section 5.3, we state

the problem of distributed causal model-based diagnosis on BPN models. The local diagnosis

algorithm is based on constructing backwardly the corresponding reachability graph. The

last part of the section describes the cooperation protocol used by diagnostic agents to verify

global consistency between local solutions. Finally, in Section 5.4, we give some concluding

remarks.

5.2 The system model

In terms of BPNs models, each local diagnosis problem DP i is represented as a BPN diag-

nostic problem with bordered places. In fact, the idea of representing interactions between

different subsystems through tokens that pass (either observably or unobservably) via bor-

dered places, also called common places, in Petri net models has been exploited by some

researchers [38, 43, 46]. In these works, the passing of tokens is considered observable if

transitions that produce them are observable since transitions are labeled by events. When

the labels correspond to unobservable events, the token passing is considered as unobserv-

able. According to the logical definition given in the previous chapter, connection elements

between subsystems are not necessarily unobservable. Thus, when such an element is observ-

able, we mean that the corresponding interaction may be observed by the diagnostic agents.

Consequently, the BPN diagnostic problem can be defined as: BPNDP =
⋃n
i=1 BPNDP i.

Each BPNDP i corresponds to DP i, and is defined as:

BPNDP i = (Ni, P
In
i , POut

i ,
〈
P+
i , P

−
i

〉
), where:

• Ni = 〈Pi, Ti, Fi〉 is a behavioral Petri net corresponding to BMi;

• P In
i , POut

i are sets of places denoting the elements of Ini and Outi respectively;
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• and
〈
P+
i , P

−
i

〉
are places that represent the observed manifestations of the subsystem

Si.

Thus, the set of BPNs {Ni | i = 1...n} can be viewed as a partition of a global net model

N = 〈P, T, F 〉 =
⋃n
i=1 Ni such that:

1. P =
⋃n
i=1 Pi, and ∀i⇒ ∃j s.t Pi ∩ Pj , Pij 6= ∅, Pij ⊆ P In

i ∪ POut
i ;

2. T =
⋃n
i=1 Ti, and ∀i 6= j ⇒ Ti ∩ Tj = ∅;

3. P In
i = {p | (p• ∈ Ti) ∧ (•p /∈ Ti)};

4. POut
i = {p | (•p ∈ Ti) ∧ (p• /∈ Ti)}.

In order for N to be a causal behavioral model, it will be, according to the definition given

in section 3.4.3, acyclic. The acyclicity of the global net N may be violated by the presence

of a cycle in at least one of the local net models and/or in the interactions among local

models. Since each local BPN is acyclic by definition, we will assume that the interactions

between local models is also acyclic. Such interactions can be described by a directed graph

IG = (V,E) (IG for Interaction Graph), whose nodes (elements of V ) correspond to common

bordered places between local BPNs. An arc (p, p′) ∈ E iff ∃ a path ℘ joining p to p′ in a

local BPN. Thus, we make the following assumption.

Assumption 1 The graph IG representing interactions between all local BPNs is acyclic.

In fact, when such assumption is relaxed, the diagnosis problem becomes an NP-hard

as it has been discussed by [76] in the context of logical frameworks, because an agent Ai,

after observing a malfunction of the subsystem Si, may blames a neighboring subsystem Sj

managed by Aj; similarly Aj may blames Si to explain such observation. As a result, we

may have a cycle of blames that supports itself.

Example 5.1. As an example, let us consider a system S composed of two interacting

subsystems S1 and S2. The model of each subsystem is described by a BPN representing

its faulty causal model. Figure 5-1 gives the graphical representation of the correspond-

ing models. Dotted circles, labeled x , y , and z , represent the common places that are
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used to model interaction between the two subsystems. x and z model the fact that to-

kens can pass from BPN2 to BPN1; while y models the inverse direction. The models are

adapted from an example given in [67] which is used to represent a partial fault central-

ized model of a car engine. BPN1 is characterized by the entities pist ring state(worn),

pist state(worn) and oil sump state(worn) as local initial states of the described causal

model, and ex smoke(black), oil light(red) and accel resp(del) as local manifestations.

Similarly, for BPN2, three local initial states are considered, they are modeled by places

road cond(poor), ground clear(low) and spark plug meleage(high), and two local manifes-

tations hole oil sump(yes) and temp ind(red). Transitions of each net model the cause-effect

relationships among the corresponding entities; for example in BPN1, transition t1 models

the fact that an “increased oil consumption”(modeled by place oil cons(incr)) is caused by

both a “worn state of piston rings”(modeled by place pist ring state(worn)) and a “worn

state of pistons”(modeled by place pist state(worn)). In our discussion, the meaning of the

different modeled entities is irrelevant, since our aim is to show how to implement diagnostic

inference reasoning by analyzing such net models.
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Figure 5-1: Example of a distributed BPN.
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5.3 A distributed diagnostic reasoning scheme

After receiving a local observation, each diagnostic agent in the multi-agent diagnostic system

starts to explain locally such an observation, and then begins to communicate within its

neighbors to recover the results of a centralized agent having a global view of the whole

system.

5.3.1 A distributed BW-Analysis

For explaining locally the received observation, agent Ai tries to construct, in a backward

fashion, the reachability graph of its local model. This is accomplished by applying the set of

backward firing rules, discussed in section 3.4.3, on the local BPN from a final marking µObsi
i

corresponding to the received observation Obsi (i.e. µObsi
i s.t. µObsi

i (p) 6= 0⇒ p ∈ P+
i ∪P−i ).

This intuitively corresponds to search in the local BPNi from µObsi
i for an initial marking

µinii which entails the observation marking (µinii ` µ
Obsi
i ). In Petri net notations, each agent

Ai should calculate an initial marking µinii from the observation marking µObsi :

µinii = {µ | ∀p ∈ Pi, µ(p) 6= 0⇒ •p = ∅ ∧ µObsi ∈ [µ〉 and

µObsi covers P+
i and zero− covers P−i } (5.1)

Local diagnoses are obtained by restricting the calculated initial markings on the source

places modeling local initial states of the corresponding causal model as well as bordered

places used as inputs to such a model from the neighboring ones. In fact, the marking of

bordered places will be used later for refining the set of local diagnoses.

∆i = {ΠP s
i
(µ) | µ ∈ µinii } (5.2)

where ΠP s
i

denotes the restriction on P s
i = {p | •p = ∅}.

Example 5.2. In order to show how diagnoses are computed locally by an agent Ai,

consider the example depicted in Figure 5-1 such that A1 receives the observation “oil light
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is green”and that there is a “delay in the acceleration response”from S1 and A2 observes

that there is “no hole in the oil sump”and the “indicator of temperature is red”from S2.

One of the possible modeling of the observation of A1 is to mark place oil light(red) with an

inhibitor (white) token, which signifies that ¬oil light(red) = true, and place accel resp(del)

with a normal (black) token. Similarly, the observation of A2 corresponds to mark place

hole oil sump(yes) by an inhibitor token, and place temp ind(red) by a normal one. Such

markings correspond to consider the set P−i empty and P+
i = Obsi for both local diagnostic

problems. It is to be noted that i) in the observation of S1, the value of ex smoke(black) is

not specified, which signifies that we have an incomplete knowledge about the behavior of S1;

and ii) different classifications of the observed findings lead to different diagnostic problem

definitions as it has been discussed in [18], where the authors suggest that for the same

observation, we may have a spectrum of definitions varying from a pure consistency-based

to a pure abductive diagnosis. Figure 5-2 shows the backward reachability graph obtained

by A1 during local explanation of its received observation. Notation p[b] means that place p

is marked with a black token and p[w] that p is marked with a white token; arcs are labeled

with the set of transitions that are fired (in backward fashion); the negation symbol is used

for transitions that are fired with inhibitor tokens and underlined transitions represent forced

ones.

The initial marking µini1 obtained as a result by A1 is < oil sump state (worn)[w],

pist ring(worn)[w], pist state(worn)[w], x [w], z [b] >. By projecting µini1 on the places

modeling initial states of the causal model of S1, we obtain:

∆1 =< oil sump state(worn)[w], pist ring(worn) [w], pist state(worn)[w] >

which means that the observed manifestations are explained locally by the absence of

local failures. Moreover, µini1 specifies that places x and z must be marked by white and

black tokens respectively, which means that such tokens have been entered in BPN1 from

BPN2. We will show later how this information will be used to refine the set of diagnoses.

Similarly, agent A2 constructs the backward reachability graph of BPN2 from the mark-

ing µObs22 . The initial markings obtained as results are the following three markings:

µini12 =< road cond(poor)[w], ground clear(low)[w], spark plug mileage(high)[b],y [b] >;
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Figure 5-2: The BW graph of A1.

µini22 =< road cond(poor)[w], ground clear(low)[w], spark plug mileage(high)[w],y [b] >;

µini32 =< road cond(poor)[w], ground clear(low)[w], spark plug mileage(high)[b],y [w] > .

Thus, agent A2 obtains three local diagnoses, the first two indicate that BPN2 must

receive a normal token in place y from S1; while the later one necessitates an inhibitor token

in y .

Once local diagnoses are obtained, agents begin to communicate among them according to

the markings of common places. In particular, each agent asks its neighbors for the required

marking of its input places. This is accomplished by sending for each local diagnosis a

message Msg containing the marking of its input places.

Msgi→j = µMsg
i→j = {ΠP In

i ∩Pij
(µ) | µ ∈ µinii } (5.3)

Each agent, after receiving such a message, will guarantee that at least one of its local

diagnoses is in conformance with the received marking. The following section describes how

agents act in this case.
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5.3.2 A protocol for the distributed BW-Analysis

In order to ensure that the obtained local diagnoses recover completely global ones that would

be computed by a centralized agent that knows the system’s global model and receives all

manifestation signalizations, each agent must guarantee that the required tokens in its input

places are supported by tokens produced by neighboring agents. Otherwise, there is an

inconsistency between diagnoses of the corresponding agents. To do so, each agent Ai tries

to predict for each obtained µinii (i.e. for each local diagnosis) the marking of its output

places in order to compare them with any received message. Local diagnoses for which such

markings are not consistent with the neighborhood are simply discarded, because they are

not supported by any of the local diagnoses of the other agents and consequently they do

not belong to any of the global diagnoses.

For predicting the marking of output places from an initial marking µinii , agent Ai con-

structs the corresponding marking graph. Unlike the step of local calculations, such a graph

is constructed in a forward fashion, because we need to know the marking of output places

from a known initial marking [60]. Consequently, the graph construction will terminate

when the status of output places is known, since we do not need to calculate all reachable

markings. This can be formalized as follows:

µOuti = {ΠPOut
i

(µ) | µ ∈ [µinii 〉 ∧ p ∈ POut
i ⇒ µ(p) 6= 0} (5.4)

As a final result, agent Ai compares each received message Msgj→i from Aj with the

obtained markings of output places µOuti from each µinii . If for the marking encoded in

Msgj→i there exists at least one marking µOuti such that ∀p ∈ Pij, µMsg
j→i

(p) = µOuti (p) where

Pij denotes common places between BPN models of Ai and Aj, then Ai responds to the

message sent by Aj by a positive response, which means that the Aj’s local diagnosis from

which Msgj→i has been generated is supported by diagnoses of Ai. Conversely, if from all

µinii there does not exist any marking µOuti that supports Msgj→i, then Ai will respond

to Aj by a negative response. Consequently, when agent Aj receives a negative response

to the message Msgj→i from an adjacent agent, it will discard its local diagnosis ∆j from

which Msgj→i has been generated, since it do not conform to diagnoses of the neighborhood
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even if it explains locally the observed misbehavior. Moreover, it may be that the discarded

diagnosis has been used to validate consistency between diagnoses of Aj and those of another

adjacent agent Ak (i.e. k 6= i). As a result, some of Ak’s diagnoses should be eliminated

since they become inconsistent with diagnoses of Aj; and thus the communication between

agents will be initiated again. Accordingly, the consistency checking will terminate after

some communication rounds when a stability condition in terms of local diagnoses of all

agents is achieved.

The recovering of global results that would be derived by a centralized agent by those

derived by local ones can now be captured by the following proposition:

Proposition 1 Let ∆ be the set of global diagnoses corresponding to an overall diagnostic

problem DP = (N, 〈P+, P−〉) that would be derived by a centralized agent; and let ∆i be the

set of local diagnoses corresponding to a local problem DPi = (Ni,
〈
P In
i , POut

i

〉
,
〈
P+
i , P

−
i

〉
)

that are derived by a local agent Ai with DP =
⋃n
i=1 DPi; then: ∆i = ΠNi

(∆), ∀i = 1..n.

Proof. The proof follows from the fact that both global and (respec. local) diagnoses

are given in terms of the status of global (respec. local) source places by applying the same

backward firing rules from a global (respec. local) final marking.

It is to be noted that each round of information exchange between neighboring agents

attempts to ensure what [82] called the local consistency among local solutions in the context

of DES diagnosis. The global consistency property of [82] is achieved when the protocol

terminates.

Example 5.3. Consider our example, discussed previously, to show how agents A1 and

A2 update their diagnoses. After local calculations, each agent sends to the other a message

encoding the required marking of places used as its inputs. Thus, agent A1 sends to A2

the message (x = w, z = b). Similarly, A2 sends for each obtained µini2 the required

marking of y to A1. Then, each agent tries to construct its reachability graph in a forward

fashion to predict the marking of its output places given the initial marking. Thus, A1 will

construct its reachability graph from µini1 = < oil sump state(worn)[w], pist ring(worn)[w],

pist state(worn)[w], x [w], z [b] >. As a result, the marking of y is obtained to be a white
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token. Consequently, A1 responds to the received requests from A2 by sending a positive

response to the message corresponding to µini32 , and a negative one for the other two messages.

Accordingly, A2 retains µini32 as the only legal diagnosis, since µini12 and µini22 require that y

will be marked by a normal token which is inconsistent with knowledge of A1. Independently,

A2 will construct for each obtained µini2 the corresponding forward reachability graph in order

to predict the marking of its output places. According to the three local initial markings

given in the last section µini12 , µini22 , and µini32 , the marking of x will be an inhibitor token

and that of z is a normal one. These values correspond to those requested by A1. In other

words, the local diagnosis of A1 is consistent with the results obtained by A2. In contrast,

not all diagnoses of A2 are consistent with results of A1.

As a final result, the observed misbehavior of the whole system is explained by the

following diagnoses: ∆1 concerns the subsystem S1 and ∆2 concerns S2.

5.4 Conclusion

In this chapter, a distributed causal model-based diagnosis approach was defined. The

approach uses BPNs with common bordered places to describe the causal faulty behavior

of a distributed system. It is a state based approach in the sense that the observation

is modeled as a set of manifestations to be generated when the system to be diagnosed

reaches a particular state. The diagnosis reasoning mechanism is implemented locally as a

backward reachability problem within each diagnostic agent. The global consistency between

diagnoses of the different agents is achieved through exchanging a limited information about

the marking of common places between neighboring BPN models. This requires to construct

in a forward fashion the reachability graph from each local diagnosis to seek if the received

marking is reachable or not.
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Chapter 6

A distributed P-invariant analysis

6.1 Introduction

Even if the modular analysis of Petri net models has been shown powerful to attack the

storage and the time complexity, the BW-Analysis and its distributed version described

previously suffer from the so-called state space explosion problem even for small net models.

This is due to the utilization of reachability graphs as a reasoning scheme especially in

the consistency checking phase for the distributed version where several graphs may be

constructed by each agent.

This chapter focuses on structural analysis of net models instead of reachability graphs to

implement diagnostic reasoning. More particularly, we attempt to relate the set of diagnoses

to that of P-invariants minimal supports of BPN models. Such supports are to be generated

in an off-line manner and will be used to the on-line diagnosis of the system to be diagnosed

The chapter is organized as follows: we start in section 6.2 by showing how to relate the

local diagnoses derived by each agent to the set of minimal supports of P-invariants of the

corresponding BPN model. Such a relation exploits an idea known in answer extraction in

Petri net models of logic programs. Then in section 6.3, we show how agents cooperate among

them to ensure the global consistency between their computed local diagnoses. Finally,

section 6.4 concludes the chapter.
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6.2 Local diagnosis by analyzing P-invariants

Another alternative to obtain the set µinii is to exploit structural properties of net models.

As we have outlined, the aim of this chapter is to concentrate on invariant analysis to

realize diagnostic inference procedures rather than reachability graphs. In particular, we

will concentrate on how to generate initial markings satisfying the conditions of Eq.(5.1)

from a set of P-invariant supports.

For each µ ∈ ∆i, let diagi = {p | µ(p) 6= 0} be the marked places in each local diagnosis;

then Diagi =
⋃
µ∈∆i
{diagi} is a compact representation of ∆i in which each diagnosis diagi

is viewed as a set of source places rather than a marking.

By definition, P-invariants of a net N = 〈P, T, F 〉 correspond to T-invariants of its dual

net ND = 〈T, P, F 〉. The following lemma has been proved in [53, 65]:

Lemma 1 Let N = 〈P, T, F 〉 be a Petri net such that ∀t ∈ T, |t•| ≤ 1 and t ∈ T be a sink

transition; there exists a T-invariant X of N such that X(t) 6= 0 iff t is potentially firable

from the empty marking.

This means that in N there are source transitions firing from the empty marking (i.e.

∀p ∈ P : µ(p) = 0), eventually leading to the firing of t. Consider now the dual net of N ,

∀t ∈ T |t•| ≤ 1 becomes ∀p ∈ P |p•| ≤ 1, which is guaranteed by axiom 1 of Definition 15

given in chapter 3, and the previous lemma can be translated as follows:

Proposition 1 Let N = 〈P, T, F 〉 be a Petri net such that ∀p ∈ P, |p•| ≤ 1, and p ∈ P be

a sink place; there exists a P-invariant Y of N such that Y (p) 6= 0 iff p can potentially be

marked by firing a sequence of transitions from an initial marking µ in which µ(p) 6= 0 ⇒
•p = ∅.

Proof. This is a consequence of Lemma 1, and the fact that P-invariants of a net are

T-invariants of its dual net.

This proposition means that the supports of the P-invariants of a net N modeling a causal

behavior of a system characterize the diagnostic solutions that explain a set of manifestations.

In fact, [68] proposes an algorithm based on analyzing such supports for the centralized causal
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model-based diagnosis on BPNs. Before applying the algorithm, [68] requires to transform,

via an ∧-fusion operation, the BPN model to another equivalent net model in which places

that are “And-ed”in the original BPN are collapsed into a single place representing their

conjunction. More formally:

∀t ∈ TN : if •t = {p1, ..., pk}(k > 1) then substitute in P the set {p1, ..., pk} with the place

p1,k such that •p1,k =
⋃k
i=1
•pi and p•1,k = {t}. It is to be noted that such a transformation is

needed only for getting a right interpretation of P-invariants; and that even if the resulting

net is no longer a BPN, it encodes the same kind of knowledge of the original BPN.

The algorithm can now be sketched as follows: after having calculating the minimal

supports of P-invariants of the ∧-fusion transform of the net model, those leading to mark

places in P− (i.e. {σ | p ∈ P− ∧ p ∈ σ}) are eliminated by taking into account the fact that

if τ , τ ′ are two sets of source places such that τ ⊆ τ ′, if the marking of τ leads to mark

p ∈ P−, then the marking of τ ′ leads also to mark p. Then, the algorithm considers the

coverability of P+; for each p ∈ P+, it builds from remaining supports the list of source

places (i.e. places denoting initial states of the causal model) supporting p (i.e. contained in

a P-invariant support containing p). Final diagnoses Diagi are obtained by combining such

lists.

Example 6.1. Let us change our example depicted in Figure 5-1 so that transition t1 be-

comes an Or-transition. Remember that the observation ofA1 corresponds to oil light(green)

and accel resp(del) (i.e. “oil light is green” and there is a “delay in the acceleration re-

sponse”) and that of A2 corresponds to hole oil sump(no) and temp ind(red) (i.e. there is

“no hole in the oil sump” and the “indicator of temperature is red”). Let us suppose that

all abnormal observations have to be covered, then:

P+
1 = {accel resp(del)}, P−1 = {oil light(red)};

P+
2 = {temp ind(red)}, P−2 = {hole oil sump(yes)}.

Notice that: i) oil light(green) is not represented in the model because it is not part of

the faulty behavior of S1. However, this leads to put the place oil light(red) in the set P−1

meaning that the instance red of the finding oil light contradicts the observed value; and

ii) the ∧-fusion transformation results in replacing places oil sump state(worn) and p5 by
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place poil sump state(worn),p5 in BPN1.

The set of minimal supports of P-invariants of S1 that are computed by A1 are the

following:

σ1 = {pist ring state(worn), oil cons(incr), p1, ex smoke(black)};

σ2 = {pist state(worn), oil cons(incr), p1, ex smoke(black)};

σ3 = {pist ring state(worn), oil cons(incr), p2, lack of oil(sev), p4, y};

σ4 = {pist state(worn), oil cons(incr), p2, lack of oil(sev), p4, y};

σ5 = {pist ring state(worn), oil cons(incr), p2, lack of oil(sev), p3, p6, accel resp(del)};

σ6 = {pist state(worn), oil cons(incr), p2, lack of oil(sev), p3, p6, accel resp(del)};

σ7 = {pist ring state(worn), oil cons(incr), p2, lack of oil(sev), p3, p7, poil sump state(worn),p5 ,

oil light(red)};

σ8 = {pist state(worn), oil cons(incr), p2, lack of oil(sev), p3, poil sump state(worn),p5 , p7,

oil light(red)};

σ9 = {x, lack of oil(sev), p4, y};

σ10 = {x , lack of oil(sev), p3, p6, accel resp(del)};

σ11 = {x , lack of oil(sev), p3, poil sump state(worn),p5 , p7, oil light(red)};

σ12 = {z , accel resp(del)}.

Since place oil light(red) ∈ P−1 , any support predicting the marking of such a place will

be eliminated; hence, σ7, σ8 and σ11 will be discarded because they contain oil light(red).

Moreover, any support that contains one of the places pist ring state(worn), pist state(worn)

and x will be eliminated, since the marking of one of these places conducts to mark

oil light(red) according to the discarded supports. Thus, the only support that survives

is σ12 which explain locally the marking of accel resp(del) by the arrival of a token in place

z . In other words, the observed local findings are explained by an outside failure propagated

to S1 through z .

Similarly, for A2 seven minimal supports of P-invariants of S2 are generated:

ς1 = {road cond(poor), p8, x};

ς2 = {road cond(poor), p8, p9, hole oil sump(yes)};

ς3 = {ground clear(low), p10, hole oil sump(yes)};
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ς4 = {spark plug mileage(high), spark plugs(used up), p11, spark ign(irr), temp ind(red)};

ς5 = {spark plug mileage(high), spark plugs(used up), p11, z};

ς6 = {y , p11, spark ign(irr), temp ind(red)};

ς7 = {y , p11, z}.

Supports ς2, ς3 are discarded because they contain hole oil sump(yes) which belongs to

P−2 . Since ς1 contains road cond(poor) which is contained with hole oil sump(yes) in the

same support, it will be also eliminated. The remaining supports will be used by A2 to

generate diagnoses that explain locally the marking of temp ind(red).

As a result, the observed symptom is explained by one of the following two local diagnoses:

diag1
2 = {spark plug mileage(high)};

diag2
2 = {y}.

The first one means that temp ind(red) is caused by a local failure; while the latter

signifies that there is a failure in the neighborhood affecting the behavior of S2 through y .

Thus, the general diagnostic algorithm based on the P-invariant analysis used by each

agent Ai to compute local solutions can be sketched informally as follows:

Algorithm 1: Ai’s Local Computation

Input: a local diagnostic problem in terms of Petri nets

DPi = (Ni, 〈P In
i , POut

i 〉, 〈P+
i , P

−
i 〉);

Output: a set of local diagnoses in terms of minimal supports;

begin

compute the minimal supports of the P-invariants for Ni;

let L be the list of such minimal supports;

for each p ∈ P−i do

for each support σ | p ∈ σ do // for each σ such that p ∈ σ

τ ← {p′ ∈ σ | •p′ = ∅};

delete from L all supports where τ occurs;

end for

end for

end.
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It is to be noted that in the above algorithm, Ni is considered as the ∧-fusion transform

of the original BPN model, and that the local diagnoses can be obtained by combining source

places belonging to the remaining supports. We choose to not combine such supports during

this first step of pruning because they are needed by agents during the consistency checking

step.

6.3 Protocol for distributed P-invariant analysis

To ensure global consistency between local diagnoses of the different agents, each one asks

their neighbors for the required set of its input places that need to be marked (i.e. that

necessitate to receive tokens from neighboring net models). According to Eq.(5.1), such

places can be obtained by choosing the marked places from the results of projecting the set

µinii on P In
i (i.e. {p | ∀p ∈ Pi : µ(p) 6= 0∧ µ ∈ ΠP In

i
(µinii )}) which is equivalent to choose the

marked input places from ∆i. Thus, agent Ai will send to each of its neighbors a message

indicating what input places are used to explain the local observation for each of its obtained

local diagnoses ∆i.

Msgi→j = {p | p ∈ P In
i ∩ Pij ∧ µ(p) 6= 0 ∧ µ ∈ ∆i} (6.1)

Equation 6.1 is given in terms of the set of reachable markings. Because we make use

of the set of minimal supports of P-invariants as a basis on which diagnosis is accomplished

and not directly on the net models and on the associated reachability graphs, we wish to

exploit such supports in order to check the required consistency; and hence avoiding the

combinatorial explosion of state space characterizing reachability graphs. Thus, equation

6.1 can be transformed as:

Msgi→j = {p | p ∈ P In
i ∩ Pij ∩ σ ∧ σ ∈ L} (6.2)

where L is the set of Ni’minimal supports pruned by Algorithm 1.

In this spirit, when agent Aj receives a message Msgi→j, it will examine its remaining

set of supports to check if places contained in the received message belong at least to one
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of such supports. If so, it will respond, as in the distributed BW-Analysis, by a positive

response indicating that diagnoses of Aj are consistent with the diagnosis of Ai from which

Msgi→j has been generated. Otherwise, Aj’s local diagnoses do not support the diagnosis

∆i of Ai; and hence, a negative response should be sent. Reception of responses by agents

is handled in the same manner as in the distributed BW-Analysis.

Hence, Proposition 1 of chapter 5 can be rewritten as follows:

Proposition 2 Let Diag be the set of global diagnoses corresponding to an overall diagnostic

problem DP = (N, 〈P+, P−〉) that would be derived by a centralized agent; and let Diagi be

the set of local diagnoses corresponding to a local problem DPi = (Ni,
〈
P In
i , POut

i

〉
,
〈
P+
i , P

−
i

〉
)

that are derived by a local agent Ai with DP =
⋃n
i=1 DPi; then: Diagi = ΠNi

(Diag),∀i =

1..n.

Proof. Since Diag and Diagi are simplified representations of ∆ and ∆i respectively,

the proof becomes obvious from Proposition 1 of page 70.

We can now extend our previous algorithm of local computation to account for message

exchange between the different agents. For simplicity purposes, the algorithm will be pre-

sented in three parts: the first part (Algorithm 2) extends Algorithm 1 to generate messages

that will be sent to the neighborhood and to eliminate local solutions for which it receives

a negative response. The second part (Algorithm 3) treats the case of a message reception

by a neighboring agent Aj. Finally, Algorithm 4 generates local diagnoses that are globally

consistent and may be viewed as the last task of each diagnostic agent to be executed after

the completion of the communication protocol.

Algorithm 2: Ai’s Local computation with communication

Input: the list L of minimal supports pruned by Algorithm 1;

Output: a list of minimal supports that are consistent with those of the

neighborhood;

begin

Msg list← ∅;

for each σ | p ∈ σ ∩ P In
i do

if (Msgi→j, σ
′) /∈Msg list |Msgi→j = p then
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Msgi→j ← {p} where j is such that p ∈ POut
j ;

Send Msgi→j to Aj;

Msg list←Msg list ∪ {(Msgi→j, σ)};

end if

end for

while Msg list 6= ∅ do

receive(rep);

let rep be the response corresponding to (Msgi→j, σ);

if rep = negative then

delete from L all supports where Msgi→j occurs;

end if

Msg list←Msg list\{(Msgi→j, σ)};

end while

end.

Algorithm 3: Treatment of a received message

Input: a received message Msgi→j;

Output: a positive or a negative response;

begin

if ∃σ ∈ L |Msgi→j ∈ σ then

reply to Msgi→j with a positive response;

else

reply to Msgi→j with a negative response;

end if

end.

Algorithm 4: Diagnoses generation

Input: the list L of minimal supports pruned by Algorithm 1;

Output: local diagnoses that are globally consistent;

begin

X ← ∅;
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for each p ∈ P+ do

if @σ ∈ L | p ∈ σ then no solution;

H ′ ← ∅;

for each σ ∈ L | p ∈ σ do

H ′ ← H ′ ∪ {p′ | p′ ∈ σ ∧ •p′ = ∅};

end for

X ← X ∪ {H ′};

end for

combine elements in X to produce Diagi;

end.

The proof that the above algorithms are sound follows from Proposition 2. It means

that the set L of minimal supports of the P-invariants of a global BPN is recovered by all

agents through distributed calculations. In effect, L corresponds to the composed union

over common bordered places of the sets Li of all local BPNs. In particular, let pm(v) ∈ P+

be a sink place corresponding to a manifestation instance m(v) which is observed by the

centralized agent, then pm(v) is certainly present in at least one of the supports of L. If

pm(v) ∈ P+
i (i.e. if m(v) is within DPi), then pm(v) is also present in at least one support σ

of Li. In this case, m(v) is explained either by a local failure in the associated subsystem

Si or by a failure in the neighborhood (i.e. pm(v) is present with some common places in

σ). The proof that the above algorithms terminate (i.e. actually Algorithm 2) after finitely

many communication rounds relies on the assumption that the BPN models are safe and

their composed global one is acyclic (Assumption 1).

Example 6.2. In order to show how agents update their diagnoses, let us return again

to our example. After local computations, each agent sends to the other a message that

contains the required places used as its inputs for each of its local diagnoses. Thus, agent

A1 sends to A2 the message Msg1→2 = {z} (Notice that z has been identified as the only

local diagnosis for the observation of A1). Similarly, A2 sends Msg2→1 = {y} to agent A1.

Then, each agent tries to test if the received common place belongs to its remaining set

of supports. Thus, A1 concludes that there is an inconsistency between its diagnosis and
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knowledge of A2; because its list of supports contains only σ12 and y /∈ σ12. Consequently, it

responds by a negative response; and accordingly, A2 will discard ς6 and ς7. Independently,

when A2 receives Msg1→2 = {z}, it concludes immediately that z belongs to its supports ς5

and ς7 (i.e. z belongs to the remaining supports even after eliminating ς7), and it responds

with a positive response. Since this first round of communication has resulted in a modi-

fication of A2’s diagnoses; agents will restart the communication again. During the second

communication round, local diagnoses remain unchanged; and the process terminates with

σ12 as the only support for A1 and {ς4, ς5} for A2. This means that Diag1 = {z} (i.e. for

A1, the local observed symptom accel resp(del) is caused by a failure in the neighborhood

which is propagated to S1 through z ), and Diag2 = {spark plug mileage(high)} (i.e. the

temp ind(red) observed by A2 is explained by spark plug mileage(high)).

6.4 Conclusion

Besides local computations, the consistency checking is also accomplished through exploiting

structural properties of the BPN models. In effect, when an agent receives a message, it

seeks if the content of such a message belongs to its remaining supports. Thus, instead of

constructing a set of reachability graphs for each received message, the receiver agent will

make a simple belonging test to respond to the sender one.
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Chapter 7

Relationships among manifestations

7.1 Introduction

A close inspection of the analysis techniques presented in previous chapters (chapters 5 and

6) concludes that they make abstraction from relationships that may exist among manifesta-

tions during their signalization, since all the observed findings are gathered at a single time

point which is the starting moment of the diagnostic process. This is due to the fact that

any instance of a finding (i.e. a manifestation state) in the causal model is represented by

a sink place in the corresponding net model; that is, BPNs have been used without taking

into account the precedence of occurrences between the generated symptoms. The aim of

this chapter is to extend the work presented in these chapters to handle such relationships in

the sense that the made observation is viewed as a (partially ordered) observable sequence

(i.e. Definition 5 given in page 38). This will necessitates, on one hand the representation

of these relations in the BPN model; and on the other hand the definition of other firing

rules based on BPNs for the BW-Analysis and consequently the adaptation of the invariant

analysis of [68] to account for such relations. Moreover, real world applications of diagnosis,

such as fault management in telecommunication networks, are characterized by the fact that

some of the generated manifestations may be lost or suppressed. Consequently, the diagnosis

process may not be able to explain the observed misbehavior. In terms of a BPN model,

the BW-Analysis may ends within an inconsistent marking and that of invariants within an

empty set of supports. In order to handle such phenomenon, the retained solution consists to
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slightly change the set of observed manifestation instances so that the given problem admits

a particular interpretation model.

We start this chapter by showing in section 7.2 how to introduce in a BPN model prece-

dence relationships that may exist between manifestation instances. Then in section 7.3, we

propose a novel set of backward firing rules to be considered in conjunction with those of fig-

ure 3-2 for diagnosis based on reachability graphs. Section 7.4 considers the invariant-based

technique. In particular, we will motivate the adaptation of our modelization of such rela-

tionships in order to apply the P-invariant analysis technique. The problem of manifestation

losses and how to handle it is signaled briefly in section 7.5. Finally, section 7.6 concludes

the chapter.

7.2 Relationships model

From section 3.4.3, one can conclude that in BPN models relationships among manifestation

states are inexistent. In order to model this kind of relations, we proceed as in [4] when we

have introduced in PN models transitions among places representing manifestation instances

to model occurrence orders between symptoms. More formally, if from a given state instance

s1, the manifestation instance mj will be generated after generating mi; this may be modeled

by adding a transition from the place corresponding to mi to that corresponding to mj.

Moreover, the added transition will be an Or-transition, if mj can be caused by another

state different than s1; otherwise, it will be an and-transition (i.e. a linear transition). Note

that if mi and mj are to be generated without any order’s constraint (i.e. independently)

when the system reaches the state s1, then no transition is added since the semantics of

fork transitions in BPNs allow to model such independency. Figure 7-1 summarizes these

graphically.

7.3 Extending the BW-Analysis technique

The backward firing rules defined in [2] (see figure 3-2) make abstraction from dependency

relationships that may exist among fault indications; and consequently the construction of
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Figure 7-1: Relationships that may exist between manifestation instances.

the markings graph requires that the b-w marking from which it is started is such that

the marked places are only sink ones (places representing manifestation states of the causal

model). Because we allow manifestations to be modeled by any place (either a sink or a

not sink place) for introducing in the net model relationships among them, it is necessary

to define other firing rules to account for such relations. In effect, when a set of symptoms

have to be generated in a given order from a particular state instance, the diagnosis process

should not identify as diagnostic solutions other causes that are different from the primary

source of such state instance.

The possible relationships of occurrences among manifestations are of two types: depen-

dency and independency relations. For the latter case, the firing rules of figure 3-2 remain

valid. In order to handle dependency relationships between manifestations, we need to look

in the behavioral model if such dependencies exist. If so, the above firing rules cannot explain

the observed misbehavior. In effect, according to the modeling manner presented previously,

if the symptom mj is observed present (respectively absent) after observing mi, then the two

places corresponding to such manifestations are marked with normal (respectively inhibitor)

tokens. Thus, the backward construction of the markings graph will remove token from the

place corresponding to mj and puts it into the place corresponding to mi. Nevertheless, be-

cause the BPN model is safe, any place will contain at most one token, and so the removed

token is consumed. Thus, the following firing rules given graphically in figure 7-2 are used
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to construct the markings graph.

 

Figure 7-2: Backward firing rules taking into account relationships among manifestations.

The meaning of the first two rules is that if a symptom mj will be generated only when

another symptom mi has been generated, then explaining mj becomes a question to explain

mi. For the case where mj may be generated either after generating another symptom mi or

when the system reaches another state (that is, independently from mi), then if we observe

mj we will verify if mi has been observed. If so, then explaining mj is equivalent to explaining

mi. This is what the next two rules of Figure 7-2 denote. The last two rules of figure 7-2

symbolize the fact that when mj has been observed present (a black token) and that mi

has been found to be absent (a white token) or vice versa, then explaining such observation

necessitates to explain each symptom independently. Let us illustrate how these firing rules

can be exploited to solve diagnostic problems.

Example 7.1. Consider the net model of figure 7-3 with places pm1
and pm2 are marked

with normal tokens and pm3 is marked with an inhibitor token. This corresponds to observing

the presence of pm1 and pm2 and the absence of pm3 . Let us suppose that the observation is

received in the order: m2,m1,¬m3 (i.e. as a sequence of findings). A backward reachability

graph can be obtained by applying the above firing rules as shown in figure 7-4. In this

graph, the observed misbehavior is explained by the state instance c2 and the negation of

the state instance c3. It is to be noted that the instance c2 suffices to explain both m1 and

m2 (in the order m2 followed by m1).
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Figure 7-3: Example of a BPN model with relationships among manifestations.

7.4 Extending the P-invariant technique

According to the analysis technique exposed in chapter 6, the basic idea of causal model-

based diagnosis by P-invariant analysis consists to discard minimal supports that contain

places belonging to the set P−. Final diagnoses are obtained by combining the lists of

source places from the remaining supports. Thus, in order to address the above relationships

between manifestation instances, we need to retain the same idea since if two places pmi
and

pmj
corresponding respectively to manifestation instances mi and mj are within the same

support and one of the them is observed present while the other is observed absent, we will

discard such a support and consequently the present instance becomes inexplicable.

Hence, the above model of relationships requires to be slightly changed in the sense that

any manifestation instance is represented by a sink place. In effect, we need to an artificial

manner to model the precedence of occurrences between two manifestations.

7.4.1 Adaptation of the relationships model

Referring to figure 7-1 parts (b) and (c), instead of adding a simple transition from place pmi

to pmj
, we introduce a fork transition t from p1 such that |•t| = p1∧|t•| = {pmi

, p̄mi
}∧|p̄•mi

| =

t1. The place p̄mi
is added to keep pmi

a sink one; that is, if t fires, then pmi
and p̄mi

are
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Figure 7-4: The BW graph of Figure 7-3 model.

simultaneously marked before consuming the token of p̄mi
by firing t1. Figure 7-5 shows such

modification graphically.

Example 7.2. As an example, figure 7-6 takes the previous one with the necessary modi-

fication of relationships among pm2 and pm1 . In this example, place p is added as an output

place of transition t7 and an input place of t to keep pm2 a sink place.

7.4.2 Diagnosis by P-invariant analysis

As for the case treated by chapter 6, we need to interpret such relationships by analyzing the

set of minimal supports of BPN invariants. In effect, the dependency relationships that may

exist between two manifestation instances can be reformulated in terms of dependencies

among the causes and effects (i.e. the events and conditions in Petri nets terminology)

occurred in the system to be diagnosed. In particular, in the case where the manifestation

instances mi and mj have to be generated in a given order, for example mi followed by

mj (denoted mi ≺ mj), the set of internal events and conditions that take place before

generating mi will be included into the set of events and conditions that will take place
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Figure 7-5: A refined model of relationships among manifestations.

before generating mj. For the case where the two manifestation instances have to generated

independently (denoted mi ‖ mj), the inclusion relation does not hold.

In order to characterize such dependencies, let us introduce the following definition of

covering among sets of places.

Definition 1 A set of places τ 1 covers a set of places τ 2 iff τ 1 6= τ 2 and every place in τ 2

occurs in τ 1.

By considering the minimal supports of P-invariants, we have to characterize the evolu-

tions captured by all the places listed in each support. Therefore, we introduce the following

theorem.

Theorem 1 Let τmi
be the set of places listed in the same support containing pmi

, and τmj

be the one listed with pmj
.

1. τmj
covers τmi

=⇒ mi ≺ mj.

2. any of the two sets τmi
, τmj

do not cover the other =⇒ mi ‖ mj.

Proof. In fact, the set τmi
represents the set of internal conditions that will take place

before generating the manifestation instance mi. Since the covering relation consists of an in-

clusion relation between sets and according to the discussion given in the previous paragraph,

the proof of the theorem becomes obvious.
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Figure 7-6: A refined example of a BPN model with relationships among manifestations.

Example 7.3. As it is suggested in chapter 6, before computing the P-invariants of a

BPN model, we will perform the ∧-fusion transformation of the original net. Consider the

BPN of Figure 7-6, in the ∧-fusion transform places pc9 and pc10 are collapsed into the place

pc9,c10 ; and the corresponding minimal supports are the followings:

σ1 = {pc1 , pc5}; σ6 = {pc3 , pc8 , pc11 , p, pm2};

σ2 = {pc1 , pc6 , pm1}; σ7 = {pc3 , pc8 , pm3};

σ3 = {pc2 , pc7 , p, p̄m2 , pm1}; σ8 = {pc3 , pc9,c10 , pm4};

σ4 = {pc2 , pc7 , p, pm2}; σ9 = {pc4 , pc9,c10 , pm4}.

σ5 = {pc3 , pc8 , pc11 , p, p̄m2 , pm1};

Let us consider again the observation sequence m2,m1,¬m3 as in Example 7.1. If we

choose to entail all abnormal findings, then P+ = {m1,m2} and P− = {m3}. Moreover,

since we consider the observation as a sequence of findings, we will consider P+ = m2m1.

By applying Algorithm 1 given in the previous chapter, supports σ5, σ6, σ7 and σ8 are

discarded. From remaining supports, we find that σ2 and σ3 explain (or entail) the presence

of m1; and σ4 explains m2. According to Algorithm 4 of chapter 6 where all observed findings

are made in a single time moment, the above observation is explained by combining elements

of H ′1 = {pc1 , pc2} and H ′2 = {pc2}. In the case where precedence of occurrences among the

observed findings is considered, theorem 1 requires to examine not just the sets H ′ of source
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places but all the content of remaining supports where each pm ∈ P+ is present. For our

example, we will examine supports σ2, σ3 and σ4. From σ2, the set τm1 is identified to be

τm1 = {pc1 , pc6}, and that identified from σ3 is τm1 = {pc2 , pc7 , p, p̄m2}. Similarly, for pm2 ,

the set τm2 = {pc2 , pc7 , p} is identified from σ4. Comparing τm2 with the two values of τm1 ,

we find that τm2 is covered by the second value of τm1 which is identified from σ3 (i.e. the

events and conditions that take place before marking the place pm2 according to σ4 represent

a necessary condition to mark later the place pm1 according to σ3). As a consequence, σ2 will

be also discarded because the two supports σ3 and σ4 explain the presence of m2 followed

by m2. As a final result, the observed manifestations are caused by the instance c2.

7.5 Inconsistent markings

Up to here, the proposed analysis techniques both with or without relationships among

manifestation instances consider that all the signaled instances of manifestation findings are

supposed correctly received. Nevertheless, in real world applications of diagnosis such as

fault management in telecommunication networks, the made observation may be altered.

That is, some of the generated manifestations may be lost or suppressed. For example, in

case of saturation of the telecommunication network (in fact of the management network),

some full buffers may provoke losses of alarm signalizations. This is explained notably by the

fact that the management information have generally a least priority than the data traffic.

Such losses induces “holes”in the observation at the diagnostic agent.

In terms of the BW Analysis, all the alternatives in the backward construction of the

reachability graph may end within inconsistent b-w markings. This means that, given a fork

transition, it is impossible to have its output places consistently marked with different types

of tokens. In the case of P-invariant analysis technique, all the supports may be eliminated.

As a result, the set of diagnoses for the received observation becomes empty and hence the

observed misbehavior is not explicable. In effect, the holes in the observation OBS may lead

to an inconsistency in the given context1 (i.e. the given diagnostic problem).

In order to handle such inconsistency, we proceed as in [4] when we have looked to the

1In fact, losses of manifestation signalizations may lead to a logical inconsistency in BM ∪OBS.
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detected inconsistency as a result of manifestation masking. The retained solution consists

to restore the consistency to the problem in question through an extension of manifestation

instances that are observed to be present. Such extension is based on the identification of

instances that are known to be absent and that when are supposed masked will restore the

required consistency. This can be done by searching in the net model for manifestation

places such that for generating one of them the others will be generated.

Example 7.4. As an example, let us suppose to change the observation given in the above

example of figure 7-3 such that m1,m2,m4 are observed present and m3 is observed absent.

Thus, the backward analysis starts with < m1[b],m2[b],m3[w],m4[b] > . As a result, we

get < c2[b], c4[b], c8[w], c9[b] > as the last alternative which is an inconsistent b-w marking

because c8 and c9 are output places of the same fork transition t3. By analyzing the net

model of figure 7-3, we find that m3 and m4 will be marked in all cases with the same type

of tokens. That is, we conclude that m3 has been masked; and consequently the diagnosis

to the given problem is represented by the b-w marking < c2[b], c3[b], c4[b] > .

7.6 Conclusion

For diagnostic problems where the generated manifestations have to be signaled in a given or-

der, the introduction of such orders in the model is essential in order to correctly diagnose the

observed misbehavior. Accordingly, the analysis techniques of BPNs presented in previous

chapters need to be extended to handle these relationships among manifestations. Finally,

we have informally discussed the phenomenon of manifestation masking which may conduct

to an inconsistency in the given diagnostic problem and how to face such a phenomenon.
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Chapter 8

Conclusion

The advent of large distributed technical systems like computer and telecommunication

networks has been one of the most striking developments of our time. Research in distributed

model-based diagnosis as documented in several AI conferences and a series of workshops

has tackled the question of how to support such systems by a diagnosis architecture similar

to that given in 4-1.

In this thesis, we have introduced a BPN-based framework for the diagnosis of spatially

distributed systems. The motivation for such a framework is the unnecessary complexity

and communication overhead of centralized solutions. Consider a distributed system with

n nodes, e.g. a computer network consisting of n machines. When using a centralized

diagnosis system, the size of the system description (i.e. number of ground formulas in

logical frameworks) is linear in n. Diagnosis time will usually be worse than linear in n. Also

all observations have to be transmitted to the central diagnosis machine, causing a large

communication overhead.

Our BPN-based approach views the overall system to be diagnosed as a set of interacting

subsystems. Each subsystem is diagnosed by an agent which has detailed knowledge over

his subsystem and an abstract view of the neighboring subsystems. Most failures can be

diagnosed locally within one subsystem. This decreases diagnosis time dramatically in large

systems. In the case of the computer network most machines in a subnet can usually fail

without affecting machines in other subnets. Only those computers in other subnets can

be affected which have sent messages to the faulty machine. Moreover, the local computa-
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tion of diagnoses avoids the communication overhead which would be needed to forward all

observations to the central diagnosis engine.

Failures, which affect more than one subsystem are diagnosed by the agents cooperating

with each other. The cooperation process is triggered locally by an agent, when it realizes

that it can not explain the observations by a failure in his own subsystem. The cooperation

process is guided by a small amount of topological information. More particularly, local com-

putations are accomplished by analyzing BPN models in a backward fashion starting from

a final marking which correspond to the made observation and ending up with initial source

causes. Such a backward analysis is realized either by constructing a reachability graph or

by invariant computation. The invariant technique presents the advantage of efficiency in

terms of the storage and time complexity compared to the reachability graphs technique.

For experimental results, we have implemented the distributed analysis techniques (i.e.

both the BW-Analysis and the P-invariant approach) on a local Ethernet network where

each agent resides in a particular host of the network. The objective is to perform different

series of experiment addressing the following issue: comparison between the distributed

invariant approach to diagnosis and that based on reachability graphs (i.e. the distributed

BW analysis approach) in terms of their running time. Actually, the experiment has been

done on a fewer academic examples of small size (no more than 20 places and 20 transitions

for each BPN). We considered several cases of malfunctions for each system model in such

a way to consider all the main fault evolutions described in the model. Preliminary results

of such a comparison showed a quite good behavior of the invariant based approach with

respect to the reachability graphs approach.

Many issues remain to be investigated. Among those we mention:

• the possibility of using common transitions, instead of bordered places, between BPNs

to model interactions among subsystems and then exploiting T-invariants rather than

P-invariants as a structural technique.

• the adoption of a High-Level Net formalism such as Colored Petri Nets to represent

causal models; in this case it could be possible to choose between performing analysis

directly on it or to unfold the net into an ordinary Petri Net (this is possible because
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each state or manifestation can assume a finite number of different instantiations) on

which the proposed analysis techniques can be performed.
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[20] L. Console, L. Portinale, T. Dupré, and P. Torasso, Combining Heuristic and Causal

Reasoning in Diagnostic Problem Solving, In Second Generation Expert Systems, J.M.

Davis, J.P. Krivine, and R. Simmons editors, Springer Verlag, 1993.

[21] P. T. Cox and T. Pietrzykowski, General diagnosis by abductive inference, In Symposium

on Logic Programming, pp.183-189, 1987.

[22] M. O. Cordier and A. Grastien, Exploiting independence in a decentralised and in-

cremental approach of diagnosis, In Manuela M. Veloso, editor, IJCAI, pp.292–297,

Hyderabad, India, 2007.

[23] R. Davis, Diagnostic Reasoning Based on Structure and Behavior, Artificial Intelligence

24(1-3), pp.347-410, 1984.

[24] R. Davis and W. Hamscher, Model-based Reasoning: Troubleshooting, In Exploiting

Artificial Intelligence, H. E. Shorbe editor, pp.297-346, Morgan Kaufmann, 1988.

[25] R. Debouk, S. Lafortune, and D. Teneketzis, Coordinated decentralized protocols for

failure diagnosis of discrete event systems. Journal of Discrete Event Dynamical Sys-

tems: Theory and Application, 10:33–86, 2000.

[26] R. Debouk, S. Lafortune, and D. Teneketzis, On the effect of communication delays

in failure diagnosis of decentralized discrete event systems, Discrete Event Dynamic

Systems, 13(3):263–289, 2003.

[27] J. de Kleer and B. C. Williams, Diagnosing multiple faults, Artificial Intelligence 32(1),

pp.97-130, 1987.

[28] J. de Kleer and B. C. Williams, Diagnosis with behavioral modes, In Proc. of the 11th

IJCAI, Detroit, pp.1324-1330, 1989.

97



[29] J. de Kleer, A. K. Mackworth, and R. Reiter, Characterizing diagnoses and systems,

Artificial Intelligence 56(2-3), pp.197-222, 1992.

[30] J. de Kleer, Fundamentals of Model-based Diagnsis, Safe-Process, 2005.

[31] O. Dressler and P. Struss, The Consistency-based Approach to Automated Diagnosis

of Devices, In U. Gnowho ed., A Great Collection in Studies in Logic, Language and

Information, CLSI Publications, pp.1-46, 1996.

[32] B. El-Ayeb, P. Marquis, and M. Rusonowitch, Preferring diagnosis by abduction, IEEE

Transactions 23(3), 1993.

[33] Y. El Fattah and P. O′Roke, Learning Multiple Fault Diagnosis, Technical Report 91-06,

Department of Information and Computer Science, University of California, Irvine, CA,

1991.

[34] E. Fabre, A. Benveniste, and C. Jard. Distributed diagnosis for large discrete event

dynamic systems. In 15th IFAC World Congress, Barcelona, July 2002.

[35] E. Fabre, A. Benveniste, S. Haar, and C. Jard, Distributed monitoring of concurrent

and asynchronous systems, Discrete Event Dynamic Systems, 15(1):33–84, 2005.

[36] E. Fabre and A. Benveniste, Partial order techniques for distributed discrete event sys-

tems: Why you cannot avoid using them. Discrete Event Dynamic Systems, 17(3):355–

403, 2007.

[37] E. Garcia, A. C. Salvador, F. Morant, E. Q. Cucarella, and R. B. Giménez. Modular fault
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Abstract

This thesis deals with the problem of distributed causal model-based diagnosis on interacting Be-

havioral Petri Nets (BPNs). The system to be diagnosed comprises different interacting subsystems

(each modeled as a BPN) and the diagnostic system is defined as a multi-agent system where each

agent is designed to diagnose a particular subsystem on the basis of its local model, the local re-

ceived observation and the information exchanged with the neighboring agents. The interactions

between subsystems are captured by tokens that may pass from one net model to another via

bordered places. The diagnostic reasoning scheme is accomplished locally within each agent by

exploiting classical analysis techniques of Petri nets like reachability graph and invariant analysis.

Once local diagnoses are obtained, agents begin to communicate to ensure that such diagnoses are

consistent and recover completely the results that would be obtained by a centralized agent having

a global view about the whole system.

Keywords: model-based diagnosis, causal models, Petri nets, reachability analysis, invariant anal-

ysis.

Résumé

Cette thèse traite le problème de diagnostic à base de modèles causaux par réseaux de Petri com-

portementaux (BPNs). Le système à diagnostiquer est considéré comme une collection de sous-

systèmes en interaction (chacun est modélisé comme un BPN) et le système de diagnostic est défini

comme un système multi-agents où chaque agent est chargé de diagnostiquer un sous-système par-

ticulier en se basant sur son modèle local, l’observation locale reçue et les informations échangées

avec les agents voisins. Les interactions entre les sous-systèmes sont capturées par des jetons qui

peuvent passer d’un modèle à l’autre via des places communes entre modèles BPNs. Le mécanisme

de résolution est accompli localement au niveau de chaque agent par exploitation des techniques

classiques d’analyse des réseaux de Petri comme l’analyse à base de graphes d’atteignabilité et celle

basée sur les invariants. Une fois les diagnostics locaux sont obtenus, les agents entrent dans une

étape de communication afin d’assurer que ces diagnostics sont cohérents et recouvrent les résultats

obtenus par un agent centralisé ayant une vision globale autour du système entier.

Mots-clés : diagnostic basé-modèle, modèles causaux, réseaux de Petri, analyse d’atteignabilité,

analyse d’invariants.
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