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Introduction

The estimation of quantiles of a distribution is of great interest in many applications when the

parametric form of the underlying distribution is not available. In addition, extreme quantiles often

seem to be the natural thing to estimate in many applications when the underlying distribution is

skewed and heavy-tailed, and in particular the extreme quantiles that play an important role in

applications to both statistics and probability, namely the bene�ts of adjustment, and the Value-

at-Risk Insurance and �nancial risk management. In addition, a large class of actuarial measures

of risk can be de�ned as functional quantiles.

Furthermore, estimates of extreme quantiles of the loss distribution in actuarial and �nancial risk

management are fundamental elements of business. From the actuarial point of view, quantile

extreme called extreme Value-At-Risk (VaR) which is generally de�ned as the maximum potential

loss that should be attained with a given probability over a given time horizon.

The Value at Risk is the worst expected loss over a horizon given time for a given con�dence level.

In the majority of situations, the losses are small, and extreme losses occur rarely, so they are rare

events. But the number and size of extreme losses can have an important in�uence on the bene�t of

the company. The most popular speci�cations are the lognormal, Weibull and Pareto distributions

or a mixture of lognormal and Pareto distributions. The parametric and nonparametric methods

work well in traditional areas of the empirical distribution where there are many observations,

but they provide a poor adjustment at the extreme tail of the distribution. This is evidently a

disadvantage because the extreme risk management calls for the estimation of quantiles and tails

of distribution that are generally not directly observable from the data.

Most of existing quantile estimators have problems of bias or ine¢ ciency levels of high probability.

To solve this problem, we suggest using the estimation that is called transformed kernel quantile

estimation, which is based on the estimation of quantiles of the transformed variable so it can

easily to be estimated using a classical approach of the kernel estimation and then taking the
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inverse transform, this idea was �rst used in the context of density estimation by Devroye and

Gyor� (1985) for heavy-tailed observations. The idea is to transform the original observations

fX1; :::; Xng in a sample

fZ1; :::; Zng := fT (X1) ; :::; T (Xn)g

where T is a given function with values in ]0; 1[.

The subject of the thesis is not about solving the problem of bias for the classical kernel estimator

of extreme quantiles for heavy-tailed distributions, but we focus on the reduction of the mean

squared error especially when dealing with probabilities close to one, for that we propose a new

estimator of the quantile function based on the modi�ed Champernowne transformation. we will

concentrate not to estimate the quantiles of X based on the observations fX1; :::; Xng but to

estimate the quantiles of Z = T (X) based on the sample fZ1; :::; Zng where Zi = T (Xi). Then the

quantile will be estimated: Qn;X (p) = T�1 (Qn;Z (p)) : This new estimator improves the existing

results.

Buch-Larsen et al. (2005) suggested to choose T so that T (X) is close to the uniform distrib-

ution. They proposed a kernel estimator of the density of heavy-tailed distributions based on a

transformation of set of the original data with a modi�ed Champernowne distribution that is a

heavy-tailed Pareto-type (see Champernowne, 1936 and 1952), and applied to transformed data.

For the nonparametric estimation of the quantile function, the smoothing parameter controls the

balance between two considerations: bias and variance. Moreover, the mean square error (MSE),

which is the sum of squared bias and variance, provides a composite measure of performance of the

estimator. Therefore, the optimality in the sense of MSE is not seriously a¤ected by the choice

of the kernel but is a¤ected by that of the smoothing parameter (for details, see Wand and Jones,

1995).

The kernel estimator for heavy-tailed distributions has been studied by several authors Bolancé

et al. (2003), Clements et al. (2003) and Buch-Larsen et al. (2005) propose di¤erent families of

parametric transformation that they all make the transformed distribution more symmetric than

the original, which in many applications are generally highly asymmetric right.

Buch-Larsen et al. (2005) propose an alternative transformation such as that based on the distri-

bution of Champernowne, where they have shown in simulation studies that this transformation

is preferable to the method of transformation in the case of heavy-tailed distributions.
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The thesis is organized into four chapters:

The �rst part of the �rst chapter is devoted to the presentation of the concept of heavy-tailed

distributions and di¤erent classes of this type of distributions. The heavy tailed distribution are

related to extreme value theory and allow to model several phenomena encountered in di¤erent

disciplines: �nance, hydrology, telecommunications, geology... etc. Several de�nitions were associ-

ated with these distributions as a function of classi�cation criteria. The characterization the most

simple and one based on comparison with the normal distribution. A distribution has a heavy tail

if and only if its kurtosis is higher than the normal distribution that is equal to 3. There are others

de�nitions so that a distribution is heavy-tailed that is : the distributions which the exponential

moment is in�nite, the supexponential distributions, the regularity varying distribution with index

� > 0 and the � stable distributions with 0 < � < 2.

The second part provides an introduction to extreme value theory. Many statistical tools are

available in order to draw information concerning speci�c measures in a statistical distribution.

We focus on the behavior of the extreme values of a data set. Assume that the data are realizations

of a sample X1;...,Xn of n independent and identically distributed random variables. The ordered

data will then be denoted by X(1);...,X(n). Sample data are generally used to study the properties

about the distribution function

F (x) := P (X � x);

or about its inverse function, the quantile function de�ned as

Q(p) := inffx : F (x) � pg:

In the classical theory, one is often interested in the behavior of the mean or average. This average

will then be described through the expected value E(X) of the distribution. On the basis of the law

of large numbers, the sample mean �X is used as a consistent estimator of E(X). Furthermore, the

central limit theorem yields the asymptotic behavior of the sample mean. This result can be used

to provide a con�dence interval for E(X) in case the sample size is su¢ ciently large, a condition

necessary when invoking the central limit theorem. What if the second moment E(X2) or even the

mean E(X) is not �nite ? Then the central limit theorem does not apply and the classical theory,

dominated by the normal distribution, is no longer relevant. Or, what if one wants to estimate

�F (x) = P (X > x), where x > x(n), and the estimate 1 � Fn(x); where Fn(x) is the empirical
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distribution function. Evidently we can not simply assume that these values of x are impossible.

However, the traditional technique based on the empirical distribution function, does not give

useful information concerning this type of question. In terms of the empirical quantile function

Qn(p) := inffx : Fn(x) � pg, problems arise when considering the extreme quantiles Q(1�p) with

p < 1=n. These observations show that it is necessary to develop special techniques that focus on

the extreme values of a sample on the extreme quantiles. In practice, these extreme values are

often of crucial importance. Logically, the most pertinent information for these extreme values

unobserved is contained in the most extreme values observed. When using classical statistical

methods, the information (the largest) contained in the rest of the sample masks the essential

information concerning the rare events. Focus on the extreme values of the data allows to select

only the relevant information and therefore to better extrapolate distribution tail. It is in a

�rst step to select (and model) the extreme values of the data, ie to determine what values the

most extreme of the sample will contain appropriate information on extreme events. There exist

two equivalent methods for selecting: the method of maxima and the method of excess (above a

threshold), see (Coles, 2001, Embrechts et al. 1997, and Reiss et al. 1997).

This theory is based on the fundamental theorem of Fisher-Tippett (1928), and Gnedenko (1943)

which describes the possible limits of the law of the maximum of n random variables independent

and identically distributed (i.i.d), suitably normalized. We assume always that the law which

regulates the phenomenon which we are interested is in the domain of attraction of a law of

extremes (GEV) G� , where � is a real parameter. If we consider a sample X1; :::; Xn with the same

distribution F , this means that there exist two normalizing sequences (bn) (in R) and (an) (in R+)

such that
X(n) � bn
an

D! G� :

This result evidently implies that the behavior of the tail depends on a single parameter, denoted

� and called extreme value index. The sign of this parameter is a key indicator of the behavior of

the tail. Indeed, three behaviors are possible. When � < 0, the distribution of X is bounded and

we say that we are in the �eld of Weibull, when � = 0, the distribution of X present an exponential

type decay in the tail of distribution, we say that we are in the �eld of Gumbel, and �nally, the

�eld of Fréchet, corresponding to � > 0 and an unbounded distribution of X and has a decreasing

of polynomial type.
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There is a strong relationship between the extreme value distributions and generalized Pareto

distribution (GPD), which describes the limit distribution of exceedances of a high threshold.

GPD estimate is the classical way of estimating the losses and the extreme value theory is used

extensively in insurance.

The second chapter is divided into two parts. The �rst is devoted to the nonparametric estimation

of the distribution function. A common problem in statistics is that of estimating a density f or

a distribution function F from a sample of real random variables X1; :::; Xn independent and with

the same unknown distribution. The functions f and F , as the characteristic function, completely

describe the probability distribution of the observations and to know a convenient estimation can

solve many statistical problems. The traditional estimator of the distribution function F is the

empirical distribution function which is de�ned by

Fn(x) =
1

n

nX
i=1

I (Xi � x) :

This estimator is an unbiased estimator and consist of F (x). In addition, among the unbiased

estimators of F (x); Fn(x) is the unique minimum variance estimator that is F (x)(1 � F (x))=n

(Yamato, 1973). Another estimator of F is the kernel estimator ~Fn which is de�ned by

~Fn (x) =
1

n

nX
i=1

K

�
x�Xi

h

�
;

where K (x) =

xZ
�1

k (t) dt and k is a kernel function and h is the smoothing parameter verifying

lim
n!1

h = 0:

The search for the asymptotic properties of ~Fn was initiated by Nadaraya (1964) and continued

in a series of papers among which we mention Winter (1973, 1979), Yamato (1973), Reiss (1981)

and Falk (1983 ). The second part provides a full introduction to the non-parametric estimation

of the quantile function and the density and their asymptotic properties.

Let X1; :::; Xn be independent and identically distributed with absolutely continuous distribution

function F: LetX(1) � ::: � X(n) be the corresponding order statistics. De�ne the quantile function
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Q to be the left continuous inverse of F given by

Q(p) = inf(x : F (x) � pg; 0 < p < 1:

A basic estimator of Q (p) is the pth sample quantile which is given by

Qn (p) = inf (x : Fn (x) � p) = X([np]+1);

where [np] denotes the integer part of np, and Fn (x) is the empirical distribution function.

A popular class of L-estimator are kernel quantile estimator given by

Q̂n (p) =
nX
i=1

X(i)

Z i
n

i�1
n

1

h
k

�
x� p
h

�
dx;

where k is a density function symmetric about zero, while h := hn ! 0 as n tends to in�nity.

Estimating the quantile function, has been treated extensively by several authors mention among

them Parzen (1979), Azzalini (1981), Falk (1983-1984), Nadaraya (1964), Yamato (1973), Ralescu

and Sun (1993), Yang (1985), Padgett (1986), Harrell and Davis (1982), and Sheater et Marron

(1990). But most of these estimators have a problem with bias in the case of extreme quantiles.

For example, Parzen (1979), Padgett (1986), Sheather and Marron (1990), and Ralescu and Sun

(1993) use kernels like Gaussian kernel. But all these estimators have a large bias when p is close to

1. To correct this bias, Harrell and Davis (1982) or Park (2006) suggest using asymmetric kernel,

namely the beta kernel i.e the kernel k is the density of a beta distribution.

The third chapter focuses on the study of the transformation kernel density estimation. Ker-

nel density estimation is nowadays a classical approach to study the form of a density with no

assumption on its global functional form.

Let X1; :::; Xn a random sample of i.i.d observations of a random variable with density function f ,

then the kernel density estimator at point x is

~fn (x) = (nh)
�1

nX
i=1

k

�
x�Xi

h

�
; (1)

where h is the bandwidth or smoothing parameter, and k is the kernel function, usually it is a
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symmetric density function bounded and centred at zero. Silverman (1986) or Wand and Jones

(1995) provide an extensive review of classical kernel estimation. In order to implement kernel

density estimation both k and h need to be chosen. The optimal choice for the value of h depends

inversely on the sample size, so the larger the sample size, the smaller the smoothing parameter

and conversely.

When the shape of the density to be estimated is symmetric and has a kurtosis that is similar to

the kurtosis of the normal distribution, then it is possible to calculate a smoothing parameter h

that provides optimal smoothness or is close to optimal smoothness over the whole domain of the

distribution. However, when the density is asymmetric, it is not possible to calculate a value for

the smoothing parameter which captures both the mode of the density shape and the tail behavior.

The majority of economic variables that measure expenditures or costs have a strong asymmetric

behavior to the right, so that classical kernel density estimation is not e¢ cient in order to estimate

the values of the density in the right tail part of the density domain. This is due to the fact that

the smoothing parameter which has been calculated for the whole domain function is too small for

the density in the tail.

An alternative to kernel density estimation de�ned in (1) is transformation kernel estimation that

is based on transforming the data so that the density of the transformed variable has a symmetric

shape, so that it can easily be estimated using a classical kernel estimation approach. We say it

can be easily estimated in the sense that using a Gaussian kernel or an Epanechnikov kernel, an

optimal estimate of the smoothing parameter can be obtained by minimizing an error measure

over the whole density domain.

For heavy-tailed distributions, the kernel density estimation has been studied by several authors:

Buch-Larsen et al. (2005), Clements et al. (2003) and Bolancé et al. (2003). They have all

proposed estimators based on a transformation of the original variable. The transformation method

proposed initially by Wand et al. (1991) is very suitable for asymmetrical variables, it was based

on the shifted power transformation family. Some alternative transformations such as the one

based on a generalization of the Champernowne distribution have been analyzed and simulation

studies have shown that it is preferable to other transformation density estimation approaches for

distributions that are Pareto-like in the tail.

Bolancé et al. (2008) presents a comparison of the inverse beta transformation method with

7



the results presented by Buch�Larsen et al. (2005) based only on the modi�ed Champernowne

distribution. He show that the second transformation, that is based on the inverse of a Beta

distribution, improves density estimation.

The fourth chapter focuses on the estimation of extreme quantiles using the Champernowne trans-

formation (1936-1952) which is introduced in the work of Buch�Larcen et al. (2005) in the case

of density estimation for heavy tails distributions to compare the performance of the transformed

estimator of extreme quantiles from the traditional kernel estimator in the sense of mean square

error, which we found an improvement in this direction.
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Chapter 1

Heavy-tailed distribution and extreme

value theory

1.1 Heavy-tailed distribution

Many distributions that are found in practice are thin-tailed distributions. The �rst example of

heavy tailed distributions was found in Mandelfort (1963) where it was shown that the change in

cotton prices was heavy-tailed. Since then many other examples of heavy-tailed distributions are

found, among these are data �le in tra¢ c on the internet Crovella and Bestavros (1997), returns

on �nancial markets Rachev (2003), and Embrechts et al. (1997).

Heavy tailed distribution are typical in complex multi systems: Finance and business, internet

tra¢ c, hydrology, economics and have been accepted as realistic models for various phenomena,

�ood levels of rivers, major insurance claims, low and high temperatures. Heavy-tailed distributions

are probability distributions whose tails are not exponentially bounded: that is, they have heavier

tails than the exponential distribution. In many applications it is the right tail of the distribution

that is of interest, but a distribution may have a heavy left tail, or both tails may be heavy.

There is still some discrepancy over the use of the term heavy-tailed. There are two other de�nitions

in use. Some authors use the term to refer to those distributions which do not have all their power

moments �nite, and some others to those distributions that do not have a variance. (Occasionally,

heavy-tailed is used for any distribution that has heavier tails than the normal distribution).

We consider nonnegative random variables X, such as losses in investments or claims in insurance.
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For arbitrary random variables, we should consider both right and left tails. Concerning about

large losses leads us to consider P (X > x) for x large. If F is the distribution function of X, we

de�ne the tail function �F by

�F (x) = 1� F (x) :

The tail of a distribution represents probability values for large values of the variable. When large

values of the variable appear in a data set, their probabilities of occurrence are not zero.

The usage of the term �heavy-tailed distribution� varies according to the area of interest, but is

frequently taken to correspond to an absence of (positive) exponential moments. There are a few

di¤erent de�nitions of heavy tailedness of a distribution. These de�nitions all relate to the decay of

the survivor function �F of a random variable. Two widely used classes of heavy tailed distributions

are the regularly varying and subexponantial distributions.

Characterizing the simplest is that based on comparison with the normal law.

De�nition 1.1.1 It is said that the distribution has heavy tail if:

� =
�4
�22
> 3: (1.1)

Which is equivalent to saying that a distribution to a heavy tail if and only if its coe¢ cient of

applatissement is higher than the normal with � = 3. The characterization given by equation (1.1)

is very general and can be applied only if the moment of order 4 exists, therefore no discrimination,

for distributions with a moment of order 4 is in�nite can be made if considers that this criterion,

unfortunately there is no test for all distributions under the right tail.

De�nition 1.1.2 Let F be a distribution function (d.f) with a support on [0;1), we say that the

distribution F , is heavy tailed if it has no exponential moment, i.e.,

1Z
0

e�xdF (x) =1 for all � > 0:
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De�nition 1.1.3 Let X a random variable with a distribution function F and the density f; this

distribution is said to have a heavy tail if

�F (x) = P (X > x) � x��; as x!1;

where the parameter � > 0 is called the tail index.

Remark 1.1.1 If a distribution is heavy-tailed then its tail function is heavy-tailed.

The distribution F is heavy tailed if its tail function goes slowly to zero at in�nity. For the next

we need the following de�nition.

De�nition 1.1.4 A positive measurable function S on ]0;1[ is slowly varying at in�nity if

lim
x!1

S (tx)

S (x)
= 1; t > 0:

Thus, �nally, here is the formal de�nition of heavy-tailed distributions:

De�nition 1.1.5 The distribution F is said to have a heavy tail if �F (x) = S(x)x�� for some

� > 0 (called the tail index), and S(:) is a slowly varying function at in�nity.

1.1.1 Examples of heavy-tailed distributions

i) The Pareto distribution on R+: This has tail function F given by

�F (x) =

�
c

x+ c

��
;

for some scale parameter c > 0 and shape parameter � > 0. Clearly we have �F (x) � (x=c)�� as

x ! 1, and for this reason the Pareto distributions are sometimes referred to as the power law

distributions. The Pareto distribution has all moments of order  < � �nite, while all moments of

order  � � are in�nite.

ii) Burr distribution (a model for losses in insurance): This has tail function �F given by

�F (x) =

�
c

x� + c

��
;
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for parameters �; c; � > 0. We have F (x) � c�x��� as x!1; thus the Burr distribution is similar

in its tail to the Pareto distribution, of which it is otherwise a generalization. All moments of order

 < �� are �nite, while those of order  � �� are in�nite.

iii) The Cauchy distribution on R: Recall that the density of the standard Cauchy distribution

is

f (x) =
1

� (1 + x2)
; x 2 R;

and its distribution function is

F (x) =
1

2
+
arctanx

�
;

and hence

�F (x) =
1

2
� arctanx

�
;

we see that �F (x) � (�x)�1, as x ! 1, its tail goes to zero like the power function x�1: All

moments are in�nite.

iv) The lognormal distribution on R�+: The density of the lognormal distribution on R�+ is

given by

f (x) =
1p
2��x

exp

 
�(log x� �)

2

2�2

!
;

for parameters � and � > 0. The tail of the distribution F is then

�F (x) = ��

�
log x� �

�

�
for x > 0;

where �� is the tail of the standard normal random variable. All moments of the lognormal

distribution are �nite.

v) The Weibull distribution on R+: This has tail function �F given by

�F (x) = e�(x=c)
�

;

for some scale parameter c > 0 and shape parameter � > 0. This is a heavy-tailed distribution if

and only if � < 1:

Another useful classes of heavy-tailed distributions are that regularity varying distribution and

Subexponential distribution.
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1.1.2 Regularity varying distribution functions

An important class of heavy tailed distributions is the class of regularly varying distribution func-

tions. A more detail is found in Bingham et al. (1987).

De�nition 1.1.6 A distribution function is called regular varying at in�nity with index �� if the

following limit holds

lim
x!1

F (tx)

F (x)
= t��; t > 0;

where F (x) = 1� F (x) and the parameter � is called the tail index.

De�nition 1.1.7 A positive measurable function g on ]0;1[ is regularly varying at in�nity with

index � 2 R if

lim
x!1

g (tx)

g (x)
= t�; t > 0:

We write g (x) 2 R�. If � = 0 we call the function slowly varying at in�nity. If g (x) 2 R� we

simply call the function g (x) regularly varying and we can rewrite g (x) = x�S (x) ; where S (x) is

a slowly varying function. The class of regularly varying distribution is closed under convolutions

as can be found in Applebaum (2005).

Theorem 1.1.1 If X and Y are independent real-valued random variables with �FX 2 R�� and

�FY 2 R��; with �; � > 0; then �FX+Y 2 R; where  = min f�; �g :

The same theorem, but with the assumption that � = � can be found in Feller (1971).

Proposition 1.1.1 If F1; F2 are two distribution functions such that as x!1 :

1� Fi (x) = x��Si (x) ;8i = 1; 2;

with Si is slowly varying, then the convolution G = F1 � F2 has a regularly varying tail such that :

1�G (x) � x�� (S1 (x) + S2 (x)) :

From Proposition 1.1.1 we obtain the following result using induction on n:

Corollairy 1.1.1 If F (x) = x��S (x) for � � 0 and S 2 R0; then for all n � 1;

F n� (x) � nF (x) ; x!1;
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where F n� denotes the convolution of F n-times with itself. (See Embrechts et al. (1997).

Now consider an i.i.d sample X1; :::; Xn with common distribution F , and denote the partial sum

by Sn = X1 + :::+Xn and the maximum by Mn = max fX1; :::; Xng : Then for n � 2 we �nd that

P (Sn > x) = F n� (x)

P (Mn > x) = F n (x) = 1� F n (x)

= F (x)
n�1X
j=0

F j (x) � nF (x) ; x!1:

From this we �nd that we can rewrite the next corollary in the following way. If F 2 R�� with

� � 0 then we have

P (Sn > x) � P (Mn > x) as x!1:

An property of regularly varying distribution functions is that the k-th moment does not exist

whenever k � �; the mean and the variance can be in�nite. This has a few important implications.

When we consider a random variable that has a regularly varying distributions with a tail index

less than one, then the mean of this random variable is in�nite, and if we consider the sum of

independent and identically distributed random variables that have a tail index � < 2, the means

that the variance of these random variables is in�nite, and hence the central limit theorem does

not hold for these random variables see Uchaikin and Zolotarev (1999).

Table 1.1: Regularly varying distribution functions

Distribution �F (x) or f (x) Index of regular variation

Pareto �F (x) =

�
c

x+ c

��
��

Burr �F (x) =

�
c

x� + c

��
���

Log-Gamma f (x) =
��

� (�)
(ln (x))��1 x���1 ��:
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1.1.3 Subexponential distribution functions

In the class of heavy-tailed distribution functions, subexponential distribution functions are a

special class which have just the right level of generality for risk measurement in insurance and

�nance models. The name arises from one of their properties, that their right tail decreases

more slowly than any exponential tail. This implies that large values can occur in a sample with

non-negligible probability, which proposes the subexponential distribution functions as natural

candidates for situations, where extremely large values occur in a sample compared to the mean

size of the data.

Let (Xn) be i.i.d positive random variables with distribution function F with support ]0;1[ ; the

distribution function F is a subexponential distribution, written F 2 S, if for n � 2

lim
x!1

F n� (x)

F (x)
= n; (1.2)

where F n� (x) = 1� F n� (x) = P (X1 + :::+Xn > x), the tail of the n-fold convolution of F: Note

that, by de�nition, F 2 S entails that the support of F is ]0;1[ : Whereas regular varying that

the sum of independent copies is asymptotically distributed as the maximum, from equation (1.2)

we see that this fact characterizes the subexponential distributions

P (Sn > x) � P (Mn > x) as x!1 ) F 2 S:

Consider two independent, identically random variables X1; X2 with common distribution F; then

F 2� is de�ned, using Lebesgue-Stieltjes integration by:

F 2� (x) = P (X1 +X2 � x) =
R
F (x� y) dF (y) :

Lemma 1.1.1 If the following equation holds

lim sup
x!1

F 2� (x)

F (x)
= 2;

then F 2 S:

The following lemma give a few important properties of subexponential distributions:
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Lemma 1.1.2 1�) If F 2 S; then uniformly y-sets of ]0;1[ ; we have

lim
x!1

F (x� y)
F (x)

= 1: (1.3)

2�) If (1.3) holds then, for all " > 0;

e"xF (x)!1 x!1:

3�) If F 2 S then, given " > 0 , there exists a �nite constant c such that for all n � 2; we have

F n� (x)

F (x)
� c (1 + ")n ; x � 0:

Proof. See Embrechts et al. (1997).

The following table gives a number of subexponential distribution:

Table 1.2: Subexponential distribution

Distribution �F (x) or f (x) Parameters

Weibull �F (x) = e�cx
�

c > 0; 0 < � < 1

Lognormal f (x) = 1p
2��x

exp
�
� (log x��)2

2�2

�
� 2 R; � > 0

Benktender-type I �F (x) =

�
1 + 2

�

�
lnx

�
e��(lnx)

2�(�+1) lnx �; � > 0

Benktender-type II �F (x) = e

�

� x�(1��)e
��
x�

� � > 0; 0 < � < 1:

We give now two more classes of heavy tailed distributions. We begin by the class of dominated

varying distribution functions denoted by D :

De�nition 1.1.8 We say that F is a dominated-varying distribution if there exists c > 0 such

that

�F (2x) � c �F (x) for all x:

The class of dominated varying distribution functions denoted by D

D =
�
F; d.f. on ]0;1[ : lim sup

x!1

F (x=2)

F (x)
<1

�
:
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The �nal class of distribution functions is the class of long tailed distributions, denoted by L

L =
�
F; d.f. on ]0;1[ : lim

x!1

F (x� y)
F (x)

= 1 for all y > 0
�
:

The two class of distributions functions are the regularly varying distribution functions R and the

subexponential S:

1.2 Statistical extreme value theory

The last years have been characterized by signi�cant instabilities in �nancial markets worldwide.

This has led to numerous criticisms about the existing risk management systems and motivated

the search for more appropriate methodologies able to cope with rare events that have heavy

consequences. In such a situation it seems essential to rely on a well founded methodology. Extreme

value theory (EVT) provides a �rm theoretical foundation on which we can build statistical models

describing extreme events.

Extreme Value theory has emerged as one of the most important statistical disciplines for the

applied sciences. and their techniques are also becoming widely used in many other disciplines.

The distinguishing feature of an extreme value analysis is the objective to quantify the stochastic

behavior of a process at unusually large or small levels. In particular, extreme value analyses

usually require estimation of the probability of events that are more extreme than any that have

already been observed.

In many �elds of modern science, engineering and insurance, extreme value theory is well estab-

lished, see e.g. Embrechts et al. (1999), and Reiss and Thomas (1997). An alternative approach

can be found in the extreme value theory, which comes from the statistics �eld. EVT has been

applied to �nancial issues only in the past years, although it has been broadly utilized in other

�elds, such as insurance claims, telecommunications and engineering.

1.2.1 Fundamental results of extreme value theory

Let X1; ::; Xn be identically distributed and independent random variables representing risks or

losses with unknown cumulative distribution function (c.d.f), F (x) = P (Xi � x). Examples of

random risks are negative returns on �nancial assets or portfolios, operational losses, catastrophic
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insurance claims, credit losses, natural disasters, service life of items exposed to corrosion, tra¢ c

prediction in telecommunications, etc. See Coles (1999), and McNeil and Frey (2000).

A traditional statistical discussion on the mean is based on the central limit theorem and hence

often returns to the normal distribution as a basis for statistical inference. The classical central

limit theorem states that the distribution of

p
n
�X � E (X)p
V ar (X)

=
X1 + :::+Xn � nE (X)p

nV ar (X)
;

converges for n!1 to a standard normal distribution. In general, the central limit problem deals

with the sum Sn := X1+���+Xn and tries to �nd constants an > 0 and bn such that Yn =
Sn � bn
an

tends in distribution to a non-degenerate distribution.

A �rst question is to determine what distributions can appear in the limit. The answer reveals that

typically the normal distribution is attained as a limit for this sum (or average) Sn of independent

and identically distributed random variables, except when the underlying distribution F possesses

a heavy tail, speci�cally, Pareto-type distributions F with in�nite variance will yield non-normal

limits for the average. the extremes produced by such a sample will corrupt the average so that

an asymptotic behavior di¤erent from the normal behavior is obtained.

In what follows, we will replace the sum Sn by the maximum that is the cornerstone of the extreme

value theory. The model focuses on the statistical property of :

X(n) = max (X1; :::; Xn) :

Of course, we could just as well study the minimum rather than the maximum. Clearly, results

for one of the two can be immediately transferred to the other through the relation

X(1) = min (X1; :::; Xn) = �max (�X1; :::;�Xn) :

In theory the distribution of X(n) can be derived exactly for all values of n :

P
�
X(n) � x

�
= P (X1 � x; :::; Xn � x) = F n (x) : (1.4)

However, this is not immediately helpful in practice, since the distribution function F is unknown.

One possibility is to use standard statistical techniques to estimate F from observed data, and
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then to substitute this estimate into (1.4). Unfortunately, very small discrepancies in the estimate

of F can lead to substantial discrepancies for the probability distribution de�ned in (1.4).

An alternative approach is to accept that F is unknown, and to look for approximate families of

models de�ned in (1.4), which can be estimated on the basis of the extreme data only. This is

similar to the usual practice of approximating the distribution of sample means by the normal

distribution, as justi�ed by the central limit theorem.

It is natural to consider the probabilistic problem of �nding the possible limit distributions of the

maximum X(n). Hence, the main mathematical problem posed in extreme value theory concerns

the search for distributions of X for which there exist a sequence of numbers fbn;n � 1g and a

sequence of positive numbers fan;n � 1g such that for all real values x (at which the limit is

continuous)

P

�
X(n) � an

bn
� x

�
! G (x) as n!1: (1.5)

This problem has been solved in Fisher and Tippett (1928), and Gnedenko (1943) by the following

theorem that is an extreme value analog of the central limit theory, and was later revived and

streamlined by de Haan (1970).

Theorem 1.2.1 (Fischer-Tippett, 1928 and Gnedenko, 1943) Let (Xi) be independent iden-

tically distributed random variables with distribution function F . If there exist two real valued

sequences an > 0 and bn 2 R and a distribution function G such that:

X(n) � bn
an

D! G� ;

then, if � > 0

G� (x) =

8<: 0; x � 0

e(�x)
��
; x > 0;

if � < 0

G� (x) =

8<: e�(�x)
�

; x � 0

1; x > 0

and if � = 0

G0 (x) = e�e
�x
; x 2 R

Remark 1.2.1 1) The previous theorem is true for most of the usual laws.
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2)The distribution function G� is called Generalized Extreme Value Distribution. The parameter

� is called the extreme value index. If F veri�es the precedent Theorem , we say that belongs to

the domain of attraction of G� :

3) Within the sign of � there are three areas of attraction.

� If � > 0 we say that F belongs to the domain of attraction of Frechet. This domain of attraction

contains the heavy tailed distribution functions (polynomial decay) such as the Cauchy distribution,

the Pareto, the Burr, the inverse gamma, the log gamma distributions etc, (see Gnedenko 1943).

� If � < 0 we say that F belongs to the domain of attraction of Weibull. This domain of attraction

contains the majority of distribution functions whose end point is �nite (uniform law, Beta(p,q),

Extreme value Weibull distributions etc.)

� If � = 0 we say that F belongs to the domain of attraction of Gumbel. This domain of attraction

contains the functions of exponential decay distribution (Gaussian, exponential, gamma, lognormal,

Logistic, etc.)

� The sequences of normalization an and bn are not unique.

The Fischer-Tippett Theorem is stating that the distribution function describing the dynamic

of extreme events belongs to Maximum Domain of Attraction of a Generalized Extreme Value

Distribution, that is

De�nition 1.2.1 The Generalized Extreme Value Distribution G�;�;� (z), is de�ned by

G�;�;� (z) =

8>>><>>>:
exp

 
�
�
1 + �

z � �
�

��1=�!
� 6= 0

exp

�
� exp

�
�z � �

�

��
� = 0;

G�;�;� (z) is de�ned on fz : 1 + �(z � �)=� > 0g, where �1 < � < 1, � > 0; and the real

parameter � is a shape parameter that determines the tail behavior of G� (z).

Gnedenko (1943) accomplished an important excursion related to this result in 1943. He proved

that The Fischer-Tippett theorem is applicable for heavy tailed distributions functions. More

precisely, he shown that heavy tailed distribution functions belong to the Maximum Domain of

Attraction of the Frechet Distribution.

It is here a brief introduction to the study of the asymptotic behavior of a sample of the maximum

(extreme value theory). This study using the notion of a regular variation functions. It then gives
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a result describing the possible limits of the law of the maximum of a sample. For more details on

the extreme value theory, one can refer to the works of Castillo (1988), Gumbel (1958), Resnick

(1987) and Galambos (1987).

1.2.2 Characterization of domains of attraction

We will give conditions on the distribution function F for it belongs to one of three domains of

attraction. In the following, we denote xF = sup fx=F (x) < 1g the end point of F and

F�1 (y) = inf fx 2 R=F (x) � yg :

Domain of attraction of Frechet :

Theorem 1.2.2 The function distribution F belongs to the domain of attraction of Frechet D(Frechet)

with extreme value index � > 0 if and only if xF = +1 and 1 � F is a regular varying function

with index �1=� . In this case the choice of the sequences an and bn is

an = F
�1
�
1� 1

n

�
; bn = 0:

From this Theorem, we deduce that F 2 D(Frechet) if and only if the end point xF is in�nite
�F (x) = x�1=�S (x) where S is a slowly varying function at in�nity and � a positive real.

A well-known su¢ cient condition can be given in terms of the hazard function

r (x) =
f (x)

1� F (x) ;

where it is assumed that F has a derivative f .

Proposition 1.2.1 Von Mises�theorem. If xF =1 and lim
x!1

xr(x) = � > 0, then F 2 D(Frechet)

of parameter �

Domain of attraction of Weibull :

Theorem 1.2.3 The function distribution F belongs to the domain of attraction of Weibull D(Weibull)

with extreme value index � < 0 if and only if xF < +1 and 1� F � is a regular varying function

with index 1=�; with

F � (x) =

8<: F (xF � x�1) if x > 0

0 if x � 0
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and we note that F 2 D(Weibull). In this case the choice of the sequences an and bn is

an = xF � F�1
�
1� 1

n

�
; bn = xF :

From Theorem1.2.3, we deduce that F 2 D(Weibull) if and only if the end point xF is �nite

and �F (x) = (xF � x)S
�
(xF � x)�1

�
with S is a slowly varying function at in�nity and � a strictly

negative real.

Proposition 1.2.2 Von Mises�theorem. If xF <1 and lim
x!xF

(xF � x)r(x) = � > 0,

then F 2 D(Weibull) of parameter �

Domain of attraction of Gumbel :

Theorem 1.2.4 The function distribution F belongs to the domain of attraction of Gumbel D(Gumbel)

if and only if for z < x < xF we have

1� F (x) = d (x) exp

0@� xZ
z

1

c (t)
dt

1A
where d (x) !

x!xF
d > 0 and c is positive continuous absolutely function verifying that:

lim
x!xF

c
0
(x) = 0:

In this case the choice of the sequences an and bn is

an = F
�1
�
1� 1

n

�
; bn =

1
�F (an)

xFZ
an

�F (y) dy

The von Mises su¢ ciency condition is a bit more elaborate than before.

Proposition 1.2.3 Von Mises�theorem. If r(x) is ultimately positive in the neighborhood of xF ,

is di¤erentiable there and satis�es lim
x!xF

dr (x)

dx
= 0, then F 2 D(Gumbel).

1.2.3 Extremes quantile estimation

The quantile estimation procedure is making use of EVT and is relying essentially on the papers of

Smith (1987) and the one of Mc-Neil (1999) dealing with the approximation of the tail of probability
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distributions .The initial ideas of this estimation procedure can also be found in Hosking and Wallis

(1987), where the author is presenting some results concerning the estimation of the parameters

and quantile for the Generalized Pareto Distributions(GPD). This approach leads to an invertible

form of the distribution function of the innovations which help to get easily the estimator of the

required quantile with appealing asymptotic properties. The use of EVT and GPD as a tool in

�nancial risk management is also developed in Mc-Neil (1999) or Embrechts (1997). This approach

consists of an appropriate choice of a threshold level u and estimating the distribution function

F , by its sample version below the threshold and some GPD over the chosen threshold. For that,

the concept of Excess Distribution will be de�ned and some fundamental results of the theory

of extreme value will be recalled. Such results, due to Pickand (1975) and Fischer enable to

approximate accurately the Excess Distribution over the threshold level.

We wish to estimate small probabilities or quantities whose probability observation is very low, that

is to say close to zero. These quantities are called quantiles, and we talk about extreme quantile

when the order of the quantile (probability of observation) converges to zero as the sample size

goes to in�nity.

Speci�cally, we consider n real random variables fXi; i = 1; :::; ng independent and identically

distributed with distribution function F not necessarily continuous. From the observations of these

random variables, we wish to estimate the extreme quantile of order 1��n ! 1 as �n !
n!1

0 de�ned

by

Q (1� �n) = inf fx : F (x) � 1� �ng :

In particular for n tending to in�nity, we have

P
�
X(n) < Q (1� �n)

�
= (1� �n)n

= exp (n ln (1� �n))

= exp (�n�n (1 + o (1))) as n!1:

Therefore, as �n ! 0, assuming that n�n ! 0 as n!1 implies that

P
�
X(n) < Q (1� �n)

�
! 1:

It can not therefore be estimatedQ (1� �n) by reversing simply the empirical distribution function.
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Several methods of estimating the extreme quantileQ (1� �n) have been proposed in the literature.

But before exposing they should be exposing the underlying theory to the study of a maximum of

a sample.

We assume that F belongs to one of the areas attractions de�ned above. To summarize the

estimation problem, we introduce the following result known as Poisson approximation.

Lemma 1.2.1 (Embrechts et al. 1997) If �n ! 0 and n�n ! c (not necessarily �nite) as

n!1, then

P
�
X(n) < Q (1� �n)

�
! exp (�c) :

Thus, by the precedent Lemma, two situations can be distinguished as a function of c when you

want to estimate the quantiles of order 1� �n:

1. If c = 1; then P
�
X(n) < Q (1� �n)

�
= 0: In this case a natural estimator of Q (1� �n) is

is the empirical quantile X(n�[n�n]+1):

2. If c = 0; then P
�
X(n) < Q (1� �n)

�
= 1: Therefore we can not estimate the quantile empir-

ically. To resolve this behavior, we have identi�ed two main categories of methods:

� Using the relation P
�
X(n) < Q (1� �n)

�
= F n (Q (1� �n)) we can then estimate the ex-

treme quantile Q (1� �n) by the law for extreme values. We then have an extreme quantile

estimator
Q (1� �n) = ânx�n + b̂n

=

8>>><>>>:
ân (n�n)

��̂ + b̂n if F 2 D(Frechet)

�ân (n�n)��̂ + b̂n if F 2 D(Weibull)

�ân log (n�n) + b̂n if F 2 D(Gumbell);

where x�n verifying � logG� (x�n) = n�n and ân; b̂n; �̂ are respectively the estimators of

an; bn; �:

� The method of excess is initially presented by Pickands (1975). It advocates retain only

the observations above a threshold u. The law of m observations thus retained denoted by

fXi; i = 1; :::;mg can be approached, if u is large by a generalized Pareto distribution (GPD).

To estimate the quantile extreme Q (1� �n), it is su¢ cient to use the result of Balkema
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and de Haan (1974), and Pickands (1975) which establishes the equivalence between the

convergence in law to a law of the maximum extreme value and convergence law of excess to

a GPD.

Before treating this method we start with a de�nition

De�nition 1.2.2 The Generalized Pareto Distribution G�;� is given as

G�;� (z) =

8><>: 1�
�
1 +

�z

�

��1=�
� 6= 0

1� exp (�z=�) � = 0:

where � is the scale parameter and � is the shape parameter. The Generalized Pareto Distribution

is de�ned under the following conditions8>>>><>>>>:
1�) � > 0

2�) z 2
�
0;
��
�

�
if � < 0

3�) z � 0 if � � 0:

For that, the concept of Excess Distribution will be de�ned. Such results, due to Pickand (1975)

and Fischer enable to approximate accurately the Excess Distribution over the threshold level.

1.2.4 Excess distribution function estimation

Our problem is that we consider an unknown distribution F of a random X: We are interested in

estimating the distribution function Fu of values of x above a certain threshold u. The distribution

function Fu is called the excess distribution function. In this approach for estimating extreme

quantiles, it retains only the observations exceeding a threshold u < xF . We de�ne the excess Y of

the variable X above the threshold u by X � u given X > u. If we denote by the distribution

function Fu an excess above the threshold u, we have for all y > 0 :

Fu (y) = P (Y � y) = P (X � u � y=X > u)

= P (X � u+ y=X > u) =
F (y + u)� F (u)

1� F (u) :
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De�nition 1.2.3 We consider an unknown distribution function F of a random variable X sup-

posed to be heavy tailed, the Excess Distribution Function above an appropriately high threshold u,

is de�ned by:

Fu (y) = P (X � u � y=X > u) =
F (y + u)� F (u)

1� F (u) ; 0 � y � xF � u;

where xF = sup fx=F (x) < 1g � 1 is the right end point.

When the threshold u is large, we can approximate this quantity by the function of survival of a

GPD. To approximate the quantile, it is su¢ cient to use the result of Balkema and de Haan (1974)

and Pickands (1975) which establishes the equivalence between the convergence in law to a law of

the maximum extreme value and the convergence in law of excess to a GPD. This result is stated

as follows.

Theorem 1.2.5 (Pickands-Balkema-de Hann, 1974�1975) F belongs to the domain of at-

traction of G�;� if and only if

lim
u!xF

sup
0�x�xF�u

jFu (x)�G�;� (x)j = 0:

This theorem is very useful when working with observations that exceed a �xed threshold because

it assures that the excess distribution function can be approximated by a generalized Pareto

distribution.

Since 1�F (x) = (1� F (u)) (1� Fu (x� u)) : If for all y � 0 we set Q (1� �n) = x = u+ y, then

�n = 1� F (Q (1� �n)) = (1� F (u)) (1� Fu (Q (1� �n)� u))

= (1� F (u)) (1�G�;� ((Q (1� �n)� u)) :

For m excess above the threshold u, the approximation 1� F (u) ' m=n leads to

�n =
m

n
(1�G�;� ((Q (1� �n)� u)) ;

and if � 6= 0, then we approach the quantile by

Q (1� �n) ' u+
�

�

��
m

n�n

��
� 1
�
:
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We then have an estimator of type

Q̂ (1� �n) =

�
m
n�n

��̂
� 1

�̂
�̂ + u;

where �̂ and �̂ are respectively the estimators of the shape and scale parameters.

Another classical estimator is the so-called Hill estimator, based on regular variation properties of

the survival distribution �F of X given X > u, i.e.

Q̂ (1� �n) = u
�
m

n��̂n

�
;

where �̂ =
1

k

mP
i=1

log
�
X(n�i+1) � log u

�
:

Generalized Extreme and Pareto Distribution functions play a crucial role in the study of �nancial

market extreme events more specialty in �nancial market-crashes or extreme loss quanti�cation in

insurance mainly during earthquake or hurricane.

Beyond the important fact that Generalized Distributions help to estimate tails of distributions,

they also provide accurate estimation tools that can be used to construct quantile estimation of

heavy tailed distributions. In order to estimate the tails of the loss distribution, we resort to

a theorem of Pickands-Balkema-de Hann (1974�1975) which establishes that, for a su¢ ciently

high threshold u, Fu (x) � G�;� (x) (see Embrechts, Klüpperberg and Mikosch, 1997). By setting

x = u+ y, an approximation of F (x), for x > u, can be obtained that

F (x) = (1� F (u))G�;� (x� u) + F (u) :

The function F (u) can be estimated non-parametrically using the empirical c.d.f

F̂ (u) =
n�m
n

;

where m represents the number of exceedences over the threshold u, then we get the following

estimate for F (x)

F̂ (x) = 1� m
n

�
1 +

�̂ (x� u)
�̂

��1=�
; (1.6)
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where �̂ and �̂ are estimates of � and �, respectively, which can be obtained by the method of

maximum likelihood.

For � 6= 0 the log-likelihood is given as

l (�; �) = �m log � �
�
1 +

1

�

� mX
i=1

log

�
1 +

�Yi
�

�
:

In the case � = 0 the log-likelihood is given as

l (�; �) = �m log � � 1

�

mX
i=1

Yi:

Analytical maximization of the log-likelihood is not possible, so numerical techniques are again

required.
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Chapter 2

Nonparametric distribution and

quantiles estimation

The estimate of the distribution function of a random variable is an important part of the non-

parametric estimation. A common problem in statistics is that of estimating a density f or a dis-

tribution function F from a sample of variables random real X1; :::; Xn independent and identically

distributed. The functions f and F , completely describe-the probability law of the observations

and to know an appropriate estimation can solve many statistical problems to know an appropriate

estimation that can solve many statistical problems.

It is true that one can often switch from an estimator of f to an estimator of F by integration and

an estimator of F to an estimator of f by derivation. However one feature is noteworthy: it is the

existence the empirical distribution function Fn.

2.1 The empirical distribution function

Let X1; :::; Xn be independent random variables identically distributed as a random variable X

whose distribution function F (x) = P (X � x) is absolutely continuous

F (x) =

xZ
�1

f (t) dt;

with probability density function f (x) : As an estimate of the value of the value F (x) of the

distribution function at a given point x: Traditionally, the estimator of F , from X1; :::; Xn , is the
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so called empirical distribution function (e.d.f) Fn de�ned at some point x as

Fn(x) =
1

n

nX
i=1

I (Xi � x) ;

where

I (Xi � x) =

8<: 1 if Xi � x

0 if Xi > x:

The e.d.f is most conveniently de�ned in terms of the order statistics of a sample. Suppose that

the n sample observations are distinct and arranged in increasing order so that X(1) is the smallest

and the X(n) is the largest. A formal de�nition of the e.d.f. Fn(x) is

Fn(x) =

8>>><>>>:
0 if x < X(1)

i=n if X(i�1) � x < X(i)
1 if x � X(n):

This estimator is widely in practice despite the known fact that smoothing can produce. Let

Tn (x) = nFn (x) ; so that Tn (x) represents the total number of sample values that are less than or

equal to the speci�ed value x. We see that Tn (x) is essentially a binomially distributed random

variable of parameters (n; F (x)):

2.1.1 Statistical properties

Using properties of the binomial distribution, we get the following results.

Corollairy 2.1.1 The mean and the variance of Fn(x) are

E (Fn(x)) = F (x) and V (Fn (x)) =
F (x) (1� F (x))

n
:

The corollary shows that Fn(x), the proportion of sample values less than or equal to the speci�ed

value x, is an unbiased estimator of F (x) and shows that the variance of Fn(x) tends to zero as

n tends to in�nity. Thus, using Chebyshev�s inequality, we can show that Fn(x) is a consistent

estimator of F (x) :

Corollairy 2.1.2 For any �xed real value x, Fn(x) is a consistent estimator of F (x), or, in other

words, Fn(x) converges to F (x) in probability.
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The convergence in probability is for each value of x individually, whereas sometimes we are

interested in all values of x, collectively. A probability statement can be made simultaneously for

all x, as a result of the following important theorems.

Theorem 2.1.1 (Glivenko-Cantelli Theorem) Fn(x) converge uniformly to F (x) with proba-

bility 1, that is

P

�
lim
n!1

sup
x2R

jFn(x)� F (x)j = 0
�
= 1:

Theorem 2.1.2 (Dvoretsky-Kiefer-Wolfowitz) For any " > 0;

P

�
sup
x2R

jFn (x)� F (x)j > "
�
� 2e�2n"2 :

Another useful property of the e.d.f is its asymptotic normality, given in the following theorem.

Theorem 2.1.3 As n ! 1, the limiting probability distribution of the standardized Fn (x) is

standard normal, or p
n (Fn (x)� F (x))p
F (x) (1� F (x))

L! N (0; 1) :

Despite the good statistical of Fn, one could prefer in many applications a rather smooth estimate

see Azzalini (1981).

2.2 Kernel distribution function estimator

Let X1; :::; Xn be independent random variables identically distributed which are drawn from

a continuous distribution F (x) with density function f (x). The kernel density estimate with

appropriate kernel function k (t) and h = hn is the bandwidth or the smoothing parameter

~fn (x) =
1

nh

nX
i=i

k

�
x�Xi

h

�
:

This estimator is a popular nonparametric estimate of f (x) which is introduced by Rosenblatt

(1956) and Parzen (1962). The density estimator can be integrated to obtain a nonparametric

alternative to ~Fn (x) for smooth distribution function that said the kernel distribution function
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estimator k.d.f.e ~Fn (x) that was proposed by Nadaraya (1964) and is de�ned by

~Fn (x) =
xR

�1
~fn (t) dt

=
1

n

nX
i=1

K

�
x�Xi

h

�
;

where the function K is de�ned from a kernel k as

K (x) =

xZ
�1

k (t) dt;

where k is a kernel function, and h = hn is the smoothing parameter or the bandwidth since it

controls the amount of smoothness in the estimator for a given sample of size n:

We assume that the kernel function k is a continuous density such that is bounded, symmetric

about zero (k (t) = k (�t)). Thus k (t) satis�es

1Z
�1

k (t) dt = 1;

1Z
�1

tk (t) dt = 0 and

1Z
�1

t2k (t) dt <1:

The smoothing parameter h which tends to 0 as n!1:

The estimate ~Fn (x) has been investigated by several authors, Nadaraya (1964) has proved under

mild conditions that ~Fn (x) has asymptotically unbiased and has the same variance as Fn; with

f is continuous Nadaraya (1964), Winter (1973), and Yamato (1973) are obtains its uniform

convergence to F with probability one, and without conditions on f; Singh, et al. (1983). Winter

(1979) also shows that checks the Chung-Smirnov property, that

lim sup
n!1

(�
2n

log log n

�1=2
sup
x2R

��� ~Fn (x)� F (x)���) � 1;
with probability 1. Watson and Leadbetter (1964) proved the asymptotic normality of ~Fn (x) : Reiss

(1981) proves that the asymptotic relative ine¢ ciency of Fn compared to ~Fn (x) tends rapidly to

in�nity as the sample size increases with an appropriate choice of kernel, e.g.

k (x) =
9

8

�
1� 5

3
x2
�
Ijxj�1:
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Falk (1983), who has shown that the asymptotic performance of ~Fn is better than that of Fn in

the sense of relative de�ciency for appropriately chosen kernels and su¢ ciently smooth c.d.f�s F:

Azzalini (1981) derived also an asymptotic expression for the mean squared errorMSE of ~Fn (x) and

determined the asymptotically optimal smoothing parameter, to have an MSE lower for Fn, for

details see (Mack, 1984, and Hill, 1985), and he obtained the asymptotic expressions for the mean

integrated squared error MISE of ~Fn (x) : And some conditions veri�ed in particular when the

support of k is bounded and

' (k) = 2

1Z
�1

xk (x)K (x) dx > 0;

where K (x) =

xZ
�1

k (y) dy:

Falk (1983) provides a complete solution to this problem by establishing on the representation of

relative ine¢ ciency of Fn versus ~Fn under the above conditions especially when the support of k is

bounded. The number ' (k) is introduced by Falk (1984) as a measure of asymptotic performance

of the kernel k. But he shows that any square integrable kernel does minimizes '. Then he uses

the number � (k) =
Z
k2 (y) dy de�ned by Epanechnikov (1969) as a measure of the performance

of the kernel in density estimation. In the sense of �; the kernel of Epanechnikov following

k (x) =
3

4

�
1� x2

�
I(jxj�1);

is the best but the Gaussian or uniform kernels have very similar performance. Using the criterion

' the Epanechnikov kernel is then by far the best of the three.

In the sense of mean integrated squared errorMISE; the best kernel is the uniform kernel although

the performance of other kernels (Epanechnikov, normal, triangular) are, in practice, only slightly

less good (Jones, 1990). It is interesting to note that this is not the best kernel in the estimation

of density.

The asymptotic expression of MISE. is also studied by SwanPoel (1988). For a continuous

function f , he proves that the best kernel is the uniform kernel k (x) = (1=2�) I[��;�] (x) for an

arbitrary constant � > 0 (indicating that the criteria for Falk to de�ne an optimal kernel are really
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not adapted to the distribution function), whereas for discontinuous f in a �nite number of points,

the exponential kernel k (x) =
c

2
exp (�c jxj) for an arbitrary constant c > 0, ~Fn (x) is again more

e¢ ciency than Fn for hn = o
�
n�1=2

�
and ' (k) > 0: However, ~Fn (x) does not always provide a

better estimate than Fn. Indeed, in the case of a uniformly Lipschitz function F; Fernholz (1991)

obtain that
p
n
 ~Fn (x)� Fn (x)

1
! 0 a.s,

and that
p
n
 ~Fn (x)� F (x)

1
and

p
n kFn (x)� F (x)k1 have the same asymptotic distribution.

More, Shirahata and Chu (1992) show that under certain hypotheses on F , the integrated square

error ISE =
Z �

~Fn (x)� F (x)
�
dF (x) for ~Fn (x) is almost certainly higher than that of Fn (x).

2.2.1 Mean squared error

We �rst obtain the MSE. The assumptions used by Azzalini (1981) which are that f is continuous

and di¤erentiable with �nite mean and square integrable derivatives, h ! 0 and nh ! 1 as

n!1; and the kernel satisfying the above assumptions. We have

E
�
~Fn (x)

�
= F (x) +

h2f
0
(x)�2 (k)

2
+ o

�
h2
�
;

Bias2
�
~Fn (x)

�
=
h4f

02
(x)�22 (k)

4
+ o

�
h4
�
;

and

V
�
~Fn (x)

�
= n�1F (x) (1� F (x))� n�1hf (x)' (k) + o

�
h

n

�
;

where

�2 (k) =

1Z
�1

x2k (x) dx; and ' (k) = 2

1Z
�1

xk (x)K (x) dx:

The MSE
�
~Fn (x)

�
is given by

MSE
�
~Fn (x)

�
= Bias2

�
~Fn (x)

�
+ V

�
~Fn (x)

�
=

h4f
02
(x)�22 (k)

4

+ n�1F (x) (1� F (x))� n�1hf (x)' (k) + o
�
h4 +

h

n

�
;
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and the asymptotic expression of the MSE
�
~Fn (x)

�
is

AMSE
�
~Fn (x)

�
= n�1F (x) (1� F (x))� n�1hf (x)' (k)

+
h4f

02
(x)�22 (k)

4
:

The value of h that minimizes the AMSE
�
~Fn (x)

�
is

ĥ =

�
f (x)' (k)

nf 02 (x)�22 (k)

�1=3
and the associated asymptotic mean squared error is given by :

n�1

"
F (x) (1� F (x))� 3

4

�
f 4 (x)'4 (k)

nf 02 (x)�22 (k)

�1=3#
:

The AMISE
�
~Fn (x)

�
is found by integrating the AMSE

�
~Fn (x)

�
which is

AMISE
�
~Fn (x)

�
=

Z  
n�1F (x) (1� F (x))� n�1hf (x)' (k) + h

4f
02
(x)�22 (k)

4

!
dx:

The value of h that minimizes the AMISE
�
~Fn (x)

�
is

~h =

0BB@ ' (k)

n�22 (k)

Z
f 02 (x) dx

1CCA
1=3

;

and the optimal AMISE
�
~Fn (x)

�
is given by

n�1

26664
Z
F (x) (1� F (x))� 3

4

0BB@ '4 (k)

n�22 (k)

Z
f 02 (x) dx

1CCA
1=3
37775 :

which is lower than of the (e.d.f). From this expression we learn the following.
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1. While the improvement over the ~Fn (x) disappears as n ! 1; it does so the slow rate of

n�1=3; which suggests that the ~Fn (x) may have meaningful �nite sample gain over the Fn (x) :

2. The improvement of ~Fn (x) is inversely proportional to �
�
f
0�
=

Z
f
02
(x) dx: Thus we expect

the gains to minimal when the density is steep.

3. The choice of kernel k only a¤ects the AMISE through ' (larger values reduce the AMISE).

4. The estimator ~Fn (x) is asymptotically more e¢ cient than the Fn (x) see (Swanapoel 1988).

2.3 Quantiles estimation

Quantile estimation plays an important role in a wide range of statistical application: the Q-

Q plot;Value at risk, in �nancial risk management, etc. The estimation of population quantiles

is of great interest when a parametric form for the underlying distribution is not avaible. In

addition, quantiles often arise as the natural thing to estimate when the underlying distribution

is skewed. The quantile function estimation can be broken down into two approaches, parametric

and nonparametric.

2.3.1 Parametric estimation

Assume that the distribution FX is continuous and belongs to some parametric distribution family

F =
�
F�; � 2 � � Rk

	
: The idea of parametric estimation is to assume that any statistical quantity

can be seen as a function of �. Then, the natural estimator of the quantile QX (p) = F�1� (p) is

obtained by substituting some parameter estimator �̂ for �, and the natural estimator would be

Q̂X (p) = F
�1
�̂
(p) :

This method is convenient for practical purposes, since several techniques exist for obtaining �̂

(maximum likelihood, moment method...), but the choice of F is crucial. A natural idea (that can

be found in classical �nancial models) is to assume Gaussian distributions : if X � N(�; �), then

the quantile QX (p) is simply

QX (p) = �+ �
�1 (p)�;

where ��1 is the inverse of a normal distribution.
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De�nition 2.3.1 Let X1; :::; Xn be independent and normally distributed with distribution function

�; the (Gaussian) parametric estimation of the p-quantile QX (p) is

Q̂n (p) = �̂+ �̂�
�1 (p) ;

where �̂ =
1

n

nX
i=1

Xi; and �̂ =
1

n� 1

nX
i=1

(Xi � �̂)2.

A parametric models actually, is the Gaussian model does not �t very well, it is still possible to use

Gaussian approximation. If the variance is �nite, (X � E(X))=� might be closer to the Gaussian

distribution, and thus, consider the so-called Cornish-Fisher approximation, i.e.

QX (p) � E(X) + �ẑp;

where

ẑp = ��1 (p) +
�̂1
6

�
(��1 (p))

2 � 1
�

+
�̂2
24

�
(��1 (p))

3 � 3��1 (p)
�

� �̂
2
1

36

�
2 (��1 (p))

3 � 5��1 (p)
�
;

where �̂1 is the natural estimator of the skewness �1 of X, and �̂2 is the natural estimator of the

the excess kurtosis �2 of X, i.e.

�̂1 =

p
n (n� 1)
n� 2

p
n

nP
i=1

(Xi � �̂)3�
nP
i=1

(Xi � �̂)2
�3=2 ;

and

�̂2 =
n� 1

(n� 2) (n� 3)

�
(n+ 1) �̂

0

2 + 6
�
;

where

�̂
0

2 =

n
nP
i=1

(Xi � �̂)4�
nP
i=1

(Xi � �̂)2
�2 � 3:
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De�nition 2.3.2 Given a n sample fX1; :::; Xng, the Cornish-Fisher estimation of the p-quantile

QX (p) is

Q̂n (p) = �̂+ �̂ẑp

2.3.2 Nonparametric estimation

Let X1; :::; Xn be independent and identically distributed with absolutely continuous distribution

function F: LetX(1) � ::: � X(n) be the corresponding order statistics. De�ne the quantile function

Q to be the left continuous inverse of F given by

Q(p) = inf(x : F (x) � pg; 0 < p < 1:

A basic estimator of Q (p) is the pth sample quantile which is given by

Qn (p) = inf (x : Fn (x) � p) = X([np]+1);

where [np] denotes the integer part of np, and Fn (x) is the empirical distribution function.

Making use of the fact that Qn (p) is the inverse of the empirical distribution function. However,

one can improve on the estimator Qn (p) of Q (p) by averaging over the order statistics, using

suitable weights wi

Ln =
nX
i=1

wiX(i) where
nX
i=1

wi = 1

These estimators are called L-estimators.

Notice that Qn (p) is an L-estimator with w[np]+1 = 1 and wi = 0 for i 6= [np] + 1:

One has, under mild regularity conditions

p
n (Qn (p)�Q (p))

D! N
�
0;
p (1� p)
f 2 (Q (p))

�
;

where f is the density of F: See (Ser�ing, 1980).

A popular kernel quantile estimator, is based on the Nadaraya (1964) type kernel distribution
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function estimator ~Fn (x) for F (x) that de�ned as

~Fn (x) =

xZ
�1

~fn (t) dt =
1

n

nX
i=1

K

�
x�Xi

h

�

where the function K is de�ned from a kernel k as

K (x) =

xZ
�1

k (t) dt;

and k is a density function, h = hn is the smoothing parameter (or the bandwidth) since it controls

the amount of smoothness in the estimator, and satisfy h := hn ! 0 as n!1.

The corresponding estimator of the quantile function Q = F�1 is then de�ned by

~Qn(p) = inffx : ~Fn(x) � pg; 0 < p < 1:

Nadaraya (1964) showed under some assumptions for k; f and h; ~Qn(p) has an asymptotic standard

normal distribution. The almost sure consistency, was obtained by Yamato (1973). Ralescu and

Sun (1993) obtained the necessary and su¢ cient conditions for the asymptotic normality of ~Qn(p).

A popular class of L-estimator are kernel quantile estimator given by

Q̂n (p) =
nX
i=1

X(i)

Z i
n

i�1
n

1

h
k

�
x� p
h

�
dx:

Here k is a density function symmetric about zero, while h := hn ! 0 as n tends to in�nity.

This form can be traced to Parzen (1979), Falk (1984) investigated the asymptotic relative de�-

ciency of the sample quantile with respect to Q̂n (p) ; and showed that the asymptotic performance

of Q̂n (p) is better than that of the empirical sample quantile, Yang (1985) established the asymp-

totic normality and mean squared consistency of Q̂n (p) ; Padgett (1986) generalized the de�nition

of Q̂n (p) to right-censored data.

In studies of Q̂n (p) ; Yang (1985) and Padgett (1986) examined several kernel functions including
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the triangular functions given by

kY (u) =

8<: 1� juj if ju � 1j

0 otherwise.

The kernel functions kY was shown to have optimal properties by Sachs and Ylvisaker (1981)

in nonparametric density estimation functions. There are many similarities between the smooth

kernel estimator Q̂n (p) of Q (p) and the kernel method used in density estimation. If the kernel

function k is replaced by its derivative in the de�nition of Q̂n (p) ; Yang (1985) suggested that the

resulting statistic would be useful estimator of the derivative of Q (p) :

An analogous result for the derivative density estimation Silvermann (1978). It is useful to

have a good estimator of Q
0
(p) = 1=f (Q (p)) in order to estimate the variance of Qn (p) and

Q̂n (p) : When the sample size n is large , both Q̂n (p) has the same approximate standard devia-

tion that Qn (p) that equal to
p (1� p)
f (Q (p))

:

For instance, Parzen (1979), Padgett (1986), Sheather and Marron (1990), and Ralescu and Sun

(1993) considered Gaussian kernels. But all those estimators have a large bias when p is close to

1. In order to correct this bias, Harrell and Davis (1982) or Park (2006) suggest to use asymmetric

kernel, namely the Beta-type kernel that is the following

HDn (p) =
� (n+ 1)

� ((n+ 1) p) � ((n+ 1) (1� p)

1Z
0

F�1n (y) y(n+1)p�1 (1� y)(n+1)(1�p)�1 dy;

where F�1n (x) is the inverse of the empirical distribution function that is de�ned by

F�1n (y) =

8<: X(i) if (i� 1) =n < y � i=n

X(n) if 1� 1=n < y < 1:

The HDn (p) estimator can be expressed as an L-estimator

HDn (p) =

nX
i=1

wn;i (p)X(i);
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where

wn;i (p) =
� (n+ 1)

� ((n+ 1) p) � ((n+ 1) (1� p)

i=nZ
(i�1)=n

y(n+1)p�1 (1� y)(n+1)(1�p)�1 dy:

Notice that the expected value of the kth order statistic is given by

E
�
X(k)

�
=

� (n+ 1)

� (k) � (n� k + 1)

1Z
0

Q (y) yk�1 (1� y)n�k dy;

where � (:) is the gamma function that is de�ned by

� (k) =

1Z
0

xk�1e�xdx; k > 0:

Observing that

E
�
X((n+1)p)

�
! Q (p) as n!1 for p 2 ]0; 1[ ;

see (David, 1981).

Asymptotic behavior of HD estimator

For an absolutely continuous distribution function F; with a strictly positive density function f; we

can follow van der Vaart and Weller (1996) to get

p
n (Qn (p)�Q (p))

D! B(F (Q (p))

f (Q (p))
D
= N

�
0;
p (1� p)
f 2 (Q (p))

�
; as n!1;

where B is a standard Brownian bridge.

We give now the theorem of the central limit for the HD estimator

Theorem 2.3.1 (Harrel and Davis (1982), Zelterman (1990)) Let F be an absolutely con-

tinuous distribution function with a strictly positive continuous density function f; such that

Z
R
jx�j f (x) dx <1 for some � > 0:
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The HD estimator satis�es the same central limit theorem as does Qn:

p
n (HDn (p)�Q (p))

D! N
�
0;
p (1� p)
f 2 (Q (p))

�
; as n!1 for p 2 ]0; 1[ :

Kaigh and Lachenbruch (1982) proposed an L-estimator for Q (p) that may be written as

KL (p) =

n+r�mX
i=r

Ci�1r�1C
m�i
m�r

Cnk
X(i);

where r = [p (m+ 1)], and m is an integer valued parameter satisfying 1 � m � n: The KL (p) for

general values of m are explored by Kaigh and Driscoll (1987), Kaigh and Lachenbruch (1982)

remarked that the weight
Ci�1r�1C

n�i
m�r

Cnm
correspond to the mass function of the negative hypergeometric

distribution.

For more details concerning the kernel quantile estimators,see (Sheater and Marron, 1990).

2.3.3 Asymptotic properties

Theorem 2.3.2 Suppose that f 0 is bounded and continuous in a neighborhood of Q (p) ,with

Q (p) 6= 0 and the kernel function k is a continuous bounded density, symmetric about zero,and

satis�es

�2 (k) =

1Z
�1

t2k (t) dt <1:

Then for all p 2 ]0; 1[ ; the mean squared error of ~Qn(p) is

MSE
�
~Qn(p)

�
=

p (1� p)
nf 2 (Q (p))

+
h4
�
f
0
(Q (p))

�2
4f 2 (Q (p))

� h

nf (Q (p))
' (k) + o(

h

n
+ h4);

where ' (k) = 2
Z
yk (y)K (y) dy:

Corollairy 2.3.1 The optimal bandwidth for AMSE
�
~Qn(p)

�
is

~hopt =

�
f (Q (p))' (k)

n (f 0 (Q (p)))2 �22 (k)

�1=3
42



and the asymptotic mean squared error associated for this ~hopt is:

AMSEopt

�
~Qn(p)

�
= n�1

"
p (1� p)
f 2 (Q (p))

� 3
4

�
'4 (k)

nf 2 (Q (p)) (f 0 (Q (p)))2 �22 (k)

�1=3#
:

Theorem 2.3.3 Suppose that Q00
(p) is continuous in a neighborhood of p and that k is a compactly

supported density, symmetric about zero. Then the mean squared error of Q̂n (p) as follows if F is

not symmetric or F is symmetric but p 6= 1=2

MSE
�
Q̂n (p)

�
=

p (1� p)
n

�
Q

0
(p)
�2
+
h4

4

�
Q

00
(p)
�2
�22 (k)

� h

n

�
Q

0
(p)
�2
' (k) + o (n�1h+ h4)

When F is symmetric and p = 1=2 then

MSE
�
Q̂n (p)

�
= n�1

�
Q

0
(1=2)

�2 �
0:25� 0:5h' (k) + (nh)�1 � (k)

�
+ o

�
n�1h+ (nh)�2

�
where � (k) =

Z
k2 (x) dx:

Proof. See (Sheater and Marron, 1990).

Corollairy 2.3.2 If F is not symmetric or F is symmetric but p 6= 1=2, the expression for the

asymptotic mean squared error of Q̂n (p) is

AMSE
�
Q̂n (p)

�
=
p (1� p)

n

�
Q

0
(p)
�2
+
h4

4

�
Q

00
(p)
�2
�22 (k)�

h

n

�
Q

0
(p)
�2
' (k) :

The optimal bandwidth for AMSE
�
Q̂n (p)

�
is

ĥopt =

 �
Q

0
(p)
�2
' (k)

n (Q00 (p))2 �22 (k)

!1=3
;

and the asymptotic mean squared error associated for this ĥopt is:

AMSEopt

�
Q̂n (p)

�
= n�1

24p (1� p)�Q0
(p)
�2
� 3
4

 �
Q

0
(p)
�8
'4 (k)

n (Q00 (p))2 �22 (k)

!1=335
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AMSEopt

�
Q̂n (p)

�
= n�1p (1� p)

�
Q

0
(p)
�2
+O

�
n�4=3

�
:

If F is symmetric and p = 1=2 then

AMSE
�
Q̂n (p)

�
= n�1

�
Q

0
(1=2)

�2 �
0:25� 0:5h' (k) + (nh)�1 � (k)

�
:

Remark 2.3.1 In this case, there is no single optimal bandwidth minimizing the AMSE
�
Q̂n (p)

�
:

Theorem 2.3.4 Suppose that:

1) F (x) has a p.d.f f (x) witch is continuous and positive in some neighborhood of Q (p) :

2) f
0
(x) exists and is continuous at Q (p) :

3) The kernel k (x) is a p.d.f symmetric about zero with �nite support.

4) lim
n!1

n1=4h! 0:

Then

n1=2
�
Q̂n (p)�Q (p)

�
= �n�1=2 (Fn (Q (p))� p) =f (Q (p)) + op (1) ;

where op (1) converge to zero in probability as n!1 and Fn is the empirical distribution function.

Proof. See (Yang, 1985)

Asymptotic normality of Q̂n (p)

Using the precedent theorem and the multivariate central limit theorem, we have the following

corollary

Corollairy 2.3.3 Let 0 < p1 < ::: < pm < 1: Then the asymptotic joint distribution of

n1=2
�
Q̂n (p1)�Q (p1) ; :::;

�
Q̂n (pm)�Q (pm)

��
;

is m-dimensional normal with a zero mean vector and a covariance matrix with element

pi (1� pj) =f (Q (pi)) f (Q (pj)) (i; j = 1; :::;m) :
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Choice of the bandwidth

We interest for the choice of the smoothing parameter h of Q̂n (p) ; for all p; apart if F is symmetric

and p = 1=2:

De�nition 2.3.3 A kernel is said to be of order m for some m � 2 if

Z
tjk (t) dt =

8>>><>>>:
1 if j = 0

0 if j = 1; :::;m� 1

�m if j = m

where �m 6= 0:

We see from Corollary 2.3.2 that for a given choice of k; the asymptotically optimal value of

h depends on the �rst and second derivatives of the quantile function Q (p) : Thus estimates of

Q
0
(p) and Q

00
(p) are necessary for the choice of h: If the �rst and second derivatives of k exist,

then we can estimate these quantities by the �rst and second derivatives of Q̂n (p) : This results in

the estimator

Q̂
0
(p) =

nX
i=1

"Z i=n

(i�1)=n
a�2k

0 �
a�1 (x� p)

�
dx

#
X(i);

and

Q̂
00
(p) =

nX
i=1

"Z i=n

(i�1)=n
b�3k

00 �
b�1 (x� p)

�
dx

#
X(i)

where k is a kernel of order m:

The resulting estimate of the asymptotically optimal bandwidth h is given by

ĥopt =

0B@
�
Q̂

0
(p)
�2
' (k)

n
�
Q̂00 (p)

�2
�22 (k)

1CA
1=3

:

The problem is then to choose values for the bandwidth a and b that results in an asymptotically

e¢ cient
�
Q̂

0
(p) =Q̂

00
(p)
�2=3

:

Theorem 2.3.5 Suppose that Q(m+2) is continuous in a neighborhood of p and that k is a com-

pactly supported kernel of order m, symmetric about zero. Then the asymptotically optimal band-
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width for Q̂
0
(p) is given by

aopt =

�
Q

0
(p)

Q(m+1) (p)

�2=m+2 26664
(m!)2

Z
k
2
(t) dt

2m

�Z
tmk (t) dt

�2
37775
1=2m+1

n�1=(2m+1):

and the asymptotically optimal bandwidth for Q̂
00
(p) is given by

bopt =

�
Q

0
(p)

Q(m+2) (p)

�2=m+3 26664
3 (m!)2

Z
k
02
(t) dt

2m

�Z
tmk (t) dt

�2
37775
1=2m+3

n�1=(2m+3):

2.4 Quantile density function estimation

Let P be a probability measure on the real line with distribution function F: The estimation of the

p-quantile Q (p) = F�1 (p) of P is closely related to the quantile density function (F�1)
0
(p) ; since

the asymptotic variance of a nonparametric estimator of Q (p) is usually given by

�2 =
p (1� p)
f 2 (Q (p))

= p (1� p)
�
F�1

�02
(p) :

For the kernel quantile estimator

Q̂n (p) =
nX
i=1

X(i)

i
nZ

i�1
n

1

h
k

�
x� p
h

�
dx =

Z 1

0

F�1n (x)
1

h
k

�
p� x
h

�
dx;

if we want to construct, for example, con�dence intervals of asymptotic level 1�� for the underlying

p-quantile, we are usually concerned with the problem of estimating Q
0
(p) :

We de�ne a histogram type estimator that has the form

Hn (p) :=
F�1n (p+ h)� F�1n (p� h)

2h
; h > 0;

this histogram was suggested by Siddiki (1960) and investigated by Bloch and Gastwirth (1968),

and Bo�nger (1975). For a brief discussion of their results and an asymptotic expansion of the
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distribution of Hn (p) see (Reiss, 1978).

2.4.1 Asymptotic properties

We begin by the asymptotic normality of the histogram type estimator Hn (p) :

Theorem 2.4.1 Suppose that F�1 is twice di¤erentiable near p with bounded second derivative.

Then if 0 < h ! 0
n!1

; nh!1
n!1

we have

(2nh)1=2 (Hn (p)� [Q (p+ h)�Q (p� h)] =2h)
D! N

�
0; Q

02 (p)
�

Proof. See (Falk, 1986).

Theorem 2.4.2 we assume that F�1 is three times derivable near p and that the third derivative

is bounded and continuous. Then if h ! 0
n!1

; nh!1
n!1

; we have

E

��
Hn (p)�Q

0
(p)
�2�

! 0
n!1

:

Proof. We have

E (Hn (p)) = �n (p) =2h !
n!1

Q
0
(p) ;

where

�n (p) = (Q (p+ h)�Q (p� h)) =2h;

then
E
�
Hn (p)�Q

0
(p)
�2

= E
�
Hn (p) + �n (p)� �n (p)�Q

0
(p)
�2

= E (Hn (p)� �n (p))2 +
�
�n (p)�Q

0
(p)
�2
;

from the Taylor formula and the theorem 2-4-1

�n (p)�Q
0
(p) =

h2

6
Q(3) (p) + o

�
h2
�
;

and

E
�
Hn (p)�Q

0
(p)
�2
� Q02 (p) =2nh+

�
h2

6
Q(3) (p)

�2
:
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Corollairy 2.4.1 Under the assumptions of the theorem 2-4-2, and if Q
0
(p)Q(3) (p) 6= 0: Then

the optimal bandwidth for AMSE (Hn (p)) is

h� =

�
3Q

0
(p)p

2Q(3) (p)

�2=5
n�1=5;

and the asymptotic mean squared error associated for this h� is:

AMSEopt (Hn (p)) = 5
�
Q(3) (p) =6

�2=5 �
Q

02 (p) =8
�4=5

n�4=5:

Another estimator of Q
0
(p) is suggested by means of the corresponding kernel quantile estimator

Q̂n (p) as follows.

Falk (1985) proved that under appropriate conditions on F; k and h

Q̂n (p)
P! Q (p) as n!1:

Consequently, one might expect that

Q̂
0

n (p) =

Z 1

0

F�1n (x)
1

h2
k
0
�
p� x
h

�
dx

P! Q
0
(p) as n!1:

From this idea we can de�ne a kernel estimator of Q
0
(p) by

An (p) =

Z 1

0

1

h2
F�1n (x) l

�
p� x
h

�
dx;

where l : R! R is a kernel function has bounded support and verifying that

Z
xil (x) =

8<: 0 if i = 0; 2

�1 if i = 1:
(2.1)

Related kernel estimators of the quantile density were proposed by Parzen (1979) and by Csörgõ

(1983). Moreover observe that An (p) is a linear combination of order statistics
nX
i=1

ainX(i); where

ain are given by

ain =

i
nZ

i�1
n

1

h2
l

�
p� x
h

�
dx:
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Theorem 2.4.3 Let 0 < p < 1 and suppose that F�1 is twice derivable near p with bounded second

derivative. Then if l has a bounded support and verifying 2.1 and h !
n!1

0; nh2 !1
n!1

we have

(nh)1=2 (An (p)� �n)
D! N

�
0;
�
F�1

�02
(p)

Z
L2 (y) dy

�
;

where

L (y) =

yZ
�1

l (t) dt;

and

�n =

1Z
0

1

h2
F�1 (x) l

�
p� x
h

�
dx:

Proof. See (Falk, 1986).

If we assume that nh3 ! 0
n!1

; we can replace �n in precedent theorem by(F�1)
0

(p) ; and if we suppose

that the third derivative of F�1 is continuous at p, then if the kernel l verifying 2.1, the mean

squared error of An (p) is given by

MSE (An (p)) = E

�h
An (p)� (F�1)

0
(p)
i2�

=
1

nh
Q

02
(p)

Z
L2 (y) dy +

�
h2

3!
Q(3) (p)

Z
y3l (y) dy

�2
:

The optimal bandwidth which minimize E
�h
An (p)� (F�1)

0
(p)
i2�

is

h�� =

26664
3!Q

0
(p)

�Z
L2 (y) dy

�1=2
2Q(3) (p)

Z
y3l (y) dy

37775
2=5

n�1=5;

and the asymptotic mean squared error associated for this h�� is

AMSEopt (An (p)) =
5

4

�
Q

02
(p)

Z
L2 (y) dy

�4=5�
1

3
Q(3) (p)

Z
y3l (y) dy

�2=5
n�4=5:
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Take for example l (x) = ��02 (x) =2; where � denotes the Legendre polynomial of degree 2 on

[�1; 1] ; then

l (x) =
�1
16

��
x2 � 1

�2�(3)
= �3x=2:

Then we have
Z
l (x) dx = 0;

Z
xl (x) dx = �1 and

Z
L2 (y) dy = 3=5:

The An (p) is a linear combination of order statistics
nX
i=1

ainX(i); where ain are given by

ain =

i
nZ

i�1
n

1

h2
l

�
p� x
h

�
dx:

We have

ain � (nh2)
�1
l

�
p� i=n
h

�
� �3

2nh2

�
p� i=n
h

�
:

From �1 � p� i=n
h

� 1; then n (p� h) � i � n (p+ h) ;

In addition, we have

0Z
�1

l (x) dx =

1Z
0

l (x) dx. Therefore,

An (p) �
3

nh3

[n(p+h)]X
i=[n(p�h)]

(i=n� p)X(i):
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Chapter 3

Transformation in kernel density

estimation

The kernel density estimator

~fn (x) = (nh)
�1

nX
i=1

k

�
x�Xi

h

�
; (3.1)

has the disadvantage that h is not locally adjusted and the performance of the kernel density

estimator deteriorates when f becomes less smooth or heavy tailed.

We can alleviate the problem by estimating the density of transformed random variable, that is

based on transforming the data so that the density of the transformed variable has a symmetric

shape, so that it can easily be estimated using a classical kernel estimation approach, and then

taking the inverse transform. The transformation method proposed initially by Wand et al. (1991),

is very suitable for asymmetrical variables. In the specialized literature several transformation

kernel estimators have been proposed, and their main di¤erence is the type of transformation

family that they use.

Concerned the kernel estimation for heavy tailed distributions has been studied by several authors

Bolancé et al. (2003), Clements et al. (2003) and Buch-Larsen et al. (2005) propose di¤erent

parametric transformation families that they all make the transformed distribution more symmetric

that the original one, which in many applications has usually a strong right-hand asymmetry. Buch-

Larsen et al. (2005) propose an alternative transformation such as one based on the Champernowne
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distribution, who they have shown in simulation studies that this transformation is preferable to

other transformation density estimation approach for heavy tailed distribution.

The transform kernel density estimator (see Devroye et al. 1983) is based upon a transformation

T : R! [0; 1] which is strictly monotonically increasing, continuously di¤erentiable, and which has

a continuous di¤erentiable inverse. The transformed data sequence is Y1; :::Yn where Yi = T (Xi) :

Note that the transformed variable has density

g (y) = f
�
T�1 (y)

�
T�1

0
(y) =

f (T�1 (y))

T 0 (T�1 (y))
:

The density g is estimated by the classical kernel density estimator

~gn (y) = (nh)
�1

nX
i=1

k

�
y � Yi
h

�
;

and f is estimated by

~fn (x) = ~gn (T (x))T
0
(x) = (nh)�1

nX
i=1

k

�
T (x)� T (Xi)

h

�
T
0
(x) :

Buch-Larsen et al. (2005) introduced an alternative large loss estimation approach based on

nonparametric statistics. They recommended an estimator based on the classical kernel density

estimator

~fn (x) = (nh)
�1

nX
i=1

k

�
x�Xi

h

�
;

where X1; :::; Xn is the data set, whose density we want to estimate, and k is a kernel function and

h is a bandwidth. They showed that, when introducing a tail �attening transformation, inspired

by the work of Wand et al. (1991), the Champernowne c.d.f with maximum likelihood estimated

parameters, this estimator has promising tail performance at the same time as being an estimator

on the entire axis. When the transformation function is an estimated cumulative distribution

function, this estimator corresponds to a poorly parametric estimated distribution with a non-

parametric correction, as described in Buch-Larsen et al. (2005). The resulting transformation
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kernel density estimator has the form

~fn (x) = (nh)
�1

nX
i=1

k

�
T (x)� T (Xi)

h

�
T
0
(x) :

where T (x) is the transformation function.

When the transformation function returns values on a compact interval, if this is a c.d.f, it is

necessary to have a boundary correction to ensure that the transformation kernel density estimator

is a consistent estimator at the boundary. We use a simple renormalization method, as described in

Jones (1993) which ensures that each kernel function integrates to 1. With the notation from Chen

(1999) the transformation kernel density estimator with the renormalizing boundary correction is

~fn (x) =
1

na01 (T (x) ; h)

nX
i=1

k

�
T (x)� T (Xi)

h

�
T
0
(x) ;

where

asm (T (x) ; h) =

8>>>>>>><>>>>>>>:

T (x)=hZ
�1

yskm (y) dy if 0 � T (x) � 1� h

1Z
�(1�T (x))=h

yskm (y) dy if 1� h � T (x) � 1:

When the transformation function T (x) is a c.d.f of a parametric distribution estimated to the data

set under investigation, then the kernel density approach can be interpreted as a nonparametric

correction to this estimated parametric distribution.

3.1 Asymptotic theory for the transformation kernel den-

sity estimator

Now we investigate the asymptotic theory of the transformation kernel density estimator in general,

and we derive its asymptotic bias and variance.
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Theorem 3.1.1 Let X1; :::; Xn be independent identically distributed variables with density f .

Let ~fn (x) be the transformation kernel density estimator of f (x)

~fn (x) = (nh)
�1

nX
i=1

k

�
T (x)� T (Xi)

h

�
T
0
(x) ;

where T (�) is the transformation function.

Then the bias and variance of fn(x) is given by

E
�s
fn (x)

�
� f (x) = 1

2
�2 (k)h

2

��
f (x)

T 0 (x)

�0
1

T 0 (x)

�0
+ o

�
h2
�
;

and

V ar
�s
fn (x)

�
=
1

nh
� (k)T 0 (x) f (x) + o

�
1

nh

�
:

Proof. The variable transformation Yi = T (Xi) has the density g such as

g (y) =
f (T�1 (y))

T 0 (T�1 (y))
:

Let ~gn (y) be the classical kernel density estimator of g (y)

~gn (y) = (nh)
�1

nX
i=1

k

�
y � Yi
h

�
:

The the mean and variance of the classical kernel density estimator ~gn (y)

bias (~gn (y)) =
h2n
2
g
00
(y)
R
t2k (t) dt+ o (h2) ;

and
V ar (~gn (y)) = (nhn)

�1 �g (y) R k2 (t) dt+ o (1)�
= (nhn)

�1 g (y)
R
k2 (t) dt+ o

�
(nhn)

�1� :
The expression of the kernel estimator of density through the transformation by the standard

kernel estimator of density is:
s
fn (x) = T

0 (x) ~gn (T (x)) :
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then
E
�s
fn (x)

�
= T 0 (x)E(~gn (T (x))

= T 0 (x)

�
g (T (x)) +

h2

2
g
00
(y)
R
t2k (t) dt+ o (h2)

�
;

we have

g (T (x)) =
f (x)

T 0 (x)

g
0
(T (x)) =

dg (T (x))

dT (x)
=
dg (T (x))

dx
:
dx

dT (x)
=

�
f (x)

T 0 (x)

�0
1

T 0 (x)
;

and

g
00
(T (x)) =

d

dT (x)

�
g
0
(T (x))

�
=

d

dx

�
g
0
(T (x))

� dx

dT (x)

=

 �
f (x)

T 0 (x)

�0
1

T 0 (x)

!0

1

T 0 (x)

E
�s
fn (x)

�
= f (x) +

h2

2

 �
f (x)

T 0 (x)

�0
1

T 0 (x)

!0 Z
t2k (t) dt+ o

�
h2
�
;

and
V ar

�s
fn (x)

�
= (T 0 (x))2 V ar(~gn (T (x))

= (T 0 (x))2
�
(nh)�1 g (T (x))

R
k2 (t) dt+ o

�
(nh)�1

��
= (nh)�1 T

0
(x) � (k) f (x) + o

�
(nh)�1

�
:

3.1.1 Mean Squared Error

Now we derive its asymptotic mean squared error, the optimal bandwidth h� and the asymptotic

mean squared error associated for this h�:We call the mean squared error at point x the quantity:

MSE
�s
fn (x)

�
=

24h2
2

 �
f (x)

T 0 (x)

�0
1

T 0 (x)

!0

�2 (k) + o (h
2)

352
+ (nh)�1 T

0
(x) � (k) f (x) + o

�
(nh)�1

�
;
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and the asymptotic squared error in point x the quantity :

AMSE
�s
fn (x)

�
=

24h2
2

 �
f (x)

T 0 (x)

�0
1

T 0 (x)

!0

�2 (k)

352 + (nh)�1 T 0
(x) � (k) f (x) :

Seek a value h� that minimizes the asymptotic mean squared error AMSE
�s
fn (x)

�
:

If the density f (x) is twice di¤erentiable on R; the second derivative f
00
(x) is absolutely continuous

on R; and k is a symmetric kernel, that as
R
t2K (t) dt < 1, and if f (x) f 00 (x) 6= 0; the value h

that minimizes AMSE
�s
fn (x)

�
is

h� =

0@T 0
(x) � (k) f (x)

24 � f (x)
T 0 (x)

�0
1

T 0 (x)

!0

�2 (k)

35�21A1=5

n�1=5;

and the associated mean squared error is given by :

AMSE�
�s
fn (x)

�
= 5

�
1

4n
T
0
(x) � (k) f (x)

�4=5

�

0@241
2

 �
f (x)

T 0 (x)

�0
1

T 0 (x)

!0

�2 (k)

3521A
1

5

=
5

4

0@24 � f (x)
T 0 (x)

�0
1

T 0 (x)

!0

�2 (k)

351A2=5

�
�
T
0
(x) � (k) f (x)

�4=5
n�4=5:

3.1.2 Mean Integrated Squared Error

An error distance between the estimated density
s
fn (x) and the theoretical density f that has

widely been used in analysis of the optimal bandwidth h is the mean integrated squared error

MISE
�s
fn (x)

�
=

Z
E
�
~fn (x)� f (x)

�2
dx:

Wand et al., (1991) show that there exists a relationship between the value of MISE obtained

for the classical kernel estimator of the transformed variable and the MISE obtained with the

transformation kernel estimator of the original variable. They also show that there exists an
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optimal transformation that minimizes both expressions.

The asymptotic mean integrated squared error is

AMISE
�
~fn (x)

�
= (nh)�1 � (k) +

h4

4
�22 (K)

Z
f
002
(x) dx;

and the optimal bandwidth minimizes the asymptotic mean squared error

~h =

2664 � (k)

�22 (k)

Z
(f 00 (x))2 dx:

3775
1=5

n�1=5;

but the bandwidth h can be chosen to make AMISE
�
~fn (x)

�
minimal.

We remark that the bandwidth ~h is inversely proportional to the roughness �
�
f
00�
=

Z �
f
00
(x)
�2
dx of

f (x) :

Let us consider the beta density function B (�; �) de�ned on the interval [�; � + a] parametrized

as follows Johnson et al. (1995)

(x� �)��1 (� + a� x)��1

a�+��1B (�; �)
; � 1 � x � 1;

with B (�; �) =
� (�) � (�)

� (�+ �)
; and � (:) is the Euler Gamma function.

Terrel and Scott (1985) analyzed several density families that minimizes the measure of smoothness

�
�
f
00�
: Terrel (1990) showed that the beta distribution de�ned on [�1; 1] minimizes �

�
f
00�
within

the set of all densities with a given known variance, and showed that B (3; 3) de�ned on ]�1=2; 1=2[

minimizes �
�
f
00�
within the set of beta density with same support.

Based on the work by Buch-Larsen et al. (2005), Bolancé et al (2008) proposed a double transfor-

mation with the purpose of obtaining a transformed variable whose density is as close as possible to

a density that maximizes smoothness �
�
f
00�
and at the same time that minimizes the asymptotic

mean integrated squared error AMISE of the classical kernel estimator and obtained with the

transformed observations.

Bolancé (2010) used a double transformation Champernowne-inverse beta in kernel density estima-

tor for heavy-tailed distributions, and calculated the asymptotically optimal bandwidth parameter

when minimizing the expression of the asymptotic mean integrated squared error of the trans-
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formed variable.

3.1.3 Champernowne distribution

In Buch-Larsen et al. (2005) the Champernowne distribution is proposed as transformation func-

tion. The Champernowne c.d.f is a heavy tailed, quite �exible three- parameter distribution and

has the form

T�;M;c (x) =
(x+ c)� � c�

(x+ c)� + (M + c)� � 2c� ; x 2 R+;

with parameters � > 0 , M > 0 and c � 0; and density function

t�;M;c (x) =
� (x+ c)��1 ((M + c)� � c�)
(((x+ c)� + (M + c)� � 2c�))2

8x 2 R+:

The Champernowne distribution is a heavy tailed distribution converging to the Pareto distribution

t�;M;c (x)!
�
�
((M + c)� � c�)

1
�

��
x�+1

as x!1:

A crucial step when using the Champernowne distribution, is the choice of parameter estimators.

As described in Buch-Larsen et al. (2005), a natural way is to recognize that T�;M;c (M) = 1=2

and therefore estimate the parameter M as the empirical median, and then estimate (�; c) by

maximizing the log-likelihood function

l (�; c) = n log�+ n log ((M + c)� � c�) + (�� 1)
Pn

i=1 log (Xi + c)

�2
Pn

i=1 log ((Xi + c)
� + (M + c)� � 2c�) :

The choice of M as the empirical median gives a stable estimator, especially for heavy-tailed

distributions, and the maximum likelihood estimates of (�; c) ensures the best over-all �t of the

distribution.

Remark 3.1.1 The e¤ect of the additional parameter c is di¤erent for � > 1 and for � < 1. The

parameter c has some �scale parameter properties�: when � < 1, the derivative of the cdf becomes

larger for increasing c, and conversely, when � > 1, the derivative of the c.d.f becomes smaller for

increasing c. When � = 1, the choice of c a¤ects the density in three ways.

First, c changes the density in the tail. When � < 1, positive c result in lighter tails, and the
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opposite when � > 1.

Secondly, c changes the density in 0. A positive c provides a positive �nite density in 0

0 < t�;M;c (0) =
�c��1

(M + c)� � c� <1 when c > 0:

Thirdly, c moves the mode. When � > 1, the density has a mode, and positive c shift the mode to

the left. We therefore see that the parameter c also has a shift parameter e¤ect. When � = 1, the

choice of c has no e¤ect.
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Chapter 4

Champernowne transformation in kernel

quantile estimation for heavy-tailed

distributions

Abstract1. By transforming a data set with a modi�cation of the Champernowne distribution

function, a kernel quantile estimator for heavy-tailed distributions is given. The asymptotic mean

squared error (AMSE) of the proposed estimator and related asymptotically optimal bandwidth

are evaluated. Some simulations are drawn to show the performance of the obtained results.

Keywords: Bandwidth; Champernowne distribution; Heavy tails; Kernel estimator; Quantile

function.

4.1 Introduction

The estimation of population quantiles is of great interest when a parametric form for the under-

lying distribution is not available. It plays an important role in both statistical and probabilistic

applications, namely: the goodness-of-�t, the computation of extreme quantiles and Value-at-Risk

in insurance business and �nancial risk management. Also, a large class of actuarial risk measures

can be de�ned as functional of quantiles (see, Denuit et al. 2005).

Quantile estimation has been intensively used in many �elds, see Azzalini (1981), Harrel and

1This chapter is a paper appeared in Journal Afrika Statistika. Vol. 5, N� 12, 2010, page 288�296. (authers :
Sayah A., Yahia D., Necir A.)
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Davis (1982), Sheather and Marron (1990), Ralescu and Sun (1993), and Chen and Tang (2005).

Most of the existing estimators su¤er from either a bias or an ine¢ ciency for high probabil-

ity levels. To solve this inconvenience, we suggest to use the so-called transformed kernel esti-

mate, �rstly used in the density estimation context, by Devroye and Györ� (1985) for heavy-

tailed observations. The idea is to transform the initial observations fX1; :::; Xng into a sample

fZ1; :::; Zng := fT (X1); :::; T (Xn)g; where T is a given function having values in (0; 1) : Buch-

Larsen et al. (2005) suggested to choose T so that T (X) is close to the uniform distribution.

They proposed a kernel density estimation of heavy-tailed distributions based on a transforma-

tion of the original data set with a modi�cation of the Champernowne cumulative distribution

function (c.d.f) (see, Champernowne, 1936 and 1952). While Bolancé et al. (2008) proposed the

Champernowne-inverse beta transformation in kernel density estimation to model insurance claims

and showed that their method is preferable to other transformation density estimation approaches

for distributions that are Pareto-like.

Recently, in order to correct the bias problems, Charpentier and Oulidi (2010) suggested several

nonparametric quantile estimators based on the beta-kernel and applied them to transformed data.

For nonparametric estimation, the bandwidth controls the balance between two considerations:

bias and variance. Furthermore, the mean squared error (MSE) which is the sum of squared bias

and variance, provides a composite measure of performance. Therefore, optimally in the sense of

MSE is not seriously swayed by the choice of the kernel but is a¤ected by that of the bandwidth (for

more details, see Wand and Jones, 1995). In this paper, we propose a new estimator of the quantile

function, based on the modi�ed Champernowne transformation and we obtain an expression for

the value of the smoothing parameter that minimizes the AMSE of the obtained estimator. The

use of this transformation in kernel estimation of quantile functions for heavy-tailed distributions

improves the already existing results.

The rest of the paper is organized as follows. In Section 2, the kernel quantile estimation is given.

Section 3 is devoted to the Champernowne transformation and the estimation procedure. In Section

4, we propose an asymptotically optimal bandwidth selection. A simulation study is carried out

in Section 5. Finally we outline some concluding remarks in Section 6.
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4.2 Kernel quantile estimation

LetX1; X2; :::; be independent and identically distributed (i.i.d) random variables (rv�s) drawn from

an absolutely continuous (c.d.f) F with probability density function (p.d.f) f: For each integer n;

let X1;n � ::: � Xn;n denote the order statistics pertaining to the sample X1; :::; Xn:We de�ne the

pth quantile QX (p) as the left-continuous inverse of F as

QX(p) := inf fx 2 IR : F (x) � pg ; 0 < p < 1:

A basic estimator of QX (p) ; is the sample quantile Qn (p) = X[np]+1;n where [x] denotes the integer

part of x 2 IR: Suppose that K is a p.d.f symmetric about 0 and h := hn is a sequence of real

numbers (called bandwidth) such that h ! 0 as n ! 1: The classical kernel quantile estimator

(CKQE) was introduced by Parzen (1979) in the following form:

~Qn;X (p) :=
nX
i=1

Xi;n

Z i
n

i�1
n

Kh (x� p) dx; (4.1)

where Kh (t) := K (t=h) =h: Yang (1985) established the asymptotic normality and the mean

squared consistency of ~Qn;X (p) ; while Falk (1984) showed that the asymptotic performance of

~Qn;X (p) is better than that of the empirical sample quantile. Sheather and Marron (1990) gave

the AMSE of ~Qn;X (p) : For further details on kernel-based estimation, see Silverman (1986) and

Wand and Jones (1995).

4.3 Champernowne transformation and estimation proce-

dure

In the context of quantile estimation, if T is strictly increasing, the pth quantile of T (X) is equal

to T (QX(p)) : Firstly, we use a parametric transformation T; namely the modi�ed Champernowne

c.d.f as proposed by Buch-Larsen et al. (2005) when �tting insurance claims:

T�;M;c (x) :=
(x+ c)� � c�

(x+ c)� + (M + c)� � 2c� ; x � 0; (4.2)
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with parameters � > 0; M > 0 and c � 0: The associated p.d.f is

t�;M;c (x) :=
� (x+ c)��1 ((M + c)� � c�)
((x+ c)� + (M + c)� � 2c�)2

; x � 0:

This distribution is of Pareto type, that is

t�;M;c (x) �
� ((M + c)� � c�)

x�+1
; as x!1:

The idea is to transform the initial data fX1; :::; Xng into fZ1; :::; Zng ; where Zi := T (Xi) ;

i = 1; :::; n: This can be assumed to have been produced by a (0; 1)-uniform rv Z: Thus, (4.1)

yields the transformed kernel quantile estimator (TKQE)

Q̂n;X(p) := T
�1
�
Q̂n;Z(p)

�
;

where T�1 is the inverse of T and

Q̂n;Z (p) :=

nX
i=1

Zi;n

Z i
n

i�1
n

Kh (z � p) dz: (4.3)

The estimation procedure is described as follows:

1. Compute the estimates
�
�̂; M̂ ; ĉ

�
of the parameters of the modi�ed Champernowne distri-

bution (4.2). Notice that T�;M;0 (M) = 0:5; this suggests that M can be estimated by the

empirical median (see Lehmann, 1991). Then, estimate the pair (�; c) which maximizes the

log-likelihood function (see, Buch-Larsen et al. 2005):

l (�; c) = n log�+ n log ((M + c)� � c�) + (�� 1)
nX
i=1

log (Xi + c)

� 2
nX
i=1

log ((Xi + c)
� + (M + c)� � 2c�) : (4.4)

2. Transform the data X1; :::; Xn into Z1; :::; Zn by

Zi = T�̂;M̂ ;ĉ (Xi) ; i = 1; :::; n:

The resulting transformed data belong to the interval (0; 1) :
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3. Using (4.3), calculate the kernel quantile estimator Q̂n;Z(p) of the transformed data: Z1; :::; Zn:

4. The resulting TKQE of the original data X1; :::; Xn is given by

Q̂n;X(p) = T
�1
�̂;M̂ ;ĉ

�
Q̂n;Z(p)

�
: (4.5)

4.4 Asymptotic theory and bandwidth selection

Let X1; :::; Xn be i.i.d rv�s with c.d.f F and p.d.f f: For each p in (0; 1) ; let Q̂n;X (p) be the TKQE

(4.5) of QX (p) :

Theorem 4.4.1 Assume that QZ (�) is two-times di¤erentiable in a neighbourhood of p 2 (0; 1)

with continuous second derivative. Assume further that the kernel K has compact support and

ful�lls: Z
K(t)dt = 1;

Z
tK(t)dt = 0 and

Z
t2K(t)dt <1:

Then the bias and the variance of Q̂n;X (p) are respectively

Bias
�
Q̂n;X (p)

�
=
h2

2

h�
T�1

�00
(QZ (p))Q

02
Z (p) +

�
T�1

�0
(QZ (p))Q

00
Z (p)

i
�2 (K) + o

�
h2
�
;

and

V ar
�
Q̂n;X (p)

�
=
��
T�1

�0
(QZ (p))Q

0
Z (p)

�2�p (1� p)
n

� h
n
' (K)

�
+ o

�
h

n

�
;

where �2 (K) :=
R
t2K (t) dt; ' (K) := 2

R
tK (t)

�R t
�1K(s)ds

�
dt; Q0Z and Q

00
Z are the �rst and

the second derivatives of QZ : The value of h that minimizes the AMSE of Q̂n;X (p) is

hopt;X :=

 �
(T�1)

0
(QZ (p))Q

0
Z (p)

�2
' (K)

n	2T;Q (p)�
2
2 (K)

!1=3
; (4.6)

where

	T;Q (p) :=
�
T�1

�00
(QZ (p))Q

02
Z (p) +

�
T�1

�0
(QZ (p))Q

00
Z (p) :
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The associated AMSE is

AMSEhopt;X := n
�1
�
p (1� p)

��
T�1

�0
(QZ (p))Q

0

Z (p)
�2

� 3

4

���
T�1

�0
(QZ (p))Q

0

Z (p)
�8
'4 (K)

�
n	2T;Q (p)�

2
2 (k)

��1�1=3)
:

Proof. The proof is the same as for the classical kernel quantile estimator, (see Falk, 1984 and

Sheater and Marron, 1990). It su¢ ces to replace QX (p) by T�1 (QZ(p)) : Suppose that Z has

p.d.f g and c.d.f G: In the cases where g is not symmetric or symmetric with p 6= 0:5; Sheater and

Marron (1990) gave the AMSE of Q̂n;Z (p) :

AMSE
�
Q̂n;Z (p)

�
=
p (1� p)

n
Q02Z (p) +

1

4
h4Q002Z (p)�

2
2 (K)�

h

n
Q02Z (p)' (K) :

If Q0Z (p) > 0; the asymptotically optimal bandwidth for Q̂n;Z (p) is

hopt;Z =

�
Q02Z (p)' (K)

nQ002Z (p)
2 �2 (K)

2

�1=3
: (4.7)

When g is symmetric and p = 0:5; we have

AMSE
�
Q̂n;Z (0:5)

�
=
1

n
Q02Z (0:5)

�
0:25� 0:5h' (K) + 1

nh

Z
K2 (t) dt

�
:

Remark 4.4.1 If Q0X (p) > 0; the asymptotically optimal bandwidth for the CKQE ~Qn;X (p) is

hopt;C =

�
Q02X (p)' (K)

nQ002X (p)
2 �2 (K)

2

�1=3
: (4.8)

Remark 4.4.2 The �rst and the second derivatives of QZ are

Q0Z (p) =
1

g(QZ (p))
=
T 0(QX (p))

f(QX (p))
;
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and

Q00Z (p) =
�g0(QZ (p))
g3(QZ (p))

= �f
0(QX (p))T

0(QX (p))� f(QX (p))T 00(QX (p))
f 3(QX (p))

:

4.5 Simulation study

The main purpose of this section is to compare the CKQE ~Qn;X (p) and the TKQE Q̂n;X (p) : The

distributions used in simulation are described in Table 4.1.

Table 4.1: Distributions used in the simulation study

Distribution Density for x > 0 Parameters

Burr (�; ; �)
� (x=�)

x (1 + (x=�))
�+1 (�; ; �) = (2; 3; 1)

Paralogistic (�; �)
�2 (x=�)�

x (1 + (x=�)�)
�+1 (�; �) = (3; :5)

Mixture of � log-normal(�; �) �
1p
2��2x

exp

(
�(log x� �)

2

2�2

)
(�; �; �; �; �) = (0:7; 0; 1; 1; 1)

and (1� �) Pareto(�; �) +(1� �) � (x=�)

x (1 + (x=�))�+1

Note that, the mixture of log-normal and Pareto distributions was previously used in Buch-Larsen

et al. (2005) and Charpentier and Oulidi (2010). The performance of the estimators is measured

by the AMSE criteria:

AMSE :=
1

N

NX
s=1

�
Q̂
(s)
n;X(p)�Q (p)

�2
;

where Q̂(s)n;X(p) is the quantile corresponding to the s
th simulated sample

n
X
(s)
1 ; :::; X

(s)
n

o
and N

is the number of replications. The algorithm used to estimate the quantile function with level

p 2 (0; 1) is described as follows:

1. Generate a sample X1; :::; Xn of size n:
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2. Estimate M by the empirical median M̂; solution of T�;M;0 (M) = 0:5:

3. Estimate the pair (�; c) maximizing the log-likelihood function (4.4).

4. Transform X1; :::; Xn into Z1; :::; Zn :

Zi = T�̂;M̂ ;ĉ (Xi) ; i = 1; :::; n:

5. Compute the estimate Q̂n;Z(p) by choosing the Epanechnikov kernel: K(t) = 3
4
(1� t2)1(jtj<1):

6. The resulting TKQE of the original data is

Q̂n;X(p) = T
�1
�̂;M̂ ;ĉ

�
Q̂n;Z(p)

�
:

7. The CKQE is directly obtained from the original data, where the bandwidth h := hopt;C is

such as in (4.8).

We draw from the four distributions samples of size 50; 100; 500 and compute the TKQE and

CKQE for di¤erent values of p in (0; 1) : In Figures 4.1�4.4 , the solid (black), dashed (red) and

dotted (blue) lines, respectively, represent the true quantile Q (p) ; the CKQE and the TKQE. On

these �gures, we observe that our TKQE is always better than the CKQE, especially when p is

close to 1:

Secondly, we �x the sample size at 200 and compute both the TKQE and CKQE for probability

levels p 2 f:05; :10; :25; :50; :75; :90; :95g : We repeat the process N = 200 times and we take the

average. The results are summarized in Tables 4.2�4.5 where we see that the TKQE is better than

the CKQE for high probability levels p 2 f:75; :90; :95g : Table 4.4 is based on the mixture 30%

log-normal and 70% Pareto distributions. Both estimators are equal for p 2 f:05; :10; :25; :50g :

Next, we sample, 200 times, from the four distributions sets of sizes 50; 100; 500 and compute

the TKQE and CKQE with their AMSE 0s for levels p 2 f:75; :90; :95g : The respective results are

given in Tables 4.6, 4.7 and 4.8. It is clear that, for large probability levels, the transformation-

based approach gives results of higher quality with respect to the classical procedure. Note that,

under the classical estimation, some AMSE 0s are seriously bad when samples come from mix-

ture distributions, especially when 70% of Pareto distribution is considered. The same remark is

observed in Charpentier and Oulidi (2010) (see their table�s 13-18 pages 52�53).
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Figure 4-1: True quantile, classical and transformed pth quantile estimators : Burr distribution,
n = 50; 100 and 500; p 2 (0; 1) :

Table 4.2: Burr distribution, 200 samples of size 200.

p 0:05 0:1 0:25 0:5 0:75 0:9 0:95

Q(p) 0:2962 0:3782 0:5368 0:7454 1:0000 1:2931 1:5143

TKQE 0:2966 0:3728 0:5345 0:7480 0:9946 1:2928 1:5150

CKQE 0:2988 0:3741 0:5345 0:7503 0:9852 0:5464 0:0367

Table 4.3: Paralogistic distribution, 200 samples of size 200.

p 0:05 0:1 0:25 0:5 0:75 0:9 0:95

Q(p) 0:1075 0:1551 0:2622 0:4291 0:6667 0:9803 1:2422

TKQE 0:7983 0:1278 0:2526 0:4263 0:6705 0:9676 1:1626

CKQE 0:1088 0:1547 0:2641 0:4330 0:7024 0:6079 0:4421
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Figure 4-2: True quantile, classical and transformed pth quantile estimators : Paralogistic distrib-
ution, n = 50; 100 and 500; p 2 (0; 1)

Table 4.4: Mixtures ( rho= 0.3) distribution, 200 samples of size 200.

p 0:05 0:1 0:25 0:5 0:75 0:9 0:95

Q(p) 0:0948 0:1611 0:3862 1:0000 2:6889 7:3807 14:8541

TKQE 0:2380 0:3391 0:6213 1:2560 2:7743 7:2812 15:2085

CKQE 0:2350 0:3380 0:6273 1:3246 16:4845 28:9263 21:5483

Table 4.5: Mixtures ( rho= 0.7) distribution, 200 samples of size 200.

p 0:05 0:1 0:25 0:5 0:75 0:9 0:95

Q(p) 0:1509 0:2277 0:4566 1:0000 2:2741 5:2216 9:3262

TKQE 0:2987 0:4200 0:7230 1:3483 2:5389 5:1070 8:4522

CKQE 0:3239 0:3981 0:7293 1:3805 2:6514 6:6738 29:6183
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Figure 4-3: True quantile, classical and transformed pth quantile estimators : Mixtures distribution
(� = :3), n = 50; 100 and 500; p 2 (0; 1)

Table 4.6: Classical and transformed pth quantile estimators, p= .75 and 200 replications

Distribution Burr Paralogistic �log normal and (1� �)Pareto

� = 30% � = 70%

p = :75 Q(p) 1:0000 0:6667 2:6889 2:2741

n = 50 value TKQE 0:9623 0:6622 2:7235 2:6067

CKQE 0:7963 0:7059 7:0750 3:0655

AMSE TKQE 0:0150 0:0059 1:0175 0:3999

CKQE 0:0445 0:0080 106:46 1:1058

n = 100 value TKQE 0:9912 0:6627 2:8756 2:5885

CKQE 0:8922 0:7256 46:800 2:7845

AMSE TKQE 0:0048 0:0029 0:3518 0:2383

CKQE 0:0135 0:0069 30501 0:4163

n = 500 value TKQE 1:0027 0:6664 2:7815 2:5781

CKQE 1:0479 0:6825 3:2990 2:6369

AMSE TKQE 0:0008 0:0006 0:0553 0:1151

CKQE 0:0030 0:0008 0:4490 0:1522

70



Figure 4-4: True quantile, classical and transformed pth quantile estimators : Mixtures distribution
(� = :7), n = 50; 100 and 500; p 2 (0; 1)

Table 4.7: Classical and transformed pth quantile estimators, p= .9 and 200 replications

Distribution Burr Paralogistic �log normal and (1� �)Pareto

� = 30% � = 70%

p = :90 Q(p) 1:2931 0:9803 7:3807 5:2216

n = 50 value TKQE 1:2941 0:9796 7:8530 5:2474

CKQE 0:3864 0:4683 10:668 9:5797

AMSE TKQE 0:0201 0:0277 15:545 3:2335

CKQE 0:8230 0:2655 298:59 179:86

n = 100 value TKQE 1:2985 0:9819 7:3484 5:1982

CKQE 0:4690 0:5341 12:540 11:3100

AMSE TKQE 0:0084 0:0113 5:3956 1:5319

CKQE 0:6798 0:2012 352:99 324:23

n = 500 value TKQE 1:2996 0:9773 6:9729 4:9967

CKQE 0:6399 0:7219 22:028 5:3940

AMSE TKQE 0:0020 0:0021 1:0575 0:2473

CKQE 0:4269 0:0679 698:79 0:2868
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Table 4.8: Classical and transformed pth quantile estimators, p= .95 and 200 replications

Distribution Burr Paralogistic �log normal and (1� �)Pareto

� = 30% � = 70%

p = :95 Q(p) 1:5143 1:2422 14:8541 9:3262

n = 50 value TKQE 1:5506 1:0945 16:6389 9:0187

CKQE 0:0232 0:3396 12:2710 12:0748

AMSE TKQE 0:0443 0:0751 165:422 19:7341

CKQE 2:2232 0:8165 1025:83 466:674

n = 100 value TKQE 1:5332 1:1352 14:8011 8:6076

CKQE 0:0291 0:3889 16:0566 17:5289

AMSE TKQE 0:0211 0:0702 42:2056 4:8286

CKQE 2:2057 0:7294 1129:14 669:036

n = 500 value TKQE 1:5181 1:1740 14:4662 8:1453

CKQE 0:0498 0:5174 28:3102 27:2626

AMSE TKQE 0:0038 0:0468 9:4011 2:8212

CKQE 2:1447 0:5259 2123:63 9055:37
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Conclusion and perspectives

For heavy-tailed distributions, bias or ine¢ ciency problems may occur in the classical kernel quan-

tile estimation when considering high probability levels. In this paper, we have solved this inconti-

nence by using a new approach based on the modi�ed Champernowne distribution which behaves

as the Pareto distribution. Therefore it can capture the thick-tail feature exhibited by empirical

loss data. The transformation step can also be seen as a kind of variance stabilization procedure

as traditionally used in statistic sampling. Our main conclusion is that the transformed kernel

quantile estimator is recommended for heavy-tailed models.

By transforming a data set with a modi�cation of the Champernowne distribution function, a

kernel quantile estimator for heavy-tailed distributions gives better results in the sense of the

mean square error compared with the classical estimator that de�ned by

Q̂n (p) =
nP
i=1

X(i)

i
nR

i�1
n

1

h
k
�
x�p
h

�
dx:

Another kernel estimator of quantile is de�ned by

~Qn(p) = inffx : ~Fn(x) � pg; 0 < p < 1;

where ~Fn(x) is the kernel distribution function estimator.

We want to compare these two Champernowne transformed estimators in the sense of the mean

squared error and conclude what is the best quantiles estimators for heavy-tailed distributions,

when the probability level is close to 1.

We will especially interested in the behavior of the transformed estimator Q̂n (p) if we use the Beta

kernel and we also compare these transformed estimators.
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The law of the iterated logarithm for transformed kernel quantile function for heavy-tailed distri-

butions is another research perspective.

Finally, the use and comparison of these kernel estimation methods for real data is an interest

subject of research.
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