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Introduction

In the last two decades, Cauchy integral equations have assumed an increasing rel-
evance. This is due to the great variety of problems arising in sciences, engineering
and technology, which can be described by such equations. Cauchy integral and
Integro-di�erential equations involve important mathematical techniques, because
they are encountered by mathematicians, and physical and social scientists, in their
investigations. These equations were described in many available books, concerning
theory and applications ( cf. [2], [7], [9], [10], [16], [20], [34], [37], [39], [45], [70], [89],
[92], [95], [108], [109], [117], [122], [125], [130], [139]-[141] ).
Several books include the latest questions related to high technology on solving very
important theoretical and practical problems on solid mechanics, fracture mechan-
ics, structural analysis, elastodynamics, �uid mechanis and aerodynamics, by using
singular integral equation methods ( cf. [1], [13], [48], [71], [90], [96]-[98], [118], [119],
[126] ). In ([132]-[138]), the author presented many papers relating to boundedness
of singular integral operators with Cauchy kernel in weighted spaces.
In ( [18], [14], [72]-[78] ), the authors have studied the Cauchy integral equations
in weigthted spaces of continuous functions, using Jacobi weights; they introduced
a certain number of polynomial approximation spaces. In ( [50]-[69] ), the authors
presented analytical theories and numerical evaluation methods for solving Cauchy
integral equations, in an accessible manner for a variety of applications to problems
in the theory of three-dimensional elasticity. In the last decades several papers have
been published on the convergence of the quadrature rules for evaluating Cauchy
singular integrals, (see [21]-[31], [32], [102]-[107]). In ([80]-[88]), the author has
investigated the algebra of Cauchy integral operators with piecewise continuous co-
e�cients on re�exive Orlicz spaces, and he has presented the necessary conditions
for Fredholmness of singular integral operators in re�exive weighted rearrangement-
invariant spaces.
During the last 30 years, there has been a substantial increase in interest in the nu-
merical solution of the Fredholm singular integral and integro-di�erential equations
with Cauchy kernel (cf. [35, 40, 41]). These equations have important applications
in mathematical physics, applied mathematics, and numerical analysis. The math-
ematical formulation of physical phenomena often involves Cauchy type, see, for
example the excellent book by Muskhelishvili (cf. [110]), and the references therein.
Various of Fredholm singular integral equations with Cauchy kernel have been solved
numerically in recent times by several authors using approximate methods. Recently,
Chakrabarti, and Martha, have developed a straightforward method, involving ex-
pansion of the unknown function of a Fredholm integral equation of the second
kind, in terms of polynomials, and have used the method of least-squares (cf. [19]).
Eshkuvatov et al have described a special approximate method for solving Fredholm
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integral equation of the �rst kind, with Cauchy type (cf. [36]). Elliott, described a
classical collocation method for singular integral equations having a Cauchy kernel,
and showed that, under reasonable conditions, the approximate solutions converge
to the solution of the original equation (cf. [35]). Golberg, analyzed and obtained
convergence proofs of some numerical methods, for solving several classes of Cauchy
singular integral equations (cf. [40, 41, 42]). In 2007 Mandal and Bera employed
a simple method based on polynomial approximation of a function to obtain ap-
proximate solution of a class of singular integral equations of the second kind (cf.
[100]). Also Many di�erent methods have been developed to obtain an approximate
solution of these equations (cf. [12, 91, 123, 131]). Other techniques for solving
Fredholm singular integro-di�erential equations with Cauchy kernel have been pre-
sented in several works. Badr, presented a Galerkin approach for solving the linear
integro-di�erential equation of the second kind with Cauchy kernel by using the or-
thogonal basis of Legendre polynomials (cf. [11]). In 2006 Maleknejad and Arzhang
have presented a Taylor-series expansion method for a class of Fredholm singular
integro-di�erential equation with Cauchy kernel, and used the truncated Taylor-
series polynomial of the unknown function and transform the integro-di�erential
equation into an nth order linear ordinary di�erential equation with variable co-
e�cients (cf. [99]). In 2008 Subhra Bhattacharya, and Mandal have presented
a method based on polynomial approximation using Bernstein polynomial basis,
to obtain approximate numerical solutions of singular integro-di�erential equations
with Cauchy kernel, and compared their numerical results with those obtained by
various Galerkin methods (cf. [100]). So the polynomial approximation play an
important role in the numerical computation of the integral and integro-di�erential
equations (cf. [35, 40, 41, 120, 121]).
The purpose of this thesis, is to develop and illustrate various new methods for
solving many classes of Cauchy singular integral and integro-di�erential equations.
This work is organized as follows:

In the beginning, we brie�y recall a few basic concepts from general theoretical
framework, such as bounded and compact operators, Hilbert spaces and adjoint op-
erators, spectral theory framework, convergence of operators, approximation based
on projections, and some classi�cation of integral equations.

In chapter one, we study the successive approximation method for solving a
Cauchy singular integral equations of the �rst kind in the general case. We prove
the convergence of the method in this general case. The proposed method has been
tested for two kernels which are particularly important in practice.

In chapter two, we present two methods for solving Cauchy integral equation of
the second kind: Firstly we present a collocation method based on trigonometric
polynomials combined with a regularization procedure, for solving Cauchy integral
equations of the second kind, in L2([0, 2π] ,C). A system of linear equations is
involved. We prove the existence of the solution for a double projection scheme, and
we perform the error analysis. Numerical examples illustrate the theoretical results.
Secondly we solve directly Cauchy integral equation on the real line using Fourier
expansion in Sobolev spaces.

The purpose of chapter three, is to approximate the solution of an operator equa-
tion involving a non compact bounded operator in Hilbert spaces, using projection
methods. We prove the existence of the solution for the approximate equation, and
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we perform the error analysis. We apply the method for solving the Cauchy integral
equations in L2 (0, 1) for two cases : Galerkin projections and Kulkarni projections
respectively, using a sequence of orthogonal �nite rank projections. Numerical ex-
amples illustrate the theoretical results.

In chapter four, we introduce a collocation method for Cauchy integro-di�erential
equations, using airfoil polynomials of the �rst kind. According to this method, we
obtain a system of linear equations. We give some su�cient conditions for the con-
vergence of this method. In the end, we investigate the computational performance
of our approach through some numerical examples. w In chapter �ve, we propose
two methods for solving integro-di�erential equations with Cauchy kernel: First, we
present a modi�ed projection method based on Legendre polynomials. A system of
linear equations is solved. Second, we present a Sloan projection method for solving
integro-di�erential equations with Cauchy kernel, using Legendre polynomials. We
give numerical examples.

The last chapter deals with regularization for Cauchy integral equation of the
second kind. We apply three projection methods to the regularized equation. First
we use Kantorovich projection, and perform the error analysis. After we study the
Sloan projection and prove some results about the error analysis. Finally Galerkin
projection is established and its error analysis is discussed.
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Preliminaries

We begin by recalling brie�y a few basic concepts from general theoretical frame-
work, such as bounded and compact operators, Hilbert spaces and adjoint operators,
spectral theory framework, convergence of operators, approximation based on pro-
jections, and some classi�cation of integral equations.

Linear Operators

Let X be a Banach space, and let T be a linear operator de�ned on X. By the
nullspace of T , N (T ) we mean the space of vectors annihilated by T , so

N (T ) := {ϕ ∈ X : Tϕ = 0} .

The image (or range) of T is de�ned by

R(T ) := {Tϕ : ϕ ∈ X} .

A linear operator T from a normed space X into a normed space Y is called bounded
if there exists a positive number M such that

‖Tx‖ ≤M ‖x‖ for all x ∈ X,

and
‖T‖ := sup

‖x‖≤1

‖Tx‖ ,

is the norm of T . BL(X, Y ) will denote the space of bounded linear operators from
X into Y , and BL(X) those from X into itself.

T is called compact if it maps each bounded set in X into a relatively compact
set in Y . That is T is compact if the set {Tx : ‖x‖ ≤ 1} has compact closure in
Y .

We recall that a subset U of a normed space X is called compact if every open
covering of U contains a �nite subcovering.

A subset of a normed space is called relatively compact if its closure is compact.

Theorem 1. A bounded subset of a �nite-dimensional normed space is relatively
compact.

Proof. See [91].

We have also:

1. Compact linear operators are bounded.
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2. A linear operator T from a �nite-dimensional normed space X into a normed
space Y is bounded.

3. The identity operator I : X → X is compact if and only if X has �nite
dimension.

4. A bounded operator T from a normed space X into a normed space Y , with
�nite-dimensional range T (X) is compact. Such an operator is called a �nite-
rank one.

5. Linear combinations of compact operators are compact.

6. If (Tn) is a sequence of compact operators and ‖Tn − T‖ → 0 as n→∞, then
T is compact.

Theorem 2. Let X be a Banach space, and let T be a bounded linear operator from
X into X, with

‖T‖ < 1.

Then the I − T has a bounded inverse on X that is given by the Neumann series

(I − T )−1 =
∞∑
j=0

T j,

and satis�es ∥∥(I − T )−1
∥∥ ≤ 1

1− ‖T‖
.

Proof. See [91].

A Banach space X is called a Hilbert space if the norm on X is induced by an
inner product, that is, by a Hermitian positive de�nite sesquilinear form 〈., .〉, as
follows:

‖x‖ := 〈x, x〉1/2 for x ∈ X.
Let X be a Hilbert space and T ∈ BL(X). The adjoint of T is the unique operator
T ∗ ∈ BL(X) such that

〈Tϕ, ψ〉 = 〈ϕ, T ∗ψ〉 for all ϕ, ψ ∈ X.

We say that T is normal if T ∗T = TT ∗, and that T is selfadjoint if T ∗ = T .
The folowing results hold in a Hilbert space X:

1. Schwarz Inequality: For all x, y ∈ X,

|〈x, y〉| ≤ ‖x‖ ‖y‖ .

2. Let T ∈ BL(X), then
‖T‖ = ‖T ∗T‖1/2 .

3. Let T ∈ BL(X), then

N (T ) = R(T ∗)⊥ and R(T ) = N (T ∗)⊥.
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4. Suppose that T ∈ BL(X) is compact. The linear equation

(T − zI)x = y,

has a unique solution x ∈ X in the case where the corresponding homogenous
equation

(T − zI)x = 0,

has only the trivial solution.

Spectral Theory Framework

Let T ∈ BL(X), we recall the following de�nitions:
The resolvent of T is de�ned by

re (T ) := {z ∈ C : T − zI is invertible} .

For z ∈ re (T ), the resolvent operator of T at z is de�ned by

R(T, z) := (T − zI)−1.

The spectrum of T is the set

sp (T ) := {z ∈ C : z /∈ re (T )} .

If X is �nite dimensional, then sp (T ) consists of the eigenvalues of T .
The spectral radius of T is de�ned by

ρ(T ) := sup {|λ| : λ ∈ sp (T )} .

We have:

1. If z ∈ re (T ), then R(T, z) ∈ BL(X).

2. If T ∗ = T , then sp (T ) ⊆ R.

3. If T ∗ = −T , then sp (T ) ⊆ iR.

4. If T ∈ BL(X) is normal, then ρ(T ) = ‖T‖.

5. Let T ∈ BL(X). If z ∈ C is given, then for every y ∈ X, the linear equation

(T − zI)x = y,

has a unique solution x ∈ X determined by y if and only if z ∈ re (T ).
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Sequences of Operators

Let (Tn)n≥1 be a sequence of bounded linear operators on a Banach space X. Let
T ∈ BL(X). Unless otherwise mentioned, the convergence is as n→∞.

Let us consider three well-known modes of convergence.
The pointwise convergence, denoted by Tn

p→ T :

‖Tnx− Tx‖ → 0 for every x ∈ X.

The norm convergence, denoted by Tn
n→ T :

‖Tn − T‖ → 0.

The collectively compact convergence, denoted by Tn
cc→ T :

Tn
p→ T , and for some positive integer n0, the set

∪n≥n0 {(Tn − T )x : x ∈ X, ‖x‖ ≤ 1} ,

is a relatively compact subset of X.
If Tn

n→ T or Tn
cc→ T , then clearly Tn

p→ T . But the converse is not true.
In [4], the authors have studied a new mode of convergence called: the ν-

convergence, denoted by Tn
ν→ T :

(‖Tn‖) is bounded , ‖(Tn − T )T‖ → 0, ‖(Tn − T )Tn‖ → 0.

Theorem 3. 1. If Tn
n→ T , then Tn

ν→ T . Conversely, if 0 /∈ sp (T ) and Tn
ν→ T ,

then Tn
n→ T .

2. If Tn
cc→ T and T is compact, then Tn

ν→ T .

3. Let Tn
ν→ T and Un

ν→ U . Then Tn+Un
ν→ T+U if and only if (Tn−T )U

n→ 0.

Proof. See [4]

Approximation Based on Projections

Let (πn) be a sequence of bounded projections de�ned on X, that is each πn is
bounded linear operator and π2

n = πn, hence ‖πn‖ ≥ 1.
The following three conditions are equivalent one with each other if πn is a

bounded projection de�ned on Hilbert space X:

π∗n = πn, ‖πn‖ ≤ 1, N (πn) = R(πn)⊥.

If one of these conditions is satis�ed, then πn is called an orthogonal projection.
De�ne

T Pn := πnT, T Sn := Tπn, TGn := πnTπn, TKn := πnT + Tπn − πnTπn.

The bounded operators T Pn , T
S
n , T

G
n , T

K
n , are known as the projection approximation

of T , the Sloan approximation of T , the Galerkin approximation of T , and the
Kulkarni approximation of T , respectively.
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Theorem 4. Let T ∈ BL(X) and πn
p→ I. Then

1. T Pn
p→ T , T Sn

p→ T and TGn
p→ T .

2. If T is a compact operator, then T Pn
n→ T , T Sn

ν→ T , TGn
ν→ T .

3. If T is a compact operator and π∗n
p→ I∗, then T Sn

n→ T , TGn
n→ T .

Proof. See [4]

Classi�cation of Integral Equations

An integral equation is an equation for an unknown fuction ϕ, where ϕ appears also
under the integral sign. The classi�cation of integral equations centres on many
basic characteristics:

1. Limits of integration

• Both �xed: Fredholm equation.

• One variable: Volterra equation.

2. Placement of the unknown function

• Only inside integral: First kind.

• Both inside and outside integral: Second kind.

The Fredholm integral equation of the �rst kind is represented by∫ b

a

k(s, t)ϕ(t)dt = g(s), a ≤ s ≤ b.

The Volterra integral equation of the second kind is represented by

ϕ(s) =

∫ s

a

k(s, t)ϕ(t)dt+ g(s), a ≤ s ≤ b.

3. Nature of the known function

• Identically zero: Homogeneous.

• Not identically zero: Inhomogeneous.

For example, the equation

ϕ(s) =

∫ b

a

k(s, t)ϕ(t)dt, a ≤ s ≤ b,

is referred to as the homogeneous Fredholm integral equation of the second
kind.

4. Linearity: The equation is linear with respect to the unknown function or not.
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• Linear integral equations.

• Nonlinear integral equations.

For example, the equation

ϕ(s)−
∫ s

a

k(s, t, ϕ(t))dt = g(s), a ≤ s ≤ b,

is a nonlinear Volterra integral equation of the second kind, where k is not a
linear function of its third variable.

5. Depending on the kind of the integral

• Regular integral equations.

• Singular integral equations.

A special and important example of a singular integral equation is the Cauchy or
strongly singular integral equation. In this case the integral must be understood as
the Cauchy principal value.

An example of a Cauchy singular kernel is

k(s, t) =
1

s− t
, s 6= t.

Sometimes, integral equations occur with additional derivatives of the unknown
function (under the integral or ouside). In this case, the problem is called an integro-
di�erential equation.

For example, the equation

ϕ′(s) +

∮ b

a

ϕ(t)

t− s
dt = f(s), a ≤ s ≤ b,

is an integro-di�erential equation with Cauchy kernel.

21



Chapter 1

Solving Cauchy Integral Equations of
the First Kind by Iterations

1.1 Introduction

The successive approximation method is applied for the �rst time by N.I. Ioakimidis
(cf. [49]), to solve practical cases of a Cauchy singular integral equation: the airfoil
one (cf. [131]). In this chapter we study a more general case. We prove the conver-
gence of the method in this general case. The proposed method has been tested for
two kernels which are particularly important in practice.
Cauchy singular integral equations of the �rst kind are often encountered in con-
tact and fracture problems in solid mechanics. Sokhottski, Harnack, Mushkelishvili
(cf. [110]), Privalov, Magnaradze, Mikhlin, Khvedelidze, Vekua, Kupradze, Gakhov,
Golberg, Elliott, Srivastav, Sesko, Erdogan, Junghannes, Linz, Ioakimidis and oth-
ers have investigated such type of equation. The solutions of these problems may be
obtained analytically using the theory developed by Mushkelishvili. Cauchy integral
equations are usually di�cult to solve analytically, and it is required to obtain ap-
proximate solutions. So many di�erent methods have been developed to obtain an
approximate solution of a Cauchy integral equation (cf. [12], [91], [123]). In 1988,
Ioakimidis solved the airfoil equation with the successive approximation method for
the �rst time. In this chapter this method is applied for solving a Cauchy singu-
lar integral equations of the �rst kind in the general case. The convergence of the
method is investigated.

1.2 Development of the Method

We consider the Cauchy integral equation of the �rst kind

1

π

∮ 1

−1

v(t)ϕ(t)

t− x
dt = g(x), −1 < x < 1, (1.1)
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where v and g are known functions and ϕ is the unknown. We shall assume that g
has derivatives of all orders on [−1, 1], and that

1

π

∮ 1

−1

v(t)

t− x
dt = 1, −1 < x < 1, (1.2)

1

π

∫ 1

−1

|v(t)|dt ≤ 1, −1 < x < 1, (1.3)

1

π

∮ 1

−1

1

v(t)(t− x)
dt = 1, −1 < x < 1, (1.4)

1

π

∫ 1

−1

1

|v(t)|
dt ≤ 1, −1 < x < 1.

We substract the singularity of equation (1.1) at t = x as follows:

1

π

∮ 1

−1

v(t)ϕ(x)

t− x
dt+

1

π

∮ 1

−1

v(t) [ϕ(t)− ϕ(x)]

t− x
dt = g(x), −1 < x < 1. (1.5)

Using (1.2) we rewrite equation (1.5) as:

ϕ(x) +
1

π

∮ 1

−1

v(t) [ϕ(t)− ϕ(x)]

t− x
dt = g(x), −1 < x < 1.

We obtain

ϕ(x) = g(x)− 1

π

∮ 1

−1

v(t) [ϕ(t)− ϕ(x)]

t− x
dt, −1 < x < 1.

Now, we apply to this equation the successive approximation method:

ϕn+1(x) = g(x)− 1

π

∮ 1

−1

v(t) [ϕn(t)− ϕn(x)]

t− x
dt, −1 < x < 1.

Using (1.2), we have:

ϕn+1(x) = ϕn(x) + g(x)− 1

π

∮ 1

−1

v(t)ϕn(t)

t− x
dt, −1 < x < 1, (1.6)

where

ϕ0(x) = 0, −1 < x < 1.

Let

Rn(x) = ϕ(x)− ϕn(x) (1.7)

From (1.6) we obtain, for −1 < x < 1,

ϕn+1(x)− ϕ(x) = ϕn(x)− ϕ(x) + g(x)

− 1

π

∮ 1

−1

v(t) [ϕn(t)− ϕ(t)]

t− x
dt

− 1

π

∮ 1

−1

v(t)ϕ(t)

t− x
dt.
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From (1.7) and (1.1),

−Rn+1(x) = −Rn(x) +
1

π

∮ 1

−1

v(t)Rn(t)

t− x
dt, −1 < x < 1.

Then

Rn+1(x) = Rn(x)− 1

π

∮ 1

−1

v(t)Rn(t)

t− x
dt, −1 < x < 1. (1.8)

Now, using (1.2), equation (1.8) becomes:

Rn+1(x) = − 1

π

∮ 1

−1

v(t) [Rn(t)−Rn(x)]

t− x
dt, −1 < x < 1,

and hence

R′n+1(x) = − 1

π

∮ 1

−1

v(t)
Rn(t)−Rn(x)− (t− x)R′n(x)

(t− x)2
dt, −1 < x < 1,

But following Taylor's theorem with integral remainder,

Rn(t)−Rn(x)− (t− x)R′n(x) =

∫ 1

0

(1− s)R′′n(x+ s(t− x))(t− x)2ds.

Hence,

‖R′n+1‖ ≤
1

2
‖R′′n‖.

Recursively,

‖R(j)
n+1‖ ≤

1

j + 1
‖R(j+1)

n ‖, j ∈ N.

Thus

‖R(j)
n−j+1‖ ≤

1

j + 1
‖R(j+1)

n−j ‖, j ∈ N.

Multiplying memberwise for j ∈ [[0, n ]], we get

‖Rn+1‖ ≤
1

(n+ 1)!
‖R(n+1)

0 ‖,

but from (1.7),

‖R(n+1)
0 ‖ = ‖ϕ(n+1)‖.

So

‖Rn‖ ≤
1

n!
‖ϕ(n)‖, n ∈ N.
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From (1.1) and by the Sohngen inversion formula,

ϕ(x) = − 1

π

∮ 1

−1

g(t)

v(t) (t− x)
dt, −1 < x < 1. (1.9)

Equation (1.9) takes the form

ϕ(x) = −g(x)− 1

π

∮ 1

−1

g(t)− g(x)

v(t) (t− x)
dt, −1 < x < 1.

By standard calculus,

‖ϕ(n)‖ ≤ ‖g(n)‖+
1

n+ 1
‖g(n+1)‖.

Using (1.4),

‖Rn‖ ≤
1

n!
‖g(n)‖+

1

(n+ 1)!
‖g(n+1)‖, n ∈ N.

Hence, if

lim
n→∞

(
1

n!
‖g(n)‖+

1

(n+ 1)!
‖g(n+1)‖

)
= 0,

then the successive approximation method converges.

1.3 Numerical Experiments

The proposed method has been tested for the two following kernels which are par-
ticularly important in practice:

1.3.1 Case A:

Let

v(t) =

√
1 + t

1− t
.

All the hypotheses on v are satis�ed. From (1.6) we obtain

ϕn+1(x) = ϕn(x) + g(x)− 1

π

∮ 1

−1

ϕn(t)

t− x

√
1 + t

1− t
dt, −1 < x < 1. (1.10)

But (cf. [94]),

1

π

∮ 1

−1

ϕ(t)

t− xi

√
1 + t

1− t
dt =

m∑
j=1

2 (1 + tj)

2m+ 1

ϕ(tj)

tj − xi
,

where the points tj and xi are given by

tj = cos

(
2j − 1

2m+ 1
π

)
, j ∈ [[1,m ]],

xi = cos

(
2iπ

2m+ 1

)
, i ∈ [[1,m ]].
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From (1.10),

ϕn+1(xi) = ϕn(xi) + g(xi)−
m∑
j=1

2 (1 + tj)

2m+ 1

ϕn(tj)

tj − xi
, i ∈ [[1,m ]],

ϕn+1(tk) = ϕn(tk) + g(tk)−
m∑
p=1

2 (1 + xp)

2m+ 1

ϕn(xp)

xp − tk
, k ∈ [[1,m ]].

1.3.2 Case B:

Let

v(t) =

√
1− t
1 + t

.

All the hypotheses on v are satis�ed. This case has been investigated by Ioakimidis
in 1988. From (1.6),

ϕn+1(x) = ϕn(x)− g(x) +
1

π

∮ 1

−1

ϕn(t)

t− x

√
1− t
1 + t

dt, −1 < x < 1. (1.11)

But

1

π

∮ 1

−1

ϕ(t)

t− xi

√
1− t
1 + t

dt =
n∑
j=1

2 (1− tj)
2m+ 1

ϕ(tj)

tj − xi
,

where the points tj and xi are given by

tj = cos

(
2j

2m+ 1
π

)
, j ∈ [[1,m ]],

xi = cos

(
2i− 1

2m+ 1
π

)
, i ∈ [[1,m ]].

From (1.11),

ϕn+1(xi) = ϕn(xi)− g(xi) +
m∑
j=1

2 (1− tj)
2m+ 1

ϕn(tj)

tj − xi
, i ∈ [[1,m ]],

ϕn+1(tk) = ϕn(tk)− g(tk) +
m∑
p=1

2 (1− xp)
2m+ 1

ϕn(xp)

xp − tk
, k ∈ [[1,m ]].
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Chapter 2

Fourier Expansion for Cauchy
Integral Equations of the Second
Kind

2.1 Introduction

In the �rst section of this chapter we present a collocation method based on trigono-
metric polynomials combined with a regularization procedure, for solving Cauchy
integral equations of the second kind, in L2([0, 2π] ,C). A system of linear equations
is involved. We prove the existence of the solution for a double projection scheme,
and we perform the error analysis. Some numerical examples illustrate the theoreti-
cal results. In second section we present a direct method for solving Cauchy integral
equation on the real line.
Cauchy integral equations appear in many applications in scienti�c �elds such as
unsteady aerodynamics and aero elastic phenomena, visco elasticity, �uid dynamics,
electrodynamics. There is a theoretical study on some kind of Cauchy integral equa-
tions in [110]. Many Cauchy integral equations are di�cult to solve analytically, and
it is required to obtain approximate solutions. In ([128]), the author has studied a
reduction of some class of singular integral equations to regular Fredholm integral
equations in Lp([−1, 1] ,C). The purpose of this chapter is �rstly to approximate
the solution of a Cauchy integral equation of the second kind in L2([0, 2π] ,C), using
collocation, trigonometric polynomials and a regularization procedure, secondly to
solve directly Cauchy integral equation on the real line using Fourier expansion in
Sobolev spaces.
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2.2 Collocation Method for Cauchy Integral Equa-

tions Using Trigonometric Polynomials in L2([0, 2π] ,C)

2.2.1 Description of The Method

For each nonzero real constant µ, and each real function f , consider the problem of
�nding a function ϕ, such that

µϕ(s)−
∮ 2π

0

ϕ(t)

t− s
dt = f(s), 0 ≤ s ≤ 2π, (2.1)

where the integral is understood to be the Cauchy principal value:∮ 2π

0

ϕ(t)

t− s
dt = lim

ε→0

[ ∫ s−ε

0

ϕ(t)

t− s
dt+

∫ 2π

s+ε

ϕ(t)

t− s
dt
]
.

Equation (2.1) is a Cauchy integral equation of the second kind. Letting

Tϕ(s) :=

∮ 2π

0

ϕ(t)

t− s
dt, 0 ≤ s ≤ 2π,

equation (2.1) reads as
µϕ− Tϕ = f.

Theorem 5. For each f ∈ L2([0, 2π] ,C), equation (2.1) has a unique solution ϕ ∈
L2([0, 2π] ,C), and the Cauchy integral operator T is bounded and skew-Hermitian
from L2([0, 2π] ,C) into itself.

Proof. See [124].

Let X := L2([0, 2π] ,C), and Xn denote the space spanned by the �rst 2n+ 1 of
trigonometric polynomials. De�ne σn to be the orthogonal projection from X onto
Xn. Hence, for ψ ∈ X,

lim
n→∞

‖σnψ − ψ‖2 = 0.

Let be 0 ≤ sn,1 < sn,2 < . . . < sn,2n+1 ≤ 2π. For each i ∈ [[1, 2n + 1 ]] consider the
hat function en,i in C0([0, 2π] ,C), such that, for each j ∈ [[1, 2n+ 1 ]],

en,i(sn,j) = δi,j.

Let Yn be the space spanned by these hat functions, which has dimension 2n + 1.
De�ne the interpolatory projection operator πn from C0([0, 2π] ,C) onto Yn:

πnh(s) :=
2n+1∑
j=1

h(sn,j)en,j(s), h ∈ C0([0, 2π] ,C).

We recall that (see [4, 8]):
lim
n→∞

‖πnh− h‖∞ = 0.
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De�ne the regularized operator Tε for ε > 0:

Tεϕ(s) :=

∮ 2π

0

(t− s)ϕ(t)

(t− s)2 + ε2
dt, 0 ≤ s ≤ 2π,

which is compact and skew-Hermitian from L2([0, 2π] ,C) into itself. Let ϕε be the
solution of the regularized integral equation

(µI − Tε)ϕε = f,

and consider the approximate operator

Tε,n := πnTεσn.

Theorem 6. For n large enough, the operator µI − Tε,n is invertible, the constant

βε := sup
n
‖(µI − Tε,n)−1‖

is �nite, and the solution ψε,n of the equation

(µI − Tε,n)ψε,n = f,

converges to the solution ϕ of equation (2.1) if, �rst, n→∞ and then ε→ 0.

Proof. Since Tε is compact, the theory developped in [4, 8] shows that the inverse
operator (I − Tε,n)−1 exists and is uniformly bounded for n large enough. Since

ψε,n − ϕε = [(µI − Tε,n)−1 − (µI − Tε)−1]f

= (µI − Tε,n)−1[Tε − Tε,n](µI − Tε)−1f

= (µI − Tε,n)−1[Tε − Tε,n]ϕε,

we get
‖ψε,n − ϕε‖2 ≤ βε‖(Tε − Tε,n)ϕε‖2 → 0 as n→∞.

Since Tε is skew-Hermitian,

‖(µI − Tε)−1‖ ≤ 1

|µ|
,

independently of ε. Hence, the constant

γ := sup
ε
‖(µI − Tε)−1‖

is �nite and from
ϕε − ϕ = (µI − Tε)−1[T − Tε]ϕ

we get
‖ϕε − ϕ‖2 ≤ γ‖[T − Tε]ϕ‖2 → 0 as ε→ 0.

Hence
‖ψε,n − ϕ‖2 ≤ ‖ϕε − ϕ‖2 + ‖ψε,n − ϕε‖2 → 0,

if, �rst, n→∞, and then ε→ 0.

The collocation method leads to the following linear system

(µI − Tεσn)ψε,n(sn,i) = f(sn,i), i ∈ [[1, 2n+ 1 ]].
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Figure 2.1: n = 9

Figure 2.2: n = 23

2.2.2 Numerical Example

Let µ = −1 and, for s ∈ [0, 2π] ,

f(s) :=−s[sin s+Si (s) cos s−sin(s)Ci (s)−Si (s−2π) cos s+Ci (2π−s) sin s],

where Si is the sine integral function, and Ci is the cosine integral function. The
exact solution of equation (2.1) is then

ϕ(s) := s sin s, 0 ≤ s ≤ 2π.

For the regularization process, take ε = 10−4. For the numerical approximation take
n = 9, n = 23 and n = 62. The results are exhibited in �gures 2.1, 2.2 and 2.3
respectively.
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Figure 2.3: n = 62

2.3 Direct Solution of Cauchy Integral Equation on

the Real Line

We consider the Cauchy integral equation of the second kind on the real line

ϕ(x) +
1

π

∮ +∞

−∞

ϕ(t)

t− x
dt = g(x), x ∈ R. (2.2)

We assume that g is 2π-periodic.
Let

φm(t) = eimt, m ∈ Z.

Theorem 7. For m ∈ Z, we have∮ +∞

−∞

φm(t)

t− x
dt = −iπφm(x), x ∈ R.

Proof. We have ∮ +∞

−∞

φm(t)

t− x
dt = m

∮ +∞

−∞

φm(t)

mt−mx
dt,

hence ∮ +∞

−∞

φm(t)

t− x
dt =

∮ +∞

−∞

eiy

y − s
dy.

It is well known (cf.[79]) that∮ +∞

−∞

eiy

y − s
dy = −iπeis,

so that ∮ +∞

−∞

φm(t)

t− x
dt = −iπeimx = −iπφm(x).
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Let

ϕ(x) =
+∞∑
−∞

amφm(x).

Soient p > 0 et Hp([0, 2π] ,C) l'espace de Sobolev classique, for 0 ≤ p < ∞, the
Sobolev space of all functions ϕ ∈ L2([0, 2π] ,C) such that

+∞∑
−∞

(1 +m2)p |am|2 <∞.

We introduce the following norm in Hp([0, 2π] ,C):

‖ϕ‖p =

{
+∞∑
−∞

(1 +m2)p |am|2
} 1

2

.

Let

Aϕ(x) =
1

π

∮ +∞

−∞

ϕ(t)

t− x
dt.

Theorem 8. If p > q the operator A is bounded from Hp([0, 2π] ,C) into Hq([0, 2π] ,C).

Proof. If

ϕ(x) =
+∞∑
−∞

amφm(x),

we get

Aϕ(x) =
+∞∑
−∞

am
π

∮ +∞

−∞

φm(t)

t− x
dt.

But

Aφm(x) = −iφm(x),

so that

‖Aϕ‖q =

{
+∞∑
−∞

(1 +m2)q |am|2
} 1

2

.

Since

(1 +m2)q ≤ (1 +m2)p,

we obtain
+∞∑
−∞

(1 +m2)q |am|2 ≤
+∞∑
−∞

(1 +m2)p |am|2 .

Thus

‖Aϕ‖q ≤ ‖ϕ‖p .
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Theorem 9. If p > q then Hp([0, 2π] ,C) is dense in Hq([0, 2π] ,C), with compact
imbedding from Hp([0, 2π] ,C) into Hq([0, 2π] ,C).

Proof. (see [91]).

We rewrite equation (2.2) as:

+∞∑
−∞

am

{
φm(x) +

1

π

∮ +∞

−∞

φm(t)

t− x

}
= g(x).

Hence

+∞∑
−∞

am {φm(x)− iφm(x)} = g(x),

that is

+∞∑
−∞

am (1− i)φm(x) = g(x).

On the space L2([0, 2π] ,C), the inner product

〈ϕ, ψ〉 =

∫ 2π

0

ϕ(t)ψ(t)dt.

{φm}m∈Z is an orthogonal system, so

+∞∑
−∞

am (1− i) 〈φm, φk〉 = 〈g, φk〉 , k ∈ Z.

But

〈φm, φk〉 =

{
2π m = k
0 otherwise.

Hence

ak (1− i) 〈φk, φk〉 = 〈g, φk〉 .

Thus

ak =
1

2π (1− i)
〈g, φk〉 .
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Chapter 3

Two Projection Methods for
Skew-Hermitian Operator Equations

3.1 Introduction and Mathematical Background

In this chapter we present a projection method for solving an operator equations
with bounded operator in Hilbert spaces. We prove the existence of the solution for
the approximate equation, and we perform the error analysis. We apply the method
for solving the Cauchy integral equations in L2([0, 1],C) for two cases: Galerkin
projections and Kulkarni projections respectivly, using a sequence of orthogonal
�nite rank projections. Numerical examples illustrate the theoretical results.

Since 1980, many papers have been dedicated to the numerical solution of opera-
tor equations in the compact case, using Galerkin and other projection methods. In
[4], the authors have studied some �nite rank approximations using bounded �nite
rank projections. In [3], the authors have used a projection approximation for solving
weakly singular Fredholm integral equations of the second kind. In [93], the author
has proposed a more accurate approximation for compact operator equations. The
goal of this chapter is to apply two projection methods to an integral equation with
singular kernel. The abstract framework is that of bounded but noncompact skew-
Hermitian operators in a Hilbert space. The application will deal with a Cauchy
integral equation in L2([0, 1],C) with two discretizations: the classical Galerkin and
the new Kulkarni approximations built upon a sequence of orthogonal �nite rank
sequence of projections.

Let H be a Hilbert space, and T a bounded operator from H into itself. For a
given function f ∈ H, we consider the problem of �nding a function ϕ ∈ H such
that

ϕ− Tϕ = f. (3.1)

Let T ∗ be the adjoint of T . We assume that equation (3.1) has a unique solution
ϕ ∈ H, and that T is skew-Hermitian: is T ∗ = −T . Let (Tn)n≥1 be a sequence of
skew-Hermitian operators from H into itself.

Theorem 10. For all n, the operator I − Tn is invertible, and

‖(I − Tn)−1‖ ≤ 1.
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Proof. Since
(iTn)∗ = −iT ∗n = iTn,

the operator iTn is self-adjoint, and hence sp (Tn) ⊆ iR, where sp denotes the
spectrum. This shows that 1 /∈ sp (Tn) and hence the operator I − Tn is invertible.
On the other hand, for all x ∈ H,

Re 〈(I − Tn)x, x〉 =
1

2

[
〈(I − Tn)x, x〉+ 〈(I − Tn)x, x〉

]
= 〈x, x〉 ,

hence

‖x‖2 ≤ |Re 〈(I − Tn)x, x〉| ≤ |〈(I − Tn)x, x〉| ≤ ‖(I − Tn)x‖ ‖x‖ ,

so ‖(I − Tn)−1‖ ≤ 1.

3.2 Cauchy Integral Equations of the Second Kind

Set H := L2([0, 1],C), and consider the following Cauchy integral equation of the
second kind

ϕ(s)−
∮ 1

0

ϕ(t)

t− s
dt = f(s), 0 ≤ s ≤ 1, (3.2)

where f is a known function. The above integral is understood to be the Cauchy
principal value: ∮ 1

0

ϕ(t)

t− s
dt = lim

ε→0

[∫ s−ε

0

ϕ(t)

t− s
dt+

∫ 1

s+ε

ϕ(t)

t− s
dt

]
.

Letting

Tϕ(s) :=

∮ 1

0

ϕ(t)

t− s
dt, 0 ≤ s ≤ 1,

equation (3.2) is equivalent to the equation (3.1). We recall that for each f ∈ H,
equation (3.2) has a unique solution ϕ ∈ H, and the Cauchy integral operator T is
bounded from H into itself, further T ∗ = −T (see [124]). Let (sn,j)

n
j=0 be a grid on

[0, 1] such that

0 ≤ sn,0 < sn,1 < . . . < sn,n ≤ 1.

Set
hn,i := sn,i − sn,i−1, i ∈ [[1, n ]], hn := (hn,1, hn,2, . . . , hn,n).

Let us consider (Πn)n≥1, a sequence of bounded projections each one of �nite rank,
such that

Πnx :=
n∑
j=1

〈x, en,j〉 en,j,

where

en,j :=
φn,j√
hn,j

, φn,j(s) :=

{
1 for s ∈]sn,j−1, sn,j[,
0 otherwise.
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Let
Jn := {sn,j, j ∈ [[0, n ]]} .

De�ne the modulus of continuity of the function ψ ∈ H relative to hn as follows:

ω2(ψ, Jn) := sup
0≤δ≤hn

(∫ 1

0

|ψ(τ + δ)− ψ(τ)|2 dτ
) 1

2

.

All functions are extended by 0 outside [0, 1]. We recall that

ω2(ψ, Jn)→ 0 as n→∞ for all ψ ∈ H,

and that, for all ψ ∈ H (cf. [5]),

‖(I − Πn)ψ‖2 ≤ ω2(ψ, Jn). (3.3)

3.2.1 Galerkin Approximation

In the past two decades, several results have been established for solving compact
operator equations using the Galerkin method. In this section we use the Galerkin
method for approximate the solution of our bounded equation. Since Π∗n = Πn we
get T ∗n = −Tn, with Tn = TGn := ΠnTΠn, hence the following Galerkin approximate
equation

ϕGn − TnϕGn = Πnf, (3.4)

has a unique solution ϕGn , given by

ϕGn =
n∑
j=1

xn,jen,j

for some scalars xn,j. Equation (3.4) reads as

n∑
j=1

xn,j [en,j − ΠnTen,j] = Πnf,

so that

n∑
j=1

xn,j

[
en,j −

n∑
i=1

〈Ten,j, en,i〉 en,i

]
=

n∑
i=1

〈f, en,i〉 en,i,

that is to say, the coe�cients xn,j are obtained by solving the following linear system

(I − An)xn = bn,

where

An(k, j) :=
1√

hn,jhn,k

∫ sn,k

sn,k−1

∮ n,sj

sn,j−1

dt

t− s
ds,

bn(k) :=
1√
hn,k

∫ sk

sk−1

f(s)ds.
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Theorem 11. The following estimate holds:

‖ϕGn − ϕ‖2 ≤ ω2(f, Jn) + ω2(Tϕ, Jn) + πω2(ϕ, Jn).

Proof. In fact

ϕGn − ϕ = (I − TGn )−1Πnf − (I − T )−1f

= (I − TGn )−1Πnf − (I − TGn )−1f + (I − TGn )−1f − (I − T )−1f

= (I − TGn )−1(Πn − I)f + (I − TGn )−1
[
(I − T )− (I − TGn )

]
(I − T )−1f

= (I − TGn )−1
[
(Πn − I)f + (TGn − T )ϕ

]
.

It is proved in Theorem 1 that
∥∥(I − TGn )−1

∥∥ ≤ 1. Since

(TGn − T )ϕ = (Πn − I)Tϕ+ ΠnT (Πn − I)ϕ,

and since ‖Πn‖ = 1 and ‖T‖ ≤ π (cf. [124]), then using (3.3), we get the desired
result.

3.2.2 Kulkarni Approximation

In [93] the author has proposed to approximate a linear operator T by the following
�nite rank operator

TKn := ΠnT + TΠn − ΠnTΠn.

Theory has been developped for the compact case. In this section, we propose to
approximate our noncompact bounded operator T by this �nite rank operator. Let
ϕKn be the approximate solution of the equation (3.2) using TKn . As in [93], let

un := Πnϕ
K
n .

Since Πnun = un, there exist scalars cn,j such that

un =
n∑
j=1

cn,jen,j.

Following [93],

un − [ΠnTΠn + ΠnT (I − Πn)TΠn]un = Πnf + ΠnT (I − Πn)f,

so that

n∑
j=1

cn,j [en,j − (ΠnTen,j + ΠnT (I − Πn)Ten,j)] = Πnf + ΠnT (I − Πn)f,

and hence

n∑
j=1

cn,j

[
en,j −

n∑
k=1

(〈Ten,j, en,k〉+ 〈T (I − Πn)Ten,j, en,k〉)en,k

]
=
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=
n∑
k=1

〈f, en,k〉 en,k +
n∑
k=1

〈T (I − Πn)f, en,k〉 en,k.

Performing the inner product with en,i, we obtain the linear system

cn,i −
n∑
j=1

cn,j [〈Ten,j, en,i〉+ 〈T (I − Πn)Ten,j, en,i〉] = 〈f, en,i〉+ 〈T (I − Πn)f, en,i〉 , i ∈ [[1, n ]],

which becomes

cn,i −
n∑
j=1

[
〈Ten,j, en,i〉+

〈
T 2en,j, en,i

〉
−

n∑
k=1

〈Ten,j, en,k〉 〈Ten,k, en,i〉

]
cn,j

= 〈f, en,i〉+ 〈Tf, en,i〉 −
n∑
k=1

〈f, en,k〉 〈Ten,k, en,i〉 , i ∈ [[1, n ]]. (3.5)

The following computations are needed:

〈Ten,j, en,i〉 =
1√

hn,jhn,i

∫ si

si−1

∮ sj

sj−1

dt

t− s
ds,

〈
T 2en,j, en,i

〉
=

1√
hn,jhn,i

∫ si

si−1

∮ 1

0

1

t− s

∮ sj

sj−1

dτ

τ − t
dtds,

〈Tf, en,i〉 =
1√
hn,i

∫ si

si−1

∮ 1

0

f(t)

t− s
dtds,

〈f, en,i〉 =
1√
hn,i

∫ si

si−1

f(s)ds.

Once the system (3.5) is solved, the solution ϕKn is built through

ϕKn = un + (I − Πn)Tun + (I − Πn)f.

Hence

ϕKn (s) = un(s)+

∮ 1

0

un(t)

t− s
dt−

n∑
k=1

φn,k(s)

hn,k

∫ sk

sk−1

∮ 1

0

un(τ)

τ − t
dτdt+f(s)−

n∑
k=1

φn,k(s)

hn,k

∫ sk

sk−1

f(t)dt.

Theorem 12. The following estimate holds:

‖ϕKn − ϕ‖2 ≤
[
2ω2(ϕ, Jn)

∥∥(I − Πn)T 2 (I − Πn)ϕ
∥∥

2

] 1
2 .

Proof. On one hand

ϕKn − ϕ = (f + TKn ϕ
K
n )− (f + Tϕ) = TKn (ϕKn − ϕ) + (TKn − T )ϕ.

Thus
(I − TKn )(ϕKn − ϕ) = (TKn − T )ϕ,

so that
ϕKn − ϕ = (I − TKn )−1(TKn − T )ϕ,
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which lends to ∥∥ϕKn − ϕ∥∥2
≤
∥∥(I − TKn )−1

∥∥∥∥(TKn − T )ϕ
∥∥

2
.

On the other hand,(
TKn − T

)
ϕ = [ΠnT (I − Πn)− T (I − Πn)]ϕ = − (I − Πn)T (I − Πn)ϕ.

Since
∥∥(I − TKn )−1

∥∥ ≤ 1,∥∥ϕKn − ϕ∥∥2
≤ ‖(I − Πn)T (I − Πn)ϕ‖2 ≤ ω2(T (I − Πn)ϕ, Jn).

But

ω4
2(T (I − πn)ϕ, Jn) = sup

0≤δ≤hn
〈T (I − πn) (ϕ(.+ δ)− ϕ), T (I − πn) (ϕ(.+ δ)− ϕ)〉2

= sup
0≤δ≤hn

〈
ϕ(.+ δ)− ϕ,− (I − Πn)T 2 (I − Πn) [ϕ(.+ δ)− ϕ]

〉2
≤ sup

0≤δ≤hn

∫ 1

0

|ϕ(τ + δ)− ϕ(τ)|2 dτ ×∫ 1

0

∣∣(I − Πn)T 2 (I − Πn) [ϕ(τ + δ)− ϕ(τ)]
∣∣2 dτ

≤ 4ω2
2(ϕ, Jn)

∥∥(I − Πn)T 2 (I − Πn)ϕ
∥∥2

2
,

and we get the desired result.

3.3 Numerical Examples

Example 3.1

We consider the following Cauchy integral equation

ϕ(s)−
∮ 1

0

ϕ(t)

t− s
dt = s2 − 2s+

1

2
+ (s2 − s) ln

(
s

1− s

)
, 0 < s < 1.

The right hand side has been built so that the exact solution to this equation be

ϕ(s) = s2 − s.

We present in table (3.1) the corresponding absolute errors for this example.

Example 3.2

We consider the following Cauchy integral equation

ϕ(s)−
∮ 1

0

ϕ(t)

t− s
dt =

4 + ln s+ 2 ln 2 + πs− 4 ln (1− s)
4 (s2 + 1)

, 0 < s < 1.

The right hand side has been built so that the exact solution to this equation be

ϕ(s) =
1

s2 + 1
.

We present in table (3.2) the corresponding absolute errors for this example.
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n
∥∥ϕ− ϕGn∥∥2

∥∥ϕ− ϕKn ∥∥2

3 6.69e-2 5.83e-3
5 3.82e-2 3.17e-3
7 2.64e-2 2.54e-3
15 1.17e-2 7.17e-4
25 6.88e-3 1.75e-4

Table 3.1: Example 3.1

n
∥∥ϕ− ϕGn∥∥2

∥∥ϕ− ϕKn ∥∥2

4 4.04e-2 6.44e-3
6 2.63e-2 3.12e-3
10 1.55e-2 1.00e-3
12 1.29e-2 9.54e-4
20 7.70e-3 3.35e-4

Table 3.2: Example 3.2

3.4 Conclusions

This work extends the application of projection methods to singular integral equa-
tions of Cauchy type. As it has already established for su�ciently di�erentiable
kernels (see [93]), the Kulkarni approximation gives more accurate results than the
classical Galerkin approximation. In exchange, from a computational point of view,
the complexity of Kulkarni approximation doubles Galerkin's one since one more
evaluation of the integral operator is needed to build each coe�cient of the matrix
associated to the auxiliary linear system.
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Chapter 4

Collocation Method for Solving
Integro-Di�erential Equations with
Cauchy Kernel

4.1 Introduction

This chapter investigates the numerical solution for a class of integro-di�erential
equations with Cauchy kernel by using airfoil polynomials of the �rst kind. Accord-
ing to this method, we obtain a system of linear algebraic equations. We give some
su�cient conditions for the convergence of this method. In the end, we investigate
the computational performance of our approach through some numerical examples.
The last two decades have been witnessing a strong interest among physicists, en-
gineers and mathematicians for the theory and numerical modeling of integral and
integro-di�erential equations. These equations are solved analytically see, for exam-
ple the excellent book by Muskhelishvili (cf. [110]), and the references therein. But
only special cases of these equations are solved analytically, so we should solve other
classes of these equations by using numerical methods, several methods have been
recently developed for the numerical solution of the integro-di�erential equations.
Speci�cally, in [11], Badr presented a Galerkin approach for solving the integro-
di�erential equation of the second kind with Cauchy kernel by using the orthogo-
nal basis of Legendre polynomials. In [46], the authors have considered a method
based on projector-splines for the numerical solution of integro-di�erential equa-
tion. In [99], the authors presented a Taylor-series expansion method for a class
of Fredholm singular integro-di�erential equation with Cauchy kernel, and used
the truncated Taylor-series polynomial of the unknown function, and transform the
integro-di�erential equation into a linear ordinary di�erential equation of order n
with variable coe�cients. In [15], we �nd a method based on polynomial approxi-
mation using Bernstein polynomial basis, to obtain approximate numerical solution
of a singular integro-di�erential equation with Cauchy kernel, and compared the nu-
merical results obtained with those obtained by various Galerkin methods. A great
deal of e�ort has been made in the development of numerical techniques for the ap-
proximate solution of Cauchy integral equations, (cf. [12], [19], [35], [36], [40], [41],
[42], [43], [91], [94], [100], [123], [131]). Several methods use polynomial techniques,
(cf. [8], [35], [40], [42], [44], [120], [121]). So di�erent kinds of polynomials play
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an essential role in approximation theory, and have many interesting applications,
particularly they may be applied to solve integro-di�erential equations.

In this chapter, we will propose to employ a method based on the airfoil polyno-
mials of the �rst kind, for solving the Fredholm singular integro-di�erential equation
with Cauchy kernel.

The chapter is organized as follows: In the next section we will discuss airfoil
polynomials and their key properties. In section 2 we give the description and
development of the method, and we discuss estimates for the rate of convergence of
the method. In section 3 for showing e�ciency of this method, we use numerical
examples. Section 4 is devoted to the conclusion of this chapter.

We recall that the so-called airfoil polynomials are used as expansion functions
to compute the pressure on an airfoil in steady or unsteady subsonic �ow.

The airfoil polynomail tn of the �rst kind is de�ned by

tn(x) =
cos[(n+ 1

2
) arccosx]

cos(1
2

arccosx)
.

The airfoil polynomail un of the second kind is de�ned by

un(x) =
sin[(n+ 1

2
) arccosx]

sin(1
2

arccosx)
.

4.2 The Approximate Solution

Given a function f and a constant λ, consider the problem of �nding a function ϕ
such that

ϕ′(x) +
λ

π

∮ 1

−1

ϕ(t)

t− x
dt = f(x), −1 < x < 1. (4.1)

The above equation called Fredholm integro-di�erential equation with Cauchy ker-
nel. We will propose an approximate solution for equation (4.1). For this purpose,
we will introduce an approximation using the airfoil polynomials of the �rst kind tn
as

ϕn(x) = ω(x)
n∑
i=0

aiti(x),

where

ω(x) =

√
1 + x

1− x
.

The formula (cf. [33])

(1 + x)t′i(x) = (i+
1

2
)ui(x)− 1

2
ti(x),

gives

ϕ′n(x) =
n∑
i=0

ai{ω′(x)ti(x) +
ω(x)

1 + x
[(i+

1

2
)ui(x)− 1

2
ti(x)]}. (4.2)
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On the other hand (cf. [33]),

1

π

∮ 1

−1

√
1 + t

1− t
ti(t)

t− x
dt = ui(x). (4.3)

Consider the set of n+ 1 collocation points xj, which are the zeros of un+1:

xj = − cos
2j − 1

2n+ 3
π, j ∈ [[0, n ]].

Let us introduce the following notations

(Aϕ)(x) := ϕ′(x), −1 < x < 1.

(Tϕ)(x) :=
λ

π

∮ 1

−1

ϕ(t)

t− x
dt, −1 < x < 1.

Equation (4.1) can be written in the following operator form

Aϕ+ Tϕ = f.

Denote by C0,λ([−1, 1],R) the space of all functions ϕ de�ned on [−1, 1] satisfying
the following Hölder condition: ∃M ≥ 0 such that

∀x1, x2 ∈ [−1, 1] , |ϕ(x1)− ϕ(x2)| ≤M |x1 − x2|λ ,

where 0 < λ ≤ 1.
Let

H :=
{
ϕ ∈ L2([−1, 1],R) : ϕ′ ∈ L2([−1, 1],R), ϕ(−1) = 0

}
.

The operator T is bounded from L2([−1, 1],R) into itself and also from C0,λ([−1, 1],R)
into itself (cf.[110]). We recall that

(A−1y)(s) =

∫ s

−1

y(t)dt,

and that A−1 : L2[−1, 1]→ H is compact (cf.[17]).
Consider hat functions e0, e1, e2, . . . , en in C0([−1, 1],R) such that

ej(xk) = δj,k.

De�ne the projection operators Pn from C0([−1, 1],R) into the space of continuous
functions by

Png(x) :=
n∑
j=0

g(xj)ej(x).

Let us de�ne the operators

Dn := A−1PnT, D := A−1T.

Consider the following approximate equation in the unknown ϕn:

ϕn +Dnϕn = A−1f.
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Theorem 13. Assume that f ∈ C0([−1, 1],R). There exists a positive constant M ,
such that

‖ϕn − ϕ‖∞ ≤ M‖Dnϕ−Dϕ‖∞.

for n large enough.

Proof. It is well-known that ‖Png − g‖∞ → 0, for all g ∈ C0([−1, 1],R). Since A−1

is compact, it is clear that D is compact. In (cf. [8] and [91]) it is shown that the
inverse operator (I+Dn)−1 exists and is uniformly bounded for n large enough. On
the other hand,

ϕn − ϕ =
[
A−1f −Dnϕn

]
−
[
A−1f −Dϕ

]
,

hence

ϕn − ϕ = [Dϕ−Dnϕn] .

This leads to

ϕn − ϕ = [(D −Dn)ϕ−Dn(ϕn − ϕ)] .

Thus

(I +Dn)(ϕn − ϕ) = (D −Dn)ϕ.

Consequently

ϕn − ϕ = (I +Dn)−1 [(D −Dn)ϕ] ,

‖ϕn − ϕ‖∞ ≤ M‖(D −Dn)ϕ‖∞,

where

M := sup
n≥N

∥∥(I +Dn)−1
∥∥ ,

which is �nite.

Finally, the following system follows:

Aϕn(xj) + Tϕn(xj) = f(xj), j ∈ [[0, n ]].

By (4.2) and (4.3),

n∑
i=0

ai{ω′(xj)ti(xj) +
ω(xj)

1 + xj
[(i+

1

2
)ui(xj)−

1

2
ti(xj)] + λui(xj)} = f(xj), j ∈ [[0, n ]].

4.3 Numerical Results and Discussion

In order to illustrate the performance of our method, we report in this section,
numerical results of some examples, selected integro-di�erential equations, solved
by the method of this study. In these numerical computations each table shows the
numerical error of our approximate solution.
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x n = 5 n = 20 n = 116
-0.8 0.1640e-1 0.183e-2 0.16e-3
-0.6 0.1855e-1 0.185e-2 0.15e-3
-0.4 0.2204e-1 0.181e-2 0.2e-4
-0.2 0.2119e-1 0.184e-2 0.12e-3
0.0 0.189e-1 0.19e-2 0.2e-4
0.2 0.1856e-1 0.171e-2 0.3e-4
0.4 0.1992e-1 0.179e-2 0.8e-4
0.6 0.2044e-1 0.174e-2 0.8e-4
0.8 0.2148e-1 0.177e-2 0.9e-4

Table 4.1: Example 4.1

x n = 5 n = 49 n = 135
-0.8 0.737e-2 0.21001e-3 0.40012e-4
-0.6 0.927e-2 0.23e-3 0.80002e-4
-0.4 0.1439e-1 0.17e-3 0.60007e-4
-0.2 0.1171e-1 0.23001e-3 0.90003e-4
0.0 0.59827e-2 0.17379e-3 0.45706e-4
0.2 0.52100e-2 0.14001e-3 0.60001e-4
0.4 0.1147e-1 0.21004e-3 0.60024e-4
0.6 0.1616e-1 0.26002e-3 0.6e-4
0.8 0.282e-2 0.22001e-3 0.30065e-4

Table 4.2: Example 4.2

Example 4.1

Let us �rst consider the following integro-di�erential equation

ϕ′(x) +
1

π5

∮ 1

−1

ϕ(t)

t− x
dt =

1

π4
x2 + 2(

1

π5
+ 1)x− 1

π4

The exact solution is

ϕ(x) = x2 − 1.

Table (4.1) gives the numerical results for Example 4.1.

Example 4.2

In this example we consider the following integro-di�erential equation

ϕ′(x) +

∮ 1

−1

ϕ(t)

t− x
dt = πx3 − 5x2 − πx+

7

3
+ (x3 − x) ln(x+ 1)− (x3 − x) ln(x− 1).

The exact solution for this equation is

ϕ(x) = −x3 + x.

Table (4.2) shows the rate of convergence of the method. The results con�rm the
convergence properties proved above.
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4.4 Concluding Remarks

Cauchy kernel are important in many �elds of applied mathematics. The method can
be developed and applied to other class of integral and integro-di�erential equations.
The advantage of this method is that we can eliminate the singularity, and compute
an approximate solution through a system of linear equations.
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Chapter 5

Projection Methods for
Integro-Di�erential Equations with
Cauchy Kernel

5.1 Introduction and Mathematical Background

In this chapter we present two methods for solving Cauchy integro-di�erential equa-
tions. First, we present a projection method based on Legendre polynomials, for
solving integro-di�erential equations with Cauchy kernel, in L2([−1, 1],C). The pro-
posed numerical procedure leads to solve a system of linear equations. We prove the
existence of the solution for the approximate equation, and we perform the error
analysis. Numerical examples illustrate the theoretical results. Next, we propose
a Sloan projection method for the approximate solution of an integro-di�erential
equations with Cauchy kernel in L2([−1, 1] × [−1, 1],C) using Legendre polynomi-
als. A system of linear equations is to be solved.
The theory of integro-di�erential equations with Cauchy kernel has important ap-
plications in the mathematical modelling of many scienti�c �elds such as �uid dy-
namics, electrodynamics, elasticity. Many integro-di�erential equations need to be
solved numerically. Several authors have been studied projection approximations
for solving integral equations with di�erent numerical procedures, the theory of pro-
jection approximations is developed in [4]. In [4], the authors have studied some
�nite rank approximations using bounded �nite rank projections. Projection ap-
proximation methods play an essential role in approximation theory, and have many
interesting applications, particularly to solve integral equations. In [3], the authors
have used a projection approximation for solving weakly singular Fredholm integral
equations of the second kind. Let H := L2([−1, 1],C), be the space of complex-
valued Lebesgue square integrable (classes of) functions on [−1, 1]. The purpose
of this chapter is �rstly to introduce a projection method based on the Legendre
polynomials, for solving integro-di�erential equations with Cauchy kernel in H. The
purpose of the second method is to approximate the solution of integro-di�erential
equations with Cauchy Kernel using Sloan projection in the �rst time.

Let the universe of our discours be the Hilbert space H. Set

D := {ϕ ∈ H : ϕ′ ∈ H, ϕ(−1) = 0} ,
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and consider the integro-di�erential equation with Cauchy kernel

ϕ′(s) +

∮ 1

−1

ϕ(t)

t− s
dt = f(s), −1 < s < 1, (5.1)

where the integral is understood as the Cauchy principal value:∮ 1

−1

ϕ(t)

t− s
dt = lim

ε→0

(∫ s−ε

−1

x(t)

t− s
dt+

∫ 1

s+ε

x(t)

t− s
dt

)
.

Letting

Tϕ(s) :=

∮ 1

−1

ϕ(t)

t− s
dt, −1 < s < 1,

Aϕ(s) := ϕ′(s), −1 < s < 1,

the operator T is bounded from H into itself and

A−1y(s) =

∫ s

−1

y(t)dt, −1 < s < 1,

is compact. Equation (5.1) can be rewritten as

ϕ+ A−1Tϕ = A−1f.

Let

K := A−1T

which is compact. We assume that −1 is not an eigenvalue of K.
Let (Ln)n≥0 be the sequence of Legendre polynomials which is an orthogonal basis
for H:

〈Lj, Lk〉 = δjk
2

2j + 1
,

and

ej :=

√
2j + 1

2
Lj,

the corresponding normalized sequence.
Let (πn)n≥0 be the sequence of bounded �nite rank orthogonal projections de�ned

by

πnx :=
n−1∑
j=0

〈x, ej〉 ej.

Hence, for ψ ∈ H,
lim
n→∞

‖πnψ − ψ‖ = 0.
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5.2 A Projection Method for Integro-Di�erential Equa-

tions with Cauchy Kernel

Let Hn denote the space spanned by the �rst n of Legendre polynomials. It is clear
that A−1(Hn) = Hn+1. The approximate problem is the following equation for ϕn:

ϕn + A−1πnTϕn = A−1πnf.

Clearly ϕn ∈ D ∩Hn+1. We introduce the following notations:

K := A−1T, Kn := A−1πnT, g := A−1f, gn := A−1πnf,

and we assume that −1 is not an eigenvalue of K. Hence the equation

(I +K)ϕ = g,

is approximated by

(I +Kn)ϕn = gn.

For all x ∈ H,
lim
n→∞

‖Knx−Kx‖ = 0,

and since A−1 is compact,

lim
n→∞

‖ (Kn −K)K‖ = 0, lim
n→∞

‖ (Kn −K)Kn‖ = 0.

Writing

ϕn =
n∑
j=0

xn,jej,

the n+ 1 unknowns xn(j) solve
n∑
j=0

xn(j)
[
e′j + πnTej

]
= πnf,

n∑
j=0

xn(j)ej(−1) = 0.

This leads to a linear system

Anxn = bn,

where, for i ∈ [[0, n− 1 ]] and j ∈ [[0, n ]],

An(i, j) :=

√
2i+ 1

2

√
2j + 1

2

[∫ 1

−1

L′j(s)Li(s)ds+

∫ 1

−1

(

∮ 1

−1

Lj(τ)

τ − s
dτ)Li(s)ds

]
,

An(n, j) := ej(−1),

bn(i) :=

√
2i+ 1

2

∫ 1

−1

f(s)Li(s)ds,

bn(n) := 0.
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Since K is compact, the theory developped in [4] shows that for n large enough, the
operator I + Kn is invertible, and its inverse is uniformly bounded with respect to
n.

Let s > 0 and Hs([−1, 1],C) be the classical Sobolev space, and let ‖.‖s denote
its norm. (For details, see [10].) Remark that

(I + A−1T )(Hs([−1, 1],C)) = Hs([−1, 1],C).

We recall that (cf. [10]) there exists c > 0 such that, for all ψ ∈ Hs([−1, 1],C),

‖(I − πn)ψ‖ ≤ cn−s‖ψ‖s. (5.2)

Theorem 14. Assume that f ∈ Hs([−1, 1],C) for some s > 0. Then, there exists
α > 0 such that

‖ϕn − ϕ‖ ≤ α[n1−s‖Tϕ‖s−1 + n−s‖f‖s].

Proof. We have

ϕn − ϕ =
[
(I +Kn)−1 gn − (I +K)−1 g

]
+ (I +Kn)−1 g − (I +Kn)−1 g

= (I +Kn)−1 [(K −Kn)ϕ+ gn − g] ,

and hence
‖ϕn − ϕ‖ ≤ C

[
‖ (K −Kn)ϕ‖+ ‖A−1‖‖ (I − πn) f‖

]
.

On the other hand,
(K −Kn)ϕ = A−1 (I − πn)Tϕ.

But f ∈ Hs([−1, 1],C), so ϕ ∈ Hs([−1, 1],C) and Tϕ ∈ Hs−1([−1, 1],C). Using
(5.2), the desired result follows.

5.3 Sloan Projection Method

Consider the approximate problem of �nding ϕSn ∈ D such that

ϕSn +Kπnϕ
S
n = A−1f. (5.3)

Clearly, if such a function exists, it belongs to D.
Applying the operator πn to both sides of equation (5.3) we get

πnϕ
S
n + πnKπnϕ

S
n = πnA

−1f,

or, equivalently,

n−1∑
j=0

〈
ϕSn, ej

〉
ej +

n−1∑
j=0

〈
ϕSn, ej

〉
πnKej =

n−1∑
j=0

〈
A−1f, ej

〉
ej,

and performing the inner product with ei we get the following system:

〈
ϕSn, ei

〉
+

n−1∑
j=0

〈
ϕSn, ej

〉
〈πnKej, ei〉 =

〈
A−1f, ei

〉
, i ∈ [[0, n− 1 ]].
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Since π∗n = πn, and πnei = ei,

〈
ϕSn, ei

〉
+

n−1∑
j=0

〈
ϕSn, ej

〉
〈Kej, ei〉 =

〈
A−1f, ei

〉
, i ∈ [[0, n− 1 ]]. (5.4)

Since K is compact, (In+An)−1 exists for n large enough (see [4]). Once the system
(5.4) is solved, ϕSn is recovered as

ϕSn(s) =

∫ s

−1

f(t)dt−
n−1∑
j=0

xn(j)

√
2j + 1

2

∫ s

−1

∮ 1

−1

Lj(τ)

τ − t
dτdt.

Let

M := sup
n≥N

∥∥(I +Kπn)−1
∥∥ ,

which is �nite.

Theorem 15. Assume that f ∈ Hs([−1, 1],C) for some s > 0. Then, there exists
β > 0 such that

‖ϕSn − ϕ‖ ≤Mβ ‖K‖n−s‖ϕ‖s.

Proof. We have

ϕSn − ϕ =
(
A−1f −KπnϕSn

)
−
(
A−1f −Kϕ

)
= K (I − πn)ϕ+Kπn

(
ϕ− ϕSn

)
,

and hence (
ϕSn − ϕ

)
= (I +Kπn)−1K (I − πn)ϕ.

But f ∈ Hs([−1, 1],C), so ϕ ∈ Hs([−1, 1],C). Using (5.2), the desired result
follows.

5.4 Numerical Example

In this section, we present a numerical example to illustrate the theoretical results
obtained in the above sections. Tables 5.1 shows the absolute error as a function of
n.

Example 5.1

Let f be de�ned so that the exact solution be

ϕ(s) =
s+ 1

s2 + 1
.
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n ‖ϕ− ϕn‖2
∥∥ϕ− ϕSn∥∥2

4 2.40e-2 2.15e-2
5 9.88e-3 7.92e-3
6 4.08e-3 2.59e-3
7 1.68e-3 9.85e-4
8 6.99e-4 3.44e-4
9 2.89e-4 1.32e-4
10 1.20e-4 4.81e-5
11 4.96e-5 1.88e-5
12 2.05e-5 6.98e-6

Table 5.1: Example 5.1
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Chapter 6

Regularization and Projection
Approximations for Cauchy Integral
Equations of the Second Kind

6.1 Introduction and Mathematical Background

In this chapter, we derived the regularization to the solution of Cauchy integral
equation, and we apply the projection to the obtained equation. First we us Kan-
torovich projection, and we perform the error analysis. After we study the Sloan
projection and we prove some results about the error analysis. In the end of this
chapter Galerkin projection is estabished and its error analysis is discussed.

Let C0,α([−1, 1] ,C), 0 < α ≤ 1 be the space of all α-Hölder continuous functions.
Let us denote by H∗([−1, 1] ,C), 0 < α ≤ 1 the space of all functions ϕ which satisfy
the following conditions:

• ϕ is α-Hölder continuous on every closed subinterval of (−1, 1),

•

ϕ(t) =
ϕ∗(t)

(t− c)µ
, 0 ≤ µ < 1,

near c = ±1. ϕ∗ is Hölder continuous function.

Consider the following Cauchy integral equation of the second kind

aϑ(x) +
b

π

∮ 1

−1

ϑ(t)

t− x
dt− µ

∫ 1

−1

k(x, t)ϑ(t)dt = g(x), −1 < x < 1, (6.1)

where a, b are constants, such that a2 +b2 = 1. We assume that g ∈ C0,α([−1, 1] ,C).
Following [110],

ϑ(x) = ω(x)ϕ(x),

where the function ϕ is a Hölder continuous function, and ω is a weight function
de�ned as

ω(x) := (1− x)α(1 + x)β,
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where α and β are given by

α :=
1

2πi
log

a− ib
a+ ib

+ ν, β := − 1

2πi
log

a− ib
a+ ib

+ ν ′, −1 < α, β < 1.

ν and ν ′ are integers related to the following index

κ := −(α + β) = −(ν + ν ′).

Hence

aω(x)ϕ(x) +
b

π

∮ 1

−1

ω(t)ϕ(t)

t− x
dt− µ

∫ 1

−1

k(x, t)ω(t)ϕ(t)dt = g(x), −1 < x < 1.

Let K0 be the operator de�ned by

K0φ(x) := aω(x)φ(x) +
b

π

∮ 1

−1

ω(t)φ(t)

t− x
dt, φ ∈ C0,α([−1, 1] ,C), −1 < x < 1,

and K1 be the operator de�ned by

K1φ(x) :=

∫ 1

−1

k(x, t)ω(t)φ(t)dt, φ ∈ C0,α([−1, 1] ,C), −1 < x < 1.

First, we will discuss the solution of the following Cauchy integral equation of the
�rst kind

K0ϕ(x) = h(x), h ∈ C0,α([−1, 1] ,C), −1 < x < 1.

The solution of this equation has the following boundary behavior in [−1, 1]:

• If −1 < α < 0 and 0 < β < 1 : The solution is continuous in (−1, 1), bounded
at x = −1 and may have a weak singularity at x = 1.

• If 0 < α < 1 and −1 < β < 0 : The solution is continuous in (−1, 1), bounded
at x = 1 and may have a weak singularity at x = −1.

• If 0 < α < 1 and 0 < β < 1 : The solution is continuous in (−1, 1), and
bounded at both ends x = −1 and x = 1.

• If −1 < α < 0 and −1 < β < 0 : The solution is continuous in (−1, 1), and
may have a weak singularities both at x = −1 and x = −1.

According to [47], the Cauchy integral equation of the �rst kind has the solution

ϕ(x) = a
h(x)

ω(x)
− b

π

∮ 1

−1

h(t)

ω(t)

dt

t− x
+
b

π
C,

where

• For κ = 1, the solution is unbounded at both ends x = −1 and x = 1, and not
unique since C is an arbitrary constant.

• For κ = 0, the solution is unique since C = 0.
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• For κ = −1, the equation has a solution if and only if∫ 1

−1

h(t)

ω(t)
dt = 0,

and in this case the solution is unique with C = 0.

Let K be the operator de�ned by

Kφ(x) := aω∗(x)φ(x)− b

π

∮ 1

−1

ω∗(t)φ(t)

t− x
dt, φ ∈ C0,α([−1, 1] ,C), −1 < x < 1,

where

ω∗(x) :=
1

ω(x)
.

If
h := g + µK1φ,

then we get the following equivalent equation with a similar discussion as above

ϕ− µKK1ϕ = Kg +
b

π
C.

Let

f :=
−1

µ
(Kg +

b

π
C), λ :=

1

µ
, T := KK1.

Then ϕ solves

(T − λI)ϕ = f. (6.2)

Using the Proposition 1.1.2 in [47], if we assume that k ∈ C1([−1, 1]2 ,C), g ∈
C1([−1, 1] ,C), then the operator T is compact from X := C0([−1, 1] ,C) into X.

6.2 Finite Rank Approximations and Regulariza-

tion

In this section we introduce a grid (xn,j)
n
j=0 on [−1, 1] such that

−1 < xn,0 < xn,1 < . . . < xn,n−1 < xn,n < 1.

Consider hat functions e0, e1, e2, . . . , en in C0([−1, 1] ,C) such that

ej(xn,k) = δj,k.

De�ne the projection πn from C0([−1, 1] ,C) into itself by

πng(x) :=
n∑
j=0

g(xn,j)ej(x).
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We recall that by [4, 8]

lim
n→∞

‖πng − g‖∞ = 0.

The solution ϕ of (6.2) satis�es

ϕ =
1

λ
(Tϕ− f).

Let
ψ := Tϕ = λϕ+ f.

We get

ϕ =
1

λ
(ψ − f),

so that

ψ =
1

λ
(Tψ − Tf). (6.3)

Hence

πnψ =
1

λ
(πnTψ − πnTf). (6.4)

Let us approximate the solution of (6.3) by ψPn (P for Kantorovich) such that

ψPn =
1

λ
(πnTψ

P
n − πnTf). (6.5)

Theorem 16. The inverse operator (I− 1
λ
πnT )−1 exists and it is uniformly bounded

for n large enough, and ∥∥ψ − ψPn ∥∥ ≤M0 ‖ψ − πnψ‖ .

Proof. In fact

(I − 1

λ
πnT )(ψ − ψPn ) = ψ − 1

λ
πnTψ − ψPn +

1

λ
πnTψ

P
n .

From (6.5),

(I − 1

λ
πnT )(ψ − ψPn ) = ψ − 1

λ
πnTψ +

1

λ
πnTf.

Thus

(I − 1

λ
πnT )(ψ − ψPn ) = ψ − 1

λ
(πnTψ − πnTf).

Using (6.4), we get

(I − 1

λ
πnT )(ψ − ψPn ) = ψ − πnψ,

and the resulat follows, with

M0 := sup
n

∥∥∥∥(I − 1

λ
πnT )−1

∥∥∥∥ .
Since T is compact, limn→∞ ‖πnT − T‖∞ = 0, and hence M0 <∞.
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Let

ϕ̃Pn :=
1

λ
(ψPn − f).

Theorem 17. The iterated approximation ϕ̃Pn satis�es∥∥ϕ̃Pn − ϕ∥∥ ≤ C1 ‖T − πnT‖ .
∥∥ϕ̃Pn − ϕ∥∥ ≤ M0

|λ|
‖ψ − πnψ‖ .

Proof. We have

(πnT − λI)ϕ̃Pn =
1

λ
(πnT − λI)(ψPn − f),

so

(πnT − λI)ϕ̃Pn =
1

λ
(πnTψ

P
n − λψPn − πnTf + λf).

But (6.5) implies
πnTψ

P
n − λψPn = πnTf.

Hence
(πnT − λI)ϕ̃Pn = f.

Thus

ϕ̃Pn − ϕ = (πnT − λI)−1 f − (T − λI)−1 f

= (πnT − λI)−1 (T − λI)−1 [(T − λI)− (πnT − λI)] f

= (πnT − λI)−1 (T − λI)−1 [T − πnT ] f.

Finally, we have ∥∥ϕ̃Pn − ϕ∥∥ ≤ C1 ‖T − πnT‖ .

Where
C0 := sup

n

∥∥(πnT − λI)−1
∥∥ ,

C1 :=
∥∥(T − λI)−1

∥∥ ‖f‖C0.

Also

ϕ̃Pn − ϕ =
1

λ
(ψPn − f)− 1

λ
(ψ − f)

=
1

λ
(ψPn − ψ).

Using the above Theorem we get the desired bound.

6.3 Sloan Projection

Using (6.3),

ψSn =
1

λ
(Tπnψ

S
n − Tf). (6.6)
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Theorem 18. The inverse operator (Tπn − λI)−1 exists, it is uniformaly bounded
for n large enough, and ∥∥ψ − ψSn∥∥ ≤M1 ‖T‖ ‖πnψ − ψ‖ ,
where

M1 := sup
n

∥∥(Tπn − λI)−1
∥∥ .

Proof. We remark that

(Tπn − λI)(ψ − ψSn ) = Tπnψ − λψ − TπnψSn + λψSn .

It follows from (6.6) that

(Tπn − λI)(ψ − ψSn ) = Tπnψ − λψ − Tf.
By (6.6),

(Tπn − λI)(ψ − ψSn ) = Tπnψ − Tψ,
and the result follows. Since T is compact, limn→∞ ‖πnT − T‖∞ = 0, and hence M1

is �nite.

6.4 Galerkin Projection

By using Galerkin projection from (6.3),

ψGn =
1

λ
(πnTπnψ

G
n − πnTf) (6.7)

Theorem 19. The inverse operator (I− 1
λ
πnT )−1 exists and it is uniformaly bounded

for n large enough, and ∥∥ψ − ψGn ∥∥ ≤ γ ‖(πnψ − ψ‖ ,
where

γ := sup
n

∥∥∥∥(I − 1

λ
πnT )−1

∥∥∥∥ .
Proof. We have

(I − 1

λ
πnT )(ψ − πnψGn ) = ψ − 1

λ
πnTψ − πnψGn +

1

λ
πnTψ

G
n .

From (6.7),

(I − 1

λ
πnT )(ψ − πnψGn ) = ψ − 1

λ
πnTψ +

1

λ
πnTf

= ψ − 1

λ
(πnTψ − πnTf).

By (6.4),

(I − 1

λ
πnT )(ψ − πnψGn ) = ψ − πnψ.

Hence,

ψ − πnψGn = (I − 1

λ
πnT )−1(ψ − πnψ),

and we get the desired result. Since T is compact, limn→∞ ‖πnT − T‖∞ = 0, and
hence γ <∞.
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Conclusions and perspectives

In this thesis, new numerical schemes based on the projection and collocation meth-
ods have been constructed and justi�ed for approximate solutions of Cauchy integral
and integro-di�erential equations. We have developed a projection method for solv-
ing an operator equation with bounded noncompact operator in Hilbert spaces.

This work may be extended to other type of Cauchy integral and integro-di�erential
equations.
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RESUME

L'objectif de ce travail est la résolution des équations intégrales singulières à noyau
Cauchy. On y traite les équations singulières de Cauchy de première espèce par la
méthode des approximations successives. On s'intéresse aussi aux équations inté-
grales à noyau de Cauchy de seconde espèce, en utilisant les polynômes trigonométriques
et les techniques de Fourier.

Dans la même perspective, on utilise les polynômes de Tchebychev de quatrième
degré pour résoudre une équation intégro-di�érentielle à noyau de Cauchy.

En suite, on s'intéresse à une autre équation intégro-di�érentielle à noyau de
Cauchy, en utilisant les polynômes de Legendre, ce qui a donné lieu à développer
deux méthodes basées sur une suite de projections qui converge simplement vers
l'identité.

En outre, on exploite les méthodes de projection pour les équations intégrales
avec des operateurs intégraux bornés non compacts et on a appliqué ces méthodes
à l'équation intégrale singulière à noyau de Cauchy de deuxième espèce.

Mots clés: Equations intégrales, approximations successives, méthodes de projec-
tion, méthodes de collocation, noyau de Cauchy.

Summary

The purpose of this thesis is to develop and illustrate various new methods for
solving many classes of Cauchy singular integral and integro-di�erential equations.

We study the successive approximation method for solving Cauchy singular in-
tegral equations of the �rst kind in the general case, then we develop a collocation
method based on trigonometric polynomials combined with a regularization proce-
dure, for solving Cauchy integral equations of the second kind.

In the same perspective, we use a projection method for solving operator equation
with bounded noncompact operators in Hilbert spaces.

We apply a collocation and projection methods for solving Cauchy integro-
di�erential equations, using airfoil and Legendre polynomials.

Keywords: Integral equations, successive approximations, projection methods, col-
location methods, Cauchy kernel.
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