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Abstract

We study space-time noncommutativity applied to the hydrogen atom and its phenomenological

effects. We find that it modifies the potential part of the Hamiltonian in such a way we get

the Kratzer potential instead of the Coulomb one and this is similar to add a dipole potential

or to consider the extended charged nature of the proton in the nucleus. By calculating the

energies from the Schrödinger equation analytically and computing the fine structure corrections

using perturbation theory, we study the modifications of the hydrogen spectrum. We find that it

removes the degeneracy with respect to both the orbital quantum number l and the total angular

momentum quantum number j; it acts here like a Lamb shift. Comparing the results with the

experimental values from spectroscopy, we get a new bound for the space-time non-commutative

parameter. We do the same perturbative calculation for the relativistic case and compute the

corrections of the Dirac energies; we find that in this case too, the corrections are similar to a

Lamb shift and they remove the degeneracy with respect to j ; we get an other bound for the

parameter of non-commutativity.
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I. INTRODUCTION :

The idea of taking non-commutative space-time coordinates is not new as it dates from

the thirties. It had as objective to regulate the divergences of quantum field theory by

introducing an effective cut-off coming from a non-commutative structure of space-time at

small length scales. Then, it was abandoned because of problems caused by the violation

of unitarity and causality, but the mathematical development of the theory continued and

especially after the work of Connes in the eighties [1].

In 1999, during their work on string theory, Seiberg and Witten showed that the dynamics

of the endpoints of an open string on a D-brane in the presence of a magnetic back-ground

field is described by a theory of Yang-Mills on a non-commutative space-time [2]; this has

renewed interest in the theory. Recently, there are many works on Lorentz invariant inter-

pretation of the theory [3-7].

Today, we find non-commutativity in various fields of physics such as solid state physics,

where it was shown that the Hall conductivity is quantized within this framework [8] and

that non-commutativity is the right tool replacing Bloch’s theory whenever the translation

invariance, that occurs in crystals, is broken in aperiodic solids [9]. Another example is fluid

mechanics, where we define the non-commutative fluids by studying the quantum Hall effect

[10] or bosonization of collective fermion states [11]. One can also mention the connection

with quantum statistical physics [12], the equivalence between non-commutative quantum

mechanics and the Landau problem in the lowest Landau level [13], the interpretation of
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Ising-type models as a kind of field theory in the framework of non-commutative geometry

[14] or the relation with Berry curvature in momentum space [15]. One can even find a man-

ifestation of the non-commutativity in the physiology of the brain, where non-commutative

computation in the vestibulo-ocular reflex was demonstrated in a way that is unattainable

by any commutative system [16]. The article of Douglas and Nektasov [17] is an excellent

reference for the different applications of noncommutative field theory.

The theory is a distortion of space-time where the coordinates xµ become Hermitian

operators and thus do not commute:

[xµnc, x
ν
nc] = iθµν = iCµν/ (Λnc)

2 ;µ, ν = 0, 1, 2, 3 (1)

The nc indices denote noncommutative coordinates. θµν is the parameter of the de-

formation, Cµν are dimensionless parameters and Λnc is the energy scale where the non-

commutative effects of the space-time will be relevant. The non-commutative parameter

is an anti-symmetric real matrix and ordinary space-time is obtained by making the limit

θµν → 0. For a review, one can see reference [18].

In the literature, there are a lot of phenomenological studies giving bounds on the non-

commutative parameter. For example, the OPAL collaboration founds Λnc ≥ 140 GeV

[19], various non-commutative QED processes give the range Λnc ≥ 500 GeV − 1.7 TeV

[20], high precision atomic experiment on the Lamb shift in the hydrogen atom gives the

limit Λss
nc ≥ 6 GeV [21] (This limit corrects the error made in calculating the bound in

[22]); all these bounds deal with space-space non-commutativity. For the space-time case,

the bound θ . 9.51 × 10−18 m.s was found from quantum gravity considerations [23], the

bound θst . (0.6 GeV )−2 was determined in [21] from theoretical limit of the Lamb shift

in H-atom. Some specific models gives the bound Λnc ≥ 10 TeV from CMB data [24] or

the bound Λnc & 1016 GeV from particle phenomenology [25] , but they are not direct

constraints on the parameter because they use the loss of Lorentz invariance in the theory.

A well documented review on non-commutative parameter bounds can be found in [26].

We are interested in the phenomenological consequences of space-time non-

commutativity. We focus on the hydrogen atom because it is a simple and a well studied

quantum system and so it can be taken as an excellent test for non-commutative signa-

tures. The case of space-space non-commutativity was studied by Chaichian et al in [22]

and [27]; here we work on the space-time case. We start by computing the corrections to
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the Schrödinger energies then we study the contributions to the fine structure. Finally, we

compute the corrections to the Dirac energies and we study the changes in the spectrum.

This allows us to obtain a limit on the non-commutative parameter in each case.

The aim of this work is to study the effects of space-time noncommutativity on the

spectrum of hydrogen atom and to find an upper limit for the non-commutative parameter

by computing the corrections to the transition energies and comparing with the experimental

results from hydrogen spectroscopy.

II. HYDROGEN ATOM IN SPACE-TIME NON-COMMUTATIVITY:

We work here on the space-time version of the non-commutativity; thus instead of (1),

we use:
[

xjst, x
0
st

]

= iθj0 (2)

the st subscripts are for non-commutative space-time coordinates. The 0 denotes time and j

is used for space coordinates. As a solution to these relations, we choose the transformations:

xjst = xj − iθj0∂0 (3)

The usual coordinates of space xj satisfy the usual canonical permutation relations. For

convenience we use the vectorial notation:

−→r st =
−→r − i

−→
θ ∂0 (4)

where we have used the notation:

−→
θ ≡

(

θ10, θ20, θ30
)

=
(

θ1, θ2, θ3
)

(5)

The relations (3) and (4) can be seen as a Bopp’s shift [28].

We are dealing with the stationary quantum equations, and this allows us to consider the

energy as a constant parameter. In our computation, we follow the work done by Chaichian

et al. in space-space non-commutativity whatsoever in the non relativistic case ([22] and

[29]) or in the relativistic case [27]; we use the standard Schrödinger and Dirac equations.

This is possible because our choice in the transformations (5) leaves the coordinate x0

and all the momentums pµ unchanged. One can cite other studies that have used the same

procedure. In the case of non-commutativity being only between time and space coordinates
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as is the case in our work, it was shown in [30] that one has to use the new non-commutative

coordinates and momentums instead of the usual ones in the Schrödinger equation. If there

is both space-space and space-time cases of non-commutativity, it has been shown in [23]

and [31] by studying the neutron in the gravitational field, that only the potential part of

the standard equation varies. In a more simple way, we say that the kinetic energy does

not change since it depends on the momentum that remains unchanged, thus we take the

Coulomb potential and construct its non-commutative image. To achieve this, we have to

write the expression of r−1
st :

1

rst
=

1
∥

∥

∥

−→r − i
−→
θ ∂0

∥

∥

∥

(6)

We make the development in series of the expression and because of the smallness of the

non-commutative parameter, as one can see from the bounds given in the introduction, we

restrict ourselves to the 1st order in θ and neglect the higher order terms:

r−1
st =

[

(−→r − i
−→
θ ∂0

)2
]

−1/2

=

(

1 +
i∂0

−→r · −→θ
r3

+O(θ2)

)

(7)

and thus, one can write the non-commutative Coulomb potential in the space-time case (up

to the 1st order θ) as follows:

Vnc(r) = −e
2

r

(

1 + i∂0

−→
θ · −→r
r3

)

(8a)

= −e
2

r
− e2E

~

−→
θ · −→r
r3

(8b)

where we have used the fact that i∂0ψ = Hψ = (E/~)ψ.

An adequate choice of the parameter is
−→
θ = θr0−→r /r; It is equivalent to write:

θµν =















0 −θ 0 0

θ 0 0 0

0 0 0 0

0 0 0 0















(9)

Here µ, ν = 0, 1, 2, 3 and (1, 2, 3) means the spherical coordinates (r, ϑ, ϕ). This writing

is similar to that in [32] for the case of non-commutative space-time and in [33] for the

space-space case (Another possible choice is
−→
θ = θ30

−→
k and we have examined it in [34] in

the non-relativistic case, but it has not been studied in the relativistic case until now). The
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choice made in this paper allows us to write the non-commutative Coulomb potential as (we

note θr0 = θst):

Vnc(r) = −e
2

r
− e2Eθst

~

1

r2
+O(θ2st) (10)

The expression is similar to the Kratzer potential [35]:

V (r) = −e2/r − Ce2/r2 (11)

(where C = Eθst/~). This kind of potential is introduced to study the spectrum of the

external electron in alkali metals where it is subject to the effect of the nucleus (Coulomb

term) and to the influence of inner electrons represented by the additional term and which

may be interpreted as the potential of a central dipole; a dipole with its axis directed towards

the electron and thus retains a spherical symmetry[36].

In a same way, the non-commutative Coulomb potential (10) can be interpreted as the

potential energy of a negative charge under the influence of the superposition of a field

produced by a point charge and another field coming from an electric central dipole; both

are placed at the origin.

In other words; the non-commutative Coulomb potential is equivalent to an electron in

a field of a charge distribution whose characteristics are:

- it is not neutral (a positive net charge here) so it gives the usual Coulomb contribution,

- it is not spherically symmetric and this adds the dipole contribution.

Such a distribution exists in the hydrogen atom in the proton; it is an extended positively

charged system composed of three quarks. So applying space-time non-commutativity to

the electron in the hydrogen atom is equivalent to consider the extended charged nature of

the nucleus or the proton.

The fact that the proton has a structure and is a composite particle implies that non-

commutativity cannot be applied to it as for elementary particles like electron, and it behaves

essentially as a commutative particle in the non-commutative hydrogen atom as mentioned

in [28]. This is why we apply non-commutativity only to the electron in this work.

Now we compute the corrections induced by this additional term in both the non-

relativistic and the relativistic cases.
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A. Corrections of the Bohr Energies :

We work on the standard Schrödinger equation and use the non-commutative Coulomb

potential instead of the usual one, because as mentioned above, the kinetic energy depends

on the momentum which remains unchanged and thus does not change. For this potential,

the Schrödinger equation is:

i~∂0ψ = − ~
2

2m
∆ψ − e2

r

(

1− i∂0

−→r · −→θ
r2

)

ψ (12)

We are dealing with the stationary solutions, so we consider the energy as a constant pa-

rameter and write:

Hψ = − ~
2

2m
∆ψ − e2

r

(

1 +
E

~

−→r · −→θ
r2

)

ψ (13)

The spectrum of the Kratzer potential is obtained by defining a new orbital quantum

number:

lK(lK + 1) = l(l + 1)− 2me2C/~2 (14)

and solving the Schrödinger equation with this new number for the Coulomb potential; by

doing this, we obtain the Bohr energies with n = nr + lK +1, and using this transformation,

one can easily find the following expression of the energy (see [36] for example):

En,l = −2me4

~2

(

2n− (2l + 1) +

√

(2l + 1)2 − 8mCe2/~2

)

−2

(15)

Making the replacement C = Eθst/~, we obtain the relation:

En,l = −2me4

~2

(

2n− (2l + 1) +

√

(2l + 1)2 − 8mEθste2/~3

)

−2

(16)

The smallness of the non-commutative parameter allows us to expand the relation and we

restrict ourselves to the 1st order in θ. Doing this, we solve the resulting expression for the

energy (we take the energy as a constant parameter since we are dealing with stationary

solutions of the Schrödinger equation) and find:

En,l = −me
4

2~2

1

n2

(

1− m2e6

~5

θst
(l + 1/2)n3

)

(17)

At the outset, we see that the accidental degeneracy with respect to l is removed. Noticing

that the first term is the Bohr’s formula, we conclude that the space-time non-commutative

corrections of the hydrogen energy levels in the framework of the Schrödinger equation are:

∆En,l (nc) =
m3e10

~7

θst
(2l + 1)n5

(18)
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One can obtain a limit for θ by comparing the corrections to transition energies obtained

using (17) with the experimental results from hydrogen spectroscopy. We take as test levels,

1S and 2S because we have the best experimental precision for the transition between them

[37]:

f1S−2S = (2446061102474851± 34) Hz (19)

The non-commutative correction for this transition writes:

∆Enc (1S − 2S) = ∆E2,0 −∆E1,0 = 0.969
(

m3e10/~7
)

θst (20)

Comparing with the precision of the experimental value in (19), we obtain:

θst . 1.05 · 10−19 eV −2 ≈ (3 GeV )−2 (21)

This value is better than the limit obtained in both [21] and [23] and it justifies our expansion

of (16) to obtain the energy. If one consider the limit for the accuracy of the resonance

frequency measurements for this transition found to be ∼ 10−5 Hz in [38], then the new

bound will be ∼ (10 TeV )−2.

B. Corrections of the Fine Structure Expression :

The fine structure Hamiltonian of the hydrogen can be written as:

Hfs =
p2

2m
+ V − p4

8m3c2
+

~

4m2c2
−→σ ·

(−→∇V ×−→p
)

(22)

Where the first two terms are the Schrödinger Hamiltonian, the third one is the relativistic

correction of the kinetic energy and the last term represents the spin-orbit contribution

(we write his general expression from the non-relativistic limit of the Dirac equation for

convenience as one can find in [39] and [40] for example). σ are Pauli matrices.

The value of θ obtained in (21) allows us to consider non-commutative corrections with

perturbation theory; to the 1st order in θ, the corrections of the eigenvalues are:

∆En,l (nc) = 〈n, l,ml |Hfs|n, l,ml〉 (23)

We follow [40] and [41] and neglect the changes of the eigenvectors; so from the Schrödinger

equation, we can write the relativistic correction of the kinetic energy as:

p4

8m3c2
=

1

2mc2

(

p2

2m

)2

=
1

2mc2
(E − V )2 (24)
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We use the relationship
−→∇V = (−→r /r)V (́r) that applies for spherical potentials like our

non-commutative Coulomb potential and write:

Hfs =
p2

2m
+ V − 1

2mc2
(E − V )2 +

1

4m2c2r

dV

dr
−→s · −→l (25)

where we have used the fact that −→r ×−→p =
−→
l and ~

−→σ = −→s . Now, we develop (25) using

the expression of the potential from (10) and we find:

Hfs = H
(Coulomb)
fs +

[

−e
2

r2
− 1

mc2

(

E
e2

r2
+
e4

r3

)

+
−→s · −→l
2m2c2

(

e2

r4

)

]

C (26)

where we have considered the usual fine structure Hamiltonian for the habitual Coulomb

potential:

H
(Coulomb)
fs =

p2

2m
− e2

r
− 1

2mc2

(

E2 +
e4

r2
+

2Ee2

r

)

+
e2

4m2c2

−→s · −→l
r3

(27)

and the new non-commutative correction to this Hamiltonian is (C = Eθst/~):

H
(nc)
fs =

[

−Ee
2

~r2
− E

~mc2

(

Ee2

r2
+
e4

r3

)

+
Ee2

2~m2c2

−→s · −→l
r4

]

θst (28)

The fine structure Coulomb energies can be found in the literature (For example [40] or

[41]):

En,j = −me
4

2~2

1

n2

[

1 +
α2

n

(

1

j + 1/2
− 3

4n

)]

(29)

α = e2/~c is the fine structure constant and j = l ± 1/2 is the quantum number associated

to the total angular momentum
−→
j =

−→
l + −→s . The non-commutative correction to this

energies are:

〈

H
(nc)
fs

〉

=

[

−Ee
2

~

〈

1
r2

〉

− Ee2

~mc2

(

E
〈

1
r2

〉

+ e2
〈

1
r3

〉

− 1

2m

〈

−→s ·

−→

l
r4

〉

)]

θst (30)

To compute these terms, we use the Kramer’s recursive relations:

〈

1

r2

〉

=

(

1

a0

)2
1

n3(l + 1/2)
(31a)

〈

1

r3

〉

=

(

1

a0

)3
1

n3(l + 1/2)(l + 1)l
(31b)

〈

1

r4

〉

=

(

1

a0

)4
3n2 − l(l + 1)

2n5(l + 3/2)(l + 1)(l + 1/2)l(l − 1/2)
(31c)
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where a0 = ~
2/me2 is the 1st Bohr radius. Using the expression of the Bohr energies

E = −me4/2~2n2 and writing:

〈−→s · −→l
r4

〉

=

〈

~
2

2r4

(−→
j 2 −−→

l 2 −−→s 2
)

〉

=
~
2K

2

〈

1

r4

〉

with K = j (j + 1)− l (l + 1)− s (s+ 1), we find:

〈

H
(nc)
fs

〉

=
〈

H
(nc)
0

〉

+
〈

H
(nc)
α2

〉

(32)

where:

〈

H
(nc)
0

〉

=

(

m3e10

~7

)

θst
2n5(l + 1/2)

(33a)

〈

H
(nc)

α2

〉

=
〈

H
(nc)
0

〉

α2





−1
2n2

(

1− K
4(l+3/2)(l−1/2)

)

+

1
(l+1)l

(

1− 3K
8(l+3/2)(l−1/2)

)



 (33b)

The first term is the non-commutative correction found in (17) and the last terms are the

fine structure non-commutative corrections and are proportional to α2 as it should. We have

two cases for the value of the orbital quantum number l since it can be zero or not, and

because s = 1/2, this gives three possibilities for j. We will study the two cases j = l± 1/2

corresponding for l 6= 0 first then we will treat the case j = 1/2 when l = 0 separately.

The case j = l + 1/2 and l 6= 0:

〈

H
(nc)
fs

〉

n,j+
=

(

m3e10

~7

)

θst

2n5j

{

1 +
α2/4

(j2 − 1)

[−8j2 + 2j + 7

4n2
+

16j2 − 6j − 13

(4j2 − 1)

]}

(34)

The case j = l − 1/2:

〈

H
(nc)
fs

〉

n,j−
=

(

m3e10

~7

)

θst

2n5(j + 1)

{

1 +
α2/4

j (j + 2)

[−8j2 − 18j − 3

2n2
+

16j2 + 38j + 9

(2j + 1)(2j + 3)

]}

(35)

We see that the expression depends on the way to obtain the number j from l unlike the

usual fine structure correction in (28) which is the same for all the possible values of j. It

implies that the non-commutativity removes the degeneracy j = l + 1/2 = (l + 1)− 1/2 in

the hydrogen atom, in states like nP3/2 and nD3/2 (the same degeneracy exists in the Dirac

energies for Coulomb potential).

The case l = 0 must be treated separately because l appears in the denominator of two

terms in (33) and this gives a divergent result. This singularity is only apparent because
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the terms come from the fact that we have neglected the potential energy of the electron

with respect to mc2, but this is not true at the limit r → 0. The same thing appears in the

calculation of the spin-orbit term in usual hydrogen fine structure. It has been showed in

[39] that the spin orbit term is zero in this case because in the
〈

−→s ·

−→

l
r4

〉

term, the numerator

−→s · −→l vanishes exactly for l = 0 while the denominator 〈r−4〉 approaches the limit zero.

Things are not the same for the
〈

1
r3

〉

term as there is no vanishing numerator here and one

has to be replace 〈r−3〉 by 〈r−3 (1− a0α
2/2r)〉 by using (2mc2 + e2/r) instead of (2mc2) [39];

this gives us a finite result. We use the same argument to eliminate the spin-orbit term and

the same transformation to compute 〈r−3〉; we get:
〈

H
(nc)
fs

〉

n,l=0
=
m3e10

~7n2
θst

[

1

n3
− α2

2

(

1

n5
−
〈

r−3

(

1− a0α
2

2r

)〉

a30

)]

(36)

As an example, we compute the corrections of the states 1s and 2s :
〈

H
(nc)

α2

〉

1s
= −m

3e10

~7
θst

[

α2

2
(1− 37.053)

]

= −
(

0.96 · 10−3
) m3e10

~7
θst (37)

〈

H
(nc)

α2

〉

2s
= −m

3e10

~7
θst

[

α2

8

(

1

32
− 4.603

)]

= −
(

0.03 · 10−3
) m3e10

~7
θst

These terms are added to (18). We see that the additional contribution to the transition

correction (20) is 10−3 smaller and this do not affect the limit (21).

We can also compute the correction to the Lamb shift 2P1/2 −→ 2S1/2 as an example.

From (17), (35) and (37), we have:
〈

H
(nc)
fs

〉

2P1/2

= 0.010
(

m3e10/~7
)

θst (38a)

〈

H
(nc)
fs

〉

2S1/2

= 0.031
(

m3e10/~7
)

θst (38b)

and the Lamb Shift correction follows:

∆Enc

(

2P1/2 −→ 2S1/2

)

= 0, 021
(

m3e10/~7
)

θst (39)

We compare this result to the current theoretical accuracy 0.08 kHz from [42] and find the

bound θst . (0.4 GeV )−2 which is bigger than the precedent one in (21).

C. Corrections of the Dirac Energies :

For the relativistic case, we write the Dirac equation:

i~∂0 = Hψ = (−→α · −→p ) +mγ0 + eA0 (40)
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where αi = γ0γi and γµ are the Dirac matrices.

We use the same argument as in the non-relativistic case and employ the standard Dirac

equation but with the non-commutative Coulomb potential:

A
(nc)
0 = − e

rst
= −e

[

(−→r − i
−→
θ ∂0

)2
]

−1/2

= −e
r

(

1 +
i∂0

−→r · −→θ
r2

+O(θ2)

)

(41)

We restrict ourselves to the 1st order in θ and neglect the higher order terms in the devel-

opment in series of the expression:

A
(nc)
0 = −e

r

(

1 + i∂0
θst
r

)

+O(θ2) = −e
r
− eEθst

~

1

r2
+O(θ2) (42)

The Hamiltonian can now be expressed as:

H = (−→α · −→p ) +mγ0 − e
(

e/r + e (E/~) θst/r
2
)

= H0 +Hnc (43)

H0 is the Dirac Hamiltonian in the usual relativistic theory and Hnc is the non-commutative

correction to this Hamiltonian:

Hnc = −e2 (E/~) θstr−2 (44)

The smallness of the parameter θ from the different bounds mentioned in the introduction

allows us to consider noncommutative corrections with perturbation theory; to the 1st order

in θ, the corrections of the eigenvalues are:

∆Enc = 〈Hnc〉 = −
(

Ee2θst/~
) 〈

r−2
〉

(45)

From [43], one has:

〈

1

r2

〉

=
2κ (2κε− 1) (1− ε2)

3/2

α
√
κ2 − α2 [4 (κ2 − α2)− 1]

(mc

~

)2
(

1

a0

)2

(46)

where a0 = ~
2/me2 is the 1st Bohr radius and ε = E/mc2; E is the Dirac energy:

En,j = mc2

{

1 + α2

[

(n− j − 1/2) +

√

(j + 1/2)2 − α2

]

−2
}

−1/2

(47)

α = e2/~c is the fine structure constant and j = l ± 1/2 is the quantum number associated

to the total angular momentum
−→
j =

−→
l +−→s . The number κ is giving by the two relations

κ = − (j + 1/2) if j = (l + 1/2) and κ = (j + 1/2) if j = (l − 1/2). We see that through κ,

12



the energy depends not only on the value of j but also on the manner to get this value (or on

l), unlike the usual Dirac energies in (48) which is the same for all the possible ways to obtain

j. This implies that the non-commutativity removes the degeneracy j = l+1/2 = (l+1)−1/2

in hydrogen atom (nP3/2 and nD3/2 for example) and acts like the Lamb shift.

We recall that the energy level without considering the rest mass energy (mc2) is written

as a function of the total energy by the relation En,j = E − mc2 and so the corrections

to these energies are: ∆E
(nc)
n,j = ∆E(nc). From now on, we note these corrections E

(nc)
n,j

or E(nc) (nLj) where L is the spectroscopic letter corresponding to a specific value of the

angular quantum number l. We take as an example the levels n = 1, 2 and we compute the

corrections to their energies:

E(nc)
(

1S1/2

)

= 1.065084 · 10−4
(

m3e2c4/~3
)

θst (48a)

E(nc)
(

2S1/2

)

= 1.331426 · 10−5
(

m3e2c4/~3
)

θst (48b)

E(nc)
(

2P1/2

)

= 0.443805 · 10−5
(

m3e2c4/~3
)

θst (48c)

E(nc)
(

2P3/2

)

= 0.443765 · 10−5
(

m3e2c4/~3
)

θst (48d)

We can get a limit for θ by comparing these shifts to experimental results from hydrogen

spectroscopy. We take as test levels, 1S − 2S transition (19) and looking at (49), the non-

commutative correction for this transition is:

∆E(nc) (1S − 2S) = E(nc)
(

1S1/2

)

− E(nc)
(

2S1/2

)

= 0.931941 · 10−4
(

m3e2c4/~3
)

θst (49)

Comparing with the precision of the experimental value in (15), we obtain:

θst . 3.099 · 10−24 eV −2 ≈ (0.57 TeV )−2 (50)

It is a significant improvement of the previous bounds obtained in [22] [23] and [34] and

it justifies the use of perturbation method to obtain the energy . If one consider the limit

for the accuracy of the resonance frequency measurements for this transition found to be

∼ 10−5 Hz in [38], then the new bound will be ≈ (1.5 PeV )−2.

To make the differences between the corrections of the levels more visible, we can write

their expressions in a more elegant and appropriate way by using the development in series

with respect to α (up to the 2nd order in α2 to do the comparison with the fine structure

13



corrections). For the Dirac energies, we have:

E = mc2
{

1− α2

2n2

[

1 +

(

2

(2j + 1)n
− 3

4n2

)

α2

]

+O(α6)

}

(51)

We use this formula and the general expressions from (46) and (47) to compute the non-

commutative corrections and find:

E
(nc)

n,j=l+ 1

2

= m3e2c4α2

jn3~3

[

1 +
(

6j2+6j+1

j(j+1)(2j+1)2
+ 3

(2j+1)n
− 10j+9

4(j+1)n2

)

α2
]

θst (52a)

E
(nc)

n,j=l− 1

2

= m3e2c4α2

(j+1)n3~3

[

1 +
(

6j2+6j+1

j(j+1)(2j+1)2
+ 3

(2j+1)n
− 10j+1

4jn2

)

α2
]

θst (52b)

We see that the non-commutativity acts like a Lamb shift and remove the degeneracy j =

l + 1/2 = (l + 1) − 1/2 in the hydrogen as we have mentioned before. We note that

the relativistic corrections (53a,53b) are not the same as those found for the fine structure

(35,36,37), whereas they coincide for the quantum theory of hydrogen atom in the usual case.

This coincidence is accidental (as it is the case of Gauss theorem) and is due to the Coulomb

potential which is a special case. So the additional term in r−2 breaks the equivalence and

this induces the difference found.

The non-commutative correction to the Lamb shift follows from the previous expressions:

∆E
(nc)
n,j (Lamb shift) = E

(nc)
n,j=l+1/2 − E

(nc)
n,j=(l+1)−1/2

=
m3e2c4α2

j(j + 1)n3~3

[

1 +

(

6j2 + 6j + 1

j (j + 1) (2j + 1)2
+

3

(2j + 1)n
− 2

n2

)

α2

]

θst (53)

To compare with experience, we apply he result to the n = 2 and j = 1/2 case or the

2P1/2 −→ 2S1/2 Lamb shift (the 28cm line). From (53) (or from (49)), we have:

∆E
(nc)
2,1/2

(

2P1/2 −→ 2S1/2

)

= 0.887621 · 10−5
(

m3e2c4/~3
)

θst (54)

We compare this result to the current theoretical accuracy 0.08 kHz from [42] and find the

bound θst . 3.254 · 10−23 eV −2 ≈ (0.18 TeV )−2. It is larger than the previous one in (51)

but it is still better than the ones from [22] [23] and [34].

III. CONCLUSION :

In this work, we look for space-time non-commutative hydrogen atom and induced phe-

nomenological effects. We found that applying space-time non-commutativity to the electron
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in the H-atom modifies the Coulomb potential to give us the potential of Kratzer. The ad-

ditional term is proportional to r−2 and we assimilate it to the field of a central dipole.

In other words, the action of space-time non-commutativity is equivalent to consider the

extended charged nature of the proton in the nucleus.

We started by solving the Schrödinger equation for this potential; we have calculated

the corrections induced to energy levels by this non-commutative effect and we find that the

non-commutative corrections remove the degeneracy of the Bohr energies with respect to the

orbital quantum number l and the energies are labelled En,l. by comparing to experimental

results from high precision hydrogen spectroscopy, we get a new bound for the parameter of

non-commutativity (around (3 GeV )−2).

In a second step, we study the contributions to the fine structure and find that they

have no significant effect on the energies. But we found that the non-commutative Coulomb

potential remove the degeneracy j = l + 1/2 = (l + 1)− 1/2 of the hydrogen fine structure

and the energies write En,j,l; the non-commutativity acts here like a Lamb shift. This is

explained by the fact that Lamb correction can be interpreted as a shift of r in the Coulomb

potential due to interactions of the bound electron with the fluctuating vacuum electric field

[44], and non-commutativity is also a shift of r as we can see from the Bopp’s shift.

The same thing was done for the relativistic case where by solving the Dirac equation,

we have calculated the corrections induced to energy levels by this non-commutative effect.

By comparison with experimental results, we get a new bound for the non-commutative

parameter (about (0.57 TeV )−2).

The non-commutative corrections to the Dirac theory of hydrogen atom remove the de-

generacy of the Bohr energies with respect to the orbital quantum number l and also the

degeneracy of the Dirac energies with respect to the total angular momentum quantum

number j (j = l + 1/2 = (l + 1)− 1/2), and the energies are labelled En,j,l. As in the case

of the fine structure, the non-commutativity has an effect similar to that of the Lamb Shift.

Recently, there has been a certain amount of activity around the theme of cosmological

and astrophysical applications of non-commutative geometry models of particle physics, for

example [45-47]. One can study such applications of non-commutativity via the Lamb shift

line and the 2S−1S transition and also via the Lyman-α ray. We draw attention to the fact

that 2S − 1S transition is used in high precision spectroscopy because of the implication of

these measurements on the values of fundamental physical constants like the fine structure

15



constant α and the Rydberg constant R [37] and in tests of Lorentz invariance [47]. The

possible variation of the fine structure constant has relation with primordial light nuclei

abundance in the early universe [48], with f(R) theories in Einstein frame and quintessence

models [49] or with the inhomogeneity of the mass distribution in the early universe and

the cosmological constant [50] (One can find a good review in this last reference). If we

take the bound obtained from the Lamb shift theoretical accuracy 0.08 kHz, we find that it

corresponds to a shift in the 2S−1S transition frequency equal to ≈ 0.8 kHz. This value is

greater than the experimental accuracy in (19) and thus the space-time non-commutativity

can be tested here (If we consider the bound from the 28cm line).

We have to mention that there is another challenge in the study of the hydrogen atom

in the context of space-time non-commutativity, which is to determine the spectrum for the

choice
−→
θ = θ30

−→
k in the relativistic case. As has been demonstrated in our article for the non-

relativistic case [34], the additional term to the Coulomb potential is proportional to cosϑ

and therefore non-commutative contributions are no longer diagonals and the perturbation

theory of order one is no longer valid. We need, in this case, to write the Hamiltonian

matrix for corrections of first and second order in θ and then compute the eigenvalues for

this system; this is in preparation.
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