
Courrier du Savoir – N°14, Novembre 2012, pp.25-30

Université Mohamed Khider – Biskra, Algérie, 2012

FROM A MODEL OF CONCURRENCY TO A TEST MODEL:

A GRAPH TRANSFORMATION BASED APPROACH

A. CHAOUI, D.SAIDOUNI, M. BOUARIOUA, S. BEKRAR, E. KERKOUCHE
MISC Laboratory, Computer Science Department, Faculty of Engineering, University Mentouri Constantine, 25000, Algeria

a_chaoui2001@yahoo.com, Saidounid@hotmail.com

ABSTRACT

Maximality-based Labeled Transition Systems (MLTS) is semantic model for true concurrency. In other hand Mixed Refusal
Graphs (MRG) are models for formal testing. In this paper, we propose an approach to transform an MLTS model to an
equivalent MRG model. Since the input and output models are graphs, we use graph transformation to perform this
transformation automatically. So, we propose two meta-models; one for the input model and the other for the output model.
Then, based on these meta-models we propose a graph grammar that deals with the transformation process. The meta-
modeling tool ATOM3 is used. Our approach is illustrated through an example.

KEYWORDS: Formal Verification, Graph transformation, MLTS, MRG, ATOM3, Meta-models, Test model.

1 INTRODUCTION

Nowadays, technology is looking for distributed
applications to develop and increase its domains (network,
telecommunication…etc). This kind of applications is
known by their big complexity. Formal verification method
is the most used technique to deal with concurrent systems
questions because of its ability to describe the system
behavior without ambiguity. At the final step of the formal
design trajectory of a system, the implementation under test
is verified according to the specification of the system. In
both specification and testing models, the hypothesis of
non-atomicity of actions is considered. For this reason we
will use the MLTS model [9] for representing the systems
behaviors and the MRG model as a support of the formal
testing verification approach. In [10], an algorithm for
generating MRG structures from MLTS ones is defined.
Since the MLTS and MRG models are both graphs, we are
interested in this paper to use a graph transformation
approach [8] to deal with transforming MLTS models to
MRG Models. In previous papers [5, 6], we have proposed
two graph transformation approaches to perform two model
transformations using ATOM3 (A Tool for Multi-formalism
and Meta-modeling) environment [1,3] as a graph
transformation tool . In [5], we have proposed two
automatic steps to perform the transformation of G-Nets
models to their equivalent in PROD Language. The first
one deals with the transformation of G-Nets models into
Prt-Nets models. The second one transforms the resulted
Prt-Nets models into PROD language. In [6], we have
proposed an automated approach and a tool environment

that formally transform dynamic behaviors of systems
expressed using UML models into their equivalent Colored
Petri Nets (CPN) models for analysis purpose.

 In this paper we propose an approach and a tool for
transforming MLTS models to their equivalent MRG
models using ATOM3 as a graph transformation tool. The
MLTS models are obtained using FOCOVE tool [4] from a
LOTOS specification. The obtained MRG models will be
exploited by verification tools like FOCOVE for example.
Here we are concerned only by dealing with the
transformation of MLTS models to MRG models.

This paper is organized as follows. In section 2, we recall
some basic concepts about maximality-based labeled
transitions semantic models and the refusal graphs as
verification methods. Then we will explain model
transformation concepts and especially graph
transformation with its main tools and methods. A brief
introduction of ATOM3 will be given. In section 3, we
describe our approach of transforming MLTS models [9] to
MRG models [10] based on graph grammars. It consists on
proposing two meta-models associated respectively to the
MLTS model and the MRG model and a grammar that
deals with the transformation. The meta-models are
represented by UML class diagrams [2] and the constraints
are expressed using Python language [7]. In section 4, we
illustrate our approach through an example. The final
section concludes the paper and gives some perspectives.

A.Chaoui & al

 26

2 BACKGROUND

Our objective is to propose an automatic generation of
refusal graphs from Maximality-Based Labeled Transitions
Systems using graph transformation. In the following, we
recall some basic notions about Maximality-Based Labeled
Transitions Systems, Refusal Graphs, and graph
transformation.

2.1 Maximality-Based Labeled Transitions Systems

maximality-based labeled transition system [9] is model of
true concurrency. In a maximality-based labeled transition
system, a transition represents the start of action execution.
An event name is used to identify this action execution. To
each state, a set of all event names, identifying actions
which may in execution at this state, is associated; these
event names are said maximal at this state. For each state
and each transition starting from it; every maximal event
name at this state which is not a cause of this transition may
not be used for identifying it.

To illustrate the principle of the MLTS model let’s consider
the example of two machines M1 and M2 which can offer
two cups of coffee after the introduction of a coin. Their
behaviors are as follow: M1 has a single device which
delivers coffee while M2 provides two devices delivering
two cups of coffee at the same time. The customer must
submit a coin p and interacts twice on the button c used for
requesting coffee. Obviously, a customer using these two
machines can observe the difference between them. In fact,
after introducing a coin p, the machine M1 starts offering
the first cup of coffee after the first interaction on c, the
second interaction on c is refused until the first cup is
completely delivered. However, in M2, after introducing
the coin, the costumer may interact twice on c. No refusals
on this action are observed, since the two cups of coffee are
delivered in parallel. This difference between M1 and M2
has been observed because the delivery of coffee is not
instantaneous.

Figure 1: Maximality-based Labeled Transition Systems of

machines M1 and M2

The difference between the two systems may be captured in
states S3. In the first system, the set of maximal vents
associated to S3 contains only one event name x
corresponding to the start of the last execution of action c;

however in the second system, the set of maximal event
names contains the event names x and y corresponding
respectively to the first and the second executions of action
c. This means that two caps of coffee may be delivered at
the same time by this machine. Then, the distinction
between machines M1 and M2 is captured at the semantic
level.

Formally, an MLTS is defined as follows.

Definition

Let M be a countable set of event names, a maximality-
based labeled transition system of support M is a quintuplet
(Ω, λ, μ, ξ, ψ) with:

Ω=(S, T, α, β, S0) is a transition system such that:

 S is a non-empty set of states; it can be finite or infinite.
 T is the set of transitions indicating the change of state

that the system can achieve; this set can be finite or
infinite.

 α, β are two applications defined from T to S : for any
transition t of T: α(t) is the origin of the transition and
β(t) its target.

 S0 is the initial state of the transitions system Ω.
 (Ω; λ) is a transitions system labeled by the function λ

on a set of actions Act (Act is called the support of (Ω;
λ)) / (λ: T -> A).

 Ψ : is a function associating to each state a finite set of
maximal events names which are presents at this state.

 μ is a function associating to each transition a finite set
of event names corresponding to actions that have begin
their execution, and the enabling of this transition
depends on the termination of these actions.

 ξ : is a function associating to each transition the name
of the event that identifies its start.

Such that ψ(s0)=ø and for all transition t , μ(t) ψ(α (t)),
ξ(t) ∉ ψ(α (t)) - μ(t) and ψ (β(t)) = (ψ (α (t)) - μ (t))
{ξ (t)}.

For more details, the reader is referred to [9].

2.2 Refusal Graphs

Refusal graphs [10] are models for testing reactive systems.
They take into consideration more realistic hypothesis for
testing such systems. In fact, mixed refusal graphs consider
a new kind of refusals, named temporary refusals. They are
induced by actions with non-null durations in the system.
For considering actions durations, the maximality-based
labeled transition systems are used as a semantic model of
reactive systems.

As an illustration, consider again the example of the
machines M1and M2. Their mixed refusal graphs are
depicted respectively by the Figures 2.(a) and 2.(b). The
difference between the two machines is captured by the
temporary refusal on action c. In fact, after the trace p.c, no
temporary refusal on c is observable in state 3 of Figure

From a model of concurrency to a test model: A Graph transformation based approach

2.(b), which is not the case in state 3 of Figure 2.(a).

 (a) (b)
Figure 2: Mixed refusal graphs of machines M1 and M2

Formally, refusal graphs are defined as follows.

Definition

 a mixed refusal graph is a deterministic structure labeled
both on transitions and states defined as follow:

mrg=(G, ∑, ∆, Ref, g0) where:

 G is a finite set of states, g0 the initial state.
 L Act is a finite set of observable actions: the alphabet

of mrg.
 Δ (G x L x G): is a transition relation. An element

(g, a, g’) Δ will also be noted g → g’.
 Ref : is an application that associates to any g G a set

of subset of L L such that:
 ~ ~ ≈ ≈

 L = {a: aL} et L = {a:aL}

For more details, the reader is referred to [10].

2.3 Graph Transformation

The transformation between models is a process that
converts a model to another model. This task requires a set
of rules that define how the source model has to be
analyzed and transformed into other elements of the target
model. The transformation engine takes the source model
in input; execute the rules of transformation and finally
generate the target model in output.

Graph Grammars [8] are used for model transformation.
They are composed of production rules; each having graphs
in their left and right hand sides (LHS and RHS). Rules are
compared with an input graph called host graph. If a
matching is found between the LHS of a rule and a
subgraph in the host graph, then the rule can be applied and
the matching subgraph of the host graph is replaced by the
RHS of the rule. Furthermore, rules may also have a
condition that must be satisfied in order for the rule to be
applied, as well as actions to be performed when the rule is
executed. A rewriting system iteratively applies matching
rules in the grammar to the host graph, until no more rules
are applicable. ATOM3 is a graph transformation tool
among others. In this paper we use ATOM3.

Example of grammar rule in ATOM3

Figure 3: A grammar rule (LHS and RHS) that eliminate a

transition between two states

In the next section, we will discuss how we use ATOM3 to
generate mixed refusal graphs models from maximality-
based labeled transitions system models using graph
transformation based on ATOM3 tool.

3 OUR APPROACH

In our approach, we propose two meta-models associated
respectively to the MLTS model and the MRG model and
then we will propose a grammar for the transformation. The
meta-models are represented by UML class diagrams and
the constraints are expressed using Python language.

3.1 Meta-Models

The meta-models in ATOM3 are a UML class diagrams and
the constraints are expressed in python language.

3.1.1 MLTS Meta-Model and A tool for MLTS models

In this section we propose a meta-model for MLTS and
from this meta-model we generate a tool for manipulating
MLTS models.

3.1.1.1 MLTS Meta-Model

An MLTS consists of states (with an initial state) and
transitions. So, our meta-model of MLTS is composed
mainly of two classes (MLTSstate, MLTSinitstate) and an
association (MLTStransition association) as shown in
figure 5 and described below:

MLTSstate

This class represents the MLTS states. Every state has 3
attributes: a name (name), a maximal set of events name in
this state (eventmax) and (path) which contains the
executed actions from the initial state until this state. This
class is connected to MLTSinitstate by inheritance link.

A.Chaoui & al

 28

MLTStransition association

 it describes MLTS transitions. Every transition is identified
by a set of events names corresponding to actions that have
started their execution (Mu), Action, and the event name
that identifies its start.

MLTSinitstate

This class represents the initial state of the MLTS. It
inherits its attributes from STEMstate class.

Each class has a unique graphical appearance.

Figure 4: MLTS meta-model

3.1.1.2 A tool for MLTS models

Based on the meta-model of figure 4, we have generated
using ATOM3 a tool for MLTS models as shown in the tool
bar of figure 5.

Figure 5: A tool for MLTS models generated using ATOM3

3.1.2 MRG meta-model and a tool for MRG Models

In this section we propose a meta-model for MRG and from
this meta-model we generate a tool for manipulating MRG
models using ATOM3.

3.1.2.1 MRG meta-model

An MRG consists also of states (with an initial state) and
transitions. So, our meta-model of MRG is composed
mainly of two classes (MRGSstate, MRGinitstate) and an

association (MRGtransition association) as shown in figure
7 and described below:

MRGstate:

This class represents the MRG states. Each state is
identified by its name (name), a set of refusals (ref) and
(path) which contains executed actions from the initial state
until this state. This class is connected to MRGinitstate by
inheritance link.

MRGtransition association

It describes MRG transitions. Every transition is identified
by an action.

MRGinitstate

This class represents the initial state of the MRG. It inherits
attributes from MRGstate class (name, ref).

Figure 6: MRG meta-model

3.1.2.2 A tool for MRG Models

Based on the meta-model of figure 6, we have generated
using ATOM3 a tool for MRG models as shown in figure 7.

Figure 7: A tool for MRG models generated using ATOM3

3.2 Our Graph Grammar

We have proposed a graph grammar containing 13 rules
organized in 5 categories.

From a model of concurrency to a test model: A Graph transformation based approach

 Rules 1 and 2 of figure 8 allow allocating paths to
MLTS states; the paths will be used for performing the
matching between MLTS and MRG states.

Figure 8: Rule1: Allocating paths to the first level states of MLTS.

 Rule2: Allocating paths to other states of the MLTS
model.

 Rules 3, 4, and 5 of figure 9 allow generating a
nondeterministic graph which will be transformed later
in a MRG.

Figure 9: Rules generating a nondeterministic graph

 Rules 6, 7, and 8 of figure 10 allow generating
determinist graph from the nondeterministic precedent
graph.

Figure 10: Rules generating a deterministic graph

Rules 9 and 10 of figure 11 attribute refusals to the states of
the generated MRG.

Figure 11: Rules for attributing refusals to the states of the

generated MRG

 Rules 11, 12, and 13 of figure 12 allow deleting MLTS
after the generation of MRG.

Figure 12: deleting MLTS after the generation of MRG

4 EXAMPLE

To illustrate our approach, we have applied our tool on a
machine H whose behavior expression is H = a; b; STOP |||
(c; STOP [] a; STOP) and represented by the MLTS of
figure 13 [11]. The mapping of the behavior expression to
the equivalent MLTS model is performed using FOCOVE
tool. More precisely, we have applied our tool on the
MLTS of figure 13 and obtained automatically the MRG of
figure 14.

Figure 13: MLTS of the machine H in ATOM3

Figure 14: The final generated MRG using our tool

5 CONCLUSION

In this paper, we have proposed an approach and a tool for
transforming MLTS models to MRG models using graph
grammar since the input and output models are graphs. To

A.Chaoui & al

 30

perform this transformation, we have proposed two meta-
models; one for the input model and the other for the output
model. Then based on these two meta-models, we have
proposed a graph grammar that deals with the
transformation process. The meta-modeling tool ATOM3 is
used. We have illustrated our approach through an example.
This work is concerned only with the transformation of
MLTS models to MRG models. The MLTS models are
obtained using FOCOVE tool from a LOTOS specification.
In a future work, we plan to integrate the generation of
MLTS models from LOTOs specification in our tool. The
reduction of MRG models using graph grammars is also
planned.

BIBLIOGRAPHIE

[1] AToM3 Home page, version 3.00, http://atom3.cs.mcgill.ca/

[2] Booch,G., J. Rumbaugh, and I. Jacobson, The Unified
Modeling Language User Guide, Addison-Wesley, 1999.

[3] De Lara J., Vangheluwe H.: AToM3: A Tool for Multi-
Formalism Modelling and Meta-Modelling. Proc.
Fundamental Approaches to Software Engineering,
FASE'02, Vol. 2306. LNCS. Grenoble, France, 2002, 174-
188.

[4] FOCOVE tool, http://focove.awardspace.co.uk/focove.html

[5] Kerkouche E., Chaoui A.: A Formal Framework and a Tool
for the Specification and Analysis of G-Nets Models Based
on Graph Transformation. Proc. International Conference on
Distributed Computing and Networking ICDCN’09, LNCS,
Vol. 5408, Springer-Verlag Berlin Heidelberg, India, 2009,
206–211.

[6] Kerkouche E., Chaoui A., Bourennane E., Labbani O.:
Modelling and verification of Dynamic behaviour in UML
models, a graph transformation based approach. Proc.
Software Engineering and Data Engineering SEDE’2009,
Las Vegas, Nevada, USA, 2009.

[7] Python Home page, htpp://www.python.org

[8] Rozenberg G.: Handbook of Graph Grammars and
Computing by Graph Transformation, World Scientific,
1999.

[9] 9. Saidouni D.E: Sémantique de maximalité: application au
raffinement d'actions dans LOTOS, (in French), PhD
Thesis, University of Toulouse, France (1996).

[10] 10. Saidouni D.E., Ghenaï A., Intégration des refus
temporaires dans les graphes de refus, In proceeding of
NOTERE2006, ENSICA, Toulouse, France, June 6-9, 2006,
Edition Lavoisier.

[11] Saidouni D.E. and Belala N.; Using Maximality-Based
Labeled Transition System Model for Concurrency Logic
Verification; The International Arab Journal of Information
Technology, vol 2, No 3, July 2005.

