
Courrier du Savoir – N°14, Novembre 2012, pp.81-88

Université Mohamed Khider – Biskra, Algérie, 2012

THE CONCEPT OF "BACKGROUND COMPONENT" IN IASA SOFTWARE

MODEL.

ABDELFETAH SAADI*, DJAMEL BENNOUAR **, ABDERRAZEK HENNI *
* National Superior School of Computing, Oued Smar, 16000, Algiers, Algéria.
**Faculty of Science, Dpt Info, Saad Dahleb University, 09000 Blida, Algéria.

a_saadi@esi.dz,

ABSTRACT

This article describes a new approach for software component architecture to deal with dynamic adaptation of software
systems. We introduced the concept of "Background Component" in our IASA software component model. The Background
components are a set of components that run at the back ground level to adapt dynamically the software architecture. The
proposed approach is close to that of intelligent agents which manage all types of events during the deployment or the
implementation of the architecture.

KEYWORDS: Software architecture, Background Component, component model, dynamic adaptation.

1 INTRODUCTION

The concept of component software plays a significant part
of the IT landscape, particularly in the areas of software
engineering, distributed systems and networks. Like any
emerging concept, the ambiguity prevails when it comes to
give a clear definition. But we can rest on a relatively
consensual definition [1]:

Software components are units for composition of
software. Or: A component is a software entity, developed
and sold by a company and used by one (or more) client
(s) for composing software.

The field of software architectures [1] aims to describe the
structure of software as an assembly by interconnecting
components. From the industrial point of view, the needs
in terms of software components expressed by the need for
technology to compose applications from reusable
software components [1]. The increase in the needs of
developing industrial systems has caused the increasing
complexity of systems (distributed functions, interaction
with the outside world ..., etc), moreover the requirements
of reliability is always higher [1]. Today there are many
solutions based on industrial components such as
Microsoft COM / DCOM, JavaBeans, EJB components
and CCM (CORBA Component Model)… etc [1].
Currently, many companies are interested by the field of
software architecture and the design by assembling
components. This interest is motivated mainly by reducing
costs and development time of applications [2].

We can distinguish two types of architectures [1]: the
static architecture and the dynamic architectures. In a static

architecture, components and their topologies are
completely defined in the specification [1]. The
composition and structure of static architecture cannot
change during execution. The static architectures cannot
meet a considerable number of needs, including needs for
adaptability, failures resistance, hot upgrade, optimization
of resources, and structural or behavioral changes. The
management of these needs can be accomplished in the
context of dynamic architecture. By cons, the Specification
of dynamic architecture allows planning the changes of
topology that will take place at runtime. A dynamic
architecture can:

 Managing a system failure and switch to a safer
topology (stable topology).

 Managing a changing environment (System client -
server).

The evolution of architecture and the dynamic adaptation
should not be always known before the execution of the
corresponding application [2]. The evolution mechanisms
of a system can decompose architecture, replace, create,
delete, enable or disable components or connectors. These
mechanisms must be executed without stopping the
execution of the corresponding application [2] [5].
Currently, we can found several problems in the
specification of the dynamics in architecture description
languages. We can cite some of these problems in this
following:

The specification of behavior is done by formal languages
that are difficult for practitioners (e.g. Wright); formal
languages are used to demonstrate some distinctive
architectural features such as the absence of deadlocks.

A.Saadi & al.

 82

In a dynamic software architecture, we have two parts that
needs the update, the structural part (add, delete, inhibition
of component or connector) and the behavior part (that is
to say, the possibility for a single component to behave
differently according to environment in which it operates
or in time).

The policy necessary to adapt a system where the
environment is dynamic is not guaranteed by most of the
modeling component.

These dynamic aspects are not treated by several ADL [6].
In other ADL, dynamic aspects are either limited or
specific to some situations.

Our component model IASA was defined to allow a
flexible specification of software architecture. It allows the
specification of varied topologies, some of which cannot
be specified by the current ADL. This model has been
proposed and developed by Mr. Bennouar and al at
LRDSI1 [7]. This model can reduce integration issues by
describing the interfaces between hardware and software.
To avoid misunderstandings, this model has a strong and
precise semantics.

In this work we have introduced the concept of
Background Component, which is achieved by adding of
components that run in the background. When the instance
starts, these components work like intelligent agents by
allowing the proper management of all types of events.
These events can be provided either during deployment or
during the implementation of the architecture.

This article is organized as follows. Section II defines
basic elements of the IASA component model, we begin
with the notion of components and connectors, and then
we present the access points and ports. In Section III we
introduce the concept of background component. Section
IV presents the related work. Finally, in Section V, we
close with conclusion, prospects and our future work.

2 THE IASA BASIC MODEL ELEMENTS

IASA2 is based on the following concepts: access point,
port, component, envelope and connector [6]. These
elements represent the fundamental concepts of the IASA
ADL called SEAL3 [7]. The action concept, largely
inspired from the OMG Precise Action Semantic [5] is
used to describe miscellaneous architecture behaviors.

2.1 THE IASA COMPONENT

The IASA component model defines a specific
organization for the internal view [7] which consists of
two parts: the operative part and the control part

1 Research and Development Laboratory of Computer Systems.
2 Integrated Approach Software Architecture.
3 Simple and Extensible Action Language.

(Figure.1). The operative part handles the core business.
The control part is composed of a controller and number
of components (tracing, exception, transaction…)
providing the technical advices [7]. A component is
instantiated in the whole application as a singleton.

CTRL

CMP1 CMP2

Operative part

Control part

Figure 1: The IASA component Model.

2.2 THE ENVELOPE CONCEPT

The main goal of the envelope is to provide a total
isolation of the internal view of a component from the
external world [6]. The envelope (Figure.2) is mandatory
in the process of instantiating a component type. The
envelope specifies for a component instance its
deployment case which describes the deployment
environment (machine, operating system, process,
application server) and the exact nature of the component
in such environment (process, main thread, threads,
Servlet, EJB etc.) [7]. An envelope hosts all the resources
needed to support communication aspect (i.e. adapters), to
enable the specification of connections involving the port's
structural elements and to handle aspects weaving
operations of code [7].

Envelope External Ports

Internal Ports

Figure 2: The Envelope Concept.

2.3 THE IASA ACCESS POINT

An access point is the smallest structural element in the

The concept of "background component" in IASA software model.

 83

specification of an application [7]. It is used to define the
ports of components. An access point exposes required or
provided resources which may be data or operations.
Communication mode and the resource time validity are
among the properties of an access point [7]. An access
point may be wired in an independent manner to another
access point which is hosted in the same or a different port
(Figure.1).This is not the case in current software
architecture models and tools, where an interaction point,
usually represented by an interface is considered as an
atomic element despite its complexity [7]. The access
points are organized into two categories: The Data
Oriented Access Point (DOAP) and the Action Oriented
Access Point (ACTOAP). An ACTOAP plays one of two
basic roles: a server role or a client role. It supports a set of
actions indicating the provided or required operation. A
DOAP is usually provided with two specific actions: the
send and receive actions [7].

2.4 THE IASA PORTS

A port [5] [7] is a regrouping technique of related access
points. It maintains an abstract and a concrete views. The
abstract view is represented by the concept of access point,
the actions associated with the access point and a behavior.
The port's behavior is represented by a set of valid rules
defined in the SEAL language (Simple and Extensible
Action Language) as described in [5] and [7]. Each rule
shows how the required or provided resource must be
used. IASA defines a number of specific ports. Among
them (Figure.3) we find the ClientPort, the ServerPort and
the AdvicePort. An AdvicePort is a ServerPort provided
with actions explicitly associated with supported aspect
activation mode. For now, the supported advice activation
modes are: aroundFirstAction, AroundLastAction,
proceedAction, beforeAction and afterAction [7].

DataPort (Out) DataPort (In)

PeerPort ServerPort ClientPort

Figure 3: Graphics ports.

2.5 THE IASA CONNECTORS

The IASA connector [5, 7] model is largely inspired from
computer network architecture. The model provides a
behavioral view and a structural view. The behavioral
view describes an interaction and the structural view
defines the infrastructure needed to transport the
interaction. The connector infrastructure is based on two
kind of fundamental connector elements: [7]

Transport Connectors which are point to point connectors,
composed by Basic Transport Connector, which can
connect only two compatible access points (Fig.1).

Service connectors which are primitive component
oriented to support specific interconnection functionality
(distribution, multiplexing, load charge balancing, etc.) as
described in [5] and [7].

The designer is not concerned by the definition of new
Service Connectors or Transport connectors which are
predefined in the IASA approach and have a complete
realization in the supported implementation technologies.
The definition of the interconnection infrastructure is
achieved in IASA by cascading Service Connectors using
Transport Connectors.

3 THE CONCEPT OF BACKGROUND
COMPONENT

For the proper management and implementation of the
architecture, we define a set of components that will be
implemented as a background process or an intelligent
agent, These components are called "Background
Component", each of these components have a precise role
in the functioning of the instance, Most of these
components are running at startup of the instance and
stopped at shutdown of the instance, some components can
be started and stopped during the functioning of the
instance, we define for the moment a dozen of these
components, but some can be run in multiple copies, these
components are classified into two categories (Table 1):

 "Background component" for administrative tasks.
 "Background component" for management tasks.
The studies that we have done around this area and the
work of Marc Leger [11] allowed us to define all the
components shown in Table 1.

Table 1: The background component.

Task Type Background component

Administration

Monitor,

Behavior,

Exception,

Execution,

Status Register,

Stability indicator.

Management

RessourceManager,
RecoveryManager,
ConsistencyManager,
ConcurrencyManager,

Adaptater

The figure below (figure 2) illustrates an example of an
architecture instance running.

A.Saadi & al.

 84

Instance

Control files

Logging files

Archiving
files

Parameters
files
 des

Monitor Behavior

Execution Ressource
Manager

Exception

Recovery
Manager

Stability
indicator

ctrl

Cmp2 Cmp1

Operative Part

Control Part

Access points Envelope

Softw
are architecture

Background C
om

ponent
Storage Space

Figure 4: An instance of architecture.

We present in what follows the role and functions of each
component:

3.1 RESSOURCEMANAGER

This component is responsible for the management of
resources, it manages all components of the application
and registration operations of reconfiguration [11]. Each
component of the control section must be registered with
the resource manager. The registration of a component is
done through a specific controller; this record is done
automatically if the component is instantiated by a
language of action or transaction reconfiguration
(CreateComponenet example). The application state is
defined as all states of all components that make up [11].
Each component is responsible for the activation of the
shares for its own operations reconfiguration primitives

3.2 RECOVERYMANAGER

This component aims to implement the recovery strategy
of the system in case of breakdowns, regarding the
recovery strategy, several types of exceptions are detected,
the system can adjust the recovery based on the type of
emergency encountered [11]. The recovery policy is
flexible. This component uses the recovery of takeover by
cancellation (Rollback) of the operation that failed. In the
case of the immediate update, the transactions recorded in

the log of actions reconfiguration are performed in reverse
order of their first run. This recovery by undoing
operations is much less intrusive in a system
implementation that reinstantiate components involved in
reconfiguring their former state following the principle of
control points (checkpointing). Upon cancellation of a
reconfiguration action after an exception. The recovery is
automatic and canceling reconfiguration action is executed
and the client must be notified, or recovery is manual and
in the latter case, the rollback must be explicitly invoked
by the client.

3.3 CONSISTENCYMANAGER

The main objective of using this component for dynamic
reconfiguration is to maintain consistency of the system
state [11]. This consistency is defined by a set of integrity
constraints in the form of invariant configuration and
preconditions and post conditions of operations
reconfiguration. The consistency check in the system is the
responsibility of this component.

3.4 CONCURRENCYMANAGER

This component implements the policy management
system of Concurrency. There are generally two main
types of strategies for managing Concurrency in a dynamic
system [11]: optimistic strategies (or by validation), and
pessimistic strategies (or by locking). The basic granularity
of locking is the action of reconfiguration for each
component; component status is not always available and
therefore locking directly. Each reconfiguration operation
is potentially in conflict with other operations for updating
or reading the state of the application. [11] A graph of
waiting on the locks is maintained between the actions in
order to detect possible cycles, upon detection of deadlock
between actions reconfiguration, component cancels a
transaction at issue, the recovery manager
(RecoveryManager) will attempt to repeat the actions after
a specified time (configurable). The number of tests for
action is also customizable.

3.5 ADAPTIVE

This component describes the changes to be implemented
on architecture in order to incorporate new components; it
is composed of many adaptation operations [11]. These
describe the various changes to implement by the
components of the architecture. The description of this
adaptation is divided into three distinct parts:

 The update of the structural part of the architecture,
 The update of the behavioral part of the architecture,
 The update of links between components.
We can take an example for integrating a new component
in architecture, so this adapter has two adjustment
operations. One describes the integration of new

The concept of "background component" in IASA software model.

 85

component, the other models the changes necessary to
integrate this new component. To integrate this
component, it must add a port compatible for all
components that will be connected with the port of this
new component, it is also necessary to change the behavior
of the new component in order to add the interactions
between it and the changed components.

3.6 MONITOR

The monitor is the heart component of the system
architecture. He plays the role of coordinator of the
execution of actions to reconfigure the system. The
monitor implements the model of dynamic
reconfiguration. This component manages the creation, the
limiting, the spread, and the validation of actions
reconfiguration of the architecture [11].

3.7 BEHAVIOR

The managing operations of the components of the
presentation part and its structure are the dynamic behavior
of the latter. The implementation of this behavior is
provided by the behavioral component. The
implementation of this component is completely done in
the language of action SEAL [3] [5]. This component can
have one or more behaviors. Such behaviors can be
defined within the component or imported from outside,
for that it has multiple ports by default to select an internal
behavior or load an external behavior. Through this
approach it becomes easy to specify for single architecture
various behaviors, each setting its own way of changing
the presentation part.

3.8 EXCEPTION

Exceptionally during the execution of an action to
reconfigure the architecture or a user action, or the This
component's role is to redirect an exception occurred on a
port of any component to a single port. This port is the
exception port of the component that should be connected
to the external connector by a delegation. This component
represent the mechanism for handling errors occurred
during the life cycle of composite component, these errors
generally occur environment action.

3.9 RUNTIME

This component allows to execute the actions of evolution
and reconfiguration of the architecture, It makes the
verification and validation and analysis of a composite
component and monitoring the compliance and
consistency of model, After each reconfiguration, it
performs an audit of stability and during this operation
there's instantaneous creation of various views of

architecture which could reveal the sources of potential
instability.

3.10 STATUS REGISTER

Is a component that represents a state register that records
the state of all components, connectors, ports and access
points, this register will learn about the state of any
elements of the architecture at any point of execution, it
serves as basic element to see the overall status of
architecture.

3.11 STABILITY INDICATOR

It indicates whether the architecture is stable or unstable, it
has three states:

Red: indicates that the architecture contains errors and it is
unstable.

Orange: indicates that the architecture is stable, but it
contains warnings.

Green: indicates that the architecture is stable and free of
errors.

4 AN ILLUSTRATIVE EXAMPLE

In this example, we realized a software system which
enables the citizen to access through the internet to various
services of a local government institution called the APC
(The town council) [7]. The most required services from
the APC are the production of official documents exposing
important events such as the birth certificate and the
marriage certificate. Inside the APC, the service delivering
such official documents is called the Civil State Service.
The design of the CivilStateServiceCmp component is
shown in Figure 5.

This application is composed of a number of components,
each one oriented to handle a specific functionality of the
civil state department of the APC (figure 10). The
components DeclarationCmp and DocReqCmp are
oriented to enable the participation of the citizen in the
process of populating the E_APC databases with accurate
data concerning them. DeclarationCmp handles the
declaration of new events such as birth, death, marriage or
divorce. DocReqCmp is used to request miscellaneous
certificates and, in the same time, is used to enter citizen
data if these later were not yet captured in a previous
declaration or document request.

When the CivilStateServiceCmp instance starts, a set of
background components will be launched and are running
in the background level to adapt dynamically the software
architecture, some of these components are:

 Monitor: coordinate the execution of actions to
reconfigure the system.

 Exception: redirect an exception occurred on a port of

A.Saadi & al.

 86

any component to an exception port of Exeption
component.

 Execution: allows executing the actions of evolution
and reconfiguration of the architecture.

 Status Register: it serves as basic element to see the
overall status of architecture.

 Stability indicator: It indicates whether the architecture
is stable or unstable.

 RessourceManager: manage the resources; it manages
all components of the application and registration
operations of reconfiguration.

 RecoveryManager: implement the recovery strategy of
the system in case of breakdowns.

 ConsistencyManager: maintain consistency of the
system state.

Scenario of working: These components are not a part of
CivilStateServiceCmp architecture; they are initiated
automatically or manually selected by the architect.

spReqDoc

spDdec

:DocReqCmp

:DeclarationCmp

:DocReqValCmp

:DeclValCmp

spReqDocVal

spDdecVal

CSOPCtrl :SecurityACmp :LogACmp

pAuthAdvice

docRep
:DocReportCmp

spGetDoc

pLogAdvice

:CivilStateView

birth :Action

mariage :Action

cpBirth spBirth

cpSql
spMariage

birth :Action

Figure 5: Civil State Service application.

 System

Start

Background Component

Start

System Starting

Stop

System Stoping

Background Component
Starting

Stop

Background Component
Stoping

Figure 6: Scenario of working.

When the system is started, all components will also start,
when the system is stopped, all components will also stop
(figure 6). This concept is closer to the phenomena of
intelligent agents that manage all types of events during
the deployment, the implementation or execution of the
architecture. It allows to the software models to
accommodate all types of systems. This make software
model more secure, flexible and adaptive.

5 RELATED WORK

Currently there are several component models that use
approaches to self adaptation and self reconfiguration,
each model has advantages and disadvantages, Among of
these models we can mentioned: MaDcAr[12], K-
Component [14], Safran [15], FORMAware [16] [17],
OpenRec [18].

5.1 MaDcAr

[12] is an engine model of the assembly, allowing the
adaptation structural logic and adaptation of the
implementation of systems based component. An engine
assembly can, using a set of components and a description
of the system, assemble a subset of components satisfying
the description of this system. An engine is composed of:

 A context manager,
 A description of application,
 A political assembly.

Discussion

The model is interesting but the approach has serious
shortcomings [13]:

Structural change, such as adding a role, requiring the
complete redeployment of system with a new design
incorporating the new role. MaDcAr requires a shutdown
of the application for this and do not allow the resumption
of the execution point.

Behavioral adaptation, which involves the replacement of
a component requiring a role, is carried out following a
structural change in the component architecture
“Concrete”.

5.2 K-Component

[14] is an architectural model for building distributed
systems, self flexible and adaptable software based
component. It allows coordinating the adjustments of
components in a decentralized manner and achieving self-
optimization and self-repairing system. A component
supported by K-Component includes a service interface
provided and, optionally, services interfaces required. It
has different states and outlines actions for adaptation. It

The concept of "background component" in IASA software model.

 87

has connectors that connect the interfaces required to
provide interfaces [13].

Discussion

The model is interesting but [13]:

 The policy of self repair is limited to the reconnection
of components whose dependencies have been broken
because of problems in the communication
infrastructure [13].

 The approach does not specify how such a process ends
[13].

 Management of consistency is low in the adaptation
process [13].

5.3 Safran

[15] is a generic approach to build adaptive systems based
on components. It supports the structural adaptation and
behavioral adaptation through parameterization and
redirection service invocations. It is based on the Fractal
component model which uses the mechanisms of reflection
[13].

Discussion

Safran is a model that is rich in languages dedicated to
every aspect of self-adaptation. However, Safran suffers
from problems inherent in Fractal [13]. There is no parallel
execution of adjustment as a result of partageabilite
components [13].

5.4 FORMAware

[16] [17] is a software framework to develop and adapt
dynamically distributed systems based on components.
The dynamic adaptation is achieved through
reconfiguration operations and is constrained by sets of
rules for maintaining the architectural integrity known by
architectural styles [11]

Discussion
FORMAware proposes a hierarchical component model,
reflective, and open, it ensuring consistency of architecture
reconfigured. [11] The dynamic adaptation of applications
is achieved by reconfiguration operations as scripts in
Java. The reflexivity and openness of the model allow the
execution of dynamic reconfiguration unanticipated.

5.5 OpenRec

[18] is an open software framework for dynamic
reconfiguration of component systems. He is particularly
interested in the problem of synchronization between
reconfigurations and execution of functional systems and

management of the state components reconfigured [11].
While many platforms only support one set of
synchronization algorithm, OpenRec can choose from an
extensible set an algorithm adapted for the architectural
style of a given system [11]. The framework allows
observing the impact of algorithms
synchronization in terms of execution time and disruption
of the functioning of systems [11].

Discussion
The objective of OpenRec is focused on the problem of
synchronization between reconfiguration and execution
systems reconfigured implies in particular a fine
management of the condition of impacted components
[11]. However, no mechanism to cancel the execution of
an algorithm in case of error. The concurrency between
reconfiguration is managed simply by their serial
execution [11].

6 CONCLUSION

In this paper, we have introduced the concept of
background component; we have also presented the IASA
component model. The IASA specification is very simple.
It can take care of the most direct manner possible the
mental model of the architecture in both its aspects,
structural and behavioral. It also allows the inclusion of
dynamic aspects of architecture. The basic concepts of
IASA model and background component that sets have
been an implementation and integration as plug-in java in
the environment and the workshop using the design
IASASTUDIO [4]. The background component concept
was evaluated in the context of a concrete project dealing
with the design and implementation of a complex software
system. This project was concerned by the design and
implementation of a system oriented to manage the
commerce of an X25 network products.

REFERENCES
[1] ACCORD project (assembly of components by contracts in

open distributed environment) "State of the art on the
description language architecture" (June 2002). Technical
review, Reference: Available 1.1-2, French, Date: June
2002.

[2] PRISM Laboratory Website
http://www.prism.uvsq.fr/index.php?id=167, University of
Versailles.

[3] Hadjkacem M., “Modelling dynamic distributed
applications architecture: Design and Validation“, Ph.D.
thesis, University of Toulouse and Sfax, November 2008.

[4] Saadi A., "An action language for the specification and
validation of software architecture behavior", Magister

A.Saadi & al.

 88

Thesis, LRDSI Lab, The Saad Dahlab University, Blida,
Algeria, June 2008.

[5] Bennouar D., Khammaci T., and Henni A., “Modeling the
Component’s Interaction Point in The IASA approach“, The
Mediterranean Journal of Computers and Networks, vol. 4,
no. 4, 2008, pp 188-197.

[6] Bennouar D., Henni A., Saadi A., “The Design of a
Complex Software System Using Software Architecture
Approach“, ACIT 2008, 16-18 Dec, Hammamet, Tunisia
2008.

[7] Bennouar D, "An integrated approach to software
architecture", PhD Thesis, ESI, Algiers, 2009.

[8] Loulou I., Hadjkacem M, Jmaiel M., and Drira K. “Towards
a unified graph-based framework for dynamic component-
based architectures description in z”. In ICPS’04:
Proceedings of the IEEE/ACS International Conferenceon
Pervasive Services, pages 227–234. IEEE Computer
Society, 2004.

[9] ACCORD project. "Joining components by contracts, state
of the art and standardization. Technical Review, 2002.

[10] CHAUDET C., "P-Space: language and tools for describing
architectures for scalable dynamic components. Formalizing
software architectures and industry”. PhD thesis, University
of Savoie, French. December 2002.

[11] Leger M., "Reliable dynamic reconfigurations in
component", phd thesis, MINES, ParisTech, May 2009.

[12] Grondin G., " MaDcAr-Agent: a model of agents self-
adaptive based component ". PhD thesis, Ecole Nationale
Supérieure des Mines de Saint-Etienne, Saint-Etienne,
France, 24 novembre 2008.

[13] Ballagnymocas G. "a component model based statements
for self-adaptation.", PhD thesis, university of pau and
« pays de l'adour », 2010, French.

[14] Dowling J. “The Decentralised Coordination of Self-
Adaptive Components for Autonomic Distributed Systems”.
PhD thesis, Dept of Computer Science, Trinity College,

Dublin, Ireland, 2004.

[15] Pierre-Charles D. " Développement de composants Fractal
adaptatifs : un langage dédié à l'aspect d'adaptation ". PhD
thesis, Nantes, Nantes, Franch, 2005.

[16] Rui S. M, Gordon S. B, and Carrapatoso E. Formaware:
“Framework of reflective components for managing
architecture adaptation”. In Alberto Coen-Porisini and
André van der Hoek, editors, SEM, volume 2596 of Lecture

�Notes in Computer Science, pages 115 129. Springer,
2002.

[17] Rui S., Gordon S., and Carrapatoso E. “Constraining
architectural reflection for safely managing adaptation”. In

�Middleware Workshops, pages 139 143. PUC-Rio, 2003.

[18] Hillman J., Warren I., “An open framework for dynamic
reconfiguration”. In Proceedings of the 26th International
Conference on Software Engineering (ICSE2004), pages
594-603, May 2004.

[19] Bennouar D., Khammaci T. and A.Henni, "A Layered
Connector Model for A Complex Software System Design",
ACIT'04, the International Arab Conference on Information
Technology, Constantine, Algeria, 2004.

[20] Bennouar D., Khammaci T., Henni A., "IASA, an
integrated approach to software architecture, Internal
Report No. 03/07, Laboratory LRDSI, Department of
Informatics, University Saad Dahlab, Blida, in January
2007.

[21] Saadi, A., Bennouar D., “The design and implementation of
a commerce manager system for the products of the X25
DZPAC network using IASA AOSA approach”,
TR/SA00109, the LRDSI lab, Computer Science
Department, the Saad Dahlab University, Blida 2009,
Algeria (in French).

[22] Bennouar, D., Khider, H., Aspect Oriented Software
Architecture in the IASA approach, TR/SA00109, the
LRDSI lab, Computer Science Department, the Saad
Dahlab University, Blida 2008, Algeria.

