Université Mohamed Khider – Biskra Faculté des Sciences et de la technologie Département de Génie Civil et Hydraulique

Référence:

جامعة محمد خيضر بسكرة كلية العلوم و التكنولوجيا قسم الهندسة المدنية و الري

المرجع:

Mémoire de master

2^{ème} année

Hydraulique urbaine

THEME

COEFFICIENTS DE CHEZY ET DE MANNING EN ECOULEMENT UNIFORME DANS UN CANAL RECTANGULAIRE

Soutenu le 02/06/2013

Etudiante :

RABAH NARIMANE

Encadreur :

PROFESSEUR ACHOUR BACHIR

PROMOTION JUIN 2013

Remerciements

J'exprime toute ma reconnaissance et mes sincères sentiments à mon

Encadreur Mr Achour Bachir qui ma permis

D'effectuer ce travail dans les meilleurs conditions, et m'apporté

Une aide précieuse et un soutien amical

Je remercie également tous mes enseignants

Merci enfin à ma famille et à tous mes amis de m'avoir soutenue et supportée

Tout au long de ce cheminement.

<u>RESUMÉ</u>

Les écoulements uniformes dans les canaux et conduites sont régis par les relations de Chézy et de Manning, dites « relations de l'écoulement uniforme ». Ces relations expriment le débit volume écoulé par le canal en fonction des paramètres géométriques de l'ouvrage et hydrauliques de l'écoulement. Dans ces relations, nous pouvons relever la présence des coefficients de résistance à l'écoulement, dits de Chézy et de Manning que l'on note souvent par les lettres C et n respectivement.

Dans la pratique, il existe des tableaux qui donnent les valeurs des coefficients C et n en fonction de la nature du matériau constituant le canal. Ces valeurs de C et de n sont tabulées de manière indépendante de la profondeur de l'écoulement ou du rayon hydraulique et encore moins du nombre de Reynolds caractérisant l'écoulement.

Donner des valeurs constantes aux coefficients C et n, suppose que l'écoulement est en régime turbulent rugueux où le nombre de Reynolds n'a aucune influence. Cependant, cette démarche peut paraître peu fiable eu égard au fait que le coefficient de résistance à l'écoulement doit en principe dépendre des caractéristiques hydrauliques de l'écoulement, en particulier du rayon hydraulique, de la pente géométrique et de la viscosité cinématique du liquide. Cette vision est beaucoup plus moderne et nécessite une étude particulière en observant l'évolution de ces coefficients de résistance lorsque l'écoulement est supposé être uniforme. C'est dans ce contexte que nous proposons le présent sujet qui consiste à établir des relations générales destinées non seulement à l'évaluation des coefficients de résistance à l'écoulement de Chézy et de Manning, mais à examiner aussi leur variation en fonction de la profondeur de l'écoulement et de d'autres paramètres hydrauliques qui influencent l'écoule

التلخيص

التدفق الموحدة في القنوات والأنابيب من خلال العلاقات شيزي ومانينغ، وتسمى "علاقات تدفق موحد." هذه العلاقات تعبر عن حجم التدفق مرت عبر قناة استنادا إلى معلمات الهندسية للهيكل وتدفق هيدروليكي. في هذه العلاقات، لا يمكننا الكشف عن وجود عوامل المقاومة لتدفق، ودعا شيزي وغالبا ما أشار مانينغ بواسطة الأحرف C و n على التوالي. و هناك جداول تبين قيم المعاملات C و n اعتمادا على طبيعة المادة المكونة للقناة. يتم جدولتها قيم هذه C وn، وبشكل مستقل عن عمق التدفق الهيدروليكي، أو حتى أقل، ونصف قطر ها من عدد رينولدز الذي يميز التدفق. تحديد قيم لمعاملات C و n، نفترض أن تدفق هو نظام المضطربة الخام حيث بلغ عدد رينولدز ليس له أي تأثير. ومع ذلك، تحديد قيم لمعاملات C و n، نفترض أن تدفق هو نظام المضطربة الخام حيث بلغ عدد رينولدز ليس له أي تأثير. ومع ذلك، قد يبدو هذا النهج لا يمكن الاعتماد عليها نظر الحقيقة أنه من المتوقع أن معامل مقاومة تدفق تعتمد على الخصائص الهيدروليكية للتدفق، وخاصة في دائرة نصف قطر ها الهيدروليكية، هندسة المنحدر و اللزوجة الحركية للسائل . هذا الرأي هو أكثر حداثة بكثير ويتطلب در اسة خاصة من خلال مراقبة تطور هذه العوامل المؤلي يميز التدفق أن يكون موحدة. وفي هذا السياق، فإننا نقترح هذا الموضوع هو لإقامة علاقات العامة ليس فقط لتوار أي موحدة. وفي هذا السياق، فإننا نقترح هذا الموضوع هو لإقامة علاقات العامة ليس فقط لتقييم معاملات مقاومة تدفق أن يكون ومانينغ، ولكن أيضا لدر اسة التباين بينها وبين عمق تدفق و غيرها من المعالم المعالم التى تؤثر على تدفق أن يكون

SUMMARY

Uniform flow in channels and pipes are governed by relations of Chezy and Manning, called "relations of the uniform flow." These relations express the volume flow passed through the channel based on geometric parameters of the structure and hydraulic flow. In these relationships, we can detect the presence of resistance factors to flow, called Chezy and coefficients noted by the letters C and n respectively. Manning resistance In practice, there are tables showing the values of the coefficients C and n depending on the nature of the material constituting the channel. Values of these C and n, are tabulated and are independen of the depth of flow, hydraulic radius and Reynolds number as well which characterizes the flow. Specify values for the coefficients C n, suppose that the flow is in the rough turbulent regime where the Reynolds number has no influence. However, this approach may seem unreliable given the fact that the coefficient of flow resistance is expected to depend on the hydraulic characteristics of the flow, especially the hydraulic radius, the slope geometry and kinematic viscosity of the liquid. This view is much more modern and requires special study by observing the evolution of these resistance factors when the flow is assumed to be uniform. It is in this context that we propose this subject that aims to establish general relations not only for the evaluation of coefficients of flow resistance Chezy and Manning, but also to examine their variation with the depth of the flow and other parameters that influence the flow.

Sommaire

Introduction générale
Chapitre I Écoulement uniforme
I-1-Introduction
I-2-Formule de <i>Chézy</i>
I-2-1- Détermination du coefficient <i>C</i> de <i>Chézy</i> par la formule de <i>Ganguillet-Kutter</i>
I-2-2- Détermination du coefficient <i>C</i> de <i>Chézy</i> par la formule de <i>Bazin</i>
I-2-3-Détermination du coefficient C de <i>Chézy</i> par la formule de <i>Powell</i>
I-3- Formule de <i>Manning – Strickler</i>
I-4- Formule de Darcy_ Weisbach et évaluation du coefficient du frottement
I-5- Equations théoriques de l'écoulement uniforme
I-5-1- Distribution de la vitesse dans un écoulement uniforme
I-5-2- Equation de <i>Keulegan</i>
I-6- Interprétation théorique du coefficient de rugosité de <i>Manning</i>
I-7- Méhode de détermination du coefficient de <i>Manning</i>
I-8- Calcul de l'écoulement uniforme
I-8-1- Conductivité
I-8-2- Facteur de section
I-8-3- Caractéristiques de l'écoulement dans une conduite circulaire
I-9- Conclusion
Chapitre II : écoulement uniforme dans une canal rectangulaire
II-1- Introduction
II-2- Expression du coefficient de Chézy dans un canal rectangulaire
II-3- Variation du coefficient de <i>Chézy</i>
II-4- Calcul du paramètre de forme η
II-5- Étapes de calcul du coefficient C de Chézy
II-6- Exemple de calcul du coefficient <i>C</i> de <i>Chézy</i>
II-7- Expression du coefficient adimensionnel de Manning dans un canal
rectangulaire
II-8- Variation du nombre adimensionnel N de <i>Manning</i>
II-9- Calcul du coefficient n de <i>Manning</i> par MMR
II-10- Exemple de calcul du coefficient <i>n</i> de <i>Manning</i>

II-11- Conclusion

Conclusion générale Références bibliographiques Principale notions Liste du tableau

INTRODUCTION GENERALE

Un canal ouvert est un conduit dans lequel l'écoulement est à surface libre. Il peut être naturel ou artificiel. Un canal artificiel, qui intéresse notre étude, est un canal construit ou conçu par l'homme. Les canaux artificiels peuvent être conçus en béton ou en maçonnerie, parfois en métal, en verre ou en plexiglas tels que ceux utilisés en laboratoire. Les canaux conçus avec une section transversale constante et une pente longitudinale invariable sont appelés canaux prismatiques. Les canaux artificiels sont généralement conçus avec des sections à géométrie régulière. Ils peuvent être également fermés, dotés d'un toit graduel ou rectiligne tels que les conduites circulaires, les conduites ovoïdales, les conduits trapézoïdaux ou même rectangulaires. Les conduites dotées d'un toit fermé graduel sont largement utilisées dans le domaine de l'assainissement.

Les parois internes des canaux artificiels sont caractérisées par une rugosité absolue. Ce paramètre peut être évalué en pratique et il définit l'état de la paroi interne du canal.

L'écoulement uniforme considéré dans la présente étude est caractérisé par la constance de la profondeur, de l'aire de la section mouillée et du débit volume dans toute section. En outre, la ligne de charge totale, la surface libre et la pente longitudinale du canal sont parallèles. De plus, l'écoulement uniforme est permanent, puisque l'écoulement uniforme non permanent n'existe pratiquement pas.

Dans la pratique, les relations de type *Chézy* et *Manning* sont celles qui sont le plus souvent utilisées pour l'étude de l'écoulement uniforme. En règle générale, les coefficients de résistance à l'écoulement *C* de *Chézy* et *n* de *Manning* sont considérés comme constants, ce qui constitue une approche simplifiée. Il est pourtant évident que ces coefficients devraient variés en fonction de la profondeur, puisqu'ils sont liés à la résistance à l'écoulement. Même lorsque l'écoulement est turbulent rugueux, correspondant à un effet négligeable de la viscosité cinématique, les coefficients *C* et *n* ne peuvent être considérés comme étant constants. Ils varient en fonction du paramètre de forme de la section mouillée du canal considéré, tel qu'il ressort de la présente étude.

Notre étude repose sur deux principaux chapitres. Le premier chapitre est entièrement consacré à l'état des connaissances sur l'écoulement uniforme. Les relations de *Chézy* et de *Manning* sont longuement présentées et discutées, en particulier les coefficients C et n qui sont théoriquement interprétés. La méthode de détermination du coefficient n est également présentée en se basant sur la répartition théorique des vitesses dans un canal à parois

rugueuses. Le second chapitre est dédié à l'étude des coefficients de résistance C et n de *Chézy* et de *Manning* respectivement, en écoulement uniforme dans un canal de forme rectangulaire. Le premier objectif est d'exprimer les relations qui régissent ces coefficients et de les rendre adimensionnelles, puis de déterminer leur variation en fonction des paramètres qui influencent l'écoulement. Ces paramètres ont été identifiés dans la présente étude et correspondent à la rugosité relative, le paramètre de forme et le nombre de *Reynolds* modifié. Le second objectif est de calculer ces coefficients de manière explicite. Pour cela, nous avons eu recours à la méthode du modèle rugueux et dont l'application est décrite à travers des exemples numériques pratiques.

<u>Chapítre I</u>

Écoulement uniforme

I. ECOULEMENT UNIFORME

I.1. Introduction

Un écoulement est considéré comme étant uniforme lorsque ses caractéristiques sont invariables dans le temps et dans l'espace. Ces caractéristiques sont la profondeur h ou y_n de l'écoulement appelée aussi profondeur normale, l'aire de la section mouillée A, la vitesse V de l'écoulement et le débit Q. La ligne de charge totale est à la fois parallèle à la ligne piézométrique et à la pente géométrique du canal.

D'un point de vue pratique, la constance de la vitesse *V* est généralement associée à la constance de la vitesse moyenne de l'écoulement; mais de façon plus rigoureuse, cela signifie que l'écoulement est caractérisé par une vitesse constante en tout point de son domaine. En d'autres termes, la distribution des vitesses dans chacune des sections transversales de l'écoulement est uniforme, correspondant à une couche limite pleinement développée.

Bien que la condition d'un écoulement uniforme, dans le sens stricte du terme, ne soit pratiquement jamais satisfaite, elle est cependant fréquemment admise lors du calcul des caractéristiques d'un écoulement en canaux et rivières. Cette approche, bien que simplifiée, donne des résultats assez satisfaisants dans bon nombre de cas pratiques.

L'écoulement uniforme peut être soit en régime laminaire soit en régime turbulent, mais il se produit sous de grandes vitesses. A vitesse élevée, l'écoulement uniforme est instable et il est le siège d'un fort entraînement d'air.

Dans les canaux ouverts, l'écoulement uniforme se développe lorsque les forces de résistance s'opposant à l'écoulement sont équilibrées par les forces de gravité. Les forces de résistances sont proportionnelles à V^2 .

Lorsqu'un écoulement entrant dans un canal s'effectue de façon lente, la vitesse et par conséquent la résistance à l'écoulement sont faibles. Les forces de gravité sont alors prédominantes et l'écoulement subit alors une accélération depuis l'amont. La vitesse ainsi que la résistance augmentent au fur et à mesure que l'on se déplace vers l'aval, jusqu'à ce que les forces de gravité soient équilibrées. A cet instant, l'écoulement uniforme apparaît. La zone sur laquelle s'étend l'écoulement accéléré, et au-delà de laquelle l'écoulement uniforme apparaît, est dite zone de transition. Si la longueur du canal est inférieure à la longueur de la zone transitoire, l'écoulement uniforme ne peut être atteint. Plus à l'aval de l'écoulement uniforme, les forces de gravité deviennent de plus en plus prédominantes en raison de l'accélération que subit l'écoulement. L'écoulement uniforme disparaît alors en laissant place à un écoulement varié. La figure 1.1 montre l'état d'un écoulement à l'entrée et à l'intérieur d'un canal rectangulaire de grande longueur et de différentes pentes géométriques *i*. La pente *i* est comparée à la pente critique i_c .

Lorsque la pente *i* est suave (figure 1.1.a), la zone transitoire se présente sous l'aspect d'ondulations. L'écoulement est uniforme au milieu du canal mais varie aux extrémités de celui-ci. D'un point de vue théorique, l'écoulement varié tend vers l'écoulement uniforme de manière graduelle et asymptotique. On considère généralement dans la pratique que la profondeur de l'écoulement reste constante si la variation qu'elle subit n'excède pas 1% de la valeur moyenne de la profondeur normale.

Lorsque la pente *i* correspond à la pente critique i_c (figure 1.1.b), la surface libre de l'écoulement critique est instable. Des ondulations peuvent se produire au milieu du canal, mais la profondeur oscille autour d'une valeur moyenne et l'écoulement est alors considéré comme étant uniforme.

Lorsque la pente *i* est supercritique ou prononcée (figure 1.1.c), la surface libre dans la zone transitoire chute de manière graduelle d'un niveau subcritique ou suave à un niveau supercritique ou prononcé. Au-delà de la zone transitoire, l'écoulement devient uniforme.

La longueur sur laquelle s'étend la zone transitoire dépend essentiellement du débit volume Q entrant dans le canal ainsi que des caractéristiques de celui-ci, telles que la rugosité absolue, la pente et la géométrie d'entrée. D'un point de vue hydrodynamique, la longueur de la zone transitoire ne doit pas être inférieure à la longueur pour laquelle, sous des conditions données de l'écoulement, la couche limite est pleinement développée.

(a)

Figure 1.1 : Établissement de l'écoulement uniforme dans un canal de grande longueur. (- - -): profondeur critique. (—): profondeur normale de l'écoulement uniforme.

Le calcul de la profondeur d'un écoulement uniforme, appelée profondeur normale de l'écoulement est très important. Le classement des profils géométriques par exemple est tributaire de la valeur de la profondeur normale. Comme le montre la figure 1.1.c, la profondeur normale est inférieure à la profondeur critique et c'est cette inégalité qui permet de conclure sur le caractère prononcé ou supercritique de la pente géométrique du canal.

Le calcul de la profondeur normale dans les canaux se base sur les relations dites " relations de l'écoulement normal ". Celles-ci expriment, de manière approximative, la vitesse moyenne V de l'écoulement sous l'hypothèse d'un régime turbulent. Les formules pratiques de l'écoulement uniforme s'expriment généralement sous la forme $V = C R_h^{\beta} J^{\gamma}$ où R_h est le rayon hydraulique et J est la pente de la ligne de charge. Comme nous l'avons déjà indiqué, J correspond également à la pente *i*. Le paramètre *C* traduit la résistance de l'écoulement et dépend de *V*, de R_h , de la rugosité absolue ε caractérisant les parois du canal, de la viscosité du liquide et de beaucoup d'autres facteurs.

La distinction doit être faite entre l'écoulement uniforme se produisant d'une part dans les canaux artificiels et dans les canaux naturels d'autre part. Dans la pratique, l'écoulement dans les canaux naturels est considéré comme étant uniforme à condition que la profondeur de l'écoulement ne subisse pas de variation brusque pouvant être causée par les irrégularités des parois du canal. L'application des relations de l'écoulement uniforme aux canaux naturels mène à des résultats plutôt approximatifs en raison du fait que l'écoulement dépend en réalité d'un plus grand nombre de facteurs que ceux qui influencent l'écoulement dans les canaux artificiels. Selon *Schnackenberg* (1951), une bonne relation de l'écoulement uniforme dans un canal naturel sans transport de sédiments est celle qui devrait tenir compte d'au moins 10 paramètres qui sont *A*, *V*, V_{ms} qui correspond à la vitesse maximale à la surface, le périmètre mouillé *P*, R_h , la profondeur maximale *y* de l'écoulement, la pente S_w de la surface libre, le coefficient *n* qui caractérise la rugosité du canal, la viscosité dynamique μ du liquide et la température *T*.

Lorsque l'on se réfère à la bibliographie (*Houk*, 1918; *Forchheimer*, 1930 ; *Lindquist*, 1933; *Vladislavljevitch*, 1951), on peut s'apercevoir que de très nombreuses relations ont été proposées au calcul de l'écoulement uniforme. Cependant, aucune d'entre elles ne répond au qualificatif de " bonne relation " selon la conception de *Schnackenberg*.

Différentes approches ont été également présentées au calcul de la vitesse de l'écoulement dans les canaux naturels, telle que celle de *Toebes* (1955). Dans cette approche, une analyse par corrélation multiple est appliquée aux différents facteurs influençant la vitesse de l'écoulement dans un canal naturel. Ces facteurs, selon *Toebes* (1955) sont *A*, V_{ms} , S_w , *n* et *T*. Par cette approche, il est possible d'estimer l'influence de chacun des dits facteurs sur la vitesse *V* et la valeur de celle-ci est égale à la somme algébrique des diverses contributions de chacun des paramètres en question. Cependant, la méthode de *Toebes* (1955) ne peut être appliquée que dans la région géographique pour laquelle a été faite l'analyse de l'influence des facteurs ci-dessus cités, ce qui malheureusement exclut toute généralisation de cette méthode.

A travers de nombreux exemples pratiques concernant l'écoulement uniforme, on peut s'apercevoir que les formules dites de *Chézy* et de *Manning* (ou de *Manning – Strickler*) sont les plus largement utilisées. La forme de leur expression est telle que nous l'avons déjà indiqué $V = C R_h^{\beta} J^{\gamma}$ où les exposants β et γ ont des valeurs bien déterminées. En raison de leur utilisation fiable et très répandue, ces relations seront développées aussi clairement que possible, en tentant d'éclaircir leur limite et leur domaine d'applicabilité. D'autres relations seront également exposées, telle que la formule de *Darcy – Weisbach* dont l'application est universelle. Cette relation joue un rôle important dans le calcul des écoulements évoluant dans les conduites, et sa généralisation aux canaux ouverts connaît un grand succès.

Notre travail se présente en deux grandes parties. La première partie est consacrée à un état de connaissances sur l'écoulement uniforme. Elle se propose de passer en revue les principales formules de l'écoulement uniforme, en mettant l'accent sur les relations de *Chézy*, *Manning – Strickler* et de *Darcy – Weisbach*.

Dans la deuxième partie de notre étude, nous avons tenté d'exposer notre contribution au calcul de l'écoulement uniforme. Notre recherche a pour principal objectif de proposer des relations approchées fiables au calcul de la profondeur normale ainsi que celles destinées au dimensionnement de la conduite considérée. Ces relations sont applicables dans tout le domaine de l'écoulement turbulent, comprenant l'écoulement lisse, de transition et turbulent rugueux.

I.2. Formule de Chézy

La formule de *Chézy* est probablement la première formule destinée au calcul de l'écoulement uniforme. La vitesse moyenne *V* s'exprime par :

$$V = C\sqrt{R_h J} \tag{1.1}$$

Rappelons que R_h est le rayon hydraulique, J est la pente de la ligne de charge totale ou gradient de perte de charge (J étant également la pente i du canal) et C est le facteur caractérisant la résistance de l'écoulement. Le facteur C est habituellement appelé coefficient de Chézy.

Chézy stipule que la force de résistance s'opposant à l'écoulement et par unité de surface de canal est proportionnelle au carré de la vitesse moyenne *V*. Cette force peut donc s'écrire : F_r $(1m^2) = K V^2$, où *K* est le facteur de proportionnalité. Comme le montre la figure 1.2, la surface du canal en contact avec le liquide est égale au produit du périmètre mouillé *P* par la longueur *L* du canal. La force totale F_r mise en jeu s'écrit ainsi :

$$\mathbf{F}_{\mathbf{r}} = K \, V^2 \, P \, L \tag{1.2}$$

Figure 1.2: Schéma de définition ayant servi de base à l'établissement de la formule de *Chézy*.

Nous avons déjà indiqué que l'écoulement uniforme s'établit lorsque les forces de gravité sont équilibrées par les forces de résistance F_r . La quantité ($W \sin \theta$), représentée sur la figure 1.2, correspond à la composante tangentielle du poids propre W du liquide. C'est cette composante qui intervient dans l'écoulement et qui doit être équilibrée par la force F_r . Le poids propre W peut d'écrire $W = \rho g A L$ où ρ est la masse volumique du liquide, g est l'accélération de la pesanteur. Le produit (A L) désigne le volume de liquide sur toute la longueur L considérée. Ainsi, nous pouvons écrire $\rho g A L \sin \theta = K V^2 P L$, soit : $V^2 = (\rho g/K)$ (A/P) $sin\theta$. La quantité A/P représente par définition le rayon hydraulique R_h . En désignant par $C^2 = (\rho g/K)$ et par $J = sin\theta$, il vient que :

$$V = C R_{\rm h}^{1/2} J^{\frac{1}{2}}$$
(1.3)

Comme l'exige la relation (1.3), le coefficient *C* de *Chézy* doit avoir pour unité $[L^{1/2} T^{-1}]$. Plusieurs relations ont été proposées au calcul du coefficient *C* et nous verrons dans ce qui suit les plus importantes d'entre elles.

I.2.1. Détermination du coefficient *C* de *Chézy* par la formule de *Ganguillet – Kutter*.

La formule de *Ganguillet – Kutter* (1869) exprime le coefficient *C* de *Chézy* en fonction de la pente *J* ou *i* du canal, du rayon hydraulique R_h et du coefficient de rugosité *n*. Elle a été élaborée à partir de mesures expérimentales effectuées sur divers types de canaux et rivières naturelles :

$$C = \frac{23 + \frac{0,00155}{J} + \frac{1}{n}}{1 + \left(23 + \frac{0,00155}{J}\right)\frac{n}{\sqrt{R_{\rm h}}}}$$
(1.4)

Le coefficient *n* de la relation (1.4) est connu sous le nom de " coefficient *n* de *Kutter* ". Bien que la relation (1.4) apparaisse quelque peu encombrante, elle donne néanmoins des résultats assez satisfaisants. De nombreux auteurs proposent d'éliminer le terme contenant la pente *J*, afin de simplifier la forme de l'équation. On peut en effet s'apercevoir que le terme 0,00155/ *J* n'a pas d'effet significatif sur la valeur du coefficient *C*, pour une même valeur du coefficient de rugosité *n* et du rayon hydraulique *R*_h. A titre indicatif, pour *n* = 0,01 et *R*_h = 1,20 m, *C* ne subit pratiquement aucun changement dans une large gamme de valeurs de *J* : $102 \le C \le 103$ lorsque 0,00005 $\le J \le 0,01$.

I.2.2. Détermination du coefficient C de Chézy par la formule de Bazin

Bazin (1897) considère que la valeur du coefficient *C* de *Chézy* dépend du rayon hydraulique R_h mais ne dépend pas de la pente *J* du canal. Le coefficient *C* peut alors être déterminé par la relation :

$$C = \frac{87}{1 + \frac{m}{\sqrt{R_{\rm h}}}} \tag{1.5}$$

m est le coefficient de rugosité dépendant de la nature du matériau constituant le canal considéré et dont la valeur est tabulée. Les valeurs de *m* sont sans commune mesure avec celles qui correspondent au coefficient de rugosité *n* figurant dans la relation (1.4) de *Ganguillet – Kutter* et ceci pour le même matériau. A titre indicatif, pour le cas d'un canal fabriqué en ciment lisse, les tables de valeurs indiquent que n = 0,01 et m = 0,11.

La formule de *Bazin* a été développée à l'origine pour de petits canaux, si bien que sa généralisation ne donne pas d'aussi bons résultats que ceux obtenus par la formule de *Ganguillet – Kutter*.

I.2.3. Détermination du coefficient C de Chézy par la formule de Powell

Powell (1950) propose une relation de type logarithmique au calcul du coefficient *C* de *Chézy*, mais elle se présente sous une forme implicite :

$$C = -23,2\log\left(\frac{1,811C}{R} + \frac{\varepsilon}{R_{\rm h}}\right) \tag{1.6}$$

" log " désigne le logarithme décimal, *R* est le nombre de *Reynolds*, ε est la rugosité absolue des parois du canal. A l'origine, la formule de *Powell* a été présentée en unité anglaise et les constantes figurant dans la relation (1.6) sont alors différentes et beaucoup plus simples :

$$C = -42\log\left(\frac{C}{4R} + \frac{\varepsilon}{R_{\rm h}}\right) \tag{1.7}$$

Pour le cas des canaux rugueux, l'écoulement est en général turbulent correspondant aux valeurs élevées du nombre de Reynolds. Le terme $C/(4R) \rightarrow 0$ et la relation (1.7) devient :

$$C = -42 \log\left(\frac{\varepsilon}{R_{\rm h}}\right) \tag{1.8}$$

Par contre, pour les canaux lisses, l'effet de la rugosité est tellement faible que la relation (1.7) peut s'écrire :

$$C = -42\log\left(\frac{C}{4R}\right) \tag{1.9}$$

I.3. Formule de Manning-Strickler

La vitesse moyenne V de l'écoulement uniforme peut être également évaluée par la formule dite de *Manning* (1891). La vitesse V est liée au coefficient C de résistance de l'écoulement, au rayon hydraulique R_h et à la pente J du canal. A l'origine, la formule de *Manning* – *Strickler* se présentait sous une forme compliquée, puis elle a été simplifiée pour s'écrire, avec C = k:

$$V = k R_{\rm h}^{2/3} \sqrt{J} \tag{1.10}$$

La relation (1.10) a été ensuite modifiée par plusieurs auteurs pour s'écrire, en unité métrique :

$$V = \frac{1}{n} R_{\rm h}^{2/3} \sqrt{J}$$
(1.11)

(*n* selon *Manning* et 1/n = k selon *Strickler*).

La conversion en unité anglaise de la relation (1.10) donne :

$$V = \frac{1,486}{n} R_{\rm h}^{2/3} \sqrt{J}$$
(1.12)

Dans cette conversion, la valeur numérique du coefficient de rugosité *n* reste inchangée et la même valeur est utilisée dans les deux systèmes d'unité. Comme l'exige la forme de la relation (1.10), le coefficient *n* doit avoir pour dimension $[TL^{-1/3}]$. Cependant, il paraît physiquement injustifié que la dimension de temps T puisse intervenir dans l'unité d'une rugosité puisqu'elle celle-ci ne devrait dépendre que de la nature du matériau constituant les parois du canal considéré. Pour cette raison, certains auteurs énoncent que le numérateur de la relation (1.10) devrait contenir le terme \sqrt{g} , où *g* est l'accélération de la pesanteur, ce qui conduirait à donner à *n* la dimension $[L^{1/6}]$. En outre, il a été démontré que le coefficient de rugosité *n* pouvait s'écrire :

$$n = \left[\phi(R_{\rm h}/\varepsilon)\right]\varepsilon^{1/6} \tag{1.13}$$

où ε est la rugosité absolue. Si la fonction $\phi(R_h / \varepsilon)$ doit être considérée comme étant adimensionnelle, le coefficient de rugosité *n* doit alors avoir la même dimension que $\varepsilon^{1/6}$, c'est à dire [L^{1/6}]. *Hager* (1989) a pu montrer que la rugosité absolue ε et le coefficient *k* de Strickler sont liés par la relation :

$$\frac{k\varepsilon^{1/6}}{8.2\sqrt{g}} = 1$$
(1.14)

D'autre part, il est également possible d'admettre que le terme 1,486/*n* figurant dans la relation (1.12) puisse contenir de manière implicite la dimension $[L1^{/3} T^{-1}]$, ou que $\phi(R_h / \varepsilon)$ contienne un facteur ayant une dimension. Ceci rendrait alors le coefficient *n* adimensionnel.

Sous cette dernière condition, la conversion en unité anglaise conduit à la constante $(3,2808)^{1/3} = 1,486$, puisque 1m = 3,2808 ft.

Si l'on considère que la dimension de n est $[L^{1/6}]$, sa valeur numérique en unité anglaise doit être différente de sa valeur en unité métrique, à moins de tenir compte d'un facteur de correction ou de compensation.

Si *n* est la valeur du coefficient de rugosité en unité métrique et *n*' en unité anglaise, on peut écrire alors $n' = (3,2808)^{1/6} n = 1,219 n$. Lorsque la formule de *Manning* subit la conversion de l'unité métrique vers l'unité anglaise, la constante figurant dans l'expression qui en résulte est égale à $(3,2808)^{1/3} + 1/6 = \sqrt{3,2808} = 1,811$ et la dimension de *n* est alors [L^{1/6}].

En raison de sa forme simplifiée et aux résultats satisfaisants auxquels elle aboutit, la formule de *Manning – Strickler* est celle qui est largement utilisée pour les écoulements uniformes dans les canaux ouverts.

De nombreuses applications ont montré que les valeurs de n de *Manning* et n de *Kutter* sont pratiquement identiques lorsque la pente du canal est supérieure ou égale à 0,0001 pour un rayon hydraulique variant approximativement entre 0,30 m et 9 m.

En comparant la formule de *Manning – Strickler*, exprimée en unité métrique, à celle de *Chézy*, on peut écrire $C = (1/n)R_h^{1/6}$. Ainsi, la formule de *Manning – Strickler* est souvent considérée comme une variante de la formule de *Chézy*.

De nombreuses études dont celle de *Bazin*, et qui concernent les canaux artificiels, ont montré que l'exposant de R_h ne serait pas égal à 2/3 comme le suggère *Manning*, mais sa valeur moyenne varie entre 0,6499 et 0,8395 suivant la forme du canal et la rugosité de celuici. Des études telle que () suggère de prendre la valeur 3/4 pour l'exposant de R_h , tandis que *Blench* (1939) considère le coefficient *C* comme une variable qui dépend non seulement de *n* mais aussi de R_h et dont l'exposant dépend à son tour de *n* et de R_h ; c'est la formule dite de *Pavlovski* (1940) qui s'exprime, en unité métrique, par :

$$C = (1/n)R_h^y \tag{1.15}$$

Où
$$y = 2,5\sqrt{n} - 0,13 - \frac{3}{4}\sqrt{R_h}(\sqrt{n} - 0,10)$$

La relation (1.15) est applicable pour un rayon hydraulique variant entre 0,10 m et 3 m et pour *n* compris entre 0,011 et 0,04. Des relations approchées au calcul de l'exposant *y* ont été également proposées : $y = 1,5 \sqrt{n}$ pour $R_h < 1$ m et $y = 1,3 \sqrt{n}$ pour $R_h > 1$ m. L'application de la formule de *Manning* – *Strickler*, comme celle d'ailleurs de *Ganguillet* – *Kutter* est tributaire de la valeur du coefficient n. Il n'existe aucune méthode exacte qui permet d'évaluer n. Évaluer n revient à estimer la résistance de l'écoulement dans un canal donné, ce qui nécessite beaucoup d'expérience et de pratique. En se référant à la bibliographie, plusieurs auteurs concluent que pour estimer n les étapes suivantes sont nécessaires :

- Recenser puis apprécier l'influence des paramètres pouvant affecter le coefficient *n*, tels que la présence de végétation dans le canal, la dimension moyenne des grains du matériaux constituant les parois du canal, l'irrégularité du canal due à la présence de courbures ou de variation même réduite de la section transversale de l'écoulement, etc...
- 2. Consulter les tables de valeurs de *n* déjà évalué pour des canaux de différents types.
- 3. Examiner et s'informer de l'état physique caractérisant des canaux existants et dont la valeur de *n* a déjà été déterminée.
- 4. Déterminer la valeur de *n* par une approche analytique basée sur la répartition théorique de la vitesse dans les sections transversales de l'écoulement.

1.4. Formule de Darcy – Weisbach et évaluation du coefficient de frottement

La formule de *Darcy* – *Weisbach* exprime la proportionnalité entre le gradient de la perte de charge *J*, la vitesse moyenne *V* de l'écoulement et le diamètre hydraulique $D_h = 4A/P$ = $4R_h$. Le facteur de proportionnalité étant le coefficient de frottement *f*. Le gradient *J* est inversement proportionnel à D_h et proportionnel au carré de la vitesse *V* :

$$J = \frac{f}{D_{\rm h}} \frac{V^2}{2g} \tag{1.16}$$

La formule (1.16) est aussi bien valable pour les canaux ouverts que pour les conduites fermées.

Le coefficient de frottement *f* peut être évalué par diverses relations, selon la nature du régime d'écoulement.

La formule de Colebrook - White permet d'évaluer le coefficient de frottement f lorsque l'écoulement est en régimes de transition, turbulent rugueux et lisse :

$$\frac{1}{\sqrt{f}} = -2\log\left(\frac{\varepsilon/D_{\rm h}}{3.7} + \frac{2.51}{R\sqrt{f}}\right) , R > 2300$$
(1.17)

Dans le cas où le régime d'écoulement est de transition, le coefficient de frottement dépend à la fois de la rugosité relative ε/D_h et du nombre de *Reynolds R*. La représentation graphique de la relation (1.17) dans un système d'axes de coordonnées à divisions logarithmiques montre que, pour la même valeur de ε/D_h , le coefficient de frottement *f* diminue lorsque *R* augmente. Pour des valeurs données de ε/D_h et de *R*, l'évaluation du coefficient de frottement *f*, par application de la relation (1.17), nécessite un procédé itératif. Une excellente relation approchée de (1.17) a été proposée par *Achour* (*Achour*, 2007):

$$\frac{1}{\sqrt{f}} = -2\log\left(\frac{\varepsilon/D_{\rm h}}{3,7} + \frac{4,5}{R}\log\frac{R}{6,97}\right)$$
(1.18)

A partir d'une valeur $R = R_{\text{lim}}$ dépendant de la valeur de ε/D_{h} , le coefficient de frottement demeure pratiquement inchangé avec l'augmentation de R. Cette particularité caractérise la nature de l'écoulement dans la zone de pleine turbulence ou domaine rugueux. Dans ce domaine, le coefficient de frottement f peut être évalué par la relation explicite de *Nikuradse* :

$$\frac{1}{\sqrt{f}} = -2\log\left(\frac{\varepsilon/D_{\rm h}}{3,7}\right) \tag{1.19}$$

La relation (1.19) peut être obtenue à partir des relations (1.17) ou (1.18), en écrivant que $R \rightarrow \infty$.

Dans le domaine pratiquement lisse correspondant à $\varepsilon/D_h \rightarrow 0$, la relation (1.17) mène à écrire :

$$\frac{1}{\sqrt{f}} = -2\log\left(\frac{2,51}{R\sqrt{f}}\right) \tag{1.20}$$

et l'évaluation de f nécessite également un procédé itératif. Dans le même domaine d'écoulement, ce procédé itératif peut être évité par l'application de la relation (1.18) :

$$\frac{1}{\sqrt{f}} = -2\log\left(\frac{4.5}{R}\log\frac{R}{6.97}\right)$$
(1.21)

Dans la large gamme $2,35.10^3 \le R \le 10^9$, l'application de la relation (1.21) occasionne un écart relatif inférieur à 0,7% par rapport à (1.20).

La formule de *Swamee* et *Jain* (1976) permet également d'évaluer de manière explicite le coefficient f dans le domaine pratiquement lisse :

$$f = \left[2\log\left(\frac{5,74}{R^{0,9}}\right) \right]^{-2}$$
(1.22)

Mais, dans la même gamme de valeurs ci-dessus indiquée de *R*, l'application de (1.22) occasionne un écart relatif atteignant 2,8% par rapport à (1.20). Dans une gamme plus restreinte de *R* telle que $5.10^3 < R < 10^8$, cet écart se réduit mais atteint tout de même 1,5%.

En comparant les relations (1.1) et (1.16), on peut montrer que le coefficient C de Chézy est étroitement lié au coefficient de frottement f:

$$C = \sqrt{\frac{8g}{f}} \tag{1.23}$$

1.5. Équations théoriques de l'écoulement uniforme

1.5.1. Distribution de la vitesse dans un écoulement uniforme

La distribution de la vitesse dans un écoulement turbulent demeure quasi uniforme lorsque la couche limite est pleinement développée, et suit approximativement une loi logarithmique. La contrainte de cisaillement ou tangentielle en n'importe quel point de l'écoulement turbulent se produisant au-dessus d'une paroi solide est donnée par la relation de *Prandtl* (1926) :

$$\tau = \rho l^2 \left(\frac{dv}{dy} \right)^2$$

(1.24)

 ρ est la masse volumique du liquide en écoulement, *l* est une longueur caractéristique dite longueur de mélange, dv/dy est le gradient de vitesse à la hauteur y de la paroi solide et normale à celle-ci. La longueur de mélange peut être interprétée comme étant la longueur audelà de laquelle la particule liquide voit sa quantité de mouvement diminuer.

Dans la région proche de la paroi solide, Prandtl utilise deux approches:

 La longueur de mélange est proportionnelle à y, soit l = Ky où K est le facteur de proportionnalité entre l et y et dont la valeur a été estimée à 0,40 environ.

2. La contrainte tangentielle est constante.

Puisque la contrainte tangentielle à la surface est égale à la force tractrice unitaire τ_0 , la constance de la contrainte tangentielle implique que $\tau = \tau_0$. La relation (1.16) devient :

$$dv = \frac{1}{K} \sqrt{\frac{\tau_{o}}{\rho}} \frac{dy}{y}$$
(1.25)

L'intégration de la relation (1.25) mène à :

$$v = \frac{5}{2} \sqrt{\frac{\tau_o}{\rho}} Ln \frac{y}{y_o}$$
(1.26)

" *Ln* " désigne le logarithme népérien et y_o représente la constante d'intégration. La force tractrice τ_o s'exprime par la relation $\tau_o = (\varpi R_h J)$ où $\varpi = \rho g$ est le poids spécifique du liquide et *J* est la pente du canal. On peut alors écrire que $\sqrt{\frac{\tau_o}{\rho}} = \sqrt{gR_hJ} = v_f$, où v_f a la dimension d'une vitesse et elle est connue sous le nom de vitesse de frottement. La relation (1.26) devient alors :

$$\mathbf{v} = \frac{5}{2} \mathbf{v}_{\rm f} \ Ln \frac{\mathbf{y}}{\mathbf{y}_{\rm o}} \tag{1.27}$$

La relation (1.27) indique que la vitesse dans un écoulement turbulent est une fonction logarithmique de la distance y. Elle est connue soue le nom de loi universelle de *Prandtl* – *Von* – *Karman* de la distribution des vitesses. Cette loi a été vérifiée par plusieurs expériences et les résultats ont montré une remarquable similitude entre la distribution des vitesses observée expérimentalement et celle issue de la théorie. Lorsque la surface solide est lisse, la constante y_o ne dépend que de la vitesse de frottement v_f et de la viscosité cinématique v du liquide :

$$y_{o} = m_{o} \frac{\nu}{v_{f}}$$
(1.28)

 m_o est une constante égale à 1/9 lorsque la surface solide est lisse. Cette constante a été déduite des essais de *Nikuradse* concernant les conduites lisses. La combinaison des relations (1.27) et (1.28) donne ainsi, pour les surfaces lisses, la répartition de la vitesse dans un écoulement turbulent :

$$\mathbf{v} = \frac{5}{2} \mathbf{v}_{\mathrm{f}} L n \frac{9 \,\mathrm{y} \,\mathrm{v}_{\mathrm{f}}}{\nu} \tag{1.29}$$

Lorsque la surface est rugueuse, la constante y_o dépend de la rugosité absolue ε :

$$y_0 \approx m_0 \varepsilon$$
 (1.30)

La constante m_o est approximativement égale à 1/30.

La relation (1.27) devient alors :

$$\mathbf{v} = \frac{5}{2} \mathbf{v}_{\rm f} \ Ln \frac{30 \,\mathrm{y}}{\varepsilon} \tag{1.31}$$

1.5.2. Équation de Keulegan

En utilisant la loi universelle de Prandtl - Von - Karman de la distribution des vitesses, *Keulegan* (1938) aboutit à des équations donnant la vitesse moyenne d'un écoulement turbulent dans les canaux ouverts par une approche théorique simple. En se basant sur l'équation de continuité, le débit volume Q passant par une section quelconque de l'écoulement peut s'écrire :

$$Q = VA = \int_{\delta 0}^{y=h} vB \,\mathrm{dy}$$
(1.32)

V est la vitesse moyenne de l'écoulement, *h est la profondeur*, *A* est l'aire de la section mouillée, *B* est la longueur de la courbe d'égale vitesse (figure 1.3) et y est la profondeur verticale comptée à partir de la surface jusqu'à la courbe d'égale vitesse. la sous – couche laminaire d'épaisseur δ_0 est considérée comme étant très mince ($\delta_0 = 0$).

Figure 1.3 : Schéma de définition ayant servi de base à l'établissement de l'équation de *Keulegan*.

Le maximum de vitesse est supposé être à la surface et que la longueur *B* est proportionnelle à la distance y ; ceci permet d'écrire :

$$B = P - \gamma \, \mathrm{y} \tag{1.33}$$

P est le périmètre mouillé de la surface considérée et γ est une fonction dépendant de la forme de la section. Ainsi, l'aire de la section mouillée *A* est :

$$A = \int_{0}^{h} B \,\mathrm{dy} = P \,h - \frac{1}{2} \gamma \,h^{2} \tag{1.34}$$

La combinaison des relations (1.27), (1.32), (1.33) et (1.34) permet d'écrire, après intégration :

$$V = v_{\rm f} \left[5,75 \log \left[\frac{h}{m_o R_{\rm h}} \exp \left(-1 - \frac{\gamma h^2}{4A} \right) \right] + 5,75 \log \frac{m_o R_{\rm h}}{y_{\rm o}} \right]$$
(1.35)

Le premier terme du membre droit de l'équation (1.35) est une fonction de la forme de la section du canal considéré. Cependant, la variation que subit ce terme pour différentes formes de canaux est relativement faible et il a été remplacé par une constante désignée par A_0 . La relation (1.35) prend alors une forme plus simplifiée et s'écrit :

$$V = v_{\rm f} \left[A_{\rm o} + 5,75 \log \frac{m_o R_{\rm h}}{y_{\rm o}} \right]$$
(1.36)

La relation (1.36) représente l'équation théorique générale de la vitesse moyenne de l'écoulement uniforme dans les canaux ouverts.

Pour les canaux à parois lisses, l'étude de *Keulegan*, basée sur les valeurs expérimentales de *Nikuradse*, montre que $A_0 \approx 3,25$. Ainsi, l'équation théorique générale de la vitesse moyenne de l'écoulement uniforme dans les canaux ouverts à parois lisses est, en tenant compte de (1.28):

$$V = v_{f} \left[3,25 + 5,75 \log \left(\frac{R_{h} v_{f}}{\nu} \right) \right]$$
(1.37)

En ce qui concerne les canaux ouverts à parois rugueuses, *Keulegan* montre, après avoir analysé les mesures de *Bazin*, que la constante A_o varie dans une large gamme, en fonction de la forme de la section du canal $(3,23 \le A_o \le 16,92)$, et la valeur moyenne $A_o = 6,25$ est alors adoptée. Ainsi, l'expression théorique générale de la vitesse moyenne de l'écoulement uniforme dans les canaux ouverts à parois rugueuses est, en tenant compte de (1.30):

$$V = v_{\rm f} \left[6,25 + 5,75 \log\left(\frac{R_{\rm h}}{\varepsilon}\right) \right]$$
(1.38)

En combinant les expressions $V = C\sqrt{R_h J}$ de *Chézy* (relation 1.1) et $\sqrt{gR_h J} = v_f$ de la vitesse de frottement, on peut écrire :

$$\frac{V}{v_{\rm f}} = \frac{C}{\sqrt{g}} \tag{1.39}$$

ou bien, en faisant appel à (1.23):

$$\frac{V}{v_{\rm f}} = \sqrt{\frac{8}{f}} = \frac{2\sqrt{2}}{\sqrt{f}}$$

En tenant compte de (1.39) et de la définition du nombre de *Reynolds* modifié tel que $R = VR_h/v$, les relations (1.37) et (1.38) permettent d'exprimer les coefficients *C* et *f*, respectivement pour un canal à parois lisses et rugueuses :

$$\frac{C}{\sqrt{g}} = 3,25 + 5,75 \log\left(\frac{R\sqrt{g}}{C}\right) \tag{1.41}$$

$$\frac{C}{\sqrt{g}} = 6,25 + 5,75 \log\left(\frac{R_{\rm h}}{\varepsilon}\right) \tag{1.42}$$

Ou bien :

$$\frac{1}{\sqrt{f}} = 0,231 + 2,033 \log\left(R\sqrt{f}\right)$$
(1.43)

$$\frac{1}{\sqrt{f}} = 2,210 + 2,033 \log\left(\frac{R_{\rm h}}{\varepsilon}\right) \tag{1.44}$$

I.6. Interprétation théorique du coefficient de rugosité de Manning

En éliminant le coefficient *C* de *Chézy* entre les relations $C = (1/n)R_{h}^{1/6}$ et (1.42), le coefficient *n* de *Manning* s'écrit :

$$n = \varepsilon^{1/6} \phi(R_{\rm h}/\varepsilon) \tag{1.45}$$

avec :

$$\phi(R_{\rm h}/\varepsilon) = \frac{\left(\frac{R_{\rm h}}{\varepsilon}\right)^{1/6}}{\sqrt{g} \left[6,25 + 5,75\log\frac{R_{\rm h}}{\varepsilon}\right]}$$
(1.46)

La représentation graphique de (1.46), pour une large gamme de valeurs de la rugosité relative $(R_{\rm h}/\varepsilon)$, se traduit par une courbe plate presque horizontale. La fonction $\phi(R_{\rm h}/\varepsilon)$ peut alors être remplacée par une constante dont la valeur est approximativement égale à 0,0342.

Si l'on admet que la fonction $\phi(R_h/\varepsilon)$ est constante, la relation (1.45) indique alors que le coefficient *n* de *Manning* varie en fonction de la puissance 1/6 de la rugosité absolue ε . En d'autres termes, lorsque ε subit une variation de 1/1000 ème, le coefficient *n* ne varie que de 1/3 environ. Ainsi, ε est donc plus sensible que le coefficient *n*. En conséquence, l'application de la relation (1.45) n'entraîne qu'une erreur relativement faible sur le calcul du coefficient *n*.

L'étude comparative de *Bakhmeteff* et *Feodoroff* (1943) entre les formules de *Manning*, de Ganguillet – Kutter et de *Prandtl* – *Von* – *Karman* mise sous une forme identique à celle de la relation (1.45), montre que la formule de *Manning* est la plus adaptée.

I.7. Méthode de détermination du coefficient de Manning

Deux méthodes de détermination du coefficient *n* de *Manning*, basées sur la répartition théorique des vitesses dans un canal à parois rugueuses, ont été développées. La première méthode, dite méthode liée à la mesure de la rugosité, admet la validité de la relation

(1.46). Ainsi, la valeur de n peut être calculée en application de (1.45) pour la valeur connue de la rugosité absolue ε .

La seconde méthode est dite méthode liée à la mesure de la vitesse. En se référant à la loi logarithmique de la répartition de la vitesse exprimée par (1.31), on peut s'apercevoir que cette répartition dépend de la rugosité absolue ε liée au coefficient *n* de *Manning* par la relation (1.45). En d'autres termes, la rugosité dans le sens du coefficient *n* de *Manning* peut être considérée comme le facteur prédominant affectant la répartition de la vitesse. Si celle-ci était connue, le coefficient *n* de *Manning* peut alors être évalué.

On définit $V_{0,2}$ la vitesse aux deux dixièmes de la profondeur ou à la distance 0,8 y comptée à partir du fond du canal de grande largeur et à parois rugueuses; y représente la profondeur de l'écoulement. En vertu de la relation (1.31), on peut écrire:

$$V_{0,2} = \frac{5}{2} v_{\rm f} \ln\left(\frac{24\,\mathrm{y}}{\varepsilon}\right) \tag{1.47}$$

$$V_{0,8} = \frac{5}{2} v_{\rm f} \ln\left(\frac{6\,{\rm y}}{\varepsilon}\right) \tag{1.48}$$

En éliminant la vitesse v_f entre les relations (1.47) et (1.48), on peut écrire en posant $X = V_{0,2} / V_{0,8}$:

$$(1-X)Ln\frac{y}{\varepsilon} = XLn6 - Ln24$$

Ou bien:

$$Ln\frac{y}{\varepsilon} = \frac{1,792 X - 3,178}{1 - X}$$
(1.49)

L'équation (1.38), qui exprime la vitesse moyenne de l'écoulement dans un canal à parois rugueuses, devient alors pour un canal de grande largeur ($R_h = y$):

$$\frac{V}{v_{\rm f}} = \frac{1,775 \, X + 1,686}{X - 1} \tag{1.50}$$

En outre, la combinaison des relations $C = (1/n)R_h^{1/6}$ et (1.38), pour $R_h = y$, donne :

$$\frac{V}{v_{\rm f}} = \frac{y^{1/6}}{n\sqrt{g}}$$
 (1.51)

Ainsi, le coefficient n de *Manning* peut être évalué à partir de l'égalité des relations (1.50) et (1.51), soit :

$$n = \frac{y^{1/6} (X - 1)}{1,775 \sqrt{g} (X + 0.95)}$$
(1.52)

La relation (1.52) permet ainsi d'évaluer le coefficient *n* de *Manning* pour le cas d'un canal de grande largeur à parois rugueuses et dans l'hypothèse que la distribution de la vitesse suit une loi logarithmique.

I.8. Calcul de l'écoulement uniforme

I.8.1. Conductivité

Le débit volume Q de l'écoulement uniforme dans une conduite ou un canal s'exprime par le produit de la vitesse moyenne V et l'aire de la section mouillée A:

$$Q = VA = CAR_{\rm h}^{\ \beta} J^{\gamma} \tag{1.53}$$

La relation (1.53) peut aussi s'écrire :

$$Q = KJ^{\gamma} \tag{1.54}$$

où :

$$K = CAR_{\rm h}^{\ \beta} \tag{1.55}$$

Le facteur K est connu sous le terme de conductivité de la conduite ou du canal. Il s'agit de la capacité d'évacuation de la section de la conduite ou du canal considéré, étant donné que K est directement lié au débit volume Q.

Lorsque l'une des relations de *Chézy* ou de *Manning* est utilisée, correspondant à γ = $\frac{1}{2}$, la relation (1.54) permet alors de déduire que la conductivité est :

$$K = Q / \sqrt{J} \tag{1.56}$$

La relation (1.56) peut être utilisée pour calculer la conductivité K lorsque le débit volume Q et la pente J sont donnés.

Lorsque la formule de *Chézy* est utilisée, correspondant à $\gamma = \frac{1}{2}$, l'équation (1.55) devient :

$$K = CAR_{\rm h}^{1/2}$$
 (1.57)

C est le coefficient de résistance de Chézy.

Lorsque la relation de Manning est utilisée, la conductivité K s'écrit :

$$K = \frac{1}{n} A R_h^{2/3}$$
(1.58)

Les relations (1.57) et (1.58) peuvent être utilisées pour calculer la conductivité *K*, lorsque la géométrie de la section ainsi que le coefficient de résistance sont connus.

I.8.2. Facteur de section

L'expression $AR_h^{2/3}$ est appelée facteur de section au calcul de l'écoulement uniforme. Selon la relation (1.58), nous pouvons écrire :

$$AR_{h}^{2/3} = nK \tag{1.59}$$

Ou bien, en tenant compte de la relation (1.56) :

$$AR_{h}^{2/3} = \frac{nQ}{\sqrt{J}}$$
(1.60)

Le second terme de la relation (1.60) contient les paramètres n, Q et J, alors que le premier terme dépend de la géométrie de la section mouillée de la conduite ou du canal considéré. Pour les valeurs données de n, Q et J, il n'existe qu'une profondeur possible pour maintenir l'écoulement uniforme, à condition toutefois que $AR_h^{2/3}$ augmente avec l'accroissement de la profondeur. Cette profondeur est la profondeur normale.

Lorsque *n* et *J* sont connus, la relation (1.60) donne un seul débit pour maintenir l'écoulement uniforme dans la section considérée de la conduite ou du canal, à condition toutefois que $AR_h^{2/3}$ augmente avec l'accroissement de la profondeur. Ce débit est appelé débit normal.

Notons que dans le cas le plus général, la quantité $AR_h^{2/3}$ augmente avec l'accroissement de la profondeur, à l'exception du cas des conduites dont le toit est graduellement fermé telle que la conduite de forme circulaire. Dans ce cas, $AR_h^{2/3}$ augmente dans un premier temps avec l'accroissement de la profondeur, puis décroit dans un second temps en fonction de la profondeur à l'approche de la pleine section. La valeur maximale de $AR_h^{2/3}$ est atteinte à une profondeur légèrement inférieure à la profondeur de pleine section. En conséquence, il est possible d'avoir deux profondeurs pour la même valeur de $AR_h^{2/3}$; une profondeur inférieure et l'autre supérieure à la profondeur correspondant au maximum de $AR_h^{2/3}$.

La relation (1.60) peut être très utile pour l'analyse et le calcul de l'écoulement uniforme. Lorsque le débit volume Q, la pente J et n sont connus, cette relation donne la valeur du facteur de section $A_n R_{h,n}^{2/3}$, où l'indice n désigne l'écoulement normal, et par suite la profondeur normale y_n . D'autre part, lorsque n, J et y_n sont donnés, la relation (1.60) permet de calculer le débit volume normal Q_n .

Dans le but de simplifier le calcul, des courbes adimensionnelles ont été tracées pour le cas de la conduite de forme circulaire en particulier, montrant la relation entre la profondeur et le facteur de section $AR_h^{2/3}$. Ces courbes sont un moyen de détermination de la profondeur pour un facteur de section $AR_h^{2/3}$ donné et vice-versa.

Pour le cas de la conduite de forme circulaire de diamètre *D*, le tableau de valeurs suivant a été dressé (*Chow*, 1973) et a permis le tracé de la courbe de la figure 1.4.

y_n / D	$AR_{h}^{2/3}$ / $D^{8/3}$
0,01	0,0000
0,02	0,0002
0,03	0,0005
0,04	0,0009
0,05	0,0015
0,06	0,0022
0,07	0,0031
0,08	0,0040
0,09	0,0052
0,10	0,0065
0,11	0,0079
0,12	0,0095
0,13	0,0113
0,14	0,0131
0,15	0,0152
0,16	0,0173
0,17	0,0196
0,18	0,0220
0,19	0,0247
0,20	0,0273
0,21	0,0301
0,22	0,0333
0,23	0,0359
0,24	0,0394
0,25	0,0427

Tableau 1.1 : Valeurs du facteur de section relatif en fonction de la profondeur relative
pour le cas de la conduite de forme circulaire (*Chow*, 1973)

Tableau 1.1 (Suite) : Valeurs du facteur de section relatif en fonction de la profondeur relative
pour le cas de la conduite de forme circulaire (*Chow*, 1973)

Figure 1.4 : Facteur de section relatif en fonction de la profondeur normale relative pour le cas de la conduite de forme circulaire. Courbe tracée selon les valeurs du tableau 1.1.

I.8.3. Caractéristiques de l'écoulement dans une conduite circulaire

En prenant pour exemple la conduite circulaire, les courbes adimensionnelles pour les quantités $AR_h^{2/3} / A_o R_{h,o}^{2/3}$ et $R_h^{2/3} / R_{h,o}^{2/3}$, où l'indice « o » est relatif à l'état plein de la conduite, sont représentées sur la figure 1.5 (*Camp*, 1946).

Figure 1.5 : Caractéristiques de l'écoulement dans une conduite circulaire selon *Camp* (1946).

Si la valeur du coefficient *n* de *Manning* est considéré comme une constante ou indépendant de la variation de la profondeur, les deux courbes $AR_h^{2/3} / A_o R_{h,o}^{2/3}$ et $R_h^{2/3} / R_{h,o}^{2/3}$ représentent respectivement la variation du rapport Q/Q_o et V/V_o . Les deux courbes, en trait plein, montre des valeurs maximales qui s'obtiennent à environ 0,938 d_o et 0,81 d_o respectivement. D'un point de vue mathématique, la profondeur correspondant au débit maximum, soit 0,938 d_o , peut être simplement obtenue en égalant à zéro la dérivée première de $AR_h^{2/3}$ par rapport à la profondeur *y*, puisque le débit volume *Q*, calculé par la formule de *Manning*, est proportionnel à $AR_h^{2/3}$ pour *n* et *J* constants. Parallèlement, puisque la vitesse moyenne *V*, selon la formule de *Manning*, est proportionnelle à $R_h^{2/3}$ par rapport à la profondeur de *Manning*, est proportionnel à *A* antimum, est 0,81 d_o , peut être obtenue en égalant à zéro la dérivée première de *Manning* and the vitesse, soit 0,81 d_o , peut être obtenue en égalant à zéro la dérivée premier de *Manning* and the profondeur *X* and *X* antimum.

En outre, la courbe adimensionnelle Q/Q_o de la figure 1.5 montre que, lorsque la profondeur est environ plus grande que $0.82d_o$, il est possible d'avoir deux profondeurs
différentes pour le même débit volume ; une première profondeur au-dessus et une seconde en-dessous de la valeur $0.938d_0$.

En outre, la courbe V/V_o montre que, lorsque la profondeur est plus grande que $y/d_o = 1/2$, il est possible d'avoir deux profondeurs différentes pour la même vitesse ; une première profondeur au-dessus et une seconde en-dessous de la valeur $0.81d_o$.

Toutes ces remarques restent valables tant que le coefficient de résistance est supposé être constant, même si la profondeur varie. Il a été cependant constaté (figure 1.5) que le coefficient de résistance augmente de plus de 28% de 1,00 d_o à 0,25 d_o où il apparaît clairement admettre un maximum. Cette variation du coefficient de résistance fait que le maximum de débit et de vitesse apparaît à environ 0,97 d_o et 0,94 d_o respectivement. Les courbes correspondantes de Q/Q_o et de V/V_o ont été représentées en trait discontinu sur la figure 1.5.

En considérant comme étant constant le coefficient de résistance n, la vitesse moyenne de l'écoulement serait la même que celle de l'écoulement dans la conduite à moitié pleine que celle de l'écoulement à pleine section. Par contre, si l'on considère que n varie en fonction de la profondeur, comme il est indiqué sur la figure 1.5, alors la vitesse de l'écoulement dans la conduite à moitié pleine n'est que de 80% de la vitesse à pleine section.

I.9. Conclusion

Le chapitre précédent a eu pour objectif de passer en revue les principaux résultats connus sur l'écoulement uniforme. Nous avons précisé les conditions d'établissement d'un écoulement uniforme dont les caractéristiques ont été représentées sur la figure 1.1, en comparant la pente du canal à la pente critique.

A partir d'un schéma de définition, nous avons montré les différentes forces intervenant dans un volume de contrôle de l'écoulement uniforme, ce qui a conduit à la démonstration de la formule universellement connu de *Chézy*. Nous avons montré que le coefficient de résistance *C* de *Chézy* est tel que $C = \sqrt{\rho g/K}$, où ρ est la masse volumique du liquide en écoulement, *g* est l'accélération de la pesanteur et *K* est un facteur de proportionnalité intervenant dans l'expression de la force de résistance à l'écoulement (Relation 1.2). Nous avons présenté trois relations permettant d'évaluer le coefficient de résistance à l'écoulement *C* de *Chézy*. La première relation est celle de *Ganguillet – Kutter* dans laquelle le coefficient *C* est tel que $C(J, R_h, n)$, où *J* est la pente de la ligne de charge totale égale à la pente géométrique du canal, R_h est le rayon hydraulique et *n* est le coefficient de rugosité. La seconde relation est celle de *Bazin* dans laquelle le coefficient *C* est tel que $C(R_h, m)$, où *m* est le coefficient de rugosité dépendant de la nature du matériau constituant le canal considéré. La troisième relation est celle de *Powell*. Elle exprime de manière implicite le coefficient *C* en fonction du nombre de *Reynolds*, du rayon hydraulique et de la rugosité absolue des parois du canal.

Nous avons présenté la formule de *Manning* ou de *Manning-Strickler* qui exprime la vitesse moyenne du liquide en écoulement. Le coefficient *n* selon *Manning* et 1/n = k selon *Strickler*) a été discuté et son unité a été précisée. Le coefficient *k* est lié à la rugosité absolue ε par la relation de *Hager*. Nous avons surtout précisé qu'il n'existe aucune méthode analytique d'évaluation du coefficient *n* de *Manning*, à l'exception du cas d'un canal de grande largeur à parois rugueuses et dans l'hypothèse que la distribution de la vitesse suit une loi logarithmique. Le coefficient *n* est alors donné par la relation (1.52), après avoir déterminé les vitesses $V_{0,2}$ et $V_{0,8}$. Pour l'évaluation pratique du coefficient *n*, nous avons présenté les étapes à suivre, préconisées par certains auteurs.

La relation de *Darcy-Weisbach* a été présentée (Relation 1.16). Elle exprime la pente de la ligne de charge totale comme étant un paramètre inversement proportionnel au diamètre hydraulique et directement proportionnel à la hauteur capable de la vitesse de l'écoulement. Le facteur de proportionnalité est représenté par le coefficient f, appelé coefficient de frottement. Celui-ci peut être évalué par la relation de *Colebrook-White* en s'appuyant sur un procédé itératif. Des relations explicites au calcul de f ont été proposées par certains auteurs, tels que *Achour* et *Swamee*.

Le chapitre a été achevé par le calcul de l'écoulement uniforme qui intéresse notre étude. Nous avons rappelé la notion de conductivité qui est représentée par le facteur *K*. Il s'agit de la capacité d'évacuation de la section de la conduite ou du canal considéré, étant donné que *K* est directement lié au débit volume *Q* (Relation 1.56). Nous avons également rappelé la notion de facteur de section dont l'importance est capitale dans le calcul de l'écoulement uniforme. Le facteur de section est représenté par la quantité $AR_h^{2/3}$ et dépend, par conséquent, de la géométrie de la section de la conduite ou du canal considéré. Nous avons indiqué que dans le cas le plus général, la quantité $AR_h^{2/3}$ augmente avec l'accroissement de la profondeur, à l'exception du cas des conduites dont le toit est graduellement fermé telle que la conduite de forme circulaire. Pour ce type de conduites fermées, le facteur de section $AR_h^{2/3}$ augmente dans un premier temps avec l'accroissement de la profondeur, puis décroit dans un second temps en fonction de la profondeur à l'approche de la pleine section. Cette particularité a été illustrée sur la courbe adimensionnelle de la figure 1.4. Les courbes adimensionnelles de *Camp* (Figure 1.5) ont permis l'analyse des caractéristiques de l'écoulement dans une conduite de forme circulaire. Le facteur de section, rapporté à celui de la conduite pleine, a été représenté en fonction du paramètre de forme de la section pour les cas d'un coefficient de *Manning* supposé constant et dépendant de la variation de la profondeur. Dans le premier cas, la vitesse moyenne de l'écoulement à pleine section.

Par contre, dans le second cas, la vitesse de l'écoulement dans la conduite à moitié pleine n'est que de 80% de la vitesse à pleine section.

Les courbes adimensionnelles de Camp ont pu mettre en évidence la nature variable du coefficient de n de *Manning* et son incidence sur les valeurs maximales du débit volume Q et de la vitesse moyenne V.

<u>Chapítre II</u>

Coefficient de chézy et de manning en écoulement uniforme dans un canal rectangular

II. Coefficient de *Chézy* et de *Manning* en écoulement uniforme dans un canal rectangulaire

II.1. Introduction

Les écoulements uniformes dans les canaux et conduites sont régis par les relations de *Chézy* et de *Manning*, dites « relations de l'écoulement uniforme ». Ces relations expriment le débit volume écoulé par le canal en fonction des paramètres géométriques de l'ouvrage et hydrauliques de l'écoulement. Dans ces relations, nous pouvons relever la présence des coefficients de résistance à l'écoulement, dits de *Chézy* et de *Manning* que l'on note souvent par les lettres C et n respectivement.

Dans la pratique, il existe des tableaux qui donnent les valeurs des coefficients C et n en fonction de la nature du matériau constituant le canal. Ces valeurs de C et de n sont tabulées de manière indépendante de la profondeur de l'écoulement ou du rayon hydraulique et encore moins du nombre de *Reynolds* caractérisant l'écoulement.

Donner des valeurs constantes aux coefficients C et n, suppose que l'écoulement est en régime turbulent rugueux où le nombre de *Reynolds* n'a aucune influence. Cependant, cette démarche peut paraître peu fiable eu égard au fait que le coefficient de résistance à l'écoulement doit en principe dépendre des caractéristiques hydrauliques de l'écoulement, en particulier du rayon hydraulique, de la pente géométrique et de la viscosité cinématique du liquide. Cette vision est beaucoup plus moderne et nécessite une étude particulière en observant l'évolution de ces coefficients de résistance lorsque l'écoulement est supposé être uniforme.

C'est dans ce contexte que nous proposons le présent chapitre dans lequel nous établissons des relations générales destinées non seulement à l'évaluation des coefficients de résistance à l'écoulement de *Chézy* et de *Manning*, mais à examiner aussi leur variation en fonction de la profondeur de l'écoulement et de d'autres paramètres hydrauliques qui influencent l'écoulement.

II.2. Expression du coefficient de Chézy dans un canal rectangulaire

Le débit volume Q écoulé par un canal de forme quelconque s'exprime par la relation suivante (Achour et Bedjaoui, 2006) :

$$Q = -4\sqrt{2g}A\sqrt{R_h i}\log\left(\frac{\varepsilon}{14,8R_h} + \frac{10,04}{R}\right)$$
(2.1)

Où :

A est l'aire de la section mouillée, R_h est le rayon hydraulique, *i* est la pente du canal et R est un nombre de *Reynolds* défini par la relation suivante :

$$R = 32\sqrt{2} \frac{\sqrt{giR_h^3}}{V}$$
(2.2)

v est la viscosité cinématique du liquide en écoulement.

Pour un canal de forme rectangulaire, l'aire de la section mouillée *A* et le périmètre mouillé *P* s'écrivent respectivement :

$$A = by_n \tag{2.3}$$

Où *b* est la largeur du canal et y_n est la profondeur normale de l'écoulement.

$$P = b + 2y_n \tag{2.4}$$

A partir des relations (2.3) et (2.4), nous pouvons écrire que le rayon hydraulique $R_h = A/P$ est :

$$R_h = \frac{by_n}{b + 2y_n} \tag{2.5}$$

La relation (2.5) peut également s'écrire :

$$R_h = \frac{y_n}{y_n} \frac{b}{\left(\frac{b}{y_n} + 2\right)}$$

Soit :

$$R_h = \frac{b}{\left(\eta + 2\right)} \tag{2.6}$$

Où $\eta = b / y_n$ exprime le paramètre de forme de la section mouillée, ou le rapport d'aspect. Compte tenu de la relation (2.6), la relation (2.2) peut s'écrire :

$$R = \frac{32\sqrt{2}}{(\eta + 2)^{3/2}} \frac{\sqrt{gib^3}}{\nu}$$
(2.7)

Désignons par :

$$\varphi(\eta) = \frac{32\sqrt{2}}{(\eta+2)^{3/2}}$$
(2.8)

$$R^* = \frac{\sqrt{gib^3}}{v} \tag{2.9}$$

Ainsi, la relation (2.7) s'écrit :

 $R = R^* \varphi(\eta) \tag{2.10}$

D'autre part, la relation de Chézy s'écrit :

$$Q = CA\sqrt{R_h i} \tag{2.11}$$

Où *C* est le coefficient de *Chézy*.

En comparant les relations (2.1) et (2.11), nous pouvons déduire que le coefficient C de Chézy est tel que :

$$C = -4\sqrt{2g}\log\left(\frac{\varepsilon}{14,8R_h} + \frac{10,04}{R}\right)$$
(2.12)

La relation (2.12) peut s'écrire en termes adimensionnels sous la forme suivante :

$$C/\sqrt{g} = -4\sqrt{2}\log\left(\frac{\varepsilon}{14,8R_h} + \frac{10,04}{R}\right)$$
(2.13)

En introduisant les relations (2.6) et (2.10) dans la relation (2.13), il vient que :

$$C/\sqrt{g} = -4\sqrt{2}\log\left[\frac{\varepsilon/b}{14,8/(\eta+2)} + \frac{10,04}{R^*\varphi(\eta)}\right]$$
(2.14)

En tenant compte de la relation (2.8), la quantité $14,8/(\eta+2)$ peut s'écrire :

$$14,8/(\eta+2) = \frac{14,8[\varphi(\eta)]^{2/3}}{(32\sqrt{2})^{2/3}}$$

Après calcul, il vient que :

$$14,8/(\eta+2) = 1,165[\varphi(\eta)]^{2/3}$$
(2.15)

En substituant la relation (2.15) dans la relation (2.14), il vient que :

$$C/\sqrt{g} = -4\sqrt{2}\log\left[\frac{\varepsilon/b}{1,165\left[\varphi(\eta)\right]^{2/3}} + \frac{10,04}{R^*\varphi(\eta)}\right]$$
(2.16)

Dans la relation (2.16), ε/b représente la rugosité relative du canal rectangulaire étudié. Au regard de la relation (2.16), il apparaît que C/\sqrt{g} dépend de trois paramètres qui sont la rugosité relative ε/b , le paramètre de forme η et le nombre de *Reynolds* modifié R^* . Nous pouvons alors écrire la relation fonctionnelle suivante :

$$C/\sqrt{g} = f\left(\varepsilon/b; \eta; R^*\right)$$
(2.17)

II.3. Variation du coefficient de Chézy

Pour représenter la variation du coefficient sans dimension C/\sqrt{g} en fonction du paramètre de forme η , nous pouvons faire appel à la relation (2.16). On fixe une valeur de la rugosité relative ε/b et l'on fait varier le nombre de *Reynolds* modifié R^* . Les tableaux suivants ont été établis selon cette procédure.

La valeur nulle du paramètre de forme η correspond, pour un canal rectangulaire donné, à une profondeur d'écoulement très élevée.

Sous chacun des tableaux, nous avons représenté et commenté la variation de C/\sqrt{g} en fonction du paramètre de forme η .

ε/b	p = 0	$R^* = 10^4$	$R^* = 10^5$	$R^* = 10^6$	$R^* = 10^7$	$R^* = 10^8$
η	$arphi(\eta)$	C/\sqrt{g}	C/\sqrt{g}	C/\sqrt{g}	C/\sqrt{g}	C/\sqrt{g}
0	16	23,7722866	29,4291409	35,0859951	40,7428494	46,3997036
0,1	14,8708583	23,5924895	29,2493437	34,906198	40,5630522	46,2199065
0,2	13,8685468	23,421058	29,0779123	34,7347665	40,3916208	46,048475
0,3	12,9739799	23,2572484	28,9141026	34,5709569	40,2278111	45,8846654
0,4	12,1716124	23,1004115	28,7572657	34,41412	40,0709742	45,7278285
0,5	11,448668	22,9499779	28,6068321	34,2636864	39,9205406	45,5773949
0,6	10,7945602	22,8054452	28,4622995	34,1191537	39,776008	45,4328622
0,7	10,20045	22,6663679	28,3232222	33,9800764	39,6369307	45,2937849
0,8	9,65890577	22,5323491	28,1892034	33,8460576	39,5029119	45,1597661
0,9	9,16363916	22,4030337	28,059888	33,7167422	39,3735965	45,0304507
1	8,70929686	22,2781027	27,934957	33,5918112	39,2486655	44,9055197
1,1	8,2912963	22,1572686	27,8141229	33,4709771	39,1278314	44,7846856
1,2	7,90569415	22,0402711	27,6971254	33,3539796	39,0108339	44,6676881
1,3	7,54908067	21,9268742	27,5837284	33,2405827	38,8974369	44,5542912
1,4	7,21849401	21,8168627	27,4737169	33,1305712	38,7874254	44,4442797
1,5	6,91135036	21,7100404	27,3668947	33,0237489	38,6806031	44,3374574
1,6	6,6253866	21,6062276	27,2630818	32,9199361	38,5767903	44,2336446
1,7	6,35861295	21,5052593	27,1621136	32,8189678	38,4758221	44,1326763
1,8	6,10927369	21,4069839	27,0638381	32,7206924	38,3775466	44,0344009
1,9	5,87581435	21,3112613	26,9681156	32,6249698	38,2818241	43,9386783
2	5,65685425	21,2179624	26,8748167	32,5316709	38,1885252	43,8453794
2,1	5,45116328	21,1269674	26,7838216	32,4406759	38,0975301	43,7543844
2,2	5,25764236	21,0381652	26,6950195	32,3518737	38,008728	43,6655822
2,3	5,07530671	20,9514528	26,608307	32,2651613	37,9220155	43,5788698
2,4	4,90327173	20,8667338	26,5235881	32,1804423	37,8372966	43,4941508
2,5	4,74074074	20,7839189	26,4407731	32,0976274	37,7544816	43,4113359
2,6	4,5869946	20,7029242	26,3597784	32,0166327	37,6734869	43,3303412
2,7	4,44138263	20,6236714	26,2805257	31,9373799	37,5942342	43,2510884
2,8	4,30331483	20,5460873	26,2029415	31,8597958	37,51665	43,1735043
2,9	4,17225512	20,4701029	26,1269572	31,7838114	37,4406656	43,0975199
3	4,04771541	20,3956537	26,0525079	31,7093622	37,3662164	43,0230707

Tableau 2.1 : Valeurs de C/\sqrt{g} pour $\varepsilon/b=0$

Figure 2.1: Variation de C/\sqrt{g} en fonction de η , pour $\varepsilon/b=0$. (Ecoulement lisse)

La figure 2.1 montre clairement que pour un nombre de *Reynolds* modifié R^* fixé, le coefficient C/\sqrt{g} augmente au fur et à mesure que le paramètre de forme η diminue. Cela signifie que pour un canal donné dont la largeur *b* est connue, le coefficient C/\sqrt{g} augmente lorsque la profondeur de l'écoulement y_n augmente. Nous pouvons également constater que pour un paramètre de forme η fixé, le coefficient C/\sqrt{g} augmente avec l'accroissement du nombre de *Reynolds* modifié R^* .

ε / b =	$=10^{-4}$	$R^* = 10^4$	$R^* = 10^5$	$R^* = 10^6$	$R^* = 10^7$	$R^* = 10^8$
η	$arphi(\eta)$	C/\sqrt{g}	C/\sqrt{g}	C/\sqrt{g}	C/\sqrt{g}	C/\sqrt{g}
0	16	23,2929741	26,6068903	27,4321645	27,5322566	27,5424938
0,1	14,8708583	23,1236938	26,4678668	27,30961	27,4121115	27,4226009
0,2	13,8685468	22,9620944	26,3350145	27,1926987	27,2975503	27,3082858
0,3	12,9739799	22,8075041	26,2077953	27,0809304	27,1880763	27,1990525
0,4	12,1716124	22,6593356	26,0857391	26,9738682	27,0832567	27,0944683
0,5	11,448668	22,517073	25,9684326	26,8711291	26,9827113	26,9941535
0,6	10,7945602	22,3802601	25,8555107	26,7723748	26,8861051	26,8977731
0,7	10,20045	22,248492	25,7466492	26,6773054	26,7931405	26,8050302
0,8	9,65890577	22,1214073	25,6415589	26,5856536	26,7035528	26,71566
0,9	9,16363916	21,9986823	25,5399804	26,4971804	26,617105	26,6294258
1	8,70929686	21,8800258	25,4416809	26,4116709	26,5335843	26,5461151
1,1	8,2912963	21,765175	25,3464496	26,3289312	26,4527986	26,4655359
1,2	7,90569415	21,6538917	25,2540961	26,2487862	26,3745744	26,3875149
1,3	7,54908067	21,5459595	25,1644469	26,1710767	26,2987541	26,3118945
1,4	7,21849401	21,4411814	25,0773442	26,0956576	26,2251942	26,2385315
1,5	6,91135036	21,3393769	24,9926436	26,0223968	26,1537636	26,167295
1,6	6,6253866	21,2403811	24,9102126	25,951173	26,0843423	26,0980651
1,7	6,35861295	21,144042	24,8299298	25,8818749	26,0168204	26,0307318
1,8	6,10927369	21,05022	24,7516831	25,8144003	25,9510966	25,965194
1,9	5,87581435	20,9587861	24,675369	25,7486548	25,8870774	25,9013585
2	5,65685425	20,8696211	24,600892	25,684551	25,8246766	25,8391389
2,1	5,45116328	20,7826144	24,5281634	25,6220084	25,7638142	25,7784555
2,2	5,25764236	20,6976635	24,4571009	25,5609518	25,7044161	25,7192343
2,3	5,07530671	20,6146727	24,3876278	25,5013117	25,6464136	25,6614065
2,4	4,90327173	20,5335533	24,3196729	25,4430231	25,5897423	25,6049079

Tableau 2.2 : Valeurs de C / \sqrt{g} pour $\varepsilon / b = 10^{-4}$

2,5	4,74074074	20,4542222	24,2531693	25,3860256	25,5343425	25,5496788
2,6	4,5869946	20,3766018	24,188055	25,3302626	25,4801583	25,4956634
2,7	4,44138263	20,3006196	24,1242714	25,2756813	25,4271375	25,4428096
2,8	4,30331483	20,2262073	24,0617638	25,2222321	25,375231	25,3910683
2,9	4,17225512	20,1533012	24,000481	25,1698685	25,324393	25,3403938
3	4,04771541	20,0818411	23,9403746	25,1185468	25,2745803	25,2907429

Figure 2.2: Variation de C / \sqrt{g} en fonction de η , pour $\varepsilon / b = 10^{-4}$. Les courbes se confondent pour $R^* \ge 10^7$.

Il ressort de la figure 2.2 que pour une valeur fixée du nombre de *Reynolds* modifié R^* , le coefficient C/\sqrt{g} augmente avec la diminution du paramètre de forme η , comme dans le cas de la figure 2.1. Nous pouvons également observer que pour un paramètre de forme η donné, le coefficient C/\sqrt{g} augmente avec le nombre de *Reynolds* modifié R^* . Ce qui ressort de particulier de la figure 2.2, c'est le fait qu'au-delà de $R^* = 10^7$ les courbes de variation du coefficient C/\sqrt{g} se confondent. Cela signifie qu'à partir de la valeur $R^* = 10^7$, le nombre de *Reynolds* modifié R^* n'a aucune influence sur la variation du coefficient C/\sqrt{g} et le régime d'écoulement turbulent rugueux est alors atteint. En d'autres termes, il n'y a plus aucune influence de la viscosité cinématique ν au-delà de $R^* = 10^7$.

<i>ε / b</i> :	$=10^{-3}$	$R^* = 10^4$	$R^* = 10^5$	$R^* = 10^6$	$R^* = 10^7$	$R^* = 10^8$
η	$arphi(\eta)$	C/\sqrt{g}	C/\sqrt{g}	C/\sqrt{g}	C/\sqrt{g}	C/\sqrt{g}
0	16	20,9500361	21,7753102	21,8754024	21,8856396	21,8866656
0,1	14,8708583	20,8110126	21,6527557	21,7552573	21,7657466	21,766798
0,2	13,8685468	20,6781603	21,5358445	21,640696	21,6514315	21,6525077
0,3	12,9739799	20,5509411	21,4240761	21,5312221	21,5421982	21,5432985
0,4	12,1716124	20,4288848	21,317014	21,4264024	21,437614	21,438738
0,5	11,448668	20,3115783	21,2142748	21,3258571	21,3372992	21,3384464
0,6	10,7945602	20,1986564	21,1155205	21,2292508	21,2409189	21,2420887
0,7	10,20045	20,089795	21,0204511	21,1362862	21,1481759	21,149368
0,8	9,65890577	19,9847046	20,9287994	21,0466986	21,0588057	21,0600197
0,9	9,16363916	19,8831262	20,8403261	20,9602508	20,9725716	20,9738071
1	8,70929686	19,7848266	20,7548166	20,87673	20,8892608	20,8905174
1,1	8,2912963	19,6895954	20,672077	20,7959444	20,8086817	20,809959
1,2	7,90569415	19,5972418	20,591932	20,7177202	20,7306606	20,7319584
1,3	7,54908067	19,5075927	20,5142224	20,6418999	20,6550403	20,6563582
1,4	7,21849401	19,42049	20,4388034	20,5683399	20,5816773	20,583015
1,5	6,91135036	19,3357893	20,3655426	20,4969093	20,5104407	20,511798
1,6	6,6253866	19,2533584	20,2943187	20,4274881	20,4412108	20,4425873
1,7	6,35861295	19,1730756	20,2250207	20,3599662	20,3738776	20,375273
1,8	6,10927369	19,0948288	20,1575461	20,2942423	20,3083398	20,309754
1,9	5,87581435	19,0185148	20,0918005	20,2302231	20,2445042	20,2459369
2	5,65685425	18,9440378	20,0276968	20,1678223	20,1822847	20,1837356
2,1	5,45116328	18,8713092	19,9651541	20,1069599	20,1216013	20,1230702
2,2	5,25764236	18,8002466	19,9040976	20,0475619	20,0623801	20,0638668
2,3	5,07530671	18,7307736	19,8444574	19,9895593	20,0045522	20,0060565
2,4	4,90327173	18,6628186	19,7861689	19,932888	19,9480536	19,9495753
2,5	4,74074074	18,5963151	19,7291714	19,8774882	19,8928245	19,8943634
2,6	4,5869946	18,5312007	19,6734084	19,8233041	19,8388092	19,8403651
2,7	4,44138263	18,4674171	19,6188271	19,7702832	19,7859553	19,787528
2,8	4,30331483	18,4049096	19,5653779	19,7183768	19,7342141	19,7358034
2,9	4,17225512	18,3436268	19,5130142	19,6675388	19,6835395	19,6851454
3	4,04771541	18,2835203	19,4616926	19,6177261	19,6338886	19,6355107

Tableau 2.3 : Valeurs de C / \sqrt{g} pour $\varepsilon / b = 10^{-3}$

Figure 2.3 : Variation de C / \sqrt{g} en fonction de η , pour $\varepsilon / b = 10^{-3}$. Les courbes se confondent pour $R^* \ge 10^6$.

Comme dans le cas des figures 2.1 et 2.2, il ressort de la figure 2.3 que pour une même valeur du nombre de *Reynolds* modifié R^* , le coefficient C/\sqrt{g} augmente au fur et à mesure que le paramètre de forme η diminue. Ceci signifie que le coefficient C/\sqrt{g} augmente lorsque la profondeur y_n de l'écoulement augmente. Nous pouvons également observer que pour un paramètre de forme η fixé, le coefficient C/\sqrt{g} augmente avec le nombre de *Reynolds* modifié R^* . Pour la valeur de la rugosité relative $\varepsilon/b = 10^{-3}$, les courbes de variation du coefficient C/\sqrt{g} se confondent à partir de la valeur $R^* = 10^6$. L'écoulement turbulent est atteint plus tôt que dans le cas des courbes des figures 2.1 et 2.2. Cela peut se justifier par le fait que plus la rugosité relative ε/b augmente et plus le régime d'écoulement turbulent rugueux est atteint rapidement.

Une conclusion peut être tirée au regard des tableaux 2.1, 2.2 et 2.3 et même des figure 2.1, 2.2 et 2.3, c'est que plus la rugosité relative ε/b augmente et plus le coefficient C/\sqrt{g} diminue, quelle que soit la valeur du nombre de *Reynolds* modifié R^* .

II.4. Calcul du paramètre de forme η

Selon la relation fonctionnelle (2.17), pour évaluer le coefficient de *Chézy C*, il est nécessaire de connaître le paramètre de forme η . Rappelons que les données du problème sont le débit volume Q, la largeur b du canal, la pente i du canal, la rugosité absolue ε caractérisant l'état de la paroi interne du canal et la viscosité cinématique ν du liquide en écoulement. Pour calculer le paramètre de forme η , nous pouvons faire appel à la méthode du modèle rugueux (MMR).

Les caractéristiques du modèle rugueux sont affectés du symbole « - ». Le modèle rugueux est un canal de forme rectangulaire caractérisée par une rugosité relative $\overline{\varepsilon} / \overline{D_h} = 0,037$ arbitrairement choisie, où $\overline{D_h}$ désigne le diamètre hydraulique. La rugosité relative ainsi choisie est tellement élevée que l'écoulement dans le modèle rugueux se situe dans le domaine turbulent rugueux. Pour ce domaine, la formule de *Nikuradsé* demeure en vigueur et nous pouvons alors écrire que :

$$\overline{f}^{-1/2} = -2\log\left(\frac{\overline{\varepsilon}/\overline{D_h}}{3,7}\right)$$
(2.18)

 \overline{f} est le coefficient de frottement dans le modèle rugueux. Compte du fait que la rugosité relative $\overline{\varepsilon} / \overline{D_h}$ est $\overline{\varepsilon} / \overline{D_h} = 0,037$, la relation (2.18) mène à :

$$\overline{f} = \frac{1}{16} \tag{2.19}$$

Ainsi, le coefficient de frottement dans le modèle rugueux est une constante. Ceci était prévisible puisque l'écoulement dans le modèle rugueux est turbulent rugueux.

Considérons un modèle rugueux dont le débit volume \overline{Q} est égal au débit volume Q écoulé par le canal rectangulaire étudié. Admettons également que la pente \overline{i} du modèle rugueux est

égale à la pente *i* du canal rectangulaire étudié. Admettons enfin que la largeur \overline{b} du modèle rugueux est égale à la larguer *b* du canal considéré. Nous pouvons alors écrire les égalités suivantes :

$$\overline{Q} = Q$$
, $\overline{i} = i$, $\overline{b} = b$
(2.20)

Rappelons que la relation de Darcy-Weisbach exprime la pente i du canal sous la forme suivante :

$$i = \frac{f}{D_h} \frac{Q^2}{2gA^2}$$
(2.21)

Où *f* est le coefficient de frottement dans le canal rectangulaire étudié. Appliquons la relation (2.21) au modèle rugueux, en tenant compte des égalités (2.20). Il vient que :

$$i = \frac{\overline{f}}{\overline{D_h}} \frac{Q^2}{2g\overline{A}^2}$$
(2.22)

Dans cette dernière relation, le diamètre hydraulique $\overline{D_h}$ est par définition $\overline{D_h} = 4\overline{A}/\overline{P}$, où \overline{P} est le périmètre mouillé dans le modèle rugueux. En introduisant la définition du diamètre hydraulique $\overline{D_h}$ dans la relation (2.22) et en tenant compte de la relation (2.19), nous pouvons écrire que :

$$i = \frac{1}{128g} \overline{P} \frac{Q^2}{\overline{A}^3}$$
(2.23)

L'aire de la section mouillée \overline{A} et le périmètre mouillé \overline{P} s'écrivent respectivement :

$$\overline{A} = b \overline{y_n} \tag{2.24}$$

$$\overline{P} = b + 2\overline{y_n} \tag{2.25}$$

Dans les relations (2.24) et (2.25), $\overline{y_n}$ désigne la profondeur normale de l'écoulement dans le modèle rugueux. En substituant les relations (2.24) et (2.25) dans la relation (2.23), il vient que :

$$i = \frac{1}{128g} \left(b + 2\overline{y_n} \right) \frac{Q^2}{b^3 \overline{y_n}^3}$$
(2.26)

Cette dernière relation peut s'écrire sous la forme suivante :

$$i = \frac{1}{128g} b \left(1 + 2\frac{\overline{y_n}}{b} \right) \frac{Q^2}{b^6 \left(\frac{\overline{y_n}}{b}\right)^3}$$
(2.27)

Définissons le paramètre de forme $\overline{\eta_0} = \overline{y_n} / b$ pour le modèle rugueux. La relation (2.27) s'écrit alors :

$$i = \frac{1}{128g} \left(1 + 2\overline{\eta_0} \right) \frac{Q^2}{b^5 \overline{\eta_0}^3}$$
(2.28)

La relation (2.28) peut également s'écrire sous la forme suivante :

$$1 = \frac{1}{128} \frac{\left(1 + 2\overline{\eta_0}\right)}{\overline{\eta_0}^3} \left(\frac{Q^2}{gib^5}\right)$$
(2.29)

Désignons par la quantité $Q_b^* = Q/\sqrt{gib^5}$, la conductivité relative du modèle rugueux rapportée à la largeur *b*. Elle est égale à la conductivité relative du canal rectangulaire étudié. Ainsi, et après réarrangements, la relation (2.29) devient :

$$\overline{\eta_0}^3 - \frac{Q_b^{*2}}{64} \overline{\eta_0} - \frac{Q_b^{*2}}{128} = 0$$
(2.30)

On obtient ainsi que équation du troisième degré en $\overline{\eta_0}$, sans terme de second ordre. Dans la relation (2.30), la conductivité relative Q_b^* est connue, puisque Q, i, g et b sont des paramètres donnés. Pour résoudre l'équation de troisième degré (2.30), nous pouvons faire appel aux fonctions trigonométriques ou hyperboliques.

La relation (2.30) est de la forme :

$$x^3 - px - q = 0 (2.31)$$

Avec:
$$p = \frac{Q_b^{*2}}{64}$$
 et $q = \frac{Q_b^{*2}}{128}$

Le discriminant Δ de la relation (2.31) est donné par la relation :

$$\Delta = \left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3 \tag{2.32}$$

Après calculs, le discriminant Δ s'écrit :

$$\Delta = \left(\frac{Q_b^*}{16}\right)^4 \left(1 - \frac{Q_b^*}{6\sqrt{3}}\right) \left(1 + \frac{Q_b^*}{6\sqrt{3}}\right)$$
(2.33)

Nous pouvons ainsi constater que le discriminant Δ peut être négatif, nul ou positif selon la valeur de la conductivité relative Q_b^* . Ainsi :

i. Lorsque $Q_b^* \ge 6\sqrt{3}$, il vient que $\Delta \le 0$ et la racine réelle de l'équation est :

$$\overline{\eta_0} = \frac{Q_b^*}{4\sqrt{3}} \cos\left(\beta / 3\right) \tag{2.34}$$

où l'angle β est tel que :

$$\cos\left(\beta\right) = \frac{6\sqrt{3}}{Q_b^*} \tag{2.35}$$

ii. Lorsque $Q_b^* \le 6\sqrt{3}$, il vient que $\Delta \ge 0$ et la racine réelle de l'équation est :

$$\overline{\eta_0} = \left(\frac{\underline{Q}_b^{*2}}{256}\right)^{1/3} \left[\left(1 + \sqrt{1 - \frac{\underline{Q}_b^{*2}}{108}}\right)^{1/3} + \left(1 - \sqrt{1 - \frac{\underline{Q}_b^{*2}}{108}}\right)^{1/3} \right]$$
(2.36)

Une fois calculé le paramètre de forme $\overline{\eta_0}$ par l'une des relations (2.34) ou (2.36), selon le signe du discriminant Δ dépendant de la valeur de la conductivité relative Q_b^* , les étapes suivantes indiquent la procédure de calcul du paramètre de forme η , selon la MMR. Nous rappelons que les paramètres connus du problème sont Q, b, i, ε et ν .

i. Avec la valeur calculée de $\overline{\eta_0}$, on détermine la valeur de l'aire de la section mouillée \overline{A} , du périmètre mouillé \overline{P} de l'écoulement dans le modèle rugueux, du diamètre hydraulique $\overline{D_h}$ et celle du nombre de *Reynolds* \overline{R} , selon les relations suivantes :

$$\overline{A} = b\overline{y_n} = b^2 \overline{\eta_0}$$
(2.37)

$$\overline{P} = b + 2\overline{y_n} = b\left(1 + 2\overline{\eta_0}\right) \tag{2.38}$$

$$\overline{D_h} = 4\overline{A} / \overline{P} \tag{2.39}$$

$$\overline{R} = \frac{4Q}{\overline{P}\nu}$$
(2.40)

ii. Avec la valeur donnée de la rugosité absolue ε et la valeur calculée du diamètre hydraulique $\overline{D_h}$ et celle du nombre de *Reynolds* \overline{R} , on détermine la valeur du facteur de correction des dimensions linéaires ψ en application de la relation suivante :

$$\psi = 1,35 \left[-\log \left(\frac{\varepsilon / \overline{D_h}}{4,75} + \frac{8,5}{\overline{R}} \right) \right]^{-2/5}$$
 (2.41)

iii. On affecte au modèle rugueux la nouvelle dimension linéaire suivante, issue de la relation fondamentale de la MMR :

$$\overline{b} = b / \psi$$

iv. Avec la nouvelle dimension linéaire calculée à l'étape iii, on détermine la nouvelle

valeur de la conductivité relative selon la relation suivante :

$$Q_b^* = \frac{Q}{\sqrt{gi(b/\psi)^5}}$$
(2.42)

v. Avec cette nouvelle valeur de la conductivité relative, on calcule le paramètre de forme $\overline{\eta_0}$ par application de l'une des relations (2.34) ou (2.36), selon le signe du discriminant Δ . Cette valeur calculée de $\overline{\eta_0}$ correspond à la valeur du paramètre de forme $\eta_0 = y_n / b$ de l'écoulement dans le canal rectangulaire étudié. Soit :

$$\overline{\eta_0} = \eta_0 \tag{2.43}$$

vi. Finalement le paramètre de forme $\eta = b / y_n$ recherché est tel que :

$$\eta = \frac{1}{\eta_0} \tag{2.44}$$

II.5. Etapes de calcul du coefficient C de Chézy

Pour calculer le coefficient *C* de *Chézy*, il est nécessaire que les paramètres suivants soient connus : le débit volume *Q*, la pente *i* du canal, la rugosité absolue ε , la largeur *b* du canal, la viscosité cinématique ν du liquide en écoulement et l'accélération de la pesanteur *g*. Avec ces paramètres connus, le paramètre de forme η est déduit, selon les étapes de calcul précédemment présentées. C'est la relation (2.16) qui régit le coefficient *C* de *Chézy* et selon cette relation, les étapes suivantes sont recommandées pour le calcul de *C* :

- *i*. On calcule le paramètre de forme η en suivant les étapes indiquées lors du paragraphe précédent.
- *ii.* Avec la valeur ainsi calculée de η , on calcule la valeur de la fonction $\varphi(\eta)$ en application de la relation (2.8). Soit :

$$\varphi(\eta) = \frac{32\sqrt{2}}{\left(\eta+2\right)^{3/2}}$$

- *iii.* On détermine la valeur de la rugosité relative ε/b .
- *iv.* On calcule la valeur du nombre de *Reynolds* modifié R^* selon la relation (2.9). Soit :

$$R^* = \frac{\sqrt{gib^3}}{V}$$

v. Finalement, le coefficient C de Chézy est déduit de la relation (2.16). Soit :

$$C = -4\sqrt{2g} \log \left[\frac{\varepsilon/b}{1,165[\varphi(\eta)]^{2/3}} + \frac{10,04}{R^*\varphi(\eta)} \right]$$

II.6. Exemple de calcul du coefficient C de Chézy

On souhaite calculer la valeur du coefficient C de Chézy pour le cas d'un canal rectangulaire, connaissant les données suivantes :

 $Q = 3,861m^3 / s$, b = 2m, $\varepsilon = 0,001m$, i = 0,001, $v = 10^{-6}m^2 / s$.

1. On calcule la conductivité relative Q_b^* telle que :

$$Q_b^* = Q / \sqrt{gib^5} = 3,861 / \sqrt{9,81 \times 0,001 \times 2^5} = 6,89112787$$

On peut constater que $Q_b^* < 6\sqrt{3} = 10,3923048$.

2. Conformément à la relation (2.33), le discriminant Δ de l'équation de troisième degré (2.30) est positif. Le paramètre de forme $\overline{\eta_0}$ est donc régi par la relation (2.36). Soit :

$$\overline{\eta_0} = \left(\frac{Q_b^{*2}}{256}\right)^{1/3} \left[\left(1 + \sqrt{1 - \frac{Q_b^{*2}}{108}}\right)^{1/3} + \left(1 - \sqrt{1 - \frac{Q_b^{*2}}{108}}\right)^{1/3} \right]$$
$$= \left(\frac{6,89112787^2}{256}\right)^{1/3} \times \left[\left(1 + \sqrt{1 - \frac{6,89112787^2}{108}}\right)^{1/3} + \left(1 - \sqrt{1 - \frac{6,89112787^2}{108}}\right)^{1/3} \right]$$

- =1,047052833
- 3. Avec la valeur ainsi calculée du paramètre de forme $\overline{\eta_0}$, les caractéristiques hydrauliques du modèle rugueux sont :
 - L'Aire de la section mouillée \overline{A} , donnée par la relation (2.37). Soit :

$$\overline{A} = b^2 \overline{\eta_0} = 2^2 \times 1,047052833 = 4,18821133m^2$$

Le périmètre mouillé \overline{P} , donné par la relation (2.38). Soit :

$$\overline{P} = b\left(1 + 2\overline{\eta_0}\right) = 2 \times \left(1 + 2 \times 1,047052833\right) = 6,18821133m$$

Le diamètre hydraulique $\overline{D_h}$, donné par la relation (2.39). Soit :

$$\overline{D_h} = 4\overline{A} / \overline{P} = 4 \times 4,18821133 / 6,19011332 = 2,70721933m$$

Le nombre de *Reynolds* \overline{R} , donné par la relation (2.39). Soit :

$$\overline{R} = \frac{4Q}{\overline{P}\nu} = \frac{4\times3,861}{6,19011332\times10^{-6}} = 2495713,09$$

4. Les caractéristiques hydrauliques du modèle rugueux ainsi calculées permettent de déterminer le facteur de correction des dimensions linéaires ψ , selon la relation (2.41). Soit :

$$\psi = 1,35 \left[-\log\left(\frac{\varepsilon / \overline{D_h}}{4,75} + \frac{8,5}{\overline{R}}\right) \right]^{-2/5}$$

$$=1,35\times\left[-\log\left(\frac{0,001/2,7063875}{4,75}+\frac{8,5}{2494946,25}\right)\right]^{-2/5}=0,76845584$$

5. Affectons au modèle rugueux la nouvelle dimension linéaire suivante :

$$b = b/\psi = 2/0,76845584 = 2,60262191m$$

6. Avec cette nouvelle dimension linéaire, calculons la conductivité relative selon la relation (2.42). Soit :

$$Q_b^* = \frac{Q}{\sqrt{gi(b/\psi)^5}} = \frac{3,861}{\sqrt{9,81 \times 0,001 \times 2,60262191^5}} = 3,56728326$$

7. Nous pouvons constater que la valeur de la conductivité relative ainsi calculée est inférieure à $6\sqrt{3} = 10,3923048$. Ceci permet de conclure que le paramètre de forme $\overline{\eta_0}$ est régi par la relation (2.36). Soit :

$$\overline{\eta_0} = \left(\frac{Q_b^{*2}}{256}\right)^{1/3} \left[\left(1 + \sqrt{1 - \frac{Q_b^{*2}}{108}}\right)^{1/3} + \left(1 - \sqrt{1 - \frac{Q_b^{*2}}{108}}\right)^{1/3} \right]$$
$$= \left(\frac{3,56728326^2}{256}\right)^{1/3} \times \left[\left(1 + \sqrt{1 - \frac{3,56728326^2}{108}}\right)^{1/3} + \left(1 - \sqrt{1 - \frac{3,56728326^2}{108}}\right)^{1/3} \right]$$

= 0,603067235

Cette valeur calculée du paramètre de forme $\overline{\eta_0}$ correspond exactement au paramètre de forme η_0 de l'écoulement dans le canal rectangulaire étudié. Soit :

 $\eta_0 = y_n / b = 0,603067235$

8. Le paramètre de forme $\eta = b / y_n$ est donc :

$$\eta = \frac{1}{\eta_0} = \frac{1}{0,603067235} = 1,6581899$$

9. Selon la relation (2.8), la fonction $\varphi(\eta)$ est telle que :

$$\varphi(\eta) = \frac{32\sqrt{2}}{(\eta+2)^{3/2}} = \frac{32\times\sqrt{2}}{(1,6581899+2)^{3/2}} = 6,46793439$$

- 10. La valeur de la rugosité relative ε/b est : $\varepsilon/b = 0,001/2 = 0,0005$
- 11. La valeur du nombre de *Reynolds* modifié R^* est, selon la relation (2.9) :

$$R^* = \frac{\sqrt{gib^3}}{\nu} = \frac{\sqrt{9,81 \times 0,001 \times 2^3}}{10^{-6}} = 280142,821$$

12. Finalement, la valeur recherchée du coefficient C de Chézy est, selon la relation

(2.16):

$$C = -4\sqrt{2g} \log \left[\frac{\varepsilon/b}{1,165[\varphi(\eta)]^{2/3}} + \frac{10,04}{R^*\varphi(\eta)} \right]$$
$$= -4 \times \sqrt{2 \times 9,81} \times \log \left[\frac{0,0005}{1,165 \times 6,46793439^{2/3}} + \frac{10,04}{280142,821 \times 6,46793439} \right]$$
$$= 68,9013858 \approx 69m^{0.5} / s$$

13. Vérifions la valeur ainsi calculée de *C* par celle issue de la MMR. Selon la MMR, le coefficient *C* de *Chézy* est donné par la relation suivante :

$$C = \frac{8\sqrt{2g}}{\psi^{5/2}}$$
(2.45)

Le facteur de correction des dimensions linéaires ψ a été calculé à l'étape 4 et vaut :

 $\psi = 0,76845584$

,

Le coefficient C de Chézy est par suite, selon la relation (2.45) :

$$C = \frac{8\sqrt{2g}}{\psi^{5/2}} = \frac{8 \times \sqrt{2 \times 9.81}}{0.76845584^{5/2}} = 68,4529552m^{0.5} / s \approx 68,5m^{0.5} / s$$

Ainsi, nous pouvons constater que l'écart relatif entre les valeurs de C calculées selon la méthode que nous avons présentée et la MMR est de :

$$\frac{\Delta C}{C} = 100 \times \frac{(68,9013858 - 68,4529552)}{68,9013858} = 0,65\%$$

Nous pouvons alors conclure, tenant compte du faible écart relatif obtenu, que les deux méthodes aboutissent pratiquement au même résultat

II.7. Expression du coefficient adimensionnel de Manning dans un canal rectangulaire

La relation de *Manning* exprime le débit volume Q écoulé par le canal par la relation suivante :

$$Q = \frac{1}{n} A R_h^{2/3} \sqrt{i}$$
(2.46)

Où *n* désigne le coefficient de *Manning*.

En comparant la relation (2.46) à la relation générale du débit volume exprimée par (2.1), nous pouvons déduire que :

$$\frac{1}{n} = -4\sqrt{2g}R_h^{-1/6}\log\left(\frac{\varepsilon}{14,8R_h} + \frac{10,04}{R}\right)$$
(2.47)

Le nombre de *Reynolds R* est, pour rappel, donné par la relation (2.10), tandis que le Rayon hydraulique R_h est donné par la relation (2.6). La relation (2.47) montre bien que le coefficient n de *Manning* est fonction de la rugosité absolue ε , du nombre de *Reynolds R* et du rayon hydraulique R_h . Cette dépendance de n vis-à-vis de R_h traduit bien le fait que n varie en fonction du paramètre de forme η de la section mouillée du canal.

En introduisant la fonction $\varphi(\eta)$, donnée par la relation (2.8), dans l'expression du rayon hydraulique R_{i} exprimée par (2.6), nous pouvons écrire :

$$R_{h} = b \frac{\left[\varphi(\eta)\right]^{2/3}}{\left(32\sqrt{2}\right)^{2/3}}$$
(2.48)

En remplaçant les relations (2.10) et (2.48), qui expriment le nombre de *Reynolds R* et le rayon hydraulique R_h respectivement, dans la relation (2.47), il vient que :

$$\frac{1}{n} = -\frac{4}{\left(32\sqrt{2}\right)^{-1/9}} \sqrt{2g} \, b^{-1/6} \left[\varphi(\eta)\right]^{-1/9} \log\left(\frac{\varepsilon/b}{\frac{14,8}{\left(32\sqrt{2}\right)^{2/3}} \left[\varphi(\eta)\right]^{2/3}} + \frac{10,04}{R^*\varphi(\eta)}\right)$$
(2.49)

Après calculs, la relation (2.49) s'écrit en définitive :

$$\frac{1}{n} = -8,64\sqrt{g} \, b^{-1/6} \left[\varphi(\eta) \right]^{-1/9} \log \left(\frac{\varepsilon/b}{1,165 \left[\varphi(\eta) \right]^{2/3}} + \frac{10,04}{R^* \varphi(\eta)} \right)$$
(2.50)

Introduisons le paramètre adimensionnel suivant :

$$N = \frac{b^{1/6}}{n\sqrt{g}} \tag{2.51}$$

La relation (2.50) s'écrit alors, en termes adimensionnels, de la manière suivante :

$$N = -8.64 \left[\varphi(\eta)\right]^{-1/9} \log\left(\frac{\varepsilon/b}{1.165 \left[\varphi(\eta)\right]^{2/3}} + \frac{10.04}{R^* \varphi(\eta)}\right)$$
(2.52)

La relation (2.52) constitue l'expression finale du coefficient adimensionnel N de *Manning*. Lorsque les paramètres η , ε , b, i et v sont connus, la relation (2.50) ou (2.52) permet d'évaluer le coefficient n de *Manning*. Au regard de la relation (2.52), nous pouvons écrire la relation fonctionnelle suivante :

$$N = f\left(\varepsilon / b; \eta; R^*\right) \tag{2.53}$$

II.8. Variation du nombre adimensionnel *N* de *Manning*

Les tableaux suivants donnent la valeur du paramètre adimensionnel N, pour des valeurs fixées de la rugosité relative ε/b et en faisant varier le nombre de *Reynolds* modifié R^* . Endessous de chaque tableau, nous avons présenté la variation de N en fonction du paramètre de forme η et chacune des courbes obtenues est discutée.

ε/b	p = 0	$R^* = 10^4$	$R^* = 10^5$	$R^* = 10^6$	$R^* = 10^7$	$R^* = 10^8$
η	$arphi(\eta)$	Ν	Ν	Ν	Ν	Ν
0	16	26,7128956	33,0694973	39,426099	45,7827007	52,1393023
0,1	14,8708583	26,7273148	33,1358171	39,5443195	45,9528218	52,3613242
0,2	13,8685468	26,7396243	33,198007	39,6563898	46,1147725	52,5731552
0,3	12,9739799	26,750053	33,2564612	39,7628693	46,2692775	52,7756857
0,4	12,1716124	26,7587979	33,3115218	39,8642458	46,4169697	52,9696937
0,5	11,448668	26,7660293	33,3634878	39,9609463	46,5584048	53,1558633
0,6	10,7945602	26,7718956	33,4126216	40,0533475	46,6940734	53,3347994
0,7	10,20045	26,7765264	33,4591546	40,1417827	46,8244108	53,5070389
0,8	9,65890577	26,7800358	33,5032922	40,2265485	46,9498049	53,6730612
0,9	9,16363916	26,7825244	33,5452173	40,3079101	47,070603	53,8332959
1	8,70929686	26,7840813	33,5850933	40,3861053	47,1871173	53,9881293
1,1	8,2912963	26,784786	33,6230671	40,4613482	47,2996293	54,1379104
1,2	7,90569415	26,7847094	33,6592708	40,5338322	47,4083936	54,282955
1,3	7,54908067	26,783915	33,6938239	40,6037328	47,5136417	54,4235506
1,4	7,21849401	26,7824598	33,7268345	40,6712093	47,6155841	54,5599589
1,5	6,91135036	26,7803952	33,7584013	40,7364073	47,7144133	54,6924193
1,6	6,6253866	26,7777679	33,7886137	40,7994595	47,8103053	54,8211512
1,7	6,35861295	26,7746199	33,817554	40,860488	47,903422	54,946356
1,8	6,10927369	26,7709896	33,845297	40,9196045	47,993912	55,0682195
1,9	5,87581435	26,7669117	33,871912	40,9769123	48,0819126	55,1869129
2	5,65685425	26,7624181	33,8974622	41,0325064	48,1675505	55,3025946
2,1	5,45116328	26,7575378	33,9220063	41,0864747	48,2509432	55,4154117
2,2	5,25764236	26,7522976	33,9455983	41,138899	48,3321996	55,5255003
2,3	5,07530671	26,7467218	33,9682882	41,1898546	48,411421	55,6329874
2,4	4,90327173	26,740833	33,9901226	41,2394121	48,4887016	55,7379911
2,5	4,74074074	26,7346519	34,0111444	41,2876369	48,5641293	55,8406218
2,6	4,5869946	26,7281976	34,0313938	41,3345901	48,6377863	55,9409826
2,7	4,44138263	26,7214877	34,0509083	41,3803288	48,7097494	56,0391699
2,8	4,30331483	26,7145386	34,0697225	41,4249065	48,7800904	56,1352744
2,9	4,17225512	26,7073654	34,0878693	41,4683732	48,8488771	56,2293809
3	4,04771541	26,6999823	34,1053791	41,5107758	48,9161726	56,3215694
3,1	3,92925045	26,6924021	34,1222804	41,5521586	48,9820368	56,411915
3,2	3,81645337	26,6846372	34,1386	41,5925629	49,0465257	56,5004885
3,3	3,70895165	26,6766987	34,1543633	41,6320278	49,1096923	56,5873568
3,4	3,60640367	26,6685973	34,1695938	41,6705902	49,1715866	56,6725831
3,5	3,50849565	26,6603428	34,1843138	41,7082848	49,2322559	56,7562269
3,6	3,41493888	26,6519444	34,1985445	41,7451446	49,2917447	56,8383448
3,7	3,32546738	26,6434106	34,2123055	41,7812004	49,3500953	56,9189902
3,8	3,23983569	26,6347496	34,2256157	41,8164818	49,4073479	56,998214
3,9	3,157817	26,6259688	34,2384927	41,8510166	49,4635405	57,0760643

Tableau 2.4 : Valeurs du paramètre N calculées selon la relation (2.52)

4	3,07920144	26,6170755	34,2509533	41,8848312	49,518709	57,1525869
4,1	3,00379454	26,6080761	34,2630134	41,9179507	49,572888	57,2278253
4,2	2,93141592	26,5989769	34,2746879	41,9503989	49,6261099	57,3018209
4,3	2,86189801	26,5897839	34,2859912	41,9821985	49,6784058	57,3746131
4,4	2,79508497	26,5805025	34,2969368	42,0133711	49,7298054	57,4462396
4,5	2,73083174	26,571138	34,3075376	42,0439371	49,7803367	57,5167362
4,6	2,66900307	26,5616952	34,3178057	42,0739162	49,8300267	57,5861372
4,7	2,60947279	26,5521787	34,3277529	42,103327	49,8789011	57,6544753
4,8	2,55212303	26,542593	34,3373902	42,1321873	49,9269845	57,7217816
4,9	2,4968436	26,5329421	34,3467281	42,1605142	49,9743002	57,7880862
5	2,44353135	26,5232299	34,3557769	42,1883238	50,0208707	57,8534177

Figure 2.4 : Variation de *N* en fonction de η , pour $\varepsilon/b=0$ (Ecoulement lisse)

La figure 2.4 montre clairement que pour un nombre de *Reynolds* modifié R^* fixé, le paramètre adimensionnel N augmente avec l'accroissement du paramètre de forme η . Cependant, nous pouvons constater que la courbe correspondant à $R^* = 10^4$ fait exception. En effet, pour cette valeur de R^* , la courbe subit une légère augmentation dans un premier temps, puis diminue très lentement. Mais, cette variation de N n'est pas significative et l'on peut considérer que N demeure pratiquement constant. Au fur et à mesure que R^* augmente, l'accroissement de N est plus rapide. Pour un canal rectangulaire donné, c'est-à-dire pour une largeur b connue, l'augmentation du paramètre adimensionnel N signifie que 1/n augmente ou que n diminue, lorsque le paramètre de forme $\eta = b/y_n$ augmente ou que la profondeur y_n diminue. Cette constatation est tout à fait physiquement justifiée. Nous pouvons enfin constater que pour une valeur donnée du paramètre de forme η , le paramètre adimensionnel N augmente adimensionnel N augmente adimensionnel N augmente adimensionnel N augmente adimensionnel N signifie que le coefficient n diminue au fur et à mesure de l'augmentation du nombre de *Reynolds* modifié R^* . Cela signifie que le

$\varepsilon / b = 10^{-4}$		$R^* = 10^4$	$R^* = 10^5$	$R^* = 10^6$	$R^* = 10^7$	$R^* = 10^8$
η	$arphi(\eta)$	Ν	Ν	Ν	Ν	Ν
0	16	26,1742926	29,8981371	30,8254969	30,9379703	30,9494738
0,1	14,8708583	26,1962285	29,9847547	30,9383435	31,0544648	31,0663479

Tableau 2.5 : Valeurs du paramètre N calculées selon la relation (2.52)

0,2	13,8685468	26,2156294	30,0664638	31,0456746	31,1653827	31,1776394
0,3	12,9739799	26,2327655	30,143717	31,1479807	31,2712179	31,2838425
0,4	12,1716124	26,2478694	30,2169085	31,2456897	31,3724018	31,385389
0,5	11,448668	26,2611423	30,2863833	31,3391774	31,4693132	31,4826579
0,6	10,7945602	26,27276	30,3524455	31,4287757	31,5622866	31,575984
0,7	10,20045	26,2828759	30,4153641	31,5147788	31,6516187	31,6656643
0,8	9,65890577	26,2916253	30,4753783	31,5974492	31,7375741	31,7519637
0,9	9,16363916	26,2991277	30,5327018	31,6770214	31,8203897	31,8351191
1	8,70929686	26,3054892	30,5875261	31,7537067	31,9002783	31,9153436
1,1	8,2912963	26,3108041	30,6400235	31,8276951	31,977432	31,9928295
1,2	7,90569415	26,315157	30,6903495	31,8991589	32,0520246	32,0677506
1,3	7,54908067	26,3186236	30,7386453	31,9682544	32,1242138	32,140265
1,4	7,21849401	26,321272	30,7850387	32,035124	32,1941435	32,2105165
1,5	6,91135036	26,3231637	30,8296466	32,0998975	32,2619448	32,2786365
1,6	6,6253866	26,3243545	30,8725755	32,162694	32,327738	32,3447454
1,7	6,35861295	26,3248947	30,9139231	32,2236228	32,3916335	32,4089535
1,8	6,10927369	26,3248304	30,953779	32,2827842	32,4537328	32,4713627
1,9	5,87581435	26,3242034	30,9922258	32,340271	32,5141296	32,5320667
2	5,65685425	26,3230519	31,0293394	32,3961689	32,5729105	32,591152
2,1	5,45116328	26,321411	31,0651902	32,4505569	32,6301555	32,648699
2,2	5,25764236	26,3193128	31,0998432	32,5035088	32,6859392	32,7047821
2,3	5,07530671	26,3167869	31,1333589	32,5550928	32,7403306	32,7594706
2,4	4,90327173	26,3138604	31,1657932	32,6053727	32,7933941	32,8128289
2,5	4,74074074	26,3105584	31,1971984	32,6544076	32,8451897	32,864917
2,6	4,5869946	26,3069041	31,2276231	32,702253	32,8957736	32,9157912
2,7	4,44138263	26,3029189	31,2571126	32,7489608	32,9451981	32,965504
2,8	4,30331483	26,2986227	31,2857096	32,7945795	32,9935126	33,0141046
2,9	4,17225512	26,2940339	31,3134536	32,8391547	33,040763	33,0616392
3	4,04771541	26,2891697	31,340382	32,8827291	33,0869928	33,1081512
3,1	3,92925045	26,2840459	31,3665297	32,9253429	33,1322426	33,1536813
3,2	3,81645337	26,2786775	31,3919295	32,9670341	33,1765509	33,1982681
3,3	3,70895165	26,2730783	31,4166125	33,0078383	33,2199537	33,2419477
3,4	3,60640367	26,2672612	31,4406078	33,0477893	33,2624854	33,2847543
3,5	3,50849565	26,2612383	31,4639427	33,0869188	33,3041782	33,3267202
3,6	3,41493888	26,2550209	31,4866433	33,1252569	33,3450625	33,3678761
3,7	3,32546738	26,2486196	31,508734	33,1628323	33,3851673	33,4082508
3,8	3,23983569	26,2420444	31,530238	33,1996718	33,42452	33,4478719
3,9	3,157817	26,2353046	31,5511773	33,2358012	33,4631466	33,4867652
4	3,07920144	26,2284089	31,5715726	33,2712446	33,5010717	33,5249556
4,1	3,00379454	26,2213655	31,5914437	33,3060253	33,5383189	33,5624665
4,2	2,93141592	26,2141824	31,6108092	33,3401652	33,5749103	33,5993203
4,3	2,86189801	26,2068666	31,6296871	33,3736853	33,6108673	33,6355382
4,4	2,79508497	26,1994252	31,6480941	33,4066054	33,6462101	33,6711404
4,5	2,73083174	26,1918646	31,6660464	33,4389445	33,6809579	33,7061464
4,6	2,66900307	26,1841909	31,6835592	33,4707207	33,7151292	33,7405744
4,7	2,60947279	26,17641	31,7006473	33,5019514	33,7487415	33,7744422
4,8	2,55212303	26,1685273	31,7173245	33,5326531	33,7818116	33,8077665
4,9	2,4968436	26,160548	31,733604	33,5628415	33,8143556	33,8405634
5	2,44353135	26,152477	31,7494987	33,5925318	33,8463887	33,8728483

Figure 2.5 : Variation de *N* en fonction de η , pour $\varepsilon / b = 10^{-4}$

La figure 2.5 montre, à l'exception de la courbe correspondant à $R^* = 10^4$, que le nombre adimensionnel N augmente avec l'accroissement du paramètre de forme $\eta = b/y_n$, pour un nombre de *Reynolds* modifié R^* fixé. Cela dignifie que le coefficient n diminue au fur et à mesure que la profondeur y_n de l'écoulement décroit. La courbe de $R^* = 10^4$ fait l'exception, car N augmente dans un premier temps puis diminue dans un second temps. Cependant, cette variation n'est pas très significative. La figure 2.5 montre également que les courbes se confondent lorsque le nombre de *Reynolds* modifié atteint la valeur $R^* = 10^7$. Au-delà de cette valeur, le nombre de *Reynolds* modifié R^* n'a aucune influence sur la variation du nombre N, cela signifie que la viscosité cinématique ν du liquide en écoulement ne joue aucun rôle. L'état turbulent rugueux de l'écoulement est donc atteint pour $R^* = 10^7$. Seul le paramètre de forme $\eta = b/y_n$ influence la variation de N.

ε / b =	$=10^{-3}$	$R^* = 10^4$	$R^* = 10^5$	$R^* = 10^6$	$R^* = 10^7$	$R^* = 10^8$
η	$arphi(\eta)$	Ν	Ν	Ν	Ν	Ν
0	16	23,5415354	24,4688952	24,5813686	24,5928721	24,5940251
0,1	14,8708583	23,5762523	24,5298411	24,6459625	24,6578456	24,6590367
0,2	13,8685468	23,608081	24,5872919	24,7069999	24,7192566	24,7204852
0,3	12,9739799	23,6373089	24,6415725	24,7648098	24,7774343	24,7786999
0,4	12,1716124	23,6641845	24,6929657	24,8196779	24,832665	24,833967
0,5	11,448668	23,6889248	24,7417189	24,8718547	24,8851994	24,8865373
0,6	10,7945602	23,7117196	24,7880498	24,9215607	24,9352581	24,9366314
0,7	10,20045	23,732736	24,8321507	24,9689906	24,9830362	24,9844446
0,8	9,65890577	23,752122	24,8741928	25,0143178	25,0287073	25,0301502
0,9	9,16363916	23,7700089	24,9143286	25,0576968	25,0724262	25,0739032
1	8,70929686	23,7865141	24,9526947	25,0992663	25,1143316	25,1158424
1,1	8,2912963	23,8017424	24,989414	25,139151	25,1545484	25,1560925
1,2	7,90569415	23,8157881	25,0245975	25,1774632	25,1931892	25,1947664
1,3	7,54908067	23,8287363	25,0583455	25,2143049	25,2303561	25,2319659
1,4	7,21849401	23,8406639	25,0907492	25,2497687	25,2661417	25,2677839
1,5	6,91135036	23,8516406	25,1218915	25,2839388	25,3006305	25,3023047
1,6	6,6253866	23,8617297	25,1518482	25,3168922	25,3338995	25,3356055
1,7	6,35861295	23,8709891	25,1806887	25,3486995	25,3660195	25,3677569
1,8	6,10927369	23,8794715	25,2084767	25,3794254	25,3970553	25,3988238
1,9	5,87581435	23,8872255	25,2352708	25,4091293	25,4270664	25,4288658
2	5,65685425	23,8942952	25,2611247	25,4378663	25,4561079	25,4579379

Tableau 2.6 : Valeurs du paramètre N calculées selon la relation (2.52)

2,1	5,45116328	23,9007217	25,2860885	25,4656871	25,4842305	25,486091
2,2	5,25764236	23,9065426	25,3102081	25,4926385	25,5114815	25,513372
2,3	5,07530671	23,9117925	25,3335265	25,5187642	25,5379042	25,5398246
2,4	4,90327173	23,9165037	25,3560831	25,5441045	25,5635393	25,5654894
2,5	4,74074074	23,9207059	25,3779151	25,5686972	25,5884245	25,5904041
2,6	4,5869946	23,9244268	25,3990568	25,5925773	25,612595	25,6146037
2,7	4,44138263	23,9276921	25,4195403	25,6157776	25,6360835	25,6381212
2,8	4,30331483	23,9305256	25,4393956	25,6383286	25,6589207	25,6609872
2,9	4,17225512	23,9329497	25,4586508	25,6602592	25,6811354	25,6832305
3	4,04771541	23,9349852	25,4773323	25,681596	25,7027544	25,7048779
3,1	3,92925045	23,9366514	25,4954647	25,7023644	25,7238031	25,7259549
3,2	3,81645337	23,9379667	25,5130713	25,722588	25,7443053	25,746485
3,3	3,70895165	23,938948	25,5301738	25,7422892	25,7642831	25,7664907
3,4	3,60640367	23,9396113	25,5467928	25,761489	25,7837578	25,7859931
3,5	3,50849565	23,9399717	25,5629477	25,7802071	25,8027492	25,805012
3,6	3,41493888	23,9400432	25,5786568	25,7984624	25,821276	25,8235661
3,7	3,32546738	23,9398391	25,5939374	25,8162724	25,8393559	25,8416732
3,8	3,23983569	23,9393719	25,6088057	25,8336539	25,8570057	25,8593501
3,9	3,157817	23,9386534	25,6232773	25,8506227	25,8742413	25,8766125
4	3,07920144	23,9376947	25,6373668	25,8671939	25,8910777	25,8934756
4,1	3,00379454	23,9365064	25,651088	25,8833816	25,9075292	25,9099536
4,2	2,93141592	23,9350983	25,6644543	25,8991993	25,9236093	25,9260601
4,3	2,86189801	23,9334798	25,677478	25,91466	25,9393308	25,941808
4,4	2,79508497	23,9316598	25,6901711	25,9297758	25,9547061	25,9572094
4,5	2,73083174	23,9296468	25,7025449	25,9445584	25,9697468	25,9722761
4,6	2,66900307	23,9274487	25,7146102	25,9590187	25,9844639	25,9870191
4,7	2,60947279	23,9250732	25,7263773	25,9731674	25,9988681	26,001449
4,8	2,55212303	23,9225273	25,737856	25,9870144	26,0129694	26,0155758
4,9	2,4968436	23,919818	25,7490555	26,0005695	26,0267774	26,0294094
5	2,44353135	23,9169518	25,7599849	26,0138418	26,0403014	26,0429587

Figure 2.6 : Variation de *N* en fonction de η , pour $\varepsilon / b = 10^{-3}$

Comme pour les figures 2.4 et 2.5, la figure 2.6 montre que le nombre adimensionnel N augmente avec l'accroissement du paramètre de forme $\eta = b / y_n$, à l'exception de la courbe correspondant à $R^* = 10^4$. Pour cette courbe, le nombre adimensionnel subit une augmentation dans un premier puis une légère diminution au-delà d'une certaine valeur du paramètre de forme η . Pour un paramètre de forme η donné, nous pouvons constater que N augmente avec l'accroissement du nombre de *Reynolds* modifié R^* . Comme nous l'avons constaté sur la figure 2.5, la figure 2.6 montre également que les courbes se confondent lorsque le nombre de *Reynolds* modifié atteint la valeur $R^* = 10^7$. A partir de cette valeur, le régime d'écoulement turbulent rugueux est atteint, et la viscosité cinématique ν du liquide en écoulement n'a

aucune influence sur la variation du nombre adimensionnel N. La figure 2.6 montre en particulier que le nombre adimensionnel N ne subit qu'une augmentation toute relative dans l'ensemble de la gamme tracée du paramètre de forme η .

Au regard des valeurs des tableaux 2.4, 2.5 et 2.6, et également des figures 2.4, 2.5 et 2.6, nous pouvons observer que plus la rugosité relative ε/b augmente et plus le nombre adimensionnel *N* diminue, quelque soit la valeur du nombre de *Reynolds* modifié R^* . Cela revient à dire que 1/n augmente ou que le coefficient *n* diminue, pour canal rectangulaire donné pour lequel la largeur *b* est fixée.

II.9. Calcul du coefficient *n* de *Manning* par la MMR

La relation (2.50) ou (2.52) ne permet d'évaluer le coefficient n de *Manning* que si la largeur b du canal rectangulaire est une donnée du problème. Dans le cas où b n'est pas connu, il est tout de même possible de calculer la valeur de n, à condition d'avoir recours à la méthode du modèle rugueux (MMR). C'est l'un des avantages de cette méthode.

En comparant les relations (2.11) et (2.46) de *Chézy* et de *Manning* respectivement, il est aisé de montrer que :

$$n = \frac{R_h^{1/6}}{C} \tag{2.54}$$

Par suite, nous pouvons écrire que le coefficient n de *Manning* dans le modèle rugueux est tel que :

$$\overline{n} = \frac{\overline{R_h^{1/6}}}{\overline{C}}$$
(2.55)

Il est utile de rappeler que selon la MMR, le coefficient \overline{C} de *Chézy* dans le modèle rugueux est :

$$\overline{C} = 8\sqrt{2g} \tag{2.56}$$

Le modèle rugueux est un canal rectangulaire de largeur \overline{b} ; il écoule un débit volume \overline{Q} d'un liquide de viscosité cinématique \overline{v} correspondant à un taux de remplissage $\overline{\eta}$, pour une pente longitudinale \overline{i} . Pour déterminer le coefficient *n* de *Manning*, admettons les conditions suivantes :

- *i.* $\overline{b} \neq b$: cette condition énonce que la largeur du canal et celle du modèle rugueux sont différents.
- *ii.* $\overline{Q} = Q$: le canal rectangulaire considéré et le modèle rugueux écoulent le même débit volume Q.
- *iii.* i = i: le canal rectangulaire considéré et le modèle rugueux sont caractérisés par la même pente longitudinale i.
- *iv.* $\overline{\eta} = \eta$: le paramètre de forme du canal considéré est égal à celui du modèle rugueux de référence.

 $\overline{v} = v$: le canal rectangulaire considéré et le modèle rugueux écoulent le même liquide.

Le débit volume \overline{Q} écoulé par le modèle rugueux s'écrit, en vertu de la relation (2.46) de *Manning* :

$$\overline{Q} = Q = \frac{1}{n} \overline{A} \overline{R_h}^{2/3} \sqrt{i}$$
(2.57)

L'aire de la section mouillée *A* ainsi que le rayon hydraulique R_h de l'écoulement dans le canal rectangulaire considéré sont liés à leurs homologues du modèle rugueux \overline{A} et $\overline{R_h}$ par les relations suivantes :

$$A = \psi^2 \overline{A} \tag{2.58}$$

$$R_h = \psi \,\overline{R_h} \tag{2.59}$$

En tenant compte des relations (2.58) et (2.59), la relation (2.46) de Manning devient :

$$Q = \frac{1}{n} A R_h^{2/3} \sqrt{i} = \frac{\psi^{8/3}}{n} \overline{A} \overline{R_h}^{2/3} \sqrt{i}$$
(2.60)

En comparant les relations (2.57) et (2.60), il ressort que :

$$n = n \psi^{8/3}$$
 (2.61)

Tenant compte de la relation (2.56), la combinaison des relations (2.55) et (2.61) mène à écrire que :

$$n = \frac{\psi^{8/3} \overline{R_h}^{1/6}}{8\sqrt{2g}}$$
(2.62)

Le facteur de correction des dimensions linéaires ψ est donné par la relation (2.41), dont on rappelle l'expression :

$$\psi = 1,35 \left[-\log\left(\frac{\varepsilon / \overline{D_h}}{4,75} + \frac{8,5}{\overline{R}}\right) \right]^{-2/5}$$
(2.41)

Tenant compte de la relation (2.6), nous pouvons aisément écrire que :

$$\overline{D_h} = 4\overline{R_h} = 4\frac{\overline{b}}{(\eta+2)}$$
(2.63)

En combinant les relations (2.8) et (2.63), nous pouvons écrire que :

$$\overline{D_h} = \frac{4b}{\left(32\sqrt{2}\right)^{2/3}} \left[\varphi(\eta)\right]^{2/3}$$
(2.64)

Rappelons d'autre part que le nombre de *Reynolds* \overline{R} figurant dans la relation (2.41) est donné par la relation (2.10) sous la forme suivante :

$$\overline{R} = \overline{R}^* \varphi(\eta) \tag{2.65}$$

Où $\overline{R^*}$ est donné par la relation (2.9) sous la forme suivante :

$$\overline{R^*} = \frac{\sqrt{gi\overline{b}^3}}{\nu}$$
(2.66)

En tenant compte des relations (2.64) et (2.65), la relation (2.41) devient :

$$\psi = 1,35 \left[-\log \left(\frac{\varepsilon / \overline{b}}{1,496 \left[\varphi(\eta) \right]^{2/3}} + \frac{8,5}{\overline{R^*} \varphi(\eta)} \right) \right]^{-2/5}$$
(2.67)

Prenant en compte les relations (2.64) et (2.67), la relation (2.62) permet alors d'écrire que le coefficient *n* de Manning s'écrit finalement :

$$n = \frac{0,129}{\sqrt{g}} \bar{b}^{1/6} \left[\varphi(\eta) \right]^{1/9} \left[-\log \left(\frac{\varepsilon / \bar{b}}{1,496 \left[\varphi(\eta) \right]^{2/3}} + \frac{8,5}{\overline{R}^* \varphi(\eta)} \right) \right]^{-16/15}$$
(2.68)

Selon la relation (2.68), le coefficient *n* de *Manning* s'exprime en fonction du paramètre de forme η , de la rugosité absolue ε et des caractéristiques \overline{b} et $\overline{R^*}$ du modèle rugueux. Le nombre de *Reynolds* $\overline{R^*}$ est régi par la relation (2.66) qui dépend notamment de la largeur \overline{b} du modèle rugueux.

Pour exprimer la largeur \overline{b} du modèle rugueux, il faut faire appel à la relation (2.11) de *Chézy*. Appliquée au modèle rugueux, celle-ci s'écrit :

$$Q = \overline{C}\overline{A}\sqrt{\overline{R_h}i}$$
(2.69)

Le coefficient \overline{C} est le coefficient de *Chézy* dans le modèle rugueux donné par la relation (2.56) et vaut $8\sqrt{2g}$. L'aire de la section mouillée \overline{A} de l'écoulement dans le modèle rugueux s'exprime par la relation suivante :

$$\overline{A} = \frac{b^2}{\eta}$$
(2.70)

Où η est, pour rappel, le paramètre de forme tel que $\eta = b / y_n$. Nous rappelons également que le rayon hydraulique $\overline{R_h}$ peut être déduit de la relation (2.64).

Tenant compte de toutes ces considérations, la relation (2.69) s'écrit sous la forme suivante :

$$Q = 8\sqrt{2} \frac{\overline{b}^2}{\eta} \sqrt{\frac{\overline{b}}{\left(32\sqrt{2}\right)^{2/3}} \left[\varphi(\eta)\right]^{2/3} i}$$
(2.71)

Après réarrangements, la largeur \overline{b} du modèle rugueux s'écrit :

$$\bar{b} = \left(\frac{Q}{\sqrt{gi}}\right)^{2/5} \frac{\left(32\sqrt{2}\right)^{2/5}}{\left(8\sqrt{2}\right)^{2/5}} \frac{\eta^{2/5}}{\left[\varphi(\eta)\right]^{2/15}}$$
(2.72)

Après calculs, la relation (2.72) s'écrit finalement :

$$\bar{b} = 0,63 \left(\frac{Q}{\sqrt{gi}}\right)^{2/5} \frac{\eta^{2/5}}{\left[\varphi(\eta)\right]^{2/15}}$$
(2.74)

La relation (2.74) permet de calculer la largeur \overline{b} du modèle rugueux, pour les valeurs connues du débit volume Q, de la pente i et du paramètre de forme η .

Les étapes suivantes montrent la procédure de calcul du coefficient *n* de *Manning*, pour les données suivantes : Q, ε , *i*, η , ν . Notons que la largeur b du canal rectangulaire considéré n'est pas requise pour le calcul de *n*.

i. Avec la valeur connue du paramètre de forme $\eta = b / y_n$, on calcule la valeur de la fonction $\varphi(\eta)$ en application de la relation (2.8). Soit :

$$\varphi(\eta) = \frac{32\sqrt{2}}{\left(\eta+2\right)^{3/2}}$$

ii. Avec la valeur connue des paramètres Q, $i \in \eta = b / y_n$, on calcule la largeur \overline{b} du modèle rugueux selon la relation (2.74). Soit :

$$\overline{b} = 0.63 \left(\frac{Q}{\sqrt{gi}}\right)^{2/5} \frac{\eta^{2/5}}{\left[\varphi(\eta)\right]^{2/15}}$$

- *iii.* Avec la valeur connue des paramètres *i*, \overline{b} et ν , on calcule le nombre de *Reynolds* modifié $\overline{R^*}$ dans le modèle rugueux, en application de la relation (2.66). Soit : $\overline{R^*} = \frac{\sqrt{gi\overline{b}^3}}{\nu}$
- *iv.* Pour la valeur connue des paramètres \overline{b} , $\varphi(\eta)$, ε et $\overline{R^*}$, l'application de la relation (2.68) permet de calculer la valeur recherchée du coefficient *n* de *Manning*. Soit :

$$n = \frac{0,129}{\sqrt{g}} \bar{b}^{1/6} \left[\varphi(\eta) \right]^{1/9} \left[-\log \left(\frac{\varepsilon / \bar{b}}{1,496 \left[\varphi(\eta) \right]^{2/3}} + \frac{8,5}{\bar{R}^* \varphi(\eta)} \right) \right]^{-16/15}$$

II.10. Exemple de calcul du coefficient *n* de *Manning*

Reprenons les données de l'exemple d'application II.6 et calculons la valeur du coefficient n de *Manning*. Ces données sont :

$$Q = 3,861m^3 / s$$
, $\eta = 1,6581899$, $\varepsilon = 0,001m$, $i = 0,001$, $v = 10^{-6}m^2 / s$.

i. La valeur de la fonction $\varphi(\eta)$ est, selon la relation (2.8) :

$$\varphi(\eta) = \frac{32\sqrt{2}}{(\eta+2)^{3/2}} = \frac{32 \times \sqrt{2}}{(1,6581899+2)^{3/2}} = 6,46793439$$

ii. La largeur \overline{b} du modèle rugueux est, en vertu de la relation (2.74) :

$$\overline{b} = 0,63 \left(\frac{Q}{\sqrt{gi}}\right)^{2/5} \frac{\eta^{2/5}}{\left[\varphi(\eta)\right]^{2/15}}$$
$$= 0,63 \times \left(\frac{3,861}{\sqrt{9,81 \times 0,001}}\right)^{2/5} \times \frac{1,6581899^{2/5}}{6,46793439^{2/15}} = 2,60278499m$$

iii. En vertu de la relation (2.66), la valeur du nombre de *Reynolds* modifié $\overline{R^*}$ est :

$$\overline{R^*} = \frac{\sqrt{gi\overline{b}^3}}{\nu} = \frac{\sqrt{9,81 \times 0,001 \times 2,60278499^3}}{10^{-6}} = 415902,896$$

iv. Le coefficient n de *Manning* est finalement, selon la relation (2.68) :

$$n = \frac{0,129}{\sqrt{g}} \bar{b}^{1/6} \left[\varphi(\eta) \right]^{1/9} \left[-\log \left(\frac{\varepsilon / \bar{b}}{1,496 \left[\varphi(\eta) \right]^{2/3}} + \frac{8,5}{\bar{R}^*} \varphi(\eta) \right) \right]^{-16/15}$$

$$= \frac{0,129}{\sqrt{9,81}} \times 2,60278499^{1/6} \times 6,46793439^{1/9} \times \left[-\log\left(\frac{0,001/2,60278499}{1,496 \times 6,46793439^{2/3}} + \frac{8,5}{415902,896 \times 6,46793439}\right) \right]^{-16/15} = 0,01315253m^{-1/3}s^{-1/3$$

v.

vi. Vérifions les calculs en déterminant la largeur b du canal rectangulaire considéré, en ayant recours à la relation (2.46) de *Manning* :

$$Q = \frac{1}{n} A R_h^{2/3} \sqrt{i}$$

Rappelons que :

$$A = b^2 / \eta$$
, $R_h = \frac{b}{\left(32\sqrt{2}\right)^{2/3}} \left[\varphi(\eta)\right]^{2/3}$

En tenant compte de ces considérations, la relation de Manning s'écrit :

$$Q = \frac{1}{n} \frac{\left[\varphi(\eta)\right]^{4/9}}{\left(32\sqrt{2}\right)^{4/9} \eta} b^{8/3} \sqrt{i}$$

Après réarrangements, la largeur b s'écrit sous la forme suivante :

$$b = \left(32\sqrt{2}\right)^{1/6} \frac{\eta^{3/8}}{\left[\varphi(\eta)\right]^{1/6}} \left(\frac{nQ}{\sqrt{i}}\right)^{3/8}$$

L'application numérique donne :

$$b = \left(32 \times \sqrt{2}\right)^{1/6} \times \frac{1,6581899^{3/8}}{6,46793439^{1/6}} \times \left(\frac{0,01315253 \times 3,861}{\sqrt{0,001}}\right)^{3/8} = 1,99673456m \approx 2m$$

Il s'agit bien de la valeur de la largeur b du canal rectangulaire considéré, imposée dans l'exemple d'application II.6. Ceci vérifie bien les calculs effectués sur le coefficient n de *Manning*.

II.11. Conclusion

Le chapitre précédent s'est intéressé à l'étude des coefficients de *Chézy* et de *Manning* en écoulement uniforme dans un canal de forme rectangulaire.

En comparant les relations d'*Achour* et de *Bedjaoui* (2006) et celle de *Chézy*, nous avons pu exprimer la relation générale du coefficient de résistance à l'écoulement *C* de *Chézy*. Celle-ci a été transformée en une relation adimensionnelle qui montre que C/\sqrt{g} dépend à la fois de la rugosité relative ε/b , du paramètre de forme $\eta = b/y_n$ et du nombre de *Reynolds* modifié R^* . La relation obtenue est de type $C/\sqrt{g} = f(\varepsilon/b;\eta;R^*)$. Dans ces paramètres ε est la rugosité absolue caractérisant l'état de la paroi interne du canal, *b* est la largeur du canal et y_n est la profondeur normale de l'écoulement. Nous avons montré que le nombre de *Reynolds* modifié R^* dépend de la largeur *b*, de la pente i du canal et de la viscosité cinématique *v* du liquide en écoulement. La relation adimensionnelle obtenue montre que tous les paramètres influençant l'écoulement sont pris en considération, notamment la viscosité cinématique *v*. Après avoir établi la relation adimensionnelle de C/\sqrt{g} , nous avons procédé au tracé

graphique de sa variation. Les graphiques obtenus ont montré que le nombre de *Reynolds* R^* joue un rôle important. Plus la rugosité relative ε/b augmente et plus l'écoulement turbulent rugueux est atteint rapidement, se traduisant par la non influence du nombre de Reynolds modifié R^* ou de la viscosité cinématique ν . Les courbes obtenues se resserrent d'autant plus que la rugosité relative ε/b augmente. Elles finissent par se confondre à partir d'une certaine valeur de R^* .

L'étude s'est poursuivie par le calcul explicite du coefficient de résistance à l'écoulement *C* de *Chézy*. Pour cela, il a fallu d'abord calculer le paramètre de forme $\eta = b / y_n$, paramètre dont dépend le coefficient *C*. La méthode choisie pour le calcul de $\eta = b / y_n$ a été la méthode du modèle rugueux. Elle se base sur les trois relations bien connues de l'écoulement turbulent, appliquées à un modèle rugueux dont la rugosité relative a été arbitrairement choisie dans le domaine turbulent rugueux. Une équation du troisième degré a alors été obtenue et dont la résolution a été effectuée en ayant recours aux fonctions trigonométriques et hyperboliques. Par l'intermédiaire du facteur de correction de la dimension linéaire ψ , il a été alors possible de déduire l'expression du paramètre de forme recherché $\eta = b / y_n$. Une fois la méthode de calcul du paramètre de forme exposée, nous avons précisé les étapes de calcul du coefficient de résistance à l'écoulement *C* de *Chézy* et nous avons donné un exemple de calcul numérique.

Le chapitre s'est poursuivi par l'étude du coefficient *n* de *Manning*. En comparant la relation générale du débit volume d'Achour et de Bedjaoui (2006) et celle de Manning, nous avons pu établir la relation générale du coefficient n de Manning que nous avons transformée en une relation adimensionnelle à travers laquelle est exprimé le coefficient adimensionnel N de *Manning*. La relation obtenue montre que N dépend à la fois de la rugosité relative ε/b , du paramètre de forme $\eta = b / y_n$ et du nombre de *Reynolds* modifié R^* . La relation obtenue est de type $N = f(\varepsilon/b; \eta; R^*)$. Nous avons ensuite procédé au tracé de la variation de N, en faisant varier à la fois la rugosité relative et le nombre de Reynolds modifié. Nous avons ainsi mis en évidence l'influence de R^* , c'est-à-dire celle de la viscosité cinématique ν . Il ressort des graphes obtenus que plus la rugosité relative augmente et plus les courbes se resserrent, indiquant que le régime d'écoulement turbulent rugueux est atteint. Les courbes se confondent pour les grandes valeurs de la rugosité relative et pour une certaine valeur de R^* . Nous avons ensuite procédé au calcul du coefficient n de Manning, en ayant recours à la méthode du modèle rugueux. L'application de cette méthode ne nécessite pas la connaissance de la largeur b du canal. Un exemple de calcul numérique a été proposé pour expliquer les différentes étapes de calcul du coefficient *n* de *Manning*.

<u>Chapítre II</u>

Coefficient de Chézy et de Manning en écoulement uniforme dans un canal rectangulaire

II. Coefficient de *Chézy* et de *Manning* en écoulement uniforme dans un canal rectangulaire

II.1. Introduction

Les écoulements uniformes dans les canaux et conduites sont régis par les relations de *Chézy* et de *Manning*, dites « relations de l'écoulement uniforme ». Ces relations expriment le débit volume écoulé par le canal en fonction des paramètres géométriques de l'ouvrage et hydrauliques de l'écoulement. Dans ces relations, nous pouvons relever la présence des coefficients de résistance à l'écoulement, dits de *Chézy* et de *Manning* que l'on note souvent par les lettres C et n respectivement.

Dans la pratique, il existe des tableaux qui donnent les valeurs des coefficients C et n en fonction de la nature du matériau constituant le canal. Ces valeurs de C et de n sont tabulées de manière indépendante de la profondeur de l'écoulement ou du rayon hydraulique et encore moins du nombre de *Reynolds* caractérisant l'écoulement.

Donner des valeurs constantes aux coefficients C et n, suppose que l'écoulement est en régime turbulent rugueux où le nombre de *Reynolds* n'a aucune influence. Cependant, cette démarche peut paraître peu fiable eu égard au fait que le coefficient de résistance à l'écoulement doit en principe dépendre des caractéristiques hydrauliques de l'écoulement, en particulier du rayon hydraulique, de la pente géométrique et de la viscosité cinématique du liquide. Cette vision est beaucoup plus moderne et nécessite une étude particulière en observant l'évolution de ces coefficients de résistance lorsque l'écoulement est supposé être uniforme.

C'est dans ce contexte que nous proposons le présent chapitre dans lequel nous établissons des relations générales destinées non seulement à l'évaluation des coefficients de résistance à l'écoulement de *Chézy* et de *Manning*, mais à examiner aussi leur variation en fonction de la profondeur de l'écoulement et de d'autres paramètres hydrauliques qui influencent l'écoulement.

II.2. Expression du coefficient de Chézy dans un canal rectangulaire

Le débit volume Q écoulé par un canal de forme quelconque s'exprime par la relation suivante (Achour et Bedjaoui, 2006) :

$$Q = -4\sqrt{2g}A\sqrt{R_h i}\log\left(\frac{\varepsilon}{14,8R_h} + \frac{10,04}{R}\right)$$
(2.1)

Où :

A est l'aire de la section mouillée, R_h est le rayon hydraulique, *i* est la pente du canal et R est un nombre de *Reynolds* défini par la relation suivante :

$$R = 32\sqrt{2} \frac{\sqrt{giR_h^3}}{v}$$
(2.2)

v est la viscosité cinématique du liquide en écoulement.

Pour un canal de forme rectangulaire, l'aire de la section mouillée *A* et le périmètre mouillé *P* s'écrivent respectivement :

$$A = by_n \tag{2.3}$$

Où *b* est la largeur du canal et y_n est la profondeur normale de l'écoulement.

$$P = b + 2y_n \tag{2.4}$$

A partir des relations (2.3) et (2.4), nous pouvons écrire que le rayon hydraulique $R_h = A/P$ est :

$$R_h = \frac{by_n}{b + 2y_n} \tag{2.5}$$

La relation (2.5) peut également s'écrire :

$$R_h = \frac{y_n}{y_n} \frac{b}{\left(\frac{b}{y_n} + 2\right)}$$

Soit :

$$R_h = \frac{b}{(\eta + 2)} \tag{2.6}$$

Où $\eta = b / y_n$ exprime le paramètre de forme de la section mouillée, ou le rapport d'aspect. Compte tenu de la relation (2.6), la relation (2.2) peut s'écrire :

$$R = \frac{32\sqrt{2}}{(\eta + 2)^{3/2}} \frac{\sqrt{gib^3}}{\nu}$$
(2.7)

Désignons par :

$$\varphi(\eta) = \frac{32\sqrt{2}}{(\eta+2)^{3/2}}$$
(2.8)

$$R^* = \frac{\sqrt{gib^3}}{v} \tag{2.9}$$

Ainsi, la relation (2.7) s'écrit :

$$R = R^* \varphi(\eta) \tag{2.10}$$

D'autre part, la relation de Chézy s'écrit :

$$Q = CA\sqrt{R_h i} \tag{2.11}$$

Où C est le coefficient de Chézy.

En comparant les relations (2.1) et (2.11), nous pouvons déduire que le coefficient C de Chézy est tel que :

$$C = -4\sqrt{2g}\log\left(\frac{\varepsilon}{14,8R_h} + \frac{10,04}{R}\right)$$
(2.12)

La relation (2.12) peut s'écrire en termes adimensionnels sous la forme suivante :

$$C/\sqrt{g} = -4\sqrt{2}\log\left(\frac{\varepsilon}{14,8R_h} + \frac{10,04}{R}\right)$$
(2.13)

En introduisant les relations (2.6) et (2.10) dans la relation (2.13), il vient que :

$$C/\sqrt{g} = -4\sqrt{2}\log\left[\frac{\varepsilon/b}{14,8/(\eta+2)} + \frac{10,04}{R^*\varphi(\eta)}\right]$$
(2.14)

En tenant compte de la relation (2.8), la quantité $14,8/(\eta+2)$ peut s'écrire :

$$14,8/(\eta+2) = \frac{14,8[\varphi(\eta)]^{2/3}}{(32\sqrt{2})^{2/3}}$$

Après calcul, il vient que :

$$14,8/(\eta+2) = 1,165[\varphi(\eta)]^{2/3}$$
(2.15)

En substituant la relation (2.15) dans la relation (2.14), il vient que :

$$C/\sqrt{g} = -4\sqrt{2}\log\left[\frac{\varepsilon/b}{1,165\left[\varphi(\eta)\right]^{2/3}} + \frac{10,04}{R^*\varphi(\eta)}\right]$$
(2.16)

Dans la relation (2.16), ε/b représente la rugosité relative du canal rectangulaire étudié. Au regard de la relation (2.16), il apparaît que C/\sqrt{g} dépend de trois paramètres qui sont la rugosité relative ε/b , le paramètre de forme η et le nombre de *Reynolds* modifié R^* . Nous pouvons alors écrire la relation fonctionnelle suivante :

$$C/\sqrt{g} = f\left(\varepsilon/b; \eta; R^*\right)$$
(2.17)

II.3. Variation du coefficient de Chézy
Pour représenter la variation du coefficient sans dimension C/\sqrt{g} en fonction du paramètre de forme η , nous pouvons faire appel à la relation (2.16). On fixe une valeur de la rugosité relative ε/b et l'on fait varier le nombre de *Reynolds* modifié R^* . Les tableaux suivants ont été établis selon cette procédure.

La valeur nulle du paramètre de forme η correspond, pour un canal rectangulaire donné, à une profondeur d'écoulement très élevée.

Sous chacun des tableaux, nous avons représenté et commenté la variation de C/\sqrt{g} en fonction du paramètre de forme η .

ε/b	p = 0	$R^* = 10^4$	$R^* = 10^5$	$R^* = 10^6$	$R^* = 10^7$	$R^* = 10^8$
η	$arphi(\eta)$	C/\sqrt{g}	C/\sqrt{g}	C/\sqrt{g}	C/\sqrt{g}	C/\sqrt{g}
0	16	23,7722866	29,4291409	35,0859951	40,7428494	46,3997036
0,1	14,8708583	23,5924895	29,2493437	34,906198	40,5630522	46,2199065
0,2	13,8685468	23,421058	29,0779123	34,7347665	40,3916208	46,048475
0,3	12,9739799	23,2572484	28,9141026	34,5709569	40,2278111	45,8846654
0,4	12,1716124	23,1004115	28,7572657	34,41412	40,0709742	45,7278285
0,5	11,448668	22,9499779	28,6068321	34,2636864	39,9205406	45,5773949
0,6	10,7945602	22,8054452	28,4622995	34,1191537	39,776008	45,4328622
0,7	10,20045	22,6663679	28,3232222	33,9800764	39,6369307	45,2937849
0,8	9,65890577	22,5323491	28,1892034	33,8460576	39,5029119	45,1597661
0,9	9,16363916	22,4030337	28,059888	33,7167422	39,3735965	45,0304507
1	8,70929686	22,2781027	27,934957	33,5918112	39,2486655	44,9055197
1,1	8,2912963	22,1572686	27,8141229	33,4709771	39,1278314	44,7846856
1,2	7,90569415	22,0402711	27,6971254	33,3539796	39,0108339	44,6676881
1,3	7,54908067	21,9268742	27,5837284	33,2405827	38,8974369	44,5542912
1,4	7,21849401	21,8168627	27,4737169	33,1305712	38,7874254	44,4442797
1,5	6,91135036	21,7100404	27,3668947	33,0237489	38,6806031	44,3374574
1,6	6,6253866	21,6062276	27,2630818	32,9199361	38,5767903	44,2336446
1,7	6,35861295	21,5052593	27,1621136	32,8189678	38,4758221	44,1326763
1,8	6,10927369	21,4069839	27,0638381	32,7206924	38,3775466	44,0344009
1,9	5,87581435	21,3112613	26,9681156	32,6249698	38,2818241	43,9386783
2	5,65685425	21,2179624	26,8748167	32,5316709	38,1885252	43,8453794
2,1	5,45116328	21,1269674	26,7838216	32,4406759	38,0975301	43,7543844
2,2	5,25764236	21,0381652	26,6950195	32,3518737	38,008728	43,6655822
2,3	5,07530671	20,9514528	26,608307	32,2651613	37,9220155	43,5788698
2,4	4,90327173	20,8667338	26,5235881	32,1804423	37,8372966	43,4941508
2,5	4,74074074	20,7839189	26,4407731	32,0976274	37,7544816	43,4113359
2,6	4,5869946	20,7029242	26,3597784	32,0166327	37,6734869	43,3303412
2,7	4,44138263	20,6236714	26,2805257	31,9373799	37,5942342	43,2510884
2,8	4,30331483	20,5460873	26,2029415	31,8597958	37,51665	43,1735043
2,9	4,17225512	20,4701029	26,1269572	31,7838114	37,4406656	43,0975199
3	4,04771541	20,3956537	26,0525079	31,7093622	37,3662164	43,0230707

Tableau 2.1 : Valeurs de C/\sqrt{g} pour $\varepsilon/b=0$

Figure 2.1 : Variation de C/\sqrt{g} en fonction de η , pour $\varepsilon/b=0$. (Ecoulement lisse)

La figure 2.1 montre clairement que pour un nombre de *Reynolds* modifié R^* fixé, le coefficient C/\sqrt{g} augmente au fur et à mesure que le paramètre de forme η diminue. Cela signifie que pour un canal donné dont la largeur *b* est connue, le coefficient C/\sqrt{g} augmente lorsque la profondeur de l'écoulement y_n augmente. Nous pouvons également constater que pour un paramètre de forme η fixé, le coefficient C/\sqrt{g} augmente avec l'accroissement du nombre de *Reynolds* modifié R^* .

ε/b	$=10^{-4}$	$R^* = 10^4$	$R^* = 10^5$	$R^* = 10^6$	$R^* = 10^7$	$R^* = 10^8$
η	$arphi(\eta)$	C/\sqrt{g}	C/\sqrt{g}	C/\sqrt{g}	C/\sqrt{g}	C/\sqrt{g}
0	16	23,2929741	26,6068903	27,4321645	27,5322566	27,5424938
0,1	14,8708583	23,1236938	26,4678668	27,30961	27,4121115	27,4226009
0,2	13,8685468	22,9620944	26,3350145	27,1926987	27,2975503	27,3082858
0,3	12,9739799	22,8075041	26,2077953	27,0809304	27,1880763	27,1990525
0,4	12,1716124	22,6593356	26,0857391	26,9738682	27,0832567	27,0944683
0,5	11,448668	22,517073	25,9684326	26,8711291	26,9827113	26,9941535
0,6	10,7945602	22,3802601	25,8555107	26,7723748	26,8861051	26,8977731
0,7	10,20045	22,248492	25,7466492	26,6773054	26,7931405	26,8050302
0,8	9,65890577	22,1214073	25,6415589	26,5856536	26,7035528	26,71566
0,9	9,16363916	21,9986823	25,5399804	26,4971804	26,617105	26,6294258
1	8,70929686	21,8800258	25,4416809	26,4116709	26,5335843	26,5461151
1,1	8,2912963	21,765175	25,3464496	26,3289312	26,4527986	26,4655359
1,2	7,90569415	21,6538917	25,2540961	26,2487862	26,3745744	26,3875149
1,3	7,54908067	21,5459595	25,1644469	26,1710767	26,2987541	26,3118945
1,4	7,21849401	21,4411814	25,0773442	26,0956576	26,2251942	26,2385315
1,5	6,91135036	21,3393769	24,9926436	26,0223968	26,1537636	26,167295
1,6	6,6253866	21,2403811	24,9102126	25,951173	26,0843423	26,0980651
1,7	6,35861295	21,144042	24,8299298	25,8818749	26,0168204	26,0307318
1,8	6,10927369	21,05022	24,7516831	25,8144003	25,9510966	25,965194
1,9	5,87581435	20,9587861	24,675369	25,7486548	25,8870774	25,9013585
2	5,65685425	20,8696211	24,600892	25,684551	25,8246766	25,8391389
2,1	5,45116328	20,7826144	24,5281634	25,6220084	25,7638142	25,7784555
2,2	5,25764236	20,6976635	24,4571009	25,5609518	25,7044161	25,7192343
2,3	5,07530671	20,6146727	24,3876278	25,5013117	25,6464136	25,6614065
2,4	4,90327173	20,5335533	24,3196729	25,4430231	25,5897423	25,6049079

Tableau 2.2 : Valeurs de C / \sqrt{g} pour $\varepsilon / b = 10^{-4}$

2,5	4,74074074	20,4542222	24,2531693	25,3860256	25,5343425	25,5496788
2,6	4,5869946	20,3766018	24,188055	25,3302626	25,4801583	25,4956634
2,7	4,44138263	20,3006196	24,1242714	25,2756813	25,4271375	25,4428096
2,8	4,30331483	20,2262073	24,0617638	25,2222321	25,375231	25,3910683
2,9	4,17225512	20,1533012	24,000481	25,1698685	25,324393	25,3403938
3	4,04771541	20,0818411	23,9403746	25,1185468	25,2745803	25,2907429

Figure 2.2 : Variation de C / \sqrt{g} en fonction de η , pour $\varepsilon / b = 10^{-4}$. Les courbes se confondent pour $R^* \ge 10^7$.

Il ressort de la figure 2.2 que pour une valeur fixée du nombre de *Reynolds* modifié R^* , le coefficient C/\sqrt{g} augmente avec la diminution du paramètre de forme η , comme dans le cas de la figure 2.1. Nous pouvons également observer que pour un paramètre de forme η donné, le coefficient C/\sqrt{g} augmente avec le nombre de *Reynolds* modifié R^* . Ce qui ressort de particulier de la figure 2.2, c'est le fait qu'au-delà de $R^* = 10^7$ les courbes de variation du coefficient C/\sqrt{g} se confondent. Cela signifie qu'à partir de la valeur $R^* = 10^7$, le nombre de *Reynolds* modifié R^* n'a aucune influence sur la variation du coefficient C/\sqrt{g} et le régime d'écoulement turbulent rugueux est alors atteint. En d'autres termes, il n'y a plus aucune influence de la viscosité cinématique ν au-delà de $R^* = 10^7$.

c/h	-10 ⁻³	$P^* - 10^4$	$P^* - 10^5$	$P^* = 10^6$	$P^* = 10^7$	$P^* - 10^8$
E / D =	= 10	K = 10	K = 10	K = 10	K = 10	$\Lambda = 10$
η	$arphi(\eta)$	C/\sqrt{g}	C / \sqrt{g}	C/\sqrt{g}	C / \sqrt{g}	C / \sqrt{g}
0	16	20,9500361	21,7753102	21,8754024	21,8856396	21,8866656
0,1	14,8708583	20,8110126	21,6527557	21,7552573	21,7657466	21,766798
0,2	13,8685468	20,6781603	21,5358445	21,640696	21,6514315	21,6525077
0,3	12,9739799	20,5509411	21,4240761	21,5312221	21,5421982	21,5432985
0,4	12,1716124	20,4288848	21,317014	21,4264024	21,437614	21,438738
0,5	11,448668	20,3115783	21,2142748	21,3258571	21,3372992	21,3384464
0,6	10,7945602	20,1986564	21,1155205	21,2292508	21,2409189	21,2420887
0,7	10,20045	20,089795	21,0204511	21,1362862	21,1481759	21,149368
0,8	9,65890577	19,9847046	20,9287994	21,0466986	21,0588057	21,0600197
0,9	9,16363916	19,8831262	20,8403261	20,9602508	20,9725716	20,9738071
1	8,70929686	19,7848266	20,7548166	20,87673	20,8892608	20,8905174
1,1	8,2912963	19,6895954	20,672077	20,7959444	20,8086817	20,809959
1,2	7,90569415	19,5972418	20,591932	20,7177202	20,7306606	20,7319584
1,3	7,54908067	19,5075927	20,5142224	20,6418999	20,6550403	20,6563582
1,4	7,21849401	19,42049	20,4388034	20,5683399	20,5816773	20,583015
1,5	6,91135036	19,3357893	20,3655426	20,4969093	20,5104407	20,511798
1,6	6,6253866	19,2533584	20,2943187	20,4274881	20,4412108	20,4425873
1,7	6,35861295	19,1730756	20,2250207	20,3599662	20,3738776	20,375273
1,8	6,10927369	19,0948288	20,1575461	20,2942423	20,3083398	20,309754
1,9	5,87581435	19,0185148	20,0918005	20,2302231	20,2445042	20,2459369
2	5,65685425	18,9440378	20,0276968	20,1678223	20,1822847	20,1837356
2,1	5,45116328	18,8713092	19,9651541	20,1069599	20,1216013	20,1230702
2,2	5,25764236	18,8002466	19,9040976	20,0475619	20,0623801	20,0638668
2,3	5,07530671	18,7307736	19,8444574	19,9895593	20,0045522	20,0060565
2,4	4,90327173	18,6628186	19,7861689	19,932888	19,9480536	19,9495753
2,5	4,74074074	18,5963151	19,7291714	19,8774882	19,8928245	19,8943634
2,6	4,5869946	18,5312007	19,6734084	19,8233041	19,8388092	19,8403651
2,7	4,44138263	18,4674171	19,6188271	19,7702832	19,7859553	19,787528
2,8	4,30331483	18,4049096	19,5653779	19,7183768	19,7342141	19,7358034
2,9	4,17225512	18,3436268	19,5130142	19,6675388	19,6835395	19,6851454
3	4,04771541	18,2835203	19,4616926	19,6177261	19,6338886	19,6355107

Tableau 2.3 : Valeurs de C/\sqrt{g} pour $\varepsilon/b = 10^{-3}$

Figure 2.3 : Variation de C / \sqrt{g} en fonction de η , pour $\varepsilon / b = 10^{-3}$. Les courbes se confondent pour $R^* \ge 10^6$.

Comme dans le cas des figures 2.1 et 2.2, il ressort de la figure 2.3 que pour une même valeur du nombre de *Reynolds* modifié R^* , le coefficient C/\sqrt{g} augmente au fur et à mesure que le paramètre de forme η diminue. Ceci signifie que le coefficient C/\sqrt{g} augmente lorsque la profondeur y_n de l'écoulement augmente. Nous pouvons également observer que pour un paramètre de forme η fixé, le coefficient C/\sqrt{g} augmente avec le nombre de *Reynolds* modifié R^* . Pour la valeur de la rugosité relative $\varepsilon/b = 10^{-3}$, les courbes de variation du coefficient C/\sqrt{g} se confondent à partir de la valeur $R^* = 10^6$. L'écoulement turbulent est atteint plus tôt que dans le cas des courbes des figures 2.1 et 2.2. Cela peut se justifier par le fait que plus la rugosité relative ε/b augmente et plus le régime d'écoulement turbulent rugueux est atteint rapidement.

Une conclusion peut être tirée au regard des tableaux 2.1, 2.2 et 2.3 et même des figure 2.1, 2.2 et 2.3, c'est que plus la rugosité relative ε/b augmente et plus le coefficient C/\sqrt{g} diminue, quelle que soit la valeur du nombre de *Reynolds* modifié R^* .

II.4. Calcul du paramètre de forme η

Selon la relation fonctionnelle (2.17), pour évaluer le coefficient de *Chézy C*, il est nécessaire de connaître le paramètre de forme η . Rappelons que les données du problème sont le débit volume Q, la largeur b du canal, la pente i du canal, la rugosité absolue ε caractérisant l'état de la paroi interne du canal et la viscosité cinématique v du liquide en écoulement. Pour calculer le paramètre de forme η , nous pouvons faire appel à la méthode du modèle rugueux (MMR).

Les caractéristiques du modèle rugueux sont affectés du symbole « – ». Le modèle rugueux est un canal de forme rectangulaire caractérisée par une rugosité relative $\overline{\varepsilon} / \overline{D_h} = 0,037$ arbitrairement choisie, où $\overline{D_h}$ désigne le diamètre hydraulique. La rugosité relative ainsi choisie est tellement élevée que l'écoulement dans le modèle rugueux se situe dans le domaine turbulent rugueux. Pour ce domaine, la formule de *Nikuradsé* demeure en vigueur et nous pouvons alors écrire que :

$$\overline{f}^{-1/2} = -2\log\left(\frac{\overline{\varepsilon}/\overline{D_h}}{3,7}\right)$$
(2.18)

 \overline{f} est le coefficient de frottement dans le modèle rugueux. Compte du fait que la rugosité relative $\overline{\varepsilon} / \overline{D_h} \operatorname{est} \overline{\varepsilon} / \overline{D_h} = 0,037$, la relation (2.18) mène à :

$$\overline{f} = \frac{1}{16} \tag{2.19}$$

Ainsi, le coefficient de frottement dans le modèle rugueux est une constante. Ceci était prévisible puisque l'écoulement dans le modèle rugueux est turbulent rugueux.

Considérons un modèle rugueux dont le débit volume \overline{Q} est égal au débit volume Q écoulé par le canal rectangulaire étudié. Admettons également que la pente \overline{i} du modèle rugueux est

égale à la pente *i* du canal rectangulaire étudié. Admettons enfin que la largeur \overline{b} du modèle rugueux est égale à la larguer *b* du canal considéré. Nous pouvons alors écrire les égalités suivantes :

$$\overline{Q} = Q$$
, $\overline{i} = i$, $\overline{b} = b$
(2.20)

Rappelons que la relation de Darcy-Weisbach exprime la pente i du canal sous la forme suivante :

$$i = \frac{f}{D_h} \frac{Q^2}{2gA^2}$$
(2.21)

Où f est le coefficient de frottement dans le canal rectangulaire étudié.

Appliquons la relation (2.21) au modèle rugueux, en tenant compte des égalités (2.20). Il vient que :

$$i = \frac{\overline{f}}{\overline{D_h}} \frac{Q^2}{2g\overline{A}^2}$$
(2.22)

Dans cette dernière relation, le diamètre hydraulique $\overline{D_h}$ est par définition $\overline{D_h} = 4\overline{A}/\overline{P}$, où \overline{P} est le périmètre mouillé dans le modèle rugueux. En introduisant la définition du diamètre hydraulique $\overline{D_h}$ dans la relation (2.22) et en tenant compte de la relation (2.19), nous pouvons écrire que :

$$i = \frac{1}{128g} \overline{P} \frac{Q^2}{\overline{A}^3}$$
(2.23)

L'aire de la section mouillée \overline{A} et le périmètre mouillé \overline{P} s'écrivent respectivement :

$$\overline{A} = b \overline{y_n} \tag{2.24}$$

$$\overline{P} = b + 2\overline{y_n} \tag{2.25}$$

Dans les relations (2.24) et (2.25), $\overline{y_n}$ désigne la profondeur normale de l'écoulement dans le modèle rugueux. En substituant les relations (2.24) et (2.25) dans la relation (2.23), il vient que :

$$i = \frac{1}{128g} \left(b + 2\overline{y_n} \right) \frac{Q^2}{b^3 \overline{y_n}^3}$$
(2.26)

Cette dernière relation peut s'écrire sous la forme suivante :

$$i = \frac{1}{128g} b \left(1 + 2\frac{\overline{y_n}}{b} \right) \frac{Q^2}{b^6 \left(\frac{\overline{y_n}}{b}\right)^3}$$
(2.27)

Définissons le paramètre de forme $\overline{\eta_0} = \overline{y_n} / b$ pour le modèle rugueux. La relation (2.27) s'écrit alors :

$$i = \frac{1}{128g} \left(1 + 2\overline{\eta_0} \right) \frac{Q^2}{b^5 \overline{\eta_0}^3}$$
(2.28)

La relation (2.28) peut également s'écrire sous la forme suivante :

$$1 = \frac{1}{128} \frac{\left(1 + 2\overline{\eta_0}\right)}{\overline{\eta_0}^3} \left(\frac{Q^2}{gib^5}\right)$$
(2.29)

Désignons par la quantité $Q_b^* = Q/\sqrt{gib^5}$, la conductivité relative du modèle rugueux rapportée à la largeur *b*. Elle est égale à la conductivité relative du canal rectangulaire étudié. Ainsi, et après réarrangements, la relation (2.29) devient :

$$\overline{\eta_0}^3 - \frac{Q_b^{*2}}{64} \overline{\eta_0} - \frac{Q_b^{*2}}{128} = 0$$
(2.30)

On obtient ainsi que équation du troisième degré en $\overline{\eta_0}$, sans terme de second ordre. Dans la relation (2.30), la conductivité relative Q_b^* est connue, puisque Q, i, g et b sont des paramètres donnés. Pour résoudre l'équation de troisième degré (2.30), nous pouvons faire appel aux fonctions trigonométriques ou hyperboliques.

La relation (2.30) est de la forme :

$$x^3 - px - q = 0 (2.31)$$

Avec:
$$p = \frac{Q_b^{*2}}{64}$$
 et $q = \frac{Q_b^{*2}}{128}$

Le discriminant Δ de la relation (2.31) est donné par la relation :

$$\Delta = \left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3 \tag{2.32}$$

Après calculs, le discriminant Δ s'écrit :

$$\Delta = \left(\frac{Q_b^*}{16}\right)^4 \left(1 - \frac{Q_b^*}{6\sqrt{3}}\right) \left(1 + \frac{Q_b^*}{6\sqrt{3}}\right)$$
(2.33)

Nous pouvons ainsi constater que le discriminant Δ peut être négatif, nul ou positif selon la valeur de la conductivité relative Q_b^* . Ainsi :

iii. Lorsque $Q_b^* \ge 6\sqrt{3}$, il vient que $\Delta \le 0$ et la racine réelle de l'équation est :

$$\overline{\eta_0} = \frac{Q_b^*}{4\sqrt{3}} \cos\left(\beta / 3\right) \tag{2.34}$$

où l'angle β est tel que :

$$\cos\left(\beta\right) = \frac{6\sqrt{3}}{Q_b^*} \tag{2.35}$$

iv. Lorsque $Q_b^* \le 6\sqrt{3}$, il vient que $\Delta \ge 0$ et la racine réelle de l'équation est :

$$\overline{\eta_0} = \left(\frac{Q_b^{*2}}{256}\right)^{1/3} \left[\left(1 + \sqrt{1 - \frac{Q_b^{*2}}{108}}\right)^{1/3} + \left(1 - \sqrt{1 - \frac{Q_b^{*2}}{108}}\right)^{1/3} \right]$$
(2.36)

Une fois calculé le paramètre de forme $\overline{\eta_0}$ par l'une des relations (2.34) ou (2.36), selon le signe du discriminant Δ dépendant de la valeur de la conductivité relative Q_b^* , les étapes suivantes indiquent la procédure de calcul du paramètre de forme η , selon la MMR. Nous rappelons que les paramètres connus du problème sont Q, b, i, ε et v.

vii. Avec la valeur calculée de $\overline{\eta_0}$, on détermine la valeur de l'aire de la section mouillée \overline{A} , du périmètre mouillé \overline{P} de l'écoulement dans le modèle rugueux, du diamètre hydraulique $\overline{D_h}$ et celle du nombre de *Reynolds* \overline{R} , selon les relations suivantes :

$$\overline{A} = b \overline{y_n} = b^2 \overline{\eta_0}$$
(2.37)

$$\overline{P} = b + 2\overline{y_n} = b\left(1 + 2\overline{\eta_0}\right) \tag{2.38}$$

$$\overline{D_h} = 4\overline{A} / \overline{P} \tag{2.39}$$

$$\overline{R} = \frac{4Q}{\overline{P}v}$$
(2.40)

viii. Avec la valeur donnée de la rugosité absolue ε et la valeur calculée du diamètre hydraulique $\overline{D_h}$ et celle du nombre de *Reynolds* \overline{R} , on détermine la valeur du facteur de correction des dimensions linéaires ψ en application de la relation suivante :

$$\psi = 1,35 \left[-\log\left(\frac{\varepsilon / \overline{D_h}}{4,75} + \frac{8,5}{\overline{R}}\right) \right]^{-2/5}$$
(2.41)

ix. On affecte au modèle rugueux la nouvelle dimension linéaire suivante, issue de la relation fondamentale de la MMR :

$$\overline{b} = b / \psi$$

x. Avec la nouvelle dimension linéaire calculée à l'étape *iii*, on détermine la nouvelle valeur de la conductivité relative selon la relation suivante :

$$Q_b^* = \frac{Q}{\sqrt{gi(b/\psi)^5}}$$
(2.42)

xi. Avec cette nouvelle valeur de la conductivité relative, on calcule le paramètre de forme $\overline{\eta_0}$ par application de l'une des relations (2.34) ou (2.36), selon le signe du discriminant Δ . Cette valeur calculée de $\overline{\eta_0}$ correspond à la valeur du paramètre de forme $\eta_0 = y_n / b$ de l'écoulement dans le canal rectangulaire étudié. Soit :

$$\eta_0 = \eta_0 \tag{2.43}$$

xii. Finalement le paramètre de forme $\eta = b / y_n$ recherché est tel que :

$$\eta = \frac{1}{\eta_0} \tag{2.44}$$

II.5. Etapes de calcul du coefficient C de Chézy

Pour calculer le coefficient *C* de *Chézy*, il est nécessaire que les paramètres suivants soient connus : le débit volume *Q*, la pente *i* du canal, la rugosité absolue ε , la largeur *b* du canal, la viscosité cinématique ν du liquide en écoulement et l'accélération de la pesanteur *g*. Avec ces paramètres connus, le paramètre de forme η est déduit, selon les étapes de calcul précédemment présentées. C'est la relation (2.16) qui régit le coefficient *C* de *Chézy* et selon cette relation, les étapes suivantes sont recommandées pour le calcul de *C* :

- *vi.* On calcule le paramètre de forme η en suivant les étapes indiquées lors du paragraphe précédent.
- *vii.* Avec la valeur ainsi calculée de η , on calcule la valeur de la fonction $\varphi(\eta)$ en application de la relation (2.8). Soit :

$$\varphi(\eta) \!=\! rac{32\sqrt{2}}{\left(\eta+2
ight)^{3/2}}$$

- *viii.* On détermine la valeur de la rugosité relative ε/b .
- *ix.* On calcule la valeur du nombre de *Reynolds* modifié R^* selon la relation (2.9). Soit :

$$R^* = \frac{\sqrt{gib^3}}{v}$$

x. Finalement, le coefficient C de Chézy est déduit de la relation (2.16). Soit :

$$C = -4\sqrt{2g} \log \left[\frac{\varepsilon/b}{1,165 \left[\varphi(\eta)\right]^{2/3}} + \frac{10,04}{R^* \varphi(\eta)} \right]$$

II.6. Exemple de calcul du coefficient C de Chézy

On souhaite calculer la valeur du coefficient C de Chézy pour le cas d'un canal rectangulaire, connaissant les données suivantes :

 $Q = 3,861m^3 / s$, b = 2m, $\varepsilon = 0,001m$, i = 0,001, $v = 10^{-6}m^2 / s$.

14. On calcule la conductivité relative Q_b^* telle que :

$$Q_b^* = Q / \sqrt{gib^5} = 3,861 / \sqrt{9,81 \times 0,001 \times 2^5} = 6,89112787$$

On peut constater que $Q_b^* < 6\sqrt{3} = 10,3923048$.

15. Conformément à la relation (2.33), le discriminant Δ de l'équation de troisième degré (2.30) est positif. Le paramètre de forme $\overline{\eta_0}$ est donc régi par la relation (2.36). Soit :

$$\overline{\eta_0} = \left(\frac{\underline{Q}_b^{*2}}{256}\right)^{1/3} \left[\left(1 + \sqrt{1 - \frac{\underline{Q}_b^{*2}}{108}}\right)^{1/3} + \left(1 - \sqrt{1 - \frac{\underline{Q}_b^{*2}}{108}}\right)^{1/3} \right]$$
$$= \left(\frac{6,89112787^2}{256}\right)^{1/3} \times \left[\left(1 + \sqrt{1 - \frac{6,89112787^2}{108}}\right)^{1/3} + \left(1 - \sqrt{1 - \frac{6,89112787^2}{108}}\right)^{1/3} \right]$$

=1,047052833

16. Avec la valeur ainsi calculée du paramètre de forme $\overline{\eta_0}$, les caractéristiques hydrauliques du modèle rugueux sont :

L'Aire de la section mouillée \overline{A} , donnée par la relation (2.37). Soit :

$$\overline{A} = b^2 \overline{\eta_0} = 2^2 \times 1,047052833 = 4,18821133m^2$$

Le périmètre mouillé \overline{P} , donné par la relation (2.38). Soit :

$$\overline{P} = b(1+2\overline{\eta_0}) = 2 \times (1+2 \times 1,047052833) = 6,18821133m$$

Le diamètre hydraulique $\overline{D_h}$, donné par la relation (2.39). Soit :

$$\overline{D_h} = 4\overline{A} / \overline{P} = 4 \times 4,18821133 / 6,19011332 = 2,70721933m$$

Le nombre de *Reynolds* \overline{R} , donné par la relation (2.39). Soit :

$$\overline{R} = \frac{4Q}{\overline{P}_V} = \frac{4 \times 3,861}{6,19011332 \times 10^{-6}} = 2495713,09$$

17. Les caractéristiques hydrauliques du modèle rugueux ainsi calculées permettent de déterminer le facteur de correction des dimensions linéaires ψ , selon la relation (2.41). Soit :

$$\psi = 1,35 \left[-\log\left(\frac{\varepsilon / \overline{D_h}}{4,75} + \frac{8,5}{\overline{R}}\right) \right]^{-2/5}$$

$$=1,35\times\left[-\log\left(\frac{0,001/2,7063875}{4,75}+\frac{8,5}{2494946,25}\right)\right]^{-2/5}=0,76845584$$

18. Affectons au modèle rugueux la nouvelle dimension linéaire suivante :

$$b = b/\psi = 2/0,76845584 = 2,60262191m$$

19. Avec cette nouvelle dimension linéaire, calculons la conductivité relative selon la relation (2.42). Soit :

$$Q_b^* = \frac{Q}{\sqrt{gi(b/\psi)^5}} = \frac{3,861}{\sqrt{9,81 \times 0,001 \times 2,60262191^5}} = 3,56728326$$

20. Nous pouvons constater que la valeur de la conductivité relative ainsi calculée est inférieure à $6\sqrt{3} = 10,3923048$. Ceci permet de conclure que le paramètre de forme $\overline{\eta_0}$ est régi par la relation (2.36). Soit :

$$\overline{\eta_0} = \left(\frac{Q_b^{*2}}{256}\right)^{1/3} \left[\left(1 + \sqrt{1 - \frac{Q_b^{*2}}{108}}\right)^{1/3} + \left(1 - \sqrt{1 - \frac{Q_b^{*2}}{108}}\right)^{1/3} \right]$$
$$= \left(\frac{3,56728326^2}{256}\right)^{1/3} \times \left[\left(1 + \sqrt{1 - \frac{3,56728326^2}{108}}\right)^{1/3} + \left(1 - \sqrt{1 - \frac{3,56728326^2}{108}}\right)^{1/3} \right]$$

=0,603067235

Cette valeur calculée du paramètre de forme $\overline{\eta_0}$ correspond exactement au paramètre de forme η_0 de l'écoulement dans le canal rectangulaire étudié. Soit :

 $\eta_0 = y_n / b = 0,603067235$

21. Le paramètre de forme $\eta = b / y_n$ est donc :

$$\eta = \frac{1}{\eta_0} = \frac{1}{0,603067235} = 1,6581899$$

22. Selon la relation (2.8), la fonction $\varphi(\eta)$ est telle que :

$$\varphi(\eta) = \frac{32\sqrt{2}}{(\eta+2)^{3/2}} = \frac{32\times\sqrt{2}}{(1,6581899+2)^{3/2}} = 6,46793439$$

- 23. La valeur de la rugosité relative ε/b est : $\varepsilon/b = 0,001/2 = 0,0005$
- 24. La valeur du nombre de *Reynolds* modifié R^* est, selon la relation (2.9) :

$$R^* = \frac{\sqrt{gib^3}}{\nu} = \frac{\sqrt{9,81 \times 0,001 \times 2^3}}{10^{-6}} = 280142,821$$

25. Finalement, la valeur recherchée du coefficient C de *Chézy* est, selon la relation (2.16) :

$$C = -4\sqrt{2g} \log \left[\frac{\varepsilon/b}{1,165[\varphi(\eta)]^{2/3}} + \frac{10,04}{R^*\varphi(\eta)} \right]$$
$$= -4 \times \sqrt{2 \times 9,81} \times \log \left[\frac{0,0005}{1,165 \times 6,46793439^{2/3}} + \frac{10,04}{280142,821 \times 6,46793439} \right]$$
$$= 68,9013858 \approx 69m^{0.5} / s$$

26. Vérifions la valeur ainsi calculée de C par celle issue de la MMR. Selon la MMR, le coefficient C de *Chézy* est donné par la relation suivante :

$$C = \frac{8\sqrt{2g}}{\psi^{5/2}}$$
(2.45)

Le facteur de correction des dimensions linéaires ψ a été calculé à l'étape 4 et vaut :

 $\psi = 0,76845584$

Le coefficient C de Chézy est par suite, selon la relation (2.45) :

$$C = \frac{8\sqrt{2g}}{\psi^{5/2}} = \frac{8 \times \sqrt{2 \times 9,81}}{0,76845584^{5/2}} = 68,4529552m^{0.5} / s \approx 68,5m^{0.5} / s$$

Ainsi, nous pouvons constater que l'écart relatif entre les valeurs de C calculées selon la méthode que nous avons présentée et la MMR est de :

$$\frac{\Delta C}{C} = 100 \times \frac{(68,9013858 - 68,4529552)}{68,9013858} = 0,65\%$$

Nous pouvons alors conclure, tenant compte du faible écart relatif obtenu, que les deux méthodes aboutissent pratiquement au même résultat

II.7. Expression du coefficient adimensionnel de Manning dans un canal rectangulaire

La relation de *Manning* exprime le débit volume Q écoulé par le canal par la relation suivante :

$$Q = \frac{1}{n} A R_h^{2/3} \sqrt{i}$$
(2.46)

Où *n* désigne le coefficient de *Manning*.

En comparant la relation (2.46) à la relation générale du débit volume exprimée par (2.1), nous pouvons déduire que :

$$\frac{1}{n} = -4\sqrt{2g}R_h^{-1/6}\log\left(\frac{\varepsilon}{14,8R_h} + \frac{10,04}{R}\right)$$
(2.47)

Le nombre de *Reynolds R* est, pour rappel, donné par la relation (2.10), tandis que le Rayon hydraulique R_h est donné par la relation (2.6). La relation (2.47) montre bien que le coefficient n de *Manning* est fonction de la rugosité absolue ε , du nombre de *Reynolds R* et du rayon

hydraulique R_h . Cette dépendance de *n* vis-à-vis de R_h traduit bien le fait que *n* varie en fonction du paramètre de forme η de la section mouillée du canal.

En introduisant la fonction $\varphi(\eta)$, donnée par la relation (2.8), dans l'expression du rayon hydraulique R_h exprimée par (2.6), nous pouvons écrire :

$$R_{h} = b \frac{\left[\varphi(\eta)\right]^{2/3}}{\left(32\sqrt{2}\right)^{2/3}}$$
(2.48)

En remplaçant les relations (2.10) et (2.48), qui expriment le nombre de *Reynolds R* et le rayon hydraulique R_b respectivement, dans la relation (2.47), il vient que :

$$\frac{1}{n} = -\frac{4}{\left(32\sqrt{2}\right)^{-1/9}} \sqrt{2g} \, b^{-1/6} \left[\varphi(\eta)\right]^{-1/9} \log\left(\frac{\varepsilon/b}{\frac{14,8}{\left(32\sqrt{2}\right)^{2/3}}} + \frac{10,04}{R^*\varphi(\eta)}\right)$$
(2.49)

Après calculs, la relation (2.49) s'écrit en définitive :

$$\frac{1}{n} = -8,64\sqrt{g} \, b^{-1/6} \left[\varphi(\eta) \right]^{-1/9} \log \left(\frac{\varepsilon/b}{1,165 \left[\varphi(\eta) \right]^{2/3}} + \frac{10,04}{R^* \varphi(\eta)} \right)$$
(2.50)

Introduisons le paramètre adimensionnel suivant :

$$N = \frac{b^{1/6}}{n\sqrt{g}} \tag{2.51}$$

La relation (2.50) s'écrit alors, en termes adimensionnels, de la manière suivante :

$$N = -8.64 \left[\varphi(\eta)\right]^{-1/9} \log\left(\frac{\varepsilon/b}{1.165 \left[\varphi(\eta)\right]^{2/3}} + \frac{10.04}{R^* \varphi(\eta)}\right)$$
(2.52)

La relation (2.52) constitue l'expression finale du coefficient adimensionnel N de *Manning*. Lorsque les paramètres η , ε , b, i et v sont connus, la relation (2.50) ou (2.52) permet d'évaluer le coefficient n de *Manning*. Au regard de la relation (2.52), nous pouvons écrire la relation fonctionnelle suivante :

$$N = f\left(\varepsilon / b; \eta; R^*\right) \tag{2.53}$$

II.8. Variation du nombre adimensionnel *N* de *Manning*

Les tableaux suivants donnent la valeur du paramètre adimensionnel N, pour des valeurs fixées de la rugosité relative ε/b et en faisant varier le nombre de *Reynolds* modifié R^* . Endessous de chaque tableau, nous avons présenté la variation de N en fonction du paramètre de forme η et chacune des courbes obtenues est discutée.

ε/k	o = 0	$R^* = 10^4$	$R^* = 10^5$	$R^* = 10^6$	$R^* = 10^7$	$R^* = 10^8$
η	$arphi(\eta)$	Ν	Ν	Ν	Ν	Ν
0	16	26,7128956	33,0694973	39,426099	45,7827007	52,1393023
0,1	14,8708583	26,7273148	33,1358171	39,5443195	45,9528218	52,3613242
0,2	13,8685468	26,7396243	33,198007	39,6563898	46,1147725	52,5731552
0,3	12,9739799	26,750053	33,2564612	39,7628693	46,2692775	52,7756857
0,4	12,1716124	26,7587979	33,3115218	39,8642458	46,4169697	52,9696937
0,5	11,448668	26,7660293	33,3634878	39,9609463	46,5584048	53,1558633
0,6	10,7945602	26,7718956	33,4126216	40,0533475	46,6940734	53,3347994
0,7	10,20045	26,7765264	33,4591546	40,1417827	46,8244108	53,5070389
0,8	9,65890577	26,7800358	33,5032922	40,2265485	46,9498049	53,6730612
0,9	9,16363916	26,7825244	33,5452173	40,3079101	47,070603	53,8332959
1	8,70929686	26,7840813	33,5850933	40,3861053	47,1871173	53,9881293
1,1	8,2912963	26,784786	33,6230671	40,4613482	47,2996293	54,1379104
1,2	7,90569415	26,7847094	33,6592708	40,5338322	47,4083936	54,282955
1,3	7,54908067	26,783915	33,6938239	40,6037328	47,5136417	54,4235506
1,4	7,21849401	26,7824598	33,7268345	40,6712093	47,6155841	54,5599589
1,5	6,91135036	26,7803952	33,7584013	40,7364073	47,7144133	54,6924193
1,6	6,6253866	26,7777679	33,7886137	40,7994595	47,8103053	54,8211512
1,7	6,35861295	26,7746199	33,817554	40,860488	47,903422	54,946356
1,8	6,10927369	26,7709896	33,845297	40,9196045	47,993912	55,0682195
1,9	5,87581435	26,7669117	33,871912	40,9769123	48,0819126	55,1869129
2	5,65685425	26,7624181	33,8974622	41,0325064	48,1675505	55,3025946
2,1	5,45116328	26,7575378	33,9220063	41,0864747	48,2509432	55,4154117
2,2	5,25764236	26,7522976	33,9455983	41,138899	48,3321996	55,5255003
2,3	5,07530671	26,7467218	33,9682882	41,1898546	48,411421	55,6329874
2,4	4,90327173	26,740833	33,9901226	41,2394121	48,4887016	55,7379911
2,5	4,74074074	26,7346519	34,0111444	41,2876369	48,5641293	55,8406218
2,6	4,5869946	26,7281976	34,0313938	41,3345901	48,6377863	55,9409826
2,7	4,44138263	26,7214877	34,0509083	41,3803288	48,7097494	56,0391699
2,8	4,30331483	26,7145386	34,0697225	41,4249065	48,7800904	56,1352744
2,9	4,17225512	26,7073654	34,0878693	41,4683732	48,8488771	56,2293809
3	4,04771541	26,6999823	34,1053791	41,5107758	48,9161726	56,3215694
3,1	3,92925045	26,6924021	34,1222804	41,5521586	48,9820368	56,411915
3,2	3,81645337	26,6846372	34,1386	41,5925629	49,0465257	56,5004885
3,3	3,70895165	26,6766987	34,1543633	41,6320278	49,1096923	56,5873568
3,4	3,60640367	26,6685973	34,1695938	41,6705902	49,1715866	56,6725831
3,5	3,50849565	26,6603428	34,1843138	41,7082848	49,2322559	56,7562269
3,6	3,41493888	26,6519444	34,1985445	41,7451446	49,2917447	56,8383448
3,7	3,32546738	26,6434106	34,2123055	41,7812004	49,3500953	56,9189902
3,8	3,23983569	26,6347496	34,2256157	41,8164818	49,4073479	56,998214
3,9	3,157817	26,6259688	34,2384927	41,8510166	49,4635405	57,0760643
4	3,07920144	26,6170755	34,2509533	41,8848312	49,518709	57,1525869
4,1	3,00379454	26,6080761	34,2630134	41,9179507	49,572888	57,2278253

Tableau 2.4 : Valeurs du paramètre N calculées selon la relation (2.52)

4,2	2,93141592	26,5989769	34,2746879	41,9503989	49,6261099	57,3018209
4,3	2,86189801	26,5897839	34,2859912	41,9821985	49,6784058	57,3746131
4,4	2,79508497	26,5805025	34,2969368	42,0133711	49,7298054	57,4462396
4,5	2,73083174	26,571138	34,3075376	42,0439371	49,7803367	57,5167362
4,6	2,66900307	26,5616952	34,3178057	42,0739162	49,8300267	57,5861372
4,7	2,60947279	26,5521787	34,3277529	42,103327	49,8789011	57,6544753
4,8	2,55212303	26,542593	34,3373902	42,1321873	49,9269845	57,7217816
4,9	2,4968436	26,5329421	34,3467281	42,1605142	49,9743002	57,7880862
5	2,44353135	26,5232299	34,3557769	42,1883238	50,0208707	57,8534177

Figure 2.4 : Variation de *N* en fonction de η , pour $\varepsilon/b=0$ (Ecoulement lisse)

La figure 2.4 montre clairement que pour un nombre de *Reynolds* modifié R^* fixé, le paramètre adimensionnel N augmente avec l'accroissement du paramètre de forme η . Cependant, nous pouvons constater que la courbe correspondant à $R^* = 10^4$ fait exception. En effet, pour cette valeur de R^* , la courbe subit une légère augmentation dans un premier temps, puis diminue très lentement. Mais, cette variation de N n'est pas significative et l'on peut considérer que N demeure pratiquement constant. Au fur et à mesure que R^* augmente, l'accroissement de N est plus rapide. Pour un canal rectangulaire donné, c'est-à-dire pour une largeur b connue, l'augmentation du paramètre adimensionnel N signifie que 1/n augmente ou que n diminue. Cette constatation est tout à fait physiquement justifiée. Nous pouvons enfin constater que pour une valeur donnée du paramètre de forme η , le paramètre adimensionnel N augmente avec l'accroissement du nombre de *Reynolds* modifié R^* . Cela signifie que le coefficient n diminue au fur et à mesure de l'augmentation du nombre de *Reynolds* modifié R^* .

$\varepsilon / b =$	$=10^{-4}$	$R^* = 10^4$	$R^* = 10^5$	$R^* = 10^6$	$R^* = 10^7$	$R^* = 10^8$
η	$arphi(\eta)$	Ν	Ν	Ν	Ν	Ν
0	16	26,1742926	29,8981371	30,8254969	30,9379703	30,9494738
0,1	14,8708583	26,1962285	29,9847547	30,9383435	31,0544648	31,0663479
0,2	13,8685468	26,2156294	30,0664638	31,0456746	31,1653827	31,1776394
0,3	12,9739799	26,2327655	30,143717	31,1479807	31,2712179	31,2838425
0,4	12,1716124	26,2478694	30,2169085	31,2456897	31,3724018	31,385389

Tableau 2.5 : Valeurs du paramètre N calculées selon la relation (2.52)

0,5	11,448668	26,2611423	30,2863833	31,3391774	31,4693132	31,4826579
0,6	10,7945602	26,27276	30,3524455	31,4287757	31,5622866	31,575984
0,7	10,20045	26,2828759	30,4153641	31,5147788	31,6516187	31,6656643
0,8	9,65890577	26,2916253	30,4753783	31,5974492	31,7375741	31,7519637
0,9	9,16363916	26,2991277	30,5327018	31,6770214	31,8203897	31,8351191
1	8,70929686	26,3054892	30,5875261	31,7537067	31,9002783	31,9153436
1,1	8,2912963	26,3108041	30,6400235	31,8276951	31,977432	31,9928295
1,2	7,90569415	26,315157	30,6903495	31,8991589	32,0520246	32,0677506
1,3	7,54908067	26,3186236	30,7386453	31,9682544	32,1242138	32,140265
1,4	7,21849401	26,321272	30,7850387	32,035124	32,1941435	32,2105165
1,5	6,91135036	26,3231637	30,8296466	32,0998975	32,2619448	32,2786365
1,6	6,6253866	26,3243545	30,8725755	32,162694	32,327738	32,3447454
1,7	6,35861295	26,3248947	30,9139231	32,2236228	32,3916335	32,4089535
1,8	6,10927369	26,3248304	30,953779	32,2827842	32,4537328	32,4713627
1,9	5,87581435	26,3242034	30,9922258	32,340271	32,5141296	32,5320667
2	5,65685425	26,3230519	31,0293394	32,3961689	32,5729105	32,591152
2,1	5,45116328	26,321411	31,0651902	32,4505569	32,6301555	32,648699
2,2	5,25764236	26,3193128	31,0998432	32,5035088	32,6859392	32,7047821
2,3	5,07530671	26,3167869	31,1333589	32,5550928	32,7403306	32,7594706
2,4	4,90327173	26,3138604	31,1657932	32,6053727	32,7933941	32,8128289
2,5	4,74074074	26,3105584	31,1971984	32,6544076	32,8451897	32,864917
2,6	4,5869946	26,3069041	31,2276231	32,702253	32,8957736	32,9157912
2,7	4,44138263	26,3029189	31,2571126	32,7489608	32,9451981	32,965504
2,8	4,30331483	26,2986227	31,2857096	32,7945795	32,9935126	33,0141046
2,9	4,17225512	26,2940339	31,3134536	32,8391547	33,040763	33,0616392
3	4,04771541	26,2891697	31,340382	32,8827291	33,0869928	33,1081512
3,1	3,92925045	26,2840459	31,3665297	32,9253429	33,1322426	33,1536813
3,2	3,81645337	26,2786775	31,3919295	32,9670341	33,1765509	33,1982681
3,3	3,70895165	26,2730783	31,4166125	33,0078383	33,2199537	33,2419477
3,4	3,60640367	26,2672612	31,4406078	33,0477893	33,2624854	33,2847543
3,5	3,50849565	26,2612383	31,4639427	33,0869188	33,3041782	33,3267202
3,6	3,41493888	26,2550209	31,4866433	33,1252569	33,3450625	33,3678761
3,7	3,32546738	26,2486196	31,508734	33,1628323	33,3851673	33,4082508
3,8	3,23983569	26,2420444	31,530238	33,1996718	33,42452	33,4478719
3,9	3,157817	26,2353046	31,5511773	33,2358012	33,4631466	33,4867652
4	3,07920144	26,2284089	31,5715726	33,2712446	33,5010717	33,5249556
4,1	3,00379454	26,2213655	31,5914437	33,3060253	33,5383189	33,5624665
4,2	2,93141592	26,2141824	31,6108092	33,3401652	33,5749103	33,5993203
4,3	2,86189801	26,2068666	31,6296871	33,3736853	33,6108673	33,6355382
4,4	2,79508497	26,1994252	31,6480941	33,4066054	33,6462101	33,6711404
4,5	2,73083174	26,1918646	31,6660464	33,4389445	33,6809579	33,7061464
4,6	2,66900307	26,1841909	31,6835592	33,4707207	33,7151292	33,7405744
4,7	2,60947279	26,17641	31,7006473	33,5019514	33,7487415	33,7744422
4,8	2,55212303	26,1685273	31,7173245	33,5326531	33,7818116	33,8077665
4,9	2,4968436	26,160548	31,733604	33,5628415	33,8143556	33,8405634
5	2,44353135	26,152477	31,7494987	33,5925318	33,8463887	33,8728483

Figure 2.5 : Variation de *N* en fonction de η , pour $\varepsilon / b = 10^{-4}$

La figure 2.5 montre, à l'exception de la courbe correspondant à $R^* = 10^4$, que le nombre adimensionnel N augmente avec l'accroissement du paramètre de forme $\eta = b / y_n$, pour un nombre de *Reynolds* modifié R^* fixé. Cela dignifie que le coefficient n diminue au fur et à mesure que la profondeur y_n de l'écoulement décroit. La courbe de $R^* = 10^4$ fait l'exception, car N augmente dans un premier temps puis diminue dans un second temps. Cependant, cette variation n'est pas très significative. La figure 2.5 montre également que les courbes se confondent lorsque le nombre de *Reynolds* modifié atteint la valeur $R^* = 10^7$. Au-delà de cette valeur, le nombre de *Reynolds* modifié R^* n'a aucune influence sur la variation du nombre N, cela signifie que la viscosité cinématique ν du liquide en écoulement ne joue aucun rôle. L'état turbulent rugueux de l'écoulement est donc atteint pour $R^* = 10^7$. Seul le paramètre de forme $\eta = b / y_n$ influence la variation de N.

$\varepsilon / b =$	$=10^{-3}$	$R^* = 10^4$	$R^* = 10^5$	$R^* = 10^6$	$R^* = 10^7$	$R^* = 10^8$
η	$arphi(\eta)$	Ν	Ν	Ν	Ν	Ν
0	16	23,5415354	24,4688952	24,5813686	24,5928721	24,5940251
0,1	14,8708583	23,5762523	24,5298411	24,6459625	24,6578456	24,6590367
0,2	13,8685468	23,608081	24,5872919	24,7069999	24,7192566	24,7204852
0,3	12,9739799	23,6373089	24,6415725	24,7648098	24,7774343	24,7786999
0,4	12,1716124	23,6641845	24,6929657	24,8196779	24,832665	24,833967
0,5	11,448668	23,6889248	24,7417189	24,8718547	24,8851994	24,8865373
0,6	10,7945602	23,7117196	24,7880498	24,9215607	24,9352581	24,9366314
0,7	10,20045	23,732736	24,8321507	24,9689906	24,9830362	24,9844446
0,8	9,65890577	23,752122	24,8741928	25,0143178	25,0287073	25,0301502
0,9	9,16363916	23,7700089	24,9143286	25,0576968	25,0724262	25,0739032
1	8,70929686	23,7865141	24,9526947	25,0992663	25,1143316	25,1158424
1,1	8,2912963	23,8017424	24,989414	25,139151	25,1545484	25,1560925
1,2	7,90569415	23,8157881	25,0245975	25,1774632	25,1931892	25,1947664
1,3	7,54908067	23,8287363	25,0583455	25,2143049	25,2303561	25,2319659
1,4	7,21849401	23,8406639	25,0907492	25,2497687	25,2661417	25,2677839
1,5	6,91135036	23,8516406	25,1218915	25,2839388	25,3006305	25,3023047
1,6	6,6253866	23,8617297	25,1518482	25,3168922	25,3338995	25,3356055
1,7	6,35861295	23,8709891	25,1806887	25,3486995	25,3660195	25,3677569
1,8	6,10927369	23,8794715	25,2084767	25,3794254	25,3970553	25,3988238
1,9	5,87581435	23,8872255	25,2352708	25,4091293	25,4270664	25,4288658
2	5,65685425	23,8942952	25,2611247	25,4378663	25,4561079	25,4579379
2,1	5,45116328	23,9007217	25,2860885	25,4656871	25,4842305	25,486091

Tableau 2.6 : Valeurs du paramètre N calculées selon la relation (2.52)

2,2	5,25764236	23,9065426	25,3102081	25,4926385	25,5114815	25,513372
2,3	5,07530671	23,9117925	25,3335265	25,5187642	25,5379042	25,5398246
2,4	4,90327173	23,9165037	25,3560831	25,5441045	25,5635393	25,5654894
2,5	4,74074074	23,9207059	25,3779151	25,5686972	25,5884245	25,5904041
2,6	4,5869946	23,9244268	25,3990568	25,5925773	25,612595	25,6146037
2,7	4,44138263	23,9276921	25,4195403	25,6157776	25,6360835	25,6381212
2,8	4,30331483	23,9305256	25,4393956	25,6383286	25,6589207	25,6609872
2,9	4,17225512	23,9329497	25,4586508	25,6602592	25,6811354	25,6832305
3	4,04771541	23,9349852	25,4773323	25,681596	25,7027544	25,7048779
3,1	3,92925045	23,9366514	25,4954647	25,7023644	25,7238031	25,7259549
3,2	3,81645337	23,9379667	25,5130713	25,722588	25,7443053	25,746485
3,3	3,70895165	23,938948	25,5301738	25,7422892	25,7642831	25,7664907
3,4	3,60640367	23,9396113	25,5467928	25,761489	25,7837578	25,7859931
3,5	3,50849565	23,9399717	25,5629477	25,7802071	25,8027492	25,805012
3,6	3,41493888	23,9400432	25,5786568	25,7984624	25,821276	25,8235661
3,7	3,32546738	23,9398391	25,5939374	25,8162724	25,8393559	25,8416732
3,8	3,23983569	23,9393719	25,6088057	25,8336539	25,8570057	25,8593501
3,9	3,157817	23,9386534	25,6232773	25,8506227	25,8742413	25,8766125
4	3,07920144	23,9376947	25,6373668	25,8671939	25,8910777	25,8934756
4,1	3,00379454	23,9365064	25,651088	25,8833816	25,9075292	25,9099536
4,2	2,93141592	23,9350983	25,6644543	25,8991993	25,9236093	25,9260601
4,3	2,86189801	23,9334798	25,677478	25,91466	25,9393308	25,941808
4,4	2,79508497	23,9316598	25,6901711	25,9297758	25,9547061	25,9572094
4,5	2,73083174	23,9296468	25,7025449	25,9445584	25,9697468	25,9722761
4,6	2,66900307	23,9274487	25,7146102	25,9590187	25,9844639	25,9870191
4,7	2,60947279	23,9250732	25,7263773	25,9731674	25,9988681	26,001449
4,8	2,55212303	23,9225273	25,737856	25,9870144	26,0129694	26,0155758
4,9	2,4968436	23,919818	25,7490555	26,0005695	26,0267774	26,0294094
5	2,44353135	23,9169518	25,7599849	26,0138418	26,0403014	26,0429587

Figure 2.6 : Variation de *N* en fonction de η , pour $\varepsilon / b = 10^{-3}$

Comme pour les figures 2.4 et 2.5, la figure 2.6 montre que le nombre adimensionnel N augmente avec l'accroissement du paramètre de forme $\eta = b / y_n$, à l'exception de la courbe correspondant à $R^* = 10^4$. Pour cette courbe, le nombre adimensionnel subit une augmentation dans un premier puis une légère diminution au-delà d'une certaine valeur du paramètre de forme η . Pour un paramètre de forme η donné, nous pouvons constater que N augmente avec l'accroissement du nombre de *Reynolds* modifié R^* . Comme nous l'avons constaté sur la figure 2.5, la figure 2.6 montre également que les courbes se confondent lorsque le nombre de *Reynolds* modifié atteint la valeur $R^* = 10^7$. A partir de cette valeur, le régime d'écoulement turbulent rugueux est atteint, et la viscosité cinématique ν du liquide en écoulement n'a aucune influence sur la variation du nombre adimensionnel N. La figure 2.6 montre en

particulier que le nombre adimensionnel N ne subit qu'une augmentation toute relative dans l'ensemble de la gamme tracée du paramètre de forme η .

Au regard des valeurs des tableaux 2.4, 2.5 et 2.6, et également des figures 2.4, 2.5 et 2.6, nous pouvons observer que plus la rugosité relative ε/b augmente et plus le nombre adimensionnel *N* diminue, quelque soit la valeur du nombre de *Reynolds* modifié R^* . Cela revient à dire que 1/n augmente ou que le coefficient *n* diminue, pour canal rectangulaire donné pour lequel la largeur *b* est fixée.

II.9. Calcul du coefficient *n* de *Manning* par la MMR

La relation (2.50) ou (2.52) ne permet d'évaluer le coefficient n de *Manning* que si la largeur b du canal rectangulaire est une donnée du problème. Dans le cas où b n'est pas connu, il est tout de même possible de calculer la valeur de n, à condition d'avoir recours à la méthode du modèle rugueux (MMR). C'est l'un des avantages de cette méthode.

En comparant les relations (2.11) et (2.46) de *Chézy* et de *Manning* respectivement, il est aisé de montrer que :

$$n = \frac{R_h^{1/6}}{C}$$
(2.54)

Par suite, nous pouvons écrire que le coefficient n de *Manning* dans le modèle rugueux est tel que :

$$\overline{n} = \frac{\overline{R_h}^{1/6}}{\overline{C}}$$
(2.55)

Il est utile de rappeler que selon la MMR, le coefficient \overline{C} de *Chézy* dans le modèle rugueux est :

$$\overline{C} = 8\sqrt{2g} \tag{2.56}$$

Le modèle rugueux est un canal rectangulaire de largeur \overline{b} ; il écoule un débit volume \overline{Q} d'un liquide de viscosité cinématique \overline{v} correspondant à un taux de remplissage $\overline{\eta}$, pour une pente longitudinale \overline{i} . Pour déterminer le coefficient *n* de *Manning*, admettons les conditions suivantes :

- *v*. $b \neq b$: cette condition énonce que la largeur du canal et celle du modèle rugueux sont différents.
- *vi.* $\overline{Q} = Q$: le canal rectangulaire considéré et le modèle rugueux écoulent le même débit volume Q.
- *vii.* i = i: le canal rectangulaire considéré et le modèle rugueux sont caractérisés par la même pente longitudinale i.
- *viii.* $\eta = \eta$: le paramètre de forme du canal considéré est égal à celui du modèle rugueux de référence.
- $\overline{v} = v$: le canal rectangulaire considéré et le modèle rugueux écoulent le même liquide.

Le débit volume \overline{Q} écoulé par le modèle rugueux s'écrit, en vertu de la relation (2.46) de *Manning* :

$$\overline{Q} = Q = \frac{1}{n} \overline{A} \overline{R_h}^{2/3} \sqrt{i}$$
(2.57)

L'aire de la section mouillée *A* ainsi que le rayon hydraulique R_h de l'écoulement dans le canal rectangulaire considéré sont liés à leurs homologues du modèle rugueux \overline{A} et $\overline{R_h}$ par les relations suivantes :

$$A = \psi^2 \overline{A} \tag{2.58}$$

$$R_h = \psi \,\overline{R_h} \tag{2.59}$$

En tenant compte des relations (2.58) et (2.59), la relation (2.46) de Manning devient :

$$Q = \frac{1}{n} A R_h^{2/3} \sqrt{i} = \frac{\psi^{8/3}}{n} \overline{A} \overline{R_h}^{2/3} \sqrt{i}$$
(2.60)

En comparant les relations (2.57) et (2.60), il ressort que :

....

$$n = n \psi^{8/3}$$
 (2.61)

Tenant compte de la relation (2.56), la combinaison des relations (2.55) et (2.61) mène à écrire que :

$$n = \frac{\psi^{8/3} \overline{R_h}^{1/6}}{8\sqrt{2g}}$$
(2.62)

Le facteur de correction des dimensions linéaires ψ est donné par la relation (2.41), dont on rappelle l'expression :

$$\psi = 1,35 \left[-\log\left(\frac{\varepsilon / \overline{D_h}}{4,75} + \frac{8,5}{\overline{R}}\right) \right]^{-2/5}$$
(2.41)

Tenant compte de la relation (2.6), nous pouvons aisément écrire que :

$$\overline{D_h} = 4\overline{R_h} = 4\frac{\overline{b}}{\left(\eta + 2\right)}$$
(2.63)

En combinant les relations (2.8) et (2.63), nous pouvons écrire que :

$$\overline{D_h} = \frac{4\overline{b}}{\left(32\sqrt{2}\right)^{2/3}} \left[\varphi(\eta)\right]^{2/3}$$
(2.64)

Rappelons d'autre part que le nombre de *Reynolds* \overline{R} figurant dans la relation (2.41) est donné par la relation (2.10) sous la forme suivante :

$$\overline{R} = \overline{R^*} \varphi(\eta) \tag{2.65}$$

Où $\overline{R^*}$ est donné par la relation (2.9) sous la forme suivante :

$$\overline{R^*} = \frac{\sqrt{gi\overline{b}^3}}{\nu}$$
(2.66)

En tenant compte des relations (2.64) et (2.65), la relation (2.41) devient :

$$\psi = 1,35 \left[-\log \left(\frac{\varepsilon / \overline{b}}{1,496 \left[\varphi(\eta) \right]^{2/3}} + \frac{8,5}{\overline{R^*} \varphi(\eta)} \right) \right]^{-2/5}$$
(2.67)

Prenant en compte les relations (2.64) et (2.67), la relation (2.62) permet alors d'écrire que le coefficient *n* de Manning s'écrit finalement :

$$n = \frac{0,129}{\sqrt{g}} \bar{b}^{1/6} \left[\varphi(\eta) \right]^{1/9} \left[-\log \left(\frac{\varepsilon / \bar{b}}{1,496 \left[\varphi(\eta) \right]^{2/3}} + \frac{8,5}{\bar{R}^*} \varphi(\eta) \right) \right]^{-16/15}$$
(2.68)

Selon la relation (2.68), le coefficient *n* de *Manning* s'exprime en fonction du paramètre de forme η , de la rugosité absolue ε et des caractéristiques \overline{b} et $\overline{R^*}$ du modèle rugueux. Le nombre de *Reynolds* $\overline{R^*}$ est régi par la relation (2.66) qui dépend notamment de la largeur \overline{b} du modèle rugueux.

Pour exprimer la largeur \overline{b} du modèle rugueux, il faut faire appel à la relation (2.11) de *Chézy*. Appliquée au modèle rugueux, celle-ci s'écrit :

$$Q = \overline{C}\overline{A}\sqrt{\overline{R_h}i}$$
(2.69)

Le coefficient \overline{C} est le coefficient de *Chézy* dans le modèle rugueux donné par la relation (2.56) et vaut $8\sqrt{2g}$. L'aire de la section mouillée \overline{A} de l'écoulement dans le modèle rugueux s'exprime par la relation suivante :

$$\overline{A} = \frac{b^2}{\eta}$$
(2.70)

Où η est, pour rappel, le paramètre de forme tel que $\eta = b / y_n$. Nous rappelons également que le rayon hydraulique $\overline{R_h}$ peut être déduit de la relation (2.64).

Tenant compte de toutes ces considérations, la relation (2.69) s'écrit sous la forme suivante :

$$Q = 8\sqrt{2} \frac{\overline{b}^2}{\eta} \sqrt{\frac{\overline{b}}{\left(32\sqrt{2}\right)^{2/3}} \left[\varphi(\eta)\right]^{2/3} i}$$
(2.71)

Après réarrangements, la largeur \overline{b} du modèle rugueux s'écrit :

$$\bar{b} = \left(\frac{Q}{\sqrt{gi}}\right)^{2/5} \frac{\left(32\sqrt{2}\right)^{2/5}}{\left(8\sqrt{2}\right)^{2/5}} \frac{\eta^{2/5}}{\left[\varphi(\eta)\right]^{2/15}}$$
(2.72)

Après calculs, la relation (2.72) s'écrit finalement :

$$\bar{b} = 0,63 \left(\frac{Q}{\sqrt{gi}}\right)^{2/5} \frac{\eta^{2/5}}{\left[\varphi(\eta)\right]^{2/15}}$$
(2.74)

La relation (2.74) permet de calculer la largeur \overline{b} du modèle rugueux, pour les valeurs connues du débit volume Q, de la pente i et du paramètre de forme η .

Les étapes suivantes montrent la procédure de calcul du coefficient *n* de *Manning*, pour les données suivantes : Q, ε , *i*, η , ν . Notons que la largeur b du canal rectangulaire considéré n'est pas requise pour le calcul de *n*.

v. Avec la valeur connue du paramètre de forme $\eta = b / y_n$, on calcule la valeur de la fonction $\varphi(\eta)$ en application de la relation (2.8). Soit :

$$\varphi(\eta) = \frac{32\sqrt{2}}{\left(\eta+2\right)^{3/2}}$$

vi. Avec la valeur connue des paramètres Q, $i \in \eta = b / y_n$, on calcule la largeur \overline{b} du modèle rugueux selon la relation (2.74). Soit :

$$\bar{b} = 0.63 \left(\frac{Q}{\sqrt{gi}}\right)^{2/5} \frac{\eta^{2/5}}{\left[\varphi(\eta)\right]^{2/15}}$$

- *vii.* Avec la valeur connue des paramètres *i*, \overline{b} et*v*, on calcule le nombre de *Reynolds* modifié $\overline{R^*}$ dans le modèle rugueux, en application de la relation (2.66). Soit : $\overline{R^*} = \frac{\sqrt{gi\overline{b}^3}}{v}$
- *viii.* Pour la valeur connue des paramètres \overline{b} , $\varphi(\eta)$, ε et \overline{R}^* , l'application de la relation (2.68) permet de calculer la valeur recherchée du coefficient *n* de *Manning*. Soit :

$$n = \frac{0.129}{\sqrt{g}} \overline{b}^{1/6} \left[\varphi(\eta) \right]^{1/9} \left[-\log \left(\frac{\varepsilon / \overline{b}}{1,496 \left[\varphi(\eta) \right]^{2/3}} + \frac{8.5}{\overline{R^*} \varphi(\eta)} \right) \right]^{-1}$$

II.10. Exemple de calcul du coefficient *n* de *Manning*

Reprenons les données de l'exemple d'application II.6 et calculons la valeur du coefficient n de *Manning*. Ces données sont :

$$Q = 3,861m^3 / s$$
, $\eta = 1,6581899$, $\varepsilon = 0,001m$, $i = 0,001$, $\nu = 10^{-6}m^2 / s$.

vii. La valeur de la fonction $\varphi(\eta)$ est, selon la relation (2.8) :

$$\varphi(\eta) = \frac{32\sqrt{2}}{(\eta+2)^{3/2}} = \frac{32 \times \sqrt{2}}{(1,6581899+2)^{3/2}} = 6,46793439$$

viii. La largeur \overline{b} du modèle rugueux est, en vertu de la relation (2.74) :

$$\bar{b} = 0,63 \left(\frac{Q}{\sqrt{gi}}\right)^{2/5} \frac{\eta^{2/5}}{\left[\varphi(\eta)\right]^{2/15}}$$
$$= 0,63 \times \left(\frac{3,861}{\sqrt{9,81 \times 0,001}}\right)^{2/5} \times \frac{1,6581899^{2/5}}{6,46793439^{2/15}} = 2,60278499m$$

ix. En vertu de la relation (2.66), la valeur du nombre de *Reynolds* modifié $\overline{R^*}$ est :

$$\overline{R^*} = \frac{\sqrt{gi\overline{b}^3}}{\nu} = \frac{\sqrt{9,81 \times 0,001 \times 2,60278499^3}}{10^{-6}} = 415902,896$$

x. Le coefficient *n* de *Manning* est finalement, selon la relation (2.68) :

$$n = \frac{0,129}{\sqrt{g}} \bar{b}^{1/6} \left[\varphi(\eta) \right]^{1/9} \left[-\log \left(\frac{\varepsilon / \bar{b}}{1,496 \left[\varphi(\eta) \right]^{2/3}} + \frac{8,5}{\bar{R}^*} \varphi(\eta) \right) \right]^{-16/15}$$

$$= \frac{0,129}{\sqrt{9,81}} \times 2,60278499^{1/6} \times 6,46793439^{1/9} \times \left[-\log\left(\frac{0,001/2,60278499}{1,496 \times 6,46793439^{2/3}} + \frac{8,5}{415902,896 \times 6,46793439}\right) \right]^{-16/15} = 0,01315253m^{-1/3}s$$

xi.

xii. Vérifions les calculs en déterminant la largeur *b* du canal rectangulaire considéré, en ayant recours à la relation (2.46) de *Manning* :

$$Q = \frac{1}{n} A R_h^{2/3} \sqrt{i}$$

Rappelons que :

$$A = b^2 / \eta$$
, $R_h = \frac{b}{\left(32\sqrt{2}\right)^{2/3}} \left[\varphi(\eta)\right]^{2/3}$

En tenant compte de ces considérations, la relation de Manning s'écrit :

$$Q = \frac{1}{n} \frac{\left[\varphi(\eta)\right]^{4/9}}{\left(32\sqrt{2}\right)^{4/9} \eta} b^{8/3} \sqrt{i}$$

Après réarrangements, la largeur b s'écrit sous la forme suivante :

$$b = \left(32\sqrt{2}\right)^{1/6} \frac{\eta^{3/8}}{\left[\varphi(\eta)\right]^{1/6}} \left(\frac{nQ}{\sqrt{i}}\right)^{3/8}$$

L'application numérique donne :

$$b = \left(32 \times \sqrt{2}\right)^{1/6} \times \frac{1,6581899^{3/8}}{6,46793439^{1/6}} \times \left(\frac{0,01315253 \times 3,861}{\sqrt{0,001}}\right)^{3/8} = 1,99673456m \approx 2m$$

Il s'agit bien de la valeur de la largeur b du canal rectangulaire considéré, imposée dans l'exemple d'application II.6. Ceci vérifie bien les calculs effectués sur le coefficient n de *Manning*.

II.11. Conclusion

Le chapitre précédent s'est intéressé à l'étude des coefficients de *Chézy* et de *Manning* en écoulement uniforme dans un canal de forme rectangulaire.

En comparant les relations d'*Achour* et de *Bedjaoui* (2006) et celle de *Chézy*, nous avons pu exprimer la relation générale du coefficient de résistance à l'écoulement *C* de *Chézy*. Celle-ci a été transformée en une relation adimensionnelle qui montre que C/\sqrt{g} dépend à la fois de la rugosité relative ε/b , du paramètre de forme $\eta = b/y_n$ et du nombre de *Reynolds* modifié R^* . La relation obtenue est de type $C/\sqrt{g} = f(\varepsilon/b; \eta; R^*)$. Dans ces paramètres ε est la rugosité absolue caractérisant l'état de la paroi interne du canal, *b* est la largeur du canal et y_n est la profondeur normale de l'écoulement. Nous avons montré que le nombre de *Reynolds* modifié R^* dépend de la largeur *b*, de la pente i du canal et de la viscosité cinématique *v* du liquide en écoulement. La relation adimensionnelle obtenue montre que tous les paramètres influençant l'écoulement sont pris en considération, notamment la viscosité cinématique *v*.

Après avoir établi la relation adimensionnelle de C/\sqrt{g} , nous avons procédé au tracé graphique de sa variation. Les graphiques obtenus ont montré que le nombre de *Reynolds* R^* joue un rôle important. Plus la rugosité relative ε/b augmente et plus l'écoulement turbulent rugueux est atteint rapidement, se traduisant par la non influence du nombre de Reynolds modifié R^* ou de la viscosité cinématique ν . Les courbes obtenues se resserrent d'autant plus que la rugosité relative ε/b augmente. Elles finissent par se confondre à partir d'une certaine valeur de R^* .

L'étude s'est poursuivie par le calcul explicite du coefficient de résistance à l'écoulement *C* de *Chézy*. Pour cela, il a fallu d'abord calculer le paramètre de forme $\eta = b / y_n$, paramètre dont dépend le coefficient *C*. La méthode choisie pour le calcul de $\eta = b / y_n$ a été la méthode du modèle rugueux. Elle se base sur les trois relations bien connues de l'écoulement turbulent, appliquées à un modèle rugueux dont la rugosité relative a été arbitrairement choisie dans le domaine turbulent rugueux. Une équation du troisième degré a alors été obtenue et dont la résolution a été effectuée en ayant recours aux fonctions trigonométriques et hyperboliques. Par l'intermédiaire du facteur de correction de la dimension linéaire ψ , il a été alors possible de déduire l'expression du paramètre de forme recherché $\eta = b / y_n$. Une fois la méthode de calcul du paramètre de forme exposée, nous avons précisé les étapes de calcul du coefficient de résistance à l'écoulement *C* de *Chézy* et nous avons donné un exemple de calcul numérique.

Le chapitre s'est poursuivi par l'étude du coefficient *n* de *Manning*. En comparant la relation générale du débit volume d'*Achour* et de *Bedjaoui* (2006) et celle de *Manning*, nous avons pu établir la relation générale du coefficient *n* de *Manning* que nous avons transformée en une relation adimensionnelle à travers laquelle est exprimé le coefficient adimensionnel *N* de *Manning*. La relation obtenue montre que *N* dépend à la fois de la rugosité relative ε/b , du paramètre de forme $\eta = b/y_n$ et du nombre de *Reynolds* modifié R^* . La relation obtenue est de type $N = f(\varepsilon/b; \eta; R^*)$. Nous avons ensuite procédé au tracé de la variation de *N*, en faisant varier à la fois la rugosité relative et le nombre de *Reynolds* modifié. Nous avons ainsi mis en évidence l'influence de R^* , c'est-à-dire celle de la viscosité cinématique ν . Il ressort des graphes obtenus que plus la rugosité relative augmente et plus les courbes se resserrent, indiquant que le régime d'écoulement turbulent rugueux est atteint. Les courbes se confondent pour les grandes valeurs de la rugosité relative et pour une certaine valeur de R^* . Nous avons

ensuite procédé au calcul du coefficient n de *Manning*, en ayant recours à la méthode du modèle rugueux. L'application de cette méthode ne nécessite pas la connaissance de la largeur b du canal. Un exemple de calcul numérique a été proposé pour expliquer les différentes étapes de calcul du coefficient n de *Manning*.

CONCLUSION GENERALE

Notre étude s'est intéressée aux coefficients de résistance à l'écoulement de Chézy et de Manning, en écoulement uniforme dans un canal de forme rectangulaire. Deux chapitres ont été proposés. Le premier chapitre a été consacré aux rappels sur l'écoulement uniforme, tandis que le second chapitre a eu pour objectif l'étude particulière des coefficients de *Chézy* et de *Manning*.

Au cours du premier chapitre, les conditions d'établissement d'un écoulement uniforme ont été schématisées et discutées, en comparant la pente longitudinale du canal et la pente critique. La zone transitoire au-delà de laquelle l'écoulement uniforme apparaît a été mise en évidence et correspondant à la zone sur laquelle s'étend l'écoulement accéléré, avant qu'il ne soit équilibré par les forces de gravité. Nous avons rappelé que les relations régissant l'écoulement uniforme s'expriment en règle générale par $V = C R_h^{\beta} J^{\gamma}$ où V est la vitesse moyenne de l'écoulement, R_h est le rayon hydraulique, J est la pente de la ligne de charge totale, égale à la pente géométrique du canal, et C est un paramètre lié à la résistance à l'écoulement uniforme, d'eux d'entre elles sont largement utilisées en pratique. Il s'agit des relations de Chézy et de Manning pour lesquelles $\gamma = 1/2$, $\beta = 1/2$ et $\beta = 2/3$ respectivement. Nous avons indiqué quelques formules destinées au calcul des coefficients de résistance C de Chézy et n de Manning, en particulier les formules de Ganguillet – Kutter, de Bazin, de Powell et de Hager.

Le premier chapitre de notre mémoire s'est également intéressé aux équations théoriques de l'écoulement uniforme. Nous avons notamment rappelé la loi de *Prandtl – Von – Karman* de la distribution de la vitesse dans un écoulement turbulent et la relation théorique de *Keulegan* qui exprime la vitesse moyenne de l'écoulement uniforme dans les canaux ouverts. Il a été déduit de cette relation les expressions du coefficient C de *Manning* et du coefficient de frottement f pour le cas des parois rugueuse et lisse. Dans le cas de la paroi rugueuse, la relation du coefficient n de *Manning* a alors été identifiée ; de ce fait la méthode de détermination le coefficient n de *Manning* ainsi que son interprétation théorique ont été déduites.

Le premier chapitre s'est poursuivi par le calcul de l'écoulement uniforme. En se basant sur la relation ci-dessus indiquée de la vitesse moyenne V de l'écoulement, l'expression de la conductivité $K = Q/J^{\gamma}$ a été déterminée. La conductivité correspond donc à la capacité d'évacuation de la section de la conduite ou du canal considéré, puisqu'elle est directement liée au débit volume Q. La conductivité a été exprimée lorsque l'une ou l'autre des formules de *Chézy* et de *Manning* est utilisée.

Lorsque la formule de *Manning* est utilisée, le facteur de section $AR_h^{2/3}$ a été exprimé, où A est l'aire de la section mouillée et R_h est le rayon hydraulique. Le facteur de section est régi par la relation $AR_h^{2/3} = nQ/\sqrt{J}$, étroitement lié à la conductivité. Le facteur de section $AR_h^{2/3}$ dépend exclusivement de la géométrie de la section mouillée de la conduite ou du canal considéré. Le facteur de section relatif $AR_h^{2/3}/D^{8/3}$ a été représenté graphiquement en fonction du taux de remplissage $\eta = y_n/D$, pour le cas de la conduite de forme circulaire, où y_n est la profondeur normale et D est le diamètre de la conduite. La courbe obtenue montre que $AR_h^{2/3}/D^{8/3}$ augmente dans un premier temps avec l'accroissement de η , puis diminue dans un second temps avec l'augmentation de η ; la variation du facteur de section relatif passe alors par un maximum. Le second chapitre du mémoire a été entièrement dédié à l'étude particulière des coefficients de résistance de Chézy et de Manning, dans un canal de forme rectangulaire siège d'un écoulement uniforme. Grâce à la relation générale du débit volume, nous avons pu établir les relations qui régissent ces coefficients et que nous avons présentées en termes adimensionnels afin de leur donner un caractère de validité générale. A partir de ces relations, nous avons pu identifier les paramètres qui influencent ces coefficients et qui sont en nombre de trois : la rugosité relative, le paramètre de forme et le nombre de Reynolds modifié. Nous avons ensuite procédé au tracé de la variation des coefficients adimensionnels de résistance de Chézy et de Manning et nous avons interprété les courbes obtenues. Celles-ci ont montré que les coefficients adimensionnels de Chézy et de Manning sont fortement influencés par la rugosité relative et le nombre de *Reynolds* modifié. Lorsque la rugosité relative augmente, les courbes de variation obtenues se resserrent, puis se confondent à partir d'une certaine valeur de la rugosité relative et du nombre de Reynolds modifié. Cet état correspond à un écoulement turbulent rugueux pour lequel il n'y a plus d'influence de la viscosité cinématique. Même lorsque l'écoulement est turbulent rugueux, les coefficients de résistance à l'écoulement de Chézy et de Manning ne peuvent être considérés comme étant constants. Ils varient en fonction du paramètre de forme de la section mouillée.

En se basant sur la méthode du modèle rugueux, des exemples de calcul numérique ont été proposés pour expliquer la démarche à suivre pour estimer la valeur des coefficients de résistance à l'écoulement de *Chézy* et de *Manning*.

Références bibliographiques

- Achour B., *Calcul des conduites et canaux par la MMR Conduites et canaux en charge*, Larhyss Edition Capitale, Tome 1, 2007, 610p.
- Bakhmeteff B.A., Feodoroff N.V., Discussion on open channel flow, Transactions, American Society of Engineers, Vol.108, p.492-502, 1943.
- Bazin H., Etude d'une nouvelle formule pour calculer le débit des canaux découverts, Mémoire n°41, Annales des ponts et chausses, Vol.14, ser.7, 4ème trimestre, p.20-70, 1897.
- Blench T., A new theory of turbulent flow in liquids of small viscosity, Journal, Institution of Civil Engineers, London, Vol.11, n°6, p.611-612, April, 1939.
- Camp T.R., Design of sewers to facilitate flow, Sewage Works Journal, Vol.18, p.1-16, 1946.
- Chow V.T., Open channel Hydraulics, McGraw-Hill International Editions, 1973.
- Forchheimer P., Teubner Verlagsgesellschaft, Leipzig and Berlin, p.139-163, 1930.
- Ganguillet E., Kutter W.R., An investigation to establish a new general formula for uniform flow of water in canals and rivers, Zeitschrift des Oesterreichischen Ingenieur und Architekten Vereines, Vol.21, n°1, p.6-25, n°2-3, p.46-59, 1869.
- Houk I.E., Calculation of flow in open channels, Miami Conservancy District, Technical report, Pt. IV, Dayton, Ohio, 1918.
- Keulegan G.H., Laws of turbulent flow in open channels, Research paper RP 1151, Journal of Research, U.S. National Bureau of Standards, Vol. 21, p.707-741, December, 1938.
- Lindquist E., On velocity formulas for open channels and pipes, Transactions of the World Power Conference, Sectional Meeting, Scandinavia, Stockholm, Vol.1, p.177-234, 1933.
- Manning R., On the flow of water in open channels and pipes, Transactions, Institution of Civil engineers of Ireland, Vol.20, p.161-207, Dublin, 1891.
- Pavlovski N.N., "Handbook of Hydraulic", Kratkil Gidravlicheskil, Spravochnik, Gosstrolizdat, Leningrad and Moscow, 1940, 314p.
- Powell R.W., Resistance to flow in rough channels, Transactions, American Geophysical Union, Vol.31, n°4, p.575-582, August, 1950.
- Prandtl L., On fully developed turbulence, Proceedings of the 2nd International Congress of Applied Mechanics, Zurich, P.62-74, 1926.

Achour B., Bedjaoui A. Turbulent Pipe-flow computation using the rough model method (RMM), Journal of civil engineering and science, Vol.1, n°1, 36-41, 2012.

Achour B., Bedjaoui A. "Discussion of Explicit Solutions for Normal Depth Problem, by Prabhata K. Swamee, Pushpa N. Rathie," J. Hydraulic Research, IAHR, vol. 44, pp.715-717, 2006.

Principales notions :

J	La pente de la ligne de charge	m
i	La Pente	m
ic	La Pente critique	m
У	La Profondeur de l'écoulement	m
$ar{\mathbf{y}}_{n}$	Profondeur normale de l'écoulement dans la MMR	m
V	Vitesse moyenne de l'écoulement	m/s
V _{ms}	La vitesse maximale à la surface	m/s
Vf	Vitesse de frottement	
R _h	Rayon hydraulique	
Α	Aire de la section mouillée	m ²
Ā	Aire de la section mouillé dans MMR	m ²
Р	La périmètre mouillé	
Ý	La périmètre mouillé dans la MMR	m
Sw	La pente de la surface libre	
n	Coefficient de la rugosité du canal	
n	Coefficient de Manning	
v	Viscosité cinématique	m^2/s
β	Exposant	
γ	exposant	
ρ	masse volumique du liquide	Kg/m ³
Т	La température	
L	Longueur du canal	m
В	Longueur est proportionnelle à la tangentielle	m
F	Force totale	
K	Facteur de proportionnalité	
W	Poids propre du liquide	
g	Accélération de la pesanteur	
Dh	Diamètre hydraulique	m
Ďh	Diamètre hydraulique dans la MMR	
R	Nombre de Reynolds	
R *	Le nombre de Reynolds modifié	
R	Nombre de Reynolds dans la MMR	
τ	Force tractrice unitaire	N
dv/dy	Gradient de vitesse	
3	Rugosité absolue	
ĩ	Rugosité absolut dans la MMR	
f	Coefficient de frottement	
f	Coefficient de frottement dans la MMR	
η	Rapport d'aspect	
ή	Rapport d'aspect dans la MMR	

Ψ	Facteur de correction	
Δ	Le discriminant	
Q [*] _b	Conductivité relative	
v	Viscosité cinématique du liquide en écoulement	m^2/s
μ	Viscosité dynamique	
K	Coefficient de <i>Strickler</i> (1/n)	
Q	Le débit volume	m ³ /s
٤/b	La rugosité relative du canal	

Liste du tableau :

Nom de tableau	Page
CHAPITRE I : Tableau 1.1 : Valeurs du facteur de section relative en fonction de la profondeur Relative pour le cas de la conduite de forme circulaire (<i>chow, 1973</i>) CHAPITRE II :	25
Tableau 1.1 : Valeurs de C / \sqrt{g} pour $\varepsilon / b = 0$	35
Tableau 2.2 : Valeurs de C / \sqrt{g} pour $\varepsilon / b = 10^{-4}$	36
Tableau 2.3 : Valeurs de C / \sqrt{g} pour $\varepsilon / b = 10^{-3}$ Tableau 2.4 : Valeurs du paramètre <i>N</i> calculées selon la relation (2.52) Tableau 2.5 : Valeurs du paramètre <i>N</i> calculées selon la relation (2.52) Tableau 2.6 : Valeurs du paramètre <i>N</i> calculées selon la relation (2.52)	38 48 50 51

Liste des figures :

Nom des figures F	<u>age</u>
<u>CHAPITRE I</u>	
Figure 1 1 : établissement de l'écoulement uniforme dans un canal de grande longueur	3

1 Gui e 1.1 . etablissement de l'écoulement annorme dans un canar de grande longaeur	5
Figure 1.2 : Schéma de définition ayant servi de base à l'établissement de la formule	6
De chézy	
Figure 1.3 : Schéma de définition ayant servi de base à l'établissement de l'équation de	17
Keulegam	
Figure 1.4 : Facteur de section relatif en fonction de profondeur normale relative pour le	e 27
Cas de la conduite de forme circulaire. Courbe tracée selon les valeurs du	
Tableau 1.1	
Figure 1.5 : Caractéristique de l'écoulement dans une conduite circulaire selon	27
Camp (1946)	
<u>CHAPITRE II</u>	
_	
Figure 2.1 : Variation de C / \sqrt{g} en fonction de η , pour $\varepsilon / b = 0$.(Ecoulement lisse)	
Figure 2.2 : Variation de C / \sqrt{g} en fonction de η , pour $\varepsilon / b = 10^{-4}$.	37
Les courbes se confondent pour $R^* \ge 10^7$.	
Figure 2.3 : Variation de C / \sqrt{g} en fonction de η , pour $\varepsilon / b = 10^{-3}$.	38
Les courbes se confondent pour $R^* \ge 10^6$.	

Figure 2.4 : Variation de <i>N</i> en fonction de η , pour $\varepsilon / b = 0$	49
(Ecoulement lisse) .	
Figure 2.5 : Variation de <i>N</i> en fonction de η , pour $\varepsilon / b = 10^{-4}$	51
Figure 2.6 : Variation de <i>N</i> en fonction de η , pour $\varepsilon / b = 10^{-3}$	52