
Courrier du Savoir – N°01, Novembre 2001, pp. 41-47

Université Mohamed Khider – Biskra, Algérie, 2001

CLASSIFYING SOFTWARE FOR REUSABILITY

ZINA HOUHAMDI* , SAID GHOUL**
(*) Computer Science Department,University of Biskra BP 145, Biskra RP, 07000. Algeria

E-mail: z_houhamdi@yahoo.fr
(**) Computer Science Institute, University of Philadelphia, BP 1101, Oman. Jordan

E-mail: ghoul_said@yahoo.fr

ABSTRACT

Software reuse has been claimed to be one of the most promising approaches to enhance programmer productivity and
software quality. One of the problems to be addresses to achieve high software reuse is organizing databases of software
experience, in which information on software products and processes is stored and organized to enhance reuse.

The Reuse Description Formalism (RDF) is a generalization of the faceted index approach to classification. It was
initially designed as a tool to help increase reusability of software components at the code level (e.g. functions or
subroutines). The goal of this dissertation is to show that RDF can also be used effectively to represent and reuse other
types of software knowledge.

KEYWORDS: Reuse library, Taxonomy, Classification, Reuse Description Formalism, CCIS library,

1. INTRODUCTION

Current software reuse systems based on the faceted
index approach [11,12] to classification suffer from one
or more of the following problems [2]: they are
applicable to a restricted set of domains; they posses
poor retrieval mechanisms; their classification schemes
are not extensible; and/or they lack mechanisms for
ensuring the consistency of library definitions. The
primary contribution of this dissertation is the design
and implementation of the Reuse Description
Formalism, which overcomes these problems [6]:

• RDF is applicable to a wide range of software
and non-software domains. The RDF
specification language is capable of representing
not only software components at the code level,
but it is also capable of representing more
abstract or complex software entities such as
projects, defects, or processes. What is more,
these software entities can all be made part of
one software library and can be arranged in
semantic nets using various types of relations
such as "is-a", "component-of", and "members-
of" [3].

• RDF provides an extensible representation
scheme. A software reuse library system must
be flexible enough to allow representation
schemes to evolve as the needs and level of
expertise in an organization increases. The RDF
specification language provides several
alternatives to extend or adjust a taxonomy so as
to allow the incorporation of new objects into

the library without having to classify all other
objects [4].

• RDF provides a consistency verification
mechanism. Most software reuse library systems
are based on representation models, which must
satisfy certain basic predicates for the library to
be in a consistent state. The RDF specification
language includes an "assertion" mechanism
whose purpose is to help specify and ensure the
consistency of the object descriptions contained
in a library.

In short, RDF addresses the main limitations of current
faceted classification systems by extending their
representation model.

The remaining of this dissertation presents a detailed
definition of the RDF system. It introduces the concepts
behind RDF's representation and similarity models by
developing a sample software reuse library. These
concepts were formalized [4].

To create and organize reuse library, an extensive
domain analysis must be performed beforehand [10].
This analysis must produce a classification scheme
(including attributes and their types) as well as an
approximate measure of similarity between objects.

This section develops a small software library to
classify operations to manipulate data structures
consisting of repeated element (e.g., stacks, trees, hash
tables). For representation purposes we start with a
trivial library and enhance it as more features of RDF
are introduced.

Z. Houhamdi and al.

 42

2. CREATING TAXONOMY

Booch [1] classifies operations over a data structure in
the following three classes, based on how the structure
is accessed.

• Constructors: operations that alter the data
structure.

• Selectors: operations that evaluate the data
structure.

• Iterators: operations that visit all element of
the structure.

We can describe this simple classification scheme by
defining an attribute called function as follows:

Attribute function : {construct, select, iterate};

Another attribute for classification of operations is execution time as a

function of the size of data structure.

Attribute timing: {constant, log, linear, loglinear, quadratic, slow};

Attributes function and timing define a simple
classification scheme that can be used to describe four
operations for stack manipulation. Each of these
descriptions is called instance.
 Push = [function = constructor & timing = constant];

 Pop = [function = constructor & timing = constant];

 Top = [function = select & timing = constant];

 New = [function = constructor & timing = constant];

This section has introduced two basic concepts of RDF
language: attributes and instances. The type associated
with both attributes is an enumeration of terms. Each
instance defines the attribute values of a particular data
structure operation.

3. EXTENDING TAXONOMY

The characterization of the functionality of operation
presented above is too coarse. In fact, the descriptions
of push, pop and new are identical. This section refines
this characterization by extending the classification
scheme. There are at last three approaches to do this.

• Add or replace terms in the type of attribute.

• Add more attributes.

• Describe attribute values in terms of more
primitive attributes.

The first two approaches are common practice while
designing a taxonomy and the only alternatives a library
designer has with other classification systems such as
AIRS or faceted classification system. The third
approach is unique to RDF, and allows the construction
of hierarchical classification system.

3.1 Adding values to a type

In this approach, the classification scheme is refined by
including additional values to the type of an attribute. In
particular, we add new terms to the functionality
attribute. In the context of data structures consisting of
repeated elements, the constructor term will be replaced
by three new terms create, insert, and remove. With this
new definition we can now tell push from pop and tell
those from new. The updated definitions are as follows:
 Attribute function : {create, insert, remove, select, iterate};

 Push = [function = insert & timing = constant];

 Pop = [function = remove & timing = constant];

 Top = [function = select & timing = constant];

 New = [function = create & timing = constant];

This drawback of this approach is that instance
definitions had to be manually modified (e.g., changing
construct by the corresponding new term in each
instance). Moreover, these extensions create flat
taxonomies with few attributes and many terms, instead
of hierarchies.

3.2 Adding attributes

In RDF, it is possible to define a new attribute and then
use it to refine the classification of selected instances.
Unlike other faceted classification system, this new
attribute does not have to be used in all instances.
Hence, the addition of attributes requires modifying
only those instances for which the new attribute is
meaningful and important.

For example, we extend the taxonomy by adding a new
attribute called exception. This attribute is used to
describe those operations that can signal a fatal
exception such as a stack overflow or underflow. The
following definitions are add or modified in our library:

Attribute exception : {underflow, overflow};

Push = [function = insert & timing = constant & exception = overflow];

Pop = [function = remove & timing = constant & exception =
underflow];

Only those operations that can generate an exception
(push and pop) have been described using the attribute
exception. The remaining in the library (top and new)
were not modified and, therefore, have no defined value
for the attribute exception.

It can be argued that the attribute exception could have
been defined with an additional term called noexception
to describe those operations that do not generate
exceptions. In this solution, all instances would been
defined using the same set of attributes and therefore a
system like AIRS could still be used to model our
taxonomy. Although this argument is valid in the
current example, in fact that RDF can handle
descriptions with different sets of attributes in
particularly important in the case of libraries containing
objects of different classes such as "project", "systems",
"packages", and "operations". The attributes of these

Classifying software for reusability

 43

sample classes are most probably disjunct, but they can
all be classified in a single library.

3.3 Describing values of an attribute

RDF provides a new approach to extend a classification
scheme [5]: describe all terms of an attribute using more
primitive attributes. This process is illustrated by
refining again the functionality attribute.

Within the domain of data structure consisting of
repeated elements, the functionality is described in term
of three new attributes: access (whether the data
structure is written or only read), target (which elements
are affected), and newsize (how the number of elements
varies).

Attribute access : {write, read};

Attribute target : {leftmost, rightmost, keyed, any, all, none};

Attribute newsize : {increase, decrease, reset, same};

These new attributes are used to define each of terms
that belong to the attribute functionality.

create = [in constructors & newsize = reset & target = none];

insert = [in constructors & newsize = increase];

remove = [in constructors & newsize = decrease];

select = [in selectors];

iterate = [in iterators];

Where constructor, selectors, and iterators each define a
class of instances. The class mechanism is used both as
an abstract mechanism and, also, as an abbreviation for
expressions. These classes are defined as follows:

Constructors = class (access = write);

Selectors = class (access = read & newsize = same);

Iterators = class (target = all);

The definition of the attribute functionality can now be
changed, because its element no longer belong to
enumeration type to a class of instances, namely the
class of instances defined in terms of one or more of the
attributes access, target, and newsize.

Attribute function : class (has access | has target | has newsize);

Since all former terms of attribute function are defined,
instances described using these values (e.g., push) do
not need to be redefined. That is, this extension of the
classification system does not affect the classification of
objects already in the library.

This extended classification scheme allows us to define
new categories of functionality. For example, we can
define modify as a possible value of functionality, and
also describe more specific iterators.

Modify = [in modifiers];

passive_iterate = [in iterators & in selectors];

active_iterate = [in iterators & in constructors];

modify_iterate = [in iterators & in modifiers];

modifiers = class (access = write & newsize = same);

Where modifiers is the class of all operations that

update elements in the data structure.

In summary, the process required to extend a
classification scheme by redefining the terms of the
attribute is as follows:

1. Select an attribute a whose terms era to be
refined. Let T be the type of a. In the example, a
= functionality and T = {create, insert, remove,
select, iterate}.

2. Perform a domain analysis on the domain of the
terms of a. From this analysis, define a set A of
new attributes that describe terms in T, and
determine the type for each attribute in A. In the
example, A = {access, target, newsize} with
their corresponding term enumerations.

3. Redefine attribute a. possible values for a are
not terms as before (type T is no longer part of
the library), but instances that belong to a class
defined using the attributes in A.

4. Define each former term t ∈ T as an instance
using the attributes in A, following the same
procedure used to describe data structure
operations.

5. If needed, other values for a can be described.
This values can be specializations of former
terms (e.g., passive_iterate) or they can
represent new concepts (e.g., modify).

In principle, this process of refinement can be done
indefinitely providing deep hierarchical taxonomies, but
there is a point in which using this formalism is no
longer useful (e.g., do not use RDF to describe detailed
functionality, including pre- and post-conditions).

4. CREATING OBJECT HIERARCHIES

Reusable software usually consists of packages or
modules, made from operations and heir packages. We
want to represent this modular structure, but we do not
want to force any granularity of reuse. That is, we want
to have a library consisting of packages and operations,
assuming that both complete packages and isolated
operations will be reused. The following declarations
define the kinds of reusable software components for a
library of data structure packages. Because a package
can have several subunits, the subunits attribute has a
set type.

Attribute subunits : set of components;

Attribute parent : packages;

Components = class (in packages | in operations);

Packages = class (has subunits);

Operations = class (has function | has timing);

Two other attributes for packages are defined: maxsize
(whether there are limits in the number of elements of
the structure) and control (whether concurrent access is

Z. Houhamdi and al.

 44

supported).
Attribute maxsize : {bounded, limited, unbounded};

Attribute control : {sequential, concurrent};

With these declarations, a stack package comprising the
operations already described can be defined using one
extra attribute (parent). The implementation has no
preset bound on size and does not provide support for
concurrency.

Stack = [subunit = set (parent = stack) & maxsize = unbounded &
control = sequential];

Push = [parent = stack & function = insert & timing = constant &
exception = overflow];

Pop = [parent = stack & function = remove & timing = constant &
exception = underflow];

Top = [parent = stack & function = select & timing = constant];

New = [parent = stack & function = create & timing = constant];

Where the construct "set (parent = stack) denotes the set
of all instances defined in the library for which the
attribute parent is equal to stack, in other words, the set
{pop, push, top, new}.

5. DEPENDENCIES AMONG ATTRIBUTES

All classification schemes assume that certain semantic
relations between attributes values are being
maintained. For this purpose, RDF provides a
mechanism that uses assertions to define semantic
constrains between attribute values.

For example, consider the case of attributes describing
the functionality of an operation. If the data structure is
not written then there is no size change, and if the
structure is reset then there is no specific target. These
two relations can be expressed as follows:

Assertion access = read ⇒ newsize = same;

Assertion newsize = reset ⇒ target = none;

In addition, the attribute maxsize and control are only
relevant for packages, and all units that declare a
package as their parent must indeed be subunits of the
package.

Assertion has maxsize | has control ⇒ in package;

Assertion in packages ⇒ subunits (parent = self);

The keyword self denotes the instance being analyzed
for compliance with the assertion.

6. DEFINING SYNONYMS

One of the difficulties of describing operations given
our current taxonomy is remembering the precise terms
used in the library. Besides, certain concepts can be
given or referenced by more than one name. The
introduction of synonyms for terms has been suggested
as a partial solution to this problem.

One could declare that distance between two terms is
zero, making them synonyms from the point of view of
queries based on similarity. However, queries based on
exact matches will considered them different. In RDF is
possible to declare an identifier i1 to be a synonym of an
identifier i2 by simply declaring i1 = i2. For example:

Update = write;

Preserve = read;

These definitions introduce the synonyms update and
preserve for the terms write and read of attribute access,
respectively.

7. QUERIES AND COMPARING OBJECTS

In order to find reusable software components in the
library of packages and operations; it is necessary to
define the distance values associated with the terms of
enumerations types. This allows RDF to compute
distances not only between these terms, but between
instances defined using these terms.

Distances between terms are defined with a distance
clause. For example attribute access and newsize and
their distance clauses are given below. The distances
shows here are just sample values. {the process of
assigning distances is not described in this paper
because the emphasis is not on how to define similarity
distances between object}.

Attribute access : {write, read}

 distance {write → read: 4 , read → write: 6};

Attribute newsize : {increase, decrease, reset, same}

 distance {increase → decrease: 5, same: 7, decrease →
increase: 5, reset: 3, reset → same: 10, same →
reset: 10};

By transitivity, we can determine other distance not
explicitly given. For example, the distance from increase
to reset is 5 + 3 = 8, and the distance from decrease to
same is 12. Note that a bigger value for this distance
(13) can be obtain going from decrease to reset to same,
but RDF always uses the smallest value.

Basically, the distance between two instances is
computed by adding the distances of their
corresponding attribute values. For example, the
distance from remove to select is 16, given by the
distance from write to read (4) plus the distance from
decrease to same (12).

Remove = [access = write & newsize = decrease];

 16 = 4 + 12

select = [access = read & newsize = same];

Distances between instances are used by RDF to select
reuse candidates from a library. This selection is
performed using the query command. For example, the
following query finds components that are similar to an
operation that retrieves an arbitrary element from a data
structure in at most logarithmic time.

Classifying software for reusability

 45

Query function = [in selectors & target = any] & timing = log;

Consider another example. Find a data structure with
three operations : one to initialize, one to insert an
element, and one to traverse the structure without
modifying it; concurrent control is not needed, but the
structure must be able to handle an unbounded number
of elements.

Query maxsize = unbounded & control = sequential & bunits =
{[function = create], [function = insert], [function =
passive_iterate]};

In this query, only the functionality of the operations
have been specified. Attribute timing is not defined;
meaning that any value for timing is equally acceptable
in the retrieved operations.

8. SAMPLE RDF TAXONOMY

RDF was initially designed as a tool to help increase
reusability of software components at the code level
(e.g. functions or subroutines). The goal of this section
is to show that RDF can also be used effectively to
represent and reuse other types of software knowledge.

In this section we describe a taxonomy for classifying
the different modules and functions that compose the
CTC CCIS library and creating a RDF reuse library
with the purpose of facilitating their reuse. The CCIS
library developed at Contel Technology Center (CTC) is
composed of several modules implemented in C [7].
These modules are used to implement the basic
functionalities of Command, Control, and Information
Systems.

• General (GEN): general purpose functions that
do not belong to any specific module. These
functions are typically extensions to the ones
contained in the standard C library.

• Memory file (MF): implements sequential files
allocated in main memory (RAM). These files
are created and exist only during the execution
of a program.

• Set Structure (SET): implements unbounded
sets of elements. The elements of a particular
set must be of the same type.

• Database Interface (IDB): provides a
simplified interface to the most commonly used
operations of a relational database system.

• Database File (DBF): implements a specialized
form of database files. These files are flat
structures stored in a relational database
processor.

• Mail Service (MS): implements the basic
functionalities of an electronic mail system.

• Man-Machine Interface (MMI): implements a
graphic user interface based on windows,
predefined keys, and menus.

• Free Text File (FTF): implements a specialized
form of text files which are stored in and
retrieved from on a relational database.

• Parametric Database Display (PDD):
collection of parametric functions used to
retrieve and display information contained in a
relational database.

As with RDF GRACE library, the RDF CCIS library
included two types of objects: modules and functions.
The former represent the different C modules of the
CTC CCIS library, and the latter represent their
associated C functions. Modules are described using
four attributes according to the following class
definition:

Module = class (has mdAllocation & has mdIterator & has mdService &
has mdOpers);

 Attribute pkName : string;

Attribute pkIterator : {Iterator, nonIterator};

Attribute pkAllocation : {Bounded, unBounded, Limited};

Attribute pkOpers : set of Operation;

Operation = class (has opType & has opKey & has opCount & has
opTarget & has opRange & has opDirection & has
opPackage);

Attribute opType : {Create, Select, insert, Remove, Traverse, Query};

The attribute opTarget indicates the type of the data
structure elements affected or selected by the operation.
This may be either a set of nodes, one node, or a link
between nodes. The number of elements affected or
selected is defined by the attribute opCount, and the
attribute opKey indicates the type of key value used to
select elements in the structure.
 Attribute opTarget : {Nodeset, Element, Link};

 Attribute opCount : {All, One, Zero};

 Attribute opKey : {Index, Pointer, Value, Size};

The attribute opRange and opDirection are used to define
the relative location of the elements affected or selected
by the operation. The former indicates a range of
elements within the structure. The latter, defines a
direction, relative to the value of opRange, on which the
component will operate.

 Attribute opRange : {Firstlast, Firstto, Fromlast, Fromto, Rest,
Floating, First, Second, Last};

 Attribute opDirection : {Left, Right, toright, toLeft, Breadth, Depth};

Finally, the attribute opPackage defines the package to
which the operation belongs. It is defined as follows:
 Attribute opPackage : Package;

 Package = class (has pkName & has pkAllocation & has pkIterator &
has pkOpers);

The attribute mdService describes the services provided
by the functions of the package (e.g., memory
management, mail delivery, etc.). The definition of this
attribute is given below.

 Attribute mdService : {GEN, SET, MF, IDB, MS, DBF, FTF, MMI,
PDD};

The functions of each package in the RDF CCIS library

Z. Houhamdi and al.

 46

were described in terms of two attributes: fnFunction and
fnObject. The fnFunction attribute describes the
functionality of a component, and it is defined as
follows. These terms were extracted from the
documentation of the CTC CCIS library [7].

Attribute fnFunction : {add, assign, clear, close, convert, copy, count,
create, delete, display, enable, execute, find, goto,
intersect, log, map, measure, modify, open, parse,
process, read, rename, replace, retrieve, search,
suspend, terminate, test, transfer, union, write};

The attribute fnObject describes the kind of object
produced or consumed by the function, and is defined as
follows:

Attribute fnObject : {address, code, column, column_type,
control_variable, descriptor, directory, element, event,
file, function-key, group, interface, keyboard, list, menu,
name, offset, owner, pdd_descriptor, pdd_page,
permission, pointer, pdd_table, printer, queue, subset,
queue_entry, record, set, sql_command, string,
substring, text, tuple};

One of the difficulties of posing queries in a library so
rich in terminology is remembering the precise terms
used to describe functions. To facilitate this situation,
the RDF CCIS library included a list of synonym
definitions for some of the terms of the attributes
fnFunction and fnObject. The following are some sample
synonym definitions:
 update = write; sequence = string;

 insert = add; locate = address;

 remove = delete; node = element;

These synonym definitions were made part of the RDF
CCIS library by including them as terms of their
respective attributes, and then defining the distance
between them and their synonym terms as zero

9. CONCLUSION
In summary, we have presented a software reuse library
system called RDF and show how its representation
model overcome the limitations of current reuse library
systems based on faceted representations of objects
[2,3,4].

RDF overcomes part of the limitations of current
faceted system by extending the their representation
model. Two main concepts form the core of RDF's
representation model: instance and classes. Instances are
descriptions of reusable objects, while classes represent
collections of instances with a set of common
properties. Objects are described in terms of attributes
and associated values. Unlike faceted classification,
which is limited to having only terms as attribute (facet)
values, RDF allows attributes values to be instances and
even sets of instances.

This generalization can be used to create one-to-one,
one-to-many, and many-to-many relations between
different object classes within a library. In other words,
RDF's specification language [4] is powerful enough to
represent a wide variety of software (and non-software)
domains, ranging from standard software components

such as data structure packages and their operations, to
more complex domains such as software defects and
software process models. In addition, RDF language
provides facilities for ensuring the consistency of the
libraries.

Yet, no evaluation has been performed on RDF’s
similarity-based retrieval mechanism. Towards this end,
we are currently developing a reuse software library–
based on information contained in the Software
Engineering Laboratory (SEL) database [8]. This
database contains thousands of records containing
functional and structural descriptions, a well as
statistical data, related to hundreds of projects
developed at the NASA Goddard Space Flight Center.
In addition, this database contains information regarding
the origin of the project components [9], which
indicates whether they were implemented from scratch
or by reusing other components at NASA. This reuse
history will allow us to evaluate our similarity-based
retrieval mechanism by comparing the reuse candidates
it proposes with the ones that were actually used at
NASA.

REFERENCE

[1] G. Booch, “Software Components with Ada”,
Benjamin-Cumming Publishing Company, Menlo
Park, California, 1997.

[2] Z. Houhamdi and S. Ghoul. “A Reuse Description
Formalism”. ACS/IEEE International Conference
on Computer Systems and Applications,
AICCSA’2001, Lebanese American University,
Beirut, Lebanon. 2001.

[3] Z. Houhamdi and S. Ghoul. “A Classification
System for software reuse”. Fifth International
Symposium on Programming System, ISPS2001,
USTHB Computer science Institute, Algiers,
Algeria, 2001.

[4] Z. Houhamdi. “A Specification language for
software reuse”. CSS/IEEE Alexandria Chapter.
11th International Conference On computers:
Theory and Application, ICCTA2001, Head of
Electrical Control, Alexandria, Egypt, 2001.

[5] Z. Houhamdi. “Developing a Reuse Library”.
CSS/IEEE Alexandria Chapter. 11th International
Conference On computers: Theory and
Application, ICCTA2001, Head of Electrical
Control, Alexandria, Egypt, 2001.

[6] Z. Houhamdi. “An adaptative approach to reuse
software”. SCS/IEEE 2001. The third Middle East
Symposium on Simulation and Modeling,
MESM’2001, Amman University, Amman, Jordan,
2001.

[7] Z. Houhamdi. “Software Reuse: a new
classification approach”. The International
Symposium on Innovation in Information and
Communication Technology, ISIICT’2001,
Philadelphia University, Amman, Jordan, 2001

[8] R. Kester. “SEL Ada reuse analysis and

Classifying software for reusability

 47

representation”. Technical Report, NASA Space
Flight Center, Greenbelt, Maryland, November
1990.

[9] “NASA Goddard Space Flight Center”, Greenbelt,
Maryland. Software engineering Laboratory (SEL)
database Organization and User’s guide, revision 1
edition, February 1999 (internet).

[10] R. Prieto-Diaz, “Domain analysis for software
reusability”, In proceedings of the 11th
international Computer Software and applications
Conference (COMPSA988). IEEE Computer

Society Press, October 1998, pp. 23-29.

[11] R. Prieto-Diaz and G. Jones, “Building and
managing software libraries”, In proceedings of the
12th international Computer Software and
applications Conference (COMPSA'97), IEEE
Computer Society Press, Chicago, October 1997,
pp. 228-236

[12] R. Prieto-Diaz, “Implementing faceted
classification for software reuse”, Communication
of the ACM, 2000, pp. 88-97.

