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Introduction

We consider optimal mixed stochastic regular-singular control problems, where

the state process satis�es the following stochastic di¤erential equation:

8><>: dxt = b (t; xt; ut; !) dt+ � (t; xt; ut; !) dBt + � (t; !) d�t;

x (0) = x 2 R:
(1)

The control is a pair (ut; �t) such that ut stands for the regular, called also the absolutely

continuous part and �t is the singular part.

The expected cost has the form

J (u; �) = E

24g (xT ; !) + TZ
0

f (t; xt; ut; !) dt+

TZ
0

h (t; !) d�t

35 ; (u; �) 2 AE : (2)

A major approach to deal with stochastic control problems is to derive optimality

necessary conditions satis�ed by some optimal control, known as the stochastic maximum

principle. The �rst fundamental result on this subject was obtained by Kushner [44]; for

classical regular or absolutely continuous controls: Since then, a huge literature has been

produced on this subject, among them, in particular, those by Benssoussan [10]; Bismut

[16], Haussmann [40] and Peng [53]: One can refer to the excellent book by Yong and Zhou

[53] for a complete account on the subject and the references therein.

We use Malliavin calculus techniques [49], to express the adjoint process in an explicit

form. Our result extends those by Baghery and Oksendal [2], Meyer-Brandis & Øksendal.
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Introduction

[47] and Øksendal & Sulem [51], to mixed regular-singular control problems. See also

[48] for the mean �eld control problems. Note that in the stochastic maximum principle,

a serious drawback is the computation at least numerically of the adjoint process. This

process is given by a conditional expectation and satis�es a linear backward stochastic

di¤erential equation (BSDE). Numerical and Monte Carlo methods have been developed

recently to deal with BSDEs by using Malliavin calculus, see [19], [20], [24] and [35]. This

could be seen as a step forward to solve numerically stochastic control problems by using

these methods.

Stochastic control problems of singular type, have been studied extensively in the

literature, as they model numerous situations in di¤erent areas, see [46], [50] and [51]. A

typical example in mathematical �nance is the so called portfolio optimization problem,

under transaction costs [28] and [37]. These problems were studied through dynamic pro-

gramming principle, see [41], where it was shown in particular that, the value function

is continuous and is the unique viscosity solution of the HJB variational inequality. In

particular the value function satis�es a variational inequality, which gives rise to a free

boundary problem, and the optimal state process is a di¤usion re�ected at the free bound-

ary. Bather and Cherno¤ [8] were the �rst to study such a problem: Ben¼es, Shepp and

Witsenhaussen [14] solved a one dimensional example by observing that the value function

in their example satis�es the so called the principle of smooth �t. Davis and Norman [28]

solved the two dimensional problem, arising in portfolio selection models, under transac-

tion costs. The case of di¤usions with jumps has been studied in Øksendal and Sulem

[50].

The �rst maximum principle for singular stochastic control problems was derived by

Cadenillas and Haussmann [23], for systems with linear dynamics, convex cost criterion

and convex state constraints. An extension to non linear systems has been developed via

convex perturbations method for both absolutely continuous and singular components by

Bahlali and Chala [3]. The second order stochastic maximum principle for nonlinear SDEs
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Introduction

with a controlled di¤usion matrix was obtained by Bahlali and Mezerdi [7], extending the

Peng maximum principle [53], [1] to singular control problems. Similar techniques have

been used by Anderson in [1] and Bahlali et al. [6], to study the stochastic maximum

principle for relaxed-singular controls. The case of systems with non smooth coe¢ cients

has been treated by Bahlali et al. in [4], where the classical derivatives are replaced by

the generalized ones in the de�nition of adjoint processes. See also the recent paper by

Oksendal and Sulem [51], where Malliavin calculus techniques have been used to de�ne the

adjoint process. The relationship between the stochastic maximum principle and dynamic

programming has been investigated in [5], [25]. See also [50] for some worked examples.

Let us brie�y describe the contents of this thesis. In Chapter 1 we give some back-

ground on optimal control theory. In chapter 2, we present the maximum principle in

singular control in which the control domain need not be convex, the control variable

has two components, the �rst being absolutely continuous and the second singular. The

coe¢ cients of the state equation are non linear and depend explicitly on the absolutely

continuous component of the control. This result was established by Seid Bahlali and

Brahim Mezerdi [7]. In chapter 3 we give an introduction of Malliavin derivative, we use

an approach based on chaos expansions, this approach has the advantage of being more

intuitive. which turns out to be a useful framework for both Malliavin calculus, Skorohod

integrals, and anticipative calculus in general. In chapter 4 we present the tow papers

Brandis, Øksendal and Zhou [47] and Øksendal and Sulem [51]. Chapter 5, comprises

the main result of this thesis, in this chapter we study general regular-singular stochastic

control problems, in which the controller has only partial information. The control has

two components, the �rst one is a classical regular control and the second one is a singular

control. We consider systems driven by random coe¢ cients and the running and the �nal

costs are allowed to be random. It is clear that for such systems the dynamic programming

does not hold, as the state process is no longer a Markov process. Our goal is to obtain

necessary conditions for optimality satis�ed by some optimal control.

3



Chapter 1

Introduction to stochastic controle

problems

1.1 Introduction

In this chapter we give some background on optimal control theory. Optimal control

theory can be described as the study of strategies to optimally in�uence a system x with

dynamics evolving over time according to a di¤erential equation. The in�uence on the

system is modeled as a vector of parameters, u, called the control. It is allowed to take

values in some set U , which is known as the action space. For a control to be optimal,

it should minimize a cost functional (or maximize a reward functional), which depends

on the whole trajectory of the system x and the control u over some time interval [0; T ].

The in�mum of the cost functional is known as the value function (as a function of the

initial time and state). This minimization problem is in�nite dimensional, since we are

minimizing a functional over the space of functions u(t), t 2 [0; T ]. Optimal control theory

essentially consists of di¤erent methods of reducing the problem to a less transparent, but

more manageable problem. The two main methods are dynamic programming and the

maximum principle.
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Chapter 1. Introduction to stochastic controle problems

This chapter will be organized as follows. In section 2, we present strong and weak

formulations of stochastic optimal control problems and the existence of stochastic optimal

controls for both strong and weak formulation. Section 3 presents some others stochastic

control problems. Section 4 and 5 is concerned to the presentation of the two important

methods which are dynamic programming and the maximum principle.

1.2 Formulations of stochastic optimal controle prob-

lems

We now present two mathematical formulations (strong and weak formulations) of

stochastic optimal control problems.

1.2.1 Strong formulation

Let
�

;F ; (Ft)t�0 ; P

�
be a given �ltered probability space satisfying the usual condi-

tion, on witch we de�ne an m-dimensional standard Brownian motion W (:), consider the

following controlled stochastic di¤erential equation :

8><>: dx (t) = b (t; x (t) ; u (t)) dt+ � (t; x (t) ; u (t)) dWt;

x (0) = x0 2 Rn;
(1.1)

where

b : [0; T ]� Rn � U ! Rn;

� : [0; T ]� Rn � U ! Rn�m;

U is a separable metric space, and T 2 (0;1) is �xed.

The function u (:) is called the control representing the action of the decision-makers

(controllers). At any time instant the controller has some information (as speci�ed by

5



Chapter 1. Introduction to stochastic controle problems

the information �led fFtgt�0) of what has happened up to that moment, but not able to

foretell what is going to happen afterwards due to the uncertainty of the system (as a

consequence, for any t the controller cannot exercise his/her decision u (t) befor the time t

really comes).witche can be expressed in mathematical term as " u (:) is (Ft)t�0�adapted".

the control u is an element of the set :

U [0; T ] =
�
u : [0; T ]� 
! U = u (:) is fFtgt�0 -adapted

	
: (1.2)

We introduce the cost functional as follows :

J (u (:)) = E

�Z T

0

f (t; x (t) ; u (t)) dt+ h (x (T ))

�
: (1.3)

De�nition 1.2.1 Let
�

;F ; fFtgt�0 ; P

�
be given satisfying the usual conditions and let

W (t) be a given m-dimensional standard fFtgt�0-Brownian motion. A control u (:) is

called an s-admissible control, and (x (:) ; u (:)) an s-admissible pair, if

i) u (:) 2 [0; T ] ;

ii) x (:) is the unique solution of equation (1:1) ;

iii) f (:; x (:) ; u (:)) 2 L1F (0; T ;R) and h (x (T )) 2 L1FT (
;R) :

The set of all admissible controls is denoted by U sad [0; T ] : We can now give the stochastic

control problem under strong formulation as follow :

Problem 1.2.1 Minimize (1:3) over U sad [0; T ] :

The objective is to �nd û (:) 2 U sad [0; T ] (if it exists), such that

J (û) = inf
u(:)2Usad[0;T ]

J (u) : (1.4)

Any û (:) 2 U sad [0; T ] satisfying (1:4) is called an optimal control. The corresponding state

process x̂ (:) :

6



Chapter 1. Introduction to stochastic controle problems

1.2.2 Weak formulation

We remarque that in the strong formulation the �ltered probability space
�

;F ; fFtgt�0 ; P

�
on witch we de�ne the Brownian motion W are all �xed, but it is not the cas in the weak

formulation, where we consider them as a parts of the control.

De�nition 1.2.2 We call � =
�

;F ; fFtgt�0 ; P;W (:) ; u (:)

�
an w-admissible control,

and (x (:) ; u (:)) an w-admissible pair, if

i)
�

;F ; fFtgt�0 ; P

�
is a �ltered probability space satisfying the usual conditions;

ii) W (:) is an m-dimensional standard Brownian motion de�ned on
�

;F ; fFtgt�0 ; P

�
;

iii) u (:) is an fFtgt�0-adapted process on (
;F ; P ) taking values in U ;

iv) x (:) is the unique solution of equation (1:1);

v) f (:; x (:) ; u (:)) 2 L1F (0; T ;R) and h (x (T )) 2 L1FT (
;R) :

The set of all admissible controls is denoted by Uwad [0; T ] ; from now on if there is no ambi-

guity you can write u(:) 2 Uwad [0; T ] instead of
�

;F ; fFtgt�0 ; P;W (:) ; u (:)

�
2 Uwad [0; T ] :

Our stochastic optimal control problem under weak formulation can be formulated as

follows:

Problem 1.2.2 Minimize (1:3) over Uwad [0; T ] :

The objective is to �nd �̂ 2 Uwad [0; T ] such

J (�̂) = inf
�2Uwad[0;T ]

J (�) : (1.5)

1.2.3 Existence of optimal controls

In this section, we will discuss the existence of optimal controls, we use the theory

that a lower semi-continuous function on a compact metric space reaches its minimum.

we will �rst give an example from deterministic control.

7



Chapter 1. Introduction to stochastic controle problems

Example 1.2.1 Consider the cost functional

J (u) =

Z T

0

�
x2 (t) +

�
1� u2 (t)

�2�
dt;

to be minimized over the set of controls u : [0; T ] 7! U = [�1; 1] : The state of the system

is given by 8><>: dxt = u (t) dt;

x (0) = 0:

Now, consider the following sequence of controls

un (t) = (�1)k if t 2
�
k
n
; k+1
n

�
; 0 � k � n� 1:

Then we have
��x(n) (t)�� � 1

n
and

��J �u(n)��� � T

n2
; which implies that infu J (u) = 0. The

limit of u(n) is however not in the space of strict

controls. Instead the sequence �u(n)(t)(du)dt converges weakly to 1=2(��1+�1)(du)dt. Thus,

there does not exist an optimal strict

control in this case but only a relaxed one. But since we can construct a sequence of strict

controls such that the cost functional

is arbitrarily close to its in�mum, it is clear that there does exist an optimal solution,

albeit in a wider sense.

Existence under strong formulation

Let
�

;F ; fFtgt�0 ; P

�
be given andW is one dimensional Brownian motion. Consider

the following linear controlled system :

8><>:
dx (t) = [Ax (t) +Bu (t)] dt+ [Cx (t) +Du (t)] dW (t) ; t 2 [0; T ] ;

x (0) = x0;

(1.6)

8



Chapter 1. Introduction to stochastic controle problems

where A,B,C,D are matrices. The state x (:) takes value in Rn; and the control u (:) is in

UL [0; T ] =
�
u (:) 2 L2F

�
0; T;Rk

�
= u (t) 2 U; a.e.t 2 [0; T ] ; P -a:s:

	
; (1.7)

U � Rk; The cost functional is

J (u (:)) = E

�Z T

0

f (x (t) ; u (t)) dt+ h (x (T ))

�
; (1.8)

with f : Rn � U ! R and h : Rn ! R:

We have the following assumptions

(H1) U � Rk is convex and closed, and the functions f and h are convex and for some

�; k > 0;

f (x; u) � � juj2 � k; h (x) � �k ; 8 (x; u) 2 Rn � U: (1.9)

(H2) U � Rk is convex and compact, and the functions f and h are convex.

the optimal control problem is as follows :

Problem 1.2.3 Minimize (1:8) subject to (1:6) over UL [0; T ] :

We can now give the theorem of existence of optimal control in the linear case.

Theorem 1.2.1 Under either (H1) and (H2), if the problem is �nite, then it admits an

optimal control

Proof. If we suppose that (H1) holds. if we put

� = inf
u2UL[0;T ]

J (u) ;

which is equivalent to

8" > 0;9u" 2 UL [0; T ] : � � J (u") < � + ";

9



Chapter 1. Introduction to stochastic controle problems

which implies by putting " =
1

j
that :

8j � 1;9uj 2 UL [0; T ] : � � J (uj) < � +
1

j
; (1.10)

we see that

lim
j!1

J (uj) = �;

we call (uj (:) ; xj (:)) a minimizing sequence. we have then by (1:9) and (1:10)

E

�Z T

0

juj (t)j2 dt
�
� K, 8j � 1; (1.11)

for some constant K > 0: Then there exist a subsequence, witch is still noted by u" (:) ;

such that

uj (:)! û; weakly in L2
�
0; T ;Rk

�
: (1.12)

By Mazur�s theorem, we have a sequence of convex combinations

~uj (:) =
X
i�1
aijui+j (:) ; with aij � 0;

X
i�1
aij = 1;

such that

~uj (:)! û (:) strongly in CF ([0; T ] ;Rn) : (1.13)

we have û (:) 2 UL [0; T ] because U is convex and closed, we have also

~xj (:)! x̂ (:) ; strongly in CF ([0; T ] ;Rn) :

It is clear that (û (:) ; x̂ (:)) is admissible, by the convexity of f and h; we have

J (û (:)) = lim
j!1

J (~uj (:)) = lim
j!1

X
i�1
aijJ (ui+j (:)) = �; (1.14)

10



Chapter 1. Introduction to stochastic controle problems

hence (x̂ (:) ; û (:)) is optimal.

Remark 1.2.1 In the case where (H2) holds, we obtain directely (1:11). The linearity

play an essential role here, in general case, we do not have the convergence of uj (:) and

xj (:) because the in�nitedimensional space L2F (
;Rn) isn�t localy compacte.

Existence under weak formulation

We will now examine the existence of optimal control under weak formulation. Let

consider the following hypotheses.

(S1) (U; d) is a compact metric space and T > 0:

(S2) The maps b; �; f; and h are all continuous, and there exists a constant L > 0 such

that for ' (t; x; u) = b (t; x; u) ; � (t; x; u) ; f (t; x; u) ; h (x) ;

8><>:
j' (t; x; u)� ' (t; x̂; u)j � L jx� x̂j ;

j' (t; 0; u)j � L; 8t 2 [0; T ] ; x; x̂ 2 Rn; u 2 U:

(S3) For every (t; x) 2 [0; T ]� Rn; the set

S =
n�
bi (t; x; u) ;

�
��T

�ij
(t; x; u) ; f (t; x; u)

�
= u 2 U; i = 1; :::; n; j = 1; :::;m

o
;

is convex in Rn+nm+1:

(S3) x (t) 2 Rn:

Theorem 1.2.2 Under the conditions (S1)� (S3), if the problem is �nite, then it admits

an optimal control.

The idea of the proof is to embed the space of admissible control in a large space with

proper compactness which is the space of all (non-negative) measures on [0; T ] � U: For

more details you can see the proof in [57] page 71.
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Chapter 1. Introduction to stochastic controle problems

1.3 Other stochastic control problem

1.3.1 Random horizon

In problem formulation (1:2:1), the time horizon is �xed, until a deterministic terminal

time T . In some real applications, the time horizon may be random, then the control

problem is to minimize :

J (u) = E

�Z �

0

f (t; x (t) ; u (t)) dt+ h (x (�))

�
; (1.15)

over admissible control, her � is a �nite random time. In standard cases, the terminal

time � is a stopping time at which the state process exits from a certain relevant domain.

For example, in a reinsurance model, the state process X is the reserve of a company that

may control it by reinsuring a proportion 1 � � of premiums to another company. The

terminal time � is then the bankruptcy time of the company de�ned as

� = inf ft � 0 : Xt � 0g :

More generally, given some open set � of Rn;

� = inf ft � 0 : Xt =2 �g ^ T:

(which depends on the control). In this case, the control problem (1:15) leads via the

dynamic programming approach to a Dirichlet boundary-value problem. The problem

(1:15) may be reduced to a stochastic control problem under a �xed deterministic horizon,

see [5], for a recent application in portfolio optimization model. In the general random time

case, the associated control problem has been relatively lightly studied in the literature,

see [6] or [7] for a utility maximization problem in �nance.
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1.3.2 Optimal stopping

In the models presented above, the horizon of the problem is either �xed or indirectly

in�uenced by the control. When one has the possibility to control directly the terminal

time, which is then modeled by a controlled stopping time, the associated problem is an

optimal stopping time problem. In the general formulation of such models, the control is

mixed, composed by a pair control/stopping time (u; �) and the functional to optimize is

J (u (:) ; �) = E

�Z �

0

f (t; x (t) ; u (t)) dt+ h (x (�))

�
: (1.16)

The theory of optimal stopping, thoroughly studied in the seventies, has received a renewed

interest with a variety of applications in economics and �nance. These applications range

from asset pricing (American options) to �rm investment and real options. Extensions

of classical optimal stopping problems deal with multiple optimal stopping with eventual

changes of regimes in the state process. They were studied e.g. in [12]; [56]; and applied

in �nance in [21]; [29]; [38]; [22] or [52]:

Example 1.3.1 A person who owns an asset (house, stock, etc...) decides to sell. The

price of the asset evolves as:

dXt = rXtdt+ �XtdBt:

Suppose that there is a transaction cost a > 0. If the person decides to sell at date t, the

pro�t of this transaction will be

e��t (Xt � a) ;

where � > 0 is the in�ation factor. The problem is to �nd a stopping time which maximizes

the expected bene�t.

13
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1.3.3 Partial observation control problem

It is assumed that the controller completely observes the state system. In many real

applications, he is only able to observe partially the state via other variables and there

is noise in the observation system. For example in �nancial models, one may observe

the asset price but not completely its rate of return and/or its volatility, and the portfolio

investment is based only on the asset price information. We are facing a partial observation

control problem. This may be formulated in a general form as follows : we have a controlled

signal (unobserved) process governed by :

dXs = b (s;Xs; Ys; us) ds+ � (s;Xs; Ys; us) dWs; (1.17)

and an observation process :

dYs = � (s;Xs; Ys; us) ds+  (s;Xs; Ys; us) dBs; (1.18)

where B is another Brownian motion, eventually correlated with W . The control is

adapted with respect to the �ltration generated by the observation FY =
�
FY
t

�
and the

functional to optimize is :

J (u (:)) = E

�Z T

0

f (X (t) ; Y (t) ; u (t)) dt+ h (X (T ) ; Y (T ))

�
: (1.19)

By introducing the �lter measure-valued process

�t (dx) = P
�
X (t) 2 dx j FY

t

�
;

one may rewrite the functional J(u) in the form :

J (u (:)) = E

�Z T

0

f̂ (�t; Y (t) ; u (t)) dt+ ĥ (�T ; Y (T ))

�
; (1.20)

14
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where we use the notation : f̂ (�; y) =
Z
f (x; y)� (dx) for any �nite measure � on the

signal state space, and similarly for ĥ. Since by de�nition, the process (�t) is FY
t -adapted,

the original partial observation control problem is reformulated as a complete observation

control model, with the new observable state variable de�ned by the �lter process. The

additional main di¢ culty is that the �lter process is valued in the in�nite-dimensional

space of probability measures: it satis�es the Zakai stochastic partial di¤erential equa-

tion. The dynamic programming principle or maximum principle are still applicable and

the associated Bellman equation or Hamiltonian system are now in in�nite dimension. For

a theoretical study of optimal control under partial observation under this in�nite dimen-

sional viewpoint, we mention among others the works [28], [27], [9], [11], [45] or [58].There

are relatively few explicit calculations in the applications to �nance of partial observation

control models and this area should be developed in the future.

1.3.4 Singular and impulse control

In formulation of the problem in (1:1), the displacement of the state changes con-

tinuously in time in response to the control e¤ort. However, in many real applications,

this displacement may be discontinuous. For example, in insurance company models, the

company distributes the dividends once or twice a year rather than continuously. In trans-

action costs models, the agent should not invest continuously in the stock due to the costs

but only at discrete times A similar situation occurs in a liquidity risk model, see e.g.

[24]. Let us �rst introduce the following function space: D � D ([0; T ] ;Rn) the set of all

functions � : [0; T ]! Rn that are right continuous with left limits (càdlàg for short). We

de�ne the total variation of � on [0; T ] by

Z T

0

jd� (s)j � j�j[0;T ] =
i=nX
i=1

���i��
[0;T ]

;

15
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where j�ij[0;T ] is the total variation of the ith component of � on [0; T ] in the usual sense.

We de�ne j�jt � j�j[0;T ] ; t > 0; for simplicity. For � 2 D, we de�ne

4� (s) := � (s)� � (s�) ;

and

S� := fs 2 [0; T ] = 4 � (s) 6= 0g :

Further, we de�ne

BVF ([0; T ] ;Rn) =
�
� 2 D= j�jT <1, � is (Ft)t�0 -adapted

	
: (1.21)

For any � 2 BV ([0; T ] ;Rn) we de�ne the pure jump part of � by �jp (t) :=
P
0�s<t

4� (s) ;

and its Lebegue decomposition is :

� (:; !) = �ac (:; !) + �sc (:; !) + �jp (:; !) ;

where 8>>>><>>>>:
�ac (:; !) : absolutely continuous part,

�sc (:; !) : singular continuous part,

�jp (:; !) : jump part,

and

�c (t) = � (t)� �jp (t)

= �ac (t)� �sc (t) ;

where

�ac (t) :=

Z t

0

_�c (s) ds:

16
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The controlled state di¤usion process is governed by

dXs = b(s;Xs)dt+ �(s;Xs)dWs+ d�s;

the functional objective to optimize is in the form

J (� (:)) = E

�Z T

0

f (t; x (t)) dt+

Z T

0

fa (t)
 _�ac (t)

1
dt

+

Z T

0

f s (t) jd�sc (t)j dt+
X

t2S�[0;T ]

l (t;�� (t)) + h (x (T ))

9=; : (1.22)

Here, f; f s; l and h are given functions, and
 _�ac (t)

1
and jd�sc (t)j are the measures

generated by the total variations of �ac and �sc: The optimal singular control problem is

to minimize the cost functional (1:22) over BV ([0; T ] ;Rn) :

1.3.5 Ergodic control

Some stochastic systems may exhibit over a long period a stationary behavior char-

acterized by an invariant measure. This measure, if it does exists, is obtained by the

average of the states over a long time. An ergodic control problem consists in optimizing

over the long term some criterion taking into account this invariant measure. A standard

formulation resulting from the criterion presented is to optimize over control u functional

of the form

lim sup
T!+1

1

T
E

�Z T

0

f (Xt; ut) dt

�
; (1.23)

or

lim sup
T!+1

1

T
lnE

�
exp

�Z T

0

f (Xt; ut) dt

��
: (1.24)

This last formulation is called risk-sensitive control on an in�nite horizon. Ergodic and

risk-sensitive control problems were studied in [32], [13], or [32]. Risk-sensitive control

problems were recently applied in a �nancial context in [15] and [33]
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1.3.6 Stochastic target problems

Motivated by the super replication problem in �nance, and in particular under gamma

constraints [54], Soner and Touzi introduced a new class of stochastic control problems.

The state process is described by a pair (X; Y ) valued in Rn � R, and controlled by a

control process according to :

dXs = b (s;Xs; us) ds+ � (s;Xs; us) dWs; (1.25)

dYs = � (s;Xs; Ys; us) +  (s;Xs; Ys; us) dWs: (1.26)

Given (t; x; y) 2 [0; T ]�Rn�R, (X t;x; Y t;x;y) is the unique solution to of (1:25)-(1:26) with

initial condition (X t;x
t ; Y

t;x;y
t ) = (x; y) : The coe¢ cients b, �, �,  are bounded functions

and satisfy usual conditions ensuring that (X t;x; Y t;x;y) is well-de�ned. The stochastic

target problem is de�ned as follows. Given a real-valued measurable function g on Rn, the

value function of the control problem is de�ned by :

v (t; x) = inf
�
y 2 R; 9u 2 U ; Y t;x;yT � h

�
X t;x
T

�
a.s.
	
:

In �nance, X is the price process, Y is the wealth process controlled by the portfolio

strategy , and v(t; x) is the minimum capital in order to super replicate the payo¤ option

h(XT ). The derivation of the associated dynamic programming equation is obtained in

[55].
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1.4 Dynamic programming

Let T > 0 be given and let U be a metric space. For any (s; x) 2 [0; T )�Rn, consider

the state equation

8><>: dx (t) = b (t; x (t) ; u (t)) dt+ � (t; x (t) ; u (t)) dWt; t 2 [s; T ] ;

x (0) = x;
(1.27)

along with the cost functional

J (s; x; u (:)) = E

�Z T

0

f (x (t) ; u (t)) dt+ h (x (T ))

�
: (1.28)

Dynamic programming equation.

Fixes s 2 [0; T ), we denote by U [s; T ] the set of all 5-tuples (
;F ; P;W (:) ; u (:)) satisfying

the following :

a) (
;F ; P ) is complete probability space.

b) fWtgt�s is an m-dimensional standard Brownian motion de�ned on (
;F ; P ) over

[s; T ] (with W (s) = 0 a:s:) ; and F s
t = � fWr : s � r � tg augmented by all P -null

sets in F .

c) u : [s; T ]� 
! U is an fF s
t gt�s-adapted process on (
;F ; P ) :

d) under u (:), for any x 2 Rn equation (1:27) admits a unique solution f (:; x (:) ; u (:)) 2

L1F (0; T ;R) and h (x (T )) 2 L1FT (
;R) are de�ned on
�

;F ; fF s

t gt�s ; P
�
:

we de�ne the value function

v (s; x) = inf
u(:)2U [s;T ]

J (s; x; u (:)) , (s; x) 2 [0; T ]� Rn:

We now introduce some assumptions
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S 01) (U ; d) is polish space and T > 0:

S 02) b; �; f and h are uniformly continuous, and there exists a constant L > 0 such that

for : ' (t; x; u) = b (t; x; u) ; � (t; x; u) ; f (t; x; u) ; h (x) ;

8><>: j' (t; x; u)� ' (t; x̂; u)j � L jx� x̂j ;

j' (t; 0; u)j � L; 8t 2 [0; T ] ; x; x̂ 2 Rn; u 2 U:

Our optimal control problem can be stated as follows :

Find
�

̂; F̂ ; P̂; Ŵ (:) ; û (:)

�
2 U [s; T ] such that

J (s; x; û (:)) = inf
u2U [s;T ]

J (s; x; u (:)) : (1.29)

The dynamic programming principle says that if a trajectory is optimal each time, then

starting from another point one can do no better than follow the optimal trajectory.

Theorem 1.4.1 Let (S 01)-(S
0
2) hold. then for any (s; x) 2 [0; T )� Rn;

v (s; x) = inf
u(:)2U [s;T ]

E

�Z ŝ

s

f (t; x (t; s; x; u (:) ; u (t))) dt+ v (ŝ; x (ŝ; s; x; u (:)))

�
; 80 � s � ŝ � T:

(1.30)

We call (1:30) the dynamic programming equation. This equation is very complicated,

and it seems impossible to solve such an equation directly.

1.4.1 Hamilton-Jacobi-Belman equation

Based on equation (1:30). we let C1;2 ([0; T ]� Rn) be the set of all continuous func-

tions v : [0; T ]� Rn ! R such that vt; vx and vxx are all continuous in (t; x)

Proposition 1.4.1 (The HJB equation) Suppose (S 01)� (S 02) hold and the value func-

tion v 2 C1;2 ([0; T ]� Rn) : Then v is a solution of the following terminal value problem
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of a (possibly degenerate) second-order partial di¤erential equation:

8><>:
�vt + supu2U G (t; x; u;�vxx) = 0; (t; x) 2 [0; T ]� Rn

vnt=T = h (x) ; x 2 Rn;

where

G (t; x; u; p; P ) :=
1

2
tr
�
P� (t; x; u)� (t; x; u)T

�
+ hp; b (t; x; u)i � f (t; x; u) ;

8 (t; x; u; p; P ) 2 [0; T ]� Rn � U � Rn � Sn:

1.4.2 The classical veri�cation approach

The classical veri�cation approach consists in �nding a smooth solution to the HJB

equation, and to check that this candidate, under suitable su¢ cient conditions, coincides

with the value function. This result is usually called a veri�cation theorem and provides

as a byproduct an optimal control. It relies mainly on Itô�s formula. The assertions

of a veri�cation theorem may slightly vary from problem to problem, depending on the

required su¢ cient technical conditions. The veri�cation theorem is stated as follows :

Theorem 1.4.2 Let v be a C1;2 function on [0; T )�Rn and continuous in T , with suitable

growth condition. Suppose that for all (t; x) 2 [0; T )�Rn, there exists �̂(t; x) measurable,

valued in A = R+ such that v solves the HJB equation :

0 = wt (t; x)� supa2A [Law (t; x) + f (t; x; a)]

= wt (t; x)� L�̂(t;x)w (t; x)� f (t; x; �̂(t; x)) ;

on [0; T )�Rn

together with the terminal condition w (T; :) = g on Rn and the S.D.E. :

dXs = b (s;Xs; �̂(t; x)) dt+ � (s;Xs; �̂(t; x)) dWs
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admits a unique solution, denoted X̂ t;x
s , given an initial condition Xt = x. Then, w = v

and
n
�̂(s; X̂ t;x

s ) t � s � T
o
is an optimal control for v(t; x).

A proof of this veri�cation theorem may be found in any textbook on stochastic control,

see e.g. [57], [34] or [43].

Example 1.4.1 (Merton�s portfolio selection problem) This is the situation where

an investor may decide at any time over a �nite horizon T to invest a proportion valued

in A = R of his wealth X in a risky stock of constants rate of return � and volatility � and

the rest of proportion 1�� in a bank account of constant interest r. His wealth controlled

process is then governed by :

dXs = Xs (r + (�� r)�s) ds+Xs��sdWs;

and the objective of the investor is given by the value function :

v (t; x) = sup
�2A

E
�
U
�
X t;x
T

��
; (t; x) 2 [0; T ]� R+;

where U is a utility function, i.e. a concave and increasing function on R+: For the popular

speci�c choice of the power utility function U(x) = xp, with p < 1, it is possible to �nd

an explicit (smooth) solution to the associated HJB equation with the terminal condition

v(T; :) = U , namely:

v (t; x) = exp (� (T � t))xp;

with � =
(�� r)2

2�2
p

1� p + rp: Moreover, the optimal control is constant and given by :

�̂ =
�� r

�2 (1� p) :

The key point in the explicit resolution of the Merton problem is that the value function v

may be separated into a function of t and of x : v (t; x) = ' (t)xp:With this transformation
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and substitution into the HJB equation, it turns out that '�is the solution of an ordinary

di¤erential equation with terminal condition '(T ) = 1, which is explicitly solved.

For other applications of veri�cation theorems to stochastic control problems in �nance

see [50]:

1.5 The Pontriagin stochastic maximum principle

A classical approach for optimization and control problems is to derive necessary con-

ditions satis�ed by an optimal solution. The argument is to use an appropriate calculus of

variations on the gain function J(t; x; :) with respect to the control variable in order to de-

rive a necessary condition of optimality. The maximum principle, initiated by Pontryagin

in the 1960s, states that an optimal state trajectory must solve a Hamilton system to-

gether with a maximum condition of a function called a generalized Hamilton. In principle,

solve a Hamilton should be easier than solving the original control problem. The original

version of Pontryagin�s maximum principle was derived for deterministic problems. As in

classical calculus of variation, the basic idea of is to perturb an optimal control and to use

some sort of Taylor expansion of the state trajectory and objective functional around the

optimal control. By sending the perturbation to zero, one obtains some inequality, and

by duality, the maximum principle is expressed in terms of an adjoint variable (Lagrange

multiplier in the �nite-dimensional case).

The stochastic control case was extensively studied in the 1970s by Bismut, Kushner,

Bensoussan or Haussmann. However, at that time, the results were essentially obtained

under the condition that there is no control on the di¤usion coe¢ cient. For example,

Haussmann investigated maximum principle by Girsanov�s transformation and this limi-

tation explains why this approach does not work with control-dependent and degenerate

di¤usion coe¢ cients.

The main di¢ culty when facing a general controlled di¤usion is that the Itô integral
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term is not of the same order as the Lebesgue term and thus the �rst-order variation

method fails. This di¢ culty was overcome by Peng , who studied the second-order term

in the Taylor expansion of the perturbation method arising from the Itô integral. He

then obtained a maximum principle for possibly degenerate and control-dependent di¤u-

sion, which involves in addition to the �rst-order adjoint variable, a second-order adjoint

variable. In order to make applicable the maximum principle, one needs some explicit

description of the adjoint variables. These variables obtained originally by duality in

functional analysis may be represented by Riesz representation of a certain functional. By

completing with martingale representation in stochastic analysis, the adjoint variables are

then described by what is called today backward stochastic di¤erential equations (BSDE).

1.5.1 Deterministic control problem

We provide a sketch of how the maximum principle for a deterministic control problem

is derived. In this setting, the state of the system is given by the di¤erential equation

8><>: dx (t) = b (x (t) ; u (t)) dt;

x (0) = 0;
(1.31)

where u(t) 2 U for all t 2 [0; T ], and the action space U is some subset of R. The objective

is to minimize some cost function

J (u) =

Z T

0

h (x (t) ; u (t)) dt+ g (xT ) : (1.32)

That is, the function h in�icts a running cost and the function g in�icts a terminal cost.

We now assume that there exists a control û(t) which is optimal, i.e.

J (û) = inf
u2U

J (u) : (1.33)
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We denote by x̂(t) the solution to (1:31) with the optimal control û(t). We are going

to derive necessary conditions for optimality by analyzing what happens when we make

a small perturbation of the optimal control. Therefore we introduce a so called spike

variation, i.e. a control which is equal to û except on some small time interval :

u� (t) =

8><>: v for � � � � t � �;

û(t) otherwise.

We denote by x�(t) the solution to (1:31) with the control u�(t). We see that x� (t) and

x̂(t) are equal up to t = � � � and that

x� (�)� x̂ (�) =
Z �

���

�
b
�
x� (r) ; v (r)

�
� b (x̂ (r) ; û (r))

�
dr

=
�
b
�
x� (�) ; v (�)

�
� b (x̂ (�) ; û (�))

�
� + o (�)

= (b (x̂� ; v� )� b (x̂� ; û� )) � + o (�) ; (1.34)

where the third equality holds since x� (�)� x̂ (�) is of order �. Next, we look at the Taylor

expansion of the state with respect to �. Let

z (t) =
@

@�
x� (t) j�=0 ; (1.35)

i.e. the Taylor expansion of x�(t) is

x� (t) = x̂ (t) + z (t) � + o (�) : (1.36)

Then, by (1:34),

z (�) = b (x̂� ; v� )� b (x̂� ; û� ) : (1.37)
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Moreover, we can derive the following di¤erential equation for z (t)

dzt =
@

@�
dx� (t) j�=0

=
@

@�
b
�
x� (t) ; u� (t)

�
dt j�=0

= bx
�
x� (t) ; u� (t)

� @
@�
x� (t) dt j�=0

= bx
�
x� (t) ; u� (t)

�
ztdt;

where bx denotes the derivative of b with respect to x. If we for the moment assume that

h = 0, the optimality of û(t) leads to the inequality

0 <
@

@�
J
�
u�
�
j�=0 =

@

@�
g
�
x� (T )

�
j�=0 = gx

�
x� (T )

� @
@�
x� (T ) j�=0

= gx (x̂ (T )) z (T ) :

We shall use duality to obtain a more explicit necessary condition from this. To this end

we introduce the adjoint equation:

8><>: dp (t) = �bx (x̂ (t) ; û (t)) p (t) dt;

p (T ) = gx (x̂ (T )) :

Then it follows that

d (p (t) z (t)) = 0;

i.e. p(t)z(t) = constant. By the terminal condition for the adjoint equation we have

p(t)z(t) = gx (x̂ (T )) z(T ) > 0; for all 0 � t � T:

In particular, by (1:37)

p (�) (b (x̂ (�) ; v (�))� b (x̂ (�) ; û (�))) � 0:
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Since � was chosen arbitrarily, this is equivalent to

p (t) b (x̂ (t) ; û (t)) = infv p (t) b (x̂ (t) ; v (t)) ; for all 0 � t � T:

This speci�es a necessary condition for û(t) to be optimal when h = 0. To account for the

running cost h one can construct an extra state dx0(t) = h(x(t); u(t))dt, which allows us

to write the cost function in terms of two terminal costs :

J (u) = x0 (T ) + g (x (T )) :

By repeating the calculations above for this two-dimensional system, one can derive the

necessary condition :

H (x̂ (t) ; û (t) ; p (t)) = inf
v
H (x̂ (t) ; v; p (t)) ; for all 0 � t � T; (1.38)

where H is the so-called Hamiltonian (sometimes de�ned with a minus sign which turns

the minimum condition above into a maximum condition):

H (x; u; p) = h (x; u) + pb (x; u) ;

and the adjoint equation is given by

8><>:
dp (t) = � (hx (x̂ (t) ; û (t)) + bx (x̂ (t) ; û (t)) p (t)) dt;

p (T ) = gx (x̂ (T )) :

(1.39)

The minimum condition (1:38) together with the adjoint equation (1:39) speci�es the

Hamiltonian system for our control problem.

27



Chapter 1. Introduction to stochastic controle problems

1.5.2 The stochastic maximum principle

The earliest paper on the extension of the maximum principle to stochastic control

problems is Kushner and Schweppe (1964). One major di¢ culty that arises in such an

extension is that the adjoint equation (1:39) becomes a SDE with terminal conditions. In

contrast to a deterministic di¤erential equation, one cannot simply reverse the time since

the control process, and consequently the solution to the SDE, is required to be adapted

to the �ltration. Bismut solved this problem by introducing conditional expectations and

obtained the solution to the adjoint equation from the martingale representation theorem,

see e.g. Bismut (1978) [16] and also Haussmann (1986) [39]. An extensive study of these

so-called backward SDEs can be found in e.g. Ma and Yong (1999) [46].

For the case where � isn�t controlled the adjoint equation is given by

8><>: dp (t) = � (hx (x̂ (t) ; û (t)) + bx (x̂ (t) ; û (t)) p (t) + �x (x̂ (t)) q (t)) dt� q (t) dWt;

p (T ) = gx (x̂ (T )) :

(1.40)

A solution to this kind of backward SDE is a pair (p(t); q(t)) which ful�lls (1:40). The

Hamiltonian is

H (x; u; p; q) = h (x; u) + pb (x; u) + q� (x) ;

and the maximum principle reads

H (x̂ (t) ; û (t) ; p (t) ; q (t)) = inf
v
H (x̂ (t) ; v; p (t) ; q (t)) ; for all 0 � t � T , P -a:s:

For the stochastic maximum principle, there is a major di¤erence between the cases where

� isn�t controlled and � is controlled. As for (1:1), when performing the expansion with

respect to the perturbation � (1:36), the fact that the perturbed Itô integral turns out to

be of order
p
� (rather than � as with the ordinary Lebesgue integral) poses a problem.

In fact, one needs to take into account both the �rst-order and second-order terms in the
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Chapter 1. Introduction to stochastic controle problems

Taylor expansion (1:36). This ultimately leads to a maximum principle containing two

adjoint equations, both in the form of linear backward SDEs. The Hamiltonian is replaced

by a extended Hamiltonian :

H(x̂(t);û(t)) (t; x; v) = H (t; x; v; p (t) ; q (t)� P (t)� (t; x̂ (t) ; û (t)))� 1
2
�2 (t; x̂ (t) ; v)P (t) ;

where (p(t); q(t)) is the solution to the �rst order adjoint equation (1:40) and (P (t); Q(t))

is the solution to the second order adjoint equation �see Peng (1990) [49] where the �rst

proof of this general stochastic maximum principle is given. The optimal control is in this

case characterized by

H(x̂(t);û(t)) (t; x̂ (t) ; û (t)) = infvH(x̂(t);û(t)) (t; x̂ (t) ; v) ; for all 0 � t � T , P -a:s:

There is also third case: if the state is given by (1:1) but the action space U is convex, it

is possible to derive the maximum principle in a local form. This is accomplished by using

a convex perturbation of the control instead of a spike variation, see Bensoussan (1982)

[34]. The necessary condition for optimality is then the following.:

d

dv
H (t; x̂ (t) ; û (t) ; p̂ (t) ; q̂ (t)) (v � û (t)) � 0; for all 0 � t � T , P -a:s:
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Chapter 2

A general stochastic maximum

principle for singular control

problems

2.1 Introduction

In this chapter we will give a detailed demonstration of the maximum principle in

singular control in which the control domain need not be convex, the control variable

has two components, the �rst being absolutely continuous and the second singular. The

coe¢ cients of the state equation are non linear and depend explicitly on the absolutely

continuous component of the control. This result was established by Seid Bahlali and

Brahim Mezerdi [3] using a spike variation on the absolutely continuous part of the control

and a convex perturbation on the singular one to establish a maximum principle. This

result is a generalization of Peng�s maximum principle to singular control problems.
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Chapter 2. A general stochastic maximum principle for singular control problems

2.1.1 Problem formulation and assumptions

Let
�

;F ; (Ft)t�0 ; P

�
be a probability space equipped with a �ltration satisfying the

usual conditions, on which a d-dimensional Brownian motion B =(Bt)t�0 is de�ned. We

assume that (Ft) is the P -augmentation of the natural �ltration of (Bt)t�0.

Let T be a strictly positive real number and consider the following sets

A1 is a non empty subset of Rk and A2 = ([0;1))m:

U1 is the class of measurable, adapted processes u : [0; T ]� 
! A1.

U2 is the class of measurable, adapted processes � : [0; T ] � 
 ! A2 such that � is no

decreasing, left-continuous with right limits and �0 = 0:

De�nition 2.1.1 An admissible control is an Ft-adapted process (u; �) 2 U1 � U2 such

that

E

"
sup
t2[0;T ]

ju (t)j2 + j�T j2
#
<1:

We denote by U the set of all admissible controls.

For any (u; �) 2 U , we consider the following stochastic equation :

8><>: dx (t) = b (t; x (t) ; u (t)) dt+ � (t; x (t) ; u (t)) dBt +Gtd�t;

x (0) = x0;
(2.1)

where

b : [0; T ]� Rn � A1 ! Rn;

� : [0; T ]� Rn � A1 !Mn�d (R) ;

G : [0; T ]!Mn�m (R) :

The expected cost has the form

J (u; �) = E

�
g (xT ) +

Z T

0

h (t; x (t) ; u (t)) dt+

Z T

0

h (t) d�t

�
; (2.2)
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Chapter 2. A general stochastic maximum principle for singular control problems

where

g : Rn ! R;

h : [0; T ]� Rn � A1 ! R;

k : [0; T ]! ([0;1))m :

The control problem is to minimize the functional J (:) over U . If
�
û; �̂
�
2 U is an optimal

solution, that is

J
�
û; �̂
�
= inf

(u;�)2U
J (u; �) ;

we may ask, how we can characterize it, in other words what conditions must
�
û; �̂
�

necessarily satisfy?

We have the following assumptions :

1. b; �; g; h are twice continuously di¤erentiable with respect to x

2. The derivatives bx; bxx; �x; �xx; Gx; Gxx; hx; hxx are continuous in (x; u) and uniformly

bounded.

3. b; � are bounded by C(1 + jxj+ juj).

4. G and k are continuous and G is bounded.

Under the above hypothesis, for every (u; �) 2 U equation (2:1) has a unique strong

solution given by

x(u;�) (t) = x0 +

Z t

0

b
�
s; x(u;�) (s) ; u (s)

�
ds+

Z t

0

�
�
s; x(u;�) (s) ; u (s)

�
dBs +

Z t

0

Gsd�s;

and the cost functional J is well de�ned from U into R.
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2.1.2 Preliminary Results

We assume the existence of an optimal control
�
û; �̂
�
minimizing the cost J over U

and x̂ (t) denotes the optimal trajectory, that is, the solution of (2:1) corresponding to�
û; �̂
�
: Let us introduce the following perturbation of the optimal control

�
û; �̂
�
:

�
u� (t) ; �� (t)

�
=

8><>:
�
v; �̂ (t) + �

�
� (t)� �̂ (t)

��
if t 2 [�; � + �] ;�

û (t) ; �̂ (t) + �
�
� (t)� �̂ (t)

��
otherwise,

(2.3)

where 0 � � < T is �xed, � > 0 is su¢ ciently small, v is a -measurable random variable

and � is an increasing process with �0 = 0:

Since
�
û; �̂
�
is optimal, we have

J
�
u�; ��

�
� J

�
û; �̂
�
� 0:

Let

J1 = J
�
u�; ��

�
� J

�
u�; �̂

�
; (2.4)

J2 = J
�
u�; �̂

�
� J

�
û; �̂
�
: (2.5)

The variational inequality will be derived from the fact that

lim
�!0

1

�
J1 + lim

�!0

1

�
J2 � 0; (2.6)

let x�t ; x
(u�;�̂)
t be the trajectories associated respectively with

�
u�; ��

�
and

�
u�; �̂

�
:

For simplicity of notation, we denote

f (t) = f (t; x̂; û) ;

f � (t) = f
�
t; x̂; u�

�
;
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where f stands for one of the functions b; bx; bxx; �; �x; �xx; h; hx; hxx:

To obtain the variational inequality we need the following technical lemmas.

Lemma 2.1.1 Under assumptions 1, we have

lim
�!0

E

�����x� (t)� x(u
�;�̂) (t)

�
� z (t)

�����
2

= 0; (2.7)

where z is the solution of the linear stochastic di¤erential equation

z (t) =

Z t

0

bx (s) z (s) ds+

Z t

0

�x (s) z (s) dBs +
Z t

0

G (s) d
�
� � �̂

�
s
:

Proof. We �rst proof that

lim
�!0

E

�
sup
0�t�T

���x� (t)� x(u�;�̂) (t)���2� = 0; (2.8)

lim
�!0

E

�
sup
0�t�T

���x(u�;�̂) (t)� x̂ (t)���2� = 0; (2.9)

E
�
jztj2

�
<1; (2.10)

where x� (t) and x(u
�;�̂) (t) are the solutions of the equation (2:1) associated respectively

to the controls
�
u�; ��

�
and

�
u�; �̂

�
;we have then

x� (t) = x0 +

Z t

0

b
�
s; x� (s) ; u� (s)

�
ds+

Z t

0

�
�
s; x� (s) ; u� (s)

�
dBs

+

Z t

0

Gsd�
�
s ;

x(u
�;�̂) (t) = x0 +

Z t

0

b
�
s; x(u

�;�̂) (s) ; u� (s)
�
ds+

Z t

0

�
�
s; x(u

�;�̂) (s) ; u� (s)
�
dBs

+

Z t

0

Gsd�̂s;
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using the two equations above and applying the expectation we have

E

�
sup
0�t�T

���x� (t)� x(u�;�̂) (t)���2� � 3TE
�Z T

0

���b �s; x� (s) ; u� (s)��b�s; x(u�;�̂) (s) ; u� (s)����2 ds�+
3E

"
sup
0�t�T

�Z t

0

���� �s; x� (s) ; u� (s)��� �s; x(u�;�̂) (s) ; u� (s)���� dBs�2#

+3�2E

"
sup
0�t�T

�Z t

0

Gsd
�
� � �̂

�
s

�2#
;

using Burkholder Davis Gundy inequality, we get

E

�
sup
0�t�T

���x� (t)� x(u�;�̂) (t)���2� � 3TE
�Z T

0

���b �s; x� (s) ; u� (s)�� b�s; x(u�;�̂) (s) ; u� (s)����2 ds�

+3cE

�Z T

0

���� �s; x� (s) ; u� (s)�� � �s; x(u�;�̂) (s) ; u� (s)����2 ds�

+�2K:

Under assumption (1), we have b and � are Lipschitz then the inequality above becomes

���b �s; x� (s) ; u� (s)�� b�s; x(u�;�̂) (s) ; u� (s)���� � k ���x� (s)� x(u�;�̂) (s)��� ;���� �s; x� (s) ; u� (s)�� � �s; x(u�;�̂) (s) ; u� (s)���� � k ���x� (s)� x(u�;�̂) (s)��� ;
E

�
sup
0�t�T

���x� (t)� x(u�;�̂) (t)���2� � (3Tk2 + 3ck2)
Z T

0

E

����x� (s)� x(u�;�̂) (s)���2� ds
+K�2:

In the other hand we have by using the isomitry property of the stochastic integral and
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the fact that b and � are Lipschitz

E

����x� (t)� x(u�;�̂) (t)���2� � 3TE
�Z t

0

���b �s; x� (s) ; u� (s)�� b�s; x(u�;�̂) (s) ; u� (s)����2 ds�
+3TE

�Z t

0

���� �s; x� (s) ; u� (s)�� � �s; x(u�;�̂) (s) ; u� (s)����2 ds�
+K�2

� K 0E

�Z t

0

���x� (t)� x(u�;�̂) (t)���2 ds�+ �2K; where K 0 = 6Tk2:

Using Gronwall lemma, we have

E

����x� (t)� x(u�;�̂) (t)���2� � c�2 where c = K exp (K 0T ) :

Finally we have

E

�
sup
0�t�T

���x� (t)� x(u�;�̂) (t)���2� � C�2:
We use the same arguments to prove that

lim�!0E

�
sup0�t�T

���x(u�;�̂) (t)� x̂ (t)���2� = 0;
E
�
jztj2

�
<1:

Let

y� (t) =
x� (t)� x(u�;�̂) (t)

�
� z (t) :

If we use for f = b or f = � the following equality :

f
�
s; x�; u�

�
� f

�
s; x(u

�;�̂); u�
�
=

Z 1

0

d

d�

�
f
�
s; x(u

�;�̂) + �
�
x� � x(u�;�̂)

�
; u�
��
d�

=

Z 1

0

fx

�
s; x(u

�;�̂) + �
�
x� � x(u�;�̂)

�
; u�
��
x� � x(u�;�̂)

�
d�;

(2.11)
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and the inequality : (a+ b+ c)2 � 3a2 + 3b2 + 3c2; it hold that

E
��y� (t)��2 � 3TZ t

0

E

����Z 1

0

bx

�
s; x
(u�;�̂)
s + �

�
x�s � x

(u�;�̂)
s

�
; u�s

�
y� (s) d�

����2 ds
+ 3

Z t

0

E

����Z 1

0

�x

�
s; x
(u�;�̂)
s + �

�
x�s � x

(u�;�̂)
s

�
; u�s

�
y� (s) d�

����2 ds
+ 3E

���� (t)��2 ;
where

�� (t) =

Z t

0

Z 1

0

�
bx

�
s; x
(u�;�̂)
s + �

�
x�s � x

(u�;�̂)
s

�
; u�s

�
� bx (s; x̂s; ûs)

�
zsd�ds

+

Z t

0

Z 1

0

�
�x

�
s; x
(u�;�̂)
s + �

�
x�s � x

(u�;�̂)
s

�
; u�s

�
� �x (s; x̂s; ûs)

�
zsd�dBs:

Since bx and �x are bounded, we have

E
��y� (t)��2 � cZ t

0

E
��y� (s)��2 ds+ 3E ���� (t)��2 :

bx, �x being continuous and bounded, then using (2:8), (2:9), (2:10) and the dominated

convergence theorem, we get

lim
�!0

E
���� (t)��2 = 0:

We conclude by using Gronwall�s lemma.

Lemma 2.1.2 Under assumption 1� 4, the following estimate holds

E

"
sup
t2[0;T ]

����x(u�;�̂)t � x̂t � x1 (t)� x2 (t)
����2
#
� C�2; (2.12)
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where x1, x2 are solutions of

x1 (t) =

Z t

0

�
bx (s)x1 (s) + b

� (s)� b (s)
�
ds

+

Z t

0

�
�x (s)x1 (s) + �

� (s)� � (s)
�
dBs;

x2 (t) =

Z t

0

�
b�x (s)� bx (s)

�
x1 (s) ds

+

Z t

0

�
bx (s)x2 (s) +

1

2
bxx (s)x1 (s)x1 (s)

�
ds

+

Z t

0

�
��x (s)� �x (s)

�
x1 (s) dBs

+

Z t

0

�
�x (s)x2 (s) +

1

2
�xx (s)x1 (s)x1 (s)

�
dBs:

The above equations are called the �rst and the second-order

variational equations.

Proof. We put

~x (t) = x̂ (t)�
Z t

0

G (s) d�̂s;

~x
(u�;�̂)
t = x̂

(u�;�̂)
t �

Z t

0

G (s) d�̂s:

It is clear that

x
(u�;�̂)
t � x̂t � x1 (t)� x2 (t) = ~x

(u�;�̂)
t � ~xt � x1 (t)� x2 (t) :

By using the same proof as in [53], lemma 1 page 968, we show that

E

"
sup
t2[0;T ]

����~x(u�;�̂)t � ~xt � x1 (t)� x2 (t)
����2
#
� C�2;

which prove the lemma
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Lemma 2.1.3 Under assumptions of lemma (2:2:1), we have

lim
�!0

J1
�
= E [z (t) gx (x̂ (T ))] + E

Z T

0

z (t)hx (t) dt

+ E

Z T

0

k (t) d
�
� � �̂

�
t
: (2.13)

Proof. From (2:4) we have by using equality (2:12)

J1
�
= E

Z T

0

Z 1

0

0@x�s � x(u�;�̂)s

�

1Ahx�s; x(u�;�̂)s + �

�
x�s � x

(u�;�̂)
s

�
; u�s

�
d�ds

+

Z 1

0

0@x�T � x(u�;�̂)T

�

1A gx�x(u�;�̂)T + �

�
x�T � x

(u�;�̂)
T

��
d�

+ E

Z T

0

k (t) d
�
� � �̂

�
t
:

Since gx and hx are continuous and bounded, then from (2:3), (2:7), (2:9) and by letting

� going to zero we conclude.

Lemma 2.1.4 Under assumptions of lemma (2:2:2) we have

J2 � E
�
gx (x̂T ) (x1 (T ) + x2 (T )) +

Z T

0

hx (t) (x1 (t) + x2 (t)) dt

�
+
1

2
E [gxx (xT )x1 (T )x1 (T )] +

Z T

0

hxx (t)x1 (t)x1 (t) dt

+E

Z T

0

�
h� (t)� h (t)

�
dt+ o (�) :

(2.14)
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Proof. From (2:4) and the estimate (2:12) we have

J2 = E

�
g

�
x
(u�;�̂)
T

�
� g (x̂T )

�
+ E

�Z T

0

�
h

�
t; x
(u�;�̂)
t ; u�t

�
� h (t; x̂t; ût)

�
dt

�
� E [g (x̂T + x1 (T ) + x2 (T ))� g (x̂T )]

+ E

�Z T

0

(h (t; x̂t + x1 (t) + x2 (t) ; ût)� h (t; x̂t; ût)) dt
�

+ E

�Z T

0

�
h
�
t; x̂t + x1 (t) + x2 (t) ; u

�
t

�
� h (t; x̂t + x1 (t) + x2 (t) ; ût)

�
dt

�
+ o (�)

= E [gx (x̂T ) (x1 (T ) + x2 (T ))] +
1

2
E [gxx (x̂T )x1 (T )x1 (T )]

+ E

�Z T

0

hx (t) (x1 (t) + x2 (t)) dt

�
+ E

�Z T

0

1

2
hxx (t) (x1 (t) + x2 (t)) (x1 (t) + x2 (t))

�
dt

+ E

�Z T

0

h� (t)� h (t) dt
�

+ E

�Z T

0

�
h�x (t)� hx (t)

�
(x1 (t) + x2 (t)) dt

�
+
1

2
E

�Z T

0

�
h�xx (t)� hxx (t)

�
(x1 (t) + x2 (t)) (x1 (t) + x2 (t)) dt

�
+ o (�) : (2.15)

From the construction of u� (:) ; it is easy to verify by Gronwall�s inequality and the moment

inequality (see Ikeda and Watanabe [41]) that

sup
0�t�T

E
�
jx1 (t)j2

�
� c�;

sup
0�t�T

E
�
jx2 (t)j2

�
� c�2;

now we use this inequalities and the inequality (2:15) to obtain the result
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2.1.3 Variational inequalities and adjoint processes

We now use (2:13) and (2:14) to derive the variational inequalities.

The �rst-order expansion

The linear terms in (2:13) and (2:14) may be treated in the following way. Let �1 be the

fundamental solution of the linear equation

d�1 (t) = bx (t) �1 (t) dt+ �x (t) �1 (t) dBt;

�1 (0) = Id: (2.16)

This equation is linear with bounded coe¢ cients, then it admits a unique strong solution.

This solution is invertible and its inverse 	1 (t) is the unique solution of the following

equation

d	1 (t) = [�x (t)	1 (t)�
�
x (t)� bx (t)	1 (t)] dt� �x (t)	1 (t) dBt: (2.17)

Moreover �1 and 	1 satisfy

E

"
sup
t2[0;T ]

j�1 (t)j2
#
+ E

"
sup
t2[0;T ]

j	1 (t)j2
#
<1: (2.18)

We introduce the following processes

�1 (t) = 	1 (t) [x1 (t) + x2 (t)] ; (2.19)

�1 (t) = 	1 (t) z (t) ; (2.20)
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X1 = �
�
1 (T ) gx (x̂ (T )) +

Z T

0

��1 (t)hx (t) dt (2.21)

Y1 (t) = E [X1 j Ft]�
Z t

0

��1 (s)hx (s) ds: (2.22)

we have by replacing X1 by its value in (2:22)

Y1 (t) = E

�
��1 (T ) gx (x̂ (T )) +

Z T

t

��1 (s)hx (s) ds j Ft
�
; (2.23)

we have then

E [�1 (T )Y1 (T )] = E [gx (x̂ (T )) (x1 (T ) + x2 (T ))] ; (2.24)

E [�1 (T )Y1 (T )] = E [gx (x̂ (T ))Z (t)] : (2.25)

Since gx and hx are bounded, then from (2:18),X1 is square integrable. Hence (E [X1 j Ft])t>0
is a square integrable martingale with respect to the natural �ltration of the Brownian

motion (Bt)t>0.Then from Ito�s representation theorem we have

Y1 (t) = E [X1] +

Z t

0

Q1 (s) dBS �
Z t

0

��1 (s)hx (s) ds;

where Q1 (s) is an adapted process such that E
�Z T

0

jQ1 (s)j2 ds
�
<1:

By applying the Ito�s formula to �1Y1, we obtain

d (�1 (:)Y1 (:))t = �1 (t) dY1 (t) + Y1 (t) d�1 (t) + d h�1 (:) ; Y1 (:)it

= �1 (t)Q1 (t) dBt � Z (t)hx (t) dt+ Y1 (t) d (	1 (t)Z (t))

+ d h	1 (:)Z (:) ; Y1 (:)it ;

42



Chapter 2. A general stochastic maximum principle for singular control problems

in the other hand we have

d (	1 (:)Z (:))t = 	1 (t) dZ (t) + Z (t) d	1 (t) + d h	1 (:) ; Z (:)it

= 	1G (t) d
�
� � �̂

�
t
;

then we have

d (�1 (:)Y1 (:))t = �1Q1dBt � Z (t)hx (t) dt+ Y1 (t)	1G (t) d
�
� � �̂

�
t
;

by integrating from 0 to T and taking expectation we obtain

E (�1 (T )Y1 (T )) = �E
�Z T

0

Z (t)hx (t) dt

�
+ E

�Z T

0

G (t)�	�1Y1 (t) d
�
� � �̂

�
t

�
:

By using (2:25),we can rewrite (2:13)

lim
�!0

J1
�
= E

Z T

0

(k (t) +G (t)� p1 (t)) d
�
� � �̂

�
t
; (2.26)

where p1 is adapted process de�ned in (2:28).

Now by applying the Itô�s formula to �1Y1, to obtain

d (�1 (:)Y1 (:))t = �1 (t) dY1 (t) + Y1 (t) d�1 (t) + d h�1 (:) ; Y1 (:)it

= �1 (t)Q (t) dBt � [x1 (t) + x2 (t)]hx (t) dt+ Y1 (t) d (	1x1)t

+ Y1 (t) d (	1x2)t + d h�1 (:) ; Y1 (:)it ;

then by completing the calculus as we done before, and using (2:24), we can rewrite (2:14)
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as

J2 � E
Z T

0

fH (t; x̂ (t) ; u� (t) ; p1 (t) ; q1 (t))�H (t; x̂ (t) ; û (t) ; p1 (t) ; q1 (t))g dt

+
1

2
E

Z T

0

x�1 (t)Hxx (t; x̂ (t) ; û (t) ; p1 (t) ; q1 (t))x1 (t) dt

+
1

2
E [gxx (xT )x1 (T )x1 (T )] + o (t) ; (2.27)

where p1 and q1 are adapted processes given by

p1 (t) = 	
�
1 (t)Y1 (t) ; p1 2 L2 ([0; T ] ;Rn) (2.28)

q1 (t) = 	
�
1 (t)Q1 (t)� ��x (t) p1 (t) ; q1 2 L2

�
[0; T ] ;Rn�d

�
; (2.29)

and the Hamiltonian H is de�ned from [0; T ]� Rn � A1 � Rn �Mn�d (R) into R by

H (t; x (t) ; u (t) ; p1 (t) ; q1 (t)) = h (t) + p (t) b (t) +
dX
i=1

�i (t) qi (t) ;

where �i and qi denote respectively the ith columns of matrices � and q:

The process p1 is called the �rst order adjoint process and from (2:28), it is given explicitly

by

p1 (t) = E

�
	�1 (t) �

�
1 (T ) gx (x̂ (T )) + 	

�
1 (t)

Z T

t

��1 (s)hx (s) ds j Ft
�
;

where �1 (t) and 	1 (t) are respectively the solutions of (2:16) and (2:17).
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The second-order expansion

We now treat the quadratic terms of (2:14) by the same method. Let Z = x1x�1; by

Itô�s formula we obtain

dZt = x1 (t) dx
�
1 (t) + x

�
1 (t) dx1 (t) + d hx1; x�1it

= [Ztb
�
x (t) + bx (t)Zt + �x (t)Zt�

�
x (t) + A� (t)] dt

+ [Z (t)��x (t) + �x (t)Z (t) +B� (t)] dBt; (2.30)

where A� and B� are given by

A� (t) = x1 (t)
�
b� (t)� b (t)

��
+
�
b� (t)� b (t)

�
x�1

+ �x (t)x1 (t)
�
�� (t)� � (t)

��
+
�
�� (t)� � (t)

�
x�1 (t)�

�
x (t)

+
�
�� (t)� � (t)

� �
�� (t)� � (t)

��
;

B� (t) = x1 (t)
�
�� (t)� � (t)

��
+
�
�� (t)� � (t)

�
x�1 (t) :

We consider now the following symmetric matrix-valued linear equation

8><>:
d�2 (t) = [�2 (t) b

�
x (t) + bx (t) �2 (t) + �x (t) �2 (t)�

�
x (t)] dt

+ [�2 (t)�
�
x (t) + �x (t) �2 (t)] dBt:

(2.31)
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This equation is linear with bounded coe¢ cients, hence it admits a unique strong solution.

�2 (t) is invertible and its inverse 	2 is is the solution of the following equation8>>>>>>>>>><>>>>>>>>>>:

d	2 (t) = [�x (t) + �
�
x (t)] 	2 (t) [�x (t) + �

�
x (t)]

� dt

� [	2 (t) b�x (t) + bx (t)	2 (t)��x (t)] dt

+ [	2 (t)�
�
x (t) + �x (t)	2 (t)] dBt;

	2 (0) = Id:

(2.32)

Moreover, �2 and 	2 satisfy

E

"
sup
t2[0;T ]

j�2 (t)j2
#
+ E

"
sup
t2[0;T ]

j	2 (t)j2
#
<1; (2.33)

we put

�2 (t) = 	2 (t)Z (t) ; (2.34)

X2 = �
�
2 (T ) gxx (x̂ (T )) +

Z T

0

��2 (t)Hxx (x̂ (t) ; û (t) ; p1 (t) ; q1 (t)) dt; (2.35)

Y2 (t) = E (X2 j Ft)�
Z t

0

��2 (s)Hxx (x̂ (s) ; û (s) ; p1 (s) ; q1 (s)) ds; (2.36)

we remark that

E (�2 (T )Y2 (T )) = E (x
�
1 (T ) gxx (x̂ (T )x1 (T ))) : (2.37)

Since gxx and Hxx are bounded, then from (2:33), (E (X2 j Ft))t�0 is square integrable

martingale with respect to the natural �ltration of the Brownian motion B (t) : Then from

Ito�s representation theorem we have

Y2 (t) = E (X2) +

Z t

0

Q2 (s) dBs �
Z t

0

��2 (s)Hxx (x̂ (s) ; û (s) ; p1 (s) ; q1 (s)) ds; (2.38)

where Q2 (s) is an adapted process such that E
�R T

0
j	2 (t)j2 dt

�
<1:
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By applying Ito�s formula to �2 (t)Y2 (t) along with (2:37) and using the de�nition of u�;

we can derive (2:27) as follows

lim�!0
J2
�

� E fH [�; x̂ (�) ; v; p1 (�) ; q1 (�)� p2 (�)� (�; x̂ (�) ; û (�))]g

+
1

2
E fTr [��� (�; x̂ (�) ; v)] p2 (�)g

�E fH [�; x̂ (�) ; û (�) ; p1 (�) ; q1 (�)� p2 (�)� (�; x̂ (�) ; û (�))]g

+
1

2
E fTr [��� (�; x̂ (�) ; ) û (�)] p2 (�)g ;

(2.39)

where p2 is an adapted process given by

p2 (t) = 	
�
2 (t)Y2 (t) ; p2 2 L2

�
[0; T ] ;Rn�n

�
: (2.40)

The process p2 is called the second order adjoint process and from (2:35), (2:36), (2:40) it

is given explicitly by

p2 (t) = E [	�2 (t) �
�
2 (t) gxx (x (T )) j Ft]

+E
h
	�2 (t)

R T
t
��2 (t)Hxx (x̂ (t) ; û (t) ; p1 (s) ; q1 (s)) ds j Ft

i
;

where �2 and 	2 are respectively the solutions of (2:31) and (2:32).

2.1.4 Adjoint equations and the maximum principle

By applying Ito�s formula to the adjoint processes p1 in (2:28) and p2 in (2:40), we ob-

tain the �rst and second order adjoint equations which are linear backward stochastic

di¤erential equations, given by

8><>: �dp1 (t) = Hx (x̂ (t) ; û (t) ; p1 (s) ; q1 (s)) dt� q1dBt;

p1 (T ) = gx (x̂ (T )) ;
(2.41)
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8>>>>><>>>>>:
�dp2 (t) = [b�x (t) p2 (t) + p2 (t) bx (t) + �

�
x (t) p2 (t)�

�
x (t)] dt

+ [��x (t) q2 (t) + q2 (t)�x (t)] ;

p2 (T ) = gxx (x̂ (T )) ;

(2.42)

where q1 (t) is given by (2:29) and q2 (t) by

q2 (t) =
�
q12 (t) ; :::; q

d
2 (t)

�
; q2 2

�
L2
�
[0; T ] ;Rn�n

��d
qi2 (t) = 	

�
2 (t)Q

i
2 (t) + p2 (t)�

i
x (t) + �

i�
x (t) p2 (t) ; i = 1; :::; d;

and Q1 (t) ; Q2 (t) satisfy respectively

Z t

0

Q1 (s) dBs = E

�
��1 (T ) gx (x̂ (T )) +

Z T

0

��1 (t)hx (t) dt j Ft
�

� E
�
��1 (T ) gx (x̂ (T )) +

Z T

0

��1 (t)hx (t) dt

�
;

Z t

0

Q2 (s) dBs = E

�
��2 (T ) gxx (x̂ (T )) +

Z T

0

��2 (t)Hxx [x̂ (t) ; û (t) ; p1 (t) ; q1 (t)] dt j Ft
�

� E
�
��2 (T ) gxx (x̂ (T )) +

Z T

0

��2 (t)Hxx [x̂ (t) ; û (t) ; p1 (t) ; q1 (t)] dt

�
:

We can now give the important result of this chapter.

Theorem 2.1.1 (The Stochastic maximum principle) Let
�
û; �̂
�
be an optimal con-

trol minimizing the cost J over U and x̂ denotes the corresponding optimal trajectory. Then

there are two unique couples of adapted processes

(p1; q1) 2 L2 ([0; T ] ;Rn)� L2
�
[0; T ] ;Rn�d

�
;

(p2; q2) 2 L2
�
[0; T ] ;Rn�n

�
�
�
L2
�
[0; T ] ;Rn�n

��d
;
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which are respectively solutions of backward stochastic di¤erential equations (2:41) and

(2:42) such that

H [�; x̂ (�) ; û (�) ; p1 (�) ; q1 (�)� p2 (�)� (�; x̂ (�) ; û (�))]

+
1

2
Tr [��� (�; x̂ (�) ; û (�))] p2 (�)

� H [�; x̂ (�) ; v; p1 (�) ; q1 (�)� p2 (�)� (�; x̂ (�) ; û (�))]

+
1

2
Tr [��� (�; x̂ (�) ; v)] p2 (�) ;

8v 2 A1; a:e; a:s (2.43)

P
�
8t 2 [0; T ] ; 8i;

�
kit +G

�
i (t) p1 (t)

�
> 0
	
= 1; (2.44)

P

(
dX
i=1

1fkit+G�i (t)p1(t)>0gd�̂
i
t = 0

)
= 1: (2.45)

Proof. From (2:6), (2:26), (2:39) we have for every Ft-measurable random variable v, and

every increasing process � with �0 = 0

0 � E fH [�; x̂ (�) ; v; p1 (�) ; q1 (�)� p2 (�)� (�; x̂ (�) ; û (�))]g

+
1

2
E fTr [��� (�; x̂ (�) ; v)] p2 (�)g

� E fH [�; x̂ (�) ; û (�) ; p1 (�) ; q1 (�)� p2 (�)� (�; x̂ (�) ; û (�))]g

� 1
2
E fTr [��� (�; x̂ (�) ; û (�))] p2 (�)g

+ E

Z T

0

[k (t) +G� (t) p1 (t)] d
�
� � �̂

�
t
;

if we put � = �̂ we obtain (2:43). On the other hand, if we choose v = û and using the

same proof of in theorem 4.2 in [3], we deduce (2:44) and(2:45).
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Chapter 3

Introduction to Malliavin calculus

3.1 Introduction

The mathematical theory now known as Malliavin calculus was �rst introduced by

Paul Malliavin in 1978, as an in�nite-dimensional integration by parts technique. The

purpose of this calculus was to prove results about the smoothness of densities of solutions

of stochastic di¤erential equations driven by Brownian motion. For several years this was

the only known application.

In 1984, Ocone obtained an explicit interpretation of the Clark representation formula

in terms of the Malliavin derivative (Clark-Ocone formula). In 1991 Ocone and Karatzas

applied this result to �nance: They proved that the Clark-Ocone formula can be used to

obtain explicit formulae for replicating portfolios of contingent claims in complete markets.

Since then Malliavin calculus has been applied in various domains within �nance and

outside of it. In the meanwhile the very potentials in applications created the need for an

extension of the calculus to other types of noise than Brownian motion. The most part of

this chapter is taken from [29].
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3.2 Elements of Malliavin calculus for Brownian mo-

tion

We choose to introduce the operators Malliavin derivative and Skorohod integral via

chaos expansions. Other, basically equivalent, approach is to use directional derivatives

on the Wiener space, see e.g. Da Prato(2007), Malliavin (1997), Nualart (2006), Sanz-Solé

(2005).

Let B (t) = B (!; t) ; ! 2 
; t 2 [0; T ] (t > 0), be a Brownian motion on the complete

probability space (
;F ; P ) such that B (0) = 0 P � a:s: For any t, let Ft be the �-algebra

generated by B (s) ; 0 < s < t; augmented by all the P -zero measure events. The resulting

(continuous) �ltration is denoted :

F = fFt; t > 0g :

3.2.1 Iterated Itô integrals

Let f be a deterministic function de�ned on

Sn = f(t1; :::; tn) 2 [0; T ]n : 0 < t1 < ::: < tn < Tg (n > 1) ;

such that

kfkL2(Sn) :=
Z
Sn

f 2 (t1; :::; tn) dt1:::dtn <1: (3.1)

De�nition 3.2.1 The n-fold iterated Itô integrals are given by:

Jn (f) :=

Z T

0

Z tn

0

:::

Z t2

0

f (t1; :::; tn) dB (t1) dB (t2) :::dB (tn) : (3.2)

We set Jn (f) = f for f 2 R:

Directly from the properties of Itô integrals we have :
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� Jn (f) 2 L2 (P ) ; by the Itô isometry kJn (f)k2L2(P ) = kfk
2
L2(Sn)

:

� If g 2 L2 (Sm) and f 2 L2 (Sn) (m < n), then E [Jm (g) Jn (f)] = 0:

Let f 2 ~L2 ([0; T ]n) ; i.e. f is a symmetric square integrable functions.

De�nition 3.2.2 We also called n-fold iterated Itô integral the random variable :

In (f) :=

Z
[0;T ]n

f (t1; :::; tn) dB (t1) dB (t2) :::dB (tn) := n!Jn (f) : (3.3)

About symmetric functions:

� The function f : [0; T ]n ! R is symmetric if f (t�1 ; :::; t�n) = f (t1; :::; tn) for all permu-

tations � of (1; :::; n) :

� if f is a real function on [0; T ]n, then the symmetrization ~f of f is

~f (t1; :::; tn) :=
1

n!

X
�

f (t�1 ; :::; t�n) ; (3.4)

where the sum is taken over all permutations � of (1; :::; n) : Naturally ~f = f if and

only if f is symmetric.

� If f 2 ~L2 ([0; T ]n) ; then kfk2L2([0;T ]n) = n! kfk
2
L2(Sn)

:

3.2.2 Iterated Itô integrals and Hermite polynomials

The Hermite polynomials hn (x) ; x 2 R; n = 0; 1; 2; ::: are de�ned by

hn (x) = (�1)n e
1
2
x2 d

n

dxn

�
e�

1
2
x2
�
; n = 0; 1; 2; ::: (3.5)

Recall that the family of Hermite polynomials constitute an orthogonal basis for L2 (R; � (dx))

if � (dx) =
1p
2�
e
1
2
x2dx (see e.g. Schoutens (2000)) :

52



Chapter 3. Introduction to Malliavin calculus

Note That

n!

Z T

0

Z tn

0

:::

Z t2

0

g (t1) :::g (tn) dB (t1) dB (t2) :::dB (tn) = kgkn hn
�
�

kgk

�
; (3.6)

where kgk = kgkL2([0;T ]) and � =
Z T

0

g (t) dBt:

Example 3.2.1 Let g = 1 and n = 3; then we get

6

Z T

0

Z t3

0

Z t2

0

1dB (t1) dB (t2) dB (t3) = T
3
2h3

�
B (T )

T
1
2

�
= B3 (T )� 3TB (T ) :

In fact the �rst Hermite polynomials are:

h0 (x) = 1;

h1 (x) = x;

h2 (x) = x
2 � 1;

h3 (x) = x
3 � 3x;

h4 (x) = x
4 � 6x2 + 3; :::

The computation of the iterated Itô integrals is based on :

Proposition 3.2.1 If �1; �2; ::: are orthonormal functions in L2 ([0; T ]) ; we have that

In
�
�
�11 
̂ ::: 
̂ �
�mm

�
=

k=mY
k=1

h�k

�Z T

0

�k (t) dB (t)

�
; (3.7)

with �1 + :::+ �m = n and �k 2 f0; 1; 2; :::g for all k:

Recall that the tensor product f 
 g of two functions f; g is de�ned by

f 
 g (x1; x2) = f (x1) f (x2) ;
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and the symmetrized tensor product f 
̂ g is the symmetrization of f 
 g:

3.2.3 Wiener-Itô chaos expansions

Theorem 3.2.1 Let � be an FT�measurable random variable in L2 (P ) : Then there exists

a unique sequence ffng1n=0 of functions fn 2 ~L2 ([0; T ]
n) such that

� =
1X
n=0

In (fn) ; (3.8)

where the convergence is in L2 (P ) : Moreover, since

kIn (fn)k2L2(P ) = n! kfnkL2([0;T ]n) ;

we have the isometry

k�k2L2(P ) =
1X
n=0

n! kfnkL2([0;T ]n) :

Example 3.2.2 The chaos expansion of � = exp
�
B (T )� 1

2
T

�
is given by � =

1X
n=0

t
n
2

n!
hn

�
B (t)p
t

�
:

3.2.4 Skorohod integral

Let u (!; t) ; ! 2 
; t 2 [0; T ], be a measurable stochastic process such that, for all

t 2 [0; T ] ; u (t) is a FT -measurable random variable and E [u2 (t)] <1:

Then for each t 2 [0; T ], we can apply the Wiener-Itô chaos expansion to the random

variable u (t) := u (!; t) ; ! 2 


u (t) =
1X
n=0

In (fn;t) fn;t 2 ~L2 ([0; T ]n) :

The functions fn;t; n = 1; 2; :::; depend on t 2 [0; T ] as parameter. We can de�ne

fn (t1; :::; tn; tn+1) := fn;t (t1; :::; tn) as a function of n+ 1 variables.

54



Chapter 3. Introduction to Malliavin calculus

Its symmetrization ~fn is then given by

~fn (t1; :::; tn; tn+1) =
1

n+ 1
[fn (t1; :::; tn; tn+1)

+ fn (t2; :::; tn+1; t1) + :::+ fn (t1; :::; tn�1; tn)] :

De�nition 3.2.3 Let u (t) ; t 2 [0; T ], be a measurable stochastic process such that, for

all t 2 [0; T ] ; u (t) is a FT -measurable random variable and E [u2 (t)] <1:

Let its Wiener-Itô chaos expansion be

u (t) =
1X
n=0

In (fn;t) =
1X
n=0

In (fn (:; t)) ;
�
fn (:; t) 2 ~L2 ([0; T ]n)

�
:

Then we de�ne the Skorohod integral of u by

� (u) := �
Z T

0

u (t) �Bt :=
1X
n=0

In+1

�
~fn

�
; (3.9)

when it converge in L2 (P ) (here ~fn is the symmetrization of fn (:; t) :

Moreover,

k� (u)k2L2(P ) =
1X
n=0

(n+ 1)!
 ~fn2

L2([0;T ]n)
<1:

Some basic properties of the Skorohod integral

� The Skorohod integral is a linear operator

� E (� (u)) = 0

� In general, if G is an FT -measurable random variable such that; Gu 2 Dom(�); we

have that Z T

0

Gu (t) �Bt 6= G
Z T

0

u (t) �Bt:
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Example 3.2.3 Let us compute
Z T

0

B (T ) �Bt. The Wiener-Itô chaos expansion of the

integrand is given by

u (t) = B (T ) =

Z T

0

1dBt = I1 (1) , t 2 [0; T ] ;

i.e for all t; f0;t = 0; f1;t = 1;and fn;t = 0 for all n > 2: Hence

� (u) = I2

�
~f1

�
= I2 (1) = 2

Z T

0

Z t2

0

dB (t1) dB (t2) = B (T )
2 = T:

Note that, even if the integrand does not depend on t, we have

Z T

0

B (T ) �Bt 6= B (T )
Z T

0

�Bt:

Theorem 3.2.2 (Skorohod integral as extension of the Itô integral) Let u (t) ;

t 2 [0; T ], be a measurable F�adapted stochastic process such that, E [u2 (t)] < 1: Then

u is both Itô and Skorohod integrable and

Z T

0

u (t) �Bt =

Z T

0

u (t) dBt:

3.3 Malliavin derivative

There are many ways of introducing the Malliavin derivative. The original construc-

tion was given on the Wiener space 
 = C0 ([0; T ]) consisting of all continuous functions

! : [0; T ] ! R with !0 = 0. In this section, we mainly use an approach based on chaos

expansions.
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De�nition 3.3.1 Let F 2 L2 (P ) be FT -measurable with chaos expansion

F =
1X
n=0

In (fn) ;

where fn (t) 2 ~L2 ([0; T ]n) ; n = 1; 2; 3:::

i) We say that F 2 D(B)
1;2

kFk2
D
(B)
1;2
:=

1X
n=1

nn! kfnk2L2(�n) <1: (3.10)

ii) For any F 2 D
(B)
1;2 we de�ne the Malliavin derivative DtF of F at time t, as the

expansion

DtF :=
1X
n=1

nIn�1 (fn (:; t)) ; (3.11)

where In�1 (fn (:; t)) is the (n� 1)�fold iterated integral of fn (t1; :::; tn�1; t) with

respect to the �rst n� 1 variables t1; :::; tn�1 and tn = t left as parameter.

Note that kD:FkL2(P��) = kFk2D1;2 < 1, thus the derivative DtF is well-de�ned as an

element of L2 (P � �) :

Theorem 3.3.1 (Closability) Suppose F 2 L2 (P ) and Fk 2 D(B)
1;2 ; k = 1; 2; :::;

1. Fk ! F; k !1; in L2 (P ) ;

2. fDtFkg1k=1 converges in L2 (P � �).

Then F 2 D1;2 and DtFk ! DtF; k !1; in L2 (P � �).

Proof. Let F =
1P
n=0

In (fn) and Fk =
1P
n=0

In
�
fkn
�
; k = 1; 2; :::; then by (1)

fkn ! fn; k !1; in L2 (�n) :
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Theorem 3.3.2 for all n By (2) we have

1X
n=1

nn!
fkn � f jn2L2(�n) = kDtFk �DtFjk2L2(P��) ! 0; j; k ! 0:

Hence by the Fatou lemma

lim
n!1

1X
n=1

nn!
fkn � fn2L2(�n) � lim

k!1
lim
j!1

1X
n=1

nn!
fkn � f jn2L2(�n) = 0:

This implies that F 2 D1;2 and

DtFk ! DtF; k !1; in L2 (P � �) :

3.3.1 Fundamental rules of calculus

We present here a collection of results that constitute the rules of calculus of the Malliavin

derivatives

Let F =
Z T

0

f (s) dBs; where f 2 L2 ([0; T ]) : Then

� DtF = f (t) ;

� Dt (F )
n = nF n�1DtF = nF

n�1f (t) :

Consider the case when F =
1P
n=0

In (fn) ; and fn = f
n for som f 2 L2 ([0; T ]) ; that is

fn (t1; :::; tn) = f (t) :::f (t) : Then we have by 3.6 we have

In (fn) = kfkn hn
�
�

kfk

�
; (3.12)

where kfk = kfkL2[0;T ] ; � =
Z T

0

f (s) dBs where hn is the Hermite polynomial of order n.
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Then by (3:11) we have

DtIn (fn) = nIn�1 (fn (:; t))

= nIn�1
�
f
n�1

�
f (t)

= n kfkn�1 hn�1
�
�

kfk

�
f (t) : (3.13)

A basic property of the Hermite polynomials is that

h0n (x) = nhn�1 (x) ; (3.14)

combining this with (3:12) and (3:13) ; we get

Dthn

�
�

kfk

�
= h0n

�
�

kfk

�
f (t)

kfk :

In particular, choosing n = 1, we get

Dt

�Z T

0

f (s) dBs

�
= f (t) :

Similarly, by induction, for n = 2; 3; :::, we have

Dt

�Z T

0

f (s) dBs

�n
= n

�Z T

0

f (s) dBs

�n�1
f (t) :

Theorem 3.3.3 (Chain rule.) Let F 2 D1;2 and ' be a continuously di¤erentiable func-

tion with bounded derivative. Then ' (F ) 2 D1;2 and

Dt' (F ) = '
0 (F )DtF: (3.15)

(The chain rule can be extended to the case Lipschitz).
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Malliavin Derivative and Conditional Expectation

We now present some preliminary results on conditional expectations.

De�nition 3.3.2 Let G be a Borel set on [0; T ] :We de�ne FG to the completed ��algebra

generated by all random variables of the form :

F =

Z T

0

�A (t) dBt;

for all Borel sets A � G:

Lemma 3.3.1 For any g 2 L2 [0; T ], we have

E

�Z T

0

g (t) dBt j FG
�
=

Z T

0

�G (t) g (t) dBt: (3.16)

Proof. By de�nition of conditional expectation, it is su¢ cient to verify that the random

variable Z T

0

�G (t) g (t) dBt; is FG-mesurable, (3.17)

and that

E

�
F

Z T

0

g (t) dBt

�
= E

�
F

Z T

0

�G (t) g (t) dBt

�
; (3.18)

for all bounded FG-measurable random variables F: To prove (3:17) we may assume that g

is continuous, because the continuous functions are dense in L2 ([0; T ]) : If g is continuous,

then Z T

0

�G (t) g (t) dBt = lim
�ti!0

g (ti)

nX
i=0

ti+1Z
ti

�G (t) dBt

where the limit is in L2 (P ) for the vanishing mesh �ti of the partitions

0 < t1 < t2 < ::: < tn = T: Since each term in the sum is FG-measurable, the sum is

also FG-measurable Then by taking a subsequence converging P -a:s. we conclude that

the limit represents an FG-measurable random variable.
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To prove (3:18) we may assume F =

Z T

0

�A (t) dBt for some A � G. Then by the Itô

isometry we have

E

�
F

Z T

0

g (t) dBt

�
= E

�Z T

0

�A (t) g (t) dt

�
;

and also

E

�
F

Z T

0

�G (t) g (t) dBt

�
= E

�Z T

0

�G (t)�A (t) g (t) dt

�
= E

�Z T

0

�A (t) g (t) dt

�
;

Then the proof can be completed by a density argument.

Lemma 3.3.2 Let G � [0; T ] be a Borel set and v = v (t) ; t 2 [0; T ] be a stochastic

process such that

i) for all t; v (t) is measurable with respect to Ft \ FG;

ii) E
�Z T

0

v2 (t) dt

�
<1:

Then
Z
G

v (t) dBt is FG-measurable.

Lemma 3.3.3 Let u = u (t) ; t 2 [0; T ] ; bean F -adapted stochastic process in L2 (P � �) :

Then

E

�Z T

0

u (t) dBt j FG
�
=

Z
G

E (u (t) j FG) dBt:

Proposition 3.3.1 Let fn 2 ~L2 ([0; T ]n) ; n = 1; 2; :::.Then

E (In (fn) j FG) = In
�
fn�


n
G

�
;

where fn�
nG (t1; t2; :::; tn) = fn (t1; t2; :::; tn)�G (t1) :::�G (tn) :

Proposition 3.3.2 If F 2 D1;2 ; then E [F j FG] 2 D1;2 and

DtE [F j FG] = E [DtF j FG]�G (t) :
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Proof. First assume that F = In (fn) for some fn 2 ~L2 ([0; T ]n) : By proposition (4:3:1) ;

we have

DtE [F j FG] = DtE [In (fn) j FG]

= DtIn
�
fn�


n
G

�
= nIn�1

�
fn (:; t)�


n�1
G (:)�G (t)

�
= nIn�1

�
fn (:; t)�


n�1
G (:)

�
�G (t)

= E [DtF j FG]�G (t) : (3.19)

Next, let F =
1X
n=0

In (fn) belong to D1;2 : Let Fk =
kX
n=0

In (fn) : Then

Fk ! F in L2 (
) and DtFk ! DtF in L2 (P � �) as k !1:

By (3:19) we have

DtE [Fk j FG] = E [DtFk j FG]�G (t) ;

for all k, and taking the limit with convergence in L2 (P � �) of this, as k !1 we obtain

the result.

Corollary 3.3.1 Let u = u (s) ; s 2 [0; T ], be an F -adapted stochastic process and assume

that u (s) 2 D1;2 for all s. Then

i) Dtu (s) ; s 2 [0; T ] ; F -adapted for all t;

ii) Dtu (s) = 0; for t > s:

Proof. By Proposition (4:3:2) we have that

Dtu (s) = DtE (u (s) j Fs) = E (Dtu (s) j Fs)�[0;s] (t)

= E (Dtu (s) j Fs)�[t;T ] (s) ;
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from which (i) and (ii) follow immediately.

3.3.2 Malliavin Derivative and Skorohod Integral

The Skorohod integral is the adjoint operator to the Malliavin derivative

The following result shows that the Malliavin derivative is the adjoint operator of the

Skorohod integral.

Theorem 3.3.4 (Duality formula) Let F 2 D1;2 be FT -measurable and let u be a Sko-

rohod integrable stochastic process. Then

E

�
F

Z T

0

u (t) �B (t)

�
= E

�Z T

0

u (t)DtFdt

�
: (3.20)

Proof. Let F =
1P
n=0

In (fn) and, for all t; u (t) =
1P
k=0

Ik (gk (:; t)) be the chaos expansions

of F and u(t), respectively. Then

E

�
F

Z T

0

u (t) �B (t)

�
= E

" 1X
n=0

In (fn)

Z T

0

1X
k=0

Ik (gk (:; t)) �B (t)

#

= E

" 1X
n=0

In (fn)
1X
k=0

Ik+1 (~gk)

#

= E

" 1X
k=0

Ik+1 (fk+1) Ik+1 (~gk)

#

=

1X
k=0

(k + 1)!

Z
[0;T ]k+1

fk+1 (x) ~gk (x) dx

=

1X
k=0

(k + 1)! (fk+1; ~gk)L2([0;T ]k+1) ; (3.21)
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where ~gk is the symmetrization of gk (x1; :::; xn; t) as a function of n+ 1 variables. On the

other side we have

E

�Z T

0

u (t)DtFdt

�
= E

"Z T

0

 1X
k=0

Ik (gk (:; t))

! 1X
n=1

nIn�1 (fn (:; t))

!
dt

#

=

Z T

0

1X
k=0

E [(k + 1) (Ik (gk (:; t))) Ik (fk+1 (:; t))] dt

=

Z T

0

1X
k=0

(k + 1) k! (fk+1; gk)L2([0;T ]k) : (3.22)

Now

(fk+1; ~gk)L2([0;T ]k+1) =

Z T

0

(fk+1 (:; t) ; ~gk (:; t))L2([0;T ]k) dt

=
1

k + 1

k+1X
j=1

Z T

0

(fk+1 (:; t) ; ~gk (:; t))
L2([0;T ]k)

dtj

=

Z T

0

(fk+1 (:; t) ; gk (:; t))L2([0;T ]k) dt

= (fk+1; gk)L2([0;T ]k+1) : (3.23)

Therefore, by (3:21) combined with (3:18) and (3:19) the result follows

An Integration by Parts Formula and Closability of the Skorohod Integral

Theorem 3.3.5 ( Integration by parts) Let u (t), t 2 [0; T ] be a Skorohod integrable

stochastic process and F 2 D1;2 such that the product Fu (t) ; t 2 [0; T ], is Skorohod

integrable. Then

F

Z T

0

u (t) �B (t) =

Z T

0

Fu (t) �B (t) +

Z T

0

u (t)DtFdt: (3.24)

The duality formula is at the core of the proof of the integration by parts formula for the

Skorohod integral and Malliavin derivative.

64



Chapter 3. Introduction to Malliavin calculus

Theorem 3.3.6 (Closability of the Skorohod integral) Suppose that un (t) ; t 2 [0; T ] ;

n = 1; 2; :::; is a sequence of Skorohod integrable stochastic processes and that the corre-

sponding sequence of Skorohod integrals

� (un) :=

Z T

0

un (t) �Bt; n = 1; 2; ::: (3.25)

converge in L2 (P ) : Moreover, suppose that

lim
n!1

un = 0 in L2 (P � �) :

Then

lim
n!1

� (un) = 0 in L2 (P ) :

A Fundamental Theorem of Calculus

The next result gives a useful connection between di¤erentiation and Skorohod integration.

Theorem 3.3.7 ( The fundamental theorem of calculus.) Let u = u (s) ; s 2 [0; T ]

be a stochastic process such that

E

�Z T

0

u2 (s) ds

�
<1;

and assume that, for all s 2 [0; T ] ; u (s) 2 D1;2 and that, for all t 2 [0; T ] ; Dtu 2 Dom (�) :

Assume also that

E

�Z T

0

�
� (Dtu)

2� dt� <1:
Then

Z T

0

u (s) �Bs is well-de�ned and belongs to D1;2 and

Dt

�Z T

0

u (s) �Bs

�
=

Z T

0

Dtu (s) �Bs + u (t) : (3.26)
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Corollary 3.3.2 Let u be as in Theorem 4.3.7 and assume in addition that u (s) ;

s 2 [0; T ], is F-adapted. Then

Dt

�Z T

0

u (s) dBs

�
=

Z T

0

Dtu (s) dBs + u (t) : (3.27)

3.4 Clark-Ocone formula

The Clark-Ocone formula is a representation theorem for square integrable random vari-

ables in terms of Itô stochastic integrals in which the integrand is explicitly characterized

in terms of the Malliavin derivative

Theorem 3.4.1 (Clark-Ocone formula) Let F 2 D1;2 be FT -measurable. Then

F = E (F ) +

Z T

0

E (DtF j Ft) dBt: (3.28)

Remark 3.4.1 The formula can only be applied to random variables in D1;2: Extensions

beyond this domain to the whole L2 (P ) are possible in the white noise framework. Other Itô

integral representations exist where the integrand is given in terms of the non-anticipating

derivative. This operator is de�ned on the whole L2 (P ) See e.g. Di Nunno (2002, 2007).

Some rules of calculus are given for this operator, however much has still to be discovered.
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Proof. Write F =
1P
n=0

In (fn) with fn 2 ~L2 ([0; T ]n), n = 1; 2; :::. Hence,

Z T

0

E (DtF j Ft) dBt =
Z T

0

E

 1X
n=1

nIn�1 (fn (:; t)) j Ft

!
dBt

=

Z T

0

1X
n=1

nE (In�1 (fn (:; t)) j Ft) dBt

=

Z T

0

1X
n=1

nIn�1

h
(fn (:; t)) :�


n�1
[0;t] (:)

i
dBt

=

Z T

0

1X
n=1

n (n� 1)!Jn�1
h
(fn (:; t)) :�


n�1
[0;t] (:)

i
dBt

=
1X
n=1

n!Jn (fn) =
1X
n=1

In (fn)

= F � I0 (f0) = F � E (f) :

3.4.1 A generalized Clark-Ocone formula

Suppose that ~Bt = Bt +

Z T

0

�sds; where � = f�t; t 2 [0; T ]g is an adapted measurable

process such that
Z T

0

�2t dt <1 almost surely. Suppose that E [ZT ] = 1, where the process

Zt is given by

Zt = exp

�
�
Z t

0

�sdBs �
1

2

Z t

0

�2sds

�
:

Then by the Girsanov Theorem, the process ~B =
n
~Bt; t 2 [0; T ]

o
is a Brownian motion

under the probability Q on FT given by dQ
dP
= Zt:

The Clark-Ocone formula can be generalized in order to represent an FT�measurable ran-

dom variable F as stochastic integral with respect to the process ~B. Notice that, in general,

we haveF ~B
T � FT

�
where

n
F ~B
t ; 0 � t � T

o
denotes the family of �-�elds generated by ~B

�
and usually F ~B

T 6= FT : Thus, an FT -measurable random variable F may not be F ~B
T -

measurable and we cannot obtain a representation of F as an integral with respect to ~B
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simply by applying the Clark-Ocone formula to the Brownian motion ~B on the probability

space
�

;F ~B

T ; Q
�
:

Theorem 3.4.2 (Clark-Ocone formula under change of measure) Let F be an FT -

measurable random variable such that F 2 D1;2 and let � 2 L1;2: Assume

1. E (Z2TF
2) + E

�
Z2T

Z T

0

(DtF )
2 dt

�
<1;

2. E

 
Z2TF

2

Z T

0

�
�t +

Z T

t

Dt�sdBs +

Z T

t

�sDt�sds

�2
dt

!
<1:

Then

F = EQ (F ) +

Z T

0

EQ

�
DtF � F

Z T

t

Dt�sd ~Bs j Ft
�
d ~Bs: (3.29)

The proof of this theorem can be found in [49] page 337:
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A Malliavin calculus in stochastic

control problems

In this chapiter we will present the tow results one is established by Brandis, Øk-

sendal and Zhou [47] and the other is estabilished by Øksendal and Sulem [51] witch

treat singular control problem, both of them established stochastic maximum principle,

where they considers controlled Itô-L�evy process where the information available to the

controller is possibly less than the overall information. All the system coe¢ cients and

the objective performance functional are allowed to be random, possibly non-Markovian.

Malliavin calculus is employed to derive a maximum principle for the optimal control of

such a system.
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4.1 A stochastic maximum principle via Malliavin cal-

culus

4.1.1 Formulation of the problem

Suppose the state process X (t) = Xu (t; u) ; t > 0; ! 2 
; s a controlled Itô-L�evy

process in R of the form of the form

8>>>>>><>>>>>>:

dxt = b (t; x (t) ; u (t) ; !) dt+ � (t; x (t) ; u (t) ; !) dBt

+
R
R0
� (t; x (t�) ; u (t�) ; z; !) ~N (dt; dz) ;

x (0) = x 2 R:

(4.1)

Here R0 = R� f0g ; B (t) = B (t; !) ; and � (t) = � (t; !) ; given by

� (t) =

Z t

0

Z
R0

z ~N (ds; dz) ; t > 0; ! 2 
;

are a 1-dimensional Brownian motion and an independent pure jump L�evy martingale,

respectively, on a given �ltered probability space
�

;F ; fFtgt>0 ; P

�
: Thus

~N (dt; dz) := N (dt; dz)� � (dz) dt;

is the compensated jump measure of � (:) ; where N (dt; dz) is the jump measure and � (dz)

is the L�evy measure of the L�evy process � (:) The process u (t) is our control process,

assumed to be Ft-adapted and have values in a given open convex set U � R: The

70



Chapter 4. A Malliavin calculus in stochastic control problems

coe¢ cients

b : [0; T ]� R� U � 
! R;

� : [0; T ]� R� U � 
! R;

� : [0; T ]� R� U � R0 � 
! R;

are given Ft�predictable processes. for more information about stochastic control of Itô

di¤usions and jump di¤usions one can see [32]: Let T > 0 be a given constant. For

simplicity, we assume that Z
R0
z2� (dz) <1:

Suppose in addition that we are given a sub-�ltration "t � Ft; t 2 [0; T ] ; representing

the information available to the controller at time t and satisfying the usual conditions,

meaning that the controller gets a delayed information compared to Ft:

Let A = A" denote a given family of controls, contained in the set of "t-adapted càdlàg

controls u (:) such that (4:1) has a unique strong solution up to time T . Suppose we are

given a performance functional of the form

J (u) = E

�Z T

0

f (t; x (t) ; u (t) ; !) dt+ g (x (T ) ; !)

�
; u 2 A";

where E = Ep denotes expectation with respect to P and f : [0; T ]�R�U �
! R and

g : R� 
! R are given Ft-adapted processes with

E

�Z T

0

jf (t; x (t) ; u (t))j dt+ jg (x (T ))j
�
<1 for all u 2 A":

The partial information control problem we consider is the following:
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Problem 4.1.1 Find �" 2 R and u� 2 A"; (if it exists) such that

�" = sup
u2A"

(J (u)) = J (u�) :

Remark 4.1.1 This problem is not of Markovian type, because b; �; �; f and g are allowed

to be stochastic processes and also because our controls must be "t�adapted, and hence

cannot be solved by dynamic programming. We instead investigate the maximum principle,

and derive an explicit form for the adjoint process.

We have the following assumptions

Assumption

1) The functions b; �; f and g are all continuously di¤erentiable (C1) with respect to x 2 R

and u 2 U for each t 2 [0; T ] and a:a:! 2 
:

2) For all t; r 2 (0; T ) t � r; and all bounded "t�measurable random variables � = � (!)

the control �� (s) = � (!)�[t;r] (s) ; s 2 [0; T ] belongs to A":

3) For all u; � 2 A" with � bounded, there exists � > 0 such that u + y� 2 A" for all

y 2 (��; �) ; and such that the family and such that the family

�
@f

@x

�
t; xu+y� (t) ; u (t) + y� (t)

� d
dy
xu+y� (t)

+
@f

@u

�
t; xu+y� (t) ; u (t) + y� (t)

�
� (t)

�
y2(��;�)

;

is �� P -uniformly integrable and the family

�
g0
�
xu+y� (T )

� d
dy
xu+y� (T )

�
y2(��;�)

;

is P -uniformly integrable.
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4) For all u; � 2 A" with � bounded the process y (t) = y� (t) =
d

dy
xu+y� (t) jy=0 exists

and satis�es the equation

dy (t) =

�
y
�
t�
� @b
@x
(t; x (t) ; u (t)) dt+

@�

@x
(t; x (t) ; u (t)) dB (t)

+

Z
R0

@�

@x

�
t; x
�
t�
�
; u
�
t�
�
; z
�
~N (dt; dz)

�
+ �

�
t�
� � @b
@u
(t; x (t) ; u (t)) dt+

@�

@u
(t; x (t) ; u (t)) dB (t)

+

Z
R0

@�

@u

�
t; x
�
t�
�
; u
�
t�
�
; z
�
~N (dt; dz)

�
;

y (0) = 0:

5) For all u 2 A", the following processes

K (t) := g0 (x (T )) +

Z T

t

@

@x
f (s; x (s) ; u (s)) ds;

DtK (t) := Dtg
0 (x (T )) +

Z T

t

Dt
@

@x
f (s; x (s) ; u (s)) ds;

Dt;zK (t) := Dt;zg
0 (x (T )) +

Z T

t

Dt;z
@

@x
f (s; x (s) ; u (s)) ds;

H0 (s; x; u) = k (s) b (s; x; u) +DsK (s)� (s; x; u)

+

Z
R0
Ds;zK (s) � (s; x; u; z) � (dz) ;

G (t; s) := exp

 Z s

t

(
@

@x
b (r; x (r) ; u (r) ; !)� 1

2

�
@�

@x

�2
(r; x (r) ; u (r) ; !)

)
dB (r)

+

Z s

t

@�

@x
(r; x (r) ; u (r) ; !) dB (r)

+

Z s

t

Z
R0

�
ln

�
1 +

@�

@x
(r; x (r) ; u (r) ; z; !)

�
� @�

@x
(r; x (r) ; u (r) ; z; !)

�
� (dz) dr

+

Z s

t

Z
R0
ln

�
1 +

@�

@x

�
r; x
�
r�
�
; u
�
r�
�
; z; !

��
~N (dr; dz) ; (4.2)
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p (t) := K (t) +

Z T

t

@H0
@x

(s; x (s) ; u (s))G (t; s) ds; (4.3)

q (t) := Dtp (t) ; and (4.4)

r (t; z) := Dt;zp (t) ; (4.5)

all exist for 0 � t � s � T; z 2 R0

We now de�ne the Hamiltonian of this general problem

De�nition 4.1.1 (The general stochastic Hamiltonian) The general stochastic Hamil-

tonian is the process

H : [0; T ]� R� U � 
! R;

de�ned by

H (t; x; u; !) = f (t; x; u; !) + p (t) b (t; x; u; !) + q (t)� (t; x; u; !)

+

Z
R0
r (t; z) � (t; x; u; z; !) � (dz) : (4.6)

4.1.2 The stochastic maximum principle

We can now formulate the stochastic maximum principle:

Theorem 4.1.1 (Maximum Principle) 1. Suppose u 2 A" is a critical point for J (u),

in the sense that

d

dy
J (û+ y�) jy=0 = 0 for all bounded � 2 A": (4.7)

Then

E

"
@Ĥ

@u
(t; x̂ (t) ; û (t)) j "t

#
= 0 for a:a: t, !; (4.8)

where

x̂ (t) = xû (t) ;
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Ĥ (t; x̂ (t) ; u) = f (t; x̂ (t) ; u) + p̂b (t; x̂ (t) ; u) + q̂ (t)� (t; x̂ (t) ; u)Z
R0
r̂ (t; z) � (t; x̂ (t) ; u; z) � (dz) ;

with

p̂ (t) = k̂ (t) +

Z T

t

@H0
@x

(s; x̂ (s) ; û (s)) Ĝ (t; s) ds;

and

Ĝ (t; s) := exp

 Z s

t

(
@

@x
b (r; x̂ (r) ; u (r) ; !)� 1

2

�
@�

@x

�2
(r; x̂ (r) ; u (r) ; !)

)
dB (r)

+

Z s

t

@�

@x
(r; x̂ (r) ; u (r) ; !) dB (r)

+

Z s

t

Z
R0

�
ln

�
1 +

@�

@x
(r; x̂ (r) ; u (r) ; z; !)

�
� @�

@x
(r; x̂ (r) ; u (r) ; z; !)

�
� (dz) dr

+

Z s

t

Z
R0
ln

�
1 +

@�

@x

�
r; x̂
�
r�
�
; u
�
r�
�
; z; !

��
~N (dr; dz) ;

K̂ (t) = g0 (x̂ (T )) +

Z T

t

@

@x
f (s; x̂ (s) ; u (s)) ds;

2. Conversely, suppose there exists û 2 A" such that (4:8) holds. Then û satis�es (4:7).

Proof.

1. We suppose that u is a critical point for J (u) ; we have by assumption 3

0 =
d

dy
J (u+ y�) jy=0

= E

�Z T

0

�
@f

@x
(t; x (t) ; u (t)) y (t) +

@f

@u
(t; x (t) ; u (t)) � (t)

�
dt

+ g0 (x (T )) y (T ) ;
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where

y (t) =
d

dy
x(u+y�) (t) jy=0

=

Z t

0

�
@b

@x
(s; x (s) ; u (s)) y (s) +

@b

@u
(s; x (s) ; u (s)) � (s)

�
ds

+

Z t

0

�
@�

@x
(s; x (s) ; u (s)) y (s) +

@�

@u
(s; x (s) ; u (s)) � (s)

�
dBs

+

Z t

0

Z
R0

�
@�

@x
(s; x (s) ; u (s) ; z) y (s) +

@�

@u
(s; x (s) ; u (s) ; z) � (s)

�
~N (ds; dz) :

(4.9)

From now on we use the short hand notation

@f

@x
(t; x (t) ; u (t)) =

@f

@x
(t) ;

@f

@u
(t; x (t) ; u (t)) =

@f

@u
(t) ;

and similarly for
@b

@x
;
@b

@u
;
@�

@x
;
@b

@u
;
@�

@x
; and

@�

@u
: By replacing y (T ) by its value, and

using the duality formulas, we get

E [g0 (x (T )) y (T )]

= E

�
g0 (x (T ))

�Z T

0

�
@b

@x
(s) y (s) +

@b

@u
(s) � (s)

�
ds

+

Z T

0

�
@�

@x
(s) y (s) +

@�

@u
(s) � (s)

�
dBs

+

Z T

0

Z
R0

�
@�

@x
(s) y (s) +

@�

@u
(s) � (s)

�
~N (ds; dz)

��
= E

�Z T

0

�
g0 (x (T ))

@b

@x
(s) y (s) + g0 (x (T ))

@b

@u
(s) � (s)

+

Z T

0

Dt (g
0 (x (T )))

@�

@x
(s) y (s) +Dt (g

0 (x (T )))
@�

@u
(s) � (s)

+

Z
R0

�
Dt;z (g

0 (x (T )))
@�

@x
(s) y (s) +Dt;z (g

0 (x (T )))
@�

@u
(s) � (s)

�
� (dz)

�
ds

�
:

(4.10)
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Similarly we have,

E

�Z T

0

@f

@x
(t) y (t) dt

�
= E

�Z T

0

@f

@x
(t)

�Z t

0

�
@b

@x
(s) y (s) +

@b

@u
(s) � (s)

�
ds

+

Z t

0

�
@�

@x
(s) y (s) +

@�

@u
(s) � (s)

�
dBs

+

Z t

0

Z
R0

�
@�

@x
(s) y (s) +

@�

@u
(s) � (s)

�
~N (ds; dz)

��
= E

�Z T

0

�Z t

0

�
@f

@x
(t)
@b

@x
(s) y (s) +

@f

@x
(t)
@b

@u
(s) � (s)

+Dt

�
@f

@x
(t)

�
@�

@x
(s) y (s) +Dt

�
@f

@x
(t)

�
@�

@u
(s) � (s)

+

Z
R0

�
Dt;z

�
@f

@x
(t)

�
@�

@x
(s) y (s) +Dt;z

�
@f

@x
(t)

�
@�

@u
(s) � (s)

�
� (dz)

�
ds

�
dt

�

then by using the Fubini theorem,

E

�Z T

0

@f

@x
(t) y (t) dt

�
= E

�Z T

0

�Z T

s

@f

@x
(t) dt

��
@b

@x
(s) y (s) +

@b

@u
(s) � (s)

�
+

�Z T

s

Ds

�
@f

@x
(t)

�
dt

��
@�

@x
(s) y (s) +

@�

@u
(s) � (s)

�
�Z T

s

Ds;z

�
@f

@x
(t)

�
dt

�Z
R0

�
@�

@x
(s) y (s) +

@�

@u
(s) � (s)

�
� (dz)

�
ds

�
:

Changing the notation s! t, this becomes

E

�Z T

0

@f

@x
(t) y (t) dt

�
= E

�Z T

0

�Z T

t

@f

@x
(s) ds

��
@b

@x
(t) y (t) +

@b

@u
(t) � (t)

�

+

�Z T

t

Dt

�
@f

@x
(s)

�
ds

��
@�

@x
(t) y (t) +

@�

@u
(t) � (t)

�

+

�Z T

t

Dt;z

�
@f

@x
(s)

�
ds

�Z
R0

�
@�

@x
(t) y (t) +

@�

@u
(t) � (t)

�
� (dz)

�
dt

�
:

(4.11)
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Recall

K (t) := g0 (x (T )) +

Z T

t

@f

@x
(s) ds: (4.12)

By combining (4:10)-(4:12), we get

E

�Z T

0

�
K (t)

�
@b

@x
(t) y (t) +

@b

@u
(t) � (t)

�
+DtK (t)

�
@�

@x
(t) y (t) +

@�

@u
(t) � (t)

�
+

Z
R0
Dt;zK (t)

�
@�

@x
(t) y (t) +

@�

@u
(t) � (t)

�
� (dz) +

@f

@u
(t) � (t)

�
dt

�
= 0: (4.13)

Now we apply the above to � = �� 2 A" of the form �� (s) = ��[t;t+h] (s) ; for some

t; h 2 (0; T ) ; t+ h � T; where � = � (!) is bounded and "t�measurable. We have;

by 4.9 for 0 � s � t

y�� (s) =

Z s

0

�
@b

@x
(r) y�� (r)

�
dr

+

Z s

0

@�

@x
(r) y�� (r) dBr

+

Z s

0

Z
R0

�
@�

@x
(r) y�� (r)

�
N (dr; dz) :

Then y�� (s) = 0; for 0 � s � t and hence (4:12) becomes

A1 + A2 = 0: (4.14)

where

A1 = E

�Z T

t

�
K (s)

@b

@x
(s) +DsK (s)

@�

@x
(s) +

Z
R0
Ds;zK (s)

@�

@x
(t) � (dz)

�
y�� (s) ds

�

A2 = E

�Z t+h

t

�
K (s)

@b

@u
(s) +DsK (s)

@�

@u
(s) +

Z
R0
Ds;zK (s)

@�

@u
(t) � (dz)

�
�ds

�
:
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In the other hand for s > t+ h we have by (4:9) with y (s) = y�� (s)

dy (s) = y
�
s�
�� @b
@x
(s) ds+

@�

@x
(s) +

Z
R0

@�

@x
(t) ~N (dr; dz)

�
; (4.15)

with initial condition y (t+ h) in time t + h: This equation can be solved explicitly

and we get

y (s) = y (t+ h)G (t+ h; s) ; s > t+ h; (4.16)

where, in general, for s > t;

G (t; s) := exp

 Z s

t

(
@b

@x
(r)� 1

2

�
@�

@x

�2
(r)

)
dB (r)

+

Z s

t

@�

@x
(r) dB (r)

+

Z s

t

Z
R0

�
ln

�
1 +

@�

@x
(r)

�
� @�

@x
(r)

�
� (dz) dr

+

Z s

t

Z
R0
ln

�
1 +

@�

@x
(r)

�
~N (dr; dz) ; (4.17)

y (s) given in (4:16) is the solution of (4:17), it can be veri�ed by applying the Itô

formula to y (s) given in (4:16).We de�ne

H0 (s; x; u) = K (s) b (s; x; u) +DsK (s)� (s; x; u) +

Z
R0
Ds;zK (s) � (s; x; u; z) � (dz)

Then

A1 = E

�Z T

t

@H0
@x

(s) y (s) ds

�
:

Di¤erentiating with respect to h at h = 0 we get

d

dh
A1 jh=0 =

d

dh
E

�Z t+h

t

@H0
@x

(s) y (s) ds

�
jh=0 +

d

dh
E

�Z T

t+h

@H0
@x

(s) y (s) ds

�
jh=0 :
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Since y (t) = 0 and since
@H0
@x (s)

is càdlàg we see that

d

dh
E

�Z t+h

t

@H0
@x

(s) y (s) ds

�
h=0

= 0: (4.18)

Therefore, using (4:16) and y (t) = 0;

d

dh
A1jh=0 =

d

dh
E

�Z T

t+h

@H0
@x

(s) y (t+ h)G (t+ h; s) ds

�
= lim

h!0

1

h

�
E

�Z T

t+h

@H0
@x

(s) y (t+ h)G (t+ h; s) ds

��
=

Z T

t

lim
h!0

1

h
E

�
@H0
@x

(s) y (t+ h)G (t+ h; s)

�
ds

=

Z T

t

d

dh
E

�
@H0
@x

(s) y (t+ h)G (t+ h; s)

�
h=0

ds

=

Z T

t

d

dh
E

�
@H0
@x

(s) y (t+ h)G (t; s)

�
h=0

ds; (4.19)

by (4:9)

y (t+ h) = �

Z t+h

t

�
@b

@u
(r) dr +

@�

@u
(r) dBr +

Z
R0

@�

@u
(r) ~N (dr; dz)

�
+

Z t+h

t

y
�
r�
�� @b
@x
(r) dr +

@�

@x
(r) dBr +

Z
R0

@�

@x
(r) ~N (dr; dz)

�
: (4.20)

Therefore, by (4:19) and (4:20)

d

dh
A1jh=0 = �1 + �2;

�1 =

Z T

t

d

dh
E

�
@H0
@x

(s)G (t; s)�

Z t+h

t

�
@b

@u
(r) dr +

@�

@u
(r) dBr

+

Z
R0

@�

@u
(r) ~N (dr; dz)

�
dr

�
h=0

ds; (4.21)
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and

�2 =

Z T

t

d

dh
E

�
@H0
@x

(s)G (t; s)

Z t+h

t

y
�
r�
�� @b
@x
(r) dr +

@�

@x
(r) dBr

+

Z
R0

@�

@x
(r) ~N (dr; dz)

�
dr

�
h=0

ds: (4.22)

By the duality formulas, we get

�1 =

Z T

t

d

dh
E

�
�

Z t+h

t

�
@b

@u
(r)F (t; s) dr +

@�

@u
(r)DrF (t; s) dBr

+

Z
R0
Dr;z

@�

@u
(r) ~N (dr; dz)

�
dr

�
h=0

ds;

=

Z T

t

E

�
�

�
@b

@u
(t)F (t; s) dt+

@�

@u
(t)DrF (t; s) dBt +

Z
R0
Dt;zF (t; s)

@�

@u
(t) � (dz)

��
ds;

(4.23)

such that

F (t; s) =
@H0
@x

(s)G (t; s) :

Since y (t) = 0 we see that �2 = 0: We conclude that

d

dh
A1jh=0 = �1

Moreover, we see directly that

d

dh
A2jh=0 = E

�
�

�
K (t)

@b

@u
(t) dt+

@�

@u
(t)DrK (t) dBt

+

Z
R0
Dt;zK (t)

@�

@u
(t) � (dz) +

@f

@u
(t)

��
:

Therefore, di¤erentiating (4:14) with respect to h at h = 0 gives the equation
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E

�
�

��
K (t) +

Z T

t

F (t; s) ds

�
@b

@u
(t) +Dt

�
K (t) +

Z T

t

F (t; s) ds

�
@�

@u
(t)

+

Z
R0
Dt;z

�
K (t) +

Z T

t

F (t; s) ds

�
@�

@u
(t)

�
� (dz) +

@f

@u
(t)

���
= 0: (4.24)

if we put

p (t) = K (t) +

Z T

t

F (t; s) ds = K (t) +

Z T

t

@H0
@x

(s)G (t; s) ds;

then (4:24) can be written

E

�
@

@u
ff (t; xt; u) + p (t) b (t; xt; u) +Dtp (t)� (t; xt; u)

+

Z
R0
Dt;zp (t) � (t; xt; u) � (dz)

�
u=u(t)

�

#

= 0:

Since this holds for all bounded "t�measurable random variable , we conclude that

E

�
@H

@u
(t; xt; u)u=u(t) j "t

�
= 0; for a:a: t, !:

witch complete the proof of the �rst part.

ii) Conversely, suppose (4:8) holds for some û 2 A". Then by reversing the above argu-

ment we get that (4:14) holds for all �� 2 A" of the form �� (s; !) = ��(t;t+h] (s)

for some t; h 2 [0; T ] with t + h � T and some bounded "t�measurable �: Hence

(4:14) holds for all linear combinations of such ��:. Since all bounded � 2 A" can be

approximated pointwise boundedly in (t; !) by such linear combinations, it follows

that (4:14) holds for all bounded � 2 A". Hence, by reversing the remaining part of

the argument above, we conclude that (4:14) holds.
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4.1.3 Application

We now give an example of application

Example 4.1.1 (Optimal portfolio) Suppose we have a �nancial market with the fol-

lowing two investment possibilities:

i) A risk free asset, where the unit price S0 (t) at time t is given by

dS0 (t) = �tS0 (t) dt; S0 (0) = 1; t 2 [0; T ] : (4.25)

ii) A risky asset, where the unit price S1(t) at time t is given by

dS1 (t) = S1
�
t�
� �
�tdt+ �tdBt +

Z
R0
� (t; z) ~N (dt; dz) ;

�
t 2 [0; T ] ; (4.26)

S1 (0) > 0:

Here �t; �t; �t and � (t; z) are bounded F t-predictable processes, t 2 [0; T ] ; z 2 R0 and

T > 0 is a given constant. We also assume that

� (t; z) > �1 a:s: for a:a: t; z;

and

E

�Z T

0

Z
R0
jlog (1 + � (t; z))j2 � (dz) dt

�
<1:

A portfolio in this market is an "t-predictable process u (t) representing the amount invested

in the risky asset at time t: When the portfolio u (:) is chosen, the corresponding wealth
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process x (t) = xu (t) satis�es the equation

dx (t) = [�tx (t) + (�t � �t)u (t)] dt+ �tu (t) dBt +
Z
R0
� (t; z) ~N (dt; dz) ;

x (0) = x > 0: (4.27)

The partial information optimal portfolio problem is to �nd the portfolio u 2 A" which

maximizes

J (u) = E [U (xu (T; !))] ;

where U (x) = U (x; !) : R� 
! R is a given Ft-measurable random variable for each x

and x ! U (x; !) is a utility function for each !: We assume that x ! U (x) is C1 and

U 0 (x) is strictly decreasing.

With the notation of the previous section we see that in this case we have

f (t; x; u) = 0; g (x; !) = U (x; !) ;

b (t; x; u) = �txt + (�t � �t)u; � (t; x; u) = �tu;

� (t; x; u; z) = � (t; z)u;

thus

K (t) = U 0 (x (T )) = K;

and

H0 (t; x; u) = K (�txt + (�t � �t)u) +DtK�tu

+

Z
R0
Dt;zK� (t; z) ~N (dt; dz) ;
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and

G (t; s) = exp

�Z s

t

�rdr

�
:

Thus

p (t) = U 0 (x (T )) +

Z T

t

K�s exp

�Z s

t

�rdr

�
ds;

and the Hamiltonian becomes

H (t; x; u) = p (t) [�txt + (�t � �t)u] +Dtp (t) �tu

+

Z
R0
Dt;zp (t) � (t; z)u� (dz) :

By the maximum principle (4:8) we get the following condition for an optimal control

Theorem 4.1.2 Suppose that û is an optimal control corresponding x̂ (t) ; p̂ (t) then we

have

E

�
p (t) (�t � �t) +Dtp (t) �t +

Z
R0
Dt;zp (t) � (t; z) � (dz) j "t

�
= 0: (4.28)

we complete by considering a solution in the special case when

� = �t = 0; j�tj > � > 0 and "t = Ft, 0 � t � T;

where � > 0: is a given constant. Then (4:28) simpli�es to

�tE [K j Ft] + �tE [DtK j Ft] = 0: (4.29)

By the Clark-Ocone theorem (3:28) we have

K = E [K] +

Z T

0

E [DtK j Ft] dBt; (4.30)
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then

E [K j Ft] = E [K] +
Z t

0

E [DtK j Ft] dBt: (4.31)

De�ne

Mt := E [K j Ft] = E [U 0 (x̂ (T )) j Ft] :

Then by substituting (3:28) into (4:31) we get

Mt = E [K]�
Z t

0

�s
�s
MsdBs;

or

dMt = �
�t
�t
MtdBt;

witch has the solution

Mt = E [U
0 (x̂ (T ))] exp

 
�
Z t

0

�s
�s
dBs �

1

2

Z t

0

�
�s
�s

�2
ds

!
; (4.32)

such thatM0 = E [U
0 (x̂ (T ))] ; we have U 0 (x̂ (T )) =MT = K. Given K the corresponding

optimal portfolio û is given as the solution of the backward stochastic di¤erential equation

8><>: dx̂t = �tû (t) dt+ �tû (t) dBt; t < T;

x̂ (T ) = (U 0)�1 (K) ;
(4.33)

witch can be written 8><>: dx̂t = �tû (t) d ~Bt; t < T;

x̂ (T ) = (U 0)�1 (K) ;
(4.34)

where

d ~Bt =
�t
�t
dt+ dBt;
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witch is a Brownian motion with respect to the probability measure Q de�ned by

dQ = NTdP on FT ;

where

Nt = exp

 
�
Z t

0

�s
�s
dBs �

1

2

Z t

0

�
�s
�s

�2
ds

!
:

By the theorem(3:4:2) of Clark-Ocone under change of measure we have

x̂ (t) = EQ [x̂ (T )] +

Z T

0

EQ

��
Dtx̂ (T )� x̂ (T )

Z T

t

Dt

�
�s
�s

�
d ~Bt j Ft

�
d ~Bt

�
: (4.35)

Comparing (4:34) and (4:35) we get

û (t) =
1

�t
EQ

��
Dtx̂ (T )� x̂ (T )

Z T

t

Dt

�
�s
�s

�
d ~Bt j Ft

��
:

Using Bayes�rule we conclude

Theorem 4.1.3 Suppose û 2 AF is an optimal portfolio for the problem

sup
u2AF

(E [U (xu (t) ; !)]) ;

with

dxut = �tu (t) dt+ �tu (t) dBt:

Then

û (t) =
1

�tNt
E

�
NT

�
Dtx̂ (T )� x̂ (T )

Z T

t

Dt

�
�s
�s

�
d ~Bt j Ft

��
;

and

x̂ (T ) = (U 0)
�1
(MT ) ;

where Mt is given by (4:32).
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4.2 Singular stochastic maximum principle

4.2.1 Formulation of the singular control problem

Consider a controlled singular jump di¤usion x (t) = x� (t) of the form x (0�) = x 2 R

dxt = b (t; x (t) ; !) dt+ � (t; x (t) ; !) dBt +
R
R0 � (t; x (t

�) ; z; !) ~N (dt; dz)

+� (t; !) d�t; t 2 [0; T ] ;

de�ned on a probability space
�

;F ; (F)t>0 ; P

�
; where t ! b (t; x) ; t ! � (t; x) and

t ! � (t; x; z) are given F t-predictable processes for each x 2 R; z 2 R0 � R � f0g We

assume that b; � and � are C1 with respect to x and that there exists " > 0 such that

@�

@x
(t; x; z; !) > �1 + " a:s for (t; x; z) 2 [0; T ]� R� R0:

� (t) is "t-adapted and continuous. The process � (t) = � (t; !) ; is our control process,

assumed to be càdlàg and non-decreasing for each !; with � (0�) = 0: We require that

the control � (t) is "t-adapted. The set of such controls is denoted by A": Let t! f (t; x)

and t ! h (t; x) be given Ft-predictable processes and g (x) an FT -measurable random

variable for each x: De ne the performance functional

J (�) = E

�Z T

0

f (t; x; !) dt+ g (x (T ) ; !) +

Z T

0

h
�
t; x
�
t�
�
; !
�
d� (t)

�
: (4.36)

Problem 4.2.1 We want to �nd an optimal control �� 2 A" such that

� := sup
�2A"

J (�) = J (��) : (4.37)

For � 2 A";we let � (�) denote the set of "t-adapted processes � of �nite variation such
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that there exists � = � (�) > 0 such that

� + y� 2 A" for all y 2 [0; �] :

We de�ne the derivative process, for � 2 A" and � 2 � (�)

Y (t) := lim
y!0+

1

y

�
X�+y� (t)�X� (t)

�
; t 2 [0; T ] : (4.38)

We have

dY (t) = Y
�
t�
� � @b
@x
(t) dt+

@�

@x
(t) dBt +

Z
R0

@�

@x
(t; z) ~N (dt; dz)

�
+ � (t) d�t: (4.39)

Note that

Y (0) = lim
y!0+

1

y

�
X�+y� (0)�X� (0)

�
=
d

dy
x jy=0 = 0:

Then we have

lim
y!0+

1

y
(J (� + y�)� J (�)) = E

�Z T

0

@f

@x
(t; x (t))Y (t) dt+ g0 (x (T )Y (T ))

+

Z T

0

@h

@x

�
t; x
�
t�
��
Y
�
t�
�
d�t +

Z T

0

h
�
t; x
�
t�
��
d�t

�
:

The solution of equation

Lemma 4.2.1 The solution of equation (4:39) is

Y (t) = Z (t)

"Z t

0

Z�1
�
s�
�
� (s) d� +

X
0<s�t

Z�1
�
s�
�
� (s)� (s)� (� (s))

#
; t 2 [0; T ] ;

with �(� (s)) = � (s)� � (s�) ; where

� (s) =

�
Z
R0

@�

@x
(s; z)N (fsg ; dz)

1 +

Z
R0

@�

@x
(s; z)N (fsg ; dz)

; s 2 [0; T ] ;
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and Z(t) is the solution of the "homogeneous" version of (4:39) i.e. Z (0) = 1 and

Z (t) = Z
�
t�
� � @b
@x
(t) dt+

@�

@x
(t) dBt +

Z
R0

@�

@x
(t; z) ~N (dt; dz)

�
; (4.40)

Remark 4.2.1 Note that

Z
R0

@�

@x
(s; z)N (fsg ; dz) =

8><>:
@�

@x
(s; z) if � has jump of size z at s;

0 otherwise.

We set

G (t; s) =
Z (s)

Z (t)
for t < s:

4.2.2 A Malliavin-calculus based necessary maximum principle

To establish the maximum principle of the problem 4:4:1 we need the following lemma

Lemma 4.2.2 Suppose � 2 A" and � 2 � ("). Then

lim
y!0+

1

y
(J (� + y�)� J (�))

= E

"Z T

0

[� (t) ~p (t) + h (t)] d�c (t) +
X
0<t�T

f� (t) (~p (t) + S (t)� (t) + h (t))g4� (t)
#
;

(4.41)
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where �c (t) denotes the continuous part of � (t) and

S (t) =

Z T

t

G (t; s)
@H0
@x

(s) ds; (4.42)

~p (t) = R (t) +

Z T

t

G (t; s)
@H0
@x

(s) ds = R (t) + S (t) ; (4.43)

R (t) = g0 (x (T )) +

Z T

t

@f

@x
(s) ds+

Z T

t+

@h

@x
(s) d�s; (4.44)

H0 (s; x) = R (s) b (s; x) +DsR (s)� (s; x) +

Z
R0
Ds;zR (s) � (s; x; z) � (dz) : (4.45)

We can now prove the main result of this section

Theorem 4.2.1 (Necessary maximum principle) Set

U (t) = � (t) ~p (t) + h (t) ; (4.46)

V (t) = � (t) (~p (t) + S (t)� (t)) + h (t) ; t 2 [0; T ] : (4.47)

1. Suppose � 2 A" is optimal for problem. Then a:a:t 2 [0; T ] we have

E [U (t) j "t] � 0 and E [U (t) j "t] d�c (t) = 0; (4.48)

and for all t 2 [0; T ] we have

E [V (t) j "t] � 0 and E [V (t) j "t] �� (t) = 0: (4.49)

2. Conversely, suppose that (4:48) and (4:49) hold for some � 2 A": Then � is a directional

sub-stationary point for J (�), in the sense that

lim
y!0+

1

y
(J (� + y�)� J (�)) � 0 for all � 2 � (�) : (4.50)
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Proof.

1. Suppose � is optimal for the problem 4:4:1 Then

lim
y!0+

1

y
(J (� + y�)� J (�)) � 0 for all � 2 � (�) :

Hence by lemma (4:4:2)

E

"Z T

0

U (t) d�c (t) +
X
0<t�T

V (t)�� (t)

#
� 0 for all � 2 � (�) : (4.51)

In particular, this holds if we �x t 2 [0; T ] and choose � such that

d�s = a (!) �t (s) ; s 2 [0; T ] ;

where a (!) > 0 is "t-measurable and bounded and �t (:) is the unit point mass at t.

Then (4:51) gets the form:

E [V (t) a] � 0: (4.52)

Since this holds for all bounded "t-measurable a > 0, we conclude that

E [V (t) j "t] � 0: (4.53)

Next, choose � (t) = ��d (t) ; the purely discontinuous part of �: So by (4:51) we get

E

" X
0<t�T

V (t) (��� (t))
#
6 0;

or

E

" X
0<t�T

V (t)�� (t)

#
> 0; (4.54)
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on the other hand choosing � (t) = ��d (t) in (4:51) gives

E

" X
0<t�T

V (t)�� (t)

#
6 0: (4.55)

Combining (4:55) and (4:54) we obtain

E

" X
0<t�T

E [V (t) j "t] �� (t)
#
= E

" X
0<t�T

V (t)�� (t)

#
= 0:

Since E [V (t) j "t] � 0 and �� (t) > 0; this implies that

E [V (t) j "t] �� (t) = 0; 8t 2 [0; T ] :

To prove (4:49) we proceed similarly, by choosing �rst d� (t) = a (t) dt t 2 [0; T ], and

next � (t) = �c (t) :

2. Suppose (4:48) and (4:49) hold for some � 2 A": Choose � 2 � (�) : Then � + y� 2 A"

and hence d� + yd� > 0 for all y 2 [0; �] for some � > 0: Therefore,

yE

"Z T

0

U (t) d�c +
X
0<t�T

V (t)�� (t)

#

= yE

"Z T

0

E [U (t) j "t] d�c +
X
0<t�T

E [V (t) ="t] �� (t)

#

= E

"Z T

0

E [U (t) j "t] d�c +
X
0<t�T

E [V (t) j "t] �� (t)
#

+ yE

"Z T

0

E [U (t) j "t] d�c +
X
0<t�T

E [V (t) j "t] �� (t)
#

= E

"Z T

0

E [U (t) j "t] d (�c + y�c) +
X
0<t�T

E [V (t) j "t] � (� (t) + y� (t))
#
6 0

Hence the conclusion follows from Lemma (4:4:2).
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Chapter 5

A stochastic maximum principle for

mixed regular-singular control

problems via Malliavin calculus

In this chapter, we study general regular-singular stochastic control problems, in

which the controller has only partial information. The control has two components, the

�rst one is a classical regular control and the second one is a singular control. We consider

systems driven by random coe¢ cients and the running and the �nal costs are allowed to

be random. It is clear that for such systems the dynamic programming does not hold, as

the state process is no longer a Markov process. Our goal is to obtain necessary conditions

for optimality satis�ed by some optimal control.

5.1 Formulation of the problem

Suppose the state process xt = x
(u;�)
t ; t � 0, satis�es the following stochastic di¤erential

equation:
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8><>: dxt = b (t; xt; ut) dt+ � (t; xt; ut) dBt + �td�t;

x0 = x 2 R:
(5.1)

Here (Bt) is 1-dimensional Brownian motion, de�ned on a �ltred probability space
�

;F ; (Ft)t�0 ; P

�
;

satisfying the usual conditions. Assume that (Ft) is the natural �ltration of (Bt) :The co-

e¢ cients

b : [0; T ]� R� U � 
! R;

� : [0; T ]� R� U � 
! R,

� : [0; T ]� 
! R,

are given Ft�predictable processes.

Suppose in addition that we are given a sub�ltration Et � Ft; t 2 [0; T ] ; representing the

information available to the controller at time t and satisfying the usual conditions.

� Let T be a strictly positive real number and consider the following sets.

� UE1 is the class of measurable, Et-adapted processes u : [0; T ] � 
 ! U; where U is

some Borel subset of Rk:

� UE2 is the class of measurable, Et-adapted processes � : [0; T ]�
! [0;1) such that

� is nondecreasing, right-continuous with left hand limits and �0 = 0:

De�nition 5.1.1 An admissible control is an Et-adapted process (u; �) 2 UE1�UE2 such

that

E

�Z T

0

jutj2 dt+ j�T j2
�
<1:

We denote by AE the set of all admissible controls.

The expected reward to be maximized has the form

J (u; �) = E

24g (xT ) + TZ
0

f (t; xt; ut) dt+

TZ
0

h (t) d�t

35 ; (u; �) 2 AE ; (5.2)
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where

f : [0; T ]� R� U � 
! R;

g : R� 
! R;

h : [0; T ]� 
! R;

are given Ft-adapted processes.

The goal of the controller is to maximize the functional J (u; �) over AE . An admissible

control
�
û; �̂
�
2 AE is optimal if:

J
�
û; �̂
�
= sup

(u;�)2AE
J (u; �) : (5.3)

Our objective is to derive necessary conditions satis�ed by
�
û; �̂
�
.

Note that since we allow b, �, h, f and g to be random coe¢ cients and also because

our controls must be Et-adapted, this problem is no longer of Markovian type and hence

cannot be solved by dynamic programming. Our attention will be focused on the sto-

chastic maximum principle, for which an explicit form for the adjoint process is obtained.

Malliavin calculus techniques will be used to get an explicit form of the adjoint process.

Assumptions

The following assumptions will be in force throughout this paper.

(H1) b; �, g; f are adapted processes such that there exists a positive constant C satisfying:

jb(t; x; u)j+ j�(t; x; u)j+ jf(t; x; u)j+ jg(x)j � C(1 + jxj+ juj):

(H2) b; �, g; f are continuously di¤erentiable with respect to x 2 R and u 2 U for each

t 2 [0; T ] ; and a.s. ! 2 
; with bounded derivatives.

(H3) �, h are bounded continuous processes.

(H4)For all bounded Ft�measurable random variables � = � (!) the process v�s =

� (!) 1(t;r] (s) ; s 2 [0; T ] belongs to U "1 :

(H5)For u, v 2 UE1 with v bounded, there exists � > 0 such that
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u� = u+ �v 2 UE1 for all � 2 [��; �] :

Under the above assumptions, for every (u; �) 2 AE , equation (5:1) admits a unique strong

solution given by

x
(u;�)
t = x+

tZ
0

b
�
s; x(u;�)s ; us

�
ds+

tZ
0

�
�
s; x(u;�)s ; us

�
dBs +

tZ
0

� (t) d�s; (5.4)

and the reward functional J is well de�ned from AE into R.

We list some notations which will be used throughout this paper.

Notations

For � 2 UE2 ; let � (�) denotes the set of Et-adapted processes � of �nite variation such

that there exists � > 0 such that � +�� 2 UE2 ; for all � 2 [0; �]: For all u 2 UE1 and

0 � t � s � T; we denote the following processes

R (t) := g0 (xT ) +

TZ
t

@f

@x
(s; xs; us) ds; (5.5)

Dt (R (t)) := Dtg
0 (xT ) +

TZ
t

Dt
@f

@x
(s; xs; us) ds; (5.6)

H0 (s; x; u) = R (s) b (s; x; u) +DsR (s)� (s; x; u) ; (5.7)

G (t; s) := exp

0@ sZ
t

(
@b

@x
(r; xr; ur)�

1

2

�
@�

@x

�2
(r; xr; ur)

)
dr

+

sZ
t

@�

@x
(r; xr; ur) dBr

1A ; (5.8)

p (t) := R (t) +

TZ
t

@H0
@x

(s; xs; us)G (t; s) ds; (5.9)

q (t) := Dtp (t) : (5.10)
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We de�ne the usual Hamiltonian of the control problem (3.1)-(3.2) by:

H : [0; T ]� R�U ��R� R� 
! R;

where

H (t; x; u; p; q; !) = f (t; x; u; !) + p (t) b (t; x; u; !) + q (t)� (t; x; u; !) ; (5.11)

5.2 The stochastic maximum principle

The purpose of the stochastic maximum principle is to �nd necessary conditions for op-

timality satis�ed by an optimal control. Suppose that
�
û; �̂
�
2 AE is an optimal control

and let x̂t denotes the optimal trajectory, that is, the solution of (5:1) corresponding to�
û; �̂
�
: As it is well known the stochastic maximum principle is based on the computation

of the derivative of the reward functional with respect to some perturbation parameter.

Let us de�ne the perturbed controls as follows.

� u� = û+ �v; where v is some bounded Et�adapted process. We know by (H5) that

there exists � > 0 such that u� = û+ �v 2 UE1 for all � 2 [��; �]

� �� = �̂ +��; where � 2 � (�) the set of Et�adapted processes of �nite variation, for

which there exists � = �(�̂) > 0 such that �̂ +�� 2 UE2 :

Since
�
û; �̂
�
is an optimal control it holds that:

(1) lim
�!0+

1
�

�
J
�
û; ��

�
� J

�
û; �̂
��
� 0 ; where �� = �̂ + ��; and

(2) lim
�!0

1
�

�
J
�
u�; �̂

�
� J

�
û; �̂
��
� 0 ; where u� = û+ �v:

We use the two limits to obtain the variational inequalities. To achieve this goal, we need

the following technical Lemmas.
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We de�ne the derivative process Y (t) by

Y (t) = lim
�!0+

1

�

�
x
(û;��)
t � x(û;�̂)t

�
; (5.12)

Since that Y (0) = 0, then

dY (t) = @b

@x
(t)Y (t) dt+ @�

@x
(t)Y (t) dBt + � (t) d�t; (5.13)

where we use the abbreviated notation:
@b

@x
(t) =

@b

@x
(t; x̂t; ût; !) ;

@�

@x
(t) =

@�

@x
(t; x̂t; ût; !).

Lemma 5.2.1 The solution of equation (5:13) is given by

Y (t) = Z (t)

24 tZ
0

Z�1 (s)� (s) d�s

35 ; t 2 [0; T ] ; (5.14)

where Z (t) is the solution of the homogeneous version of (5:13); i.e.

8><>: dZ (t) =
@b

@x
(t)Z (t) dt+

@�

@x
(t)Z (t) dBt;

Z (0) = 1.
(5.15)

We set Y (t) = Z (t)At where

At =

tZ
0

Z�1 (s)� (s) d�s:

By using Itô�s formula for semimartingales, we get

dY (t) = Z (t) dAt + AtdZ (t) + d hA;Zit ;

dY (t) = � (t) d�t + At

�
@b

@x
(t)Z (t) dt+

@�

@x
(t)Z (t) dBt

�
=
@b

@x
(t)Y (t) dt+ @�

@x
(t)Y (t) dBt + � (t) d�t:

This completes the proof.
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In the sequel, we use the abbreviated notation:

Q (t; s) =
Z (s)

Z (t)
for t < s:

Lemma 5.2.2 Let
�
û; �̂
�
be an optimal control. Then

lim
�!0+

1

�

�
J
�
û; ��

�
� J

�
û; �̂
��
= E

24 TZ
0

�
� (t) P̂ (t) + h (t)

�
d�t

35 ; (5.16)

where

P̂ (t) := R̂ (t) +

TZ
t

@H0
@x

(s)Q (t; s) ds; (5.17)

R̂ (t) = R(û;�̂) (t) = g0 (x̂T ) +

TZ
t

@f

@x
(s) ds; (5.18)

H0(s; x) = R(s) +DsR(s)�(s; x): (5.19)

We have

lim
�!0+

1

�

�
J
�
û; ��

�
� J

�
û; �̂
��
= E

24g0 (x̂T )Y (T ) + TZ
0

@f

@x
(t)Y (t) dt

+

TZ
0

h (t) d�t

35 : (5.20)

We have from (5:13)

E

24 TZ
0

@f

@x
(t)Y (t) dt

35 = E
24 TZ
0

@f

@x
(t)

tZ
0

�
Y (s) @b

@x
(s) ds+ Y (s) @�

@x
(s) dBs

+� (s) d�sg dt] :
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Since Y (0) = 0, we have by the duality formulae for the Malliavin derivatives,

E

24 TZ
0

@f

@x
(t)Y (t) dt

35 =
24E TZ

0

tZ
0

�
@f

@x
(t)Y (s) @b

@x
(s) ds+Ds

�
@f

@x
(t)

�
Y (s) @�

@x
(s) ds

+
@f

@x
(t)� (s) d�s

�
dt

�
;

by using Fubini theorem

E

24 TZ
0

@f

@x
(t)Y (t) dt

35 = E
24 TZ
0

TZ
s

�
@f

@x
(t)Y (s) @b

@x
(s) dt+Ds

�
@f

@x
(t)

�
Y (s) @�

@x
(s) dt

�
ds

(5.21)

+

TZ
0

0@ TZ
s

@f

@x
(t)� (s) dt

1A d�s
35 ;

changing the notation s! t , this becomes

E

24 TZ
0

@f

@x
(t)Y (t) dt

35 = E
24 TZ
0

TZ
t

�
@f

@x
(s)Y (t) @b

@x
(t) ds+Dt

�
@f

@x
(s)

�
Y (t) @�

@x
(t) ds

�
dt

(5.22)

+

TZ
0

0@ TZ
t

@f

@x
(s)� (t) ds

1A d�t
35

= E

24 TZ
0

8<:
0@ TZ

t

@f

@x
(s) ds

1AY (t) @b
@x
(t) +Dt

0@ TZ
t

�
@f

@x
(s)

�
ds

1AY (t) @�
@x
(t)

9=; dt
+

TZ
0

0@ TZ
t

@f

@x
(s) ds

1A� (t) d�t
35 :
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Similary we get

E [g0 (XT )Y (T )]

= E

24g0 (XT )

8<:
TZ
0

Y (t) @b
@x
(t) dt+ Y (t) @�

@x
(t) dBt + � (t) d�t

9=;
35

= E

24 TZ
0

Y (t)
�
g0 (XT )

@b

@x
(t) +Dt (g

0 (XT ))
@�

@x
(t)

�
dt+ g0 (XT )� (t) d�t

35 : (5.23)

Combining (5:21) and (5:22) and using the notations (5:5) and (5:7); we obtain

lim
�!0+

1

�

�
J
�
û; ��

�
� J

�
û; �̂
��
= E

24 TZ
0

Y (t)
�
R (t)

@b

@x
(t) +DtR (t)

@�

@x
(t)

�
dt

+ fR (t)� (t) + h (t)g d�t]

= A1 (�) + A2 (�) ;

where

A1 (�) = E

24 TZ
0

Y (t)
�
R (t)

@b

@x
(t) +DtR (t)

@�

@x
(t)

�
dt

35 ;
and

A2 (�) = fR (t)� (t) + h (t)g d�t:

We set

d�t =
@H0
@x

(t) dt;
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then by using Lemma 4:1 it follows that

A1 (�) = E

24 TZ
0

Y (t) @H0
@x

(t) dt

35
= E

24 TZ
0

Y (t) d�t

35
= E

24 TZ
0

0@Z (t) tZ
0

Z�1 (s)� (s) d�s

1A d�t
35 :

Hence by using Fubini�s theorem we get by changing the notation s! t

A1 (�) = E

24 TZ
0

0@0@ TZ
t

Z (s) d�s

1AZ�1 (t)� (t) d�t
1A35

= E

24 TZ
0

TZ
t

Q (t; s)
@H0
@x

(s) ds� (t) d�t

35 :
Finaly

lim
�!0+

1

�

�
J
�
û; ��

�
� J

�
û; �̂
��
= A1 (�) + A2 (�)

= E

24 TZ
0

�
� (t) P̂ (t) + h (t)

�
d�t

35 :
This completes the proof.

We de�ne the derivative process Y (t) by

Y (t) = Y v (t) = lim
�!0

1

�

�
x
(u�;�̂)
t � x(û;�̂)t

�
; (5.24)

then Y (t) satis�es the following equation
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dY (t) = Y (t)

�
@b

@x
(t) dt+

@�

@x
(t) dBt

�
(5.25)

+ vt

�
@b

@u
(t) dt+

@�

@u
(t) dBt

�
;

Y (0) = 0;

Lemma 5.2.3 The following identity holds

lim
�!0

1

�

�
J
�
u�; �̂

�
� J

�
û; �̂
��

= E

24 TZ
0

�
R (t)

�
@b

@x
(t)Y (t) +

@b

@u
(t) vt

�

+DtR (t)

�
@�

@x
(t)Y (t) +

@�

@u
(t) vt

�
+
@f

@u
(s) vt

��
dt:

We have

d

d�
J
�
u�; �̂

�
j�=0= E

24 TZ
0

�
@f

@x
(t)Y (t) +

@f

@u
(t) vt

�
dt

+g0 (x̂T )Y (T )] ; (5.26)

where Y (t) = Y v (t) is the solution of the linear equation

8><>: dY (t) =
�
@b
@x
(t)Y (t) + @b

@u
(t) vt

�
dt+

�
@�
@x
(t)Y (t) + @�

@u
(t) vt

�
dBt

Y (0) = 0
(5.27)

By the duality formula we get
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E (g0 (x̂T )Y (T )) = E

24g0 (x̂T ) TZ
0

�
@b

@x
(t)Y (t) +

@b

@u
(t) vt

�
dt

+g0 (x̂T )

TZ
0

�
@�

@x
(t)Y (t) +

@�

@u
(t) vt

�
dBt

35
= E

24 TZ
0

g0 (x̂T )

�
@b

@x
(t)Y (t) +

@b

@u
(t) vt

�
dt

+

TZ
0

Dtg
0 (x̂T )

�
@�

@x
(t)Y (t) +

@�

@u
(t) vt

�
dt

35 :

Using similar arguments and Fubini�s theorem it follows that,

E

24 TZ
0

@f

@x
(t)Y (t)dt

35 = E
24 TZ
0

0@ tZ
0

@f

@x
(t)

�
@b

@x
(s)Y (s) +

@b

@u
(s) vs

�
ds

1A dt
+

TZ
0

0@ tZ
0

Ds
@f

@x
(t)

�
@�

@x
(t)Y (t) +

@�

@u
(t) vt

�
ds

1A dt
35

= E

24 TZ
0

0@ TZ
s

@f

@x
(t)

�
@b

@x
(s)Y (s) +

@b

@u
(s) vs

�
dt

1A ds
+

TZ
0

0@ TZ
s

Ds
@f

@x
(t)

�
@�

@x
(s)Y (s) +

@�

@u
(s) vs

�
dt

1A ds
35 : (5.28)

Changing the notation s! t; we get
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E

24 TZ
0

@f

@x
(t)Y (t)dt

35 (5.29)

= E

24 TZ
0

0@0@ TZ
t

@f

@x
(s) ds

1A� @b
@x
(t)Y (s) +

@b

@u
(t) vt

�1A dt
+

TZ
0

0@ TZ
t

�
Dt
@f

@x
(s) ds

��
@�

@x
(t)Y (t) +

@�

@u
(t) vt

�1A dt
35 :

Using the notation

R (t) := g0 (XT ) +

TZ
t

@f

@x
(s) ds;

and combining (5:28) and (5.29); we get

lim
�!0

1

�

�
J
�
u�; �̂

�
� J

�
û; �̂
��
= E

24 TZ
0

�
R (t)

�
@b

@x
(t)Y (t) +

@b

@u
(t) vt

�

+DtR (t)

�
@�

@x
(t)Y (t) +

@�

@u
(t) vt

�
+
@f

@u
(t) vt

�
dt

�
; (5.30)

which completes the proof.

Now, we are ready to state the main result of this paper. Note that the following theorem

extends in particular [47] Theorem 3.4 and [51] Theorem 2.4 to mixed regular-singular

control problems.

Theorem 5.2.1 (The stochastic maximum principle) Let
�
û; �̂
�
2 AE be an opti-

mal control maximizing the reward J over AE and x̂t denotes the optimal trajectory, then

for a.e. t 2 [0; T ] we have:
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i) E
h
V(û;�̂)(t)=Et

i
� 0; and E

h
V(û;�̂)(t)=Et

i
d�̂t = 0 where

V(û;�̂)(t) = � (t) p̂ (t) + h (t) ;

ii) E
�
@H

@u
(t; x̂t; ût) =Et

�
= 0; where

H (t; x̂t; ût; p̂ (t) ; q̂ (t)) = f (t; x̂t; ût) + p̂ (t) b (t; x̂t; ût) + q̂ (t)� (t; x̂t; ût) ;

is the usual Hamiltonian.

First, we start to prove (i). By Lemma 4:2 we have

lim
�!0+

1

�

�
J
�
û; ��

�
� J

�
û; �̂
��
= E

24 TZ
0

V(û;�̂)(t)d�t

35 � 0;
for all � 2 UE2 : In particular, this holds if we choose � such that d� (t) = a (t) dt; where

a (t) � 0 is continuous and Et�adapted, then

E

24 TZ
0

V(û;�̂)(t)a (t) dt

35 � 0:
Since this holds for all such Et�adapted processes, we deduce that

E
h
V(û;�̂)(t)=Et

i
� 0; a:e:t 2 [0; T ] : (5.31)

Then, choosing �t = ��̂t we get

E

24 TZ
0

V(û;�̂)(t)
�
�d�̂t

�35 � 0:
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Next, choosing �t = �̂t we get

E

24 TZ
0

V(û;�̂)d�̂t

35 � 0:
Hence

E

24 TZ
0

V(û;�̂)(t)d�̂t

35 = E
24 TZ
0

E
�
V(û;�̂)(t)=Et

�
d�̂t

35 = 0;
which combined with (5:31) gives

E
�
V(û;�̂)(t)=Et

�
d�̂t = 0:

Now let us prove (ii).

We have

lim
�!0

1

�

�
J
�
u�; �̂

�
� J

�
û; �̂
��
� 0:

Then by lemma 4:3 we get

0 � E

24 TZ
0

�
R (t)

�
@b

@x
(t)Y (t) +

@b

@u
(t) vt

�
(5.32)

+DtR (t)

�
@�

@x
(t)Y (t) +

@�

@u
(t) vt

�
+
@f

@u
(s) vt

��
dt:

Now we apply the above to v = v� 2 UE1 of the form v� (s) = �1[t;t+h] (s) ; for some

t; h 2 (0; T ), t+h � T; where � = � (!) is bounded and Et-measurable. Then Y v� (s) = 0

for 0 � s � t, hence (5:32) becomes

A1 + A2 � 0; (5.33)

where

A1 = E

24 TZ
t

�
R (s)

@b

@x
(s)Y (s) +DsR (s)

@�

@x
(s)Y (s)

�
ds

35 ;
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and

A2 =

24 t+hZ
t

�
R (s)

@b

@u
(t) +DsR (s)

@�

@u
(t) +

@f

@u
(s)

�
�ds

35 :
Note that by (5:25); with Y (s) = Y v� (s), s � t+h the process Y (s) satis�es the following

dynamics

dY (s) = Y (s)

�
@b

@x
(s) ds+

@�

@x
(s) dBs

�
; (5.34)

for s � t+ h with initial condition Y (t+ h) at time t+ h: An application of Itô�s formula

yields

Y (s) = Y (t+ h)G (t+ h; s) ; s � t+ h; (5.35)

where, for s � t,

G (t; s) = exp

0@ sZ
t

(
@b

@x
(r)� 1

2

�
@�

@x

�2
(r)

)
dr +

sZ
t

@�

@x
(r) dBr

1A :
Note that G (t; s) does not depend on h; but Y (s) does. We have by (5:7)

A1 = E

24 TZ
t

@H0
@x

(s)Y (s)ds

35 :
Di¤erentiating with respect to h at h = 0 we get

d

dh
A1

����
h=0

=
d

dh
E

24 t+hZ
t

@H0
@x

(s)Y (s)ds

35������
h=0

+
d

dh
E

24 TZ
t+h

@H0
@x

(s)Y (s)ds

35������
h=0

:

Using the fact that Y (t) = 0; we see that

d

dh
E

24 t+hZ
t

@H0
@x

(s)Y (s)ds

35
h=0

= 0:
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Therefore, using (5:35) and the fact that Y (t) = 0 it holds that;

d

dh
A1

����
h=0

=
d

dh
E

24 TZ
t+h

@H0
@x

(s)Y (t+ h)G (t+ h; s) ds

35������
h=0

=

TZ
t

d

dh
E

�
@H0
@x

(s)Y (t+ h)G (t+ h; s)

�����
h=0

ds

=

TZ
t

d

dh
E

�
@H0
@x

(s)G (t; s)Y (t+ h)

�����
h=0

ds:

(5.36)

By (5:27)

Y (t+ h) = �

t+hZ
t

�
@b

@u
(s) ds+

@�

@u
(s) dBs

�
+

t+hZ
t

Ys

�
@b

@x
(s) ds+

@�

@x
(s) dBs

�
: (5.37)

Therefore, by the duality formulae;
d

dh
A1

����
h=0

= �1 + �2; where

�1 =

TZ
t

d

dh
E

24@H0
@x

(s)G (t; s)�

0@ t+hZ
t

@b

@u
(r) dr +

@�

@u
(r) dBr

1A35������
h=0

ds

=

TZ
t

d

dh
E

24F (t; s)�
0@ t+hZ

t

@b

@u
(r) dr +

@�

@u
(r) dBr

1A35������
h=0

ds

=

TZ
t

d

dh
E

24�
0@ t+hZ

t

�
F (t; s)

@b

@u
(r) dr +DrF (t; s)

@�

@u
(r)

�
dr

1A35������
h=0

ds

=

TZ
t

E

�
�

�
F (t; s)

@b

@u
(t) dt+DtF (t; s)

@�

@u
(t)

��
ds; (5.38)
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F (t; s) = @H0
@x
(s)G (t; s) ; and

�2 =

TZ
t

d

dh
E

24@H0
@x

(s)G (t; s)

0@ t+hZ
t

Yr

�
@b

@x
(r) dr +

@b

@x
(r) dBr

�1A35 ds:
Using the fact that Y (t) = 0, we see that

�2 = 0:

We conclude that
d

dh
A1jh=0 = �1:

Moreover, we see directly that

d

dh
A2jh=0 = E

�
�

�
R (t)

@b

@u
(t) +DtR (t)

@�

@u
(t) +

@f

@u
(t)

��
:

Therefore, di¤erentiating (4:26) with respect to h at h = 0; gives the inequality

E

�
�

��
R (t) +

TR
t

F (t; s) ds

�
@b

@u
(t)

+Dt

�
R (t) +

TR
t

F (t; s) ds

�
@�

@u
(t) +

@f

@u
(t)

��
� 0:

We can reformulate this by using the notation (5:9) and (5:10)

E

�
�

�
p (t)

@b

@u
(t) + q (t)

@�

@u
(t) +

@f

@u
(t)

��
� 0:

Using the de�nition of the Hamiltonian (5.11) the last inequality can be rewritten

E

�
@H

@u
(t; x̂t; ût)�

�
� 0:
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Since this holds for all bounded Et-measurable random variable �, we conclude that

E

�
@H

@u
(t; x̂t; ût) =Et

�
= 0:

This completes the proof.
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Conclusion

The aim of our work is to establish stochastic maximum principles for partial infor-

mation general regular-singular stochastic control problems by using Malliavins calculus.

The control has two components, the �rst one is a classical regular control and the second

one is a singular. We consider systems driven by random coe¢ cients and the running and

the �nal costs are allowed to be random. It is clear that for such systems the dynamic

programming does not hold, as the state process is no longer a Markov process. We have

obtained a necessary conditions for optimality satis�ed by some optimal control and the

adjoint process is explicitly expressed.

We point out the di¤erence between partial information and partial observation mod-

els. Concerning the latter, the information "t available to the controller at time t is a noisy

observation of the state. In such cases one can sometimes use �ltering theory to transform

the partial observation problem to a related problem with full information. The partial

information problems considered in our work, however, deal with the more general cases

where we simply assume that the information �ow "t is a sub�ltration of the full informa-

tion Ft. Note that the methods and results in the partial observation case do not apply to

our situation. On the other hand, there are several existing works on stochastic maximum

principle (either completely or partially observed) where adjoint processes are explicitly

expressed . However, these works all essentially employ stochastic �ows technique, over

which the Malliavin calculus has an advantage in terms of numerical computations.

Following this study, several perspectives are considered. It would be interesting to use
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malliavin calculus in the following problems

� Maximum principle for in�nite-horizon optimal control problems.

� Maximum principle for in�nite-horizon control problems with time delay.

� In�nite horizon optimal control of forward-backward stochastic di¤erential equa-

tions.

� In�nite horizon optimal control of forward-backward stochastic di¤erential equations

with delay.
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Annexe B: Abréviations et Notations

The following notation is frequently used in this thsis

Rn n-dimmensional real Euclidiean space.

Rn�m the set of all (n�m) real mtrixes.

C ([0; T ] ;Rn) the set of all continuous functions ' : [0; T ]! Rn:

Lp (0; T ;Rn) the of Lebegue mesurable functions ' : [0; T ]! Rn

such that
R T
0
j' (t)jp dt <1 (p 2 [1;1)) :

(
;F ; P ) probability space.

fFtgt�0 �ltration.�

;F ; fFtgt�0 ; P

�
�ltered probability space.

� (A) the smallest � � �elld containing the class A:

E [X] the expectation of the random variable X:

LPG (
;Rn) the set of fFtgt�0 � adapted Rn � valued processes X (:) such that

E
R T
0
jXtjp dt <1:

U [0; T ] the set of all fFtgt�0 � adapted processes u : [0; T ]� 
! U:

U sad [0; T ] the set of (stochastic) strong admissible controls.

Uwad [0; T ] the set of (stochastic)weak admissible controls.

D � D ([0; T ] ;Rn) the set of all functions � : [0; T ]! Rn that are right continuous with

left limits (càdlàg for short) :
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