Please use this identifier to cite or link to this item:
http://archives.univ-biskra.dz/handle/123456789/24482
Title: | Gestion et contrôle optimale de l'énergie électrique sur les sites de production. |
Authors: | LABBI, Yacine |
Keywords: | Optimisation par Essaims de Particules (PSO), Algorithmes Génétiques (AG), Recherche de motifs (PS), algorithme de Big Bang et de Big Crunch, Colonie d'Abeilles Artificielle (ABC), algorithme d'Optimisation des Racines des Arbres (RTO), Algorithmes Génétiques avec mécanisme de Génie Génétique (GAGE). Optimisation de l’écoulement de puissance, Réseau, Dispatching Economique, Engagement d'Unité de production, contrôle de pollution, émissions Métaheuristiques Algorithmes Hybrids |
Issue Date: | 26-Apr-2016 |
Publisher: | Université Mohamed Khider - Biskra |
Abstract: | Au cours des dernières années, la demande de l’énergie électrique a augmenté avec le développement de l'industrialisation. Divers outils de gestion et de planification ont été utilisées, mais la recherche et le développement supplémentaires sont nécessaires pour les amener à l'utilisation et le contrôle optimale. L'engagement des unités (UC) et le dispatching économique (ED) sont les deux fondamentaux problèmes que les opérateurs du système résoudre afin de minimiser les coûts d'exploitation des réseaux électriques de manière optimale. Afin de minimiser le coût du carburant et de garder les sorties de puissance de générateurs et des tensions de bus dans leurs limites sûres, plusieurs méthodes métaheuristiques ont été utilisés dans ce travail, notamment des optimisation par essaims particulaires (OEP), Algorithme Génétique (AG), Pattern Search (PS) algorithme Big Bang-Big Crunch (BB-BC) et l'algorithme Artificiel Bee Colony (ABC) avec leurs hybrides. En outre, ces méthodes ont été appliquées pour déterminer l'ordre d'engagement des unités thermiques de production d'électricité dans les systèmes. Deux nouvelles approches ont été développées et introduites dans le cadre de notre thèse à savoir : algorithme d'optimisation de l'arbre racine (RTO) et GAGE. Les résultats obtenus par l'application de la première méthode développée (RTO) pour résoudre divers problèmes du types ED, comparativement aux méthodes récentes qui traitent le même problème, ont montré une meilleure qualité de la solution et réduire d'une manière significative le temps CPU d'exécution. La seconde, GAGE est basé sur l’opérateur de l'exploitation de l'ingénierie génétique dans l'algorithme génétique, a été développée pour résoudre le problème UC. Ainsi, cette méthode montre des améliorations remarquables dans les coûts totaux pour un système de test de 10 unités et le réseau électrique algérien pour une période de 24 heures. |
URI: | http://archives.univ-biskra.dz/handle/123456789/24482 |
Appears in Collections: | Département de Génie Electrique |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Thèse_55_2016.pdf | 10,43 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.