Please use this identifier to cite or link to this item:
http://archives.univ-biskra.dz/handle/123456789/23235
Title: | Techniques d’apprentissage automatique pour l’analyse et la fouille des sentiments dans les réseaux sociaux |
Authors: | Nedioui, Med Abdelhamid |
Keywords: | Fouille de données, apprentissage automatique, analyse des sentiments, réseaux sociaux, communautés des sentiments |
Issue Date: | 1-Jun-2021 |
Abstract: | Aujourd’hui, avec une large diffusion des réseaux sociaux, d’énormes quantités de données sont générées sous forme de points de vue, d'émotions, d'opinions et de sentiments sur différents événements sociaux, produits, marques, politiques, etc. Les sentiments des utilisateurs exprimés sur le Web ont une grande influence sur les lecteurs, les vendeurs de produits et les politiciens.La forme non structurée de données provenant des médias sociaux doit être analysée et bien structurée et à cette fin, l'analyse des sentiments a attiré une attention considérable. L'analyse des sentiments est utilisée pour classer les sentiments exprimés de différentes manières telles que négatives, positives ou neutres. Le défi de l'analyse des sentiments est le manque d'étiquettes suffisantes de données dans les réseaux sociaux. Afin de résoudre ce problème, l'analyse des sentiments ainsi que l'analyse des réseaux sociaux ont été fusionnées pour avoir des résultats beaucoup plus pertinents. Dans cette thèse nous mettons en évidence les dernières études concernant la mise en œuvre de modèles d'analyse des sentiments tels que l'apprentissageة automatique et celles basées sur un lexique à l’instar des techniques de détection de communautés de sentiments pour résoudre les différents problèmes liées à d'analyse de sentiments |
URI: | http://archives.univ-biskra.dz/handle/123456789/23235 |
Appears in Collections: | Informatique |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Techniques d’apprentissage automatique pour l’analyse et la fouille des sentiments dans les réseaux sociaux.pdf | 1,9 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.